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Abstract

LetG be a �nite group and let �

i

(G) denote the proportion

of ordered pairs of G that generate a subgroup of nilpotency

class i. Various properties of the �

i

's are established. In par-

ticular it is shown that �

i

= k

i

� jGj=jGj

2

for some non-negative

integers k

i

and that

P

1

i=1

�

i

is either 1 or at most 1/2 for

solvable groups.

1 Introduction

Let G be a �nite group and let

�

i

(G) =

n

i

(G)

jGj

2

where

n

i

(G) = jf(x; y) 2 G

2

jhx; yi is nilpotent of class igj

for 0 � i � 1. We take `hx; yi is nilpotent of class 0' to mean that

hx; yi is non-nilpotent. Clearly,

�

0

(G) = 1�

1

X

i=1

�

i

(G):

It is well known that �

1

(G), the proportion of commuting pairs in

G, is at most 5/8 for non-abelian groups [5]. There is no analogous

lower bound for �

1

(G). In particular, �

1

(S

n

) ! 0 where S

n

is the

�
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symmetric group on n symbols. Both of these results follow from the

fact that �

1

(G) is the ratio of the number of conjugacy classes in G

to the order of G [2].

In this paper we establish the following results concerning nil-

potent pairs.

� G is nilpotent if, and only if, �

0

(G) = 0.

� jGj is a divisor of n

i

(G).

� If i 6= 1, then there exists a sequence of groups for which �

i

! 1.

� If i 6= 0, then there exists a sequence of groups for which �

i

! 0.

� If G is a solvable non-nilpotent group, then �

0

(G) � (p

s

�1)=p

s

where p

s

is the smallest prime dividing jGj.

� �

0

(G) = (p

s

� 1)=p

s

if, and only if, G=Z

h

�

=

S

3

where Z

h

is the

hypercenter of G (i.e. the largest group in the upper central

series of G).

2 A characterization of nilpotent groups

It is clear that a group is abelian if, and only if, hx; yi is abelian for

each pair of elements in G. An elementary proof of the analogous

criterion for nilpotency follows.

Lemma 1 Let x; y 2 G. The subgroup hx; yi is nilpotent if, and only

if, the following two conditions hold.

1. For any positive m;n; if x

m

and y

n

have relatively prime or-

ders, then they commute.

2. For any positive m;n; if x

m

and y

n

have orders which are pow-

ers of the same prime p, then hx

m

; y

n

i is a p-group.

Proof: The necessity of the conditions follows because G is the

direct product of its Sylow subgroups. To prove the converse, we

will show that the two conditions imply that hx; yi = H is a di-

rect product of its Sylow subgroups. Let jxj = p

a

1

1

� � � p

a

k

k

and jyj =

2



p

b

1

1

� � �p

b

k

k

, where some of the a

i

's and b

i

's may be zero. Then there

exist x

1

; : : : ; x

k

which are powers of x such that jx

i

j = p

a

i

i

(we let

x

i

= x

jxj=p

a

i

i

).

Since gcd(jxj=p

a

1

1

; : : : ; jxj=p

a

k

k

) = 1, we know that hxi = hx

1

; : : : ; x

k

i:

Similarly, there exist y

1

; : : : ; y

k

which are all powers of y such that

jy

i

j = p

b

i

i

and hyi = hy

1

; : : : ; y

k

i; so we may writeH = hx

1

; : : : ; x

k

; y

1

; : : : y

k

i:

Since x

i

and x

j

are both powers of x; they must commute for all i; j:

Also, due to the �rst condition, if i 6= j, then x

i

and y

j

must com-

mute, since they have relatively prime order. The second condition

implies that hx

i

; y

i

i is a p

i

-group for all i; and since all other genera-

tors of H commute with both x

i

and y

i

; hx

i

; y

i

i is in fact the normal

p

i

-Sylow subgroup of H; i.e., there are k normal Sylow subgroups in

H: But since all Sylow subgroups of H are normal, H must in fact

be a direct product of its Sylow subgroups. 2

Theorem 1 G is nilpotent if, and only if, �

0

(G) = 0:

Proof: If G is nilpotent, then all subgroups of G are nilpotent, so

�

0

(G) = 0: If G is non-nilpotent, then it is not the direct product of

its Sylow subgroups. Therefore, there exist x and y in G of relatively

prime order such that x and y do not commute. By Lemma 1, these

generate a non-nilpotent group. 2

3 jGj divides n

i

(G)

We will show more: the number of n-tuples which generate a sub-

group of nilpotency class i is a multiple of the order of the group for

all n and i:

Lemma 2 The group G = hx

1

; : : : ; x

n

i is nilpotent of class less than

or equal to i if, and only if, all commutators of length i+1 with only

the x

k

's as entries are equal to the identity.

Proof: (A commutator of the form [x; y] has length 2; while a com-

mutator of length i is of the form [x; c

i�1

]; where c

i�1

is a commutator

of length i� 1:)

3



Assume that G is nilpotent of class at most i: By the commutator

de�nition of nilpotency, G

(i)

= [G;G

(i�1)

] = feg; so in particular the

commutators of length i + 1 with x

k

's as entries must equal the

identity.

For the converse, we proceed by induction on i. Suppose that all

commutators of length i + 1 with x

k

's as entries equal the identity.

Then all commutators of length i with x

k

's as entries are contained

in Z(G): Thus, in G=Z(G) all commutators of length i with x

k

�

Z(G)'s as entries are trivial. By the induction hypothesis, G=Z(G)

has nilpotency class less than or equal to i� 1. The lemma follows

because G has nilpotency class exactly one greater than G=Z(G). 2

Theorem 2 The number of n-tuples, (x

1

; : : : ; x

n

); such that hx

1

; : : : ; x

n

i

has nilpotency class i is a multiple of jGj for all i � 1:

Proof: It su�ces to show that the number of n-tuples generating

a subgroup of nilpotency class less than or equal to i is a multiple of

jGj:

For each n-tuple (x

1

; : : : ; x

n

), de�ne a sequence C = fc

j

g con-

sisting of commutators of the x

k

's of lengths i; i � 1; : : : ; 2 and the

generators x

1

; x

2

; : : : ; x

n�1

. For example, if i = 2 and n = 2; then

the sequence would be

C = f[x

1

; x

1

]; [x

1

; x

2

]; [x

2

; x

1

]; [x

2

; x

2

]; x

1

g:

We say that x

n

`works' with C if (x

1

; : : : ; x

n

) yield C and if all com-

mutators of the x

k

's of length i+1 are the identity. Let w(C) denote

the number of x

n

working with C: Let K denote the intersection of

the centralizers of the components of C:

We claim that w(C) is either 0 or jKj: To prove this it su�ces

to show that if s works with C, then t works with C if, and only if,

t

�1

s is in K: First, let t be some other element of the group which

works with C: Since [t; c

j

] = [s; c

j

]; t

�1

s 2 C(c

j

), the centralizer of c

j

in G. This is true for each c

j

so t

�1

s must be in K: The converse is

immediate using the same reasoning.

Now let g

�1

Cg denote the sequence obtained by conjugating each

component of C by g: Observe that g

�1

x

n

g works with g

�1

Cg if, and
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only if, x

n

works with C. Thus, w(C) = w(g

�1

Cg) for any g 2 G:

It is easy to see that the number of distinct sequences obtained by

conjugating C by an element in G is jGj=jKj:

It follows that

jGj

jKj

w(C) =

X

g

�1

Cg

w(g

�1

Cg) =

(

jGj

0

:

Thus, the sum over all possible C can be expressed as

X X

g

�1

Cg

w(g

�1

Cg) =

X

jGj

which is also a multiple of jGj: 2

Corollary 1 The number of n-tuples, (x

1

; x

2

; : : : ; x

n

); that generate

a non-nilpotent subgroup is a multiple of jGj:

4 Limiting values of �

i

(G)

Lemma 3 For all groups G and H and all m � 1;

m

X

i=1

�

i

(G�H) =

 

m

X

i=1

�

i

(G)

! 

m

X

i=1

�

i

(H)

!

:

Proof: It su�ces to show that

m

X

i=1

n

i

(G�H) =

 

m

X

i=1

n

i

(G)

! 

m

X

i=1

n

i

(H)

!

:

Let x

G

and x

H

denote the projection of x onto G and H; respec-

tively. Since the nilpotency class of a direct product is the maximum

of the nilpotency classes of its factors and since both hx

G

; y

G

i and

hx

H

; y

H

i are quotient groups of hx; yi; it follows that hx; yi has nilpo-

tency class greater than or equal to hx

G

; y

G

i�hx

H

; y

H

i: The opposite

inequality follows since hx; yi is a subgroup of hx

G

; y

G

i � hx

H

; y

H

i:

2
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Theorem 3 For each non-negative integer m other than one, there

exists a sequence fG

n

g of groups such that �

m

(G

n

)! 1.

Proof: It is known [5] that �

1

; the probability of two elements

commuting, is either 1 or less than or equal to 5=8: For the other

values of m; we will de�ne a sequence of groups fG

n

g in which G

n

=

n

Y

i=1

G:

Case: m = 0. Let G = S

3

and note that �

0

(G) = 1=2 > 0,

�

1

(G) = 1=2, and �

i

(G) = 0 for i � 2. By Lemma 3, �

1

(G

n

) =

(1=2)

n

! 0; i.e. �

0

(G

n

)! 1.

Case: m � 2: We de�ne G to be the dihedral group on 2

m

sym-

bols. G has nilpotency class m and is 2-generated, so �

m

(G) > 0 and

P

m�1

i=1

�

i

(G) < 1: It follows that from Lemma 3 that

lim

n!1

m�1

X

i=1

�

i

(G

n

) = lim

n!1

(

m�1

X

i=1

�

i

(G))

n

= 0

which implies that �

m

(G

n

)! 1: 2

Theorem 4 For each integer m � 1, there exists a sequence fG

n

g

of groups such that �

m

(G

n

) > 0 for all n and �

m

(G

n

)! 0:

Proof: Let G be the dihedral group on 2

m+1

symbols and let

G

n

=

n

Y

i=1

G. Note that G is 2-generated and has nilpotency class

m; so �

m

(G) > 0: Since G contains a subgroup isomorphic to the

dihedral group on 2

m�1

symbols, each G

n

contains such a subgroup,

so �

m

(G

n

) > 0 for each n: Theorem 3 implies that �

m+1

(G

n

) ! 1;

which in turn implies �

m

(G

n

)! 0. 2

5 A lower bound on �

0

(G) for solvable non-

nilpotent groups

Theorem 5 If G is a solvable non-nilpotent group, then �

0

(G) �

(p

s

� 1)=p

s

; where p

s

is the smallest prime dividing jGj: Moreover,

�

0

(G) = (p

s

� 1)=p

s

if, and only if, G=Z

h

�

=

S

3

.

6



The proof of this theorem is quite long and is best made through

a sequence of lemmas.

Lemma 4 If G is non-nilpotent and p

s

is the smallest prime dividing

jGj; then �

1

(G) � 1=p

s

:

Proof: We note that �

1

(G) � �

1

(G=Z(G)), since if two elements

commute in G, their cosets commute in G=Z(G). Thus it su�ces to

prove the lemma for groups with trivial center. Now by Erd�os [2],

we know that we may write �

1

(G) = k=jGj, where k is the number of

conjugacy classes of G. In order to prove the lemma, we assume that

k=jGj > 1=p

s

and derive a contradiction. The assumed inequality

implies that k � jGj=p

s

+1; since p

s

divides the order of G: But then

we may use the class equation as follows (x denotes the conjugacy

class of x):

jGj = jZ(G)j+

X

x

jGj

jC(x)j

� 1 + p

s

(k� 1)

� 1 + jGj;

a contradiction. 2

Lemma 5 If all Sylow subgroups of a group G are abelian, then

�

i

(G) = 0 for all i � 2 and either the group is abelian or �

0

(G) �

(p

s

� 1)=p

s

.

Proof: We will show that in such a group G; either two elements

commute or they generate a non-nilpotent subgroup. Combining this

with Lemma 4 gives the desired result, because if �

i

(G) = 0 for all

i � 2; then �

0

(G) + �

1

(G) = 1:

Consider two elements x; y 2 G for which hx; yi is nilpotent. This

means that hx; yi can be written as a direct product of its Sylow

subgroups, each of which is a subgroup of a Sylow subgroup of G:

Thus hx; yi can be written as a direct product of abelian groups. 2

Corollary 2 If jGj is not divisible by the cube of any prime, then

�

0

(G) � (p

s

� 1)=p

s

:

7



Proof: If jGj is cube-free, then all Sylow subgroups of G have order

p or p

2

: 2

Lemma 6 For any group G; �

0

(G) = �

0

(G=Z(G)):

Proof: If hx; yi is nilpotent, then so is hz

1

x; z

2

yi for z

1

; z

2

2

Z(G): Since cosets of Z(G) all have the same cardinality, it su�ces

to show that hx; yi is nilpotent in G if, and only if, hxZ(G); yZ(G)i

is nilpotent in G=Z(G):

If hx; yi is nilpotent inG, then clearly hxZ(G); yZ(G)i is nilpotent

in G=Z(G): In fact, it is clear that �

0

(G) � �

0

(G=N) for any N � G:

If hx; yi is non-nilpotent in G, then H = hx; y; Z(G)i is non-nilpotent

in G. Thus H=Z(H) is non-nilpotent. But H=Z(H) is isomorphic to

a quotient group of H=Z(G), so H=Z(G) cannot be nilpotent. Thus

hxZ(G); yZ(G)i

�

=

H=Z(G) is non-nilpotent. 2

Corollary 3 For any groupG; �

0

(G) = �

0

(G=Z(G)) = �

0

(G=Z

(2)

(G)) =

� � � = �

0

(G=Z

(n)

(G)):

Proof: Let H

i

denote G=Z

(i�1)

: It follows from the construction

of the upper central series that

Z

(i)

(G)=Z

(i�1)

(G)

�

=

Z(H

i

):

Since G=Z

(i)

(G)

�

=

H

i

=Z(H

i

) and since �

0

(H

i

) = �

0

(H

i

=Z(H

i

)); we

have �

0

(G=Z

(i)

(G)) = �

0

(G=Z

(i�1)

(G)): 2

Corollary 4 If N is a normal subgroup of G and is contained in

Z

h

; then �

0

(G) = �

0

(G=N):

Proof: As noted in the proof of Lemma 6, �

0

(G) � �

0

(G=N):

Since N is contained in Z

h

; G=Z

h

is a quotient group of G=N . Thus

�

0

(G=N) � �

0

(G=Z

h

) = �

0

(G): 2

Corollary 5 If G=Z

h

�

=

S

3

then �

0

(G) =

1

2

:

Corollary 6 jGjjZ

h

j is a divisor of n

0

(G).

8



Proof: By Corollary 1, jGj=jZ

h

j is a divisor of n

0

(G=Z

h

). By Corol-

lary 3, �

0

(G) = �

0

(G=Z

h

), so jGj=jZ

h

j is a divisor of n

0

(G)=jZ

h

j

2

. 2

Lemma 7 If G has trivial center, then �

0

(G) > �

0

(G=N) for all

non-trivial normal subgroups N of G.

Proof: Since hx; yi nilpotent in G implies hxN; yNi nilpotent in

G=N; it su�ces to show that some subgroup hx; yi is non-nilpotent

in G while its image hxN; yNi is nilpotent in G=N:

If N is non-nilpotent, we are done because by Theorem 1, we

have a non-nilpotent subgroup hx; yi of N whose image in G=N is

necessarily trivial.

Now we consider the case in which N is nilpotent and �

0

(G) =

�

0

(G=N): First we show that we may assume N to be a p-group. N

is the direct product of its Sylow subgroups P

1

� P

2

� � � � P

n

: Since

N is normal in G; P

1

is normal in G: Since �

0

is non-increasing over

quotients, �

0

(G) � �

0

(G=P

1

) � �

0

((G=P

1

)=(N=P

1

)) = �

0

(G=N) =

�

0

(G); so �

0

(G) = �

0

(G=P

1

): If N is not a p-group, we replace N by

P

1

:

Now it su�ces to show that some element in N together with

some element of G � N generates a non-nilpotent subgroup of G

because the image of the element in N is trivial in G=N: Suppose

instead that hx; yi is nilpotent for all x 2 N , y 2 G�N . In particular,

we may take x 2 Z(N) and conclude, by Theorem 1, that xmust also

commute with all elements of order relatively prime to p. Writing G

as a product (not necessarily direct) of its Sylow subgroups, we see

that x commutes with all of G; contradicting Z(G) = e: 2

If there is a solvable non-nilpotent group G for which �

0

(G) <

(p

s

� 1)=p

s

; then there is one of minimal order, say M .

Fact All proper quotients of M are nilpotent.

Proof: Suppose thatN�M andM=N is non-nilpotent. Let p

s

and

p

0

s

denote the smallest primes dividing jM j and jM=N j, respectively.

Then

�

0

(M=N) � �

0

(M) < (p

s

� 1)=p

s

� (p

0

s

� 1)=p

0

s

;

contradicting the minimality of the order of M: 2

9



Solvable non-nilpotent groups with all of their proper quotients

nilpotent are referred to as just-non-nilpotent (JNN) groups. Note

that all JNN groups must have trivial center (otherwise G=Z(G) is

a proper non-nilpotent quotient). Francosi and de Giovanni [3] have

characterized �nite JNN groups:

Theorem 6 A �nite group G is JNN if, and only if, G is isomorphic

to the semi-direct product L / A where A is an elementary abelian

q-group (q a prime), L is a �nite nilpotent group whose order is not

divisible by q, and the action of L on A is faithful and irreducible.

Thus, to prove Theorem 5 it su�ces to prove it for JNN groups.

To this end let J denote such a group: J

�

=

L / A where L and A are

as in the Francosi and de Giovanni result. Since L

�

=

P

1

� � � � � P

k

;

where the P

i

's are the unique p

i

-Sylow subgroups of L, we may write

J = P

k

/ (P

k�1

/ � � � / (P

1

/ A)): (�)

Due to Lemma 1 and the structure of J , we see that the num-

ber of p-Sylow subgroups containing a given element in J will play

an important role in our proof . Given a subset fx

1

; : : : ; x

k

g of a

group, we de�ne #

p

(x

1

; : : : ; x

k

) as the number of p-Sylow subgroups

containing fx

1

; : : : x

k

g.

Lemmas 9-12 and Corollaries 8 and 9 each concern groups of the

form P / N where P is a p-group and p does not divide jN j.

Lemma 8 If x and y are in a common p-Sylow subgroup of P / N;

then

#

p

(x; y) =

jC(x) \ C(y) \N j

jC(P ) \N j

:

Proof: We may assume that x; y 2 P because P / N may be

written as the semi-direct product of any of its p-Sylow subgroups

with N. Since G = PN; we may write any other p-Sylow subgroup

as

P

0

= (x

P

x

N

)

�1

P (x

P

x

N

) = x

�1

N

(x

�1

P

Px

P

)x

N

= x

�1

N

Px

N

where x

P

2 P , x

N

2 N . Thus all p-Sylow subgroups are conjugate

to P; and thus to each other, by elements in N: Now each p-Sylow

10



subgroup contains exactly one element from each coset of N and

conjugation by an element of N preserves cosets of N , so conjugating

P by z

N

2 N will yield a p-Sylow containing x and y if, and only

if, z

N

2 C(x) \ C(y) \ N: For the same reasons, conjugation by z

N

�xes P if, and only if, z

N

commutes with all of P: Therefore we must

divide jC(x) \ C(y) \N j by jC(P ) \N j: 2

Corollary 7 If G = P / N; then

#

p

(x) =

jC(x) \N j

jC(P ) \N j

and #

p

(e) =

jN j

jC(P ) \N j

:

Proof: This follows by observing that #

p

(x) = #

p

(x; e) and

#

p

(e) = #

p

(e; e). 2

Note that #

p

(e) is just the number of p-Sylow subgroups in P /

N . Hereafter, we will denote this number by #

p

:

Corollary 8 If x is in a p-Sylow subgroup of P / N; then #

p

(x)

divides #

p

.

Proof: This follows from the fact that #

p

=#

p

(x) = jN j=jC(X) \

N j: 2

Lemma 9 If x and y are in p-Sylow subgroups of P / N and in the

same coset of N; then #

p

(x) = #

p

(y):

Proof: Since all p-Sylow subgroups are conjugate by an element

in N; and conjugation by N preserves cosets of N; there is a group

automorphism (conjugation by some element of N) that sends x to

y: 2

Lemma 10 If x 2 (P / N)�N; then x has order divisible by p:

Proof: If p does not divide the order of x, then x

jN j

= e. Thus the

coset xN has order a divisor of jN j in (P / N)=N: This is impossible

since (P / N)=N is a p-group and N has order relatively prime to

p: 2

11



Lemma 11 If hx; yi is nilpotent in P / N; then there exists a p-

Sylow subgroup, P

x;y

, of P / N and unique elements x

p

; y

p

; x

N

; y

N

such that

1. x = x

p

x

N

; y = y

p

y

N

,

2. hxi = hx

p

; x

N

i, hyi = hy

p

; y

N

i;

3. x

p

; y

p

2 P

x;y

,

4. x

N

; y

N

2 C(x

p

) \ C(y

p

) \N , and

5. hx

N

; y

N

i is nilpotent.

Proof: Let jP j = p

k

. Choose x

p

= x

h

1

jN j

and x

N

= x

h

2

p

k

and

assign h

1

and h

2

by the equation

h

1

jN j+ h

2

p

k

� 1 (mod p

k

jN j):

By the Chinese Remainder Theorem, this equation has a solution

(mod p

k

jN j), since p

k

and jN j are relatively prime. Such a solution

is in fact unique in the context of the group, because if

h

0

1

jN j+ h

0

2

p

k

� 1 (mod p

k

jN j);

we have that

(h

0

1

� h

1

)jN j+ (h

0

2

� h

2

)p

k

� 0 (mod p

k

jN j):

But then (h

0

1

� h

1

) must be divisible by p

k

; so x

h

1

jN j

= x

h

0

1

jN j

(simi-

larly for h

2

). Therefore, x

p

x

N

= x

h

1

jN j+h

2

p

k

= x; since jxj is a divisor

of p

k

jN j: We choose y

p

and y

N

in a similar fashion.

Clearly, hxi = hx

p

; x

N

i, hyi = hy

p

; y

N

i, and x

p

; y

p

; x

N

; y

N

are

unique.

Now since jx

p

j and jy

p

j are both powers of p and hx; yi is nilpotent,

Lemma 1 implies that hx

p

; y

p

i is a p-group. Therefore there is some

p-Sylow subgroup, P

x;y

, which contains both x

p

and y

p

.

That y

N

2 C(x

p

) \ C(y

p

) follows from Lemma 1 because x

p

and

y

N

have relatively prime orders and because y

p

and y

N

are both

powers of y. That y

N

2 N follows from Lemma 10 because the order

of y

N

is relatively prime to p. The argument for x

N

is similar.

12



Finally, since hx

N

; y

N

i is contained in hx

p

; y

p

; x

N

; y

N

i = hx; yi, it

is nilpotent. 2

Recall the structure of J (see (�)). We will show that if N =

P

i�1

/ � � � / (P

1

/ A) and �

0

(N) � (p

s

� 1)=p

s

; then p

�

(P

i

/ N) �

(p

s

� 1)=p

s

: After that, we will show that �

0

(P

1

/ A) � (p

s

� 1)=p

s

:

Consider P

i

/ N . How do we count the number of pairs (x; y)

such that x is in one �xed coset of N; y is in another �xed coset of

N , and hx; yi is nilpotent? (We will refer throughout this part of

the proof to p

i

as p:) First we �x a p-Sylow subgroup P of P

i

/ N

and ask how many ordered pairs (x; y) are in the �xed ordered pair

of cosets (x

p

N; y

p

N), with x

p

; y

p

2 P such that we may represent

x = x

p

x

N

and y = y

p

y

N

with all of the conditions in Lemma 11

holding for x

N

; y

N

(x

p

and y

p

are �xed). We denote this number by

c(x

p

; y

p

): An upper bound for c(x

p

; y

p

) is obtained by noting that

x

N

and y

N

both satisfy condition (4) of Lemma 11; i.e., there are no

more than jC(x

p

)\C(y

p

)\N j choices for x

N

| and likewise for y

N

:

Thus c(x

p

; y

p

) � jC(x

p

) \ C(y

p

) \ N j

2

: Note that this is an upper

bound because we have not included the condition that hx

N

; y

N

i is

nilpotent.

Any other two elements x

0

p

; y

0

p

which are in some other p-Sylow

subgroup P

0

and the same cosets of N as x

p

; y

p

, respectively, satisfy

c(x

0

p

; y

0

p

) = c(x

p

; y

p

) because there is an inner automorphism which

sends x

p

; y

p

to x

0

p

; y

0

p

: The number of such x

0

p

; y

0

p

equals the number

of distinct p-Sylow subgroups in the group divided by the number

which contain both x

p

and y

p

; i.e., #

p

=#

p

(x

p

; y

p

): But every pair of

elements (x; y) with x 2 x

p

N and y 2 y

p

N and hx; yi nilpotent must

yield exactly one of the x

0

p

; y

0

p

's (Lemma 11), so the total number of

nilpotent pairs (x; y) with x 2 x

p

N , y 2 y

p

N (denoted by c

T

(x

p

; y

p

))

can be expressed as follows:

c

T

(x

p

; y

p

) = c(x

p

; y

p

)

 

#

p

#

p

(x

p

; y

p

)

!

� jC(x

p

) \ C(y

p

) \N j

2

�

jN j

jC(P )\N j

�

�

jC(x

p

)\C(y

p

)\N j

jC(P )\N j)

�

= jC(x

p

) \ C(y

p

) \N jjN j:

13



But the total number of pairs (x; y) with x and y in the appropriate

cosets is just jN j

2

; so the probability that a pair (x; y) chosen from

the coset pair (x

p

N; y

p

N) generates a nilpotent subgroup is bounded

by jC(x

p

) \ C(y

p

) \N j=jN j.

By Theorem 6, the action of P on A (which is a subgroup of N)

is faithful, so unless both x

p

and y

p

are the identity, either x

p

or

y

p

(or both) commutes with no more than 1=q of the elements A:

This in turn means that at least one of x

p

or y

p

commutes with no

more than 1=q of the elements of N: Thus, unless both x

p

and y

p

are the identity, the probability that a pair of elements (x; y); chosen

from the cosets x

p

N; y

p

N respectively, generates a nilpotent group

is bounded by 1=q � 1=p

s

; as desired. But if the probability that

two elements both chosen from N generate a nilpotent group is also

less than or equal to 1=p

s

; then the probability that two elements

generate a nilpotent group is less than or equal to 1=p

s

for any coset

pair. Thus given that �

0

(N) � (p

s

� 1)=p

s

, we have shown that

�

0

(P

i

/ N) � (p

s

� 1)=p

s

; and the induction step is complete.

Now we proceed with the base case of the induction. We need to

show that �

0

(P / A) � (p

s

� 1)=p

s

for A = (Z

q

)

n

and P a p-Sylow

subgroup, p 6= q: Using the argument made in the induction step, we

know that if the two elements in a pair are not both in A; then the

probability that the pair generates a nilpotent subgroup is less than

or equal to 1=q: The probability that two elements chosen at random

from the group generate a non-nilpotent group is at least

 

p

2m

� 1

p

2m

!

�

q � 1

q

�

:

We consider two cases, remembering that the choice of which Sylow

subgroup of L would serve as P

1

was arbitrary, since L was just the

direct product of the P

i

's.

Case: q is not the largest prime dividing jJ j. Choose some Sylow

subgroup P of L; where p > q; and act �rst with it. Let jP j = p

m

:

We will �rst show that not all of the values of jC(x

p

)\C(y

p

)\Aj that

were used in the induction proof are actually equal to q

n�1

: Suppose

instead that they were. This implies that C(x

p

) \ A and C(y

p

) \ A

have order q

n�1

for any choice of x

p

; y

p

2 P (they cannot have order

q

n

; because then the action of P on A would not be faithful). But

for any x

p

not equal to the identity, jC(x

p

)\Aj � q

n�1

; since P acts
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faithfully on A: Thus every element in P must commute with exactly

the same q

n�1

elements in A; so jC(P )\Aj = q

n�1

: Then the number

of p-Sylow subgroups of P / A is equal to jAj=jC(P )\Aj = q: Since

no non-identity element of P is in all of the p-Sylow subgroups (the

action is faithful so no non-identity element commutes with all of A)

and since the number of Sylow p-groups an element is in must divide

the total number of p-Sylow subgroups (Lemma 8), they must all be

in exactly one p-Sylow subgroup, namely P: Thus the total number

of elements in p-Sylow subgroups is just q(p

m

�1)+1 = qp

m

� q+1:

By Frobenius [4], this number must be divisible by p

m

; so q � 1 (mod

p

m

). This is impossible since q < p. So, as claimed, not all of the

jC(x

p

) \ C(y

p

) \ Aj are equal to q

n�1

:

Now if jC(x

p

) \ C(y

p

) \ Aj � q

n�2

; then there are at least p� 1

elements of P; namely y

p

; y

2

p

; : : : ; y

p�1

p

; all of which are in di�erent

cosets of N and whose centralizers intersect C(x

p

) \ A in no more

than q

n�2

elements. We will show that this is in fact enough to

make the total probability greater than (q � 1)=q: Given this set of

2(p� 1) ordered pairs in P (x

p

can be either the �rst or last element

in the pair, so there is a 2 in the expression) with su�ciently small

centralizer intersections, the probability that two elements in P / A

generate a non-nilpotent group can be bounded as follows:

�

0

(P / A) �

 

p

2m

� 2p+ 1

p

2m

!

�

q � 1

q

�

+

�

2p� 2

p

2m

�

 

q

2

� 1

q

2

!

=

�

q � 1

q

�

 

q(p

2m

� 2p+ 1) + (q + 1)(2p� 2)

qp

2m

!

=

�

q � 1

q

�

 

qp

2m

� 2pq + q + 2pq � 2q + 2p� 2

qp

2m

!

=

�

q � 1

q

�

 

qp

2m

� q + 2p� 2

qp

2m

!

>

q � 1

q

:

We note that equality cannot hold for this case, since p > q � 2

implies that 2p > q + 2:

Case: q is the largest prime dividing jJ j: We act �rst with the

Sylow subgroup of L corresponding to the largest prime, say p, which
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divides L: Note that p < q: But then q � p+1; so (q�1)=q � p=(p+1):

In this case,

�

0

(P / A) �

 

p

2m

� 1

p

2m

!

�

p

p+ 1

�

=

p(p

2

� 1)(p

2m�2

+ : : :+ 1)

p

2m

(p+ 1)

�

p

2m�1

(p

2

� 1)

p

2m

(p+ 1)

(equality only if m = 1)

=

p� 1

p

�

p

s

� 1

p

s

:

As a result, we see that we have equality only if m = 1 and q = p+1;

i.e., if p

m

= 2 and q = 3: But since p was the largest prime dividing

jLj; this means that for equality to occur, L

�

=

Z

2

and A

�

=

(Z

3

)

n

:

Thus the base case of our induction is complete, and so is our proof

that, for all solvable non-nilpotent groups G; �

0

(G) � (p

s

� 1)=p

s

:

Now we prove the equality condition of Theorem 5. From our

analysis of the base case of the induction, we know that the only

way that �

0

(J) can actually equal (p

s

� 1)=p

s

is if J

�

=

Z

2

/ (Z

3

)

n

:

In this case all Sylow subgroups of J are abelian. Lemma 5 implies

that �

0

(J) = (p

s

� 1)=p

s

=

1

2

only if p

1

(J) =

1

2

. It is known [7] that

the only groups in which the probability of two elements commuting

is exactly one half are those groups H such that H=Z(H)

�

=

S

3

.

Therefore, the only JNN group J for which �

0

(J) = (p

s

� 1)=p

s

is J

�

=

S

3

: Now if a group G is solvable (but not JNN), �

0

(G) =

(p

s

� 1)=p

s

only if S

3

is a quotient group of G; and �

0

(G) = �

0

(S

3

):

By Lemma 4 and Corollary 4, this requires that G=N

�

=

S

3

; where

N � Z

h

(G): If N is not equal to Z

h

(G); then G=Z

h

(G) must be

a proper quotient group of S

3

: But all proper quotients of S

3

are

abelian, which contradicts the fact that G must be non-nilpotent, so

N

�

=

Z

h

(G): Thus �

0

(G) = (p

s

� 1)=p

s

for a solvable group G if, and

only if, G=Z

h

(G)

�

=

S

3

.
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6 Solvable pairs

For (x; y) 2 G

2

, consider the derived series of hx; yi:

hx; yi � hx; yi

(1)

� � � � � hx; yi

(i)

= R:

Here R is the unique maximal perfect subgroup of G and i is the

smallest non-negative integer such that hx; yi

(i)

= R. If R = feg,

then hx; yi is solvable of class i. If R 6= feg, then hx; yi is non-

solvable and we say it is solvable of class 0. Let

�

i

(G) =

s

i

(G)

jGj

2

where

s

i

(G) = jf(x; y) 2 G

2

jhx; yi is solvable of class igj:

It is known that �

i

(G) = 1 if, and only if, G is solvable [8].

Question 1 Does jGj divide s

i

(G)?

We can show the answer is yes for s

2

(G).

Question 2 Is the limiting behavior of �

i

(G) predictable?

Conjecture 1 If G is non-solvable, then �

0

(G) � 19=30.

We note that �

0

(PSL(2; 5)) = �

0

(S

5

) = �

0

(A

5

) = 19=30.

Conjecture 2 Theorem 5 holds for non-solvable groups.

Note that Conjecture 2 follows from Conjecture 1:

�

0

(G) � �

0

(G) � 19=30 > 1=2 = (p

s

� 1)=p

s

because all non-solvable groups have even order.
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