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A GENERATING FUNCTION APPROACH TO COUNTING

THEOREMS FOR SQUARE-FREE POLYNOMIALS AND

MAXIMAL TORI

JASON FULMAN

Abstract. A recent paper of Church, Ellenberg, and Farb uses topol-
ogy and representation theory of the symmetric group to prove enumer-
ative results about square-free polynomials and F -stable maximal tori
of GLn(Fq). In this note, we use generating functions to give short,
elementary proofs of some of their results, and some extensions.

1. Introduction

A recent paper by Church, Ellenberg, and Farb [3] (building on themes
of Lehrer [6], [7]) relates topology and representation theory to enumerative
problems about varieties over finite fields, with a useful flow of information
in both directions. They develop counting theorems for random square-
free monic degree n polynomials over a finite field Fq, and for F -stable

maximal tori of GLn(Fq); here F denotes the Frobenius map. They prove
the following results using topology and representation theory.

Results for square-free polynomials

(1) The number of monic degree n square-free polynomials is qn− qn−1.
(2) The expected number of linear factors of a random monic degree n

square-free polynomial is

1− 1

q
+

1

q2
− 1

q3
+ · · · ± 1

qn−2
.

(3) The expected excess of irreducible vs. reducible quadratic factors
tends to

1

q
− 3

q2
+

4

q3
− 4

q4
+

5

q5
− 7

q6
+

8

q7
− 8

q8
+ · · ·

as n→∞.
(4) The discriminant of a random monic degree n square-free polynomial

is equidistributed in F ∗q between residues and nonresidues

Of these results, the first is well known and elementary; see for example
page 366 of [8].

Results for F -stable maximal tori of GLn(Fq).
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• The number of F -stable maximal tori of GLn(Fq) is qn
2−n.

• The expected number of eigenvectors of a random F -stable maximal
torus of GLn(Fq) is

1 +
1

q
+

1

q2
+ · · ·+ 1

qn−1

• The expected excess of reducible vs. irreducible dimension 2 subtori
tends to

1

q
+

1

q2
+

2

q3
+

2

q4
+

3

q5
+

3

q6
+

4

q7
+

4

q8
+ · · ·

as n→∞.
• The number of irreducible factors is more likely to be ≡ n mod 2

than not, with bias equal to the square root of the number of tori

Of these results, the first is a theorem of Steinberg [11], proved using the
Grothendieck-Lefschetz formula by Srinivasan [10] and Lehrer [6]. The other
results may be new, and according to [3], “not so easy to prove”.

The main goal of the current paper is to prove all of the above results
using generating functions. The use of generating functions to count the
total number of square-free polynomials is not new (see page 366 of [8]),
though some of our arguments are. We do obtain one new result; a “finite
n” formula for the expected excess of irreducible vs. reducible quadratic
factors. The use of generating functions to study F -stable maximal tori of
GLn(Fq) does appear to be new, and gives elementary proofs for all of the
above results from [3]. We do obtain one new result: a “finite n” formula for
the expected excess of reducible vs. irreducible dimension 2 subtori. Our
applications of generating function methods to random maximal tori only
scratch the surface, and we expect that there will be many more applications,
such as finding analogs for maximal tori of results in Section 4 of [3]. We also
note that our methods for studying maximal tori will generalize to the other
classical groups (unitary, symplectic, orthogonal), since for all such groups
there are nice product formulas for the order of tori and for centralizer sizes
in the corresponding Weyl group.

To close the introduction, we note that generating function techniques for
enumerative problems over finite fields can be very powerful. For example,
it is proved (independently in [5] and [12]) using generating functions that:

(1) The n→∞ limiting proportion of elements of GL(n, q) with square-
free characteristic polynomial is 1− 1/q.

(2) The n→∞ limiting proportion of cyclic elements of GL(n, q) (that
is elements whose characteristic polynomial is equal to its minimal
polynomial) is (1− 1/q5)/(1 + 1/q3).

At the current time no other proofs of these two results are known.
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2. Square free polynomials

The purpose of this section is to use generating functions to study random
square-free polynomials over a finite field, proving the results of [3] stated
in the introduction. It is known that generating functions can be used to
enumerate the total number of random square-free polynomials. However
some of the methods of calculations in the proofs of Theorems 2.3 and 2.4
may be new, and we do obtain a “finite n” version of a result from [3]. This
section serves as a useful “warm-up” for the more subtle results in Section
3.

In what follows we let N(d, q) denote the number of monic irreducible
degree d polynomials over the field Fq. The following lemma will be useful
throughout this section.

Lemma 2.1. ∏
d≥1

(1− ud)−N(d,q) =
1

1− qu
.

Proof. By uniqueness of factorization of polynomials over the field Fq, it
follows that the coefficient of un on the left hand side of the lemma is equal
to the total number of monic degree n polynomials over Fq, which is qn. As
this is equal to the coefficient of un on the right hand side of the lemma, the
result follows. �

As a first example, we use generating functions to enumerate the square-
free monic degree n polynomials with coefficients in Fq. This application is
known (see page 366 of [8]), but we include it for expository purposes.

Theorem 2.2. For n ≥ 2, the number of square-free monic degree n poly-
nomials with coefficients in Fq is equal to qn − qn−1.

Proof. The number of square-free monic degree n polynomials is clearly the
coefficient of un in ∏

d≥1
(1 + ud)N(d,q).

Note by Lemma 2.1 that∏
d≥1

(1 + ud)N(d,q) =

∏
d≥1(1− u2d)N(d,q)∏
d≥1(1− ud)N(d,q)

=
1− u2q
1− uq

.

It is easily seen that for n ≥ 2 the coefficient of un in (1− u2q)/(1− uq) is
equal to qn − qn−1. �

As mentioned in the introduction, the paper [3] computed the expected
number of linear factors of a random monic degree n square-free polynomial.
Theorem 2.3 derives this using generating functions.
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Theorem 2.3. For n ≥ 2, the expected number of linear factors of a random
monic degree n square-free polynomial is

1− 1

q
+

1

q2
− 1

q3
+ · · · ± 1

qn−2
.

Proof. Let P (n, q) denote the set of monic degree n square-free polynomials
over Fq, and for P ∈ P (n, q), let n1(P ) denote the number of linear factors
of P . Then ∑

P∈P (n,q)

xn1(P )

is equal to the coefficient of un in

(1 + xu)N(1,q)
∏
d6=1

(1 + ud)N(d,q) =
(1 + xu)q

(1 + u)q

∏
d≥1

(1 + ud)N(d,q)

=
(1 + xu)q

(1 + u)q
1− u2q
1− uq

,

where the second equality followed by arguing as in Theorem 2.2. To com-
pute the expected value of n1, we differentiate with respect to x, set x = 1,
then take the coefficient of un, and divide by qn − qn−1.

Differentiating with respect to x and setting x = 1 yields

qu

(1 + u)

(1− u2q)
1− uq

.

Taking the coefficient of un and dividing by qn(1− 1/q) gives the coefficient
of un in

1

1− 1/q

u

1 + u/q

1− u2/q
1− u

.

This is easily seen to be equal to

1− 1

q
+

1

q2
− 1

q3
+ · · · ± 1

qn−2
,

proving the theorem. �

As stated in the introduction, the paper [3] computed the expected excess
of irreducible versus reducible quadratic factors of a random monic degree
n square-free polynomial, in the limit that n → ∞. We recover this result
using generating functions, and also determine an exact formula for finite n.

Theorem 2.4. (1) The expected excess of irreducible versus reducible
quadratic factors of a random monic degree n square-free polynomial
tends to

1

q

1− 1/q

(1 + 1/q)2(1 + 1/q2)
as n→∞.
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(2) The expected excess of irreducible versus reducible quadratic factors
of a random monic degree n square-free polynomial is equal to 0 for
n = 2, 1/q for n = 3, and for n ≥ 4 is[

n−3∑
i=1

(−1)i+1ai
qi

]
− (−1)nbn−3

qn−2
.

Here a1, a2, a3, · · · is the sequence

1, 3, 4, 4, 5, 7, 8, 8, 9, 11, 12, 12, 13, 15, 16, 16, · · ·
of odd numbers with two times the positive even numbers repeated in
order between them, and b1, b2, b3, · · · is the sequence

2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 8, 9, 10, 10, 10 · · ·
of three even numbers followed by one odd number.

Proof. Let P (n, q) denote the set of monic degree n square-free polynomials
over Fq, and for P ∈ P (n, q), let ni(P ) denote the number of degree i
irreducible factors of P . We need to computed the expected value of n2(P )−(
n1(P )

2

)
.

Arguing as in the proof of Theorem 2.3 and using that N(2, q) = (q2−q)/2
shows that ∑

P∈P (n,q)

xn2(P )

is equal to the coefficient of un in

(1 + xu2)(q
2−q)/2

(1 + u2)(q2−q)/2
1− u2q
1− uq

.

To compute the expected value of n2, one must differentiate with respect to
x, set x = 1, take the coefficient of un and then divide by qn(1− 1/q). One
concludes that E[n2] is equal to the coefficient of un in

1

1 + u2
q2u2

2qn
(1− u2q)
(1− uq)

.

Next, recall from the proof of Theorem 2.3 that∑
P∈P (n,q)

xn1(P )

is equal to the coefficient of un in

(1 + xu)q

(1 + u)q
1− u2q
1− uq

.

To compute E[n1(n1 − 1)], one must differentiate twice with respect to x,
set x = 1, take the coefficient of un and then divide by qn(1 − 1/q). One
concludes that E[n1(n1 − 1)], is equal to the coefficient of un in

1

(1 + u)2
q2u2

qn
(1− u2q)
(1− uq)

.
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Combining the previous two paragraphs, it follows that the expected value

of n2(P )−
(
n1(P )

2

)
is equal to the coefficient of un in[

1

1 + u2
− 1

(1 + u)2

]
q2u2

2qn
(1− u2q)
(1− uq)

.

This is equal to the coefficient of un in

(1)

[
1

1 + (u/q)2
− 1

(1 + u/q)2

]
u2

2

(1− u2/q)
1− u

.

If a Taylor series of a function f around 0 converges at u = 1, then the
n→∞ limit of the coefficient of un in f(u)/(1− u) is equal to f(1). Thus

the n→∞ limit of the expected value of n2(P )−
(
n1(P )

2

)
is equal to[

1

1 + (1/q)2
− 1

(1 + 1/q)2

]
1

2
(1− 1/q) =

1

q

1− 1/q

(1 + 1/q)2(1 + 1/q2)
,

and the first part of the theorem is proved.
To prove the second assertion, it is necessary to show that

u3

q
+
∑
n≥4

([
n−3∑
i=1

(−1)i+1ai
qi

]
− (−1)nbn−3

qn−2

)
un

is equal to (1).
Now one computes that∑

n≥4
un

n−3∑
i=1

(−1)i+1ai
qi

=
∑
i≥1

(−1)i+1ai
qi

∑
n≥i+3

un

=
∑
i≥1

(−1)i+1aiu
i+3

qi(1− u)

=
−u3

1− u
∑
i≥1

(−u/q)iai.

One easily checks that ∑
i≥1

uiai =
u(1 + u)

(1− u)2(1 + u2)
,

which implies that

(2)
∑
n≥4

un
n−3∑
i=1

(−1)i+1ai
qi

=
u4(1− u/q)

q(1− u)(1 + u/q)2(1 + u2/q2)

Next one computes that

−
∑
n≥4

(−1)nbn−3u
n

qn−2
= −u3

∑
i≥1

(−1)i+3biu
i

qi+1
=
u3

q

∑
i≥1

(−u/q)ibi.
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One easily checks that∑
i≥1

uibi =
1

(1− u)2(1 + u2)
− 1,

which implies that

(3) −
∑
n≥4

(−1)nbn−3u
n

qn−2
=
u3

q

[
1

(1 + u/q)2(1 + u2/q2)
− 1

]
.

Combining (2) and (3) completes the proof. �

To close this section, we give a generating function proof of the fact from
[3] that the discriminant of a random square-free polynomial is equidis-
tributed in F ∗q between residues and nonresidues.

Proposition 2.5. For n ≥ 2, the discriminant of a random monic degree
n square-free polynomial is equidistributed in F ∗q between residues and non-
residues.

Proof. We can assume that q is odd. As noted in [3], it suffices to show that
if µ(P ) = (−1)d, where d is the number of irreducible factors in a square-free
polynomial P , then µ(P ) = 1 exactly half the time. Observe that∑

P∈P (n,q)

µ(P )

is equal to the coefficient of un in∏
d≥1

(1− ud)N(d,q).

By Lemma 2.1 this is the coefficient of un in 1−uq, which is 0 for n ≥ 2. �

3. Maximal tori

For background on maximal tori, we recommend Chapter 3 of [2]. We
do point out that F -stable maximal tori of GLn(Fq) are not the same as
maximal tori of GLn(q); indeed there are four F -stable maximal tori of
GL2(F2), but only two maximal tori of GL2(2). In this section we use
generating functions to study random F -stable maximal tori of GLn(Fq).
There is a map from the set of such tori to the conjugacy classes of the
symmetric group Sn. The conjugacy classes of Sn are parameterized by
partitions λ of n, and we say that a torus mapping to the partition λ has
type λ. Lemma 3.1 enumerates the number of tori of type λ, which will be
crucial to our approach.

Lemma 3.1. Let λ be a partition of n, and let ni denote the number of
parts of λ of size i. Then the number of F -stable maximal tori of GLn(Fq)
of type λ is equal to

|GL(n, q)|∏
i i
nini!

∏
i(q

i − 1)ni
.
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Proof. This is immediate from Section 2.7 of [9], together with the fact that
the centralizer size of an element of Sn of type λ is equal to

∏
i i
nini!. �

Remark: A special case of Lemma 3.1 is that the number of irreducible
tori is equal to

q(
n
2)

n
(q − 1)(q2 − 1) · · · (qn−1 − 1).

For an interesting proof of this using topology and representation theory,
see Proposition 5.12 of [3].

As a consequence of Lemma 3.1, one has the following generating function,
which is similar to the “cycle index” of the symmetric groups. We let T (n, q)
denote the set of F -stable maximal tori T of GLn(Fq), and let ni(T ) denote
the number of parts of size i of the partition corresponding to T .

Theorem 3.2.

1 +
∑
n≥1

un

|GL(n, q)|
∑

T∈T (n,q)

∏
i

x
ni(T )
i =

∏
i≥1

exp

[
xiu

i

(qi − 1)i

]
.

Proof. Lemma 3.1 implies that the left-hand side of the theorem is equal to

1 +
∑
n≥1

un
∑
|λ|=n

∏
i x

ni
i∏

i i
nini!(qi − 1)ni

.

By the Taylor expansion of the exponential function, this is equal to∏
i≥1

exp

[
xiu

i

(qi − 1)i

]
.

�

The following result of Euler, which is a special case of Corollary 2.2 of
[1], will be helpful.

Lemma 3.3. (1)∏
r≥1

1

1− u/qr
= 1 +

∑
n≥1

un

qn(1− 1/q) · · · (1− 1/qn)

(2) ∏
r≥1

(1 + u/qr) = 1 +
∑
n≥1

un

q(
n+1
2 )(1− 1/q) · · · (1− 1/qn)

Theorem 3.4 proves that the total number of F -stable maximal tori of

GLn(Fq) is equal to qn
2−n. This formula is due to Steinberg [11]; proofs

using the Grothendieck-Lefschetz formula have been given by Srinivasan [10]
and Lehrer [6]. We give a proof using the generating function of Theorem
3.2.

Theorem 3.4. The number of F -stable maximal tori of GLn(Fq) is equal

to qn
2−n.
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Proof. It follows from setting all the xi = 1 in Theorem 3.2 that the number
of F -stable maximal tori of GLn(Fq) is equal to |GL(n, q)| multiplied by the
coefficient of un in∏

i≥1
exp

(
1

(qi − 1)

ui

i

)
=

∏
i≥1

exp

(
1

qi(1− 1/qi)

ui

i

)

=
∏
i≥1

exp

ui
i

∑
r≥1

1

qir


=

∏
r≥1

∏
i≥1

exp
(
(u/qr)i/i

)
=

∏
r≥1

exp (− log(1− u/qr))

=
∏
r≥1

1

1− u/qr
.

Using part 1 of Lemma 3.3, it follows that the total number of maximal tori
of GL(n, q) is equal to

|GL(n, q)|
qn(1− 1/q) · · · (1− 1/qn)

= qn
2−n.

�

Remark: One can pick an F -stable maximal torus of GLn(Fq) uniformly
at random, and let λ be the partition of n corresponding to its type. From
Lemma 3.1 and Theorem 3.4, it follows that the resulting random partition
is equal to a partition λ of n with probability

(1− 1/q) · · · (1− 1/qn)∏
i i
nini!

∏
i(1− 1/qi)ni

.

This measure is a special case of the random partitions studied in [4]. The
fact that ∑

|λ|=n

(1− 1/q) · · · (1− 1/qn)∏
i i
nini!

∏
i(1− 1/qi)ni

= 1

is an identity which Andrews (page 81 of [1]) attributes to Cayley.
As noted in the introduction, Church, Ellenberg, and Farb [3] calculate

the expected number of eigenvectors of a random F -stable maximal torus
of GLn(Fq). Here by “number of eigenvectors” of T is meant the number
of lines in the projective space Pn−1(Fq) fixed by T . Theorem 3.5 uses
generating functions to derive their formula.

Theorem 3.5. The expected number of eigenvectors of a random F -stable
maximal torus of GLn(Fq) is equal to

1 +
1

q
+

1

q2
+ · · ·+ 1

qn−1
.
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Proof. As noted in [3], the number of eigenvectors of an F -stable maximal
torus T of is equal to n1(T ). Set x1 = x and xi = 1 for i ≥ 2 in Theorem
3.2. It follows that

1 +
∑
n≥1

un

|GL(n, q)|
∑

T∈T (n,q)

xn1(T ) = exp

[
xu

q − 1

]∏
i≥2

exp

[
ui

(qi − 1)i

]

= exp

[
(x− 1)u

q − 1

]∏
i≥1

exp

[
ui

(qi − 1)i

]

= exp

[
(x− 1)u

q − 1

]∏
r≥1

1

1− u/qr
,

where the last step followed by arguing as in Theorem 3.4.
To compute the expected value of n1(T ), one must differentiate with

respect to x, set x = 1, take the coefficient of un, and then multiply by

|GL(n, q)|/qn2−n. Differentiating with respect to x and setting x = 1 yields

u

q − 1

∏
r≥1

1

1− u/qr
.

By part 1 of Lemma 3.3, taking the coefficient of un yields

1

q − 1

1

qn−1(1− 1/q) · · · (1− 1/qn−1)
.

Multiplying this by |GL(n, q)|/qn2−n yields

1− 1/qn

1− 1/q
= 1 +

1

q
+

1

q2
+ · · ·+ 1

qn−1
,

as needed. �

As stated in the introduction, the paper [3] computes the expected excess
of reducible vs. irreducible dimension two subtori of a random maximal
torus. They show that as n→∞, this quantity tends to

1

q

1

(1− 1/q)(1− 1/q2)
.

Theorem 3.6 extends this to finite n.

Theorem 3.6. Let T be a random F -stable maximal torus of GLn(Fq).
Then for n ≥ 2, the expected value of the number of reducible dimension two
subtori minus the number of irreducible dimension two subtori is equal to

1

q

(1− 1/qn−1)(1− 1/qn)

(1− 1/q)(1− 1/q2)
.

Proof. The number of reducible dimension two subtori is equal to
(
n1(T )

2

)
,

and the number of irreducible dimension two subtori is equal to n2(T ), so
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it is necessary to compute the expected value of(
n1(T )

2

)
− n2(T ).

First we compute the expected value of n1(n1− 1). Recall from the proof
of Theorem 3.5 that

1 +
∑
n≥1

un

|GL(n, q)|
∑

T∈T (n,q)

xn1(T ) = exp

[
(x− 1)u

q − 1

]∏
r≥1

1

1− u/qr
.

To compute the expected value of n1(n1 − 1), one must differentiate twice
with respect to x, set x = 1, take the coefficient of un, and then multiply by

|GL(n, q)|/qn2−n. Differentiating twice with respect to x and setting x = 1
yields

u2

(q − 1)2

∏
r≥1

1

1− u/qr
.

By part 1 of Lemma 3.3, taking the coefficient of un yields

1

(q − 1)2
1

qn−2(1− 1/q) · · · (1− 1/qn−2)
.

Multiplying this by |GL(n, q)|/qn2−n yields

q2(1− 1/qn−1)(1− 1/qn)

(q − 1)2
.

Thus

(4) E

[(
n1(T )

2

)]
=
q2(1− 1/qn−1)(1− 1/qn)

2(q − 1)2
.

Next we compute the expected value of n2. In Theorem 3.2, set x2 = x
and all other xi = 1. It follows that

1 +
∑
n≥1

un

|GL(n, q)|
∑

T∈T (n,q)

xn2(T ) = exp

[
xu2

2(q2 − 1)

]∏
i 6=2

exp

[
ui

(qi − 1)i

]

= exp

[
(x− 1)u2

2(q2 − 1)

]∏
i≥1

exp

[
ui

(qi − 1)i

]

= exp

[
(x− 1)u2

2(q2 − 1)

]∏
r≥1

1

1− u/qr
,

where the last step is from the proof of Theorem 3.4. To compute the
expected value of n2, one must differentiate with respect to x, set x = 1, take

the coefficient of un, and then multiply by |GL(n, q)|/qn2−n. Differentiating
with respect to x and setting x = 1 yields

u2

2(q2 − 1)

∏
r≥1

1

1− u/qr
.
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By part 1 of Lemma 3.3, taking the coefficient of un yields

1

2(q2 − 1)

1

qn−2(1− 1/q) · · · (1− 1/qn−2)
.

Multiplying this by |GL(n, q)|/qn2−n, it follows that

(5) E[n2(T )] =
q2

2(q2 − 1)
(1− 1/qn−1)(1− 1/qn).

The result now follows by combining equations (4) and (5). �

As stated in the introduction, the paper [3] shows that the number of
irreducible factors of an F -stable maximal torus of GLn(Fq) is more likely to

be ≡ n mod 2 than not, with bias equal to q(n
2−n)/2 (which is the square root

of the number of tori). Theorem 3.7 proves this using generating functions.

Theorem 3.7. The number of F -stable maximal tori of GLn(Fq) with num-
ber of irreducible factors ≡ n mod 2, minus the number of F -stable maximal
tori of GLn(Fq) with number of irreducible factors 6≡ n mod 2, is equal to

q(n
2−n)/2.

Proof. Setting all xi = −1 and u = −u in Theorem 3.2, it follows that the
sought quantity is equal to |GL(n, q)| multiplied by the coefficient of un in∏

i≥1
exp

[
− (−u)i

(qi − 1)i

]
=
∏
r≥1

(1 + u/qr),

where the equality is proved by arguing as in the proof of Theorem 3.4. The
result now follows from part 2 of Lemma 3.3. �
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