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Abstract

The eigenvalue distribution of a uniformly chosen random �nite unipotent matrix in its

permutation action on lines is studied. We obtain bounds for the mean number of eigenvalues

lying in a �xed arc of the unit circle and o�er an approach toward other asymptotics. For

the case of all unipotent matrices, the proof gives a probabilistic interpretation to identities of

Macdonald from symmetric function theory. For the case of upper triangular matrices over a

�nite �eld, connections between symmetric function theory and a probabilistic growth algorithm

of Borodin and Kirillov emerge.

Key words: Random matrix, symmetric functions, Hall-Littlewood polynomial.

1 Introduction

The subject of eigenvalues of random matrices is very rich. The eigenvalue spacings of a complex

unitary matrix chosen from Haar measure relate to the spacings between the zeros of the Riemann

zeta function ([O], [RS1], [RS2]). For further recent work on random complex unitary matrices, see

[DiS], [R], [So], [W]. The references [Dy] and [Me] contain much of interest concerning the eigenval-

ues of a random matrix chosen from Dyson's orthogonal, unitary, and symplectic circular ensembles,

for instance connections with the statistics of nuclear energy levels. The papers [AD],[BaiDeJ],[Ok]

and the references contained in them give exciting recent results relating eigenvalue distributions

of matrices to statistics of random permutations such as the longest increasing subsequence.

Little work seems to have been done on the eigenvalue statistics of matrices chosen from �-

nite groups. One recent step is Chapter 5 of Wieand's thesis [W]. She studies the permutation

eigenvalues of a random element of the symmetric group in its representation on the set f1; � � � ; ng.

This note gives two natural q-analogs of Wieand's work. For the �rst q-analog, let � 2 GL(n; q)

be a random unipotent matrix. Letting V be the vector space on which � acts, we consider the

eigenvalues of � in the permutation representation of GL(n; q) on the lines of V . Let X

�

(�) be

the number of eigenvalues of � lying in a �xed arc (1; e

i2��

]; 0 < � < 1 of the unit circle. Bounds

are obtained for the mean of X

�

(we suspect that as n!1 with q �xed, a normal limit theorem

holds). A second q-analog which we analyze is the case when � is a randomly chosen unipotent

upper triangular matrix over a �nite �eld. A third interesting q-analog would be taking � uniformly

chosen in GL(n; q); however this seems intractable. It would also be of interest to extend Wieand's

work to more general representations of the symmetric group, using formulas of Stembridge [Ste].

The main method of this paper is to interpret identities of symmetric function theory in a

probabilistic setting. Section 2 gives background and results in this direction. This interaction

appears fruitful, and it is shown for instance that a probabilistic algorithm of Borodin and Kirillov

describing the Jordan form of a random unipotent upper triangular matrix [Bo],[Ki1] follows from

the combinatorics of symmetric functions. This ties in with work on analogous algorithms for

the unipotent conjugacy classes of �nite classical groups [F1]. The applications to the eigenvalue

problems described above appear in Section 3. We remark that quite di�erent computations in

symmetric function theory plays the central role in work of Diaconis and Shahshahani [DiS] on the

eigenvalues of random complex classical matrices.

2 Symmetric functions

To begin we describe some notation, as on pages 2-5 of [Ma]. Let � be a partition of a non-negative

integer n =

P

i

�

i

into non-negative integral parts �

1

� �

2

� � � � � 0. The notation j�j = n will

mean that � is a partition of n. Let m

i

(�) be the number of parts of � of size i, and let �

0

be
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the partition dual to � in the sense that �

0

i

= m

i

(�) +m

i+1

(�) + � � �. Let n(�) be the quantity

P

i�1

(i� 1)�

i

. It is also useful to de�ne the diagram associated to � as the set of points (i; j) 2 Z

2

such that 1 � j � �

i

. We use the convention that the row index i increases as one goes downward

and the column index j increases as one goes across. So the diagram of the partition (5441) is:

: : : : :

: : : :

: : : :

:

Let G

�

be an abelian p-group isomorphic to

L

i

Cyc(p

�

i

). We write G = � if G is an abelian

p-group isomorphic to G

�

. Finally, let (

1

p

)

r

= (1�

1

p

) � � � (1�

1

p

r

).

The rest of the paper will treat the case GL(n; p) with p prime as opposed to GL(n; q). This

reduction is made only to make the paper more accessible at places, allowing us to use the language

of abelian p-groups rather than modules over power series rings. From Chapter 2 of Macdonald

[Ma] it is clear that everything works for prime powers.

2.1 Unipotent elements of GL(n; p)

It is well known that the unipotent conjugacy classes of GL(n; p) are parametrized by partitions �

of n. A representative of the class � is given by

0

B

B

B

@

M

�

1

0 0 0

0 M

�

2

0 0

0 0 M

�

3

� � �

0 0 0 � � �

1

C

C

C

A

;

where M

i

is the i � i matrix of the form

0

B

B

B

B

B

B

B

@

1 1 0 � � � � � � 0

0 1 1 0 � � � 0

0 0 1 1 � � � 0

� � � � � � � � � � � � � � � � � �

� � � � � � � � � 0 1 1

0 0 0 � � � 0 1

1

C

C

C

C

C

C

C

A

:

Lemmas 1-3 recall elementary facts about unipotent elements in GL(n; p).

Lemma 1 ([Ma] page 181,[SS]) The number of unipotent elements in GL(n; p) with conjugacy

class type � is

jGL(n; p)j

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

:

Chapter 3 of [Ma] de�nes Hall-Littlewood symmetric functions P

�

(x

1

; x

2

; � � � ; t) which will be

used extensively. There is an explicit formula for the Hall-Littlewood polynomials. Let the per-

mutation w act on the x-variables by sending x

i

to x

w(i)

. There is also a coordinate-wise action of

w on � = (�

1

; � � � ; �

n

) and S

�

n

is de�ned as the subgroup of S

n

stabilizing � in this action. For a

partition � = (�

1

; � � � ; �

n

) of length � n, two formulas for the Hall-Littlewood polynomial restricted

to n variables are:
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P

�

(x

1

; � � � ; x

n

; t) =

2

4

1

Q

i�0

Q

m

i

(�)

r=1

1�t

r

1�t

3

5

X

w2S

n

w(x

�

1

1

� � � x

�

n

n

Y

i<j

x

i

� tx

j

x

i

� x

j

)

=

X

w2S

n

=S

�

n

w(x

�

1

1

� � � x

�

n

n

Y

�

i

>�

j

x

i

� tx

j

x

i

� x

j

)

Lemma 2 The probability that a unipotent element of GL(n; p) has conjugacy class of type � is

equal to either of

1.

p

n

(

1

p

)

n

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

2.

p

n

(

1

p

)

n

P

�

(

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)

p

n(�)

Proof: The �rst statement follows from Lemma 1 and Steinberg's theorem that GL(n; p) has

p

n(n�1)

unipotent elements. The second statement follows from the �rst and from elementary

manipulations applied to Macdonald's principal specialization formula (page 337 of [Ma]). Full

details appear in [F2]. 2

One consequence of Lemma 2 is that in the p ! 1 limit, all mass is placed on the partition

� = (n). Thus the asymptotics in this paper will focus on the more interesting case of the �xed p,

n!1 limit.

Lemma 3

X

�`n

1

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

=

1

p

n

(

1

p

)

n

Proof: Immediate from Lemma 2. 2

Lemmas 4 and 5 relate to the theory of Hall polynomials and Hall-Littlewood symmetric func-

tions [Ma]. Lemma 4, for instance, is the duality property of Hall polynomials.

Lemma 4 (Page 181 of [Ma]) For all partitions �; �; �,

jfG

1

� G

�

: G

�

=G

1

= �;G

1

= �gj = jfG

1

� G

�

: G

�

=G

1

= �;G

1

= �gj:

Lemma 5 Let G

�

denote an abelian p-group of type �, and G

1

a subgroup. Then for all types �,

X

�`n

fjG

1

� G

�

: G

1

= �jg

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

=

1

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

1

p

n�j�j

(

1

p

)

n�j�j

:

Proof: Macdonald (page 220 of [Ma]), using Hall-Littlewood symmetric functions, establishes for

any partitions �; �, the equation:

X

�:j�j=j�j+j�j

jfG

1

� G

�

: G

�

=G

1

= �;G

1

= �gj

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

=

1

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

1

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

:

Fixing �, summing the left hand side over all � of size n� j�j, and applying Lemma 4 yields
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X

�

X

�

jfG

1

� G

�

: G

�

=G

1

= �;G

1

= �gj

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

=

X

�

X

�

jfG

1

� G

�

: G

�

=G

1

= �;G

1

= �gj

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

=

X

�

jfG

1

� G

�

: G

1

= �gj

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

:

Fixing �, summing the right hand side over all � of size n� j�j, and applying Lemma 3 gives that

1

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

X

�`n�j�j

1

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

=

1

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

1

p

n�j�j

(

1

p

)

n�j�j

;

proving the lemma. 2

2.2 Upper triangular matrices over a �nite �eld

Let T (n; p) denote the set of upper triangular elements of GL(n; p) with 1's along the main diagonal.

From the theory of wild quivers there is a provable sense in which the conjugacy classes of T (n; p)

have no simple classi�cation. Nevertheless, as emerges from work of Kirillov [Ki1, Ki2] and Borodin

[Bo], it is interesting to study the Jordan form of elements of T (n; p). As with the unipotent

conjugacy classes of GL(n; p), the possible Jordan forms correspond to partitions � of n.

Theorem 1 gives �ve expressions for the probability that an element of T (n; p) has Jordan form

of type �. As is evident from the proof, most of the hard work at the heart of these formulas has

been carried out by others. Nevertheless, at least one of these expressions is useful, and to the best

of our knowledge none of these formulas has appeared elsewhere. P

�

will denote the Hall-Littlewood

polynomial of the previous subsection. By a standard Young tableau S of size jSj = n is meant an

assignment of f1; � � � ; ng to the dots of the partition such that each of f1; � � � ; ng appears exactly

once, and the entries increase along the rows and columns. For instance,

1 3 5 6

2 4 7

8 9

is a standard Young tableau.

Theorem 1 The probability that a uniformly chosen element of T (n; p) has Jordan form of type �

is equal to each of the following:

1.

(p�1)

n

P

�

(

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)fix

�

(p)

p

n(�)

, where fix

�

(p) is the number of complete ags of an n-dimensional

vector space over a �eld of size p which are �xed by a unipotent element u of type �.

2.

(p�1)

n

P

�

(

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)Q

�

(1)

n

(p)

p

n(�)

, where Q

�

(1)

n

(p) is a Green's polynomial as de�ned on page 247 of

[Ma].

3. (p � 1)

n

P

�

(

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

)

P

�

dim(�

�

)K

�;�

(

1

p

), where � is a partition of n, dim(�

�

) is the

dimension of the irreducible representation of S

n

of type �, and K

�;�

is the Kostka-Foulkes

polynomial as on page 239 of [Ma].
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4.

(p�1)

n

P

�

(

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)chain

�

(p)

p

n(�)

, where chain

�

(p) is the number of maximal length chains of sub-

groups in an abelian p-group of type �.

5. P

�

(1;

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

)

P

S

Q

n

j=1

(1�

1

p

m

�

(�

j

)

), where the sum is over all standard Young tableaux

of shape �, and m

�

(�

j

) is the number of parts in the subtableau formed by f1; � � � ; jg which

are equal to the column number of j.

Proof: For the �rst assertion, observe that complete ags correspond to cosets GL(n; p)=B(n; p)

where B(n; p) is the subgroup of all invertible upper triangular matrices. Note that u 2 GL(n; p)

�xes the ag gB(n; p) exactly when g

�1

ug 2 B(n; p). The unipotent elements of B(n; p) are

precisely T (n; p). Thus the number of complete ags �xed by u is

1

(p�1)

n

jT (n;p)j

jfg : g

�1

ug 2

T (n; p)gj. It follows that the sought probability is equal to (p � 1)

n

fix

�

(p) multiplied by the

probability that an element of GL(n; p) is unipotent of type �. The �rst assertion then follows

from Lemma 1.

The second part follows from the �rst part since by page 187 of [Ma], Q

�

(1)

n

(p) is the number of

complete ags of an n-dimensional vector space over a �eld of size p which are �xed by a unipotent

element of type �. The third part follows from the second part and a formula for Q

�

(1)

n

(p) on page

247 of [Ma]. The fourth part follows from the third part and a formula for

P

�

dim(�

�

)K

�;�

(

1

p

)

in [Kir]. For the �fth assertion, a result on page 197 of [Ma] gives that the number of maximal

length chains of subgroups in an abelian p-group of type � is equal to

p

n(�)

(1�

1

p

)

n

P

S

Q

n

j=1

(1�

1

p

m

�

(�

j

)

).

Observing that for a partition � of n, P

�

(1;

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

) = p

n

P

�

(

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

), the result

follows. 2

As a corollary of Theorem 1, we recover the \Division Algorithm" of Borodin [Bo] and Kirillov

[Kir], which gives a probabilistic way of growing partitions a dot at a time such that the chance

of getting � after n steps is equal to the chance that a uniformly chosen element of T (n; p) has

Jordan type �. We include our proof as it uses symmetric functions, which aren't mentioned in the

literature on probability in the upper triangular matrices.

We remark that a wonderful application of the division algorithm was found by Borodin [Bo],

who proved asymptotic normality theorems for the lengths of the longest parts of the partition

corresponding to a random element of T (n; p), and even found the covariance matrix. We give

another application in Section 3.2.

Corollary 1 ([Bo],[Kir]) Stopping the following procedure after n steps produces a partition dis-

tributed as the Jordan form of a random element of T (n; p). Starting with the empty partition, at

each step transition from a partition � to a partition � by adding a dot to column i chosen according

to the rules

� i = 1 with probability

1

p

�

0

1

� i = j > 1 with probability

1

p

�

0

j

�

1

p

�

0

j�1

Proof: For a standard Young tableau S, let �

j

(S) be the partition formed by the entries f1; � � � ; jg

of S. It suÆces to prove that at step j the division algorithm goes from �

j�1

to �

j

with probability

P

�

j

(1;

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)

P

�

j�1

(1;

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)

(1 �

1

p

m

�

(�

j

)

), because then the probability that the algorithm gives � at step

n = j�j is
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X

S:shape(S)=�

n

Y

j=1

P

�

j

(1;

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

)

P

�

j�1

(1;

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

)

(1�

1

p

m

�

(�

j

)

) = P

�

(1;

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

)

X

S

n

Y

j=1

(1�

1

p

m

�

(�

j

)

);

as desired from part 5 of Theorem 1. The fact that the division algorithm goes from �

j�1

to

�

j

with probability

P

�

j

(1;

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)

P

�

j�1

(1;

1

p

;

1

p

2

;

1

p

3

;���;

1

p

)

(1 �

1

p

m

�

(�

j

)

) follows, after algebraic manipulations, from

Macdonald's principle specialization formula (page 337 of [Ma])

P

�

(1;

1

p

;

1

p

2

;

1

p

3

; � � � ;

1

p

) = p

n+n(�)

Y

i

1

p

�

02

i

(

1

p

)

m

i

(�)

:

2

The follow-up paper [F3] relates the probability theory of Jordan forms of elements of T (n; p)

to potential theory on Bratteli diagrmas, giving a more conceptual proof of Corollary 1. The

author has been informed that the boundaries of the branchings in [F3] are homeomorphic to

those introduced by [Ke2] and studied by [KOO] as referenced there, and that the branchings are

multiplicative. Nevertheless, given the connection with T (n; p), the formulation in [F3] should

prove useful.

We remark that Corollary 1 ties in with the algorithms of [F1] for growing random parititions

distributed according to the n ! 1 law of the partition corresponding to the polynomial z � 1

in the Jordan form of a random element of GL(n; p). The precise relationship is that if each coin

in the algorithm on page 585 of [F1] is conditioned to come up heads exactly once, the resulting

algorithm is that of Corollary 1.

3 Applications

In this section we return to the problem which motivated this paper: studying the eigenvalues

of unipotent matrices in the permutation representation on lines. Lemma 6 describes the cycle

structure of the permutation action of a unipotent element � of GL(n; p) on lines in V in terms of

the partition parametrizing the conjugacy class of �.

Lemma 6 Let � be a unipotent element of GL(n; p) with conjugacy class of type �. Every orbit of

the action of � on the set of lines in V has size p

r

for some r � 0. The number of orbits of size p

r

is

p

�

0

1

+���+�

0

p

r

�p

�

0

1

+���+�

0

p

r�1

p�1

if r � 1

p

�

0

1

�1

p�1

if r = 0:

Proof:As discussed at the beginning of Section 2, the matrix � may be assumed to be

0

B

B

B

@

M

�

1

0 0 0

0 M

�

2

0 0

0 0 M

�

3

� � �

0 0 0 � � �

1

C

C

C

A

;

where M

i

is the i � i matrix with 1's along and right above the diagonal, and 0's elsewhere. Let

E

i

=M

i

� Id, where Id is the identity matrix.
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From this explicit form all eigenvalues of �

m

;m � 0 are 1. Thus if �

m

�xes a line, it �xes it

pointwise. Hence the number of lines �xed by �

m

is one less than the number of points it �xes, all

divided by p � 1, and we are reduced to studying the action of � of non-zero vectors. It is easily

proved that M

i

has order p

a

, where p

a�1

< i � p

a

. Hence if �

m

(x

1

; � � � ; x

n

) = (x

1

; � � � ; x

n

) with

some x

i

non-zero, and m is the smallest non-negative integer with this property, then m is a power

of p. Thus all orbits of � on the lines of V have size p

r

for r � 0.

We next claim that �

p

r

; r � 0 �xes a vector

(x

1

; � � � ; x

�

1

; x

�

1

+1

; � � � ; x

�

1

+�

2

; x

�

1

+�

2

+1

; � � � ; x

�

1

+�

2

+�

3

; � � � ; x

n

)

if and only if

x

�

1

+���+�

i�1

+p

a

+1

= x

�

1

+���+�

i�1

+p

a

+2

= � � � = x

�

1

+���+�

i

= 0 for i : �

i

> p

r

:

It suÆces to prove this claim when � has one part �

1

of size n. Observe that the ith coordinate

of �

p

r

(x

1

; � � � ; x

n

) is

P

n

j=i

�

p

r

j�i

�

x

j

. Thus �

p

r

�xes the x

i

for i > n � p

r

, but sends all other x

i

to

x

i

+ x

i+p

r

. To summarize �

p

r

�xes (x

1

; � � � ; x

n

) if and only if x

p

r

+1

= � � � = x

n

= 0, as desired.

This explicit description of �xed vectors (hence of �xed lines) of �

p

a

yields the formula of the

lemma for r � 1, because the number of lines in an orbit of size p

r

is the di�erence between the

number of lines �xed by �

p

r

and the number of lines �xed by �

p

r�1

. The formula for the number

of lines in an orbit of size 1 follows because there are a total of

p

n

�1

p�1

lines.2

3.1 Unipotent elements of GL(n; p)

Let � be a uniformly chosen unipotent element of GL(n; p). Each element of GL(n; p) permutes

the lines in V and thus de�nes a permutation matrix, which has complex eigenvalues. Each size p

r

orbit of � on lines gives p

r

eigenvalues, with one at each of the p

r

th roots of unity. For � 2 (0; 1),

de�ne a random variable X

�

by letting X

�

(�) be the number of eigenvalues of � in the interval

(1; e

2�i�

] on the unit circle. For r � 1, de�ne random variables X

r

on the unipotent elements of

GL(n; p) by

X

r

(�) =

p

�

0

1

(�)+���+�

0

r

(�)

� p

�

0

1

(�)+���+�

0

r�1

(�)

p� 1

:

Clearly X

r

(�) = 0 if r > n. Let byc denote the greatest integer less than y. Lemma 6 implies that

X

�

= X

1

b�c+

X

r�1

X

p

r�1

+1

+ � � �+X

p

r

p

r

bp

r

�c:

This relationship (analogous to one used in [W]) will reduce the computation of the mean of X

�

to

similar computations for the random variables X

r

, which will now be carried out.

Let E

n

denote the expected value with respect to the uniform distribution on the unipotent

elements of GL(n; p).

Theorem 2 For 1 � r � n,

E

n

(X

r

) =

p

r

(1�

1

p

n�r+1

) � � � (1�

1

p

n

)

p� 1

:
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Proof: By Lemma 2,

E

n

(X

r

) =

X

�`n

p

n

(

1

p

)

n

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

p

�

0

1

(�)+���+�

0

r

(�)

� p

�

0

1

(�)+���+�

0

r�1

(�)

p� 1

:

Observe that

p

�

0

1

+���+�

0

r

�p

�

0

1

+���+�

0

r�1

p

r

�p

r�1

is the number of subgroups of G

�

of type � = (r). This is because

the total number of elements of order p

r

in G

�

is p

�

0

1

+���+�

0

r

� p

�

0

1

+���+�

0

r�1

, and every subgroup of

type � = (r) has p

r

� p

r�1

generators. Therefore, using Lemma 5,

E

n

(X

r

) = p

n

(

1

p

)

n

p

r

� p

r�1

p� 1

X

�`n

jfG

1

� G

�

: G

1

= (r)gj

p

P

(�

0

i

)

2

Q

i

(

1

p

)

m

i

(�)

=

 

p

n

(

1

p

)

n

p

r

� p

r�1

p� 1

! 

1

p

r

(1�

1

p

)

1

p

n�r

(

1

p

)

n�r

!

=

p

r

(1�

1

p

n�r+1

) � � � (1�

1

p

n

)

p� 1

:

2

Corollary 2 uses Theorem 2 to bound the mean of X

�

.

Corollary 2 E

n

(X

�

) = �

p

n

�1

p�1

�O(

p

n

n

).

Proof: Let fyg = y � byc denote the fractional part of a positive number y. Theorem 2 and the

writing of X

�

in terms of the X

r

's imply that

E

n

(X

�

) = �E

n

(

X

i�1

X

i

)�

X

r�1

fp

r

�gE

n

(

X

p

r�1

+1

+ � � �+X

p

r

p

r

)

= �

p

n

� 1

p� 1

�

X

r�1

fp

r

�gE

n

(

X

p

r�1

+1

+ � � �+X

p

r

p

r

)

� �

p

n

� 1

p� 1

�

X

r�1

E

n

(

X

p

r�1

+1

+ � � �+X

p

r

p

r

)

� �

p

n

� 1

p� 1

� (

blog

p

(n)c)

X

r=1

p

p

r�1

+1

+ � � �+ p

p

r

(p� 1)p

r

)� (

p

p

blog

p

(n)c

+1

+ � � �+ p

n

(p� 1)p

blog

p

(n)c+1

):

We suppose for simplicity that n 6= p

p

r

+ 1 for some r (the case n = p

p

r

+ 1 is similar).

Continuing,

E

n

(X

�

) � �

p

n

� 1

p� 1

� (

blog

p

(n)c

X

r=1

p

p

r

+1

(p� 1)

2

n

p

blog

p

(n)c�r+1

)�

p

n+1

(p� 1)

2

n

= �

p

n

� 1

p� 1

�O(

p

n

n

):

2

The approach here appears to extend to the computation of higher moments, but the compu-

tations are formidable. For example one can show that if 1 � r � s � n, then

E

n

(X

r

X

s

) =

p

r+s�1

p� 1

[

p

p� 1

(1�

1

p

n�s�r+1

) � � � (1�

1

p

n

) +

r�1

X

a=0

(1�

1

p

n�a�s+1

) � � � (1�

1

p

n

)]:

10



3.2 Upper triangular matrices over a �nite �eld

Let � be a uniformly chosen element of T (n; p). Recall that � is unipotent by the de�nition of

T (n; p). Each element of T (n; p) permutes the lines in V and thus de�nes a permutation matrix,

which has complex eigenvalues. Each size p

r

orbit of � on lines gives p

r

eigenvalues, with one at

each of the p

r

th roots of unity. For � 2 (0; 1), de�ne a random variable X

�

by letting X

�

(�) be

the number of eigenvalues of � in the interval (1; e

2�i�

] on the unit circle. For r � 1, de�ne random

variables X

r

on the unipotent elements of T (n; p) by

X

r

(�) =

p

�

0

1

(�)+���+�

0

r

(�)

� p

�

0

1

(�)+���+�

0

r�1

(�)

p� 1

:

Let byc denote the greatest integer less than y. Lemma 6 implies that

X

�

= X

1

b�c+

X

r�1

X

p

r�1

+1

+ � � �+X

p

r

p

r

bp

r

�c:

As for the case of GL(n; p) this relationship reduces the computation of the mean of X

�

to similar

computations for the random variables X

r

.

Let E

n

denote the expected value with respect to the uniform distribution on the unipotent

elements of T (n; p). Theorem 3 shows that the expected value of X

r

is surprisingly simple. As

one sees from the case p = 2, the result is quite di�erent from that of Theorem 2. Using the same

technique one can compute higher moments.

Theorem 3 For 1 � r � n,

E

n

(X

r

) = (p� 1)

r�1

 

n

r

!

:

Proof: We proceed by joint induction on n and r, the base case n = r = 1 being clear. Let Prob(S)

denote the probability that the algorithm of Corollary 1 yields the standard Young tableau S after

jSj steps. Let col(n) be the column number of n in S. With all sums being over standard Young

tableaux, observe that

E

n

(p

�

0

1

+���+�

0

r

) =

X

S:jSj=n

p

�

0

1

(S)+���+�

0

r

(S)

Prob(S)

=

X

S:jSj=n;col(n)=1

p

�

0

1

(S)+���+�

0

r

(S)

Prob(S)

+

X

S:jSj=n;1<col(n)=j�r

p

�

0

1

(S)+���+�

0

r

(S)

Prob(S)

+

X

S:jSj=n;col(n)>r

p

�

0

1

(S)+���+�

0

r

(S)

Prob(S)

=

X

S

0

:jS

0

j=n�1

p

�

0

1

(S

0

)+���+�

0

r

(S

0

)+1

Prob(S

0

)

1

p

�

0

1

(S

0

)

+

r

X

j=2

X

S

0

:jS

0

j=n�1

p

�

0

1

(S

0

)+���+�

0

r

(S

0

)+1

Prob(S

0

)(

1

p

�

0

j

(S

0

)

�

1

p

�

0

j�1

(S

0

)

)

+

X

j>r

X

S

0

:jS

0

j=n�1

p

�

0

1

(S

0

)+���+�

0

r

(S

0

)

Prob(S

0

)(

1

p

�

0

j

(S

0

)

�

1

p

�

0

j�1

(S

0

)

)
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= pE

n�1

(p

�

0

2

+���+�

0

r

) + pE

n�1

(p

�

0

1

+���+�

0

r�1

� p

�

0

2

+���+�

0

r

)

+E

n�1

(p

�

0

1

+���+�

0

r

� p

�

0

1

+���+�

0

r�1

)

= (p� 1)E

n�1

(p

�

0

1

+���+�

0

r�1

) +E

n�1

(p

�

0

1

+���+�

0

r

)

= (p� 1)

r�1

 

n� 1

r � 1

!

+ (p� 1)

r�1

 

n� 1

r

!

= (p� 1)

r�1

 

n

r

!

:

2

Corollary 3 follows by using Theorem 3 and arguing along the lines of Corollary 2.

Corollary 3 �

p

n

�1

p�1

� p

P

n

r=1

(p�1)

r�1

(

n

r

)

r

� E

n

(X

�

) � �

p

n

�1

p�1

.
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