
Comparing eigenvalue bounds for Markov chains: When does

Poincar�e beat Cheeger?

By Jason Fulman and Elizabeth L. Wilmer

Harvard University

Abstract

The Poincar�e and Cheeger bounds are two useful bounds for the second largest eigenvalue

�

1

of a reversible Markov chain. Diaconis and Stroock [1991] and Jerrum and Sinclair [1989]

develop versions of these bounds which involve choosing paths. This paper studies these path-

related bounds and shows that the Poincar�e bound is superior to the Cheeger bound for simple

random walk on a tree and random walk on a �nite group with any symmetric generating set.

This partially resolves a question posed by Diaconis and Stroock [1991].

1 Introduction

Let X be a �nite set andK(x; y) the transition probability for a reversible irreducible Markov chain

on X with stationary distribution �. This Markov chain determines a weighted undirected graph

G = (X;E), possibly with loops, as follows: draw an edge between vertices x and y if and only if

the edge weight Q(x; y) = �(x)K(x; y) > 0. It is easy to express both the stationary distribution

and transition kernel in terms of the edge weights

�(x) =

X

fx;yg2E

Q(x; y); K(x; y) =

Q(x; y)

�(x)

:

Simple randomwalk on a graphG without loops|at each step, choose uniformly from the neighbors|

corresponds to setting Q(x; y) = 1=(2jEj) if fx; yg 2 E and 0 otherwise. Then K(x; y) = 1=d(x)

for every neighbor y of x and �(x) = d(x)=(2jEj), where d(x) is the degree of the vertex x.

The operator K : L

2

(�) 7! L

2

(�) de�ned by

[K�](x) =

X

y2X

K(x; y)�(y)

has eigenvalues

1 = �

0

> �

1

� � � � �

jXj�1

� �1:

Bounds on �

�

= max

�

�

1

; j�

jXj�1

j

�

lead to bounds on the rate of convergence to stationarity

of the Markov chain. In practice, �

1

> j�

jXj�1

j can be easily arranged. For instance, (I +K)=2,

which has a holding probability of 1=2 at each vertex, has non-negative eigenvalues. Thus research

has focused on obtaining bounds for �

1

. Poincar�e and Cheeger bounds have a geometric 
avor

and have been e�ective in bounding rates of convergence for the large chains that arise in certain

types of randomized algorithms (see Kannan [1994] for a survey). They are the topic of this

paper. Comparison techniques are also used to bound the second largest eigenvalue; see Diaconis

1



and Salo�-Coste [1993a; 1993b; 1994]. Other methods for bounding rates of convergence include

coupling, strong stationary times, Nash inequalities, and log-Sobolev inequalities; see Chapter 4 of

Diaconis [1988] and Diaconis and Salo�-Coste [1996a, 1996b] for more information.

The original Cheeger inequality, found by Cheeger [1970], bounds the eigenvalues of the Lapla-

cian on a Riemannian manifold. An early discrete version is due to Alon and Millman [1985] and

Alon [1986]; Aldous [1987] noted the relevance to mixing times. See Diaconis and Stroock [1991]

for the exact version cited below and Chung [1997] for discussion. De�ne the Cheeger constant h

of a Markov chain by

h = min

�(S)�1=2

Q(S � S

C

)

�(S)

;

where the minimum is taken over subsets S of X, the vertex set of G, and

Q(S � S

C

) =

X

x2S

y2X�S

Q(x; y):

Theorem 1 (Jerrum and Sinclair [1989]) Let �

1

be the second largest eigenvalue and h the Cheeger

constant of a reversible, irreducible Markov chain. Then

1� 2h � �

1

� 1�

h

2

2

:

Jerrum and Sinclair [1989] and Sinclair [1992] used canonical paths to bound the Cheeger

constant (which they call conductance). For each ordered pair (x; y), choose a path 


xy

from x to

y (if x = y, take the path of length 0). De�ne

� = max

e

1

Q(e)

X




xy

3e

�(x)�(y);

where the maximum is taken over the oriented edges of G. It can be shown that h � 1=(2�), leading

to the following result.

Theorem 2 (Sinclair [1992]) For a reversible, irreducible Markov chain, �

1

� 1�

1

8�

2

:

For simple random walk on a graph all edge weights are 1=(2jEj). Let d

�

be the maximum

degree of G. Let b be the maximum bottlenecking of this choice of paths, i.e., the maximum over

the oriented edges of the number of paths 


xy

in which the edge occurs. As Diaconis and Stroock

[1991] noted, substituting these values into Theorem 2 yields a weaker but simpler result.

Corollary 1 (Diaconis and Stroock [1991]) For simple random walk on a graph, �

1

� 1�

1

2

�

jEj

d

2

�

b

�

2

.

Poincar�e bounds for Markov chains originated in the work of Diaconis and Stroock [1991] and

Sinclair [1992] and have been further re�ned by Kahale [1997]. The basic argument uses the Cauchy-

Schwarz inequality and canonical paths to bound the Rayleigh quotient expression for the second

largest eigenvalue of the transition matrix. The choice of weights when applying Cauchy-Schwarz

corresponds to the choice of a length function for the canonical paths. While Diaconis and Stroock

[1991] and Sinclair [1992] chose di�erent length functions, yielding bounds that are not comparable

for arbitrary reversible Markov chains, their results coincide for simple random walk on graphs.

Kahale discusses optimizing weights and o�ers a heuristic for making good choices for a given chain.
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(Sinclair [1992] and Kahale [1997] have also considered using convex combinations of paths between

each pair of points.)

Perhaps the simplest Poincar�e bound is the following, due to Sinclair [1992], where the length

of a path is just its number of edges. De�ne

K = max

e

1

Q(e)

X




xy

3e

j


xy

j�(x)�(y);

where, once again, the maximum is taken over the oriented edges of G.

Theorem 3 (Sinclair [1992]) For a reversible irreducible Markov chain, �

1

� 1�

1

K

:

Diaconis and Stroock [1991] proved a similar bound, taking the length of 


xy

to be

P

e2


xy

1

Q(e)

.

They also noted that, as for the Cheeger bounds of Theorem 2 and Corollary 1, substituting graph

parameters and 


�

= max

x;y

j


xy

j yields a simpler but weaker result, valid for simple random walk

on graphs.

Corollary 2 (Diaconis and Stroock [1991]) For simple random walk on a graph, �

1

� 1�

2jEj

d

2

�




�

b

:

Diaconis and Stroock [1991] considered the simple random walk versions of these two bounds,

Corollaries 1 and 2. They observed that for many simple randomwalk examples, the Poincar�e bound

of Corollary 2 is superior to the Cheeger bound of Corollary 1 and asked for general conditions

under which this is true. Clearly Corollary 2 beats Corollary 1 exactly when b � 


�

jEj=(4d

2

�

).

The work of Diaconis and Stroock suggests that this inequality might hold for simple random walk

on any graph. (There are examples of weighted trees for which the weighted Cheeger bound of

Theorem 2 is better than the simple weighted Poincar�e bound of Theorem 3; see Section 2 and

Sinclair [1992]).

It is worth remarking that if the Poincar�e bound of Corollary 2 beats the Cheeger bound of

Corollary 1, both bounds can not be better than �

1

< 1 � 1=D

2

, where D is the diameter of the

underlying graph. This follows immediately from setting b = 


�

jEj=(4d

2

�

) in the Poincar�e bound.

Although this paper shows that Poincar�e beats Cheeger for many graphs, there are some con-

texts in which path-based arguments seem di�cult, but Cheeger's constant h can be bounded

by other means (which together with Theorem 1 gives eigenvalue bounds). One context is that

of expander graphs, for instance Ramanujan graphs (see Section 3). Although the path version

of Poincar�e beats the path version of Cheeger, number theoretic arguments (Lubotzky, Phillips,

and Sarnark [1988]) estimate h, giving bounds superior to those obtainable by Poincar�e methods.

A second class of problems in which Theorem 1 does better than Corollary 2 is approximating

the volume of convex sets. Here graphs are embedded in Euclidean spaces and inequalities from

continuous geometry are used to bound h directly (see Kannan [1994] for a survey).

The structure of this paper is as follows. Section 2 shows that Corollary 2 beats Corollary 1 for

simple random walk on trees and gives lower bounds on h for trees. Section 3 demonstrates that

Corollary 2 beats Corollary 1 for random walk on a vertex transitive graph, for instance the Cayley

graph of some group. Section 4 proves a result which may be surprising, given Sinclair's example of

a weighted walk on a tree for which Cheeger beats Poincar�e. We show that Poincar�e beats Cheeger

for symmetric walk on a �nite group, even if the generators do not have equal weight.
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2 Poincar�e beats Cheeger for Simple Walk on Trees

Trees (connected acyclic graphs) are an especially simple case for these path-based bounds. The

restriction on repeated edges allows exactly one collection of paths f


xy

g, the unique geodesics. For

trees, Poincar�e beats Cheeger by a factor of 4. Notice that for trees, 


�

= D, the diameter of the

tree.

Theorem 4 Let T be a tree, and let jEj, d

�

, D, and b be the number of edges, maximal degree,

diameter, and bottlenecking parameter of T , respectively. Then

b �

DjEj

d

2

�

:

Thus, the Poincar�e path bound of Corollary 2 is better than the Cheeger path bound of Corollary 1

for simple random walk on trees.

Proof: If T has n vertices, it must have n� 1 edges. For any oriented edge e of T , the number

of pairs of vertices (x; y) with e in 


(x;y)

is k(n� k); where deleting e from T leaves components of

size k and n� k. Notice that the function k(n� k) is increasing for 0 � k � n=2.

It su�ces to show that there exists an edge e

�

such that e

�

divides T into two pieces, the smaller

of which contains at least (n� 1)=d

�

vertices. Given such an edge e

�

, n� 1 � D and d

�

� 2 imply

b �

(n� 1)

d

�

�

n�

n� 1

d

�

�

�

(d

�

� 1)(n� 1)

2

d

2

�

�

(n� 1)

2

d

2

�

�

DjEj

d

2

�

:

(If d

�

= 1, then n = 2 and b = 1 = (1)(1)(1)=1

2

.)

It remains only to construct the edge e

�

. If there exists an edge that cuts T into two pieces of

equal size, it is unique, and it is e

�

. Otherwise, orient the edges of T as follows: if e cuts T into

components of size k and n � k, 1 � k < n=2, then direct e from the n � k component to the k

component. Since there are n vertices and n� 1 edges, there must be a vertex v

�

with indegree 0.

Because v

�

has degree at most d

�

, some edge e

�

exiting v

�

must lead to at least (n� 1)=d

�

vertices.

Thus e

�

has all desired properties. 2

Lemma 1 will show that for trees h and

1

�

di�er by at most a factor of 2. This implies that the

upper bounds on �

1

from Theorems 1 and 2 are roughly the same. As will be seen in the discussion

of Ramanujan graphs in Section 3, this contrasts sharply with the situation for random walks on

�nite groups.

Lemma 1 For simple random walk on a tree T ,

1

2�

� h <

1

�

:

Proof: The �rst inequality appears in Sinclair [1992]. Given an edge e of T , let the components

into which the deletion of e separates T be A

e

and B

e

, where �(A

e

) � 1=2. Then

1

�

=

1

max

e

1

Q(e)

P




xy

3e

�(x)�(y)

= min

e

Q(e)

�(A

e

)�(B

e

)

:

It follows that

h = min

�(S)�1=2

Q(S � S

C

)

�(S)

� min

e

Q(e)

�(A

e

)

< min

e

Q(e)

�(A

e

)�(B

e

)

=

1

�

:

4



2

To bound �

1

above using Corollary 1 requires an upper bound on b. The best general upper

bound one could hope for is b �

n

2

4

, as can be seen by joining any two trees on

n

2

vertices by an

edge. More, however, can be said about lower bounds on �

1

for trees. Arguments similar to the

proof of Theorem 4 bound �, and thus �

1

, from below.

Lemma 2 For simple random walk on a tree T ,

�

2jEj � d

�

d

�

��

1�

2jEj � d

�

2jEjd

�

�

� �

and

(D � 1)�

(D � 1)

2

2jEj

� �:

Proof: The �rst lower bound is obtained by producing an edge e

�

that divides T into two pieces,

the smaller of which contains at least (1 � d

�

=(2jEj))=d

�

of the �-mass of T ; this can be done by

orienting the edges according �-mass (rather than the vertex count, as was done in the proof of

Proposition 4).

For the second lower bound, let v

0

; v

1

; : : : ; v

D

be a path in T realizing the diameter D of T.

If the edges of this path are deleted, T is cut into D + 1 components. Let k

0

; k

1

; : : : ; k

D

be the

��masses of the resulting components (so that k

i

is the mass of the component containing v

i

).

Because �(v

0

) = �(v

D

) = 1=(2jEj) and �(v

i

) � 1=jEj for 0 < i < D;

max

i

k

i

� 1�

2

2jEj

� (D � 2)

1

jEj

= 1�

(D � 1)

jEj

:

Since x(1� x) is monotone increasing on (0; 1=2],

� = max

e

�(A

e

)�(B

e

)

Q(e)

� max

i

�(A

fv

i

;v

i+1

g

)�(B

fv

i

;v

i+1

g

)

Q(e)

� 2jEj

�

1

2

�

max

i

k

i

2

��

1

2

+

max

i

k

i

2

�

� (D � 1)�

(D � 1)

2

2jEj

;

which is the desired result. 2

Proposition 1 For simple random walk on a tree T ,

1�

2jEj

jEj(D � 1)� (D � 1)

2

� �

1

and

1�

4jEjd

2

�

(2jEj � d

�

)(2jEjd

�

� 2jEj + d

�

)

� �

1

:

Proof: This follows from Theorem 1 and Lemmas 1 and 2. 2

5



Examples

Paths: Diaconis and Stroock [1991] noted that both Poincar�e and Cheeger are accurate within

small constant factors for simple random walk on cycles with n vertices; the situation for the n-

path is nearly identical. Here, d

�

= 2, D = n � 1, and b =

�

n

2

=4

�

. Oddly, the two bounds from

Proposition 1 above coincide for paths. The exact value of �

1

in this case is cos(�=n).

d-ary trees: Diaconis and Stroock [1991] also looked at the binary tree of depth r, and Kahale

[1997] examined the d-ary tree of depth r, where each non-leaf vertex has exactly d descendants.

This tree has (d

r+1

� 1)=(d � 1) vertices, (d

r+1

� d)=(d � 1) edges, maximal degree d, diameter

2r, and bottlenecking b = (d

2r

� d

r

)=(d � 1). Here, the Cheeger upper bound on 1 � �

1

and the

Poincar�e bound of Corollary 2 are within a factor of constant�r of each other; Kahale's improved

Poincar�e bound is within a constant factor of the Cheeger upper bound.

Random trees: Consider choosing a tree uniformly at random from the n

n�2

trees with vertex

set f1; 2; : : : ; ng. With probability going to 1 as n!1, a random tree on vertices f1; 2; : : : ; ng has

maximal degree d

�

= �(logn=loglogn) (see Moon [1968]). Let D

n

be the diameter of a random

tree on f1; 2; : : : ; ng. Szekeres [1983] shows that as n ! 1, D

n

=n

1=2

has a limiting distribution.

Thus, a typical random tree has diameter �(n

1=2

). (The notation �(f(n)) indicates both an upper

and lower bound of constant �f(n) as n !1). Bounding b by n

2

=4 gives upper bounds on �

1

by

means of Corollaries 1 and 2.

Here is a table summarizing assorted bounds for 1 � �

1

(rather than �

1

; this is just to reduce

notational clutter) for these families of trees. The bounds are arranged in increasing order from

left to right. The actual value of 1 � �

1

must lie between the bounds given by Corollary 2 and

Proposition 1.

Tree Family Corollary 1 Corollary 2 Proposition 1

Path

1

2n

2

+O

�

1

n

3

�

2

n

2

+O

�

1

n

3

�

4(n�1)

n(n�2)

d-ary tree

1

2(d+1)

4

d

2r�2

1

(d+1)

2

rd

r�1

(d�1)(d+1)

2

d

r+3

�

1 +O

�

1

d

r

��

Random Tree �

�

loglog

4

n

n

2

log n

�

�

�

loglog

2

n

n

3=2

log

2

n

�

�

�

log n

nloglogn

�

Weighted trees: Sinclair [1992] notes that Theorem 2 gives a better estimate than Theorem 3 for

biased random walk on the n-path. Thus there is no hope of proving that this version of Poincar�e

beats Cheeger for weighted trees.

Kahale [1997] shows that his optimized Poincar�e bound gives the exact value of �

1

for birth-

death chains. He also gives examples of weighted trees where equality is not achieved. The question

of comparison between improved Poincar�e bounds and Cheeger bounds for weighted trees remains

open.

3 Poincar�e beats Cheeger for Simple Walk on Vertex Transitive

Graphs

Recall that a vertex transitive graph is a graph such that its automorphism group acts transitively

on its vertices. The Cayley graph of a group with a symmetric generating set is vertex transitive.

All graphs G in this section are vertex transitive. It will be shown that if G is vertex transitive,

then Poincar�e beats Cheeger and in fact:

b �

DjEj

d

2

�

:
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Some notation is helpful. Let d(x; y) denote the distance between elements x and y of G. De�ne

the mean distance of G by:

1

jGj

2

X

(x;y)

d(x; y):

The idea of the proof is easy. We �rst prove an inequality which says that the mean distance of

G is at least one-half the diameter of G. This will force any choice of paths to have so many edges

that some edge will be covered enough times.

Lemma 3 When G is vertex-transitive,

X

x;y2G

d(x; y) �

DjGj

2

2

:

Equality holds if for any (and hence every) vertex x

0

there is a unique element x

1

distance D

from x

0

, and every y 2 G lies on a geodesic between x

0

and x

1

.

Proof: Since G is vertex-transitive,

X

(x;y)

d(x; y) = jGj

X

y2G

d(x

0

; y)

=

jGj

2

2

4

X

y2G

d(x

0

; y) +

X

y2G

d(x

1

; y)

3

5

=

jGj

2

2

4

X

y2G

d(x

0

; y) +

X

y2G

d(y; x

1

)

3

5

�

jGj

2

2

4

X

y2G

d(x

0

; x

1

)

3

5

=

DjGj

2

2

:

2

The following remarks about Lemma 3 may be of interest.

1. There are interesting examples in which the inequality of Lemma 3 is an equality. For instance

equality holds if G is the Cayley graph of a �nite re
ection group W with simple re
ections

as generators (in the case of S

n

the generators are f(i; i + 1) : 1 � i � n� 1g). This follows

from the fact on page 16 of Humphreys [1990] that W has a unique longest element w

0

and

that any element of W lies on a geodesic between the identity and w

0

.

2. There are also natural group theoretic examples in which the inequality of Lemma 3 is not

an equality. For instance consider simple random walk on S

n

with all re
ections f(i; j) : 1 �

i < j � ng as generators. The diameter is n; however all n-cycles are at distance n from the

identity.
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3. Lemma 3 does not hold for all graphs. For instance a path on n vertices has mean distance

approximately

n

3

but diameter n. For a more extreme situation, consider the lollipop tree L

n

(a single vertex with n

2

leaves and a path of length n o� of it). It is easy to see that the mean

distance of L

n

is bounded by a constant independent of n, but that the diameter is n+ 1.

Although Theorem 5 is a consequence of results in Section 4, we �nd the following argument

more revealing.

Theorem 5 The Poincar�e path-bound is superior to the Cheeger path-bound for simple random

walk on a vertex transitive graph, i.e.:

b �

DjEj

d

2

�

:

Proof: Let d be the size of the generating set S. SinceG is vertex transitive, d

�

= d and jEj =

jGjd

2

.

Thus it is su�cient to show that:

2bjEj �

2DjEj

2

d

2

=

DjGj

2

2

:

From the de�nition of b and Lemma 3,

2bjEj �

X

(x;y)2G

j


xy

j

�

DjGj

2

2

:

2

Lemma 4 bounds b from above for vertex transitive graphs and will give some indication of how

Poincar�e and Cheeger bounds compare with the correct value of �

1

in examples to follow.

Lemma 4 If G is a vertex transitive graph with degree d and diameter D, there exists some choice

of paths such that:

b �

jGjD

2

:

Consequently, the Cheeger and Poincar�e eigenvalue bound of Corollaries 1 and 2 give the fol-

lowing respective eigenvalue bounds:

�

1

� 1�

1

2d

2

D

2

;

�

1

� 1�

2

dD

2

:

Proof: Fix some point x

0

of G and choose geodesic paths from x

0

to every point y in G. For every

x in G there is an automorphism � of G taking x

0

to x. The geodesic path from x

0

to y maps to a

geodesic path from x to �(y) under this automorphism. This gives a collection of paths � between

all pairs of vertices in G. It is not hard to see that all vertices in G have an equal number of edges

in paths in � (edges are counted with multiplicity and directed) leaving them. It is also easy to
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see that the total number of edges in paths in � leaving any vertex is equal to the total number

of edges in paths in � entering any vertex. Thus the total number of path edges in � leaving any

vertex is equal to

P

x;y2G

d(x; y)

2jGj

�

jGjD

2

:

The result follows since every directed edge leaves some vertex. 2

Bounds similar to the Poincar�e eigenvalue bound in Lemma 4 have been obtained by Aldous

[1987]. For random walks on groups generated by conjugacy classes, Diaconis and Salo�-Coste

[1996b] can get bounds of the form �

1

� 1 �

1

D

2

, thus eliminating the factor of d. Intuitively this

is reasonable, since their proof technique uses 
ows (averaging over paths), and one could average

over conjugates of the path set � in Lemma 4.

Examples

The symmetric group Consider random walk on the symmetric group with p(id) =

1

2

and

p(s) =

2

n

2

for any transposition s = (i; j). Diaconis and Shahshahani [1981] showed that �

1

= 1�

2

n

.

The diameter in this set of generators is n. From the fact that Poincar�e beats Cheeger, both the

Poincar�e and Cheeger bounds can not be better than 1�

1

n

2

. The Poincar�e and Cheeger bounds of

Lemma 4 are �

1

� 1�

C

n

4

and �

1

� 1�

C

n

6

respectively, where C is a small constant.

The hypercube This example is from Diaconis and Stroock [1991]. Consider random walk

on the hypercube Z

n

2

where one changes a random coordinate. The �rst eigenvalue for this walk

is known to be �

1

= 1 �

2

n

. Diaconis and Stroock choose paths so that b = 2

n�1

. Since Poincar�e

beats Cheeger, both bounds can not be better than 1 �

1

n

2

(the diameter is n). The Poincar�e and

Cheeger bounds of Lemma 4 both give �

1

� 1�

1

2n

2

.

Ramanujan graphs X

p;q

For primes p; q � 1 (mod 4), one can de�ne Ramanujan graphs,

which are regular of degree p+ 1 and have q(q

2

� 1)=2 vertices (see page 97 of Chung [1997]). Fix

p and let q vary. The �rst eigenvalue �

1

is known to be

2

p

p

p+1

, independent of q (page 97 of Chung

[1997]).

Since the Ramanujan graphs are Cayley graphs of PSL(2; Z=qZ) the Poincar�e path-bound beats

the Cheeger path-bound. Thus both path-based bounds can not be better than 1 �

1

D

2

, where D

is the diameter. However any p+ 1 regular graph on n vertices has diameter at least log

p

n. Thus

the path-based bounds give at best the bound �

1

� 1 �

1

[log

p

q(q

2

�1=2)]

2

. As q ! 1 this bound

approaches 1. However number theoretic methods which bound the Cheeger constant h directly

[1988] can be used to bound �

1

away from 1 independent of q. Note that this contrasts with the

situation for birth/death chains, in which path-based arguments give optimal bounds on h (Section

2).

4 Poincar�e beats Cheeger for Weighted RandomWalk on a Vertex

Transitive Graph with Uniform Stationary Distribution

This section will prove in particular that Poincar�e beats Cheeger for random walk on a �nite group

with any symmetric generating set (i.e. the weights associated to generators need not be assumed

equal as in Section 3). This may be surprising given that Poincar�e does not beat Cheeger for
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weighted random walk on a tree (see Section 2). Work of Nabil Kahale [1997] and the mean-

distance/diameter inequality for vertex transitive graphs (Lemma 3) are the main tools in this

section.

Proposition 2 is implied by Corollary 9 of Kahale [1997].

Proposition 2 (Kahale [1997]) For any reversible Markov chain on a �nite set,

max

e

1

Q(e)

X




xy

3e

j


xy

j�(x)�(y) �

X

(x;y)

�(x)�(y)d(x; y)

2

:

We can now prove the main result of this section. Recall that the Cayley graph of a group is

vertex transitive and that the stationary distribution is uniform, even if the symmetric generating

set does not assign equal weight to all generators.

Theorem 6 The Poincar�e path-bound is superior to the Cheeger path-bound for any reversible

Markov chain whose underlying graph is vertex transitive and which has uniform stationary distri-

bution.

Proof: Recall from the introductory section that Poincar�e beats Cheeger if and only if:

4

2

4

max

e

1

Q(e)

X




xy

3e

�(x)�(y)

3

5

2

� max

e

1

Q(e)

X




xy

3e

j


xy

j�(x)�(y):

Since j


xy

j � D, Poincar�e beats Cheeger if:

4max

e

1

Q(e)

X




xy

3e

�(x)�(y) � D:

Now observe that:

4max

e

1

Q(e)

X




xy

3e

�(x)�(y) �

4

D

max

e

1

Q(e)

X




xy

3e

j


xy

j�(x)�(y)

�

4

D

1

jGj

2

X

(x;y)

d(x; y)

2

=

4

D

0

@

X

(x;y)

(

1

jGj

2

)

2

1

A

0

@

X

(x;y)

(d(x; y))

2

1

A

�

4

D

0

@

X

(x;y)

d(x; y)

jGj

2

1

A

2

�

4

D

�

D

2

�

2

= D:

The �rst inequality bounds j


xy

j by the diameter. The second inequality is Proposition 2. The

third inequality is Cauchy-Schwarz. The �nal inequality is Lemma 3. 2
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Example

As an example of a comparison of Poincar�e and Cheeger for weighted random walk on a group,

consider walk on Z

n

2

where the probability of switching coordinate i is equal to p

i

and

P

i

p

i

= 1.

Group theory techniques on page 50 of Diaconis [1988] easily show that �

1

= 1� 2min

i

p

i

.

Using the Diaconis/Stroock path choice so that b = 2

n�1

, the Poincar�e bound of Theorem 3,

and the fact that j


xy

j � D, one concludes that �

1

� 1�

2min

i

p

i

n

, which is o� by a factor of n. The

Cheeger bound of Theorem 2 becomes �

1

� 1 �

(min

i

p

i

)

2

2

. This is worse than the Poincar�e bound

because min

i

p

i

�

1

n

.
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