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CYCLE INDICES FOR FINITE ORTHOGONAL GROUPS

OF EVEN CHARACTERISTIC

JASON FULMAN, JAN SAXL, AND PHAM HUU TIEP

Dedicated to Peter M. Neumann on the occasion of his seventieth birthday

Abstract. We develop cycle index generating functions for orthogonal groups
in even characteristic and give some enumerative applications. A key step is the
determination of the values of the complex linear-Weil characters of the finite
symplectic group, and their induction to the general linear group, at unipotent
elements. We also define and study several natural probability measures on
integer partitions.

1. Introduction

Pólya [34], in a landmark paper on combinatorics (see [35] for an English trans-
lation), introduced the cycle index of the symmetric groups. This can be written
as follows. Let ai(π) be the number of i-cycles of π. The Taylor expansion of ez

and the fact that there are n!/
∏

i(ai!i
ai) elements of Sn with ai i-cycles yield the

following theorem.

Theorem 1.1 (Pólya [34]).
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The Pólya cycle index has been a key tool in understanding what a typical per-
mutation π ∈ Sn “looks like”. It is useful for studying properties of a permutation
which depend only on its cycle structure. Here are a few examples of theorems
which can be proved using the cycle index. Shepp and Lloyd [40] showed that
for any i < ∞, the joint distribution of (a1(π), . . . , ai(π)) for π chosen uniformly
in Sn converges to independent (Poisson(1), . . ., Poisson( 1i )) random variables as
n → ∞. Goncharov [19] proved that the number of cycles in a random permutation
is asymptotically normal with mean and variance log(n). Goh and Schmutz [18]
proved that if μn is the average order of an element of Sn, then

log(μn) = C

√
n

log(n)
(1 + o(1)),

where C = 2.99047....
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Given the above facts, it is very natural to seek cycle indices for finite classical
groups. Kung [23] and Stong [42] developed cycle indices for the tower of groups
GLn(q); applications, and extensions to GUn(q) and odd characteristic symplectic
and orthogonal groups appear in [9]. The paper [45] independently uses generating
function methods to study various proportions in GLn(q), and the memoir [16]
extends results in [9] and [45] to other finite classical groups. Britnell [3], [4],
[5], [6] extends cycle index techniques to SLn(q), SUn(q), and odd characteristic
groups related to the finite symplectic and orthogonal groups. The case of even
characteristic symplectic groups was treated in [12], using representation theory.

These cycle indices for finite classical groups are quite useful; they have applica-
tions in computational group theory [32], and were fundamental to the proof of the
Boston-Shalev conjecture that the proportion of derangements in a primitive action
of a simple group on a set X with |X| > 1 is uniformly bounded away from 0 (see
[13] and the references therein). Even quite complicated statistics such as the order
of a random matrix can be studied using cycle index techniques [38]; Schmutz’s
results along these lines were crucially applied by Shalev in [39].

The purpose of this paper is to obtain results for one important remaining case:
even characteristic orthogonal groups. Throughout this paper O±(n, q) denotes
the full orthogonal group (not the conformal group), though some authors use
the notation GO±(n, q). Since odd dimensional orthogonal groups are isomorphic
to symplectic groups and one can easily move between the corresponding ratio-
nal canonical forms in GL2n(q) and GL2n+1(q) (see Lemma 3.1), we assume that
the dimension is even. In principle the cycle indices could be obtained by adding
conjugacy class sizes of O±

2n(q) with a given GL rational canonical form, and us-
ing formulas of Wall [44]. However this seems quite a daunting task, and Wall’s
treatment of conjugacy classes in even characteristic finite orthogonal groups is so
complicated that experts (Liebeck and Seitz) have initiated a program of revisiting
Wall’s work (see for instance [26]), and Lusztig ([28], [29], [30]) has three recent
papers on the topic. As another example of the complexity of the characteristic two
case, see Andrews’ proof [2] of the Lusztig-Macdonald-Wall conjectures on enumer-
ating conjugacy classes in O±(2n, q). Our strategy for studying characteristic two
cycle indices employs representation theory, and a crucial step is the derivation of
a formula for the complex linear-Weil characters of Sp2n(q) on unipotent elements.

This paper is organized as follows. Section 2 performs the needed character
theory calculations. This includes several intermediate results such as a branching
formula and parameterizations of unipotent classes which may be of independent
interest. Section 3 briefly treats odd dimensional orthogonal groups, and Section
4 develops the cycle indices for O±(2n, q) and Ω±(2n, q). Some enumerative ap-
plications are given in Section 5. Section 6 defines and studies several probability
measures on integer partitions, which we speculate may arise as an orthogonal
analog of the Cohen-Lenstra number field/function field heuristics.

2. Character theory calculations

2.1. Some permutation characters. To begin we review some representation
theory. Let S := Sp2n(q) be the finite symplectic group stabilizing a nondegen-
erate symplectic form (·, ·) on V = F2n

q , with q a power of 2. Then S acts as a
permutation group on the set of quadratic forms polarized to (·, ·). There are two
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orbits, depending on the Witt index (or the type) of the forms. The two permuta-
tion characters, π+ and π−, are both multiplicity-free. This is well known; a proof
appears in [22], and we sketch it below. We use the methods of [22] to obtain a
decomposition of these characters into irreducible characters. We first show that
π = π+ + π− is equal to the permutation character τn of S acting on the set of
vectors of V . We then show that

(1) π+ = 1S + ρ2
n +

(q−2)/2∑
i=1

τ i
n, π− = 1S + ρ1

n +

(q−2)/2∑
i=1

τ i
n,

where 1S+ρ1
n+ρ2

n is the permutation character of the well-known rank 3 permuta-
tion action of S on the set of 1-subspaces of V , and each of the τ i

n is an irreducible
character of degree (q2n − 1)/(q − 1). These characters τ i

n are restrictions of irre-
ducible characters of the corresponding general linear group G = GL2n(q) and are
the complex linear-Weil characters, investigated by Guralnick and Tiep [20]. We
will only use the fact that for g unipotent,

(2) τ i
n(g) =

qd(g) − 1

q − 1
,

for all i, where d(g) is the dimension of the kernel of g − 1.
Let g ∈ S. Then π(g) > 0; the proof of this, due to Inglis, appears in [37,

Lemma 4.1]. Let Q be a quadratic form supported by (·, ·), and fixed by g. If R is
a quadratic form supported by (·, ·), then Q+R is a quadratic form on V which is
totally defective (that is, Q+R is a quadratic form supported by the zero symplectic
form). Any such quadratic form is the square of a unique linear functional fQ,R on
V , and R is fixed by g if and only if fQ,R is fixed by g. It follows that π equals the
permutation character τn of S on the set of vectors of V .

Inglis takes this further: for bilinear forms Q and R supported by (·, ·), let yQ,R

be the unique vector such that (Q + R)(x) = (x, yQ,R)
2 for all x ∈ V, and then

define a(Q,R) = Q(yQ,R) = R(yQ,R). The pairs (Q,R) and (Q1, R1) lie in the same
orbit of S on ordered pairs of forms if and only if a(Q,R) = a(Q1, R1). From this
it follows that the permutation rank of the action of S on the quadratic forms of a
given type + or − is (q+2)/2. Since a(Q,R) = a(R,Q), it follows that each orbital
in these actions of S is self-paired, whence the permutation characters π+ and π−

are both multiplicity free. This last claim can also be seen directly: in dimension
two it is a very easy computation, and for Sp2n(q) it is seen by restriction to Sp2(q

n)
(note that Sp2(q

n) is transitive in our actions of Sp2n(q)).
It is shown in [20, §3] that

τn = 2 · 1S + ρ1
n + ρ2

n + 2

(q−2)/2∑
i=1

τ i
n.

Now the claimed decomposition (1) for π+ and π− easily follows since the characters
π+, π− are multiplicity free, each with (q + 2)/2 constituents.

2.2. Branching rules for linear-Weil characters. We recall the construction
[43] of the dual pair Sp2n(q)×O+

2 (q) in characteristic 2. Let U = F2n
q be endowed

with the standard symplectic form (·, ·). We will also consider the F2-symplectic
form 〈u, v〉 = trFq/F2

((u, v)) on U , and let

E = C
q2n = 〈eu | u ∈ U〉C.
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Clearly, S := Sp2n(q) acts on E via g : eu �→ eg(u). Fix δ ∈ F×
q of order q − 1 and

consider the following endomorphisms of E:

δ : eu �→ eδu

(for any u ∈ U), and

j : e0 �→ e0, ev �→ 1

qn + 1

∑
0�=w∈U, 〈v,w〉=0

ew − qn + 2

qn(qn + 1)

∑
w∈U, 〈w,v〉�=0

ew

(for any 0 �= v ∈ U). One can check that D :=< δ, j >	 O+
2 (q) (a dihedral group

of order 2(q − 1)), and that D centralizes S. The subgroup S ×D of GL(E) is the
desired dual pair Sp2n(q) × O+

2 (q). Let ωn denote the character of S × D acting
on E. It is shown in [43] that ωn|S = τn, the permutation character of S on the
point set of its natural module V = F2n

q . Moreover one can label the irreducible
characters of D as ν2 = 1D, ν1 of degree 1, and μi, 1 ≤ i ≤ (q − 2)/2, of degree 2
such that

(3) ωn|S×D = (ρ1
n + 1S)⊗ ν1 + (ρ2

n + 1S)⊗ ν2 +

(q−2)/2∑
i=1

τ i
n ⊗ μi.

We can repeat the above construction but with n = k + l replaced throughout
by k > 0, resp. by l > 0, and subscript 1, resp. 2, attached to all letters U , E, S,
D, δ, and j. Thus we get the dual pair S1 ×D1 	 Sp2k(q)×O+

2 (q) inside GL(E1)
with character ωk, and the dual pair S2 × D2 	 Sp2l(q) × O+

2 (q) inside GL(E2)
with character ωl. Now we can identify U with U1 ⊕ U2. This in turn identifies E
with E1 ⊗E2 and δ with δ1 ⊗ δ2. This identification also embeds S1 ⊗ S2 in S. In
what follows, we denote x1 := δa1j

b
1 and x2 := δa2j

b
2 for x = δajb.

Lemma 2.1. Let Sp2k(q) × Sp2l(q) be a standard subgroup of Sp2n(q). Then
ωn(gx) = ωk(g1x1) · ωl(g2x2) for any x ∈ O+

2 (q) and any g = g1 ⊗ g2 ∈ Sp2k(q)×
Sp2l(q).

Proof. First suppose that x = δa. Then

gx = (g1 ⊗ g2)(δ1 ⊗ δ2)
a = (g1 ⊗ g2)(δ

a
1 ⊗ δa2) = g1δ

a
1 ⊗ g2δ

a
2 = g1x1 ⊗ g2x2,

whence the statement follows by taking the trace.
It remains to consider the case x = δaj. Since all the elements δaj for 0 ≤ a <

q − 1 are conjugate in D, we may assume that a = 0. Let

N := |{w ∈ U | 〈w, g(w)〉 = 0}|, Ni := |{w ∈ Ui | 〈w, gi(w)〉 = 0}|

for i = 1, 2. One can check that

ωn(gx) = 2q−nN − qn, ωk(g1x1) = 2q−kN1 − qk, ωl(g2x2) = 2q−lN2 − ql.

To relate N to N1 and N2, write w = u1 + u2 for w ∈ W and ui ∈ Ui. Then
gi(ui) ∈ Ui and so

〈w, g(w)〉 = 〈u1 + u2, g1(u1) + g2(u2)〉 = 〈u1, g1(u1)〉+ 〈u2, g2(u2)〉.

It follows that 〈w, g(w)〉 = 0 if and only if

〈u1, g1(u1)〉 = 〈u2, g2(u2)〉 = 0 or 〈u1, g1(u1)〉 = 〈u2, g2(u2)〉 = 1.



CYCLE INDICES FOR FINITE ORTHOGONAL GROUPS 2543

Hence N = N1N2 + (q2k −N1)(q
2l −N2), and so

ωn(gx) = 2q−n(N1N2 + (q2k −N1)(q
2l −N2))− qn

= (2q−kN1 − qk)(2q−lN2 − ql),

as stated. �

A well-known consequence of orthogonality relations (see e.g. Lemma 5.5 of [25])
implies that, for any g ∈ S and x ∈ D,

(4) ωn(gx) =
∑

α∈ Irr(D)

α(x) ·Dα(g),

where

Dα(g) =
1

|D|
∑
x∈D

α(x)ωn(gx).

We will use the decomposition (4) and Lemma 2.1 to prove the following branching
rule for the virtual character λn := π+ − π− = ρ2

n − ρ1
n; see (1).

Lemma 2.2. Let Sp2k(q) × Sp2l(q) be a standard subgroup of Sp2n(q). Then
λn(g) = λk(g1) · λl(g2) for any g = g1 ⊗ g2 ∈ Sp2k(q)× Sp2l(q).

Proof. We will use the notation introduced before Lemma 2.1. Applying (4) to the
dual pairs S1 ×D and S2 ×D, we can also write

ωk(g1x1) =
∑

α∈ Irr(D)

α(x1) · Eα(g1), ωl(g2x2) =
∑

α∈ Irr(D)

α(x2) · Fα(g2),

where Eα, resp. Fα, plays the role of Dα for S1, resp. for S2, and g = g1 ⊗ g2. By
Lemma 2.1, we now have

ωn(gx) = ωk(g1x1) · ωl(g2x2) =
∑

β,γ∈ Irr(D)

β(x1)γ(x2) · Eβ(g1)Fγ(g2).

It follows that

Dα(g) =
1

|D|
∑

x∈D, β,γ∈Irr(D)

α(x)β(x1)γ(x2)Eβ(g1)Fγ(g2)

=
∑
β,γ

(
1

|D|
∑
x∈D

α(x)β(x)γ(x)

)
Eβ(g1)Fγ(g2) =

∑
β,γ

[βγ, α]Eβ(g1)Fγ(g2),

where [·, ·] is the usual scalar product on the space of class functions on D. We
will apply this identity to the cases where α ∈ {ν1,ν2}. In these cases, α is linear;
furthermore, any β ∈ Irr(D) is real. Hence [βγ, α] �= 0 if and only if β = αγ,
which means that β = γ if α = ν2 = 1D. If α = ν1, the unique nonprincipal
linear irreducible character of D, then αγ equals γ, resp. ν2, or ν1, if γ = μi, resp.
γ = ν1, or γ = ν2. We have therefore shown that

(Dν1
)|S1×S2

= Eν1
⊗ Fν2

+ Eν2
⊗ Fν1

+

(q−2)/2∑
i=1

Eμi
⊗ Fμi

,

(Dν2)|S1×S2
= Eν1 ⊗ Fν1 + Eν2 ⊗ Fν2 +

(q−2)/2∑
i=1

Eμi
⊗ Fμi

.
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On the other hand, by (3) we have Dν1
= ρ1

n+1S and Dν2
= ρ2

n+1S ; in particular,
λn = Dν2

−Dν1
, and similarly λk = Eν2

− Eν1
and λl = Fν2

− Fν1
. Hence the

statement follows. �

2.3. Homogeneous unipotent elements. In this subsection we consider unipo-
tent elements of S = Sp2n(q) which are homogeneous ; i.e., its Jordan canonical
form on V = F2n

q contains only Jordan blocks of the same size. Recall that we fix
an S-invariant nondegenerate symplectic form (·, ·) on V . Let Ja denote the a× a
Jordan block with eigenvalue 1. We say that g ∈ S is decomposable if V can be
written as an orthogonal sum of nonzero g-invariant subspaces, and indecomposable
otherwise.

Lemma 2.3. Assume that the Jordan canonical form of g ∈ Sp2n(q) on V = F2n
q

is kJa = Ja ⊕ . . .⊕ Ja with 2n = ka and a ≥ 2. If a = 2, assume in addition that
g is indecomposable. Then one of the following holds.

(i) n ≥ 2, all the g-invariant quadratic forms on V which are polarized to (·, ·)
have the same type ε = ±, and λn(g) = εqk. Moreover, if a = 2, then k = 2, and
ε = +.

(ii) n = k = 1, a = 2, λn(g) = 0.

Proof. 1) Consider a basis (e1, . . . , ea, f1, . . . , fa, . . . , h1, . . . , ha), in which g is rep-
resented by the matrix kJa. Let Q be the set of all g-invariant quadratic forms
on V which are polarized to (·, ·). Then Q �= ∅ and in fact |Q| = τn(g) = qk as
mentioned above. By [41, Lemma 6.10], if Q ∈ Q, then

Q(ei) = (ei, ei+1), Q(fi) = (fi, fi+1), . . . , Q(hi) = (hi, hi+1)

for 1 ≤ i ≤ a − 1. Thus Q is completely determined by the k-tuple (Q(ea), . . . ,
Q(ha)) ∈ Fk

q .
2) Suppose that a ≥ 3 and some Q ∈ Q has type +. Then we can find a

symplectic basis (u1, . . . , un, v1, . . . , vn) of V such that Q(ui) = Q(vi) = 0. Since
a ≥ 3, by [41, Lemma 6.10] the subspace W := 〈e1, f1, . . . , h1〉Fq

is totally singular
with respect to any Q′ ∈ Q, in particular with respect to Q; moreover,

W⊥ = 〈e1, . . . , ea−1, f1, . . . , fa−1, . . . , h1, . . . , ha−1〉Fq
.

Notice that U := 〈u1, u2, . . . , ua〉Fq
is totally Q-singular of the same dimension a

as of W . Hence by Witt’s Theorem, W = ϕ(U) and W⊥ = ϕ(U⊥) for some ϕ ∈ S
which preserves Q. But U⊥ contains the n-dimensional totally Q-singular subspace
M := 〈u1, u2, . . . , un〉Fq

. It follows that W⊥ contains the n-dimensional totally
Q-singular subspace ϕ(M). Now consider any Q′ ∈ Q. As mentioned in 1), Q′ and
Q coincide on W⊥. Hence ϕ(M) is also totally singular with respect to Q′ and so
Q′ is of type +.

We have shown that all Q ∈ Q have the same type ε = ±. Recall that λn(g) is
the difference between the number of Q ∈ Q of type + and the number of Q ∈ Q
of type −. It follows that λn(g) = εqk.

3) Next we consider the case a = 2 and k ≥ 2. If (e1, e2) �= 0, then E := 〈e1, e2〉Fq

is g-invariant and nondegenerate and so V = E⊕E⊥, contradicting the assumption
that g is indecomposable. Thus (e1, e2) = (f1, f2) = . . . = (h1, h2) = 0. As
mentioned in 2), e1 is orthogonal to all the vectors e1, . . . , h1. Since (·, ·) is non-
degenerate, we may assume that (e1, f2) = b �= 0. Then again by [41, Lemma
6.10], (e2, f1) = b. One can now check that F := 〈e1, e2, f1, f2〉Fq

is g-invariant and
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nondegenerate. By the assumption that g is indecomposable, we must have k = 2.
Furthermore, E is totally singular with respect to any Q ∈ Q. Now we can finish
the argument as in 2).

Finally, assume a = 2 and k = 1. Then ρ1
n = 0 and ρ2

n is just the Steinberg
character (of degree q) of S 	 SL2(q), whence λn(g) = 0. �

Of course if a = 1 in Lemma 2.3, then λn(g) = qk/2. For a general unipotent
element u ∈ S, it is well known (see e.g. [41, Cor. 6.12]) that V can be written as
an orthogonal sum of (possibly zero) u-invariant subspaces V =

⊕∞
i=1 Vi such that

all Jordan blocks of u|Vi
are of size i. Hence, combining Lemmas 2.2 and 2.3 we can

compute λn(u) for any unipotent element u ∈ S. To evaluate Λn = Ind
GL2n(q)
Sp2n(q)

(λn)

at u we however need more information about unipotent classes in S with a given
Jordan canonical form. This will be done in the next subsection, which also is of
independent interest.

2.4. A parametrization of unipotent classes in finite symplectic and or-
thogonal groups in characteristic 2. The conjugacy classes of finite classical
groups are described in [44]. A new, better, treatment of this topic, particularly in
bad characteristics, has recently been given in [26]. We will use the latter results
to give a parametrization of unipotent classes in finite symplectic and orthogonal
groups in characteristic 2 which works well for our purposes and which also has
independent interest.

Let 2|q as above and let g ∈ S = Sp2n(q) be any unipotent element. It is shown
in [26] that the natural S-module V = F2n

q can be written as an orthogonal sum

(5) V |〈g〉 =
∑
i

W (mi)
ai ⊕

r∑
j=1

V (2kj)
bj

of g-invariant nondegenerate subspaces of two types: V (m) with even m, on which
g has the Jordan form Jm, and W (m), on which g is indecomposable and has the
Jordan form 2Jm; moreover,

(6) m1 < m2 < m3 < . . . , k1 < k2 < k3 < . . . , ai > 0, 2 ≥ bj ≥ 1.

Given such a decomposition (5) subject to (6) (called a canonical decomposition in
[26]), let I be the set of indices i such that mi is odd and larger than 1 and there
does not exist j such that 2kj = mi±1, and let s := |I|. Next, let t be the number
of indices j such that kj+1 − kj ≥ 2. We also fix δ ∈ {0, 1} with δ = 1 precisely
when r > 0 and k1 > 1. We can view S as the fixed point subgroup GF for a
Frobenius endomorphism F on G = Sp2n(Fq).

According to [26, Theorem 5.1], gG∩S splits into 2s+t+δ S-classes. Furthermore,
CS(g) is a (not necessarily split) extension of a 2-group D by R, where |D| =
qdimRu(CG(g)), with Ru(·) denoting the unipotent radical, and

(7) R =

( ∏
i : mi even

Sp2ai
(q)

)
×
( ∏

i : mi odd

I2ai
(q)

)
× Ct+δ

2 .

Here, C2 denotes a cyclic group of order 2, I2ai
(q) = Sp2ai

(q) if either mi = 1
or there exists j such that 2kj = mi ± 1, and I2ai

(q) = Oεi
2ai

(q) for some εi = ±
otherwise; in particular, s is the number of O-factors in the above factorization. We
will see that these εi are related to the type of g-invariant quadratic forms discussed
in Lemma 2.3(i).
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If r > 0, partition K := {k1, k2, . . . , kr} into a disjoint union Kδ �Kδ+1 � . . . �
Kt+δ of t+ 1 “intervals” of consecutive integers, such that

max{k | k ∈ Ki} ≤ min{l | l ∈ Ki+1} − 2;

this is possible by the definition of the parameter t. Now, if mi > 1 is odd and
mi = 2kj ± 1 = 2kj′ ± 1 for distinct j and j′, then |kj − kj′ | = 1 and so kj and
kj′ must belong to the same interval Ku. In this situation, we will say that mi is
linked to Ku. Next, for δ ≤ u ≤ t+ δ, let

Vu =

⎛
⎝ ∑

kj∈Ku

V (2kj)
bj

⎞
⎠⊕

⎛
⎝ ∑

mi>1, odd, linked to Ku

W (mi)
ai

⎞
⎠ .

Also, if I = {i1, . . . , is}, then set Wv := W (miv)
aiv for 1 ≤ v ≤ s. Finally, let

W0 =
∑

mi=1 or mi even

W (mi)
ai .

Thus we obtain the decomposition

(8) V |〈g〉 = W0 ⊕W1 ⊕ . . .⊕Ws ⊕ Vδ ⊕ V1+δ ⊕ . . .⊕ Vt+δ.

Theorem 2.4. Consider the decomposition (8) for any unipotent element g ∈ S =
Sp2n(q). Let G = Sp2n(Fq). Then gG ∩ S splits into 2s+t+δ S-classes. Each such
class is uniquely determined by the sequence ε = (α1, . . . , αs, β1, . . . , βt+δ), where
αi, βj = ±, and every g-invariant quadratic form polarized to (·, ·) on Wi with
i ≥ 1, respectively on Vj with j ≥ 1, is of type αi, respectively βj. Furthermore, if
the S-class of g is determined by ε, then in the factorization (7) for R the factor
I2ai

(q) equals Oαv
2ai

(q) for i = iv ∈ I, and Sp2ai
(q) otherwise.

Proof. 1) First we observe that the invariant ε is well defined for g. Indeed, by
Lemma 2.3, if U is a g-invariant nondegenerate subspace of V of type W (m)a or
V (m)b with m ≥ 3, then all g-invariant quadratic forms polarized to (·, ·) on U
have the same type. This applies in particular to any Wi with i ≥ 1 and any Vj

with j ≥ 1, whence the observation follows. It is also clear that ε is the same for
all x ∈ gS .

2) Next we aim to show that if two elements g, h ∈ gG∩S have the same invariant
ε, then they are conjugate in S. Applying [26, Lemma 4.2] and conjugating h by an
element in S, we may assume that g and h have the same canonical decomposition
(5) and the subsequent decomposition (8).

First we look at the case where the decomposition (8) reduces to V = W0 or
V = V0 ⊕ V0; in particular, s = t = δ = 0. In this case, gG ∩ S constitutes a single
S-class by [26, Theorem 5.1 (ii)], whence g and h are S-conjugate.

Next we look at the case where the decomposition (8) reduces to V = Vu. In
this case, δ = 1, s = t = 0, and gG ∩ S �= ∅ by [26, Theorem 5.1 (i)]; furthermore,
gG ∩ S splits into two S-classes by [26, Theorem 5.1 (ii)]. By [26, Theorem 5.1
(i)], for each ε = ± we can pick uε ∈ gG ∩ S such that some, hence all by Lemma
2.3, uε-invariant quadratic forms polarized to (·, ·) on V are of type ε. Also by
Lemma 2.3 we have Λn(uε) = εqk for some integer k which depends only on gG .
It follows that u+ and u− are not S-conjugate, whence gG ∩ S = (u+)

S � (u−)
S .

Now, denoting β1 = β, we see by Lemma 2.3 that Λn(g) = Λn(h) = βqk and so g
and h cannot be S-conjugate to u−β. Thus both g and h are S-conjugate to uβ .
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The same argument also applies to the case where the decomposition (5) reduces
to V = Wv.

We have therefore shown that all the pairs of elements (g|U , h|U ) are conjugate
in Sp(U), where U = W0 (or W0 ⊕ V0 if δ = 0), Wi with i > 0, or Vj with j > 0.
Since V is the orthogonal sum of those subspaces U , we conclude that g and h are
conjugate in Sp(V ) = S.

3) Consequently, each gS is uniquely determined by the sequence ε. It remains to
determine the factors I2ai

(q) of type O±
2ai

(q) in the factorization (7) for R. As noted
in the proof of [26, Theorem 5.1], each of the summands in the canonical decompo-
sition (5) can be written over F2, and so the Frobenius endomorphism F stabilizes
each of the factors Sp2ai

(q), I2ai
(q), and C2 which appear in CG(g)/Ru(CG(u))

and in R. So without loss of generality we may assume that the decomposition
(8) reduces to V = Wv; in particular, ε = (αv) and dimV = 2aiv . We fix a
g-invariant quadratic form polarized to (·, ·) on V of type αv. Direct computa-
tion using relations (3.7.3) – (3.7.5) of [44] shows that the 2′-parts of |CSp(V )(g)|
and |CO(V )(g)| are both equal to |Oαv

2aiv
(q)|2′ . On the other hand, we know that

I2aiv
(q) = Oεv

2aiv
(q) and so the 2′-part of |CSp(V )(g)| is |Oεv

2aiv
(q)|2′ . It follows that

εv = αv and I2aiv
(q) = Oαv

2aiv
(q), as stated. �

Define H = O(V ⊗Fq
Fq) (notice that H is disconnected) and a Frobenius en-

domorphism F on H such that HF = H := Oε
2n(q) for ε = ±. For any unipotent

element g ∈ H we again consider the canonical decomposition (5). Let I be the set
of indices i such that mi is odd and there does not exist j such that 2kj = mi ± 1,
and let s := |I|. Next, let t be the number of indices j such that kj+1 − kj ≥ 2.
We also fix δ ∈ {0, 1} with δ = 1 precisely when r > 0. If r > 0, partition
K := {k1, k2, . . . , kr} into a disjoint union K1 �K2 � . . .�Kt+δ of t+ δ intervals of
consecutive integers, such that

max{k | k ∈ Ki} ≤ min{l | l ∈ Ki+1} − 2.

As in the symplectic case, if mi is odd and mi = 2kj±1 = 2kj′ ±1 for distinct j and
j′, then |kj − kj′ | = 1 and so kj and kj′ must belong to the same interval Ku. In
this situation, we will again say that mi is linked to Ku. Let W0 =

∑
2|mi

W (mi)
ai

and I = {i1, . . . , is}. Next, we define

Vu =

⎛
⎝ ∑

kj∈Ku

V (2kj)
bj

⎞
⎠⊕

( ∑
mi odd, linked to Ku

W (mi)
ai

)

if r > 0 and 1 ≤ u ≤ t + δ, and Wv := W (miv)
aiv for 1 ≤ v ≤ s. Thus we obtain

the decomposition

(9) V |〈g〉 = W0 ⊕W1 ⊕ . . .⊕Ws ⊕ V1 ⊕ V2 ⊕ . . .⊕ Vt+δ.

We say that g is exceptional if V |〈g〉 =
∑

i W (mi)
ai with all mi even. Now we

exhibit the following analogue of Theorem 2.4 for orthogonal groups.

Theorem 2.5. Consider the decomposition (8) for any unipotent element g ∈ H =
O2n(Fq). Let H := Oε

2n(q) and K := Ωε
2n(q) for some ε = ±.

(i) Then gH ∩ H �= ∅ unless H = O−
2n(q) and g is exceptional, in which case

gH ∩H = ∅.
(ii) Assume gH ∩ H �= ∅. Then gH ∩ H splits into 2s+t+δ−1 H-classes, if g is

not exceptional, and constitutes a single H-class, if g is exceptional.



2548 JASON FULMAN, JAN SAXL, AND PHAM HUU TIEP

(a) Each such H-class constitutes a single K-class, except when g is excep-
tional, in which case it splits into two K-classes.

(b) Each such H-class is uniquely determined by the sequence ε = (α1, . . . , αs,
β1, . . . , βt+δ), where αi, βj = ±, and every g-invariant quadratic form polarized to
(·, ·) on Wi with i ≥ 1, respectively on Vj with j ≥ 1, is of type αi, respectively βj,
and

(10)

s∏
i=1

αi ·
t+δ∏
j=1

βj = ε.

(c) If the H-class of g ∈ H is determined by ε, then CH(g) is an extension of
a 2-group of order qdimRu(CH(g)) by R and the factorization (7) holds for R. The
factor I2ai

(q) equals Oαv
2ai

(q) for i = iv ∈ I and equals Sp2ai
(q) otherwise.

Proof. (i) Notice that if g ∈ H is exceptional, then g ∈ K as the quasi-determinant
(−1)dimKer(g−1) is 1. Hence the statement follows from [26, Theorem 5.1 (i)].

(ii) First we consider the case that g is exceptional; in particular, s = t = δ = 0.
Then CH(g) is connected by [26, Theorem 4.20]; hence gH ∩H constitutes a single
H-class. The connectedness of CH(g) also implies that CH(g) ≤ H ∩H◦ = K (the
latter equality can be seen by using the quasi-determinant), whence gH splits into
two K-classes. The structure of CH(g) is described in [26, Theorem 5.1 (iii)].

From now on we may assume that g is not exceptional. In particular, CH(g) �≤ K
(see e.g. the proof of [26, Prop. 4.21]); hence gH constitutes a single K-class. By

the same reason, gH = gH
◦
.

Next, by [26, Theorem 5.1 (i)], every g-invariant quadratic form polarized to
(·, ·) on W0 is of type +. Also, according to Lemma 2.3, all such forms on Wv,
respectively on Vu, have the same type αv, respectively βu, as long as miv > 1,
respectively min{k | k ∈ Ku} > 1. Let α1, respectively β1, denote the type of such
a form on W1 with mi1 = 1, respectively on W1 with k1 = 1. We claim that in this
situation, α1, respectively β1, is also uniquely determined by gH , and moreover in
all cases (10) holds. Indeed, the latter equality follows from the decomposition (9)
and the fact that the type of W0 is +. Assume k1 = 1. Notice that in this case
mi1 > 1 (as otherwise it is linked to K1 � k1 = 1). Thus all αi with i ≥ 1 and all
βj with j ≥ 2 are uniquely determined by gH , and so is β1 by virtue of (10). The
same argument applies to the case k1 > 1 and mi1 = 1.

Thus we have shown that the invariant ε is well defined for gH . Furthermore,
Theorem 2.4 implies that, given any βu = ±, there is a g-invariant quadratic form
polarized to (·, ·) on Vu of type βu. (Indeed, the claim is clear if Vu does not involve
any summand W (mi) with mi = 1. The statement also holds in the case that
Vu involves the summand W (1)2a: just write Vu = Y ⊕ W (1)2a, fix a g-invariant
quadratic form polarized to (·, ·) on Y , say of type γ, and then choose any quadratic
form of type γβu on W (1)2a on which g acts trivially.) Similarly, given any αv = ±,
there is a g-invariant quadratic form polarized to (·, ·) on Wv of type αv. Thus there
are exactly 2s+t+δ−1 possible values for the sequence ε subject to the condition (10),
whence the conclusion (b) follows.

Finally, the arguments given in part 3 of the proof of Theorem 2.4 also show
that I2av

(q) = Oαv
2aiv

(q). �

2.5. The induced virtual character Λn = Ind
GL2n(q)
Sp2n(q)

(λn). DenoteG=GL2n(q),

S = Sp2n(q), and G = Sp2n(Fq) as usual. For any unipotent element g ∈ G, if
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gG ∩ S =
⊔N

i=1(gi)
S splits into N S-classes, then the definition of induced charac-

ters yields

(11) Λn(g) = |CG(g)| ·
N∑
i=1

λn(gi)

|CS(gi)|
.

Clearly, gG∩S is just the set of all unipotent elements x ∈ S with the same Jordan
canonical form as of g. It follows that gG ∩S is the union of gG ∩S for all G-classes
gG with the same Jordan canonical form.

Consider the canonical decomposition (5) for gG ∩ S. By Lemmas 2.2 and 2.3,
λn(g) = 0 if k1 = 1. Assume that r > 0 and k1 > 1; in particular, δ = 1. By
Theorem 2.4, gG ∩ S splits into 2s+t+1 S-classes which are uniquely determined by
the sequence ε. Now we use the decomposition (8) and Lemma 2.2 to compute
λn(g):

λn(g) =

s∏
i=0

λ(dimWi)/2(g|Wi
) ·

t+1∏
j=1

λ(dimVj)/2(g|Vj
).

First we look at g|W0
. Allowing a1 to be zero if necessary, we may assume that

m1 = 1. As mentioned in the proof of Theorem 2.5, all g-invariant quadratic forms
polarized to (·, ·) on W0 are of type +. Applying Lemma 2.3, we see that

λ(dimW0)/2(g|W0
) = qa1+2

∑
2|mi

ai .

On the other hand, by Lemmas 2.2 and 2.3 we have

λ(dimWv)/2(g|Wv
) = αvq

2aiv

for 1 ≤ v ≤ s , and

λ(dimVu)/2(g|Vu
) = βuq

∑
kj∈Ku

bj+
∑

mi>1, odd, linked to Ku
2ai

for 1 ≤ u ≤ t + 1. Thus, there is an explicit constant C depending only on
gG ∩ S such that λn(g) = [ε] · qC if the conjugacy class gS is determined by ε and

[ε] :=
∏s

v=1 αv ·
∏t+1

u=1 βu. Recall we are assuming that r > 0 and k1 > 1. Then we
can pair up the 2s+t+1 S-classes in gG ∩S into 2s+t pairs, each consisting of (h+)

S

and (h−)
S , determined by ε+ and ε−, which differ only at β1 = ± and have the

same αi with i > 0 and the same βj with j > 1. The above computation shows
that λn(h−) = −λn(h+). On the other hand, |CS(h+)| = |CS(h−)| by Theorem
2.4. Hence the contributions of the pair (h+)

S and (h−)
S to Λn(g) in (11) cancel

out each other, and so the total contribution of gG ∩ S in (11) is 0.
We have shown that the only nonzero contributions in (11) can only come from

the classes in gG ∩S with r = t = δ = 0. In particular, Λn(g) = 0 if the multiplicity
ci of some Jordan block Ji in the Jordan canonical form

∑∞
i=1 ciJi of g is odd. Thus

we may now assume that ci is even for all i, and the decompositions (5) and (8) of
g reduce to

V =
∑
i

W (mi)
ai = W0 ⊕W1 ⊕ . . .⊕Ws

(so ai = cmi
). We will assume that the S-class of gε ∈ S is determined by ε =

(α1, . . . , αs). The above computation then shows that

λn(gε) = [ε] · qc1/2+
∑

i>1 ci
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with [ε] =
∏s

j=1 αj , and, according to Theorem 2.4,

|CS(gε)| = qD ·
∏

mi=1 or 2|mi

|Sp2ai
(q)| ·

s∏
v=1

|Oαv
2aiv

(q)|,

where I = {i1, . . . , is} is the set of indices i such that mi > 1 is odd, as before.
Observe that ∑

α=±

α1

|Oα
2a(q)|

=
qa

|Sp2a(q)|
.

Hence, the 2s contributions of all gε in (11) sum up to

Λn(g) =
|CG(g)| · q−D+c1/2+

∑
i>1 ci∏

mi=1 or 2|mi
|Sp2ai

(q)| ·
s∏

v=1

qaiv

|Sp2aiv
(q)|

=
|CG(g)| · q−D+

∑
i>1 ci+

∑
i odd ci/2∏

i |Spci(q)|
,

where we use the convention that |Sp0(q)| = 1. By [44],

D = dimRu(CG(g)) =
∑
i<j

icicj +
∑
i

(i− 1)c2i /2 +
∑
2|i

ci/2 +
∑

i>1 odd

ci.

Putting everything together, we obtain

Theorem 2.6. Let g ∈ Sp2n(q) be a unipotent element with Jordan canonical form∑∞
i=1 ciJi. Then

Λn(g) = q
1
2

∑
i ci−

∑
i<j icicj− 1

2

∑
i(i−1)c2i ·

|CGL2n(q)(g)|∏
i |Spci(q)|

if all ci are even, and Λn(g) = 0 otherwise. �

Noting from Theorem 2.6 that Λn(g) ≥ 0, the following corollary is immediate.

Corollary 2.7. A random unipotent element of Sp2n(q) with given Jordan canon-
ical form fixes a positive type quadratic form with probability at least as large as
that of fixing a negative type quadratic form.

2.6. Main result. To state the main result of this section requires notation about
partitions, much of it standard [31]. Let λ be a partition of some nonnegative integer
|λ| into parts λ1 ≥ λ2 ≥ · · · . The symbol mi(λ) will denote the number of parts of λ
of size i, and λ′ is the partition dual to λ in the sense that λ′

i = mi(λ)+mi+1(λ)+· · · .
Let n(λ) =

∑
i

(
λ′
i
2

)
. Let l(λ) denote the number of parts of λ and o(λ) the number

of odd parts of λ.
It is often helpful to view partitions diagrammatically. The diagram associated

to λ is the set of ordered pairs (i, j) of integers such that 1 ≤ j ≤ λi. We use the
convention that the row index i increases as one goes downward and the column
index j increases as one goes from left to right. So the diagram of the partition
(5, 4, 4, 1) is

and one has that n(λ) = 15, l(λ) = 4, and o(λ) = 2.
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Theorem 2.8. Let p±(λ) denote the proportion of elements of O±
2n(q) which are

unipotent and have the GL2n(q) rational canonical form of type λ.

(1) p+(λ)+p−(λ) is equal to 0 unless |λ| = 2n and all odd parts of λ have even
multiplicity. If |λ| = 2n and all odd parts of λ have even multiplicity, then

p+(λ) + p−(λ)

=
ql(λ)

qn(λ)+
|λ|
2 + o(λ)

2

∏
i(1− 1/q2)(1− 1/q4) · · · (1− 1/q2
mi(λ)/2�)

.

(2) p+(λ) − p−(λ) is equal to 0 unless |λ| = 2n and all parts of λ have even
multiplicity. If |λ| = 2n and all parts of λ have even multiplicity, then

p+(λ)− p−(λ) =
1

q
∑

(λ′
i)

2/2
∏

i≥1(1− 1/q2)(1− 1/q4) · · · (1− 1/qmi(λ))
.

Proof. Let g be a unipotent element of GL2n(q) of type λ, and let d(g) be the
dimension of the kernel of g − 1. From the above discussion and denoting the
principal character by [1], it follows that

Ind
Sp2n(q)

O+
2n(q)

[1](g) + Ind
Sp2n(q)

O−
2n(q)

[1](g)

= 1 + ρ1
n(g) + ρ2

n(g) + 1 + 2

⎡
⎣(q−2)/2∑

i=1

τ i
n

⎤
⎦ (g)

=
qd(g) − 1

q − 1
+ 1 + 2

⎡
⎣(q−2)/2∑

i=1

τ i
n

⎤
⎦ (g)

=
qd(g) − 1

q − 1
+ 1 + (q − 2)

qd(g) − 1

q − 1

= qd(g).

The first equality used formula (1) in Subsection 2.1, the second equality used the
fact that [1] + ρ1

n + ρ2
n is the permutation character of Sp2n(q) on lines, and the

third equality used formula (2) in Subsection 2.1.
Let C denote the GL2n(q) class of g. Using the fact that qd(·) is constant on con-

jugacy classes of GL2n(q), it follows by the general formula for induced characters
(page 34 of [17]) that

Ind
GL2n(q)
Sp2n(q)

[qd(·)](g) = qd(g)|CGL2n(q)(g)|
|C ∩ Sp2n(q)|
|Sp2n(q)|

,

where CGL2n(q)(g) denotes the centralizer of g in GL2n(q). A formula for |C∩Sp2n(q)|
|Sp2n(q)|

in even characteristic appears in Theorem 5.2 of [12]; using this and transitivity of



2552 JASON FULMAN, JAN SAXL, AND PHAM HUU TIEP

induction, one concludes that

Ind
GL2n(q)

O+
2n(q)

[1](g) + Ind
GL2n(q)

O−
2n(q)

[1](g)

= Ind
GL2n(q)
Sp2n(q)

[qd(·)](g)

= qd(g)|CGL2n(q)(g)|
|C ∩ Sp2n(q)|
|Sp2n(q)|

=
|CGL2n(q)(g)| · ql(λ)

qn(λ)+n+o(λ)/2
∏

i(1− 1/q2)(1− 1/q4) · · · (1− 1/q2
mi(λ)/2�)
.

Again using the general formula for induced characters, one has that

p+(λ) + p−(λ) =
1

|CGL2n(q)(g)|
[
Ind

GL2n(q)

O+
2n(q)

[1](g) + Ind
GL2n(q)

O−
2n(q)

[1](g)
]
,

and part (1) follows.
By the general formula for induced characters and Theorem 2.6, one concludes

that

p+(λ)− p−(λ)

=
1

|CGL2n(q)(g)|
[
Ind

GL2n(q)

O+
2n(q)

[1](g)− Ind
GL2n(q)

O−
2n(q)

[1](g)
]

=
Λn(g)

|CGL2n(q)(g)|

=
q

1
2

∑
i≥1 mi(λ)−

∑
i<j imi(λ)mj(λ)− 1

2

∑
i(i−1)mi(λ)

2∏
i |Spmi(λ)(q)|

=
1

q
1
2

∑
i imi(λ)2+

∑
i<j imi(λ)mj(λ)

∏
i≥1(1− 1/q2) · · · (1− 1/qmi(λ))

.

Since λ′
j = mj(λ) +mj+1(λ) + · · · , one checks that∑

j

(λ′
j)

2 =
∑
j

[jmj(λ) + 2
∑
i<j

imi(λ)]mj(λ),

which completes the proof. �

Remark. Comparing the expression in part (2) with the formula for centralizer
sizes in GLn(q

2) (page 181 of [31]), one concludes that when all mi(λ) are even,
p+(λ)−p−(λ) is equal to the proportion of elements in GLn(q

2) which are unipotent
and have part i occurring with multiplicity mi(λ)/2.

3. Orthogonal groups in odd dimensions

Let q be a power of 2 as above. It is well known that O2n+1(q) 	 Sp2n(q), and
this isomorphism can be realized as follows. Let U = F2n+1

q be endowed with a
nondegenerate quadratic form Q. Since dimU is odd, the associated symplectic
form (·, ·) has a 1-dimensional radical J = 〈v〉Fq

, with Q(v) �= 0 and g(v) = v for
all g ∈ O(Q). Then O(Q) preserves the nondegenerate symplectic form on W :=
U/J = F2n

q induced by (·, ·), and this action induces the isomorphism O2n+1(q) =
O(Q) 	 Sp(W ) = Sp2n(q). Even though the O(Q)-module U is indecomposable,
we will show that it is easy to relate the Jordan canonical form of any element
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g ∈ O(Q) in GL(U) and GL(W ). Let Jk(α) denote the k × k Jordan block with
eigenvalue α ∈ Fq.

Lemma 3.1. Keep the above notation and let g ∈ O(Q). Then the Jordan canonical
form for g in GL(U ⊗Fq) is just the direct sum of the Jordan canonical form for g

in GL(W ⊗ Fq) and the Jordan block J1(1).

Proof. To simplify the notation, we will extend the scalars to Fq and denote the
corresponding spaces also by U , J , and W . Let

∑
i,α ai(α)Ji(α), respectively∑

i,α bi(α)Ji(α), be the Jordan canonical form for g in GL(U), respectively in

GL(W ). We need to show that ai(α) − bi(α) equals 1 if (i, α) = (1, 1) and 0
otherwise. For any j ≥ 0 and α ∈ Fq, let

Uj(α) = {x ∈ U | (g − α · 1U )j(x) = 0}
and similarly for Wj(α); also set U0(α) = 0 and W0(α) = 0. Then it is easy to check
for j ≥ 1 that dimUj(α) =

∑
i min{i, j}·ai(α). It follows that dimUj+1(α)/Uj(α) =∑

i≥j+1 ai(α), and so

aj(α) = −(dimUj+1(α)) + 2(dimUj(α))− (dimUj−1(α)),

and similarly

bj(α) = −(dimWj+1(α)) + 2(dimWj(α))− (dimWj−1(α)).

Since g acts trivially on J , it is straightforward to check that dimUj(α) = dimWj(α)
for α �= 1, whence aj(α) = bj(α) for any such α. Let j ≥ 1 and u + J ∈ Wj(1).
Denoting w := (g − 1)j−1(u), we have w + J ∈ W1(1), i.e. g(w) = w + av for some
a ∈ Fq. But then Q(w) = Q(w + av) = Q(w) + a2Q(v) (since (v, U) = 0), and so
a = 0 as Q(v) �= 0. Thus (g − 1)j(u) = (g − 1)w = 0, i.e. u ∈ Uj(1). We conclude
that Wj(1) = Uj(1)/J , and so dimUj(1) = 1 + dimWj(1) for j ≥ 1. Recall that
U0(1) = W0(1) = 0. Hence ai(1)− bi(1) equals 1 if i = 1 and 0 otherwise. �

Cycle indices for even characteristic symplectic groups were derived in [12], and
Lemma 3.1 reduces the cycle index of O±(2n+ 1, q) to that of Sp(2n, q). Thus we
can focus attention on O±(2n, q), which we do in the next section.

4. Cycle index

Recall that we are interested in the GL2n(q) rational canonical form of random
elements of O±

2n(q). The rational canonical forms of GL2n(q) are parameterized
by associating a partition λφ to each monic, nonconstant irreducible polynomial φ
over the finite field Fq, such that

(1) |λz| = 0,
(2)

∑
φ |λφ| · deg(φ) = 2n.

Here deg(φ) denotes the degree of φ, and |λφ| is the size of λφ. For elements in
O±

2n(q), it follows from Wall [44] that there are additional restrictions:

(1) λφ = λφ∗ , where φ∗(z) = φ(0)−1znφ(z−1).
(2) The odd parts of λz−1 occur with even multiplicity.

For the remainder of this section, we use the notation:

A(φ, λφ, i) =

{
|Umi(λφ)(q

deg(φ)/2)| if φ = φ∗,

|GLmi(λφ)(q
deg(φ))|1/2 if φ �= φ∗.
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We remind the reader that |GLn(q)| = qn
2

(1− 1/q) · · · (1− 1/qn) and that the size
of Un(q) is (−1)n|GLn(−q)|. For φ �= z − 1, we define B(φ, λφ) as

qdeg(φ)[
∑

h<i hmh(λφ)mi(λφ)+
1
2

∑
i(i−1)mi(λφ)

2]
∏
i

A(φ, λφ, i).

Next we give an explicit formula for the cycle index of the orthogonal groups in
even characteristic. We let xφ,λ be variables, and �y� denote the largest integer not
exceeding y.

Theorem 4.1. The following statements hold.

(1)

1 +
∑
n≥1

u2n

|O+
2n(q)|

∑
g∈O+

2n(q)

∏
φ

xφ,λφ(g) +
∑
n≥1

u2n

|O−
2n(q)|

∑
g∈O−

2n(q)

∏
φ

xφ,λφ(g)

=

⎛
⎜⎝ ∑

|λ| even
i odd⇒mi even

xz−1,λu
|λ|ql(λ)

qn(λ)+
|λ|
2 +

o(λ)
2

∏
i(1− 1/q2) · · · (1− 1/q2


mi(λ)

2 �)

⎞
⎟⎠

·
∏
φ=φ∗
φ �=z−1

(∑
λ

xφ,λu
|λ|·deg(φ)

B(φ, λ)

) ∏
{φ,φ∗}
φ �=φ∗

(∑
λ

xφ,λxφ∗,λu
2|λ|·deg(φ)

B(φ, λ)B(φ∗, λ)

)

(2)

1 +
∑
n≥1

u2n

|O+
2n(q)|

∑
g∈O+

2n(q)

∏
φ

xφ,λφ(g) −
∑
n≥1

u2n

|O−
2n(q)|

∑
g∈O−

2n(q)

∏
φ

xφ,λφ(g)

=

⎛
⎜⎝ ∑

λ
all mi(λ) even

xz−1,λu
|λ|

q
∑

(λ′
i)

2/2
∏

i≥1(1− 1/q2)(1− 1/q4) · · · (1− 1/qmi(λ))

⎞
⎟⎠

·
∏
φ=φ∗
φ �=z−1

(∑
λ

xφ,λ(−1)|λ|u|λ|·deg(φ)

B(φ, λ)

) ∏
{φ,φ∗}
φ �=φ∗

(∑
λ

xφ,λxφ∗,λu
2|λ|·deg(φ)

B(φ, λ)B(φ∗, λ)

)

Proof. Consider the first part. The coefficient of u2n
∏

φ xφ,λφ
on the left-hand side

is the sum of the proportions of elements in O±
2n(q) with rational canonical form

data {λφ} in GL2n(q). By Theorem 3.7.4 of [44] and part (1) of Theorem 2.8,
this is equal to the coefficient of u2n

∏
φ xφ,λφ

on the right-hand side, yielding the

first assertion. The second assertion is proved similarly, using part (2) of Theorem
2.8. �

Remark. Ω±
2n(q) is defined as the index 2 subgroup of O±

2n(q) with the property
that l(λz−1(g)) is even. Thus our techniques can be easily modified to study these
groups as well. Namely in the left-hand side of Theorem 4.1, one replaces the sum
over g ∈ O±

2n(g) by the sum over g ∈ Ω±
2n(q) (but leaving the |O±

2n(q)| unchanged),
and in the right-hand terms adds the additional restriction that the number of parts
of λz−1 is even.
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5. Enumerative applications

In this section we present a small sample of enumerative applications of the cycle
indices from Section 4. We first collect four known lemmas which will be used in
the proofs; this might assist the reader in future applications of the cycle index.

Lemma 5.1 goes back to Euler; a proof can be found on page 19 of [1].

Lemma 5.1. For |u| < 1, |q| > 1,

1 +
∑
n≥1

un

q(
n
2)(1− 1/q)(1− 1/q2) · · · (1− 1/qn)

=
∏
i≥0

(1 + u/qi).

Lemma 5.2 is a useful expansion, proved as Theorem 349 of the text [21].

Lemma 5.2. For |u|, |x| < 1,

1

(1− ux)(1− ux2) · · · (1− uxj)
= 1 + ux

1− xj

1− x
+ u2x2 (1− xj)(1− xj+1)

(1− x)(1− x2)
+ · · · .

Lemma 5.3 is proved as Lemma 1.3.17 (parts a and d) of [16].

Lemma 5.3. Let N∗(q; d) denote the number of monic irreducible self-conjugate
polynomials φ of degree d over Fq and let M∗(q; d) denote the number of (unordered)
monic irreducible conjugate pairs {φ, φ∗} of non-self-conjugate polynomials of degree
d over Fq. Then in even characteristic, and for |u| < q−1,

(1) ∏
d≥1

(1− ud)−N∗(q;2d)
∏
d≥1

(1− ud)−M∗(q;d) =
1− u

1− qu
;

(2) ∏
d≥1

(1 + ud)−N∗(q;2d)
∏
d≥1

(1− ud)−M∗(q;d) = 1− u.

Lemma 5.4 has several proofs; the most group-theoretic proof is due to Stong
[42] and uses Steinberg’s result that GL(n, q) has qn(n−1) unipotent elements.

Lemma 5.4. (1) If φ = φ∗ and φ �= z − 1, then

∑
λ

u|λ|·deg(φ)

B(φ, λ)
=
∏
i≥1

(
1 + (−1)i(u2/qi)deg(φ)/2

)−1

.

(2) If φ �= φ∗, then

∑
λ

u2|λ|·deg(φ)

B(φ, λ)B(φ∗, λ)
=
∏
i≥1

(
1− (u2/qi)deg(φ)

)−1

.

Next we proceed to the applications.

5.1. Example 1: Enumeration of elements by dimension of fixed space.
Let p±2n(k) denote the probability that an element of O±

2n(q) has a fixed space of
dimension k. These probabilities were computed in a long paper of Rudvalis and
Shinoda [36] using Möbius inversion. Theorem 5.5 shows how to compute these
probabilities using cycle indices.
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Theorem 5.5 ([36]). The following statements hold.

(1)

p±2n(2k) =
qk

2|GLk(q2)|

n−k∑
j=0

(−1)j

q(2k−1)j(q2j − 1) · · · (q4 − 1)(q2 − 1)

± 1

2

(−1)n−k

q2k(n−k)|GLk(q2)|(q2(n−k) − 1) · · · (q4 − 1)(q2 − 1)
.

(2) p±2n(2k + 1) = 1
2qk|GLk(q2)|

∑n−k−1
j=0

(−1)j

qj2+2(k+1)j(1−1/q2)(1−1/q4)···(1−1/q2j)
.

Proof. By part (1) of Theorem 4.1, p+2n(2k) + p−2n(2k) is the coefficient of u2n in

∑
l(λ)=2k

i odd⇒mi even

u|λ|q2k

qn(λ)+
|λ|
2 + o(λ)

2

∏
i(1− 1/q2)(1− 1/q4) · · · (1− 1/q2


mi(λ)

2 �)

·
∏
φ=φ∗
φ �=z−1

(∑
λ

u|λ|·deg(φ)

B(φ, λ)

) ∏
{φ,φ∗}
φ �=φ∗

(∑
λ

u2|λ|·deg(φ)

B(φ, λ)B(φ∗, λ)

)

=
u2kqk

q2k2(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)

·
∏
φ=φ∗
φ �=z−1

(∑
λ

u|λ|·deg(φ)

B(φ, λ)

) ∏
{φ,φ∗}
φ �=φ∗

(∑
λ

u2|λ|·deg(φ)

B(φ, λ)B(φ∗, λ)

)

=
u2kqk

q2k2(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)

·
∏
φ=φ∗
φ �=z−1

∏
i≥1

(
1 + (−1)i(u2/qi)deg(φ)/2

)−1 ∏
{φ,φ∗}
φ �=φ∗

∏
i≥1

(
1− (u2/qi)deg(φ)

)−1

.

The first equality used Theorem 3 of [11], together with the fact from [12] that
the λz−1 part of an element of Sp2n(q) has the same behavior in odd and even
characteristic. The second equality used Lemma 5.4. Using both parts of Lemma
5.3, this becomes

u2kqk

q2k2(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)

·
[∏

i≥1(1− u2/q2i−1)

1− u2

]

=
u2kqk

∏
i≥k+1(1− u2/q2i−1)

(1− u2)|GLk(q2)|
.

It now follows from Lemma 5.1 that

(12) p+2n(2k) + p−2n(2k) =
qk

|GLk(q2)|

n−k∑
j=0

(−1)j

q(2k−1)j(q2j − 1) · · · (q2 − 1)
.
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Part (2) of Theorem 4.1 gives that p+2n(2k)− p−2n(2k) is the coefficient of u2n in

∏
i≥1

(1− u2/q2i) ·
∑

l(λ)=2k
all mi(λ) even

u|λ|

q
∑

(λ′
i)

2/2
∏

i≥1(1− 1/q2) · · · (1− 1/qmi(μ))
.

Here the term
∏

i≥1(1−u2/q2i) comes from the polynomials other than z−1 by an
argument similar to that in the previous paragraph. By the remark after Theorem
2.8 and Theorem 5 of [10], this is the coefficient of un in

uk

|GLk(q2)|

∏
i≥1(1− u/q2i)∏k
i=1(1− u/q2i)

=
uk

|GLk(q2)|
∏

i≥k+1

(1− u/q2i).

It now follows from Lemma 5.1 that

(13) p+2n(2k)− p−2n(2k) =
(−1)n−k

q2k(n−k)|GLk(q2)|(q2(n−k) − 1) · · · (q4 − 1)(q2 − 1)
.

Combining equations (12) and (13) proves part (1) of the theorem.
For part (2) of the theorem, arguing as in part (1) of the theorem gives that

p+2n(2k + 1) + p−2n(2k + 1) is the coefficient of u2n in

u2k+2

q2k2+k(1− u2/q)(1− 1/q2) · · · (1− 1/q2k)(1− u2/q2k+1)

·
∏

i≥1(1− u2/q2i−1)

1− u2

=
u2k+2

q2k2+k(1− 1/q2)(1− 1/q4) · · · (1− 1/q2k)

∏
i≥k+1(1− u2/q2i+1)

1− u2
.

Again using Lemma 5.1, this is equal to

1

qk|GLk(q2)|

n−k−1∑
j=0

(−1)j

qj2+2(k+1)j(1− 1/q2)(1− 1/q4) · · · (1− 1/q2j)
.

Part (2) of Theorem 4.1 implies that p+2n(2k + 1)− p−2n(2k + 1) = 0 (if all parts of
λz−1 occur with even multiplicity, the total number of parts can’t be odd), and the
result follows. �

Since Ω±(2n, q) is the index 2 subgroup of O±(2n, q) consisting of elements
with an even dimensional fixed space, the following corollary of Theorem 5.5 is
immediate.

Corollary 5.6. Let q±2n(k) be the probability that an element of Ω±(2n, q) has a
k-dimensional fixed space. Then q±2n(2k + 1) = 0 and

q±2n(2k) =
qk

|GLk(q2)|

n−k∑
j=0

(−1)j

q(2k−1)j(q2j − 1) · · · (q4 − 1)(q2 − 1)

± (−1)n−k

q2k(n−k)|GLk(q2)|(q2(n−k) − 1) · · · (q4 − 1)(q2 − 1)
.
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5.2. Example 2: Enumeration of unipotent elements by dimension of
fixed space. The paper [14] used generating functions to enumerate unipotent
elements in orthogonal groups of even characteristic, showing that the number of

unipotent elements of O±
2n(q) is q

2n2−2n+1
(
1 + 1

q ∓ 1
qn

)
. In this example, we give

a more refined count. Similar results for the finite general linear and unitary groups
appear in [27], [10].

Theorem 5.7. (1) The proportion of elements of O±
2n(q) which are unipotent

and have a fixed space of dimension 2k is

(1− 1/q2k)(1− 1/q2(k+1)) · · · (1− 1/q2(n−1))

qn−2k|GLk(q2)|(1− 1/q2)(1− 1/q4) · · · (1− 1/q2(n−k))

[
1

2
± 1

2qn

]
.

(2) The proportion of elements of O±
2n(q) which are unipotent and have a fixed

space of dimension 2k + 1 is

1

2 · qn−1|GLk(q2)|
(1− 1/q2(k+1))(1− 1/q2(k+2)) · · · (1− 1/q2(n−1))

(1− 1/q2)(1− 1/q4) · · · (1− 1/q2(n−k−1))
.

Proof. Let u±
2n(2k, q) denote the proportion of elements of O±

2n(q) which are unipo-
tent and have a fixed space of dimension 2k. For part (1) of the theorem, arguing
as in the proof of Theorem 5.5 (and noting that all partitions coming from polyno-
mials other than z − 1 are empty) gives that u+

2n(2k) + u−
2n(2k) is the coefficient of

u2n in

u2kqk

q2k2(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)
.

This is equal to qn

|GLk(q2)| multiplied by the coefficient of un−k in

1

(1− u/q2)(1− u/q4) · · · (1− u/q2k)
.

Applying Lemma 5.2, one concludes that

u+
2n(2k) + u−

2n(2k)

=
1

qn−2k|GLk(q2)|
(1− 1/q2k)(1− 1/q2(k+1)) · · · (1− 1/q2(n−1))

(1− 1/q2)(1− 1/q4) · · · (1− 1/q2(n−k))
.

By part (2) of Theorem 2.8 and the remark following it, u+
2n(2k)−u−

2n(2k) is the
proportion of elements of GLn(q

2) which are unipotent and have a fixed space of
dimension k. This is known ([27], [10]) to be

1

q2(n−k)|GLk(q2)|
(1− 1/q2k)(1− 1/q2(k+1)) · · · (1− 1/q2(n−1))

(1− 1/q2)(1− 1/q4) · · · (1− 1/q2(n−k))
,

and part (1) of the theorem follows.
For part (2) of the theorem, arguing as in the proof of part (2) of Theorem 5.5

(again noting that all partitions coming from polynomials other than z − 1 are
empty), one obtains that u+

2n(2k + 1) + u−
2n(2k + 1) is the coefficient of u2n in

u2k+2

q2k2+k(1− u2/q)(1− 1/q2) · · · (1− 1/q2k)(1− u2/q2k+1)
.
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This is equal to 1
qk|GLk(q2)| multiplied by the coefficient of un−k−1 in

1

(1− u/q)(1− u/q3) · · · (1− u/q2k+1)
.

Applying Lemma 5.2, one concludes that

u+
2n(2k + 1) + u−

2n(2k + 1)

=
1

qn−1|GLk(q2)|
(1− 1/q2(k+1))(1− 1/q2(k+2)) · · · (1− 1/q2(n−1))

(1− 1/q2)(1− 1/q4) · · · (1− 1/q2(n−k−1))
.

By part (2) of Theorem 2.8, u+
2n(2k+ 1) = u−

2n(2k + 1), and the result follows. �

5.3. Example 3: Cyclic matrices. A matrix over Fq is called cyclic if its charac-
teristic polynomial is equal to its minimal polynomial. Motivated by applications to
computational group theory [32], the proportion of cyclic matrices in O±

2n(q) (even
characteristic included) has been studied in [33] via geometric techniques and in
[16] via generating functions. Let us illustrate how Theorem 4.1 reproduces the
generating functions of [16].

Let c±O(2n, q) denote the proportion of cyclic matrices in the even characteristic

orthogonal groups O±
2n(q). Define generating functions

CO+(u) = 1 +
∑
n≥1

cO+(2n, q)un; CO−(u) =
∑
n≥1

cO−(2n, q)un.

An element of O±
2n(q) is cyclic if and only if all the λφ appearing in its rational

canonical form have at most one part. Thus part (1) of Theorem 4.1 implies that

CO+(u) + CO−(u)

=

(
1 +

u

1− u/q

)∏
d≥1

(
1 +

ud

(qd + 1)(1− ud/qd)

)N∗(q;2d)

·
∏
d≥1

(
1 +

ud

(qd − 1)(1− ud/qd)

)M∗(q;d)

.

Here, as in the statement of Lemma 5.3, N∗(q; d) denotes the number of monic
irreducible self-conjugate polynomials φ of degree d over Fq and M∗(q; d) denotes
the number of (unordered) monic irreducible conjugate pairs {φ, φ∗} of non-self-
conjugate polynomials of degree d over Fq. Part (2) of Theorem 4.1 implies that

CO+(u)− CO−(u) =
∏
d≥1

(
1− ud

(qd + 1)(1 + ud/qd)

)N∗(q;2d)

·
∏
d≥1

(
1 +

ud

(qd − 1)(1− ud/qd)

)M∗(q;d)

.

Similarly, Theorem 4.1 reproduces the generating functions of [16] for the propor-
tions of separable (square-free characteristic polynomial) and semisimple (square-
free minimal polynomial) matrices in O±

2n(q). The proportions of regular semisimple
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elements in O±
2n(q) and Ω±

2n(q) were studied by generating functions in [15], and
Theorem 4.1 captures those results too.

6. Random partitions

In this section we use our results about the even characteristic orthogonal groups
to define and study a probability measure R(u,q) on the set of all partitions λ of all
natural numbers such that all odd parts of λ occur with even multiplicity. We also
study related measures Re

(u,q), R
o
(u,q) arising from the index-two simple subgroup

Ω±(2n, q) of O±(2n, q) and its nontrivial coset respectively.
These random partitions are very natural objects (analogous to those defined

in [10], [11] for the other classical groups). One reason to be interested in these
measures is that they can be used to give probabilistic proofs of Theorems 5.5
and 5.7 (arguing along the lines of [11]). We also mention that the corresponding
measures for the general linear groups arise in the Cohen-Lenstra [7] heuristics
for number fields (the thesis [24] discusses this), and we have high hopes that the
measures R(u,q) will arise in a number-theoretic context too.

Definition 6.1. Fix 0 < u < q1/2 and q a prime power. The measure R(u,q) is
defined on the set of all partitions λ (the size can vary) such that all odd parts
occur with even multiplicity, by the formula:

R(u,q)(λ) =

∏
i≥1(1− u2/q2i−1)

1 + u2

· ql(λ)u|λ|

qn(λ)+
|λ|
2 + o(λ)

2

∏
i(1− 1/q2)(1− 1/q4) · · · (1− 1/q2
mi(λ)/2�)

.

Theorem 6.2 relates the measure R(u,q) to the asymptotics of finite orthogonal
groups. The use of auxiliary randomization (i.e. randomizing the variable n) is a
mainstay of statistical mechanics known as the grand canonical ensemble. We say
that an infinite collection of random variables is independent if any finite subcol-
lection is.

Theorem 6.2. (1) Fix u with 0 < u < 1. Then choose a random even natural

number N such that the probability that N = 0 is 1−u2

1+u2 and the probability

that N = 2n ≥ 2 is equal to 2u2n 1−u2

1+u2 . Choose one of O±(N, q) at random

(each with probability 1/2), and let g be a random element of the chosen
group. Let Λφ(g) be the partition corresponding to the polynomial φ in the
rational canonical form of g. Then as φ varies, aside from the fact that
Λφ = Λφ∗ , these random variables are independent with probability laws
the same as for the symplectic groups in Theorem 1 of [11], except for the
polynomial z − 1, which has the distribution R(u,q).

(2) Choose one of O±
2n(q) at random (each with probability 1/2), and let g be

a random element of the chosen group. Let Λφ(g) be the partition corre-
sponding to the polynomial φ in the rational canonical form of g. Let q be
fixed and n → ∞. Then as φ varies, aside from the fact that Λφ = Λφ∗ ,
these random variables are independent with probability laws the same as
for the symplectic groups in Theorem 1 of [11], except for the polynomial
z − 1, which has the distribution R(1,q).
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Proof. The method of proof is analogous to that used for the other classical groups
(see the survey [8]), so we demonstrate the claim for Λz−1, as that is the interesting
new feature. In part (1) of Theorem 4.1, set xφ,λ = 1 for φ �= z − 1 and xz−1,λ =

xz−1,λ · u|λ|. One obtains the equation

1 +
∑
n≥1

u2n

|O+
2n(q)|

∑
g∈O+

2n(q)

xz−1,λz−1(g)u
|λz−1(g)|

+
∑
n≥1

u2n

|O−
2n(q)|

∑
g∈O−

2n(q)

xz−1,λz−1(g)u
|λz−1(g)|

=

⎛
⎜⎝ ∑

|λ| even
i odd⇒mi even

xz−1,λu
|λ|ql(λ)

qn(λ)+
|λ|
2 + o(λ)

2

∏
i(1− 1/q2) · · · (1− 1/q2


mi(λ)

2 �)

⎞
⎟⎠

·
∏
φ=φ∗
φ �=z−1

(∑
λ

u|λ|·deg(φ)

B(φ, λ)

) ∏
{φ,φ∗}
φ �=φ∗

(∑
λ

u2|λ|·deg(φ)

B(φ, λ)B(φ∗, λ)

)

=

[∏
i≥1(1− u2/q2i−1)

1− u2

]

·

⎛
⎜⎝ ∑

|λ| even
i odd⇒mi even

xz−1,λu
|λ|ql(λ)

qn(λ)+
|λ|
2 + o(λ)

2

∏
i(1− 1/q2) · · · (1− 1/q2


mi(λ)

2 �)

⎞
⎟⎠ .

The final equality follows as in the proof of part (1) of Theorem 5.5. Multiplying
both sides by (1− u2)/(1 + u2) implies that

1− u2

1 + u2
+
∑
n≥1

2(1− u2)u2n

1 + u2

[∑
g∈O+

2n(q)
xz−1,λz−1(g)u

|λz−1(g)|

2|O+
2n(q)|

]

+
∑
n≥1

2(1− u2)u2n

1 + u2

[∑
g∈O−

2n(q)
xz−1,λz−1(g)u

|λz−1(g)|

2|O−
2n(q)|

]

=

∏
i≥1(1− u2/q2i−1)

1 + u2

·
∑

|λ| even
i odd⇒mi even

ql(λ)u|λ|xz−1,λ

qn(λ)+
|λ|
2 +

o(λ)
2

∏
i(1− 1/q2) · · · (1− 1/q2
mi(λ)/2�)

=
∑
λ

R(u,q)(λ)xz−1,λ,

which proves part (1).
To prove the second assertion, one uses the fact that if a Taylor series of a

function f(u2) around 0 converges at u = 1, then the n → ∞ limit of the coefficient

of u2n in f(u2)(1+u2)
2(1−u2) is equal to f(1). �
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Next, we give a Markov chain method for sampling from the distribution R(u,q).
Define two Markov chains K1,K2 on the natural numbers with transition proba-
bilities

K1(a, b) =

⎧⎨
⎩

uaP ′
O,u(b)

P ′
Sp,u(a)q

a2−b2+2(a+1)b
4 (qa−b−1)···(q4−1)(q2−1)

if a− b even, b ≤ a

0 else,

K2(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uaP ′
Sp,u(b)q

(a−b)2/4

P ′
O,u(a)q

a2+b
2

−a(qa−b−1)···(q4−1)(q2−1)
if a− b even, b ≤ a

uaP ′
Sp,u(b)q

((a−b)2−1)/4

P ′
O,u(a)q

a2−a
2 (qa−b−1−1)···(q4−1)(q2−1)

if a− b odd, b ≤ a

0 else,

where P ′
Sp,u, P

′
O,u are defined as follows:

P ′
Sp,u(2k) =

u2k

q2k2+k(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)
,

P ′
Sp,u(2k + 1) =

u2k+2

q2k2+3k+1(1− u2/q)(1− 1/q2) · · · (1− 1/q2k)(1− u2/q2k+1)
,

P ′
O,u(2k) =

u2k

q2k2−k(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)
,

P ′
O,u(2k + 1) =

u2k+1

q2k2+k(1− u2/q)(1− 1/q2) · · · (1− 1/q2k)(1− u2/q2k+1)
.

Theorem 6.3. Let λ′
1 be a random natural number which is equal to 2k with

probability∏∞
i=1(1− u2/q2i−1)

1 + u2

u2k

q2k2−k(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)

and equal to 2k + 1 with probability∏∞
i=1(1− u2/q2i−1)

1 + u2

u2k+2

q2k2+k(1− u2/q)(1− 1/q2) · · · (1− 1/q2k)(1− u2/q2k+1)
.

Define λ′
2, λ

′
3, . . . according to the rules that if λ′

i = a, then λ′
i+1 = b with probability

K1(a, b) if i is odd and with probability K2(a, b) if i is even. Then the resulting
partition is distributed according to R(u,q).

Proof. The crucial observation is that R(u,q) can be related to a measure PSp,u

studied in [11]. Indeed, comparing formulas one sees that

R(u,q)(λ) =
ql(λ)

(1 + u2)
· PSp,u(λ)

for all λ. Hence the theorem follows from Theorems 3 and 4 of [11]. �

Next, we define and study the measures Re
(u,q) and Ro

(u,q).

Definition 6.4. Fix 0 < u < q1/2 and q a prime power. The measure Re
(u,q) is

defined on the set of all partitions λ (the size can vary) with an even number of
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parts and such that all odd parts occur with even multiplicity, by the formula:

Re
(u,q)(λ) =

∏
i≥1

(1− u2/q2i−1)

· ql(λ)u|λ|

qn(λ)+
|λ|
2 + o(λ)

2

∏
i(1− 1/q2)(1− 1/q4) · · · (1− 1/q2
mi(λ)/2�)

.

We also define a measure Ro
(u,q) on the set of all partitions λ (the size can vary) with

an odd number of parts and such that all odd parts occur with even multiplicity,
by the formula:

Ro
(u,q)(λ) =

1

u2

∏
i≥1

(1− u2/q2i−1)

· ql(λ)u|λ|

qn(λ)+
|λ|
2 + o(λ)

2

∏
i(1− 1/q2)(1− 1/q4) · · · (1− 1/q2
mi(λ)/2�)

.

These measures arise from Ω± and its nontrivial coset in the following way. We
omit the proof, which is almost identical to that of Theorem 6.2.

Theorem 6.5. (1) Fix u with 0 < u < 1. Then choose a random even natural
number N such that the probability that N = 2n is equal to (1 − u2)u2n.
Choose one of Ω±

N (q) at random (each with probability 1/2), and let g be
a random element of the chosen group. Let Λφ(g) be the partition corre-
sponding to the polynomial φ in the rational canonical form of g. Then as
φ varies, aside from the fact that Λφ = Λφ∗ , these random variables are
independent with probability laws the same as for the symplectic groups in
Theorem 1 of [11], except for the polynomial z−1 which has the distribution
Re

(u,q).

(2) Choose one of Ω±
2n(q) at random (each with probability 1/2), and let g be

a random element of the chosen group. Let Λφ(g) be the partition corre-
sponding to the polynomial φ in the rational canonical form of g. Let q be
fixed and n → ∞. Then as φ varies, aside from the fact that Λφ = Λφ∗ ,
these random variables are independent with probability laws the same as
for the symplectic groups in Theorem 1 of [11], except for the polynomial
z − 1, which has the distribution Re

(1,q).

(3) Fix u with 0 < u < 1. Then choose a random even natural number N such
that the probability that N = 2n ≥ 2 is equal to (1−u2)u2(n−1). Choose one
of the nontrivial cosets of Ω±

N (q) at random (each with probability 1/2), and
let g be a random element of the chosen coset. Let Λφ(g) be the partition
corresponding to the polynomial φ in the rational canonical form of g. Then
as φ varies, aside from the fact that Λφ = Λφ∗ , these random variables are
independent with probability laws the same as for the symplectic groups in
Theorem 1 of [11], except for the polynomial z−1, which has the distribution
Ro

(u,q).

(4) Choose one of the nontrivial cosets of Ω±
2n(q) at random (each with proba-

bility 1/2), and let g be a random element of the chosen coset. Let Λφ(g)
be the partition corresponding to the polynomial φ in the rational canonical
form of g. Let q be fixed and n → ∞. Then as φ varies, aside from the
fact that Λφ = Λφ∗ , these random variables are independent with probability
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laws the same as for the symplectic groups in Theorem 1 of [11], except for
the polynomial z − 1, which has the distribution Ro

(1,q).

Finally, we describe an algorithm for sampling from Re
(u,q) and Ro

(u,q), which is

proved along the same lines as Theorem 6.3.

Theorem 6.6. (1) Let λ′
1 be a random even natural number which is equal to

2k with probability

∞∏
i=1

(1− u2/q2i−1)
u2k

q2k2−k(1− u2/q)(1− 1/q2) · · · (1− u2/q2k−1)(1− 1/q2k)
.

Define λ′
2, λ

′
3, . . . according to the rules that if λ′

i = a, then λ′
i+1 = b with

probability K1(a, b) if i is odd and probability K2(a, b) if i is even. Then
the resulting partition is distributed according to Re

(u,q).

(2) Let λ′
1 be a random odd natural number which is equal to 2k+1 with prob-

ability

∞∏
i=1

(1− u2/q2i−1)
u2k

q2k2+k(1− u2/q)(1− 1/q2) · · · (1− 1/q2k)(1− u2/q2k+1)
.

Define λ′
2, λ

′
3, . . . according to the rules that if λ′

i = a, then λ′
i+1 = b with

probability K1(a, b) if i is odd and probability K2(a, b) if i is even. Then
the resulting partition is distributed according to Ro

(u,q).
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