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Abstract

Two notions of ri�e shu�ing on �nite Coxeter groups are given: one using Solomon's de-

scent algebra and another using random walk on chambers of hyperplane arrangements. These

coincide for types A,B,C,H

3

, and rank two groups (but not always). Both notions have the

same, simple eigenvalues. The hyperplane de�nition is especially natural and satis�es a posi-

tivity property when W is crystallographic and the relevant parameter is a good prime. The

hyperplane viewpoint suggests deep connections with Lie theory and leads to a notion of ri�e

shu�ing for arbitrary real hyperplane arrangements and oriented matroids.

1991 AMS Subject Classi�cation: 20F55, 20G40
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1 Introduction and Background

Using ideas from [BaD], [BB], and particularly [BBHT], we give a de�nition of card-shu�ing

measures M

W;x

on �nite Coxeter groups. Here x 6= 0 is a real number, and M

W;x

satis�es the

measure property

P

w2W

M

W;x

(w) = 1. In general these measures will be signed, i.e. it is possible

that M

W;x

(w) < 0 for some element w. The measures M

W;x

convolve and have nice eigenvalues.

The measures M

W;x

have received considerable attention in the cases that W is of type A or

B. The type A case appeared in [BaD] in the theory of ri�e shu�ing. Results for biased shu�es

appear in [F3]. Type B ri�e shu�es are considered in [BB]. As is evident from [BB] and [Ha],

M

A

n

;x

andM

B

n

;x

are related to the Poincar�e-Birkho�-Witt theorem and to splittings of Hochschild

homology. Section 3.8 of [SS] describes the measures M

A

n

;x

in the language of Hopf algebras.

We then give a second de�nition H

W;x

of ri�e shu�ing for �nite Coxeter groups using work of

Bidigare, Hanlon, and Rockmore [BHR]. They describe how putting non-negative weights summing

to one on the faces of a hyperplane arrangement induces a random walk on its chambers. This

procedure will be recalled in Section 3. Brown and Diaconis [BrD] generalize these chamber walks

to oriented matroids and give many examples. Bidigare [B] realized type A shu�ing as a special

case, with face weights as binomial coeÆcients. We give a de�nition for all �nite Coxeter groups

using group theoretic weights. As a by-product, it will be seen that if W is crystallographic and

p is a good prime, then M

W;p

(w) � 0 for all w 2 W . It will emerge that the eigenvalues and

multiplicites are the same as for the descent algebra de�nition. The weights in the construction of

H

W;x

are then expressed in a completely combinatorial way, yielding a de�nition for arbitrary real

hyperplane arrangements.

The follow-up work [F1],[F2] connects the measures H

W;x

with the semisimple orbits of the

adjoint action of a �nite group of Lie type on its Lie algebra. One long term goal is to naturally

associate to a semisimple conjugacy class or adjoint orbit an element w of the Weyl group, re�ning

the well-known map to conjugacy classes of W . This was partially realized in [F1],[F4], which hint

at number theoretic applications.

2 Descent Algebra De�nition of Shu�ing for Coxeter Groups

Let W be a �nite Coxeter group with � a base of fundamental roots. For w 2 W , let Des(w) be

the set of simple positive roots mapped to negative roots by w (also called the descent set of w).

For J � �, let X

J

= fw 2W jDes(w) \ J = ;g and x

J

=

P

w2X

J

w. Let � be an equivalence class
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of subsets of � under the equivalence relation J � K whenever w(J) = K for some w 2 W . Let

�(K) denote the equivalence class of K. For K � J � � de�ne �

J

K

=

jfw2X

J

:w(K)��gj

j�(K)j

. Set �

J

K

= 0

if K 6� J . Let (�

J

K

) be the matrix inverse of (�

J

K

). De�ne e

�

in the descent algebra of W by

e

�

=

X

J2�

P

K�J

�

J

K

x

K

j�j

:

These e

�

are orthogonal idempotents which sum to the identity element of W [BBHT]. Let k�k

denote jJ j for any J in the equivalence class �.

De�nition 1: For W a �nite Coxeter group and x 6= 0, de�ne a signed probability measure

M

W;x

on W by

M

W;x

=

X

�

e

�

x

k�k

:

For w 2W , let M

W;x

(w) be the coeÆcient of w in M

W;x

.

Since the e

�

are orthogonal idempotents, M

W;x

satis�es the following convolution property in

the group algebra of W :

M

W;x

M

W;y

=M

W;xy

:

Proposition 1 M

W;x

is a signed probability measure on W .

Proof: Writing each e

�

as

P

w2W

c

�

(w)w it must be proved that

X

w;�

c

�

(w)

x

k�k

= 1:

This follows from the stronger assertion that

P

w

c

�

(w) is 0 if k�k > 0 and is 1 if k�k = 0. Since

�

;

;

=

1

jW j

, it follows by de�nition that e

;

=

P

w2W

w

jW j

. Thus

P

w

c

�

(w) = 1 if k�k = 0. Since the e

�

are idempotents, the value of

P

w

c

�

(w) is either 0 or 1. Since

P

�

e

�

= 1, clearly

P

w;�

c

�

(w) = 1.

Combining this with the fact that

P

w

c

�

(w) = 1 if k�k = 0 shows that

P

w

c

�

(w) = 0 if k�k > 0.

2

Proposition 2 illustrates the de�nition by computing M

G

2

;x

.

Proposition 2

M

G

2

;x

(w) =

8

>

>

>

>

<

>

>

>

>

:

(x+5)(x+1)

12x

2

if d(w) = 0

(x+1)(x�1)

12x

2

if d(w) = 1

(x�1)(x�5)

12x

2

if d(w) = 2
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Proof: Letting V be the hyperplane in R

3

consisting of vectors whose coordinates add to 0, it

is well known that a root system consists of �("

i

� "

j

) for i < j and �(2"

i

� "

j

� "

k

) where

fi; j; kg = f1; 2; 3g. Let A = "

1

� "

2

and B = �2"

1

+ "

2

+ "

3

be a base of positive simple roots. All

equivalence classes � of subsets of � have size one. Some computation gives that

e

;

=

1

12

x

;

e

A

= �

1

4

x

;

+

1

2

x

A

e

B

= �

1

4

x

;

+

1

2

x

B

e

A;B

=

5

12

x

;

�

1

2

x

A

�

1

2

x

B

+ x

A;B

from which the result follows. 2

Left multiplication in the group algebra ofW byM

W;x

can be thought of as performing a signed

random walk on W . The corresponding transition matrix is a jW j by jW j matrix. Proposition 3

determines its eigenvalues and evaluates M

W;x

(w) when w is the identity or longest element. It was

known previously for types A and B (part 1 in [Ha], the rest in [BaD] and [BB]).

Proposition 3 Let W be a �nite Coxeter group of rank n. Let id be the identity element of W

and w

0

the longest element of W . Let m

1

; � � � ;m

n

be the exponents of W .

1. The eigenvalues of M

W;x

are

1

x

i

for 0 � i � n�1 with multiplicity the number of w 2W with

�xed space of dimension n� i.

2. M

W;x

(id) =

Q

n

i=1

(x+m

i

)

x

n

jW j

:

3. M

W;x

(w

0

) =

Q

n

i=1

(x�m

i

)

x

n

jW j

:

Proof: The �rst claim is easily reduced to Theorem 7.15 of [BBHT]. For the second claim note

from the �rst that summing over � with jj�jj = i the coeÆcient of the identity in e

�

gives

1

jW j

times

the number of w with �xed space of dimension n� i. Thus

M

W;x

(id) =

1

x

n

jW j

X

w2W

x

dim(fix(w))

=

Q

n

i=1

(x+m

i

)

x

n

jW j

;

the second equality being an identity of Shephard and Todd [ST]. The third claim follows analo-

gously to the second, but in the proof of Theorem 7.15 of [BBHT] one takes inner products with

the alternating representation instead of with the trivial representation. 2
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From Proposition 3 two natural questions emerge. First, do the measuresM

W;x

andH

W;x

induce

the same measures when lumped on conjugacy classes? Second, given an irreducible representation �

ofW and a probability distribution P onW , recall that the Fourier transform of P at the irreducible

representation � is de�ned by

P

w2W

P (w)�(w). Are the spectra of the Fourier transforms of M

W;x

and H

W;x

the same at all irreducible representations of W ?

3 Hyperplane Walk De�nition of Shu�ing for Coxeter Groups

First it is necessary to review the paper [BHR]. Let A = fH

i

: i 2 Ig be a central hyperplane

arrangement (i.e. \

i2I

H

i

= 0) for a real vector space V . Let  be a vector in the complement of

A. Every H

i

partitions V into three pieces: H

0

i

= H

i

, the open half space H

+

i

of V containing ,

and the open half space H

�

i

of V not containing . The faces of A are de�ned as the non-empty

intersections of the form \

i2I

H

�

i

i

, where �

i

2 f0;�;+g. Equivalently, A cuts V into regions called

chambers and the faces are the faces of these chambers viewed as polyhedra. A random process on

chambers (henceforth called the BHR walk) is then de�ned as follows. Assign weights v(F ) to the

faces of A in such a way that v(F ) � 0 for all F and

P

F

v(F ) = 1. Pick a starting chamber C

0

.

At step i, pick a face F

i

with the chance that F

i

= F equal to v(F ) and de�ne C

i

to be the unique

chamber whose closure contains F

i

and which among such chambers is separated from C

i�1

by the

fewest number of hyperplanes.

For the remainder of this section, A will be the arrangement of root hyperplanes for a �nite

Coxeter group W .

Proposition 4 ([H]) The chambers of A correspond to the elements of W . The faces of A corre-

spond to left cosets of parabolic subgroups of W . The faces contained in the closure of w are the

left cosets wW

J

.

The next lemma will be of use.

Lemma 1 Let C

0

be the chamber of A corresponding to the identity. Let v(F ) be the weight on a

face F in a BHR walk on a �nite Coxeter group. Then the chance that the chamber C

1

corrseponds

to w is equal to

X

K���Des(w)

v(wW

K

):
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Proof: The chance that C

1

corresponds to w is equal to

P

F

v(F ), where the sum is over all

faces F which are adjacent to w and such that w is the chamber adjacent to F which is closest to

the identity. The faces adjacent to w are the cosets wW

K

, for K an arbitrary subset of �. The

chambers adjacent to the face wW

K

are the elements of the coset wW

K

. Proposition 1.10 of [H]

shows that w is the unique shortest element in the coset wW

K

precisely when K � � �Des(w).

2

Let L be the set of intersections of the hyperplanes in A, taking V 2 L. (This lattice is not the

same as the face lattice). Partially order L by reverse inclusion. Recall that the Moebius function

� is de�ned by �(X;X) = 1 and

P

X�Z�Y

�(Z; Y ) = 0 if X < Y and �(X;Y ) = 0 otherwise. The

characteristic polynomial of L is de�ned as

�(L; x) =

X

X2L

�(V;X)x

dim(X)

:

(This is not the standard de�nition in which the exponent of x is n � rank(X). This distinction

is important as the de�nitions do not agree for subposets). For J � �, let Fix(W

J

) denote

the �xed space of the parabolic subgroup W

J

in its action on V . Let L

Fix(W

J

)

be the subposet

fY 2 LjY � Fix(W

J

)g. Finally, N

G

1

(G

2

) denotes the normalizer of the group G

2

in G

1

.

De�nition 2: Let W be a �nite Coxeter group of rank n. De�ne H

W;x

(w) by the formula

H

W;x

(w) =

X

K���Des(w)

jW

K

j�(L

Fix(W

K

)

; x)

x

n

jN

W

(W

K

)jj�(K)j

:

Let W be a �nite irreducible crystallographic Coxeter group. Recall that p is said to be a bad

prime if p divides the coeÆcient of some root of W when expressed as a linear combination of

simple roots. Alternatively, p is a bad prime if it is less than the maximum exponent of W but not

equal to an exponent of W . A prime p is said to be good if p is not bad.

Proposition 5 Let W be a �nite irreducible crystallographic Coxeter group of rank n. Then if p

is a good prime for W , the measure H

W;p

can be viewed as a special instance of the BHR walks

with face weights

v

p

(wW

K

) =

jW

K

j�(L

Fix(W

K

)

; p)

p

n

jN

W

(W

K

)jj�(K)j

:

In particular, H

W;p

(w) � 0 for all w 2W .

Proof: It will be proved in Section 4 that the face weights sum to 1. By Lemma 1, it is suÆcient

to show that �(L

Fix(W

K

)

; p) is non-negative for p a good prime. One of the main results of Orlik
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and Solomon [OS] is the factorization

�(L

Fix(W

K

)

; x) =

dim(Fix(W

K

))

Y

i=1

(x� b

K

i

);

where the b

K

i

are positive integers. From the tables in their paper, the b

K

i

are all less than or equal

to the maximum exponent of W . 2

Remarks:

1. The BHR process can still be considered with negative face weights, viewed as a transition

matrix with possibly negative entries. Using the face weights of Proposition 5 where W

is crystallographic and x is a bad prime gives a �rst natural collection of examples where

some of the face weights are negative. As will emerge from Section 4, the eigenvalues of the

transition matrix are positive. We also note that the W -invariance of the weights implies

that the process can be viewed as left multiplication by an element of the group algebra. It

would be interesting to prove that a cut-o� phenomenon occurs for these chains in the sense

of [BaD].

2. Although the expression H

W;x

(w), viewed as a function of x for �xed w, factors into linear

terms when W is of type A;B or I, this property does not hold in general (one simple

counterexample is taking W of type H

4

). However the proof of Corollary 5 implies that the

face weights v

x

(wW

K

) do factor into linear terms as a function of x. This shows the naturality

of the hyperplane viewpoint. We observe (though it is not clear from the de�nition) that in

type A these weights agree with the binomial coeÆcients weights in [BHR].

3. The values j�(K)j have been tabulated [C2].

4 Ri�e Shu�ing for Real Hyperplane Arrangements

This section de�nes ri�e shu�ing for arbitrary real hyperplane arrangements and explores some of

its properties. As a corollary it will be shown that M

W;x

and H

W;x

agree for many types. In fact

the main de�nition of this section extends to oriented matroids by replacing the terms \chamber"

and \hyperplane intersection" by the terms \tope" and \at". For clarity of exposition we suppose

that A is a real hyperplane arrangement, possibly non-central, with a �nite number of hyperplanes.

Brown and Diaconis [BrD] veri�ed that the BHR walks extend to this setting.
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Recall the zero map from the face lattice to the intersection lattice. This map z sends a face

\

i2I

H

�

i

i

; �

i

2 f0;�;+g to \

i2I:�

i

=0

H

i

. Geometrically, z maps a face F to its support, namely the

intersection of V with all hyperplanes containing F .

Lemma 2 ([Z]) For all Y 2 L,

jz

�1

(Y )j =

X

Z�Y

j�(Y;Z)j =

X

Z�Y

(�1)

dim(Y )�dim(Z)

�(Y;Z) = (�1)

dim(Y )

�(L

Y

;�1):

Lemma 3 ([OS]) For all X 2 L,

X

Y 2L

Y�X

�(L

Y

; x) = x

dim(X)

:

Proof:

X

Y 2L

Y�X

�(L

Y

; x) =

X

Y�X

X

Z�Y

�(Y;Z)x

dim(Z)

=

X

Z2L

X

Y :X�Y�Z

�(Y;Z)x

dim(Z)

= x

dim(X)

:

2

De�nition 3: De�ne a one-parameter family of card-shu�ing walks on the chambers of a real

hyperplane arrangement A in n dimensions as the BHR walks with face weights

v

x

(F ) =

�(L

z(F )

; x)

x

n

jz

�1

(z(F ))j

= (�1)

dim(z(F ))

�(L

z(F )

; x)

x

n

�(L

z(F )

;�1)

:

Lemmas 2 and 3 imply that these face weights sum to one:

X

F

v

x

(F ) =

X

Y 2L

Y�V

X

F :z(F )=Y

�(L

z(F )

; x)

x

n

jz

�1

(z(F ))j

=

X

Y 2L

Y�V

�(L

Y

; x)

x

n

= 1:

The v

x

(F ) are not necessarily positive, in which case the BHR walks take the extended meaning

in the remark after Proposition 5. To show that De�nition 3 extends De�nition 2, the following

lemma will be helpful.

Lemma 4 ([OS])

jN

W

(W

K

)jj�(K)j

jW

K

j

= (�1)

dim(z(wW

K

))

�(L

z(wW

K

)

;�1):

8



We remark that combining the fact that the face weights sum to one with Lemma 4 yields the

possibly new identity

X

K��

(�1)

n�jKj

jW j

jW

K

j

�(L

Fix(W

K

)

; x)

�(L

Fix(W

K

)

;�1)

= x

n

:

Setting x = �1 in this identity gives the alternating sum formula

X

K��

(�1)

jKj

jW j

jW

K

j

= 1;

which has a topological proof [So1] as well as applications in the invariant theory of Coxeter groups

[H]. Generalizations and q-analogs related to the Steinberg character appear in Section 6.2 of [C2].

Theorem 1 The measures H

W;x

arise from De�nition 3 with A equal to the arrangement of root

hyperplanes of W .

Proof: The theorem follows by showing that the face weights of De�nition 2 are equal to the

weights De�nition 3 associates to the arrangement of root hyperplanes of W . Thus it is necessary

to prove that

jW

K

j�(L

Fix(W

K

)

; x)

x

n

jN

W

(W

K

)jj�(K)j

= (�1)

dim(z(wW

K

))

�(L

z(wW

K

)

; x)

x

n

�(L

z(wW

K

)

;�1)

:

Since z(W

K

) = Fix(W

K

), L

z(wW

K

)

is isomorphic to L

Fix(W

K

)

, and thus the result follows from

Lemma 4. 2

Theorem 1 shows that the measures H

W;x

can be easily computed from the tables of Orlik

and Solomon. For example one can check that H

W;x

agrees with the formula for M

W;x

on the

identity and longest element of W (see the follow-up [F1] for a more conceptual proof). The point

of including De�nition 2 was to show that the face weights can be expressed group theoretically.

Theorem 2 The Markov chain associated to the hyperplane arrangement A by De�nition 1 has

eigenvalues

1

x

i

with multiplicity

P

X2L:dim(X)=n�i

j�(V;X)j for 0 � i � n � 1. In particular, the

eigenvalues and multiplicities of H

W;x

agree with those of M

W;x

.

Proof: For the �rst assertion, [BrD] (extending the paper [BHR] to the aÆne case) proves that the

eigenvalues for their chamber walks are indexed by elementsX 2 L and are equal to

P

F :z(F )�X

v(F )

with multiplicity j�(V;X)j. De�nition 3 and Lemma 3 imply that

9



X

F :z(F )�X

v

x

(F ) =

1

x

n

X

Y�X

�(L

Y

; x) =

1

x

n�dim(X)

:

The second assertion follows from the factorization of the characteristic polynomial of a root ar-

rangement �(L; x) =

Q

i

(x�m

i

) together with the result of Shephard and Todd used in part 2 of

Proposition 3. 2

Theorem 3 shows that in many cases H

W;x

and M

W;x

agree.

Theorem 3 Let W be a �nite irreducible Coxeter group of type A;B;C;H

3

or rank 2. Then

H

W;x

=M

W;x

.

Proof: The rank 2 cases are straightforward. For the case of H

3

, letting d(w) be the number of

descents of w it follows from computations in [B3] that

M

H

3

;x

(w) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(x+9)(x+5)(x+1)

120x

3

if d(w) = 0

(x+5)(x+1)(x�1)

120x

3

if d(w) = 1

(x+1)(x�1)(x�5)

120x

3

if d(w) = 2

(x�1)(x�5)(x�9)

120x

3

if d(w) = 3

This checks with H

H

3

;x

(which as explained earlier is directly computable from tables in [OS]).

For the symmetric group, from [BaD] it emerges that M

S

n

;x

(w) =

(

x+n�1�d(w)

n

)

x

n

. To compute

H

S

n

;x

, Proposition 2.1 of [OS] shows that �(L

z(wW

K

)

; x) is equal to (x� 1) � � � (x� (n� jKj) + 1).

Thus the face weight De�nition 3 associates to W

K

is

(

x

n�jKj

)

x

n

, agreeing with the face weight for

type A shu�ing in [BHR]. For type B, Proposition 2.2 of [OS] shows that �(L

z(wW

K

)

; x) is equal

to (x� 1)(x� 3) � � � (x� 2(n� jKj) + 1). Thus

H

B

n

;x

(w) =

X

K���Des(w)

(�1)

dim(z(W

K

))

�(L

z(wW

K

)

; x)

x

n

�(L

z(wW

K

)

;�1)

=

1

x

n

n�d(w)

X

j=0

 

n� d(w)

j

! 

x�1

2

n� j

!

=

�x�1

2

+n�d(w)

n

�

x

n

;

agreeing with the formula for M

B

n

;x

in [BB]. The argument for type C is identical. 2
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Theorem 3 implies that the measures H

W;x

convolve when W is of type A;B;C;H

3

or a rank 2

group. There are cases such as D

4

; F

4

;H

4

for whichM

W;x

is not equal to H

W;x

. To see this observe

from De�nition 3 that H

W;�1

places all mass on the longest element w

0

. Since w and ww

0

have

complementary decsent sets, one sees from the formulas that H

W;�x

(w) need not be H

W;x

(ww

0

).

Hence H

W;x

does not convolve and must di�er from M

W;x

.
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