
1 23

Journal of Algebraic Combinatorics
An International Journal
 
ISSN 0925-9899
Volume 40
Number 2
 
J Algebr Comb (2014) 40:387-416
DOI 10.1007/s10801-013-0493-2

Generating functions for real character
degree sums of finite general linear and
unitary groups

Jason Fulman & C. Ryan Vinroot



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Algebr Comb (2014) 40:387–416
DOI 10.1007/s10801-013-0493-2

Generating functions for real character degree sums
of finite general linear and unitary groups

Jason Fulman · C. Ryan Vinroot

Received: 1 June 2013 / Accepted: 17 December 2013 / Published online: 3 January 2014
© Springer Science+Business Media New York 2013

Abstract We compute generating functions for the sum of the real-valued character
degrees of the finite general linear and unitary groups, through symmetric function
computations. For the finite general linear group, we get a new combinatorial proof
that every real-valued character has Frobenius–Schur indicator 1, and we obtain some
q-series identities. For the finite unitary group, we expand the generating function in
terms of values of Hall–Littlewood functions, and we obtain combinatorial expres-
sions for the character degree sums of real-valued characters with Frobenius–Schur
indicator 1 or −1.

Keywords Frobenius–Schur indicator · Real-valued characters · Involutions · Finite
general linear group · Finite unitary group · Generating functions · q-Series ·
Hall–Littlewood polynomial

1 Introduction

Suppose that G is a finite group, Irr(G) is the set of irreducible complex characters
of G, and χ ∈ Irr(G) affords the representation (π,V ). Recall that the Frobenius–
Schur indicator of χ (or of π ), denoted ε(χ), takes only the values 1, −1, or 0, where
ε(χ) = ±1 if and only if χ is real-valued, and ε(χ) = 1 if and only if (π,V ) is a
real representation [9, Theorem 4.5]. From the formula ε(χ) = (1/|G|)∑

g∈G χ(g2)
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[9, Lemma 4.4], it follows that we have [9, Corollary 4.6]:

∑

χ∈Irr(G)

ε(χ)χ(1) =
∑

χ∈Irr(G)
ε(χ)=1

χ(1) −
∑

χ∈Irr(G)
ε(χ)=−1

χ(1) = #
{
h ∈ G | h2 = 1

}
. (1)

In particular, from (1) it follows that the statement that ε(χ) = 1 for every real-valued
χ ∈ Irr(G) is equivalent to the statement that the sum of the degrees of all real-valued
χ ∈ Irr(G) is equal to the right side of (1).

The main topic of this paper is to study sums of degrees of real-valued characters
from a combinatorial point of view of the general linear and unitary groups defined
over a finite field Fq with q elements, which we denote by GL(n, q) and U(n,q),
respectively.

Before addressing the main question of the paper, we begin in Sect. 2 by examining
the classical Weyl groups. In particular, we consider the Weyl groups of type A (sym-
metric groups), type B/C (hyperoctahedral groups), and type D. It is well known that
every complex irreducible representation of every finite Coxeter group is defined over
the real numbers, and moreover, it was proved using a unified method by Springer that
all complex representations of Weyl groups are defined over Q [15]. We consider the
classical Weyl groups, however, as they serve as natural examples to demonstrate
the method of generating functions and symmetric function identities to calculate the
(real) character degree sum of a group.

In Sect. 3, we concentrate on the real character degree sum of GL(n, q). It is in fact
known that ε(χ) = 1 for every real-valued χ ∈ Irr(GL(n, q)). This was first proved
for q odd by Ohmori [12], and it follows for all q by a result of Zelevinsky [20, Propo-
sition 12.6]. So the real character degree sum is known to be the number of elements
of GL(n, q) which square to 1. We obtain this result independently by calculating the
sum of the degrees of the real-valued characters through symmetric function compu-
tations, and applying q-series identities. We also obtain some q-series identities in the
process. In Theorem 3.2, we give a generating function for the real character degree
sum of GL(n, q) from symmetric function calculations. In Theorem 3.4, we recover
Zelevinsky’s result on the Frobenius–Schur indicators of characters of GL(n, q) in
the case that q is even, and we record the corresponding q-series identity in Corol-
lary 3.5. We recover Zelevinsky’s result for the case that q is odd in Theorem 3.6,
where the calculation is a bit more involved than in the case that q is even. The re-
sulting q-series identity, in Corollary 3.7, seems to be an interesting result in its own
right.

In Sect. 4, we turn to the problem of calculating the real character degree sum
for the finite unitary group U(n,q). There is a very general phenomenon, known
as Ennola duality, which relates various results for GL(n, q) to results for U(n,q)

through the philosophical change “q �→ −q .” This philosophy goes a long way
when parameterizing the irreducible characters of U(n,q), for example. However, we
mainly see the trend that when dealing with real-valued characters, Ennola duality,
for the most part, breaks down. The main motivation here is that given a real-valued
χ ∈ Irr(U(n, q)), it is unknown in general whether ε(χ) = 1 or ε(χ) = −1, although
the values of ε(χ) are known for certain subsets of characters of U(n,q), such as the
unipotent characters [14] and the regular and semisimple characters [16]. Unlike the
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GL(n, q) case, it is known that there are χ ∈ Irr(U(n, q)) such that ε(χ) = −1. Using
symmetric function techniques similar to the GL(n, q) case (where we do apply En-
nola duality techniques for the character theory), we compute a generating function
for the real character degree sum of U(n,q) in Theorem 4.1. Comparing the result
to the GL(n, q) case in Theorem 3.2, we see that something much more complicated
that Ennola duality is occurring, and directly applying Ennola duality by itself could
not predict the result.

From Theorem 4.1, the point is that from Eq. (1), by counting the number of
elements in U(n,q) which square to 1, we have the difference of the real character
degree sums of those χ such that ε(χ) = 1, minus those χ such that ε(χ) = −1.
Using the generating function in Theorem 4.1 for the sum (rather than the difference)
of these character degree sums, along with applying the q-series identities obtained
in the GL(n, q) case, we obtain a generating function for the character degree sums
of χ ∈ Irr(U(n, q)) satisfying ε(χ) = 1, and another for those satisfying ε(χ) = −1,
in Corollaries 4.5 and 4.10.

We are then able to expand the generating function obtained in Theorem 4.1, using
results of Warnaar [19], stated in Theorem 4.2 and Corollary 4.3. For q even, we give
the resulting expression for the sum of the real character degrees of U(n,q) in The-
orem 4.6, and for q odd, in Theorem 4.11. These expressions contain, among other
things, special values of Hall–Littlewood functions of the form Pλ(1, t, t2, . . . ;−t),
where t = −q−1. Again, we observe something which is not quite Ennola duality, but
rather has an added twist which makes the expressions less familiar. Since these val-
ues of the Hall–Littlewood functions do not seem to be well understood, the expres-
sions we obtain are somewhat complicated in terms of calculation, but we compute
several examples to verify the expressions for small n. The fact that these values of
Hall–Littlewood functions show up in representation theory gives motivation to bet-
ter understand them, and the fact that the expressions we obtain are complicated may
reflect the fact that it has been a difficult problem to understand the Frobenius–Schur
indicators of the characters of U(n,q). We hope that a better understanding of the
combinatorial expressions we obtain in Theorems 4.6 and 4.11 will reveal interesting
character-theoretic information for the finite unitary groups.

2 Examples: classical Weyl groups

As was mentioned above, it is well understood that every complex irreducible char-
acter χ of a finite Coxeter group satisfies ε(χ) = 1. To motivate the methods we will
use for the groups GL(n, q) and U(n,q), we consider this fact for the classical Weyl
groups, from the perspective of generating functions and Schur function identities.

2.1 Symmetric groups

It is well known (see [5], for example) that the number of elements which square to
the identity in the symmetric group Sn (the Weyl group of type An−1) is exactly n!
times the coefficient of un in eu+u2/2.

On the other hand, the irreducible complex representations of Sn are parameterized
by partitions λ of n, and if dλ is the degree of the irreducible character χλ labeled by
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the partition λ of n, then dλ is given by the hook-length formula, dλ = n!/∏
b∈λ h(b),

where h(b) is the hook length of a box b in the diagram for λ. By [10, I.3, Example 5],
we have

dλ = n!
∏

b∈λ h(b)
= n! · lim

m→∞ sλ(1/m, . . . ,1/m),

where sλ(1/m, . . . ,1/m) is the Schur function in m variables, evaluated at 1/m for
each variable. The Schur symmetric functions are studied extensively in [10, Chap. I].
Using the identity [10, I.5, Example 4]:

∑

λ

sλ(x) =
∏

i

(1 − xi)
−1

∏

i<j

(1 − xixj )
−1, (2)

we may compute that the sum
∑

|λ|=n dλ is n! times the coefficient of un in

lim
m→∞

∑

λ

sλ(u/m, . . . , u/m) = lim
m→∞(1 − u/m)−m

(
1 − u2/m2)−(m

2)

= eu+u2/2.

It follows that the sum of the degrees of the irreducible characters of Sn is equal to
the number of elements in Sn which square to the identity. From the Frobenius–Schur
theory, this is equivalent to ε(χ) = 1 for every complex irreducible character χ of Sn.

2.2 Hyperoctahedral groups

The hyperoctahedral group (Z/2Z) � Sn is isomorphic to the Weyl group of type Bn

(or type Cn), which we denote by W(Bn). It follows from [4, Theorem 2] that the
number of elements in this group with square the identity is n! times the coefficient
of un in e2u+u2

.
From [10, I.9], the complex irreducible characters of W(Bn) can be usefully pa-

rameterized by ordered pairs (λ, τ ) of partitions such that |λ| + |τ | = n. If dλ,τ is
the degree of the irreducible character labeled by the pair (λ, τ ), then by [10, I.9,
Eq. (9.6)] we have

dλ,τ = n!
∏

b∈λ h(b)
∏

b∈τ h(b)
.

Using the same Schur polynomial identity (2) as we did for the symmetric groups,
we may compute the sum

∑
|λ|+|τ |=n dλ,τ to be n! times the coefficient of un in

∑

λ

u|λ|
∏

b∈λ h(b)

∑

τ

u|τ |
∏

b∈τ h(b)

= lim
m→∞

∑

λ

sλ(u/m, . . . , u/m)
∑

τ

sτ (u/m, . . . , u/m)

= lim
m→∞(1 − u/m)−2m

(
1 − u2/m2)−2(m

2) = e2u+u2
.
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Again, from the equality of the two generating functions, the sum of the degrees of
the irreducible characters of W(Bn) is equal to the number of elements in the group
which square to the identity, which is equivalent to the statement that ε(χ) = 1 for
every complex irreducible character χ of the group.

2.3 Weyl groups of type D

As a final example, we consider the Weyl group of type Dn, denoted by W(Dn),
which is the index 2 subgroup of W(Bn) ∼= (Z/2Z) � Sn, consisting of signed permu-
tations with the product of signs equal to 1.

It follows from [4, Theorem 5] that the number of elements in W(Dn) whose
square is the identity is n!/2 times the coefficient of un in eu2

(e2u + 1).
The complex irreducible characters of W(Dn) may be described as follows [3,

Proposition 11.4.4]. For any partition λ of n/2, when n is even, the irreducible repre-
sentation of W(Bn) labeled by (λ,λ) restricts to a direct sum of two non-isomorphic
irreducible representations of the same dimensions of W(Dn). For any pair of par-
titions (μ, τ) such that |μ| + |τ | = n and μ �= τ , the irreducible representations of
W(Bn) labeled by (μ, τ) and (τ,μ) both restrict to isomorphic irreducible represen-
tations of W(Dn). These account for all distinct irreducible representations of the
Weyl group of type Dn.

Using this parameterization of the irreducible characters of W(Dn), and the for-
mula for the character degrees for the irreducible characters of W(Bn), the sum of
the degrees of the irreducible characters of W(Dn) is n!/2 times the coefficient of un

in

lim
m→∞

∑

λ

sλ(u/m, . . . , u/m)sλ(u/m, . . . , u/m)

+ lim
m→∞

∑

μ

sμ(u/m, . . . , u/m)
∑

τ

sτ (u/m, . . . , u/m).

We apply the identity (2), along with the Schur function identity [10, I.4,
Eq. (4.3)]:

∑

λ

sλ(x)sλ(y) =
∏

i,j

(1 − xiyj )
−1, (3)

to rewrite the previous expression as

lim
m→∞

(
1 − u2/m2)−m2 + lim

m→∞(1 − u/m)−2m
(
1 − u2/m2)−2(m

2) = eu2(
e2u + 1

)
.

By matching coefficients of generating functions, we again have that the sum of the
irreducible character degrees is equal to the number of elements which square to the
identity, in the Weyl group of type Dn, so ε(χ) = 1 for every irreducible character χ

of this group.
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3 Real character degree sums for GL(n,q)

We require some background on polynomials. For a monic polynomial φ(t) ∈ Fq [t]
of degree n with non-zero constant term, we define the ∗-conjugate φ∗(t) by

φ∗(t) := φ(0)−1tnφ
(
t−1). (4)

Thus if

φ(t) = tn + an−1t
n−1 + · · · + a1t + a0

then

φ∗(t) = tn + a1a
−1
0 tn−1 + · · · + an−1a

−1
0 t + a−1

0 .

We say that φ is self-conjugate (or ∗-self conjugate) if φ(0) �= 0 and φ∗ = φ.
We let N∗(d, q) denote the number of monic irreducible self-conjugate polyno-

mials φ(t) of degree d over Fq , and let M∗(d, q) denote the number of (unordered)
conjugate pairs {φ,φ∗} of monic irreducible polynomials of degree d over Fq that
are not self conjugate. The following lemma [6, Lemma 1.3.17(a) and (d)] will be
helpful.

Lemma 3.1 Let e = 1 if the characteristic is even, and e = 2 if the characteristic is
odd.

(1)
∏

d≥1(1 − wd)−N∗(2d,q)(1 − wd)−M∗(d,q) = (1−w)e

1−qw
.

(2)
∏

d≥1(1 + wd)−N∗(2d,q)(1 − wd)−M∗(d,q) = 1 − w.

We now obtain a generating function for the sum of the degrees of the real-valued
irreducible complex characters of GL(n, q).

Theorem 3.2 Let e = 1 if q is even, and e = 2 if q is odd. The sum of the degrees of
the real-valued characters of GL(n, q) is (qn − 1) · · · (q − 1) times the coefficient of
un in

∏

i≥1

(1 + u/qi)e

1 − u2/qi
.

Proof From [10, Chap. IV], the irreducible characters of GL(n, q) correspond to
choosing a partition λ(φ) for each monic, irreducible polynomial φ(t) �= t , in such a
way that

∑
φ d(φ)|λ(φ)| = n, where d(φ) is the degree of φ. From [10, p. 286], the

degree of such a character is:

(
qn − 1

) · · · (q2 − 1
)
(q − 1)

∏

φ

qd(φ)n(λ(φ)′)
∏

b∈λ(φ)(q
d(φ)h(b) − 1)

.

Here, h(b) is a hook-length as in Sect. 2, λ′ is the conjugate partition of λ, and
n(λ) is the statistic defined as n(λ) = ∑

i (i − 1)λi , where λi is the ith part of λ.
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By [10, p. 11], one has that
∑

b∈λ h(b) = n(λ) + n(λ′) + |λ|, so it follows from [10,
p. 45] that the character degree can be rewritten as:

(qn − 1) · · · (q2 − 1)(q − 1)

qn

∏

φ

sλ(φ)

(
1,1/qd(φ),1/q2d(φ), . . .

)
,

where sλ is a Schur function, as in Sect. 2.
It is known, from [2, 1.1.1] and [8, Lemma 3.1], that a character of GL(n, q) is real

precisely when λ(φ) = λ(φ∗) for all monic irreducible polynomials φ. Thus the sum
of the degrees of the real characters of GL(n, q) is equal to (qn − 1) · · · (q − 1)/qn

multiplied by the coefficient of un in

∏

d≥1

[∑

λ

ud|λ|sλ
(
1,1/qd,1/q2d, . . .

)
]N∗(d,q)

·
∏

d≥1

[∑

λ

u2d|λ|sλ
(
1,1/qd,1/q2d, . . .

)2
]M∗(d,q)

.

This is (qn − 1) · · · (q − 1) multiplied by the coefficient of un in

∏

d≥1

[∑

λ

sλ
(
ud/qd,ud/q2d, . . .

)
]N∗(d,q)[∑

λ

sλ
(
ud/qd,ud/q2d, . . .

)2
]M∗(d,q)

.

By the Schur function identities (2) and (3), it follows that the sum of the degrees
of the real characters of GL(n, q) is (qn − 1) · · · (q − 1) multiplied by the coefficient
of un in

A(u) :=
∏

d

[∏

i

(
1 − ud/qid

)−1 ∏

i<j

(
1 − u2d/q(i+j)d

)−1
]N∗(d,q)

·
∏

d

[∏

i,j

(
1 − u2d/q(i+j)d

)−1
]M∗(d,q)

.

Then A(u) = B(u)C(u), where

B(u) :=
∏

i

∏

d

(
1 − ud/qid

)−N∗(d,q)(1 − u2d/q2id
)−M∗(d,q) and

C(u) :=
∏

i<j

∏

d

(
1 − u2d/q(i+j)d

)−N∗(d,q)(1 − u2d/q(i+j)d
)−2M∗(d,q)

.

From [6, Lemma 1.3.16], N∗(1, q) = e and N∗(d, q) = 0 for d > 1 odd. Using
this together with part (1) of Lemma 3.1 (with w = u2/q2i ) gives that
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B(u) =
∏

i

(
1 − u/qi

)−e
∏

d

(
1 − u2d/q2id

)−N∗(2d,q)(1 − u2d/q2id
)−M∗(d,q)

=
∏

i

(
1 − u/qi

)−e (1 − u2/q2i )e

(1 − u2/q2i−1)

=
∏

i

(1 + u/qi)e

(1 − u2/q2i−1)
.

Similarly, but using both parts of Lemma 3.1 (with w = u2/qi+j ), one has that
C(u) is equal to

∏

i<j

(

1 − u2

qi+j

)−e ∏

d

(

1 − u4d

q2d(i+j)

)−N∗(2d,q)(

1 − u2d

qd(i+j)

)−2M∗(d,q)

=
∏

i<j

(

1 − u2

qi+j

)−e ∏

d

(

1 − u2d

qd(i+j)

)−N∗(2d,q)(

1 − u2d

qd(i+j)

)−M∗(d,q)

·
∏

d

(
1 + u2d/qd(i+j)

)−N∗(2d,q)(1 − u2d/qd(i+j)
)−M∗(d,q)

=
∏

i<j

(
1 − u2/qi+j

)−e (1 − u2/qi+j )e

(1 − u2/qi+j−1)

(
1 − u2/qi+j

)

=
∏

i<j

(1 − u2/qi+j )

(1 − u2/qi+j−1)

=
∏

i

(
1 − u2/q2i

)−1
.

Combining these expressions for B(u) and C(u) gives that

A(u) =
∏

i

(
1 + u/qi

)e
∏

i

(
1 − u2/qi

)−1
,

giving the claim. �

We now consider the implications of Theorem 3.2 in the cases that q is even or odd
separately. In both cases, we can recover the result that ε(χ) = 1 for every real-valued
irreducible character χ of GL(n, q), through a combinatorial proof.

Throughout the paper from here, we denote

γj = ∣
∣GL(j, q)

∣
∣ = q(j

2)
(
qj − 1

) · · · (q − 1) = qj2
(1 − 1/q) · · · (1 − 1/qj

)
,

and we set γ0 = 1. The following lemma, (Corollary 2.2 of [1]) will be helpful.
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Lemma 3.3 For |t | < 1, |q| < 1,

(1)

1 +
∞∑

n=1

tn

(1 − q)(1 − q2) · · · (1 − qn)
=

∞∏

n=0

(
1 − tqn

)−1
.

(2)

1 +
∞∑

n=1

tnqn(n−1)/2

(1 − q)(1 − q2) · · · (1 − qn)
=

∞∏

n=0

(
1 + tqn

)
.

Next we prove one of the main results of this section.

Theorem 3.4 Let q be even. Then sum of the degrees of the real-valued irreducible
characters of GL(n, q) is equal to the number of elements of GL(n, q) whose square
is the identity. So, for any real-valued irreducible character χ of GL(n, q), ε(χ) = 1.
In particular, we have that the sum of the degrees of the real-valued irreducible char-
acters of GL(n, q) is equal to (qn − 1) · · · (q − 1) times the coefficient of un in

∏
i≥1(1 + u/qi)

∏
i≥1(1 − u2/qi)

,

and also to
�n/2
∑

r=0

γn

qr(2n−3r)γrγn−2r

.

Proof By Theorem 3.2, in the case that q is even, we have that the sum of the degrees
of the real-valued characters of GL(n, q) is (qn − 1) · · · (q − 1) times the coefficient
in un in

∏
i≥1(1 + u/qi)

∏
i≥1(1 − u2/qi)

.

From Lemma 3.3,

∏

i

(
1 + u/qi

) =
∑

l≥0

ul

q(l+1
2 )(1 − 1/q)(1 − 1/q2) · · · (1 − 1/ql)

, and

∏

i

(
1 − u2/qi

)−1 =
∑

r≥0

u2r

qr (1 − 1/q) · · · (1 − 1/qr)
.

Thus the sum of the degrees of the real irreducible characters of GL(n, q) is equal
to (qn − 1) · · · (q − 1) multiplied by

�n/2
∑

r=0

1

qr(1 − 1/q) · · · (1 − 1/qr)

1

q(n−2r+1
2 )(1 − 1/q) · · · (1 − 1/qn−2r )

. (5)
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From [11, Sect. 1.11], in even characteristic the number of elements of GL(n, q)

whose square is the identity is

�n/2
∑

r=0

γn

qr(2n−3r)γrγn−2r

. (6)

It is straightforward to see that (qn − 1) · · · (q − 1) multiplied by the r th term in
(5) is equal to the r th term in (6). Thus, the sum of the degrees of the real-valued
characters of GL(n, q) is equal to the number of elements in GL(n, q) whose square
is the identity. By the Frobenius–Schur theory, this is equivalent to the statement that
ε(χ) = 1 for any real-valued irreducible character χ of GL(n, q). This completes the
proof. �

We record the following identity, which is directly implied by the proof of Theo-
rem 3.4 above. We note that it will be used later in studying the real character degree
sum of the finite unitary group in the next section.

Corollary 3.5 For any q , we have the formal identity

∏
i≥1(1 + u/qi)

∏
i≥1(1 − u2/qi)

=
∑

n≥0

unq(n
2)

�n/2
∑

r=0

1

qr(2n−3r)γrγn−2r

.

Remark For q even, let iGL(n, q) denote the number of involutions in GL(n, q). The
following are the values of iGL(n, q), for 1 ≤ n ≤ 7. The data suggests that it might
be the case that when written as a polynomial in q , all coefficients of powers of q are
0,−1 or 1:

iGL(1, q) = 1, iGL(2, q) = q2, iGL(3, q) = q
(−1 + q2 + q3),

iGL(4, q) = q2(−1 + q4 + q6), iGL(5, q) = q6(−1 − q + q4 + q5 + q6),

iGL(6, q) = q5(1 − q3 − q4 − q5 − q6 + q9 + q10 + q11 + q13),

iGL(7, q) = q7(1 − q6 − q7 − q8 − q9 − q10 + q13 + q14 + q15 + q16 + q17).

This observation does not hold for q odd.

Next we consider the case of odd characteristic. In this case, we must work a bit
harder than in the q even case, but we still recover the result that ε(χ) = 1 for every
real-valued irreducible character χ of GL(n, q). We need the following notation. For
any q , we let

[
n
i

]
q

denote the q-binomial coefficient, so for any integers n ≥ i ≥ 0,

[
n

i

]

q

= (qn − 1) · · · (q − 1)

(qi − 1) · · · (q − 1)(qn−i − 1) · · · (q − 1)
.
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Recall the q-binomial theorem [1, Eq. (3.3.6)], which we apply in the proof of the
next result:

(1 + xq)
(
1 + xq2) · · · (1 + xqn

) =
n∑

i=0

[
n

i

]

q

qi(i+1)/2xi. (7)

We now recover Zelevinsky’s result for GL(n, q) for the case that q is odd.

Theorem 3.6 Let q be odd. Then sum of the degrees of the real-valued irreducible
characters of GL(n, q) is equal to the number of elements of GL(n, q) whose square
is the identity. So, for any real-valued irreducible character χ of GL(n, q), ε(χ) = 1.
In particular, we have that the sum of the degrees of the real-valued irreducible char-
acters of GL(n, q) is equal to (qn − 1) · · · (q − 1) times the coefficient of un in

∏
i≥1(1 + u/qi)2

∏
i≥1(1 − u2/qi)

,

and also to

n∑

r=0

γn

γrγn−r

.

Proof We first claim that for any q , we have

∑

n≥0

un

n∑

t=0

n−t∑

s=0

q(n−t
2 )

γsγn−t−s

(−1)t

qt (1 − 1/q) · · · (1 − 1/qt )
=

∏

i≥1

(1 + u/qi)

(1 − u2/qi)
. (8)

The coefficient of un on the left-hand side of (8) is equal to

n∑

t=0

q(n−t
2 )

n−t∑

s=0

1

γsγn−t−s

(−1)t

qt (1 − 1/q) · · · (1 − 1/qt )

=
n∑

s=0

1

γs

n−s∑

t=0

q(n−t
2 )

γn−t−s

(−1)t

qt (1 − 1/q) · · · (1 − 1/qt )

=
n∑

s=0

1

γs(qn−s − 1) · · · (q − 1)

n−s∑

t=0

[
n − s

t

]

q

(−1)tq(n−t
2 )q(t+1

2 )

q(n−t−s
2 )qt

=
n∑

s=0

qns−(s2+s)/2

γs(qn−s − 1) · · · (q − 1)

n−s∑

t=0

[
n − s

t

]

q

(−1)t q(t+1
2 )q−(s+1)t .

Now let r = n − s, and apply the q-binomial theorem (7) with x = −1/qn−r+1 to
obtain
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n∑

r=0

qn(n−r)−((n−r)2+(n−r))/2

γn−r (qr − 1) · · · (q − 1)

r∑

t=0

[
r

t

]

q

(−1)t q(t+1
2 )q−(n−r+1)t

=
�n/2
∑

r=0

qn(n−r)−((n−r)2+(n−r))/2(1 − 1/qn−r ) · · · (1 − 1/qn−2r+1)

q(n−r)2
(1 − 1/qn−r ) · · · (1 − 1/q)(qr − 1) · · · (q − 1)

=
�n/2
∑

r=0

qn(n−r)−((n−r)2+(n−r))/2q(n−2r)2
q(r

2)

q(n−r)2
γn−2rγr

= q(n
2)

�n/2
∑

r=0

1

qr(2n−3r)γrγn−2r

.

By Corollary 3.5, this is exactly the coefficient of un in

∏

i≥1

(1 + u/qi)

(1 − u2/qi)
,

giving (8).
Now, it follows from Lemma 3.3 that

∏

i≥1

(
1 + u/qi

)−1 =
∑

t≥0

(−1)tut

qt (1 − 1/q) · · · (1 − 1/qt )
,

and so the left side of (8) is
[

∑

m≥0

q(m
2)

m∑

s=0

um

γsγm−s

][∏

i≥1

(
1 + u/qi

)−1
]

,

from which it follows that

∏

i≥1

(1 + u/qi)2

(1 − u2/qi)
=

∑

n≥0

unq(n
2)

n∑

r=0

1

γrγn−r

. (9)

It is known (see [11, Sect. 1.11], for example) that in odd characteristic, the number
of elements of GL(n, q) whose square is the identity is

n∑

r=0

γn

γrγn−r

= (
qn − 1

) · · · (q − 1)q(n
2)

n∑

r=0

1

γrγn−r

.

By Theorem 3.2, the sum of the degrees of the real-valued characters of GL(n, q),
when q is odd, is (qn − 1) · · · (q − 1) times the coefficient of un in the left side of (9).
This, together with (9), gives that this sum of character degrees is the number of
elements in GL(n, q), q odd, which square to the identity. Thus ε(χ) = 1 for every
real-valued irreducible χ of GL(n, q) by the Frobenius–Schur theory. �

We extract the following identity which was obtained in the proof above.
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Corollary 3.7 For any q , we have the formal identity
∏

i≥1(1 + u/qi)2

∏
i≥1(1 − u2/qi)

=
∑

n≥0

unq(n
2)

n∑

r=0

1

γrγn−r

.

Corollary 3.7 will be used in the next section, for the real character degree sums
for the finite unitary groups.

4 Real character degree sums for U(n,q)

We first establish some notation and results for polynomials, extending some of
the notions used in Sect. 3. Define the maps F̃ and F on F

×
q by F̃ (a) = a−q and

F(a) = aq . Let [a]
F̃

and [a]F denote the F̃ and F -orbits of a ∈ F
×
q , respectively. For

any F̃ -orbit [a]
F̃

of size d , the U-irreducible polynomial corresponding to it is the
polynomial

∏

b∈[a]
F̃

(t − b) = (t − a)
(
t − a−q

) · · · (t − a(−q)d−1)
.

Then each U -irreducible polynomial is in Fq2 [t].
Let N̄(d, q) denote the number of U -irreducible polynomials of degree d . As in

[17], since the group of fixed points of F̃ m has cardinality qm − (−1)m, we have
∑

r|m
rN̄(r, q) = qm − (−1)m,

and it follows from Möbius inversion that we have

N̄(d, q) = 1

d

∑

r|d
μ(r)

(
qd/r − (−1)d/r

)
.

In particular, when d > 1 is odd,

N̄(d, q) = 1

d

∑

r|d
μ(r)

(
qd/r + 1

) = 1

d

∑

r|d
μ(r)qd/r = N(d,q),

where N(d,q) is the number of degree d monic irreducible polynomials over Fq .
Next we define the ∼-conjugate of a polynomial. The map σ : x �→ xq is an invo-

lutory automorphism of Fq2 and it induces an automorphism of the polynomial ring
Fq2 [t] in an obvious way, namely σ : ∑

0≤i≤n ai t
i �→ ∑

0≤i≤n aσ
i t i . An involutory

map φ �→ φ̃ is defined on those monic polynomials φ ∈ Fq2 [t] that have non-zero
constant coefficient, by

φ̃(t) := φ(0)−σ tdeg(φ)φσ
(
t−1).

Thus if

φ(t) = tn + an−1t
n−1 + · · · + a1t + a0
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with a0 �= 0, then its ∼-conjugate is given by

φ̃(t) = tn + (
a1a

−1
0

)σ
tn−1 + · · · + (

an−1a
−1
0

)σ
t + (

a−1
0

)σ
.

We say that φ is ∼-self conjugate if φ(0) �= 0 and φ̃ = φ.
It is known that any monic ∼-self-conjugate polynomial in Fq2 [t] may be fac-

tored uniquely into a product of U -irreducible polynomials, and that the num-
ber of monic ∼-self-conjugate polynomials of degree n in Fq2 [t] is qn + qn−1

[6, Lemma 1.3.11(a)]. Letting U denote the set of all U -irreducible polynomials, it
follows that we have

∏

d≥1

(
1 − wd

)−N̄(d,q) =
∏

φ∈U

(
1 + wdeg(φ) + w2deg(φ) + · · · )

= 1 +
∑

n≥1

(
qn + qn−1)wn

= 1 + w

1 − qw
.

Define the dual φ∗ of a U -irreducible polynomial φ exactly as we defined the dual
of a polynomial in Fq [t] in (4). In particular, if φ is the U -irreducible polynomial cor-
responding to [a]

F̃
, then the dual φ∗ is the U -irreducible polynomial corresponding

to [a−1]
F̃

. Let N̄∗(d, q) denote the number of self-dual U -irreducible polynomials of
degree d in Fq2 [t], and let M̄∗(d, q) denote the number of unordered pairs {φ,φ∗},
where φ ∈ U , deg(φ) = d , and φ �= φ∗. By these definitions, we have

N̄(d, q) = N̄∗(d, q) + 2M̄∗(d, q).

A key observation is that for any a ∈ F̄
×
q , we have

[a]
F̃

∪ [
a−1]

F̃
= [a]F ∪ [

a−1]
F
,

where the orbits on the right correspond to an irreducible polynomial in Fq [t] and its
dual. From this, it follows that we have, for any d ≥ 1,

N̄∗(2d, q) + M̄∗(d, q) = N∗(2d, q) + M∗(d, q), (10)

and that N̄∗(d, q) = N∗(d, q) when d is odd. In particular, if we define, as in [6],
e = 1 if q is even, and e = 2 if q is odd, we have

N̄∗(d, q) =
{

e if d = 1,

0 if d is odd, d > 1.
(11)

Now, from (10) and [6, Lemma 1.3.17], it follows immediately that

∏

d≥1

(
1 − wd

)−N̄∗(2d,q)
∏

d≥1

(
1 − wd

)−M̄∗(d,q) = (1 − w)e

1 − qw
, (12)

and
∏

d≥1

(
1 + wd

)−N̄∗(2d,q)
∏

d≥1

(
1 + wd

)−M̄∗(d,q) = (1 + w)e(1 − qw)

1 − qw2
.

Author's personal copy



J Algebr Comb (2014) 40:387–416 401

We may now use the same techniques as in [6] to get other identities. In particular,
from the facts that

∏
d≥1(1−wd)−N̄(d,q) = (1+w)/(1−qw), N̄(d, q) = N̄∗(d, q)+

2M̄∗(d, q), and (11), we obtain

∏

d≥1

(
1 − w2d

)−N̄∗(2d,q)
∏

d≥1

(
1 − wd

)−2M̄∗(d,q) = (1 + w)(1 − w)e

1 − qw
.

From this and (12), we have

∏

d≥1

(
1 + wd

)−N̄∗(2d,q)
∏

d≥1

(
1 − wd

)−M̄∗(d,q) = 1 + w. (13)

We are now able to compute the generating function for the sum of real character
degrees for U(n,q).

Theorem 4.1 Let e = 1 if the characteristic is even, and e = 2 if the characteris-
tic is odd. The sum of the degrees of the real characters of U(n,q) is (−1)n(qn −
(−1)n) · · · (q3 + 1)(q2 − 1)(q + 1) times the coefficient of un in

∏

i

(1 + u/(−q)i)e

(1 + u2/(−q)2i−1)

∏

i<j

(
1 + u2/(−q)i+j

)−e+1 (1 − u2/(−q)i+j )e

(1 + u2/(−q)i+j−1)
.

Proof There is a parameterization of the irreducible characters of U(n,q) which par-
allels the parameterization for GL(n, q), by replacing F -orbits, where F(a) = aq ,
with F̃ -orbits, where F̃ (a) = a−q , which is the essence of Ennola duality. The de-
tails of this correspondence in the context of the present setting may be found in
[17]. Specifically, the irreducible characters of U(n,q) may be parameterized by
associating a partition λ(φ) with each U -irreducible polynomial φ ∈ U , such that∑

φ d(φ)|λ(φ)| = n. It follows from [17, Theorem 5.1] that the degree of the charac-
ter corresponding to the parameters λ(φ) is

(
qn − (−1)n

) · · · (q + 1)
∏

φ

qd(φ)n(λ(φ)′)
∏

b∈λ(φ)(q
d(φ)h(b) − (−1)d(φ)h(b))

.

As in the GL(n, q) case, use the identity
∑

b∈λ h(b) = n(λ) + n(λ′) + |λ|, and factor
appropriately to rewrite the above expression as

(qn − (−1)n) · · · (q + 1)

qn

∏

φ

(−1)d(φ)n(λ(φ)) (−1/q)d(φ)n(λ(φ))

∏
b∈λ(φ)(1 − (−1/q)d(φ)h(b))

= (qn − (−1)n) · · · (q + 1)

qn

·
∏

φ

(−1)d(φ)n(λ(φ))sλ(φ)

(
1, (−1/q)d(φ), (−1/q)2d(φ), . . .

)
.
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A character of U(n,q) is real-valued exactly when its parameters satisfy λ(φ) =
λ(φ∗) for every U -irreducible φ, which follows from [8, Lemma 3.1]. Then the sum
of the degrees of the real characters of U(n,q) is (qn − (−1)n) · · · (q + 1)/qn times
the coefficient of un in

∏

d≥1

[∑

λ

(−1)dn(λ)ud|λ|sλ
(
1, (−q)−d, (−q)−2d , . . .

)
]N̄∗(d,q)

·
∏

d≥1

[∑

λ

u2d|λ|sλ
(
1, (−q)−d , (−q)−2d , . . .

)2
]M̄∗(d,q)

,

which is (−1)n(qn − (−1)n) · · · (q + 1) times the coefficient of un in

∏

d≥1

[∑

λ

(−1)dn(λ)ud|λ|sλ
(
(−q)−d , (−q)−2d , . . .

)
]N̄∗(d,q)

·
∏

d≥1

[∑

λ

u2d|λ|sλ
(
(−q)−d, (−q)−2d , . . .

)2
]M̄∗(d,q)

=
∏

d≥1

[∑

λ

(−1)dn(λ)sλ
(
ud/(−q)d, ud/(−q)2d , . . .

)
]N̄∗(d,q)

·
∏

d≥1

[∑

λ

sλ
(
ud/(−q)d, ud/(−q)2d , . . .

)2
]M̄∗(d,q)

.

Note that we have

∏

d≥1

[∑

λ

(−1)dn(λ)sλ
(
ud/(−q)d, ud/(−q)2d , . . .

)
]N̄∗(d,q)

=
∏

dodd

[∑

λ

(−1)n(λ)sλ
(
ud/(−q)d, ud/(−q)2d , . . .

)
]N̄∗(d,q)

·
∏

deven

[∑

λ

sλ
(
ud/(−q)d, ud/(−q)2d , . . .

)
]N̄∗(d,q)

.

Next, we use the two identities for Schur functions (2) and (3) as in the GL(n, q)

case, but we also must use the identity from [10, I.5, Ex. 6],

∑

λ

(−1)n(λ)sλ =
∏

i

(1 − xi)
−1

∏

i<j

(1 + xixj )
−1.
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Applying these identities gives that the sum of the real character degrees of U(n,q)

is (−1)n(qn − (−1)n) · · · (q + 1) times the coefficient of un in

Ã(u) :=
∏

d

[∏

i

(
1 − ud/(−q)id

)−1 ∏

i<j

(
1 − (−1)du2d/(−q)(i+j)d

)−1
]N̄∗(d,q)

·
∏

d

[∏

i,j

(
1 − u2d/(−q)(i+j)d

)−1
]M̄∗(d,q)

.

Imitating the calculation for GL(n, q), write Ã(u) = B̃(u)C̃(u), where

B̃(u) :=
∏

i

∏

d

(
1 − ud/(−q)id

)−N̄∗(d,q)(1 − u2d/(−q)2id
)−M̄∗(d,q)

,

C̃(u) :=
∏

i<j

∏

d

(
1 − (−1)du2d/(−q)(i+j)d

)−N̄∗(d,q)(1 − u2d/(−q)(i+j)d
)−2M̄∗(d,q)

.

Now, by (11) and (12), we have

B̃(u) =
∏

i

(
1 − u/(−q)i

)−e
∏

d

(
1 − u2d/(−q)2id

)−N̄∗(2d,q)

· (1 − u2d/(−q)2id
)−M̄∗(d,q)

=
∏

i

(
1 − u/(−q)i

)−e (1 − u2/(−q)2i )e

(1 + u2/(−q)2i−1)

=
∏

i

(1 + u/(−q)i)e

(1 + u2/(−q)2i−1)
.

By (11), (12) and (13), we compute that C̃(u) is equal to

∏

i<j

(

1 + u2

(−q)i+j

)−e ∏

d

(

1 − u4d

(−q)2d(i+j)

)−N̄∗(2d,q)

·
(

1 − u2d

(−q)d(i+j)

)−2M̄∗(d,q)

=
∏

i<j

(

1 + u2

(−q)i+j

)−e

·
∏

d

(

1 − u2d

(−q)d(i+j)

)−N̄∗(2d,q)(

1 − u2d

(−q)d(i+j)

)−M̄∗(d,q)

·
∏

d

(

1 + u2d

(−q)d(i+j)

)−N̄∗(2d,q)(

1 − u2d

(−q)d(i+j)

)−M̄∗(d,q)
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=
∏

i<j

(
1 + u2/(−q)i+j

)−e (1 − u2/(−q)i+j )e

(1 + u2/(−q)i+j−1)

(
1 + u2/(−q)i+j

)

=
∏

i<j

(
1 + u2/(−q)i+j

)−e+1 (1 − u2/(−q)i+j )e

(1 + u2/(−q)i+j−1)
.

We now have

Ã(u) = B̃(u)C̃(u)

=
∏

i

(1 + u/(−q)i)e

(1 + u2/(−q)2i−1)

∏

i<j

(
1 + u2/(−q)i+j

)−e+1 (1 − u2/(−q)i+j )e

(1 + u2/(−q)i+j−1)
,

completing the proof. �

In order to expand the generating function computed above as a series in u, we
need some notation to state a key result of Warnaar [19].

For any partition λ, let λe and λo denote the partitions consisting of only the
even parts and odd parts of λ, respectively. Let 
(λ) be the number of parts of λ,
so that 
(λo) is the number of odd parts of λ. For any positive integer j , let
mj(λ) be the multiplicity of j in λ. For example, if λ = (7,4,4,3,3,2,1,1,1),
then λe = (4,4,2), λo = (7,3,3,1,1,1), 
(λ) = 9, 
(λo) = 6, m7(λ) = m2(λ) = 1,
m4(λ) = m3(λ) = 2, and m1(λ) = 3. We will also denote a partition μ by the no-
tation (1m1(μ)2m2(μ)3m3(μ) · · · ), so that the λ in the example may be written as
λ = (7142322113).

Given the variables x = {x1, x2, . . .}, an indeterminate t , and a partition λ, let
Pλ(x; t) denote the Hall–Littlewood symmetric function (see [10, Chap. III]). Given
the single variable z, and m ≥ 0 an integer, let Hm(z; t) denote the Rogers–Szegő
polynomial (see [1, Chap. 3, Examples 3–9]), defined as

Hm(z; t) =
m∑

j=0

[
m

j

]

t

zj ,

where, as in Sect. 3,
[

m
j

]
t

is defined to be the following polynomial in t :

[
m

j

]

t

= (tm − 1) · · · (t − 1)

(tj − 1) · · · (t − 1)(tm−j − 1) · · · (t − 1)
.

Given any partition λ, define the more general Rogers–Szegő polynomial hλ(z; t) by

hλ(z; t) =
∏

i≥1

Hmi(λ)(z; t),

so that h(1m)(z; t) = Hm(z; t).
We may now state the following identity [19, Theorem 1.1].
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Theorem 4.2 (Warnaar) The following identity holds, where the sum is over all par-
titions:

∑

λ

a
(λo)hλe(ab; t)hλo(b/a; t)Pλ(x; t) =
∏

i≥1

(1 + axi)(1 + bxi)

(1 − xi)(1 + xi)

∏

i<j

1 − txixj

1 − xixj

.

The following specialization of Theorem 4.2 to the case b = 0 will also be useful
for us [19, Corollary 1.3].

Corollary 4.3 (Warnaar) The following identity holds, where the sum is over all par-
titions:

∑

λ

a
(λo)Pλ(x; t) =
∏

i≥1

1 + axi

1 − x2
i

∏

i<j

1 − txixj

1 − xixj

.

4.1 Characteristic two

From here on, we define

ωn = ∣
∣U(n,q)

∣
∣ = qn(n−1)/2

n∏

i=1

(
qi − (−1)i

) = qn2
n∏

i=1

(
1 − (−1/q)i

)
,

and set ω0 = 1.
We first concentrate on the case that q is even. We may compute the number of

involutions in U(n,q) as follows. We note that, in relation to counting involutions
and comparing to Theorem 3.4, this result may be viewed as an occurrence of Ennola
duality.

Proposition 4.4 Let q be even. Then the number of involutions in U(n,q) is equal to

�n/2
∑

r=0

ωn

qr(2n−3r)ωrωn−2r

,

and also to (−1)n+(n
2)(qn − (−1)n) · · · (q + 1) times the coefficient of un in:

∏

i

1 + u/(−q)i

1 − u2/(−q)i
.

Proof Since q is even, an involution in U(n,q) in this case is a unipotent element
of type (2r1n−2r ), that is, its elementary divisors are (t − 1)2 with multiplicity r and
t − 1 with multiplicity n − 2r . It follows from [18], for example, that the centralizer
of such an element in U(n,q) has order

qr(2n−3r)ωrωn−2r .
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So, the total number of involutions is the sum of the indices of these centralizers in
U(n,q), for r = 0, . . . , �n/2
, so that the total number of involutions is

�n/2
∑

r=0

ωn

qr(2n−3r)ωrωn−2r

= (−1)n
(
qn − (−1)n

) · · · (q + 1)

�n/2
∑

r=0

(−1)nqn(n−1)/2

qr(2n−3r)ωrωn−2r

.

Define

Jn(q) :=
�n/2
∑

r=0

(−1)nqn(n−1)/2

qr(2n−3r)ωrωn−2r

.

Now note that we have

Jn(−q) = (−1)n(n−1)/2
�n/2
∑

r=0

qn(n−1)/2

qr(2n−3r)γrγn−2r

.

From Corollary 3.5, we have Jn(−q) is (−1)n(n−1)/2 times the coefficient of un in

∏

i

1 + u/qi

1 − u2/qi
.

Making the substitution of −q for q , then, we have that the number of involutions in
U(n,q) is

(−1)n(n−1)/2(−1)n
(
qn − (−1)n

) · · · (q + 1)

times the coefficient of un in

∏

i

1 + u/(−q)i

1 − u2/(−q)i
,

which completes the proof. �

By (1), Proposition 4.4 gives a generating function for
∑

χ∈Irr(G)
ε(χ)=1

χ(1) −
∑

χ∈Irr(G)
ε(χ)=−1

χ(1),

where G = U(n,q), q even. Since Theorem 4.1 gives a generating function for
∑

χ∈Irr(G)
ε(χ)=1

χ(1) +
∑

χ∈Irr(G)
ε(χ)=−1

χ(1),

then we may immediately obtain the following (with e = 1 in Theorem 4.1).
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Corollary 4.5 Let q be even. The sum of the character degrees of U(n,q) with
Frobenius–Schur indicator ±1 is equal to (−1)n(qn − (−1)n) · · · (q + 1) times the
coefficient of un in

1

2

∏

i

1 + u/(−q)i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1
± (−1)(

n
2)

2

∏

i

1 + u/(−q)i

1 − u2/(−q)i
.

We now expand the generating function in Theorem 4.1 for the case that q is even.

Theorem 4.6 Let q be even. Then the sum of the degrees of the real-valued characters
of U(n,q) is

(
qn − (−1)n

) · · · (q + 1)
∑

|λ|=n

q−(
(λo)+n)/2Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1).

Proof By Theorem 4.1, with e = 1, the sum of the degrees of the real-valued charac-
ters of U(n,q) is (−1)n(qn − (−1)n) · · · (q + 1) times the coefficient of un in

∏

i

1 + u/(−q)i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1
.

To expand this, we apply Corollary 4.3, with the substitutions

xi = −uq1/2(−q)−i = uq−1/2(−q)−(i−1), a = −q−1/2, t = q−1.

Then we have

∏

i≥1

1 + axi

1 − x2
i

∏

i<j

1 − txixj

1 − xixj

=
∏

i

1 + u/(−q)i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1

=
∑

λ

(−q−1/2)
(λo)Pλ

(
uq−1/2, uq−1/2(−q)−1, uq−1/2(−q)−2, . . . ;q−1)

=
∑

λ

(−1)
(λo)q−(
(λo)+|λ|)/2u|λ|Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1).

The coefficient of un in this series is
∑

|λ|=n

(−1)
(λo)q−(
(λo)+n)/2Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1).

The result now follows from the observation that |λ| and 
(λo) have the same par-
ity. �

We can immediately get the following result by applying Theorem 4.6 and Propo-
sition 4.4.

Author's personal copy



408 J Algebr Comb (2014) 40:387–416

Corollary 4.7 Let q be even. Then the sum of the degrees of the characters of U(n,q)

with Frobenius–Schur indicator ±1 is

1

2

(
qn − (−1)n

) · · · (q + 1)
∑

|λ|=n

q−(
(λo)+n)/2Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)

± 1

2

�n/2
∑

r=0

ωn

qr(2n−3r)ωrωn−2r

.

We can express the quantities in Corollary 4.7 in yet another way by applying
Corollary 4.5. While the expression we obtain seems to be more complicated, we
give an example in which it makes calculation somewhat simpler.

Corollary 4.8 Let q be even. Then the sum of the degrees of the characters of U(n,q)

with Frobenius–Schur indicator ±1 is (−1)n(qn − (−1)n) · · · (q + 1) times

1 ± (−1)(
n
2)

2

�n/2
∑

r=0

(−1)n+(n
2)q(n

2)

qr(2n−3r)ωrωn−2r

+ 1

2

�n/2
∑

k=1

[( ∑


(λo)+|λ|=2k

q−kPλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)

)

·
(�(n−2k)/2
∑

s=0

(−1)n−2k+(n−2k
2 )q(n−2k

2 )

qs(2n−4k−3s)ωsωn−2k−2s

)]

.

Proof By Corollary 4.5, the desired sum is (−1)n(qn − (−1)n) · · · (q + 1) times the
coefficient of un in

1

2

∏

i

1 + u/(−q)i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1
± (−1)(

n
2)

2

∏

i

1 + u/(−q)i

1 − u2/(−q)i

= 1

2

∏

i

1 + u/(−q)i

1 − u2/(−q)i

·
(∏

i

1 − u2/(−q)i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1
± (−1)(

n
2)

)

. (14)

We now apply Corollary 4.3 with the substitutions xi = −uq1/2(−q)−i , a = uq−1/2,
and t = q−1 to obtain

∏

i

1 − u2/(−q)i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1

=
∑

λ

u
(λo)+|λ|q−(
(λo)+|λ|)/2Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1).
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Noting that 
(λo) + |λ| is always even, this gives that the coefficient of u2k in this
product is

∑


(λo)+|λ|=2k

q−kPλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)

if k ≥ 0 and the coefficient of u2k+1, k ≥ 0, is 0. By Proposition 4.4, the coefficient

of um in
∏

i
1+u/(−q)i

1−u2/(−q)i
is

�m/2
∑

r=0

(−1)m+(m
2)q(m

2)

qr(2m−3r)ωrωm−2r

.

Substituting these to find the coefficient of un in (14) gives the result. �

4.2 Examples with q even

While there does exist a nice expression for the value of Pλ(1, t, t2, . . . ; t) (see [10,
III.2, Example 1]), the authors are unaware of such an expression for Pλ(1, t, t2, . . . ;
−t). So, we are unable to further simplify the expression in Theorem 4.6. However,
there are nice evaluations of both P(1m)(x; t) and P(m)(x; t) which we may apply. In
particular, P(1m)(x; t) = em(x), where em(x) is the elementary symmetric function,
by [10, III.2, Eq. (2.8)]. Then, by [10, I.2, Example 4], we have

P(1m)

(
1, (−q)−1, (−q)−2, . . . ;q−1) = em

(
1, (−q)−1, (−q)−2, . . .

)

= (−q)−m(m−1)/2

(1 + (1/q)) · · · (1 − (−1/q)m)

= (−1)m(m−1)/2qm

(q + 1) · · · (qm − (−1)m)
. (15)

By [10, III.2, Eq. (2.10)], P(m)(x; t) is (1 − t)−1 times the coefficient of um in
∏

i
1−xi tu
1−xiu

. So, P(m)(1, (−q)−1, (−q)−2, . . . ;q−1) is (1 − (1/q))−1 times the coeffi-

cient of um in
∏

i≥1(1 + u/(−q)i)
∏

i≥1(1 − u/(−q)i−1)
.

By Lemma 3.3,

∏

i≥1

(
1 + u/(−q)i

) =
∑

r≥0

(−1)r(r+1)/2ur

(q + 1) · · · (qr − (−1)r )
,

and

∏

i≥1

(
1 − u/(−q)i−1)−1 =

∑

r≥0

qr(r+1)/2ur

(q + 1) · · · (qr − (−1)r )
.
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So, we have

P(m)

(
1, (−q)−1, (−q)−2, . . . ;q−1)

= q

q − 1

m∑

r=0

(−1)r(r+1)/2q(m−r)(m−r+1)/2

(q + 1) · · · (qr − (−1)r )(q + 1) · · · (qm−r − (−1)m−r )
. (16)

For example, to compute the sum of the real character degrees of U(2, q), for q

even, then by Theorem 4.6, the only partitions in the sum are λ = (2) and λ = (12),
so this sum is

(
q2 − 1

)
(q + 1)

[
q−1P(2)

(
1, (−q)−1, (−q)−2, . . . ;q−1)

+ q−2P(12)

(
1, (−q)−1, (−q)−2, . . . ;q−1)].

Directly from (16) and (15), we may compute that

P(2)

(
1, (−q)−1, (−q)−2, . . . ;q−1) = q(q2 + 1)

(q + 1)(q2 − 1)
, and

P(12)

(
1, (−q)−1, (−q)−2, . . . ;q−1) = −q2

(q + 1)(q2 − 1)
,

from which it follows that the sum of the real character degrees of U(2, q), q even,
is q2. By Proposition 4.4, this is also the number of involutions in U(2, q), meaning
that ε(χ) = 1 for every real-valued irreducible character χ of U(2, q), q even. This
is mentioned in the last paragraph of a paper of Gow [7], and this is also implied by
a result of Ohmori [13, Theorem 7(ii)] (every character of U(2, q) is either regular
or semisimple, and the result states that such real-valued characters satisfy ε(χ) = 1
when q is even).

Now consider the sum of the degrees of the characters of U(3, q), q even, with
Frobenius–Schur indicator 1. Note that if we apply Corollary 4.7, we need the
value of Pλ(1, (−q)−1, (−q)−2, . . . ;q−1) for λ = (3), (2,1), and (13). However,
using Corollary 4.8, we only need this value for λ = (1) and (2). That is, Corol-
lary 4.8 makes this calculation a bit easier, and from that result the sum of the
degrees of the characters of U(3, q) with Frobenius–Schur indicator 1 is equal to
−(q3 + 1)(q2 − 1)(q + 1) times

1

2

( ∑


(λo)+|λ|=2

q−1Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)

)( −1

q + 1

)

= P(1)(1, (−q)−1, (−q)−2, . . . ;q−1) + P(2)(1, (−q)−1, (−q)−2, . . . ;q−1)

−2q(q + 1)

= −1

2q(q + 1)

(
q

q + 1
+ q(q2 + 1)

(q + 1)(q2 − 1)

)

= −q2

(q + 1)2(q2 − 1)
.

This gives that this character degree sum is q4 − q3 + q2. By Proposition 4.4, this
character degree sum, minus the sum of the degrees of characters with Frobenius–
Schur indicator −1, is q4 − q3 + q . So, the sum of the degrees of characters with
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Frobenius–Schur indicator −1 is q2 −q . By the result of Ohmori [13, Theorem 7(ii)],
every real-valued semisimple and regular character of U(3, q) has Frobenius–Schur
indicator 1, and the only other real-valued character is the unique cuspidal unipo-
tent character, which has degree q2 − q , and this character must thus be the unique
character of U(3, q) with Frobenius–Schur indicator −1. The fact that this unipotent
character has Frobenius–Schur indicator −1 is also consistent with the general result
for unipotent characters [14].

4.3 Odd characteristic

As in the case that q is even, we begin by counting the involutions in U(n,q) when
q is odd, which again may be viewed as an occurrence of Ennola duality when com-
paring to the count for involutions in GL(n, q) in Theorem 3.6.

Proposition 4.9 Let q be odd. Then the number of involutions in U(n,q) is equal to

n∑

r=0

ωn

ωrωn−r

and also to (−1)n+(n
2)(qn − (−1)n) · · · (q + 1) times the coefficient of un in:

∏

i

(1 + u/(−q)i)2

1 − u2/(−q)i
.

Proof For q odd, an involution in U(n,q) has eigenvalues 1 and −1, with each Jor-
dan block having size 1. If such an element has eigenvalue 1 with multiplicity r and
−1 with multiplicity n− r , then it is conjugate over an algebraic closure to a diagonal
matrix. Such an element has centralizer isomorphic to U(r, q)×U(n− r, q), by [18].
Thus, the total number of involutions in U(n,q), q odd is

n∑

r=0

ωn

ωrωn−r

= (−1)n
(
qn − (−1)n

) · · · (q + 1)

n∑

r=0

(−1)nqn(n−1)/2

ωrωn−r

=: (−1)n
(
qn − (−1)n

) · · · (q + 1)In(q).

Then one checks that we have

In(−q) = (−1)n(n−1)/2
n∑

r=0

qn(n−1)/2

γrγn−r

.

Now, we know from Corollary 3.7 that
∑n

r=0
qn(n−1)/2

γrγn−r
is the coefficient of un in

∏

i

(1 + u/qi)2

1 − u2/qi
,

and by substituting −q for q , the result follows. �
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By precisely the same argument as in the q even case, we obtain the following
result.

Corollary 4.10 Let q be odd. The sum of the degrees of U(n,q) with Frobenius–
Schur indicator ±1 is equal to (−1)n(qn − (−1)n) · · · (q + 1) times the coefficient of
un in

1

2

∏

i

(1 + u/(−q)i)2

1 + u2/(−q)2i−1

∏

i<j

(1 − u2/(−q)i+j )2

(1 + u2/(−q)i+j )(1 + u2/(−q)i+j−1)

± (−1)(
n
2)

2

∏

i

(1 + u/(−q)i)2

1 − u2/(−q)i
.

We now expand the generating function from Theorem 4.1 when q is odd. In this
case, we need the more general result Theorem 4.2 rather than Corollary 4.3 as in the
q even case. We need just a bit more notation. For any partition ν, let ν′ denote the
conjugate partition of ν. A partition is said to be even if all of its parts are even. For
any c, d , and any integer m ≥ 1, we define (c;d)m by

(c;d)m = (1 − c)(1 − cd) · · · (1 − cdm−1).

We set (c;d)0 = 1. Finally, we note that Pλ(x;−1) is a symmetric function studied
in [10, III.8].

In the following, we give two expressions for the sum of the real character degrees
for U(n,q) with q odd. While the first is a bit more notationally manageable, the
second could be considered computationally advantageous as it requires fewer special
values of Rogers–Szegő polynomials which have no convenient factorization.

Theorem 4.11 Let q be odd. Then the sum of the degrees of the real-valued charac-
ters of U(n,q) is (−1)n(qn − (−1)n) · · · (q + 1) times

∑

|λ|+|ν|=n

ν′ even

(−1)|ν|/2+
(λo)q−|ν|−(
(λo)+|λ|)/22
(ν)/2hλe

(
q−1;q−1)hλo

(
1;q−1)

·Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)Pν

(
1, (−q)−1, (−q)−2, . . . ;−1

)

=
∑

|λ|+|ν|=n

(λo)′,(νe)′ even

(−1)(
(λo)+
(νo)+|ν|)/2q−|ν|−(
(λo)+|λ|)/2
(∏

i

2�mi(ν)/2�
)

· hλe

(
q−1;q−1)

(∏

i

(
q−1;q−2)

mi(λo)/2

)

· Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)Pν

(
1, (−q)−1, (−q)−2, . . . ;−1

)
.
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Proof By Theorem 4.1, with e = 2, the sum of the degrees of the real-valued charac-
ters of U(n,q) is (−1)n(qn − (−1)n) · · · (q + 1) times the coefficient of un in

∏

i

(1 + u/(−q)i)2

1 + u2/(−q)2i−1

∏

i<j

(1 − u2/(−q)i+j )2

(1 + u2/(−q)i+j )(1 + u2/(−q)i+j−1)

=
(∏

i

(1 + u/(−q)i)2

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1

)(∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j

)

.

(17)

From Theorem 4.2, with the substitutions

a = b = −q−1/2, xi = −uq1/2(−q)−i , t = q−1,

we have

∏

i

(1 + axi)
2

1 − x2
i

∏

i<j

1 − txixj

1 − xixj

=
∏

i

(1 + u/(−q)i)2

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1

=
∑

λ

(−1)
(λo)q−(
(λo)+|λ|)/2hλe

(
q−1;q−1)hλo

(
1;q−1)

· Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)u|λ|.

From [10, III.5, Example 3], we have the identity

∏

i<j

1 − txixj

1 − xixj

=
∑

ν
ν′even

cν(t)Pν(x; t),

where cν(t) = ∏
i≥1(1 − t)(1 − t3) · · · (1 − tmi(ν)−1). We apply this identity with the

substitutions xi = √−1u(−q)−i , t = −1. When ν′ is even, then mi(ν) is even for
every i, and then cν(−1) = ∏

i 2mi(ν)/2 = 2
(ν)/2. We then have

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j
=

∑

ν
ν′even

2
(ν)/2Pν

(√−1u(−q)−1,
√−1u(−q)−2, . . . ;−1

)

=
∑

ν
ν′even

2
(ν)/2(−1)|ν|/2q−|ν|u|ν|Pν

(
1, (−q)−1, (−q)−2, . . . ;−1

)
.

Substituting the two expansions above back into (17) and finding the coefficient of
un gives the first expression for the sum of the real character degrees.

On the other hand, we can also write
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∏

i

(1 + u/(−q)i)2

1 + u2/(−q)2i−1

∏

i<j

(1 − u2/(−q)i+j )2

(1 + u2/(−q)i+j )(1 + u2/(−q)i+j−1)

=
(∏

i

1 + u2/(−q)2i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1

)

(18)

·
(∏

i

(1 + u/(−q)i)2

1 + u2/(−q)2i

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j

)

. (19)

For the product in (18), apply Theorem 4.2 with

a = (−q)−1/2, b = −(−q)−1/2, xi = −uq1/2(−q)−i , t = q−1,

and we obtain

∏

i

1 + u2/(−q)2i

1 + u2/(−q)2i−1

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j−1

=
∑

λ

(−1)
(λo)/2q−(
(λo)+|λ|)/2hλe

(
q−1;q−1)hλo

(−1;q−1)

· Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1)u|λ|.

From [1, Eq. (3.3.8)], we have

Hm

(−1;q−1) =
{

(q−1;q−2)m/2 if m is even,

0 if m is odd.

So, the only λ which will appear in the expansion of (18) above are those such that
odd parts have even multiplicity, so (λo)

′ is even. Thus the coefficient of um in the
expansion of (18) is

∑

|λ|=m

(λo)′ even

(−1)
(λo)/2q−(
(λo)+|λ|)/2hλe

(
q−1;q−1)

(∏

i

(
q−1;q−2)

mi(λo)/2

)

· Pλ

(
1, (−q)−1, (−q)−2, . . . ;q−1).

For (19), we apply Theorem 4.2 with a = b = −√−1, xi = u
√−1(−q)−i , t = −1,

to obtain

∏

i

(1 + u/(−q)i)2

1 + u2/(−q)2i

∏

i<j

1 − u2/(−q)i+j

1 + u2/(−q)i+j

=
∑

ν

(−1)3
(νo)/2(−1)|ν|/2(−q)−|ν|hνe(−1;−1)hνo(1;−1)

· Pν

(
1, (−q)−1, (−q)−2, . . . ;−1

)
u|ν|.
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One may compute directly from the recursion for Hm(z; t) (see [1, Chap. 3, Exam-
ple 6]) that we have

Hm(z;−1) =
{

(z2 + 1)m/2 if m is even,
(z + 1)(z2 + 1)(m−1)/2 if m is odd.

So, Hm(1;−1) = 2�m/2�, and when m is even, Hm(−1;−1) = Hm(1;−1). Since
Hm(−1;−1) = 0 when m is odd, then the only ν we need consider are those such
that all even parts have even multiplicity, that is, (νe)

′ is even. It follows now that the
coefficient of uk in the expansion of (19) is given by

∑

|ν|=k

(νe)′even

(−1)(
(νo)+|ν|)/2q−|ν|
(∏

i

2�mi(ν)/2�
)

Pν

(
1, (−q)−1, (−q)−2, . . . ;−1

)
.

Using the expansions for (18) and (19) we have obtained gives the second desired
expression for the real character degree sum. �

We note that we could now give results for q odd which parallel Corollaries 4.7
and 4.8, but we omit them here.

4.4 Example for q odd

We conclude with an example of applying Theorem 4.11 to U(2, q) with q odd.
We use the second expression in Theorem 4.11, which is a sum with three terms,
corresponding to λ = (2) with ν = (0), λ = (12) with ν = (0), and λ = (0) with ν =
(12). We can use the previously calculated values of Hall–Littlewood functions (recall
that P(1m)(x; t) is independent of t), and together with the facts that h(2)(q

−1;q−1) =
(q + 1)/q , and (q−1;q−2)1 = (q − 1)/q , we find that the sum of the degrees of the
real-valued characters of U(2, q), q odd, is:

(
q2 − 1

)
(q + 1)

(
q2 + 1

q(q2 − 1)
+ 1

q(q + 1)2
+ −2

(q + 1)(q2 − 1)

)

= q2 + q.

From Proposition 4.9, the sum of the degrees of characters with Frobenius–Schur
indicator 1, minus the degree sum of those with Frobenius–Schur indicator −1, is
q2 −q +2. This gives that the sum of the degrees of characters with Frobenius–Schur
indicator −1 is q − 1. From the character degrees of U(2, q), this is the minimal
possible degree greater than 1, which means there is a unique character of degree
q − 1 with Frobenius–Schur indicator −1. This is known from the character table of
U(2, q), as mentioned at the end of the paper of Gow [7]. More generally, it is known
[16] that U(2m,q), q odd, has qm−1 semisimple characters with Frobenius–Schur
indicator −1, which is exactly this character when m = 1.

There are other small cases which we could calculate, with considerably more
effort, most of which could be confirmed by pasting together various known results.
Instead of pursuing these, we remark that the methods presented seem to be flexible
enough to obtain some more general information on the Frobenius–Schur indicators
for the finite unitary groups, which we hope to carry through in the sequel.
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