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Abstract

Let G be a finite group and let v;(G) denote the proportion
of ordered pairs of G that generate a subgroup of nilpotency
class 7. Various properties of the v;’s are established. In par-
ticular it is shown that v; = k;-|G|/|G|? for some non-negative
integers k; and that >~ v; is either 1 or at most 1/2 for
solvable groups.

1 Introduction

Let G be a finite group and let

: (G
vi(G) = ”|é|2)

where
ni(G) = [{(z.y) € G*|(x,y) is nilpotent of class i}

for 0 <7 < oco. We take ‘(x,y) is nilpotent of class 0" to mean that
(z,y) is non-nilpotent. Clearly,

v(G)=1- Zl/i(G)-

=1

It is well known that v (G), the proportion of commuting pairs in
G, is at most 5/8 for non-abelian groups [5]. There is no analogous
lower bound for v (G). In particular, v1(S,) — 0 where S,, is the
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symmetric group on n symbols. Both of these results follow from the
fact that v1(G) is the ratio of the number of conjugacy classes in G
to the order of G [2].

In this paper we establish the following results concerning nil-
potent pairs.

e G is nilpotent if, and only if, vy(G) = 0.

0|G

is a divisor of n;(G).
e [f7 # 1, then there exists a sequence of groups for which v; — 1.
e If7 # 0, then there exists a sequence of groups for which v; — 0.

e If G is a solvable non-nilpotent group, then vy(G) > (ps—1)/ps
where py is the smallest prime dividing |G|.

e 1y(G) = (ps — 1)/ps if, and only if, G/Z;, = S3 where Z), is the
hypercenter of G (i.e. the largest group in the upper central
series of (7).

2 A characterization of nilpotent groups

It is clear that a group is abelian if, and only if, (x,y) is abelian for
each pair of elements in G. An elementary proof of the analogous
criterion for nilpotency follows.

Lemma 1 Let x,y € G. The subgroup {x,y) is nilpotent if, and only
iof, the following two conditions hold.

1. For any positive m,n, iof ™ and y" have relatively prime or-
ders, then they commute.

2. For any positive m,n, if ™ and y" have orders which are pow-

ers of the same prime p, then (x™,y") is a p-group.

PrROOF: The necessity of the conditions follows because G is the
direct product of its Sylow subgroups. To prove the converse, we
will show that the two conditions imply that (x,y) = H is a di-

a ay,

rect product of its Sylow subgroups. Let |z| = p{" ---pi* and |y| =
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plf - -pZ"7 where some of the a;’s and b;’s may be zero. Then there

exist x1,...,x, which are powers of = such that |z;| = pi* (we let
T; = x‘r‘/pj])
Since ged(|z|/p{", .. .. |z|/p¥) = 1, we know that (z) = (z1, ..., zg).

Similarly, there exist vy1,...,y, which are all powers of y such that

lyi| = p,];i and (y) = (y1,...,Yk), 80 we may write H = (x1,..., T, Y1, .- Yi)-
Since z; and z; are both powers of z, they must commute for all 2, j.

Also, due to the first condition, if 7+ # j, then z; and y; must com-
mute, since they have relatively prime order. The second condition
implies that (z;,y;) is a p;-group for all 7, and since all other genera-

tors of H commute with both x; and y;, (;,y;) is in fact the normal
pi-Sylow subgroup of H; i.e., there are k normal Sylow subgroups in

H. But since all Sylow subgroups of H are normal, H must in fact

be a direct product of its Sylow subgroups. O

Theorem 1 G is nilpotent if, and only if, vo(G) = 0.

ProoOF: If GG is nilpotent, then all subgroups of G are nilpotent, so
vo(G) = 0. If G is non-nilpotent, then it is not the direct product of
its Sylow subgroups. Therefore, there exist z and y in G of relatively
prime order such that z and y do not commute. By Lemma 1, these
generate a non-nilpotent group. O

3 |G| divides n;(G)

We will show more: the number of n-tuples which generate a sub-
group of nilpotency class ¢ is a multiple of the order of the group for
all n and z.

Lemma 2 The group G = {(x1,...,x,) is nilpotent of class less than
or equal to 1 if, and only if, all commutators of length 1+ + 1 with only
the xy.’s as entries are equal to the identity.

PROOF: (A commutator of the form [z, y] has length 2, while a com-
mutator of length 7 is of the form [z, ¢;_1], where ¢; 1 is a commutator
of length 7 — 1.)



Assume that G is nilpotent of class at most ¢. By the commutator
definition of nilpotency, GV =[G, GU—V] = {e}, so in particular the
commutators of length 7 + 1 with z;’s as entries must equal the
identity.

For the converse, we proceed by induction on ¢. Suppose that all
commutators of length ¢ + 1 with x;’s as entries equal the identity.
Then all commutators of length ¢ with z;’s as entries are contained
in Z(G). Thus, in G/Z(G) all commutators of length ¢ with =z -
Z(G)’s as entries are trivial. By the induction hypothesis, G/Z(G)
has nilpotency class less than or equal to 7 — 1. The lemma follows
because G has nilpotency class exactly one greater than G/Z(G). O

Theorem 2 The number of n-tuples, (x1,...,x,), such that{xy,..., x,)

has nilpotency class i is a multiple of |G| for all i > 1.

ProOOF: It suffices to show that the number of n-tuples generating
a subgroup of nilpotency class less than or equal to 7 is a multiple of
|G|

For each n-tuple (zi,...,z,), define a sequence C = {¢;} con-
sisting of commutators of the x3’s of lengths ¢,2 — 1,...,2 and the
generators x1,x2,...,x,_1. For example, if : = 2 and n = 2, then
the sequence would be

C ={[z1,z1], [x1, x2], [£2, 1], [T2, 22]. 21 }.

We say that x, ‘works’ with C if (x1,...,z,) yield C and if all com-
mutators of the x’s of length ¢+ 1 are the identity. Let w(C) denote
the number of z,, working with C. Let K denote the intersection of
the centralizers of the components of C.

We claim that w(C) is either 0 or |K|. To prove this it suffices
to show that if s works with C, then ¢ works with C if, and only if,
t~ls is in K. First, let ¢ be some other element of the group which
works with C. Since [t, ¢;] = [s. ¢;], t™1s € C(c;), the centralizer of c;
in G. This is true for each ¢; so t~'s must be in K. The converse is
immediate using the same reasoning.

Now let ¢~ 'Cg denote the sequence obtained by conjugating each

1

component of C by ¢g. Observe that ¢~ 'z, ¢ works with ¢~ 'Cyg if, and
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only if, x, works with C. Thus, w(C) = w(¢~'Cg) for any ¢ € G.
It is easy to see that the number of distinct sequences obtained by
/K]

conjugating C by an element in G is |G
It follows that

G| .
%W(C)Z > W(.qlC.q)Z{ I%?I :

97 'Cqg

Thus, the sum over all possible C can be expressed as

YN wiglcg =G|

g9~ 1Cqg

which is also a multiple of |G|. O

Corollary 1 The number of n-tuples, (x1, 2, ..., x,), that generate

a non-nilpotent subgroup is a multiple of |G|.

4 Limiting values of v;(G)

Lemma 3 For all groups G and H and all m > 1,

vi(Gx H) = <§: 1/,;(G)> <§: I/i(H)) )
=1

=1

m
1=

1

PRrRoOF: It suffices to show that

Z”i(G x H) = (Z ’fL,‘(G)) <Z Yz,i(H)> .

=1 =1 =1

Let z¢ and x gy denote the projection of z onto G and H, respec-
tively. Since the nilpotency class of a direct product is the maximum
of the nilpotency classes of its factors and since both {(z¢, yq) and
(g, yn) are quotient groups of (z,y), it follows that (x,y) has nilpo-
tency class greater than or equal to (zq, ya) X (z g,y ). The opposite
inequality follows since (z,y) is a subgroup of (x¢,vya) X (v, ym).
(]
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Theorem 3 For each non-negative integer m other than one, there
exists a sequence {G,} of groups such that v, (G,) — 1.

PrROOF: Tt is known [5] that v1, the probability of two elements
commuting, is either 1 or less than or equal to 5/8. For the other
values of m, we will define a sequence of groups {G,} in which G,, =

[1¢G-
i=1

Case: m = 0. Let G = S3 and note that 1y(G) = 1/2 > 0,
1 (G) = 1/2, and v;(G) = 0 for ¢« > 2. By Lemma 3, v (G,) =
(1/2)" = 0; ie. 1v9(G,) — 1.

Case: m > 2. We define G to be the dihedral group on 2™ sym-
bols. G has nilpotency class m and is 2-generated, so v, (G) > 0 and
"1 0i(G) < 1. Tt follows that from Lemma 3 that

1=

m—1 m—1

im Z vi(Gn) = lim (Z vi(G)"=0
=1 i=1

which implies that v, (G) — 1. O

Theorem 4 For cach integer m > 1, there exists a sequence {G,}
of groups such that vy, (Gy) > 0 for all n and vy, (G,) — 0.

PROOF: Let G be the dihedral group on 2%' symbols and let

n

G, = HG. Note that G is 2-generated and has nilpotency class
=1

m, 0 Vn(G) > 0. Since G contains a subgroup isomorphic to the

dihedral group on 2"~! symbols, each G,, contains such a subgroup,

$0 v (Gp) > 0 for each n. Theorem 3 implies that v, 1(Gy) — 1,

which in turn implies v, (G,) — 0. O

5 A lower bound on (@) for solvable non-
nilpotent groups
Theorem 5 If G is a solvable non-nilpotent group, then vo(G) >

(ps — 1) /ps, where ps is the smallest prime dividing |G|. Moreover,
vo(G) = (ps — 1) /ps if. and only if, G/Z), = S3.
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The proof of this theorem is quite long and is best made through

a sequence of lemmas.

Lemma 4 IfG is non-nilpotent and py is the smallest prime dividing
|G|, then v1(G) < 1/ps.

PrROOF: We note that v1(G) < v1(G/Z(G)), since if two elements
commute in G, their cosets commute in G/Z(G). Thus it suffices to
prove the lemma for groups with trivial center. Now by Erdds [2],
we know that we may write 11 (G) = k/|G|, where k is the number of
conjugacy classes of G. In order to prove the lemma, we assume that
kE/|G| > 1/ps and derive a contradiction. The assumed inequality
implies that & > |G|/ps+ 1, since p, divides the order of G. But then
we may use the class equation as follows (T denotes the conjugacy
class of z):

G
6 = 126)1+ X g
> 1+ps(l"‘_”1)
> 146G,

a contradiction. O

Lemma 5 If all Sylow subgroups of a group G are abelian, then
vi(G) =0 for all i > 2 and either the group is abelian or vo(G) >
(ps — 1) /ps.

ProoF: We will show that in such a group G, either two elements
commute or they generate a non-nilpotent subgroup. Combining this
with Lemma 4 gives the desired result, because if v;(G) = 0 for all
1> 2, then 1p(G) + 11 (G) = 1.

Consider two elements x,y € G for which (x,y) is nilpotent. This
means that (z,y) can be written as a direct product of its Sylow
subgroups, each of which is a subgroup of a Sylow subgroup of G.
Thus (z,y) can be written as a direct product of abelian groups. O

Corollary 2 If |G| is not divisible by the cube of any prime, then
vo(G) > (ps — 1) /ps.



Proor: If |G
p or ])2. a

is cube-free, then all Sylow subgroups of G have order

Lemma 6 For any group G, vy(G) = 1vy(G/Z(G)).

PrROOF:  If (z,y) is nilpotent, then so is (zjz,zoy) for 21,290 €
Z(G). Since cosets of Z(G) all have the same cardinality, it suffices
to show that (z,y) is nilpotent in G if, and only if, (xZ(G),yZ(G))
is nilpotent in G/Z(G).

If (x, y) is nilpotent in G, then clearly (xZ(G), yZ(G)) is nilpotent
in G/Z(G). In fact, it is clear that vy(G) > vy(G/N) for any N I G.
If (x,y) is non-nilpotent in G, then H = (x,y, Z(G)) is non-nilpotent
in G. Thus H/Z(H) is non-nilpotent. But H/Z(H) is isomorphic to
a quotient group of H/Z(G), so H/Z(G) cannot be nilpotent. Thus
(xZ(G),yZ(G)) = H/Z(G) is non-nilpotent. O

Corollary 3 For any group G, vy(G) = v(G/Z(G)) = n(G/Z3N(G)) =
= 1(G/Z0(G)).

PROOF: Let H; denote G/ZU~1), Tt follows from the construction
of the upper central series that

ZW(G) )2 (G) =2 Z(H;).
Since G/Z")(G) = H;/Z(H;) and since vy(H;) = vo(H;/Z(H;)), we
have 19(G/ZY(G)) = 1np(G/ZD(@)). O
Corollary 4 If N is a normal subgroup of G and is contained in

Zy, then vy(G) = vy(G/N).

PROOF: As noted in the proof of Lemma 6, vo(G) > v(G/N).
Since N is contained in 7, G/Zy is a quotient group of G/N. Thus
vo(G/N) > vy(G/Z1) = 1vp(G). O

Corollary 5 If G/Z), = Sz then vy(G) = 3.

Corollary 6 |G||Z}| is a divisor of ng(G).
8



PrOOF: By Corollary 1, |G|/|Z}] is a divisor of ng(G/Z}). By Corol-
lary 3, 19(G) = vo(G/Zy), so |G|/|Zx| is a divisor of ng(G)/|Z,|?. O

Lemma 7 If G has trivial center, then vy(G) > vo(G/N) for all

non-trivial normal subgroups N of G.

PROOF: Since (z,y) nilpotent in G implies (xN,yN) nilpotent in
G/N, it suffices to show that some subgroup (z,y) is non-nilpotent
in G while its image (zN,yN) is nilpotent in G/N.

If N is non-nilpotent, we are done because by Theorem 1, we
have a non-nilpotent subgroup (z,y) of N whose image in G/N is
necessarily trivial.

Now we consider the case in which N is nilpotent and vy(G) =
vo(G/N). First we show that we may assume N to be a p-group. N
is the direct product of its Sylow subgroups P; x Py --- x P,. Since
N is normal in G, P is normal in G. Since vy is non-increasing over
quotients, 1(G) > w(G/P1) > vo((G/P)/(N/Py)) = ny(G/N) =
vo(G), so 1v9(G) = 1(G/Py). If N is not a p-group, we replace N by
P.

Now it suffices to show that some element in N together with
some element of G — N generates a non-nilpotent subgroup of G
because the image of the element in N is trivial in G/N. Suppose
instead that (x, y) is nilpotent for all z € N,y € G—N. In particular,
we may take z € Z(N) and conclude, by Theorem 1, that z must also
commute with all elements of order relatively prime to p. Writing G
as a product (not necessarily direct) of its Sylow subgroups, we see
that x commutes with all of G, contradicting Z(G) = e. O

If there is a solvable non-nilpotent group G for which v(G) <
(ps — 1) /ps, then there is one of minimal order, say M.
Fact All proper quotients of M are nilpotent.
PROOF: Suppose that NI M and M /N is non-nilpotent. Let p, and
pl, denote the smallest primes dividing |M| and |M/N|, respectively.
Then

vo(M/N) < (M) < (ps — 1) /ps < (0, — 1)/,

contradicting the minimality of the order of M. O
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Solvable non-nilpotent groups with all of their proper quotients
nilpotent are referred to as just-non-nilpotent (JNN) groups. Note
that all JNN groups must have trivial center (otherwise G/Z(G) is
a proper non-nilpotent quotient). Francosi and de Giovanni [3] have
characterized finite JNN groups:

Theorem 6 A finite group G 1s JNN if, and only of, G s isomorphic
to the semi-direct product L < A where A is an elementary abelian
q-group (q a prime), L is a finite nilpotent group whose order is not
divisible by q, and the action of L on A s faithful and irreducible.

Thus, to prove Theorem 5 it suffices to prove it for JN N groups.
To this end let J denote such a group: J = L o A where L and A are
as in the Francosi and de Giovanni result. Since L = Py X --- x Py,
where the P;’s are the unique p;-Sylow subgroups of L, we may write

Due to Lemma 1 and the structure of J, we see that the num-
ber of p-Sylow subgroups containing a given element in J will play
an important role in our proof . Given a subset {x1,...,z;} of a
group, we define #,(z1,...,zx) as the number of p-Sylow subgroups
containing {x1,...xp}.

Lemmas 9-12 and Corollaries 8 and 9 each concern groups of the
form P o N where P is a p-group and p does not divide |N|.

Lemma 8 Ifx and y are in a common p-Sylow subgroup of P x N,
then

o _lc@ncy)n N
#p(lgy)— |C(P)ON| .

PRrROOF: We may assume that z,y € P because P x N may be
written as the semi-direct product of any of its p-Sylow subgroups
with N. Since G = PN, we may write any other p-Sylow subgroup
as

P' = (zpry) 'Plapry) =2y (zp Prp)zy = 25 Pry

where zp € P, xy € N. Thus all p-Sylow subgroups are conjugate
to P, and thus to each other, by elements in N. Now each p-Sylow
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subgroup contains exactly one element from each coset of N and
conjugation by an element of N preserves cosets of N, so conjugating
P by zy € N will yield a p-Sylow containing = and y if, and only
if, zy € C(z) N C(y) N N. For the same reasons, conjugation by zy
fixes P if, and only if, zy commutes with all of P. Therefore we must

divide |C(z) N C(y) N N| by |C(P)N N|. O

Corollary 7 If G = P x N, then

_ |C(x) N N|
|C(P)N N|

[NV

o NN

and #,(e) =
Proor: This follows by observing that #,(z) = #p(x,c) and
#p(e) = F#p(e,e). O

Note that #,(e) is just the number of p-Sylow subgroups in P
N. Hereafter, we will denote this number by #,,.

Corollary 8 If = is in a p-Sylow subgroup of P o< N, then #,(x)
dwvides 3.

ProoF: This follows from the fact that #,/#,(z) = |N|/|C(X)N
N|. O

Lemma 9 Ifz andy are in p-Sylow subgroups of P «x N and in the
same coset of N, then #,(x) = #,(y).

PrROOF: Since all p-Sylow subgroups are conjugate by an element
in N, and conjugation by N preserves cosets of N, there is a group
automorphism (conjugation by some element of N) that sends z to
y. O

Lemma 10 Ifx € (P x N) — N, then x has order divisible by p.
PROOF: If p does not divide the order of #, then 2!V = e. Thus the
coset N has order a divisor of |[N|in (P o« N)/N. This is impossible

since (P o« N)/N is a p-group and N has order relatively prime to
p. d
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Lemma 11 If (z,y) is nilpotent in P o N, then there exists a p-
Sylow subgroup, P, ,. of P o< N and unique elements x,,y,, TN, yn
such that

1. z= TpTN, Y = YpYN,
2. <CI7> = <$p-,$N>7 <y> = <y]77y~’\7>7

3. xp,yp € Py,

B

xy,yn € Clz,) NClyy) NN, and

5. (xn,yn) is nilpotent.

. A k
PrROOF: Let |P| = pk. Choose ), = 2N and zy = zMP" and
assign hy and hy by the equation

hi|N|+ hop® =1 (mod pF|N|).

By the Chinese Remainder Theorem, this equation has a solution
(mod p*|N|), since p* and |N| are relatively prime. Such a solution
is in fact unique in the context of the group, because if

PYIN|+ hfzpk =1 (mod pk|N|)7
we have that
(B} — h1)|N |+ (b — h2)p* = 0 (mod p*|N|).

But then (b} — hy) must be divisible by p*, so "IN = 2MINT (simi-
larly for hs). Therefore, z,zn = g N2t = x, since |z| is a divisor
of p*|N|. We choose yp and yx in a similar fashion.

ClOEll"ly, <$> = <x70: $N>7 <y> = <yp7 yN>: and Tp,Yp, TN, YN are
unique.

Now since |z,

and |y,| are both powers of p and (z, y) is nilpotent,
Lemma 1 implies that (z,,y,) is a p-group. Therefore there is some
p-Sylow subgroup, P, ,, which contains both z, and y,,.

That yy € C(z,) N Cly,) follows from Lemma 1 because z, and
yn have relatively prime orders and because y, and yy are both
powers of y. That yy € N follows from Lemma 10 because the order
of yy is relatively prime to p. The argument for zy is similar.
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Finally, since (zx,yy) is contained in (x,, y,, 25, yn) = (x,y), it
is nilpotent. O

Recall the structure of J (see (x)). We will show that if N =
Py x- x (P xA)and vy(N) > (ps — 1) /ps, then p,(P; < N) >
(ps — 1)/ps. After that, we will show that vo(P; x A) > (ps — 1) /ps.

Consider P; «x N. How do we count the number of pairs (z,y)
such that x is in one fixed coset of N, y is in another fixed coset of
N, and (z,y) is nilpotent? (We will refer throughout this part of
the proof to p; as p.) First we fix a p-Sylow subgroup P of P; o« N
and ask how many ordered pairs (z,y) are in the fixed ordered pair
of cosets (z,N,y,N), with z,,y, € P such that we may represent
r = zpry and y = yyyn with all of the conditions in Lemma 11
holding for zx,yn (7, and y, are fixed). We denote this number by
c(xp,yp). An upper bound for c(z,,y,) is obtained by noting that
xn and yy both satisfy condition (4) of Lemma 11; i.e., there are no
more than |C(z,) NC(y,) NN| choices for  y — and likewise for yy.
Thus c(zp,y,) < |C(z,) N C(y,) N N|2 Note that this is an upper
bound because we have not included the condition that {zx,yx) is
nilpotent.

Any other two elements m;), y;) which are in some other p-Sylow
subgroup P’ and the same cosets of N as x,,y,, respectively, satisfy
c(xz’j,y;) = ¢(zp, yp) because there is an inner automorphism which
sends x,,,y, to x,y,. The number of such z,y;, equals the number
of distinct p-Sylow subgroups in the group divided by the number
which contain both z, and y,; i.e.. #,/#,(x),, y,). But every pair of
elements (z,y) with € 2, N and y € y,N and (z,y) nilpotent must
yield exactly one of the :17;), y;)’s (Lemma 11), so the total number of
nilpotent pairs (z,y) with « € z,N, y € y,N (denoted by cr(z,,yp))

can be expressed as follows:

cr(Tp,yp) = c(xp,yp) <%)

|N] )
2 (\C(P)WN\
|C(zp) N Clyy) NN (\C(;L-p)mc(yp)mN|>
[C(P)NNT)

IA

= |C(z,) NC(yy) N N||N]|.
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But the total number of pairs (x,y) with z and y in the appropriate
cosets is just |N|%, so the probability that a pair (z,y) chosen from
the coset pair (z,N,y,N ) generates a nilpotent subgroup is bounded
by [C'(xp) N Clyp) NN|/[N].

By Theorem 6, the action of P on A (which is a subgroup of N)
is faithful, so unless both z, and y, are the identity, either z, or
yp (or both) commutes with no more than 1/g of the elements A.
This in turn means that at least one of x,, or y, commutes with no
more than 1/¢ of the elements of N. Thus, unless both z, and y,
are the identity, the probability that a pair of elements (x,y), chosen
from the cosets x,N,y,N respectively, generates a nilpotent group
is bounded by 1/¢ < 1/ps, as desired. But if the probability that
two elements both chosen from N generate a nilpotent group is also
less than or equal to 1/ps, then the probability that two elements
generate a nilpotent group is less than or equal to 1/p for any coset
pair. Thus given that 1o(N) > (ps — 1)/ps, we have shown that
vo(P; x N) > (ps — 1) /ps, and the induction step is complete.

Now we proceed with the base case of the induction. We need to
show that vo(P o« A) > (ps — 1)/ps for A = (Z,)" and P a p-Sylow
subgroup, p # ¢. Using the argument made in the induction step, we
know that if the two elements in a pair are not both in A, then the
probability that the pair generates a nilpotent subgroup is less than
or equal to 1/¢g. The probability that two elements chosen at random
from the group generate a non-nilpotent group is at least

p27n_1 <q_1)
p‘Zm q :

We consider two cases, remembering that the choice of which Sylow

subgroup of L would serve as P; was arbitrary, since L was just the
direct product of the P;’s.

Case: ¢ is not the largest prime dividing |J|. Choose some Sylow
subgroup P of L, where p > ¢, and act first with it. Let |P| = p™.
We will first show that not all of the values of |C(z,)NC(y,)NA| that
were used in the induction proof are actually equal to ¢"~!. Suppose
instead that they were. This implies that C'(z,) N A and C(y,) N A
have order ¢" ! for any choice of »Yp € P (they cannot have order
q", because then the action of P on A would not be faithful). But
for any z, not equal to the identity, |C(z,) NA| < ¢" !, since P acts
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faithfully on A. Thus every element in P must commute with exactly
the same ¢" ! elements in A, so |C(P)NA| = ¢"~ . Then the number
of p-Sylow subgroups of P o« A is equal to |A|/|C(P)N A| = ¢. Since
no non-identity element of P is in all of the p-Sylow subgroups (the

action is faithful so no non-identity element commutes with all of A)
and since the number of Sylow p-groups an element is in must divide
the total number of p-Sylow subgroups (Lemma 8), they must all be
in exactly one p-Sylow subgroup, namely P. Thus the total number
of elements in p-Sylow subgroups is just ¢(p™ —1)+1 =g¢p™ — g+ 1.
By Frobenius [4], this number must be divisible by p™, so ¢ = 1 (mod
p™). This is impossible since ¢ < p. So, as claimed, not all of the
|C(x,) N C(y,) N Al are equal to ¢" L.

Now if |C(z,) N C(y,) N A] < ¢" 2, then there are at least p — 1
elements of P, namely yp,yg7 .. ,y{jfl, all of which are in different

cosets of N and whose centralizers intersect C'(z,) N A in no more
than ¢"~2 eclements. We will show that this is in fact enough to
make the total probability greater than (¢ — 1)/g. Given this set of
2(p —1) ordered pairs in P (z, can be either the first or last element
in the pair, so there is a 2 in the expression) with sufficiently small
centralizer intersections, the probability that two elementsin P x A
generate a non-nilpotent group can be bounded as follows:

2m ' ' 2
prmt—=2p+1 g—1 2p — 2 g —1
I/O(P & A) =z ( ])Qm ) ( q + p2m (]2

_ <q—1) g —2p+1) + (¢ +1)(2p — 2)
q qp*m
_ <q—1) qp*™ — 2pq + q + 2pq — 2q + 2p — 2
B q gp?m
_ <q—1) W —q+2p -2
q ap*™
1
> 1=
q

We note that equality cannot hold for this case, since p > ¢ > 2
implies that 2p > ¢ + 2.

Case: ¢ is the largest prime dividing |J|. We act first with the
Sylow subgroup of L corresponding to the largest prime, say p, which
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divides L. Note that p < ¢. But then ¢ > p+1,s0 (¢—1)/q > p/(p+1).
In this case,

2m
, 1 ,
(P x A) > d 5 ( P )
p m p _l’_ 1
_ p? =D+ )
- p¥m(p+1)
2m—1¢,2 )
p-—1 ‘
> pz(# (equality only if m = 1)
p NL(p _l’_ 1)
_ p=l
= 5
> Ps — 1 )
Ps

As a result, we see that we have equality only if m =1 and ¢ = p+1,
ie., if p™ = 2 and ¢ = 3. But since p was the largest prime dividing
|L|, this means that for equality to occur, L = Zy and A = (Z3)".
Thus the base case of our induction is complete, and so is our proof
that, for all solvable non-nilpotent groups G, 1(G) > (ps — 1) /ps.

Now we prove the equality condition of Theorem 5. From our
analysis of the base case of the induction, we know that the only
way that vo(J) can actually equal (ps — 1)/ps is if J = Zy x (Z3)".
In this case all Sylow subgroups of J are abelian. Lemma 5 implies
that vo(J) = (ps — 1)/ps = L only if p1(J) = L. It is known [7] that
the only groups in which the probability of two elements commuting
is exactly one half are those groups H such that H/Z(H) = Ss.
Therefore, the only JNN group J for which vg(J) = (ps — 1)/ps
is J 2 S3. Now if a group G is solvable (but not JNN), 1y(G) =
(ps — 1) /ps only if S3 is a quotient group of G, and vy(G) = 1y(S3).
By Lemma 4 and Corollary 4, this requires that G/N £ S3, where
N C Zy(G). If N is not equal to Z;(G), then G/Z,(G) must be
a proper quotient group of S3. But all proper quotients of S3 are
abelian, which contradicts the fact that G must be non-nilpotent, so
N = Z,(G). Thus vy(G) = (ps — 1)/ps for a solvable group G if, and
only if, G/Z,(G) = Ss.
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6 Solvable pairs
For (z,y) € G?, consider the derived series of (x,y):

Here R is the unique maximal perfect subgroup of G and 1 is the
smallest non-negative integer such that (z,y)) = R. If R = {e},
then (z,y) is solvable of class ¢. If R # {e}, then (z,y) is non-
solvable and we say it is solvable of class 0. Let

5i(G)
|G?

o0i(G) =
where
si(G) = {(z,y) € G*|{x,y) is solvable of class i}|.

It is known that 0;(G) = 1 if, and only if, G is solvable [8].
Question 1 Does |G| divide s;(G)?

We can show the answer is yes for so2(G).
Question 2 Is the limiting behavior of o;(G) predictable?
Conjecture 1 If G is non-solvable, then oo(G) > 19/30.

We note that oog(PSL(2,5)) = 0¢(S5) = o¢(A45) = 19/30.
Conjecture 2 Theorem 5 holds for non-solvable groups.

Note that Conjecture 2 follows from Conjecture 1:

v(G) > 09(G) > 19/30 > 1/2 = (ps — 1)/ps

because all non-solvable groups have even order.
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