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RANDOM PARTITIONS AND COHEN-LENSTRA

HEURISTICS

JASON FULMAN AND NATHAN KAPLAN

Abstract. We investigate combinatorial properties of a family of prob-
ability distributions on finite abelian p-groups. This family includes
several well-known distributions as specializations. These specializa-
tions have been studied in the context of Cohen-Lenstra heuristics and
cokernels of families of random p-adic matrices.

1. Introduction

Friedman and Washington study a distribution on finite abelian p-groups
G of rank at most d in [12]. In particular, a finite abelian p-group G of rank
r ≤ d, is chosen with probability

(1) Pd(G) =
1

|Aut(G)|

(
d∏

i=1

(1− 1/pi)

)(
d∏

i=d−r+1

(1− 1/pi)

)
.

Let λ = (λ1, . . . , λr) with λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 be a partition. A finite
abelian p-group G has type λ if

G ∼= Z/pλ1Z× · · · × Z/pλrZ.

Note that r is equal to the rank of G.
There is a correspondence between measures on the set of integer parti-

tions and on isomorphism classes of finite abelian p-groups. Let L denote the
set of isomorphism classes of finite abelian p-groups. Given a measure ν on
partitions, we get a corresponding measure ν ′ on L by setting ν ′(G) = ν(λ)
where G ∈ L is the isomorphism class of finite abelian p-groups of type λ.
We analogously define a measure on partitions given a measure on L. When
G is a finite abelian group of type λ, we write |Aut(λ)| for |Aut(G)|, and

Date: Version of January 24, 2019.
Key words and phrases. Cohen-Lenstra heuristics, Hall-Littlewood polynomial, Prob-

ability Measure, Random Matrices, Random Partitions, Finite Abelian Group.
AMS classification numbers: 15B52,05E05.
Fulman is supported by Simons Foundation Grant 400528. Kaplan is supported by NSA

Young Investigator Grant H98230-16-10305, NSF Grant DMS 1802281 and by an AMS-
Simons Travel Grant. The authors thank the referees, Gilyoung Cheong, and Melanie
Matchett Wood for helpful comments.

1

http://arxiv.org/abs/1803.03722v2


2 JASON FULMAN AND NATHAN KAPLAN

from page 181 of [19],

(2) |Aut(λ)| = p
∑

(λ′
i)

2
∏

i

(1/p)mi(λ).

The notation used in (2) is standard, and we review it in Section 1.2.
We introduce and study a more general distribution on integer partitions

and on finite abelian p-groups G of rank at most d. We choose a partition
λ with r ≤ d parts with probability

(3) Pd,u(λ) =
u|λ|

p
∑

(λ′
i)

2∏
i(1/p)mi(λ)

d∏

i=1

(1− u/pi)

d∏

i=d−r+1

(1− 1/pi).

This gives a distribution on partitions for all real p > 1 and 0 < u < p. We
can include p as an additional parameter and write P p

d,u(λ). For clarity, we

will suppress this additional notation except in Section 3. When p is prime,
we can interpret (3) as a distribution on L. When p is not prime it does not
make sense to talk about automorphisms of a finite abelian p-group, but in
this case we can take (2) as the definition of |Aut(λ)|.

The main goal of this paper is to investigate combinatorial properties
of the family of distributions of (3). We begin by noting six interesting
specializations of this measure.

• Setting u = 1 in Pd,u recovers Pd.
• We define a distribution P∞,u by

lim
d→∞

Pd,u(λ) = P∞,u(λ) =
u|λ|

|Aut(λ)|

∏

i≥1

(1− u/pi).

It is not immediately clear that this limit defines a distribution on
partitions, but this follows from the sentence after Proposition 2.1,
from Theorem 2.2, or from Theorem 5.3, taking µ to be the trivial
partition.

For 0 < u < 1, this probability measure arises by choosing a
random non-negative integer N with probability P (N = n) = (1 −
u)un, and then looking at the z−1 piece of a random element of the
finite group GL(N, p). See [13] for details.

• Note that

P∞,1(λ) =
1

|Aut(λ)|

∏

i≥1

(1− 1/pi).

This is the measure on partitions corresponding to the usual Cohen-
Lenstra measure on finite abelian p-groups [5]. It also arises from
studying the z − 1 piece of a random element of the finite group
GL(d, p) in the d → ∞ limit [13], or from studying the cokernel of a
random d× d p-adic matrix in the d → ∞ limit [12].
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• Let w be a positive integer and λ a partition. The w-probability of
λ, denoted by Pw(λ), is the probability that a finite abelian p-group
of type λ is obtained by the following three step random process:

– Choose randomly a p-group H of type µ with respect to the
measure P∞,1(µ).

– Then choose w elements g1, · · · , gw of H uniformly at random.
– Finally, output H/〈g1, · · · , gw〉, where 〈g1, · · · , gw〉 denotes the

group generated by g1, · · · , gw.
From Example 5.9 of Cohen and Lenstra [5], it follows that Pw(λ)

is a special case of (3):

(4) Pw(λ) = P∞,1/pw(λ).

• We now mention two analogues of Proposition 1 of [12] for rect-
angular matrices. Let w be a non-negative integer. Friedman and
Washington do not discuss this explicitly, but using the same meth-
ods as in [12] one can show that taking the limit as d → ∞ of the
probability that a randomly chosen d× (d + w) matrix over Zp has
cokernel isomorphic to a finite abelian p-group of type λ is given by
P∞,1/pw(λ). See the discussion above Proposition 2.3 of [26].

Similarly, Tse considers rectangular matrices with more rows than
columns and shows that P∞,1/pw(λ) is equal to the d → ∞ probabil-
ity that a randomly chosen (d+w)× d matrix over Zp has cokernel
isomorphic to Zw

p ⊕G, where G is a finite abelian p-group of type λ
[23].

• In Section 3 we see that the measure on partitions studied by Bhar-
gava, Kane, Lenstra, Poonen and Rains [1], arising from taking the
cokernel of a random alternating p-adic matrix is also a special case
of Pd,u. Taking a limit as the size of the matrix goes to infinity
gives a distribution consistent with heuristics of Delaunay for Tate-
Shafarevich groups of elliptic curves defined over Q [8].

A few of these specializations have received extensive attention in prior
work:

• When p is an odd prime, Cohen and Lenstra conjecture that P∞,1

models the distribution of p-parts of class groups of imaginary qua-
dratic fields and P∞,1/p models the distribution of p-parts of class
groups of real quadratic fields [5]. Theorem 6.3 in [5] gives the prob-
ability that a group chosen from P∞,1/pw has given p-rank. For any n
odd, they show that the average number of elements of order exactly
n of a group drawn from P∞,1 is 1, and that this average for a group
drawn from P∞,1/p is 1/n [5, Section 9]. Delaunay generalizes these
results in Corollary 11 of [9], where he computes the probability
that a group drawn from P∞,u simultaneously has specified pj-rank
for several values of j. Delaunay and Jouhet compute averages of
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even more complicated functions involving moments of the number
of pj-torsion points for varying j in [6].

The distribution of 2-parts of class groups of quadratic fields is
not modeled by P∞,u and several authors have worked to under-
stand these issues. Motivated by work of Gerth [15, 16], Fouvry and
Klüners study the conjectural distribution of pj-ranks and moments
for the number of torsion points of C2

D, the square of the ideal class
group of a quadratic field [11].

• Delaunay [9], and Delaunay and Jouhet [6], prove analogues of the
results described in the previous paragraphs for groups drawn from
the n → ∞ specialization of the distribution we study in Section 3.
In [7], they prove analogues of the results of Fouvry and Klüners [11]
for this distribution.

1.1. Outline of the Paper. In Section 2 we interpret Pd,u in terms of Hall-
Littlewood polynomials and use this interpretation to compute the probabil-
ity that a partition chosen from Pd,u has given size, given number of parts,
or given size and number of parts. In Theorem 2.2 we give an algorithm for
producing a partition according to the distribution Pd,u.

In Section 3 we show how a measure studied in [1] that arises from dis-
tributions of cokernels of random alternating p-adic matrices is given by a
specialization of Pd,u. In Section 4 we briefly study a measure on parti-
tions that arises from distributions of cokernels of random symmetric p-adic
matrices that is studied in [4, 24]. We give an algorithm for producing a
partition according to this distribution.

In Section 5 we combinatorially compute the moments of the distribution
Pd,u for all d and u. These moments were already known for the case d =
∞, u = 1, and our method is new even in that special case. We also show
that in many cases these moments determine a unique distribution. This is a
generalization of a result of Ellenberg, Venkatesh, and Westerland [10], that
the moments of the Cohen-Lenstra distribution determine the distribution,
and of Wood [26], that the moments of the distribution Pw determine the
distribution.

1.2. Notation. Throughout this paper, when p is a prime number we write
Zp for the ring of p-adic integers.

For a ring R, let Md(R) denote the set of all d× d matrices with entries
in R and let Symd(R) denote the set of all d × d symmetric matrices with
entries in R. For an even integer d, let Altd(R) denote the set of all d × d
alternating matrices with entries in R (that is, matrices A with zeros on the
diagonal satisfying that the transpose of A is equal to −A).

For groups G and H we write Hom(G,H) for the set of homomorphisms
from G to H, Sur(G,H) for the set of surjective homomorphisms from G to
H, and Aut(G) for the set of automorphisms of G. If G is a finite abelian
p-group of type λ and H is a finite abelian p-group of type µ, we sometimes
write |Sur(λ, µ)| for |Sur(G,H)|.
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For a partition λ, we let λi denote the size of the ith part of λ and mi(λ)
denote the number of parts of λ of size i. We let λ′

i denote the size of the
ith column in the diagram of λ (so λ′

i = mi(λ)+mi+1(λ)+ · · · ). We also let

n(λ) =
∑

i

(λ′
i
2

)
. We generally use r or r(λ) to denote the number of parts of

λ. We use |λ| = n to say that λ is a partition of n, or equivalently
∑

λi = n.
We let nλ(µ) denote the number of subgroups of type µ of a finite abelian

p-group of type λ. For a finite abelian group G, the number of subgroups
H ⊆ G of type µ equals the number of subgroups for which G/H has type
µ [19, Equation (1.5), page 181].

We also let (x)i = (1 − x)(1 − x/p) · · · (1 − x/pi−1). So (1/p)i = (1 −
1/p) · · · (1− 1/pi). With this notation, (3) is equivalent to

Pd,u(λ) =
u|λ|(u/p)d

p
∑

(λ′
i)

2∏
i(1/p)mi(λ)

(1/p)d
(1/p)d−r(λ)

.

We use some notation related to q-binomial coefficients, namely:

[n]q =
qn − 1

q − 1
= 1 + q + · · · + qn−1;

[n]q! = [n]q[n− 1]q · · · [2]q;
(
n

j

)

q

=
[n]q!

[j]q! [n− j]q!
.

Finally if f(u) is a power series in u, we let Coef. un in f(u) denote the
coefficient of un in f(u).

2. Properties of the measure Pd,u

To begin we give a formula for Pd,u(λ) in terms of Hall-Littlewood poly-
nomials. We let Pλ denote a Hall-Littlewood polynomial, defined for a
partition λ = (λ1, · · · , λn) of length at most n by

Pλ(x1, · · · , xn; t) =
1

vλ(t)

∑

w∈Sn

w


xλ1

1 · · · xλn
n

∏

i<j

xi − txj
xi − xj


 ,

where

vλ(t) =
∏

i≥0

mi(λ)∏

j=1

1− tj

1− t
,

the permutation w ∈ Sn permutes the x variables, and we note that some
parts of λ may have size 0. For background on Hall-Littlewood polynomials,
see Chapter 3 of [19].

Proposition 2.1. For a partition λ with r ≤ d parts,

Pd,u(λ) =

d∏

i=1

(1− u/pi) ·
Pλ(

u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(λ)
.
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Proof. From page 213 of [19],

d∏

i=1

(1− u/pi) ·
Pλ(

u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(λ)

is equal to

u|λ|
∏d

i=1(1− u/pi)∏
i(1/p)mi(λ)

(1/p)d
p|λ|+2n(λ)(1/p)d−r

.

Since |λ|+2n(λ) =
∑

(λ′
i)
2, this is equal to (3), and the proposition follows.

�

The fact that
∑

λ Pd,u(λ) = 1 follows from Proposition 2.1 and the identity
of Example 1 on page 225 of [19]. It is also immediate from Theorem 2.2.

There are two ways to generate random partitions λ according to the
distribution Pd,u. The first is to run the “Young tableau algorithm” of [13],
stopped when coin d comes up tails. The second method is given by the
following theorem.

Theorem 2.2. Starting with λ′
0 = d, define in succession d ≥ λ′

1 ≥ λ′
2 ≥ · · ·

according to the rule that if λ′
i = a, then λ′

i+1 = b with probability

K(a, b) =
ub(1/p)a(u/p)a

pb2(1/p)a−b(1/p)b(u/p)b
.

Then the resulting partition is distributed according to Pd,u.

Proof. One must compute

K(d, λ′
1)K(λ′

1, λ
′
2)K(λ′

2, λ
′
3) · · · .

There is a lot of cancellation, and (recalling that λ′
1 = r), what is left is:

(u/p)d(1/p)du
|λ|

(1/p)d−rp
∑

(λ′
i)

2 ∏
i(1/p)mi(λ)

.

This is equal to Pd,u(λ), completing the proof. �

The following corollary is immediate from Theorem 2.2.

Corollary 2.3. Choose λ from Pd,u. Then the chance that λ has r ≤ d
parts is equal to

ur(1/p)d(u/p)d

pr2(1/p)d−r(1/p)r(u/p)r
.

Proof. From Theorem 2.2, the sought probability is K(d, r). �

The u = 1 case of this result appears in another form in work of Stanley
and Wang [22]. In Theorem 4.14 of [22], the authors compute the probability
Zd(p, r) that the Smith normal form of a certain model of random integer
matrix has at most r diagonal entries divisible by p. Setting u = 1 in
Corollary 2.3 gives Zd(p, r) − Zd(p, r − 1). This expression also appears in
[3] where the authors study finite abelian groups arising as Zd/Λ for random
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sublattices Λ ⊂ Zd; isolating the prime p and the i = r term in Corollary
1.2 of [3] gives the u = 1 case of Corollary 2.3.

The next result computes the chance that λ chosen from Pd,u has size n.

Theorem 2.4. The chance that λ chosen from Pd,u has size n is equal to

un

pn
(u/p)d(1/p)d+n−1

(1/p)d−1(1/p)n
.

Proof. By Proposition 2.1, the sought probability is equal to

∑

|λ|=n

Pd,u(λ) = (u/p)d
∑

|λ|=n

Pλ(
u
p ,

u
p2 , · · · ,

u
pd
, 0, · · · ; 1p)

pn(λ)

= (u/p)d
∑

|λ|=n

un
Pλ(

1
p ,

1
p2
, · · · , 1

pd
, 0, · · · ; 1p)

pn(λ)

= un(u/p)d Coef.un in
∑

λ

Pλ(
u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(λ)

= un(u/p)d Coef.un in
1

(u/p)d

=
un

pn
(u/p)d(1/p)d+n−1

(1/p)d−1(1/p)n
.

The fourth equality used Proposition 2.1 and the fact that Pd,u defines a
probability distribution, and the final equality used Theorem 349 of [17]. �

Theorem 2.5. The probability that λ chosen from Pd,u has size n and r ≤
min{d, n} parts is equal to

un(u/p)d(1/p)d

pr2(1/p)d−r(1/p)r

(1/p)n−1

pn−r(1/p)r−1(1/p)n−r
.
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Proof. From the definition of Pd,u, one has that

∑

λ′
1=r

|λ|=n

Pd,u(λ) =
∑

λ′
1=r

|λ|=n

un(u/p)d(1/p)d
|Aut(λ)|(1/p)d−r

= un(u/p)d
∑

λ′
1=r

|λ|=n

(1/p)d
|Aut(λ)|(1/p)d−r

= un(u/p)d Coef. un in
∑

λ′
1=r

u|λ|(1/p)d
|Aut(λ)|(1/p)d−r

= un(u/p)d Coef. un in
1

(u/p)d

∑

λ′
1=r

Pd,u(λ)

= un(u/p)d Coef. un in
1

(u/p)d

ur(1/p)d(u/p)d

pr2(1/p)d−r(1/p)r(u/p)r

=
un(u/p)d(1/p)d

pr2(1/p)d−r(1/p)r
Coef. un−r in

1

(u/p)r

=
un(u/p)d(1/p)d

pr2(1/p)d−r(1/p)r

(1/p)n−1

pn−r(1/p)r−1(1/p)n−r
.

The fifth equality used Corollary 2.3, and the final equality used Theorem
349 of [17]. �

In the rest of this section we give another view of the distributions given
by (1) and (3). When p is prime, equation (19) in [20] implies that

(5) Pd(λ) =
1

p|λ|d

(
λ1∏

i=1

pλ
′
i+1(d−λ′

i)

(
d− λ′

i+1

λ′
i − λ′

i+1

)

p

)
d∏

i=1

(1− 1/pi).

Comparing this to the expression for Pd(λ) given in (1) shows that

(6)
1

p|λ|d

(
λ1∏

i=1

pλ
′
i+1(d−λ′

i)

(
d− λ′

i+1

λ′
i − λ′

i+1

)

p

)
=

1

|Aut(λ)|

(
d∏

i=d−r+1

(1− 1/pi)

)
.

A direct proof is given in Proposition 4.7 of [3]. Therefore, we get a second
expression for Pd,u(λ),

(7) Pd,u(λ) =
u|λ|

p|λ|d

(
λ1∏

i=1

pλ
′
i+1(d−λ′

i)

(
d− λ′

i+1

λ′
i − λ′

i+1

)

p

)
d∏

i=1

(1− u/pi).

We give a combinatorial proof of (6) that applies for any real p > 1, so (7)
applies for any p > 1 and 0 < u < p.
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Proof of Equation (6). It is sufficient to show that for a partition λ with
r ≤ d parts,

(8) |Aut(λ)|

(
λ1∏

i=1

pλ
′
i+1(d−λ′

i)

(
d− λ′

i+1

λ′
i − λ′

i+1

)

p

)
= p|λ|d

r−1∏

j=0

(1− p−d+j).

Clearly

λ1∏

i=1

pλ
′
i+1(d−λ′

i)

(
d− λ′

i+1

λ′
i − λ′

i+1

)

p

= pd(|λ|−λ′
1)−

∑
i λ

′
iλ

′
i+1

∏

i

(
d− λ′

i+1

λ′
i − λ′

i+1

)

p

= pd(|λ|−λ′
1)−

∑
i λ

′
iλ

′
i+1

[d]p!

[d− λ′
1]p![λ

′
1 − λ′

2]p![λ
′
2 − λ′

3]p! · · ·

= pd(|λ|−λ′
1)−

∑
i λ

′
iλ

′
i+1

(p − 1)λ
′
1 [d]p!

[d− λ′
1]p!p

∑
i (

λ′
i
−λ′

i+1
+1

2
)∏

i(1/p)mi(λ)

=
pd(|λ|−λ′

1)(p− 1)λ
′
1 [d]p!

[d− λ′
1]p!p

1
2
[
∑

i(λ
′
i)

2+(λ′
i+1)

2+λ′
i−λ′

i+1]
∏

i(1/p)mi(λ)

=
pd(|λ|−λ′

1)p(λ
′
1)

2/2(p− 1)λ
′
1 [d]p!

[d− λ′
1]p!p

λ′
1/2

·
1

p
∑

i(λ
′
i)

2∏
i(1/p)mi(λ)

.

Since λ′
1 = r, equation (2) implies that the left-hand side of (8) is equal

to

pd|λ|−dr+r2/2−r/2(p− 1)r[d]p!

[d− r]p!

= pd|λ|−dr+r2/2−r/2(pd − 1) · · · (pd−r+1 − 1),

which simplifies to the right-hand side of (8). �

We now use the alternate expression of (7) to give an additional proof of
Theorem 2.4 in the case when p is prime. The zeta function of Zd is defined
by

ζZd(s) =
∑

H≤Zd

[Zd : H]−s,

where the sum is taken over all finite index subgroups of Zd. It is known
that

ζZd(s) =ζ(s)ζ(s− 1) · · · ζ(s− (d− 1))

=
∏

p

(
(1− p−s)−1(1− p−(s−1))−1 · · · (1− p−(s−(d−1)))−1

)
,(9)



10 JASON FULMAN AND NATHAN KAPLAN

where ζ(s) denotes the Riemann zeta function, and the product is taken
over all primes. See the book of Lubotzky and Segal for five proofs of this
fact [18].

Second Proof of Theorem 2.4 for p prime. From (7), we need only prove

(10)
∑

|λ|=n

un

pnd

(
λ1∏

i=1

pλ
′
i+1(d−λ′

i)

(
d− λ′

i+1

λ′
i − λ′

i+1

)

p

)
=

un

pn
(1/p)d+n−1

(1/p)d−1(1/p)n
.

Let λ∗ = (λ1, . . . , λ1), where there are d entries in the tuple. The dis-
cussion around equation (19) in [20] says that the term in parentheses of
the left-hand side of (10) is equal to the number of subgroups of a finite
abelian p-group of type λ∗ that have type λ, nλ∗(λ), which is also equal to
the number of subgroups Λ ⊂ Zd such that Zd/Λ is a finite abelian p-group
of type λ.

After some obvious cancelation, we need only show that

∑

|λ|=n

nλ∗(λ) =
pn(d−1)(1/p)d+n−1

(1/p)d−1(1/p)n
.

The left-hand side is the number of subgroups Λ ⊂ Zd such that Zd/Λ has
order pn. This is the p−sn coefficient of ζZd(s). Using (9), this is equal to

Coef. p−sn in (1− p−s)−1(1− p−(s−1))−1 · · · (1− p−(s−(d−1)))−1

= Coef. xn in (1− x)−1(1− px)−1(1− p2x)−1 · · · (1− pd−1x))−1.

By Theorem 349 of [17], this is equal to

pn(d−1)(1/p)d+n−1

(1/p)d−1(1/p)n
,

and the proof is complete.
�

3. Cokernels of random alternating p-adic matrices

In this section we consider a distribution on finite abelian p-groups that
arises in the study of cokernels of random p-adic alternating matrices. We
show that this is a special case of the distributions P p

d,u.

Let n be an even positive integer and let A ∈ Altn(Zp) be a random matrix
chosen with respect to additive Haar measure on Altn(Zp). The cokernel of
A is a finite abelian p-group of the form G ∼= H ×H for some H of type λ
with at most n/2 parts, and is equipped with a nondegenerate alternating
pairing [ , ] : H ×H 7→ Q/Z. Let Sp(G) be the group of automorphisms of
H respecting [ , ]. Let r be the number of parts of λ, and |λ|, n(λ), mi(λ)
be as in Section 1.2.
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Lemma 3.1. Let n be an even positive integer and A ∈ Altn(Zp) be a
random matrix chosen with respect to additive Haar measure on Altn(Zp).
The probability that the cokernel of A is isomorphic to G is given by

(11) PAlt
n,p (λ) =

∏n
i=n−2r+1(1− 1/pi)

∏n/2−r
i=1 (1− 1/p2i−1)

p|λ|+4n(λ)
∏

i

∏mi(λ)
j=1 (1− 1/p2j)

.

Proof. Formula (6) and Lemma 3.6 of [1] imply that the probability that
the cokernel of A is isomorphic to G is given by

∣∣Sur(Zn
p , G)

∣∣
|Sp(G)|

n/2−r∏

i=1

(1− 1/p2i−1)|G|1−n.

We can rewrite this expression in terms of the partition λ. Clearly |G| =

p2|λ|. Proposition 3.1 of [5] implies that since G has rank 2r,

|Sur(Zn
p , G)| = p2n|λ|

n∏

i=n−2r+1

(1− 1/pi).

An identity on the bottom of page 538 of [9] says that,

|Sp(G)| = p|λ|p2
∑

i(λ
′
i)

2
∏

i

mi(λ)∏

j=1

(1− 1/p2j)

= p4n(λ)+3|λ|
∏

i

mi(λ)∏

j=1

(1− 1/p2j).

Putting these results together completes the proof. �

The next theorem shows that (11) is a special case of (3).

Theorem 3.2. Let n be an even positive integer. For any partition λ,

P p2

n/2,p(λ) = PAlt
n,p (λ).

Proof. Rewrite (3) as

u|λ|
∏d

i=1(1− u/pi)
∏d

i=d−r+1(1− 1/pi)

p2n(λ)+|λ|
∏

i

∏mi(λ)
j=1 (1− 1/pj)

.

Replacing d by n/2, u by p, and p by p2 gives
∏n/2

i=1(1− 1/p2i−1)
∏n/2

i=n/2−r+1(1− 1/p2i)

p4n(λ)+|λ|
∏

i

∏mi(λ)
j=1 (1− 1/p2j)

.

Comparing with (11), we see that it suffices to prove

n/2∏

i=1

(1−1/p2i−1)

n/2∏

i=n/2−r+1

(1−1/p2i) =

n∏

i=n−2r+1

(1−1/pi)

n/2−r∏

i=1

(1−1/p2i−1).
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To prove this equality, note that when each side is multiplied by

(1− 1/p2)(1 − 1/p4) · · · (1− 1/pn−2r),

each side becomes (1/p)n. �

4. Cokernels of random symmetric p-adic matrices

Let A ∈ Symn(Zp) be a random matrix chosen with respect to additive
Haar measure on Symn(Zp). Let r be the number of parts of λ. Theorem 2
of [4] shows that the probability that the cokernel of A has type λ is equal
to:

(12) P Sym
n (λ) =

∏n
j=n−r+1(1− 1/pj)

∏⌈(n−r)/2⌉
i=1 (1− 1/p2i−1)

pn(λ)+|λ|
∏

i≥1

∏⌊mi(λ)/2⌋
j=1 (1− 1/p2j)

.

Note that P Sym
n (λ) = 0 if λ has more than n parts. As in earlier sections,

when p is prime (12) has an interpretation in terms of finite abelian p-groups,
but defines a distribution on partitions for any p > 1. This follows directly
from Theorem 4.1 below.

Taking n → ∞ gives a distribution on partitions where λ is chosen with
probability

(13) P Sym
∞ (λ) =

∏
i odd (1− 1/pi)

pn(λ)+|λ|
∏

i≥1

∏⌊mi(λ)/2⌋
j=1 (1− 1/p2j)

.

The distribution of (13) is studied in [24], where Wood shows that it arises
as the distribution of p-parts of sandpile groups of large Erdős-Rényi random
graphs. Combinatorial properties of this distribution are considered in [14],
where it is shown that this distribution is a specialization of a two parameter
family of distributions. It is unclear whether the distribution of (12) also
sits within a larger family.

The following theorem allows one to generate partitions from the measure
(12), and is a minor variation on Theorem 3.1 of [14].

Theorem 4.1. Starting with λ′
0 = n, define in succession n ≥ λ′

1 ≥ λ′
2 ≥ · · ·

according to the rule that if λ′
l = a, then λ′

l+1 = b with probability

K(a, b) =

∏a
i=1(1− 1/pi)

p(
b+1
2 )∏b

i=1(1− 1/pi)
∏⌊(a−b)/2⌋

j=1 (1− 1/p2j)
.

Then the resulting partition with at most n parts is distributed according to
(12).

Proof. It is necessary to compute

K(n, λ′
1)K(λ′

1, λ
′
2)K(λ′

2, λ
′
3) · · ·

There is a lot of cancelation, and (recalling that λ′
1 = r), what is left is:

∏n
j=1(1− 1/pj)

∏⌊(n−r)/2⌋
j=1 (1− 1/p2j)

1

pn(λ)+|λ|
∏

i≥1

∏⌊mi(λ)/2⌋
j=1 (1− 1/p2j)

.
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So to complete the proof, it is necessary to check that
∏n

j=1(1− 1/pj)
∏⌊(n−r)/2⌋

j=1 (1− 1/p2j)
=

n∏

j=n−r+1

(1− 1/pj)

⌈(n−r)/2⌉∏

i=1

(1− 1/p2i−1).

This equation is easily verified by breaking it into cases based on whether
n− r is even or odd. �

The following corollary is immediate.

Corollary 4.2. Let λ be chosen from (12). Then the chance that λ has
r ≤ n parts is equal to

∏n
j=r+1(1− 1/pj)

p(
r+1
2 )∏⌊(n−r)/2⌋

j=1 (1− 1/p2j)
.

Proof. By Theorem 4.1, the sought probability is equal to K(n, r). �

Taking n → ∞ in this result recovers Theorem 2.2 of [14], which is also
Corollary 9.4 of [24].

5. Computation of H-moments

We recall that L denotes the set of isomorphism classes of finite abelian
p-groups and that a probability distribution ν on L gives a probability dis-
tribution on the set of partitions in an obvious way. Similarly, a measure
on partitions gives a measure on L, setting ν(G) = ν(λ) when G is a finite
abelian p-group of type λ. When G,H ∈ L we write |Sur(G,H)| for the
number of surjections from any representative of the isomorphism class G
to any representative of the isomorphism class H.

Let ν be a probability measure on L. For H ∈ L, the H-moment of ν is
defined as ∑

G∈L

ν(G)|Sur(G,H)|.

When H is a finite abelian p-group of type µ this is
∑

λ

ν(λ)|Sur(λ, µ)|.

The distribution ν gives a measure on partitions and we refer to this quantity
as the µ-moment of the measure. For an explanation of why these are called
the moments of the distribution, see Section 3.3 of [4].

The Cohen-Lenstra distribution is the probability distribution on L for
which a finite abelian group G of type λ is chosen with probability P∞,1(λ).
One of the most striking properties of the Cohen-Lenstra distribution is that
theH-moment of P∞,1 is 1 for every H, or equivalently, for any finite abelian
p-group H of type µ,

∑

λ

P∞,1(λ)|Sur(λ, µ)| = 1.
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There is a nice algebraic explanation of this fact using the interpretation of
P∞,1 as a limit of the Pd,1 distributions given by (1) (see for example [21]).

Lemma 8.2 of [10] shows that the Cohen-Lenstra distribution is deter-
mined by its moments.

Lemma 5.1. Let p be an odd prime. If ν is any probability measure on L
for which ∑

G∈L

ν(G)|Sur(G,H)| = 1

for any H ∈ L, then ν = P∞,1.

Our next goal is to compute the moments for the measure Pd,u; see The-
orem 5.3 below. Our method is new even in the case P∞,1.

There has been much recent interest in studying moments of distributions
related to the Cohen-Lenstra distribution, and showing that these moments
determine a unique distribution [2, 24, 26]. At the end of this section, we
add to this discussion by proving a version of Lemma 5.1 for the distribution
Pd,u.

The following lemma counts the number of surjections from G to H.
Recall that nλ(µ) is the number of subgroups of type µ of a finite abelian
group of type λ.

Lemma 5.2. Let G,H be finite abelian p-groups of types λ and µ respec-
tively. Then

|Sur(G,H)| = |Sur(λ, µ)| = nλ(µ)|Aut(µ)|.

For a proof, see page 28 of [27]. The main idea is that |Sur(G,H)| is the

number of injective homomorphisms from Ĥ to Ĝ, where these are the dual
groups of H and G, respectively. The image of such a homomorphism is a

subgroup of Ĝ of type µ.
The distributions Pd,u are defined for all p > 1. It is not immediately clear

what the µ-moment of this distribution should mean when p is not prime,
since |Sur(λ, µ)| is defined in terms of surjective homomorphisms between
finite abelian p-groups. In (2) we saw how to define |Aut(λ)| in terms of the
parts of the partition λ and the parameter p, even in the case where p is not
prime. Similarly, Lemma 5.2 gives a way to define |Sur(λ, µ)| in terms of
the parameter p and the partitions λ and µ even when p is not prime. We
first define |Aut(µ)| using (2), and then note that nλ(µ) is a polynomial in
p that we can evaluate for any p > 1.

Theorem 5.3. The µ-moment of the distribution Pd,u is equal to
{

u|µ|(1/p)d
(1/p)d−r(µ)

if r(µ) ≤ d

0 otherwise.

Here, as above, r(µ) denotes the number of parts of µ.
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Proof. Clearly we can suppose that r(µ) ≤ d. By Lemma 5.2, the µ-moment
of the distribution Pd,u is equal to

∑

λ

Pd,u(λ)|Sur(λ, µ)| = |Aut(µ)|
∑

λ

Pd,u(λ)nλ(µ).

Let nλ(µ, ν) be the number of subgroups M of G so that M has type µ
and G/M has type ν. This is a polynomial in p (see Chapter II Section 4
of [19]). Then by Proposition 2.1, the µ-moment becomes

|Aut(µ)|
d∏

i=1

(1− u/pi) ·
∑

λ

Pλ(
u
p ,

u
p2 , · · · ,

u
pd
, 0, · · · ; 1p)

pn(λ)

∑

ν

nλ(µ, ν).

Reversing the order of summation, this becomes

|Aut(µ)|
d∏

i=1

(1− u/pi) ·
∑

ν

∑

λ

Pλ(
u
p ,

u
p2 , · · · ,

u
pd
, 0, · · · ; 1p)

pn(λ)
nλ(µ, ν).

From Section 3.3 of [19], it follows that for any values of the x variables,

∑

λ

nλ(µ, ν)
Pλ(x;

1
p)

pn(λ)
=

Pµ(x;
1
p)

pn(µ)

Pν(x;
1
p)

pn(ν)
.

Specializing xi = u/pi for i = 1, · · · , d and 0 otherwise, it follows that the
µ-moment of Pd,u is equal to

|Aut(µ)|
d∏

i=1

(1− u/pi) ·
∑

ν

Pµ(
u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(µ)

·
Pν(

u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(ν)

= |Aut(µ)|
Pµ(

u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(µ)

·
∑

ν

d∏

i=1

(1− u/pi) ·
Pν(

u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(ν)
.

By Proposition 2.1, this is equal to

|Aut(µ)|
Pµ(

u
p ,

u
p2
, · · · , u

pd
, 0, · · · ; 1p)

pn(µ)
.

By pages 181 and 213 of [19], this simplifies to

u|µ|(1/p)d
(1/p)d−r(µ)

.

�

Remarks:
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• The exact same argument proves the analogous result for the distri-
bution P∞,u.

• Setting d = ∞ and u = 1/pw (with w a positive integer) gives the
distribution (4), and in this case Theorem 5.3 recovers Lemma 3.2
of [25].

• The argument used in the proof of Theorem 5.3 does not require
that p is prime.

We use Theorem 5.3 to determine the expected number of pℓ-torsion el-
ements of a finite abelian group H drawn from Pd,u. Let Tℓ be defined
by

Tℓ(H) = |H[pℓ]| = |{x ∈ H : pℓ · x = 0}|.

The number of elements of H of order exactly pℓ is Tℓ(H)− Tℓ−1(H).
For a finite abelian p-group H, let rpk(H) denote the pk-rank of H, that

is,

rpk(H) = dimZ/pZ

(
pk−1H/pkH

)
.

If H is of type λ, then rpk(H) = λ′
k, the number of parts of λ of size at least

k. The number of parts of λ of size exactly k is λ′
k − λ′

k+1. It is clear that

Tℓ(H) = p
rp(H)+r

p2 (H)+···+r
pℓ
(H)

= pλ
′
1+λ′

2+···+λ′
ℓ .

Theorem 5.4. Let p be a prime, ℓ be a positive integer, and 0 < u < p.
The expected value of Tℓ(H) for a finite abelian p-group H drawn from Pd,u

is
(uℓ + uℓ−1 + · · ·+ u)(1− p−d) + 1.

The expected value of Tℓ(H)− Tℓ−1(H) is uℓ(1− p−d).

Remarks:

• The exact same argument proves the analogous result for the distri-
bution P∞,u.

• Taking d = ∞, u = p−w recovers a result of Delaunay, the first part
of Corollary 3 of [9]. Delaunay’s result generalizes work of Cohen
and Lenstra for P∞,1 and P∞,1/p [5].

• Theorem 5.3 can likely be used to compute moments of more com-
plicated functions involving Tℓ(H) giving results similar to those of
Delaunay and Jouhet in [6]. We do not pursue this further here.

Lemma 5.5. Let H be a finite abelian p-group of type λ and let ℓ ≥ 1. Then

#Hom(H,Z/pℓZ) = p
r
pℓ
(H)+r

pℓ−1 (H)+···+rp(H)
= pλ

′
1+λ′

2+···+λ′
ℓ = Tℓ(H).

Proof. Suppose

H ∼= Z/pλ1Z× · · · × Z/pλrp(H)Z,

and consider the particular generating set for H

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , erp(H) = (0, . . . , 0, 1).

Note that ei has order p
λi .
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A homomorphism from H to Z/pℓZ is uniquely determined by the images
of e1, . . . , erp(H). When λi ≥ ℓ there are pℓ choices for the image of ei. If

1 ≤ λi ≤ ℓ, there are pλi choices for the image of ei. Therefore, the total
number of homomorphisms is

pℓλ
′
ℓ
+(ℓ−1)(λ′

ℓ−1−λ′
ℓ
)+···+1·(λ′

1−λ′
2).

�

Proof of Theorem 5.4. We compute the expected value of

#Hom(H,Z/pℓZ)−#Hom(H,Z/pℓ−1Z)

and apply Lemma 5.5 to complete the proof.
Let H be a finite abelian p-group drawn from Pd,u. Every element of

Hom(H,Z/pℓZ) is either a surjection, or surjects onto a unique proper sub-
group of Z/pℓZ. Every proper subgroup of Z/pℓZ is contained in the unique
proper subgroup of Z/pℓZ that is isomorphic to Z/pℓ−1Z. Therefore,

#Sur(H,Z/pℓZ) = #Hom(H,Z/pℓZ)−#Hom(H,Z/pℓ−1Z).

Lemma 5.5 implies Tℓ(H)−Tℓ−1(H) = #Sur(H,Z/pℓZ). Applying Theorem
5.3, noting that T0(H) = 1 for any H, completes the proof. �

We close this section by proving a version of Lemma 5.1 for the distribu-
tion Pd,u. The proof of Lemma 8.2 from [10] carries over almost exactly to
this more general setting.

Theorem 5.6. Suppose that p > 1 and 0 < u < p are such that

(14)
1

(u/p)d
=

d∏

i=1

(1− u/pi)−1 < 2.

If ν is any probability measure on the set of partitions for which

(15)
∑

λ

ν(λ)|Sur(λ, µ)| =

{
u|µ|(1/p)d
(1/p)d−r(µ)

if r(µ) ≤ d

0 otherwise,

then ν = Pd,u.

Remarks:

• When p is prime this result has an interpretation in terms of prob-
ability measures on L.

• The exact same argument proves the analogous result for the distri-
bution P∞,u.

• The expression on the left-hand side of (14) is decreasing in p and
in u. Setting d = ∞, u = 1 and noting that this inequality holds for
all p ≥ 3 gives Lemma 5.1.

• Similarly, setting d = ∞, u = 1/pw (with p prime and w a positive
integer) gives Proposition 2.3 of [26].
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• Theorem 5.6 only applies when 1/(u/p)d < 2. Results of Wood
imply that the moments determine the distribution in additional
cases where p is prime, for example when p = 2, d = ∞, and u = 1.
See Theorem 3.1 in [25] and Theorem 8.3 in [24].

Proof. The assumption gives, for every µ

(16) |Aut(µ)|ν(µ) +
∑

λ6=µ

|Sur(λ, µ)|ν(λ) =

{
u|µ|(1/p)d
(1/p)d−r(µ)

if r(µ) ≤ d

0 otherwise.

Since the second term in the left-hand side of (16) is non-negative, for r(µ) >
d we have |Aut(µ)|ν(µ) = 0, so ν(µ) = 0.

Now suppose that r(µ) ≤ d. Our goal is to show that

ν(µ) =
u|µ|(u/p)d
|Aut(µ)|

(1/p)d
(1/p)d−r(µ)

.

By Theorem 5.3, in the particular case ν = Pd,u, (16) is equal to

u|µ|(u/p)d(1/p)d
(1/p)d−r(µ)

+
∑

λ6=µ
r(λ)≤d

u|λ|(u/p)d
|Sur(λ, µ)|

|Aut(λ)|

(1/p)d
(1/p)d−r(λ)

=
u|µ|(1/p)d
(1/p)d−r(µ)

.

This gives

∑

λ6=µ
r(λ)≤d

u|λ|
|Sur(λ, µ)|

|Aut(λ)|(1/p)d−r(λ)
=

u|µ|

(1/p)d−r(µ)

(
1

(u/p)d
− 1

)
.

Let

β =
(1/p)d−r(µ)

u|µ|

∑

λ6=µ
r(λ)≤d

u|λ|
|Sur(λ, µ)|

|Aut(λ)|(1/p)d−r(λ)
=

1

(u/p)d
− 1.

It is enough to show that

(17) |Aut(µ)|ν(µ) = u|µ|
(1/p)d

(1/p)d−r(µ)

1

β + 1
.

By assumption, |β| < 1, so we verify (17) by showing that |Aut(µ)|ν(µ) is
bounded by the alternating partial sums of the series

u|µ|
(1/p)d

(1/p)d−r(µ)

1

β + 1
= u|µ|

(1/p)d
(1/p)d−r(µ)

(1− β + β2 − · · · ).

Equation (16) implies that

|Aut(µ)|ν(µ) ≤
u|µ|(1/p)d
(1/p)d−r(µ)

.
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For any λ with r(λ) ≤ d this gives

ν(λ) ≤
u|λ|(1/p)d

|Aut(λ)|(1/p)d−r(λ)
.

Using this bound in (16) gives

|Aut(µ)|ν(µ) = u|µ|
(1/p)d

(1/p)d−r(µ)
−
∑

λ6=µ
r(λ)≤d

|Sur(λ, µ)|ν(λ)

≥ u|µ|
(1/p)d

(1/p)d−r(µ)
−
∑

λ6=µ
r(λ)≤d

u|λ|
|Sur(λ, µ)|

|Aut(λ)|

(1/p)d
(1/p)d−r(λ)

=
u|µ|(1/p)d
(1/p)d−r(µ)

−
u|µ|(1/p)d
(1/p)d−r(µ)

β =
u|µ|(1/p)d
(1/p)d−r(µ)

(1− β).

Similarly, for any λ with r(λ) ≤ d, this gives

ν(λ) ≥
u|λ|

|Aut(λ)|

(1/p)d
(1/p)d−r(λ)

(1− β).

Using this bound in (16) gives

|Aut(µ)|ν(µ) = u|µ|
(1/p)d

(1/p)d−r(µ)
−
∑

λ6=µ
r(λ)≤d

|Sur(λ, µ)|ν(λ)

≤ u|µ|
(1/p)d

(1/p)d−r(µ)
−
∑

λ6=µ
r(λ)≤d

u|λ|
|Sur(λ, µ)|

|Aut(λ)|

(1/p)d
(1/p)d−r(λ)

(1− β)

which implies

|Aut(µ)|ν(µ) ≤ u|µ|
(1/p)d

(1/p)d−r(µ)
− u|µ|

(1/p)d
(1/p)d−r(µ)

β(1− β)

= u|µ|
(1/p)d

(1/p)d−r(µ)
(1− β + β2).

Continuing in this way completes the proof. �
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