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Abstract

Let W (π) be either the number of descents or inversions of a permutation π ∈ Sn. Stein’s
method is applied to show that W satisfies a central limit theorem with error rate n−1/2. The
construction of an exchangeable pair (W,W ′) used in Stein’s method is non-trivial and uses a
non-reversible Markov chain.

1 Introduction

We begin by recalling two permutation statistics on the symmetric group Sn which are of interest to
combinatorialists and statisticians. A good introduction to the combinatorial aspects of permuta-
tion statistics is Chapter 1 of Stanley [Sta], and a superb account of their applications to statistical
problems is Chapter 6 of Diaconis [Di].

The first statistic on Sn is Des(π), the number of descents of π. This is defined as the number
of pairs (i, i+1) with 1 ≤ i ≤ n−1 such that π(i) > π(i+1). Writing π in two-line form, this is the
number of times the value of the permutation π decreases. (A more general definition of descents
exists for Coxeter groups: the number of height one positive roots sent to negative roots by π).
The number of permutations π in Sn with k+1 descents is also called the Eulerian number A(n, k)
and has been studied extensively [DiP], [FSc], [K]. Several proofs are known for the asymptotic
(n → ∞) normality of A(n, k). See for instance Diaconis and Pitman [DiP], Pitman [P], Bender
[Be], and Tanny [T]. A proof using the method of moments should also work.

A second well-studied statistic on Sn is Inv(π), the number of inversions of π. In the statistics
community this is called Kendall’s tau. Inv is defined as the number of pairs (i, j) with 1 ≤
i < j ≤ n such that π(i) > π(j). Writing π in two-line form, this is the number of pairs (i, j)
whose values are out of order. I(π) is also the length of π in terms of the standard generators
{(i, i+1) : 1 ≤ i ≤ n−1} for Sn. (For an arbitrary Coxeter group, Inv(π) is the number of positive
roots sent to negative roots by π). Proofs of the asymptotic normality of Inv(π) for Sn can be
found in Bender [Be] and Chapter 6 of Diaconis [Di].

The following definition generalizes both of these statistics. Let M = (Mi,j) be a real, anti-
symmetric, n ∗ n matrix. Let X be the random variable on Sn defined by X(π) =

∑
i<j Mπ(i),π(j).

Setting Mi,j = −1 if j = i + 1, Mi,j = 1 if j = i − 1, and Mi,j = 0 otherwise leads to X(π) =
2Des(π−1) − (n − 1). Setting Mi,j = −1 if i < j, Mi,j = +1 if i > j, and Mi,i = 0 leads to
X(π) = 2Inv(π−1)−

(n
2

)
. Define W = X√

V ar(X)
, so that W has mean 0 and variance 1.

Charles Stein developed a method for bounding the sup norm between the distribution of a
random variable and the standard normal distribution. His technique has come to be known as
Stein’s method. Stein’s book [Ste] and the papers in this volume are good references.

Let us recall some notation from probability theory. If Y, Z are random variables on a probability
space (Ω,B ,P), we let E(Y ) denote the expected value of Y and EZ(Y ) the expected value of Y
given Z, where both expectations are taken under P . In the case at hand, Ω is Sn, B is all subsets
of Sn, and P is the uniform distribution. Call W,W ′ an exchangeable pair of random variables on
Sn if P (W = w1,W

′ = w2) = P (W = w2,W
′ = w1).

Theorem 1 is due to Rinott and Rotar.
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Theorem 1 ([RR]) Let W,W ′ be an exchangeable pair of real random variables such that EWW ′ =
(1 − λ)W with 0 < λ < 1. Suppose moreover that |W ′ −W | ≤ A for some constant A. Then for
all real x,

|P{W ≤ x} − Φ(x)| ≤ 12

λ

√
V ar(EW (W ′ −W )2) + 48

A3

λ
+ 8

A2

√
λ

where Φ is the standard normal distribution.

Theorem 1 will be used to prove Theorem 2.

Theorem 2 Let Des(π) and Inv(π) be the number of descents and inversions of π ∈ Sn. Then
for all real x,

|P{
Des− n−1

2√
n+1
12

≤ x} − Φ(x)| ≤ C

n
1
2

|P{
Inv − (n2)

2√
n(n−1)(2n+5)

72

≤ x} − Φ(x)| ≤ C

n
1
2

where C is a constant independent of n.

We remark that Theorem 2 is known by other proof techniques (see [DiP] for the case of
descents and [Bic] for inversions). We recently learned that there is some overlap with results in
[BCLZ], which gives bounds for permutation statistics using reversible Markov chains together with
Bolthausen’s variation of Stein’s method.

Section 2 shows how, for W = Des or W = Inv, to construct an exchangeable pair (W,W ′)
such that EWW ′ = (1− 2

n)W . This step, which is usually the easy part of applying Stein’s method,
is non-trivial and uses a non-reversible Markov chain equivalent to the “move to front” chain. The
only other example in the literature in which exchangeability was not obvious is the paper of Rinott
and Rotar [RR]. A connection with this work will be mentioned in Section 2. Section 3 develops
bounds for the terms on the right-hand side of Theorem 1, and indicates why a somewhat weaker
version of Theorem 1 due to Stein can only give n−1/4 rates.

We remark that the move to front rule on the symmetric group is a very special case of a theory of
random walk on the chambers of real hyperplane arrangements [BiHaR]. The corresponding Markov
chains are non-reversible and have real eigenvalues. These nonreversible chains have recently been
related to a reversible Markov chain on the set of irreducible representations of the symmetric group
[F1],[F2].

2 Construction of an Exchangeable Pair (W,W ′)

This section constructs W ′ so that (W,W ′) is an exchangeable pair with nice properties. In most
applications of Stein’s method (e.g. the examples in Stein [Ste]), it is clear how to define W ′ and
exchangeability comes for free. The situation here is more subtle.

This being said, define W ′ = W ′(π) as follows. Pick I uniformly at random between 1 and n and
define π′ as (I, I +1, · · · , n)π, where (I, I +1, · · · , n) cycles by mapping I → I +1 → · · · → n → I,
and where permutation multiplication is from left to right. For example, suppose that n = 7 and
I = 3. Then the permutation π which in 2-line form is:
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i : 1 2 3 4 5 6 7
π(i) : 6 4 1 5 3 2 7

is transformed to:

i : 1 2 3 4 5 6 7
π′(i) : 6 4 5 3 2 7 1

In other words, one moves the number in position I in the second row of π to the end of this
second row. Now define W ′(π) = W (π′). Before discussing exchangeability, we prove Lemma 1,
which was the motivation for the definition of W ′ and shows that one can take λ = 2

n in Theorem
1.

Lemma 1 EWW ′ = (1− 2
n)W

Proof: Letting i be the value of the random variable I, ones sees from the definition of W ′ that:

Eπ(W ′ −W ) =
1√

V ar(X)

1

n

n∑
i=1

∑
j:j>i

−2Mπ(i),π(j)

=
1√

V ar(X)

1

n

∑
1≤i<j≤n

−2Mπ(i),π(j)

= − 2

n
W.

Since Eπ(W ′ −W ) depends on π only through W , the lemma follows. 2

Lemma 2 establishes a condition on (Mi,j) under which the pair (W,W ′) is exchangeable. This
condition admittedly has limited scope, but as will be seen, holds for the cases of descents and
inversions.

Lemma 2 Given a subset S of {1, · · · , n}, for each i ∈ S define ai,S =
∑

j∈S:j>iMi,j and bi,S =∑
j∈S:j<iMj,i. Suppose that for all subsets S of {1, · · · , n} , there is a bijection Θ : S 7→ S satisfing

the following conditions:

1. For each i ∈ S, ai,S − bi,S = bΘ(i),S − aΘ(i),S .

2. For each i ∈ S, there is a bijection Φi : S − {i} 7→ S − {Θ(i)} such that Mj,k = MΦi(j),Φi(k)

for all j, k ∈ S − {i}.

Then (W,W ′) is an exchangeable pair of random variables.

Proof: It will be shown that P{W = a,W ′ = b} = P{W = b,W ′ = a}. For this we prove the
stronger claim that if T = {π ∈ Sn : π(j) = zj for 1 ≤ j ≤ I − 1}, then

P{W = a,W ′ = b|I, π ∈ T} = P{W = b,W ′ = a, |I, π ∈ T}

In other words, assume that the value of I and the images of {1, · · · , I − 1} under π are given.
Let S = {π(I), · · · , π(n)} be as in the hypotheses of the lemma. Now define a bijection Λ : T 7→ T
as follows:
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1. Λ(π)(j) = π(j) for 1 ≤ j ≤ I − 1

2. Λ(π)(I) = Θ(π(I))

3. Λ(π)(j) = Φπ(I)(π(j)) for I + 1 ≤ j ≤ N

We only show that W (π) = W (Λ(π)′), the argument that W (π′) = W (Λ(π)) being similar.
Since π and Λ(π)′ agree on 1, · · · , I − 1, it is enough to show that∑

I<j≤n

Mπ(I),π(j) +
∑

I<i<j≤n

Mπ(i),π(j) =
∑

I≤i<j<n

MΛ(π)′(i),Λ(π)′(j) +
∑

I≤i<n

MΛ(π)′(i),Λ(π)′(n).

Now observe that ∑
I≤i<j<n

MΛ(π)′(i),Λ(π)′(j) =
∑

I<i<j≤n

MΛ(π)(i),Λ(π)(j)

=
∑

I<i<j≤n

MΦπ(I)(π(i)),Φπ(I)(π(j))

=
∑

I<i<j≤n

Mπ(i),π(j).

The second equality is from the definition of Λ(π) and the third equality is from condition 2 in the
lemma. Also observe that∑

I≤i<n

MΛ(π)′(i),Λ(π)′(n) =
∑

I<j≤n

MΛ(π)(j),Λ(π)(I)

=
∑

I<j≤n

MΛ(π)(j),Θ(π(I))

= bΘ(π(I)),S − aΘ(π(I)),S

= aπ(I),S − bπ(I),S

=
∑

I<j≤n

Mπ(I),π(j).

The third equality holds because {Λ(π)(j) : I < j ≤ n} = S−Θ(π(I)). The fourth equality is from
condition 1 in the lemma. 2

Remarks

1. Let us illustrate the proof of Lemma 2 by example for X(π) = 2Des(π−1)− (n− 1). Recall
that here Mi,j = −1 if j = i + 1, Mi,j = 1 if j = i − 1, and Mi,j = 0 otherwise. Suppose
that I = 3 and π(1) = 6, π(2) = 4. Thus T = {π ∈ Sn : π(1) = 6, π(2) = 4}. Note that
S = {1, 2, 3, 5, 7}, because these are the images of π(j) for j ≥ I = 3. One observes that
the bijection Θ : S 7→ S defined by Θ(1) = 3, Θ(2) = 2, Θ(3) = 1, Θ(5) = 5, Θ(7) = 7
satisfies condition 1 of Lemma 2 (in general, one defines Θ by reversing within each group of
consecutive numbers in S). For each i ∈ S it is also necessary to define bijections Φi such
that condition 2 of Lemma 2 holds. This can be done by pairing the elements of S −{i} and
S − {Θ(i)} so as to preserve their relative order. For instance, Φ1 : {2, 3, 5, 7} 7→ {1, 2, 5, 7}
is defined by Φ1(2) = 1,Φ1(3) = 2,Φ1(5) = 5,Φ1(7) = 7.

These choices determine the bijection Λ : T → T constructed in Lemma 2. For example,
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i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π(i) : 6 4 1 5 3 2 7 Λ(π)(i) 6 4 3 5 2 1 7

i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π′(i) : 6 4 5 3 2 7 1 Λ(π′)(i) 6 4 5 2 1 7 3

One checks that X(π) = X(Λ(π′)) = 0 and X(π′) = X(Λ(π)) = 2.

2. Let us illustrate the proof of Lemma 2 by example for X(π) = 2Inv(π−1) −
(n
2

)
. Here

Mi,j = −1 if i < j, Mi,j = +1 if i > j, and Mi,i = 0. As for the case of descents, suppose that
I = 3 and π(1) = 6, π(2) = 4. Then T = {π ∈ Sn : π(1) = 6, π(2) = 4} and S = {1, 2, 3, 5, 7}.
The bijection Θ : S 7→ S must be defined differently from the descent case so that condition
1 of Lemma 2 holds. It is easy to see that reversing the elements of S works. Thus Θ(1) = 7,
Θ(2) = 5, Θ(3) = 3, Θ(5) = 2, and Θ(7) = 1. Defining the maps Φi as in the descent case,
condition 2 of Lemma 2 holds.

These choices determine the bijection Λ : T → T constructed in Lemma 2. For example,

i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π(i) : 6 4 1 5 3 2 7 Λ(π)(i) 6 4 7 3 2 1 5

i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π′(i) : 6 4 5 3 2 7 1 Λ(π′)(i) 6 4 3 2 1 5 7

One checks that X(π) = X(Λ(π′)) = 1 and X(π′) = X(Λ(π)) = 9.

3. The above examples show that the pair (W,W ′) is exchangeable for descents and inversions.
An interesting problem is to classify the matrices (Mi,j) such that the pair (W,W ′) is ex-
changeable. It would also be useful to construct exchangeable pairs (W,W ′) for other Coxeter
groups.

4. Lemma 1.1 of [RR] states the following. Suppose that {T t} is a stationary, nonnegative,
integer valued process satisfying T t+1−T t = +1, 0 or −1. Then (T t, T t+1) is an exchangeable
pair.

For the case of descents, this gives an alternate proof that W,W ′ as we have defined them are
an exchangeable pair, even though the underlying chain on permutations is not reversible.
To see this, let R0 be a uniformly distributed element of Sn; then given Ri, move to Ri+1

according to the move random to end rule defined in the beginning of this section. This
process is stationary. Defining T t to be the number of descents of Rt, one sees that the
conditions of the lemma hold.

It is interesting to note that Lemma 1.1 of [RR] was applied there to study W equal to the
number of ones in a random pick from the stationary distribution of the antivoter model. The
antivoter chain is not reversible, but their lemma implies that if W ′ is the number of ones
after a step from the antivoter chain, then (W,W ′) is an exchangeable pair.
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3 Bounding the Error Terms

This section bounds the error terms on the right hand side of Theorem 1.
We start by computing the mean and variance of X and establishing a nice property of the pair

(W,W ′). For this it is helpful to define Ai =
∑

j>iMi,j and Bi =
∑

h<iMh,i.

Lemma 3 E(X) = 0 and V ar(X) =

∑
i<j

(Mi,j)
2+

∑n

i=1
(Ai−Bi)

2

3 .

Proof: Observe that the random variable X on Sn can be written as a sum of random variables
Xi,j on Sn. Defining a random variable Xi,j on Sn by

Xi,j(π) =

{
Mi,j if π−1(i) < π−1(j)
Mj,i if π−1(j) < π−1(i)

one has that:

X(π) =
∑
i<j

Mπ(i),π(j) =
∑

π−1(i)<π−1(j)

Mi,j =
∑
i<j

Xi,j(π).

The mean of X is 0 since each Xi,j has mean 0 and expectation is linear.
The variance ofX is equal to E[(

∑
i<j Xi,j(π))

2]. The terms E(X2
i,j) contribute (Mi,j)

2 each and
thus

∑
i<j(Mi,j)

2 in total. The terms E(2Xi,jXk,l) vanish if i, j, k, l are distinct, by independence.
Now consider what happens when two of these four indices are equal. Terms of the form 2E(Xi,jXi,l)
contribute 2

3Mi,jMi,l each. The sum of all such terms can be rewritten as 1
3 [
∑

iA
2
i −

∑
i<j(Mi,j)

2].

Similarly, terms of the form 2E(Xi,lXk,l) contribute 1
3 [
∑

iB
2
i −

∑
i<j(Mi,j)

2]. Finally, terms of

the form 2E(Xi,jXj,k) contribute −2
3Mi,jMj,k each, and hence a total of −2

3

∑
iAiBi. The lemma

follows. 2

As a consequence of Lemma 3, one recovers the known facts that for a random permutation on
n symbols, V ar(Des(π)) = n+1

12 and V ar(Inv(π)) = n(n−1)(2n+5)
72 . Note that Lemma 3 has written

V ar(X) as a sum of positive quantities.

Lemma 4 E(W ′ −W )2 = 4
n

Proof:

E(W ′ −W )2 = E(EW (W ′ −W )2)

= E
(
EW ((W ′)2 +W 2 − 2WW ′)

)
= E

(
(W ′)2 + E(W 2)− 2WEW (W ′)

)
= 2V ar(W )− E(2WEW (W ′))

=
4

n
V ar(W )

=
4

n
.

The fourth equality used the fact that W and W ′ have the same distribution. The fifth equality
used Lemma 1. 2

Lemma 5 establishes a well known inequality. For completeness, we include a proof.
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Lemma 5 E[EW (W ′ −W )2]2 ≤ E[Eπ(W ′ −W )2]2.

Proof: Jensen’s inequality says that if g is a convex function, and Z a random variable, then
g(E(Z)) ≤ E(g(Z)). There is also a conditional version of Jensen’s inequality (Section 4.1 of
Durrett [Du]) which says that if F is any σ subalgebra of B, then

E(g(E(Z|F ))) ≤ E(g(Z)).

The lemma follows by applying this inequality to the case g(t) = t2, Z = Eπ(W ′ −W )2, B is all
subsets of Sn, and F is the σ subalgebra of B generated by the level sets of W . 2

Now we prove Theorem 2.
Proof: (of Theorem 2) We will apply Theorem 1. Note that the move random to end rule
changes the number of descents by at most one. Hence the corresponding pair (W,W ′) satisfies
|W ′ − W | ≤ 2√

V ar(X)
. Similarly the move random to end rule changes the number of inversions

by at most n-1. Hence the corresponding pair (W,W ′) satisfies |W ′ − W | ≤ 2(n−1)√
V ar(X)

. Thus in

both cases |W ′ −W | is at most An−1/2 for an absolute constant A. Also note by Lemma 1 that
EW (W ′) = (1− λ)W with λ = 2

n .
Thus by Theorem 1 the result will follow if it can be shown that V ar(EW (W ′ − W )2) ≤

B
n3 . Lemma 5 implies that V ar(EW (W ′ − W )2) ≤ V ar(Eπ(W ′ − W )2). Hence we show that

V ar(Eπ(W ′ −W )2) ≤ B
n3 .

Observe that

Eπ(W ′ −W )2 =
1

V ar(X)

4

n

n∑
i=1

(
∑
j>i

−Mπ(i),π(j))
2

=
1

V ar(X)

4

n

 n∑
i=1

∑
j>i

(Mπ(i),π(j))
2 + 2

n∑
i=1

∑
i<j1<j2≤n

Mπ(i),π(j1)Mπ(i),π(j2)

 .

Since
∑n

i=1

∑
j>i(Mπ(i),π(j))

2 is independent of π, it follows that

V ar(Eπ(W ′ −W )2) =
64

V ar(X)2n2
[

∑
1≤i<j1<j2≤n

V ar(Mπ(i),π(j1)Mπ(i),π(j2))

+
∑

i<j1<j2,k<l1<l2
(i,j1,j2)̸=(k,l1,l2)

Cov(Mπ(i),π(j1)Mπ(i),π(j2),Mπ(k),π(l1)Mπ(k),π(l2))]

Let us analyze this bound for the case of descents (i.e. Mi,j = −1 if j = i + 1, Mi,j = 1 if
j = i− 1, and Mi,j = 0 otherwise). We first study the summands and then divide by V ar(X)2n2.
The first summand has O(n3) terms, each contributing O(n−2); hence it is O(n). The covariance
terms are also O(n). To see this, first note that the covariance vanishes if {i, j1, j2}∩{k, l1, l2} = ∅,
so such terms can be ignored. Suppose that i 6= k. Then there are O(n5) terms each contributing
O(n−4). If i = k there are subcases to consider based on which (if any) of elements of {j1, j2} are
equal to elements of {l1, l2}. It is straightforward to see that in all cases the contribution of the
covariance term is O(n). Since V ar(X) is n+1

12 , it follows as desired that V ar(Eπ(W ′−W )2) ≤ B
n3 .

The case of inversions is similar. The variance terms contribute at mostO(n3) and the covariance
terms at most order O(n5). Thus

V ar(Eπ(W ′ −W )2) ≤ B0n
5

V ar(X)2n2
≤ B

n3
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where B0, B are universal constants. 2

To conclude the paper, we comment on the following result of Stein [Ste].

Theorem 3 (Stein) Let W,W ′ be an exchangeable pair of real random variables such that EWW ′ =
(1− λ)W with 0 < λ < 1. Then for all real x,

|P{W ≤ x} − Φ(x)| ≤ 2

√
E[1− 1

2λ
EW (W ′ −W )2]2 + (2π)−

1
4

√
1

λ
E|W ′ −W |3

where Φ is the standard normal distribution.

Applied to our exchangeable pair this would only yield bounds of order n−1/4, since by Jensen’s

inequality E|W ′ −W |3 ≥ (E(W ′ −W )2)3/2 =
(
4
n

)3/2
.
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