RANDOM PARTITIONS AND COHEN-LENSTRA HEURISTICS

JASON FULMAN AND NATHAN KAPLAN

Abstract

We investigate combinatorial properties of a family of probability distributions on finite abelian p-groups. This family includes several well-known distributions as specializations. These specializations have been studied in the context of Cohen-Lenstra heuristics and cokernels of families of random p-adic matrices.

1. Introduction

Friedman and Washington study a distribution on finite abelian p-groups G of rank at most d in [12]. In particular, a finite abelian p-group G of rank $r \leq d$, is chosen with probability

$$
\begin{equation*}
P_{d}(G)=\frac{1}{|\operatorname{Aut}(G)|}\left(\prod_{i=1}^{d}\left(1-1 / p^{i}\right)\right)\left(\prod_{i=d-r+1}^{d}\left(1-1 / p^{i}\right)\right) . \tag{1}
\end{equation*}
$$

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} \geq 1$ be a partition. A finite abelian p-group G has type λ if

$$
G \cong \mathbb{Z} / p^{\lambda_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{\lambda_{r}} \mathbb{Z}
$$

Note that r is equal to the rank of G.
There is a correspondence between measures on the set of integer partitions and on isomorphism classes of finite abelian p-groups. Let \mathcal{L} denote the set of isomorphism classes of finite abelian p-groups. Given a measure ν on partitions, we get a corresponding measure ν^{\prime} on \mathcal{L} by setting $\nu^{\prime}(G)=\nu(\lambda)$ where $G \in \mathcal{L}$ is the isomorphism class of finite abelian p-groups of type λ. We analogously define a measure on partitions given a measure on \mathcal{L}. When G is a finite abelian group of type λ, we write $|\operatorname{Aut}(\lambda)|$ for $|\operatorname{Aut}(G)|$, and

[^0]from page 181 of [19],
\[

$$
\begin{equation*}
|\operatorname{Aut}(\lambda)|=p^{\sum\left(\lambda_{i}^{\prime}\right)^{2}} \prod_{i}(1 / p)_{m_{i}(\lambda)} . \tag{2}
\end{equation*}
$$

\]

The notation used in (2) is standard, and we review it in Section 1.2.
We introduce and study a more general distribution on integer partitions and on finite abelian p-groups G of rank at most d. We choose a partition λ with $r \leq d$ parts with probability

$$
\begin{equation*}
P_{d, u}(\lambda)=\frac{u^{|\lambda|}}{p^{\sum\left(\lambda_{i}^{\prime}\right)^{2}} \prod_{i}(1 / p)_{m_{i}(\lambda)}} \prod_{i=1}^{d}\left(1-u / p^{i}\right) \prod_{i=d-r+1}^{d}\left(1-1 / p^{i}\right) . \tag{3}
\end{equation*}
$$

This gives a distribution on partitions for all real $p>1$ and $0<u<p$. We can include p as an additional parameter and write $P_{d, u}^{p}(\lambda)$. For clarity, we will suppress this additional notation except in Section 3. When p is prime, we can interpret (3) as a distribution on \mathcal{L}. When p is not prime it does not make sense to talk about automorphisms of a finite abelian p-group, but in this case we can take (2) as the definition of $|\operatorname{Aut}(\lambda)|$.

The main goal of this paper is to investigate combinatorial properties of the family of distributions of (3). We begin by noting six interesting specializations of this measure.

- Setting $u=1$ in $P_{d, u}$ recovers P_{d}.
- We define a distribution $P_{\infty, u}$ by

$$
\lim _{d \rightarrow \infty} P_{d, u}(\lambda)=P_{\infty, u}(\lambda)=\frac{u^{|\lambda|}}{|\operatorname{Aut}(\lambda)|} \prod_{i \geq 1}\left(1-u / p^{i}\right)
$$

It is not immediately clear that this limit defines a distribution on partitions, but this follows from the sentence after Proposition 2.1, from Theorem [2.2, or from Theorem 5.3, taking μ to be the trivial partition.

For $0<u<1$, this probability measure arises by choosing a random non-negative integer N with probability $P(N=n)=(1-$ $u) u^{n}$, and then looking at the $z-1$ piece of a random element of the finite $\operatorname{group} \operatorname{GL}(N, p)$. See [13] for details.

- Note that

$$
P_{\infty, 1}(\lambda)=\frac{1}{|\operatorname{Aut}(\lambda)|} \prod_{i \geq 1}\left(1-1 / p^{i}\right) .
$$

This is the measure on partitions corresponding to the usual CohenLenstra measure on finite abelian p-groups [5. It also arises from studying the $z-1$ piece of a random element of the finite group $\mathrm{GL}(d, p)$ in the $d \rightarrow \infty$ limit [13], or from studying the cokernel of a random $d \times d p$-adic matrix in the $d \rightarrow \infty$ limit [12].

- Let w be a positive integer and λ a partition. The w-probability of λ, denoted by $P_{w}(\lambda)$, is the probability that a finite abelian p-group of type λ is obtained by the following three step random process:
- Choose randomly a p-group H of type μ with respect to the measure $P_{\infty, 1}(\mu)$.
- Then choose w elements g_{1}, \cdots, g_{w} of H uniformly at random.
- Finally, output $H /\left\langle g_{1}, \cdots, g_{w}\right\rangle$, where $\left\langle g_{1}, \cdots, g_{w}\right\rangle$ denotes the group generated by g_{1}, \cdots, g_{w}.
From Example 5.9 of Cohen and Lenstra [5], it follows that $P_{w}(\lambda)$ is a special case of (3):

$$
\begin{equation*}
P_{w}(\lambda)=P_{\infty, 1 / p^{w}}(\lambda) . \tag{4}
\end{equation*}
$$

- We now mention two analogues of Proposition 1 of [12] for rectangular matrices. Let w be a non-negative integer. Friedman and Washington do not discuss this explicitly, but using the same methods as in [12] one can show that taking the limit as $d \rightarrow \infty$ of the probability that a randomly chosen $d \times(d+w)$ matrix over \mathbb{Z}_{p} has cokernel isomorphic to a finite abelian p-group of type λ is given by $P_{\infty, 1 / p^{w}}(\lambda)$. See the discussion above Proposition 2.3 of [26].

Similarly, Tse considers rectangular matrices with more rows than columns and shows that $P_{\infty, 1 / p^{w}}(\lambda)$ is equal to the $d \rightarrow \infty$ probability that a randomly chosen $(d+w) \times d$ matrix over \mathbb{Z}_{p} has cokernel isomorphic to $\mathbb{Z}_{p}^{w} \oplus G$, where G is a finite abelian p-group of type λ [23].

- In Section 3 we see that the measure on partitions studied by Bhargava, Kane, Lenstra, Poonen and Rains [1], arising from taking the cokernel of a random alternating p-adic matrix is also a special case of $P_{d, u}$. Taking a limit as the size of the matrix goes to infinity gives a distribution consistent with heuristics of Delaunay for TateShafarevich groups of elliptic curves defined over $\mathbb{Q}[8]$.

A few of these specializations have received extensive attention in prior work:

- When p is an odd prime, Cohen and Lenstra conjecture that $P_{\infty, 1}$ models the distribution of p-parts of class groups of imaginary quadratic fields and $P_{\infty, 1 / p}$ models the distribution of p-parts of class groups of real quadratic fields [5]. Theorem 6.3 in [5] gives the probability that a group chosen from $P_{\infty, 1 / p^{w}}$ has given p-rank. For any n odd, they show that the average number of elements of order exactly n of a group drawn from $P_{\infty, 1}$ is 1 , and that this average for a group drawn from $P_{\infty, 1 / p}$ is $1 / n$ [5, Section 9]. Delaunay generalizes these results in Corollary 11 of 9 , where he computes the probability that a group drawn from $P_{\infty, u}$ simultaneously has specified p^{j}-rank for several values of j. Delaunay and Jouhet compute averages of
even more complicated functions involving moments of the number of p^{j}-torsion points for varying j in [6].

The distribution of 2-parts of class groups of quadratic fields is not modeled by $P_{\infty, u}$ and several authors have worked to understand these issues. Motivated by work of Gerth [15, 16], Fouvry and Klüners study the conjectural distribution of p^{j}-ranks and moments for the number of torsion points of C_{D}^{2}, the square of the ideal class group of a quadratic field [11.

- Delaunay [9], and Delaunay and Jouhet [6, prove analogues of the results described in the previous paragraphs for groups drawn from the $n \rightarrow \infty$ specialization of the distribution we study in Section 3 , In [7, they prove analogues of the results of Fouvry and Klüners [11] for this distribution.
1.1. Outline of the Paper. In Section 2 we interpret $P_{d, u}$ in terms of HallLittlewood polynomials and use this interpretation to compute the probability that a partition chosen from $P_{d, u}$ has given size, given number of parts, or given size and number of parts. In Theorem 2.2 we give an algorithm for producing a partition according to the distribution $P_{d, u}$.

In Section 3 we show how a measure studied in [1] that arises from distributions of cokernels of random alternating p-adic matrices is given by a specialization of $P_{d, u}$. In Section 4 we briefly study a measure on partitions that arises from distributions of cokernels of random symmetric p-adic matrices that is studied in [4, 24]. We give an algorithm for producing a partition according to this distribution.

In Section 5 we combinatorially compute the moments of the distribution $P_{d, u}$ for all d and u. These moments were already known for the case $d=$ $\infty, u=1$, and our method is new even in that special case. We also show that in many cases these moments determine a unique distribution. This is a generalization of a result of Ellenberg, Venkatesh, and Westerland [10], that the moments of the Cohen-Lenstra distribution determine the distribution, and of Wood [26], that the moments of the distribution P_{w} determine the distribution.
1.2. Notation. Throughout this paper, when p is a prime number we write \mathbb{Z}_{p} for the ring of p-adic integers.

For a ring R, let $\mathrm{M}_{d}(R)$ denote the set of all $d \times d$ matrices with entries in R and let $\operatorname{Sym}_{d}(R)$ denote the set of all $d \times d$ symmetric matrices with entries in R. For an even integer d, let $\operatorname{Alt}_{d}(R)$ denote the set of all $d \times d$ alternating matrices with entries in R (that is, matrices A with zeros on the diagonal satisfying that the transpose of A is equal to $-A$).

For groups G and H we write $\operatorname{Hom}(G, H)$ for the set of homomorphisms from G to $H, \operatorname{Sur}(G, H)$ for the set of surjective homomorphisms from G to H, and $\operatorname{Aut}(G)$ for the set of automorphisms of G. If G is a finite abelian p-group of type λ and H is a finite abelian p-group of type μ, we sometimes write $|\operatorname{Sur}(\lambda, \mu)|$ for $|\operatorname{Sur}(G, H)|$.

For a partition λ, we let λ_{i} denote the size of the $i^{\text {th }}$ part of λ and $m_{i}(\lambda)$ denote the number of parts of λ of size i. We let λ_{i}^{\prime} denote the size of the $i^{\text {th }}$ column in the diagram of λ (so $\lambda_{i}^{\prime}=m_{i}(\lambda)+m_{i+1}(\lambda)+\cdots$). We also let $n(\lambda)=\sum_{i}\binom{\lambda_{i}^{\prime}}{2}$. We generally use r or $r(\lambda)$ to denote the number of parts of λ. We use $|\lambda|=n$ to say that λ is a partition of n, or equivalently $\sum \lambda_{i}=n$.

We let $n_{\lambda}(\mu)$ denote the number of subgroups of type μ of a finite abelian p-group of type λ. For a finite abelian group G, the number of subgroups $H \subseteq G$ of type μ equals the number of subgroups for which G / H has type μ [19, Equation (1.5), page 181].

We also let $(x)_{i}=(1-x)(1-x / p) \cdots\left(1-x / p^{i-1}\right)$. So $(1 / p)_{i}=(1-$ $1 / p) \cdots\left(1-1 / p^{i}\right)$. With this notation, (3) is equivalent to

$$
P_{d, u}(\lambda)=\frac{u^{|\lambda|}(u / p)_{d}}{p^{\sum\left(\lambda_{i}^{\prime}\right)^{2}} \prod_{i}(1 / p)_{m_{i}(\lambda)}} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\lambda)}}
$$

We use some notation related to q-binomial coefficients, namely:

$$
\begin{aligned}
{[n]_{q} } & =\frac{q^{n}-1}{q-1}=1+q+\cdots+q^{n-1} \\
{[n]_{q}!} & =[n]_{q}[n-1]_{q} \cdots[2]_{q} \\
\binom{n}{j}_{q} & =\frac{[n]_{q}!}{[j]_{q}![n-j]_{q}!}
\end{aligned}
$$

Finally if $f(u)$ is a power series in u, we let Coef. u^{n} in $f(u)$ denote the coefficient of u^{n} in $f(u)$.

2. Properties of the measure $P_{d, u}$

To begin we give a formula for $P_{d, u}(\lambda)$ in terms of Hall-Littlewood polynomials. We let P_{λ} denote a Hall-Littlewood polynomial, defined for a partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ of length at most n by

$$
P_{\lambda}\left(x_{1}, \cdots, x_{n} ; t\right)=\frac{1}{v_{\lambda}(t)} \sum_{w \in S_{n}} w\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \prod_{i<j} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

where

$$
v_{\lambda}(t)=\prod_{i \geq 0} \prod_{j=1}^{m_{i}(\lambda)} \frac{1-t^{j}}{1-t}
$$

the permutation $w \in S_{n}$ permutes the x variables, and we note that some parts of λ may have size 0 . For background on Hall-Littlewood polynomials, see Chapter 3 of [19].

Proposition 2.1. For a partition λ with $r \leq d$ parts,

$$
P_{d, u}(\lambda)=\prod_{i=1}^{d}\left(1-u / p^{i}\right) \cdot \frac{P_{\lambda}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\lambda)}}
$$

Proof. From page 213 of [19,

$$
\prod_{i=1}^{d}\left(1-u / p^{i}\right) \cdot \frac{P_{\lambda}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\lambda)}}
$$

is equal to

$$
\frac{u^{|\lambda|} \prod_{i=1}^{d}\left(1-u / p^{i}\right)}{\prod_{i}(1 / p)_{m_{i}(\lambda)}} \frac{(1 / p)_{d}}{p^{|\lambda|+2 n(\lambda)}(1 / p)_{d-r}} .
$$

Since $|\lambda|+2 n(\lambda)=\sum\left(\lambda_{i}^{\prime}\right)^{2}$, this is equal to (3), and the proposition follows.

The fact that $\sum_{\lambda} P_{d, u}(\lambda)=1$ follows from Proposition 2.1 and the identity of Example 1 on page 225 of [19]. It is also immediate from Theorem [2.2.

There are two ways to generate random partitions λ according to the distribution $P_{d, u}$. The first is to run the "Young tableau algorithm" of [13], stopped when coin d comes up tails. The second method is given by the following theorem.
Theorem 2.2. Starting with $\lambda_{0}^{\prime}=d$, define in succession $d \geq \lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots$ according to the rule that if $\lambda_{i}^{\prime}=a$, then $\lambda_{i+1}^{\prime}=b$ with probability

$$
K(a, b)=\frac{u^{b}(1 / p)_{a}(u / p)_{a}}{p^{b^{2}}(1 / p)_{a-b}(1 / p)_{b}(u / p)_{b}} .
$$

Then the resulting partition is distributed according to $P_{d, u}$.
Proof. One must compute

$$
K\left(d, \lambda_{1}^{\prime}\right) K\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right) K\left(\lambda_{2}^{\prime}, \lambda_{3}^{\prime}\right) \cdots .
$$

There is a lot of cancellation, and (recalling that $\lambda_{1}^{\prime}=r$), what is left is:

$$
\frac{(u / p)_{d}(1 / p)_{d} u^{|\lambda|}}{(1 / p)_{d-r} p^{\sum\left(\lambda_{i}^{\prime}\right)^{2}} \prod_{i}(1 / p)_{m_{i}(\lambda)}} .
$$

This is equal to $P_{d, u}(\lambda)$, completing the proof.
The following corollary is immediate from Theorem 2.2.
Corollary 2.3. Choose λ from $P_{d, u}$. Then the chance that λ has $r \leq d$ parts is equal to

$$
\frac{u^{r}(1 / p)_{d}(u / p)_{d}}{p^{r^{2}}(1 / p)_{d-r}(1 / p)_{r}(u / p)_{r}} .
$$

Proof. From Theorem [2.2, the sought probability is $K(d, r)$.
The $u=1$ case of this result appears in another form in work of Stanley and Wang [22]. In Theorem 4.14 of [22], the authors compute the probability $Z_{d}(p, r)$ that the Smith normal form of a certain model of random integer matrix has at most r diagonal entries divisible by p. Setting $u=1$ in Corollary 2.3 gives $Z_{d}(p, r)-Z_{d}(p, r-1)$. This expression also appears in [3] where the authors study finite abelian groups arising as \mathbb{Z}^{d} / Λ for random
sublattices $\Lambda \subset \mathbb{Z}^{d}$; isolating the prime p and the $i=r$ term in Corollary 1.2 of 3] gives the $u=1$ case of Corollary [2.3.

The next result computes the chance that λ chosen from $P_{d, u}$ has size n.

Theorem 2.4. The chance that λ chosen from $P_{d, u}$ has size n is equal to

$$
\frac{u^{n}}{p^{n}} \frac{(u / p)_{d}(1 / p)_{d+n-1}}{(1 / p)_{d-1}(1 / p)_{n}} .
$$

Proof. By Proposition 2.1, the sought probability is equal to

$$
\begin{aligned}
\sum_{|\lambda|=n} P_{d, u}(\lambda) & =(u / p)_{d} \sum_{|\lambda|=n} \frac{P_{\lambda}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\lambda)}} \\
& =(u / p)_{d} \sum_{|\lambda|=n} u^{n} \frac{P_{\lambda}\left(\frac{1}{p}, \frac{1}{p^{2}}, \cdots, \frac{1}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\lambda)}} \\
& =u^{n}(u / p)_{d} \text { Coef. } u^{n} \text { in } \sum_{\lambda} \frac{P_{\lambda}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\lambda)}} \\
& =u^{n}(u / p)_{d} \operatorname{Coef} . u^{n} \text { in } \frac{1}{(u / p)_{d}} \\
& =\frac{u^{n}}{p^{n}} \frac{(u / p)_{d}(1 / p)_{d+n-1}}{(1 / p)_{d-1}(1 / p)_{n}} .
\end{aligned}
$$

The fourth equality used Proposition 2.1 and the fact that $P_{d, u}$ defines a probability distribution, and the final equality used Theorem 349 of [17].

Theorem 2.5. The probability that λ chosen from $P_{d, u}$ has size n and $r \leq$ $\min \{d, n\}$ parts is equal to

$$
\frac{u^{n}(u / p)_{d}(1 / p)_{d}}{p^{r^{2}}(1 / p)_{d-r}(1 / p)_{r}} \frac{(1 / p)_{n-1}}{p^{n-r}(1 / p)_{r-1}(1 / p)_{n-r}} .
$$

Proof. From the definition of $P_{d, u}$, one has that

$$
\begin{aligned}
\sum_{\substack{\lambda_{1}^{\prime}=r \\
|\lambda|=n}} P_{d, u}(\lambda) & =\sum_{\substack{\lambda_{1}^{\prime}=r \\
|\lambda|=n}} \frac{u^{n}(u / p)_{d}(1 / p)_{d}}{|\operatorname{Aut}(\lambda)|(1 / p)_{d-r}} \\
& =u^{n}(u / p)_{d} \sum_{\substack{\lambda_{1}^{\prime}=r \\
|\lambda|=n}} \frac{(1 / p)_{d}}{|\operatorname{Aut}(\lambda)|(1 / p)_{d-r}} \\
& =u^{n}(u / p)_{d} \text { Coef. } u^{n} \text { in } \sum_{\lambda_{1}^{\prime}=r} \frac{u^{|\lambda|}(1 / p)_{d}}{|\operatorname{Aut}(\lambda)|(1 / p)_{d-r}} \\
& =u^{n}(u / p)_{d} \text { Coef. } u^{n} \text { in } \frac{1}{(u / p)_{d}} \sum_{\lambda_{1}^{\prime}=r} P_{d, u}(\lambda) \\
& =u^{n}(u / p)_{d} \text { Coef. } u^{n} \text { in } \frac{1}{(u / p)_{d}} \frac{u^{r}(1 / p)_{d}(u / p)_{d}}{p^{r^{2}}(1 / p)_{d-r}(1 / p)_{r}(u / p)_{r}} \\
& =\frac{u^{n}(u / p)_{d}(1 / p)_{d}}{p^{r^{2}(1 / p)_{d-r}(1 / p)_{r}}} \operatorname{Coef.} u^{n-r} \text { in } \frac{1}{(u / p)_{r}} \\
& =\frac{u^{n}(u / p)_{d}(1 / p)_{d}}{p^{r^{2}(1 / p)_{d-r}(1 / p)_{r}} \frac{(1 / p)_{n-1}}{p^{n-r}(1 / p)_{r-1}(1 / p)_{n-r}} .}
\end{aligned}
$$

The fifth equality used Corollary [2.3, and the final equality used Theorem 349 of 17 .

In the rest of this section we give another view of the distributions given by (11) and (3). When p is prime, equation (19) in [20] implies that

$$
\begin{equation*}
P_{d}(\lambda)=\frac{1}{p^{|\lambda| d}}\left(\prod_{i=1}^{\lambda_{1}} p^{\lambda_{i+1}^{\prime}\left(d-\lambda_{i}^{\prime}\right)}\binom{d-\lambda_{i+1}^{\prime}}{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}_{p}\right) \prod_{i=1}^{d}\left(1-1 / p^{i}\right) . \tag{5}
\end{equation*}
$$

Comparing this to the expression for $P_{d}(\lambda)$ given in (11) shows that
(6) $\frac{1}{p^{|\lambda| d}}\left(\prod_{i=1}^{\lambda_{1}} p^{\lambda_{i+1}^{\prime}\left(d-\lambda_{i}^{\prime}\right)}\binom{d-\lambda_{i+1}^{\prime}}{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}_{p}\right)=\frac{1}{|\operatorname{Aut}(\lambda)|}\left(\prod_{i=d-r+1}^{d}\left(1-1 / p^{i}\right)\right)$.

A direct proof is given in Proposition 4.7 of [3]. Therefore, we get a second expression for $P_{d, u}(\lambda)$,

$$
\begin{equation*}
P_{d, u}(\lambda)=\frac{u^{|\lambda|}}{p^{|\lambda| d}}\left(\prod_{i=1}^{\lambda_{1}} p^{\lambda_{i+1}^{\prime}\left(d-\lambda_{i}^{\prime}\right)}\binom{d-\lambda_{i+1}^{\prime}}{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}_{p}\right) \prod_{i=1}^{d}\left(1-u / p^{i}\right) . \tag{7}
\end{equation*}
$$

We give a combinatorial proof of (6) that applies for any real $p>1$, so (7) applies for any $p>1$ and $0<u<p$.

Proof of Equation (6). It is sufficient to show that for a partition λ with $r \leq d$ parts,

$$
\begin{equation*}
|\operatorname{Aut}(\lambda)|\left(\prod_{i=1}^{\lambda_{1}} p^{\lambda_{i+1}^{\prime}\left(d-\lambda_{i}^{\prime}\right)}\binom{d-\lambda_{i+1}^{\prime}}{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}_{p}\right)=p^{|\lambda| d} \prod_{j=0}^{r-1}\left(1-p^{-d+j}\right) . \tag{8}
\end{equation*}
$$

Clearly

$$
\begin{aligned}
& \prod_{i=1}^{\lambda_{1}} p^{\lambda_{i+1}^{\prime}\left(d-\lambda_{i}^{\prime}\right)}\binom{d-\lambda_{i+1}^{\prime}}{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}_{p} \\
= & p^{d\left(|\lambda|-\lambda_{1}^{\prime}\right)-\sum_{i} \lambda_{i}^{\prime} \lambda_{i+1}^{\prime}} \prod_{i}\binom{d-\lambda_{i+1}^{\prime}}{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}_{p} \\
= & p^{d\left(|\lambda|-\lambda_{1}^{\prime}\right)-\sum_{i} \lambda_{i}^{\prime} \lambda_{i+1}^{\prime} \frac{[d]_{p}!}{\left[d-\lambda_{1}^{\prime}\right]_{p}!\left[\lambda_{1}^{\prime}-\lambda_{2}^{\prime}\right]_{p}!\left[\lambda_{2}^{\prime}-\lambda_{3}^{\prime}\right]_{p}!\cdots}} \\
= & p^{d\left(|\lambda|-\lambda_{1}^{\prime}\right)-\sum_{i} \lambda_{i}^{\prime} \lambda_{i+1}^{\prime} \frac{(p-1)^{\lambda_{1}^{\prime}}[d]_{p}!}{\left.\left[d-\lambda_{1}^{\prime}\right]_{p}!p^{\sum_{i}\left(\lambda_{i}^{\prime} \lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}+1\right.}\right) \prod_{i}(1 / p)_{m_{i}(\lambda)}}} \\
= & \frac{p^{d\left(|\lambda|-\lambda_{1}^{\prime}\right)}(p-1)^{\lambda_{1}^{\prime}}[d]_{p}!}{\left[d-\lambda_{1}^{\prime}\right]_{p}!p^{\frac{1}{2}\left[\sum_{i}\left(\lambda_{i}^{\prime}\right)^{2}+\left(\lambda_{i+1}^{\prime}\right)^{2}+\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}\right]} \prod_{i}(1 / p)_{m_{i}(\lambda)}} \\
= & \frac{p^{d\left(|\lambda|-\lambda_{1}^{\prime}\right)} p^{\left(\lambda_{1}^{\prime}\right)^{2} / 2}(p-1)^{\lambda_{1}^{\prime}[d]_{p}!}}{\left[d-\lambda_{1}^{\prime}\right]_{p}!p^{\lambda_{1}^{\prime} / 2}} \cdot \frac{1}{p^{\sum_{i}\left(\lambda_{i}^{\prime}\right)^{2} \prod_{i}(1 / p)_{m_{i}(\lambda)}} .}
\end{aligned}
$$

Since $\lambda_{1}^{\prime}=r$, equation (22) implies that the left-hand side of (8) is equal to

$$
\begin{aligned}
& \frac{p^{d|\lambda|-d r+r^{2} / 2-r / 2}(p-1)^{r}[d]_{p}!}{[d-r]_{p}!} \\
= & p^{d|\lambda|-d r+r^{2} / 2-r / 2}\left(p^{d}-1\right) \cdots\left(p^{d-r+1}-1\right),
\end{aligned}
$$

which simplifies to the right-hand side of (8).
We now use the alternate expression of (7) to give an additional proof of Theorem [2.4 in the case when p is prime. The zeta function of \mathbb{Z}^{d} is defined by

$$
\zeta_{\mathbb{Z}^{d}}(s)=\sum_{H \leq \mathbb{Z}^{d}}\left[\mathbb{Z}^{d}: H\right]^{-s},
$$

where the sum is taken over all finite index subgroups of \mathbb{Z}^{d}. It is known that

$$
\begin{align*}
\zeta_{\mathbb{Z}^{d}}(s) & =\zeta(s) \zeta(s-1) \cdots \zeta(s-(d-1)) \\
& =\prod_{p}\left(\left(1-p^{-s}\right)^{-1}\left(1-p^{-(s-1)}\right)^{-1} \cdots\left(1-p^{-(s-(d-1))}\right)^{-1}\right), \tag{9}
\end{align*}
$$

where $\zeta(s)$ denotes the Riemann zeta function, and the product is taken over all primes. See the book of Lubotzky and Segal for five proofs of this fact [18].

Second Proof of Theorem 2.4 for p prime. From (17), we need only prove

$$
\begin{equation*}
\sum_{|\lambda|=n} \frac{u^{n}}{p^{n d}}\left(\prod_{i=1}^{\lambda_{1}} p^{\lambda_{i+1}^{\prime}\left(d-\lambda_{i}^{\prime}\right)}\binom{d-\lambda_{i+1}^{\prime}}{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}_{p}\right)=\frac{u^{n}}{p^{n}} \frac{(1 / p)_{d+n-1}}{(1 / p)_{d-1}(1 / p)_{n}} \tag{10}
\end{equation*}
$$

Let $\lambda^{*}=\left(\lambda_{1}, \ldots, \lambda_{1}\right)$, where there are d entries in the tuple. The discussion around equation (19) in [20] says that the term in parentheses of the left-hand side of (10) is equal to the number of subgroups of a finite abelian p-group of type λ^{*} that have type $\lambda, n_{\lambda^{*}}(\lambda)$, which is also equal to the number of subgroups $\Lambda \subset \mathbb{Z}^{d}$ such that \mathbb{Z}^{d} / Λ is a finite abelian p-group of type λ.

After some obvious cancelation, we need only show that

$$
\sum_{|\lambda|=n} n_{\lambda^{*}}(\lambda)=\frac{p^{n(d-1)}(1 / p)_{d+n-1}}{(1 / p)_{d-1}(1 / p)_{n}}
$$

The left-hand side is the number of subgroups $\Lambda \subset \mathbb{Z}^{d}$ such that \mathbb{Z}^{d} / Λ has order p^{n}. This is the $p^{-s n}$ coefficient of $\zeta_{\mathbb{Z}^{d}}(s)$. Using (9), this is equal to

$$
\begin{aligned}
& \text { Coef. } p^{-s n} \text { in }\left(1-p^{-s}\right)^{-1}\left(1-p^{-(s-1)}\right)^{-1} \cdots\left(1-p^{-(s-(d-1))}\right)^{-1} \\
= & \text { Coef. } \left.x^{n} \text { in }(1-x)^{-1}(1-p x)^{-1}\left(1-p^{2} x\right)^{-1} \cdots\left(1-p^{d-1} x\right)\right)^{-1} .
\end{aligned}
$$

By Theorem 349 of [17], this is equal to

$$
\frac{p^{n(d-1)}(1 / p)_{d+n-1}}{(1 / p)_{d-1}(1 / p)_{n}}
$$

and the proof is complete.

3. Cokernels of random alternating p-ADIC matrices

In this section we consider a distribution on finite abelian p-groups that arises in the study of cokernels of random p-adic alternating matrices. We show that this is a special case of the distributions $P_{d, u}^{p}$.

Let n be an even positive integer and let $A \in \operatorname{Alt}_{n}\left(\mathbb{Z}_{p}\right)$ be a random matrix chosen with respect to additive Haar measure on $\operatorname{Alt}_{n}\left(\mathbb{Z}_{p}\right)$. The cokernel of A is a finite abelian p-group of the form $G \cong H \times H$ for some H of type λ with at most $n / 2$ parts, and is equipped with a nondegenerate alternating pairing [,]: $H \times H \mapsto \mathbb{Q} / \mathbb{Z}$. Let $\operatorname{Sp}(G)$ be the group of automorphisms of H respecting [,]. Let r be the number of parts of λ, and $|\lambda|, n(\lambda), m_{i}(\lambda)$ be as in Section 1.2.

Lemma 3.1. Let n be an even positive integer and $A \in \operatorname{Alt}_{n}\left(\mathbb{Z}_{p}\right)$ be a random matrix chosen with respect to additive Haar measure on $\operatorname{Alt}_{n}\left(\mathbb{Z}_{p}\right)$. The probability that the cokernel of A is isomorphic to G is given by

$$
\begin{equation*}
P_{n, p}^{A l t}(\lambda)=\frac{\prod_{i=n-2 r+1}^{n}\left(1-1 / p^{i}\right) \prod_{i=1}^{n / 2-r}\left(1-1 / p^{2 i-1}\right)}{p^{|\lambda|+4 n(\lambda)} \prod_{i} \prod_{j=1}^{m_{i}(\lambda)}\left(1-1 / p^{2 j}\right)} \tag{11}
\end{equation*}
$$

Proof. Formula (6) and Lemma 3.6 of [1] imply that the probability that the cokernel of A is isomorphic to G is given by

$$
\frac{\left|\operatorname{Sur}\left(\mathbb{Z}_{p}^{n}, G\right)\right|}{|\operatorname{Sp}(G)|} \prod_{i=1}^{n / 2-r}\left(1-1 / p^{2 i-1}\right)|G|^{1-n} .
$$

We can rewrite this expression in terms of the partition λ. Clearly $|G|=$ $p^{2|\lambda|}$. Proposition 3.1 of [5] implies that since G has rank $2 r$,

$$
\left|\operatorname{Sur}\left(\mathbb{Z}_{p}^{n}, G\right)\right|=p^{2 n|\lambda|} \prod_{i=n-2 r+1}^{n}\left(1-1 / p^{i}\right)
$$

An identity on the bottom of page 538 of [9] says that,

$$
\begin{aligned}
|\operatorname{Sp}(G)| & =p^{|\lambda|} p^{2 \sum_{i}\left(\lambda_{i}^{\prime}\right)^{2}} \prod_{i} \prod_{j=1}^{m_{i}(\lambda)}\left(1-1 / p^{2 j}\right) \\
& =p^{4 n(\lambda)+3|\lambda|} \prod_{i} \prod_{j=1}^{m_{i}(\lambda)}\left(1-1 / p^{2 j}\right)
\end{aligned}
$$

Putting these results together completes the proof.
The next theorem shows that (11) is a special case of (3).
Theorem 3.2. Let n be an even positive integer. For any partition λ,

$$
P_{n / 2, p}^{p^{2}}(\lambda)=P_{n, p}^{A l t}(\lambda)
$$

Proof. Rewrite (3) as

$$
\frac{u^{|\lambda|} \prod_{i=1}^{d}\left(1-u / p^{i}\right) \prod_{i=d-r+1}^{d}\left(1-1 / p^{i}\right)}{p^{2 n(\lambda)+|\lambda|} \prod_{i} \prod_{j=1}^{m_{i}(\lambda)}\left(1-1 / p^{j}\right)}
$$

Replacing d by $n / 2, u$ by p, and p by p^{2} gives

$$
\frac{\prod_{i=1}^{n / 2}\left(1-1 / p^{2 i-1}\right) \prod_{i=n / 2-r+1}^{n / 2}\left(1-1 / p^{2 i}\right)}{p^{4 n(\lambda)+|\lambda|} \prod_{i} \prod_{j=1}^{m_{i}(\lambda)}\left(1-1 / p^{2 j}\right)} .
$$

Comparing with (11), we see that it suffices to prove

$$
\prod_{i=1}^{n / 2}\left(1-1 / p^{2 i-1}\right) \prod_{i=n / 2-r+1}^{n / 2}\left(1-1 / p^{2 i}\right)=\prod_{i=n-2 r+1}^{n}\left(1-1 / p^{i}\right) \prod_{i=1}^{n / 2-r}\left(1-1 / p^{2 i-1}\right)
$$

To prove this equality, note that when each side is multiplied by

$$
\left(1-1 / p^{2}\right)\left(1-1 / p^{4}\right) \cdots\left(1-1 / p^{n-2 r}\right),
$$

each side becomes $(1 / p)_{n}$.

4. Cokernels of random Symmetric p-Adic matrices

Let $A \in \operatorname{Sym}_{n}\left(\mathbb{Z}_{p}\right)$ be a random matrix chosen with respect to additive Haar measure on $\operatorname{Sym}_{n}\left(\mathbb{Z}_{p}\right)$. Let r be the number of parts of λ. Theorem 2 of [4] shows that the probability that the cokernel of A has type λ is equal to:

$$
\begin{equation*}
P_{n}^{\mathrm{Sym}}(\lambda)=\frac{\prod_{j=n-r+1}^{n}\left(1-1 / p^{j}\right) \prod_{i=1}^{\lceil(n-r) / 2\rceil}\left(1-1 / p^{2 i-1}\right)}{p^{n(\lambda)+|\lambda|} \prod_{i \geq 1} \prod_{j=1}^{\left\lfloor m_{i}(\lambda) / 2\right\rfloor}\left(1-1 / p^{2 j}\right)} . \tag{12}
\end{equation*}
$$

Note that $P_{n}^{\text {Sym }}(\lambda)=0$ if λ has more than n parts. As in earlier sections, when p is prime (12) has an interpretation in terms of finite abelian p-groups, but defines a distribution on partitions for any $p>1$. This follows directly from Theorem 4.1 below.

Taking $n \rightarrow \infty$ gives a distribution on partitions where λ is chosen with probability

$$
\begin{equation*}
P_{\infty}^{\mathrm{Sym}}(\lambda)=\frac{\prod_{i \text { odd }}\left(1-1 / p^{i}\right)}{p^{n(\lambda)+|\lambda|} \prod_{i \geq 1} \prod_{j=1}^{\left\lfloor m_{i}(\lambda) / 2\right\rfloor}\left(1-1 / p^{2 j}\right)} \tag{13}
\end{equation*}
$$

The distribution of (13) is studied in [24], where Wood shows that it arises as the distribution of p-parts of sandpile groups of large Erdős-Rényi random graphs. Combinatorial properties of this distribution are considered in [14], where it is shown that this distribution is a specialization of a two parameter family of distributions. It is unclear whether the distribution of (12) also sits within a larger family.

The following theorem allows one to generate partitions from the measure (12), and is a minor variation on Theorem 3.1 of [14].

Theorem 4.1. Starting with $\lambda_{0}^{\prime}=n$, define in succession $n \geq \lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots$ according to the rule that if $\lambda_{l}^{\prime}=a$, then $\lambda_{l+1}^{\prime}=b$ with probability

$$
K(a, b)=\frac{\prod_{i=1}^{a}\left(1-1 / p^{i}\right)}{p^{\binom{b+1}{2}} \prod_{i=1}^{b}\left(1-1 / p^{i}\right) \prod_{j=1}^{\lfloor(a-b) / 2\rfloor}\left(1-1 / p^{2 j}\right)} .
$$

Then the resulting partition with at most n parts is distributed according to (12).

Proof. It is necessary to compute

$$
K\left(n, \lambda_{1}^{\prime}\right) K\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right) K\left(\lambda_{2}^{\prime}, \lambda_{3}^{\prime}\right) \cdots
$$

There is a lot of cancelation, and (recalling that $\lambda_{1}^{\prime}=r$), what is left is:

$$
\frac{\prod_{j=1}^{n}\left(1-1 / p^{j}\right)}{\prod_{j=1}^{\lfloor(n-r) / 2\rfloor}\left(1-1 / p^{2 j}\right)} \frac{1}{p^{n(\lambda)+|\lambda|} \prod_{i \geq 1} \prod_{j=1}^{\left\lfloor m_{i}(\lambda) / 2\right\rfloor}\left(1-1 / p^{2 j}\right)}
$$

So to complete the proof, it is necessary to check that

$$
\frac{\prod_{j=1}^{n}\left(1-1 / p^{j}\right)}{\prod_{j=1}^{\lfloor(n-r) / 2\rfloor}\left(1-1 / p^{2 j}\right)}=\prod_{j=n-r+1}^{n}\left(1-1 / p^{j}\right) \prod_{i=1}^{\lceil(n-r) / 2\rceil}\left(1-1 / p^{2 i-1}\right) .
$$

This equation is easily verified by breaking it into cases based on whether $n-r$ is even or odd.

The following corollary is immediate.
Corollary 4.2. Let λ be chosen from (12). Then the chance that λ has $r \leq n$ parts is equal to

$$
\frac{\prod_{j=r+1}^{n}\left(1-1 / p^{j}\right)}{p^{\binom{r+1}{2}} \prod_{j=1}^{\lfloor(n-r) / 2\rfloor}\left(1-1 / p^{2 j}\right)} .
$$

Proof. By Theorem 4.1, the sought probability is equal to $K(n, r)$.
Taking $n \rightarrow \infty$ in this result recovers Theorem 2.2 of [14], which is also Corollary 9.4 of [24].

5. Computation of H-moments

We recall that \mathcal{L} denotes the set of isomorphism classes of finite abelian p-groups and that a probability distribution ν on \mathcal{L} gives a probability distribution on the set of partitions in an obvious way. Similarly, a measure on partitions gives a measure on \mathcal{L}, setting $\nu(G)=\nu(\lambda)$ when G is a finite abelian p-group of type λ. When $G, H \in \mathcal{L}$ we write $|\operatorname{Sur}(G, H)|$ for the number of surjections from any representative of the isomorphism class G to any representative of the isomorphism class H.

Let ν be a probability measure on \mathcal{L}. For $H \in \mathcal{L}$, the H-moment of ν is defined as

$$
\sum_{G \in \mathcal{L}} \nu(G)|\operatorname{Sur}(G, H)| .
$$

When H is a finite abelian p-group of type μ this is

$$
\sum_{\lambda} \nu(\lambda)|\operatorname{Sur}(\lambda, \mu)| .
$$

The distribution ν gives a measure on partitions and we refer to this quantity as the μ-moment of the measure. For an explanation of why these are called the moments of the distribution, see Section 3.3 of [4].

The Cohen-Lenstra distribution is the probability distribution on \mathcal{L} for which a finite abelian group G of type λ is chosen with probability $P_{\infty, 1}(\lambda)$. One of the most striking properties of the Cohen-Lenstra distribution is that the H-moment of $P_{\infty, 1}$ is 1 for every H, or equivalently, for any finite abelian p-group H of type μ,

$$
\sum_{\lambda} P_{\infty, 1}(\lambda)|\operatorname{Sur}(\lambda, \mu)|=1 .
$$

There is a nice algebraic explanation of this fact using the interpretation of $P_{\infty, 1}$ as a limit of the $P_{d, 1}$ distributions given by (11) (see for example [21]).

Lemma 8.2 of [10] shows that the Cohen-Lenstra distribution is determined by its moments.

Lemma 5.1. Let p be an odd prime. If ν is any probability measure on \mathcal{L} for which

$$
\sum_{G \in \mathcal{L}} \nu(G)|\operatorname{Sur}(G, H)|=1
$$

for any $H \in \mathcal{L}$, then $\nu=P_{\infty, 1}$.
Our next goal is to compute the moments for the measure $P_{d, u}$; see Theorem 5.3 below. Our method is new even in the case $P_{\infty, 1}$.

There has been much recent interest in studying moments of distributions related to the Cohen-Lenstra distribution, and showing that these moments determine a unique distribution [2, 24, 26]. At the end of this section, we add to this discussion by proving a version of Lemma 5.1 for the distribution $P_{d, u}$.

The following lemma counts the number of surjections from G to H. Recall that $n_{\lambda}(\mu)$ is the number of subgroups of type μ of a finite abelian group of type λ.

Lemma 5.2. Let G, H be finite abelian p-groups of types λ and μ respectively. Then

$$
|\operatorname{Sur}(G, H)|=|\operatorname{Sur}(\lambda, \mu)|=n_{\lambda}(\mu)|\operatorname{Aut}(\mu)| .
$$

For a proof, see page 28 of [27]. The main idea is that $|\operatorname{Sur}(G, H)|$ is the number of injective homomorphisms from \widehat{H} to \widehat{G}, where these are the dual groups of H and G, respectively. The image of such a homomorphism is a subgroup of \widehat{G} of type μ.

The distributions $P_{d, u}$ are defined for all $p>1$. It is not immediately clear what the μ-moment of this distribution should mean when p is not prime, since $|\operatorname{Sur}(\lambda, \mu)|$ is defined in terms of surjective homomorphisms between finite abelian p-groups. In (2) we saw how to define $|\operatorname{Aut}(\lambda)|$ in terms of the parts of the partition λ and the parameter p, even in the case where p is not prime. Similarly, Lemma 5.2 gives a way to define $|\operatorname{Sur}(\lambda, \mu)|$ in terms of the parameter p and the partitions λ and μ even when p is not prime. We first define $|\operatorname{Aut}(\mu)|$ using (2), and then note that $n_{\lambda}(\mu)$ is a polynomial in p that we can evaluate for any $p>1$.

Theorem 5.3. The μ-moment of the distribution $P_{d, u}$ is equal to

$$
\begin{cases}\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} & \text { if } r(\mu) \leq d \\ 0 & \text { otherwise } .\end{cases}
$$

Here, as above, $r(\mu)$ denotes the number of parts of μ.

Proof. Clearly we can suppose that $r(\mu) \leq d$. By Lemma 5.2, the μ-moment of the distribution $P_{d, u}$ is equal to

$$
\sum_{\lambda} P_{d, u}(\lambda)|\operatorname{Sur}(\lambda, \mu)|=|\operatorname{Aut}(\mu)| \sum_{\lambda} P_{d, u}(\lambda) n_{\lambda}(\mu) .
$$

Let $n_{\lambda}(\mu, \nu)$ be the number of subgroups M of G so that M has type μ and G / M has type ν. This is a polynomial in p (see Chapter II Section 4 of [19]). Then by Proposition [2.1, the μ-moment becomes

$$
|\operatorname{Aut}(\mu)| \prod_{i=1}^{d}\left(1-u / p^{i}\right) \cdot \sum_{\lambda} \frac{P_{\lambda}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\lambda)}} \sum_{\nu} n_{\lambda}(\mu, \nu) .
$$

Reversing the order of summation, this becomes

$$
|\operatorname{Aut}(\mu)| \prod_{i=1}^{d}\left(1-u / p^{i}\right) \cdot \sum_{\nu} \sum_{\lambda} \frac{P_{\lambda}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\lambda)}} n_{\lambda}(\mu, \nu) .
$$

From Section 3.3 of [19], it follows that for any values of the x variables,

$$
\sum_{\lambda} n_{\lambda}(\mu, \nu) \frac{P_{\lambda}\left(x ; \frac{1}{p}\right)}{p^{n(\lambda)}}=\frac{P_{\mu}\left(x ; \frac{1}{p}\right)}{p^{n(\mu)}} \frac{P_{\nu}\left(x ; \frac{1}{p}\right)}{p^{n(\nu)}} .
$$

Specializing $x_{i}=u / p^{i}$ for $i=1, \cdots, d$ and 0 otherwise, it follows that the μ-moment of $P_{d, u}$ is equal to

$$
\begin{aligned}
& |\operatorname{Aut}(\mu)| \prod_{i=1}^{d}\left(1-u / p^{i}\right) \cdot \sum_{\nu} \frac{P_{\mu}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\mu)}} \\
& \cdot \frac{P_{\nu}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\nu)}} \\
= & |\operatorname{Aut}(\mu)| \frac{P_{\mu}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\mu)}} \\
& \cdot \sum_{\nu} \prod_{i=1}^{d}\left(1-u / p^{i}\right) \cdot \frac{P_{\nu}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\nu)}} .
\end{aligned}
$$

By Proposition 2.1, this is equal to

$$
|\operatorname{Aut}(\mu)| \frac{P_{\mu}\left(\frac{u}{p}, \frac{u}{p^{2}}, \cdots, \frac{u}{p^{d}}, 0, \cdots ; \frac{1}{p}\right)}{p^{n(\mu)}}
$$

By pages 181 and 213 of [19], this simplifies to

$$
\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} .
$$

Remarks:

- The exact same argument proves the analogous result for the distribution $P_{\infty, u}$.
- Setting $d=\infty$ and $u=1 / p^{w}$ (with w a positive integer) gives the distribution (4), and in this case Theorem 5.3 recovers Lemma 3.2 of [25].
- The argument used in the proof of Theorem 5.3 does not require that p is prime.
We use Theorem 5.3 to determine the expected number of p^{ℓ}-torsion elements of a finite abelian group H drawn from $P_{d, u}$. Let T_{ℓ} be defined by

$$
T_{\ell}(H)=\left|H\left[p^{\ell}\right]\right|=\left|\left\{x \in H: p^{\ell} \cdot x=0\right\}\right| .
$$

The number of elements of H of order exactly p^{ℓ} is $T_{\ell}(H)-T_{\ell-1}(H)$.
For a finite abelian p-group H, let $r_{p^{k}}(H)$ denote the p^{k}-rank of H, that is,

$$
r_{p^{k}}(H)=\operatorname{dim}_{\mathbb{Z} / p \mathbb{Z}}\left(p^{k-1} H / p^{k} H\right) .
$$

If H is of type λ, then $r_{p^{k}}(H)=\lambda_{k}^{\prime}$, the number of parts of λ of size at least k. The number of parts of λ of size exactly k is $\lambda_{k}^{\prime}-\lambda_{k+1}^{\prime}$. It is clear that

$$
T_{\ell}(H)=p^{r_{p}(H)+r_{p^{2}}(H)+\cdots+r_{p^{\ell}}(H)}=p^{\lambda_{1}^{\prime}+\lambda_{2}^{\prime}+\cdots+\lambda_{\ell}^{\prime}} .
$$

Theorem 5.4. Let p be a prime, ℓ be a positive integer, and $0<u<p$. The expected value of $T_{\ell}(H)$ for a finite abelian p-group H drawn from $P_{d, u}$ is

$$
\left(u^{\ell}+u^{\ell-1}+\cdots+u\right)\left(1-p^{-d}\right)+1 .
$$

The expected value of $T_{\ell}(H)-T_{\ell-1}(H)$ is $u^{\ell}\left(1-p^{-d}\right)$.
Remarks:

- The exact same argument proves the analogous result for the distribution $P_{\infty, u}$.
- Taking $d=\infty, u=p^{-w}$ recovers a result of Delaunay, the first part of Corollary 3 of [9. Delaunay's result generalizes work of Cohen and Lenstra for $P_{\infty, 1}$ and $P_{\infty, 1 / p}$ [5].
- Theorem 5.3 can likely be used to compute moments of more complicated functions involving $T_{\ell}(H)$ giving results similar to those of Delaunay and Jouhet in [6]. We do not pursue this further here.

Lemma 5.5. Let H be a finite abelian p-group of type λ and let $\ell \geq 1$. Then

$$
\# \operatorname{Hom}\left(H, \mathbb{Z} / p^{\ell} \mathbb{Z}\right)=p^{r_{p^{\ell}}(H)+r_{p^{\ell-1}}(H)+\cdots+r_{p}(H)}=p^{\lambda_{1}^{\prime}+\lambda_{2}^{\prime}+\cdots+\lambda_{\ell}^{\prime}}=T_{\ell}(H) .
$$

Proof. Suppose

$$
H \cong \mathbb{Z} / p^{\lambda_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{\lambda_{r_{p}(H)}} \mathbb{Z}
$$

and consider the particular generating set for H

$$
e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{r_{p}(H)}=(0, \ldots, 0,1) .
$$

Note that e_{i} has order $p^{\lambda_{i}}$.

A homomorphism from H to $\mathbb{Z} / p^{\ell} \mathbb{Z}$ is uniquely determined by the images of $e_{1}, \ldots, e_{r_{p}(H)}$. When $\lambda_{i} \geq \ell$ there are p^{ℓ} choices for the image of e_{i}. If $1 \leq \lambda_{i} \leq \ell$, there are $p^{\lambda_{i}}$ choices for the image of e_{i}. Therefore, the total number of homomorphisms is

$$
p^{\ell \lambda_{\ell}^{\prime}+(\ell-1)\left(\lambda_{\ell-1}^{\prime}-\lambda_{\ell}^{\prime}\right)+\cdots+1 \cdot\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime}\right)} .
$$

Proof of Theorem 5.4. We compute the expected value of

$$
\# \operatorname{Hom}\left(H, \mathbb{Z} / p^{\ell} \mathbb{Z}\right)-\# \operatorname{Hom}\left(H, \mathbb{Z} / p^{\ell-1} \mathbb{Z}\right)
$$

and apply Lemma 5.5 to complete the proof.
Let H be a finite abelian p-group drawn from $P_{d, u}$. Every element of $\operatorname{Hom}\left(H, \mathbb{Z} / p^{\ell} \mathbb{Z}\right)$ is either a surjection, or surjects onto a unique proper subgroup of $\mathbb{Z} / p^{\ell} \mathbb{Z}$. Every proper subgroup of $\mathbb{Z} / p^{\ell} \mathbb{Z}$ is contained in the unique proper subgroup of $\mathbb{Z} / p^{\ell} \mathbb{Z}$ that is isomorphic to $\mathbb{Z} / p^{\ell-1} \mathbb{Z}$. Therefore,

$$
\# \operatorname{Sur}\left(H, \mathbb{Z} / p^{\ell} \mathbb{Z}\right)=\# \operatorname{Hom}\left(H, \mathbb{Z} / p^{\ell} \mathbb{Z}\right)-\# \operatorname{Hom}\left(H, \mathbb{Z} / p^{\ell-1} \mathbb{Z}\right)
$$

Lemma 5.5implies $T_{\ell}(H)-T_{\ell-1}(H)=\# \operatorname{Sur}\left(H, \mathbb{Z} / p^{\ell} \mathbb{Z}\right)$. Applying Theorem 5.3, noting that $T_{0}(H)=1$ for any H, completes the proof.

We close this section by proving a version of Lemma 5.1 for the distribution $P_{d, u}$. The proof of Lemma 8.2 from [10] carries over almost exactly to this more general setting.

Theorem 5.6. Suppose that $p>1$ and $0<u<p$ are such that

$$
\begin{equation*}
\frac{1}{(u / p)_{d}}=\prod_{i=1}^{d}\left(1-u / p^{i}\right)^{-1}<2 \tag{14}
\end{equation*}
$$

If ν is any probability measure on the set of partitions for which

$$
\sum_{\lambda} \nu(\lambda)|\operatorname{Sur}(\lambda, \mu)|= \begin{cases}\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} & \text { if } r(\mu) \leq d \tag{15}\\ 0 & \text { otherwise }\end{cases}
$$

then $\nu=P_{d, u}$.
Remarks:

- When p is prime this result has an interpretation in terms of probability measures on \mathcal{L}.
- The exact same argument proves the analogous result for the distribution $P_{\infty, u}$.
- The expression on the left-hand side of (14) is decreasing in p and in u. Setting $d=\infty, u=1$ and noting that this inequality holds for all $p \geq 3$ gives Lemma 5.1.
- Similarly, setting $d=\infty, u=1 / p^{w}$ (with p prime and w a positive integer) gives Proposition 2.3 of [26].
- Theorem 5.6 only applies when $1 /(u / p)_{d}<2$. Results of Wood imply that the moments determine the distribution in additional cases where p is prime, for example when $p=2, d=\infty$, and $u=1$. See Theorem 3.1 in [25] and Theorem 8.3 in [24].

Proof. The assumption gives, for every μ

$$
|\operatorname{Aut}(\mu)| \nu(\mu)+\sum_{\lambda \neq \mu}|\operatorname{Sur}(\lambda, \mu)| \nu(\lambda)= \begin{cases}\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} & \text { if } r(\mu) \leq d \tag{16}\\ 0 & \text { otherwise }\end{cases}
$$

Since the second term in the left-hand side of (16) is non-negative, for $r(\mu)>$ d we have $|\operatorname{Aut}(\mu)| \nu(\mu)=0$, so $\nu(\mu)=0$.

Now suppose that $r(\mu) \leq d$. Our goal is to show that

$$
\nu(\mu)=\frac{u^{|\mu|}(u / p)_{d}}{|\operatorname{Aut}(\mu)|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} .
$$

By Theorem 5.3, in the particular case $\nu=P_{d, u}$, (16) is equal to

$$
\frac{u^{|\mu|}(u / p)_{d}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}+\sum_{\substack{\lambda \neq \mu \\ r(\lambda) \leq d}} u^{|\lambda|}(u / p)_{d} \frac{|\operatorname{Sur}(\lambda, \mu)|}{|\operatorname{Aut}(\lambda)|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\lambda)}}=\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}
$$

This gives

$$
\sum_{\substack{\lambda \neq \mu \\ r(\lambda) \leq d}} u^{|\lambda|} \frac{|\operatorname{Sur}(\lambda, \mu)|}{|\operatorname{Aut}(\lambda)|(1 / p)_{d-r(\lambda)}}=\frac{u^{|\mu|}}{(1 / p)_{d-r(\mu)}}\left(\frac{1}{(u / p)_{d}}-1\right)
$$

Let

$$
\beta=\frac{(1 / p)_{d-r(\mu)}}{u^{|\mu|}} \sum_{\substack{\lambda \neq \mu \\ r(\lambda) \leq d}} u^{|\lambda|} \frac{|\operatorname{Sur}(\lambda, \mu)|}{|\operatorname{Aut}(\lambda)|(1 / p)_{d-r(\lambda)}}=\frac{1}{(u / p)_{d}}-1
$$

It is enough to show that

$$
\begin{equation*}
|\operatorname{Aut}(\mu)| \nu(\mu)=u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} \frac{1}{\beta+1} . \tag{17}
\end{equation*}
$$

By assumption, $|\beta|<1$, so we verify (17) by showing that $|\operatorname{Aut}(\mu)| \nu(\mu)$ is bounded by the alternating partial sums of the series

$$
u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} \frac{1}{\beta+1}=u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}\left(1-\beta+\beta^{2}-\cdots\right)
$$

Equation (16) implies that

$$
|\operatorname{Aut}(\mu)| \nu(\mu) \leq \frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}
$$

For any λ with $r(\lambda) \leq d$ this gives

$$
\nu(\lambda) \leq \frac{u^{|\lambda|}(1 / p)_{d}}{|\operatorname{Aut}(\lambda)|(1 / p)_{d-r(\lambda)}} .
$$

Using this bound in (16) gives

$$
\begin{aligned}
&|\operatorname{Aut}(\mu)| \nu(\mu)= u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}-\sum_{\substack{\lambda \neq \mu \\
r(\lambda) \leq d}}|\operatorname{Sur}(\lambda, \mu)| \nu(\lambda) \\
& \geq u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}-\sum_{\substack{\lambda \neq \mu \\
r(\lambda) \leq d}} u^{|\lambda|} \frac{|\operatorname{Sur}(\lambda, \mu)|}{|\operatorname{Aut}(\lambda)|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\lambda)}} \\
&=\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}-\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} \beta=\frac{u^{|\mu|}(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}(1-\beta) .
\end{aligned}
$$

Similarly, for any λ with $r(\lambda) \leq d$, this gives

$$
\nu(\lambda) \geq \frac{u^{|\lambda|}}{|\operatorname{Aut}(\lambda)|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\lambda)}}(1-\beta) .
$$

Using this bound in (16) gives

$$
\begin{aligned}
|\operatorname{Aut}(\mu)| \nu(\mu) & =u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}-\sum_{\substack{\lambda \neq \mu \\
r(\lambda) \leq d}}|\operatorname{Sur}(\lambda, \mu)| \nu(\lambda) \\
& \leq u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}-\sum_{\substack{\lambda \neq \mu \\
r(\lambda) \leq d}} u^{|\lambda|} \frac{|\operatorname{Sur}(\lambda, \mu)|}{|\operatorname{Aut}(\lambda)|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\lambda)}}(1-\beta)
\end{aligned}
$$

which implies

$$
\begin{aligned}
|\operatorname{Aut}(\mu)| \nu(\mu) & \leq u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}-u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}} \beta(1-\beta) \\
& =u^{|\mu|} \frac{(1 / p)_{d}}{(1 / p)_{d-r(\mu)}}\left(1-\beta+\beta^{2}\right) .
\end{aligned}
$$

Continuing in this way completes the proof.

References

[1] Bhargava, M., Kane, D., Lenstra, H., Poonen, B., and Rains, E., Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves, Camb. J. Math. 3 (2015), 275-321.
[2] Boston, N. and Wood, M. M., Non-abelian Cohen-Lenstra heuristics over function fields. Compos. Math. 153 (2017), 1372-1390.
[3] Chinta, G., Kaplan, N., and Koplewitz, S., The cotype zeta function of \mathbb{Z}^{d}. Preprint (2017). https://arxiv.org/abs/1708.08547v1
[4] Clancy, J., Kaplan, N., Leake, T., Payne, S., and Wood, M., On a Cohen-Lenstra heuristic for Jacobians of random graphs, J. Algebraic Combin. 42 (2015), 701-723.
[5] Cohen, H., and Lenstra, H. W., Heuristics on class groups of number fields, In Number Theory Noordwijkerhout 1983 (Noordwijkerhout,1983), pages 33-62. Springer, Berlin, 1984.
[6] Delaunay, C., and Jouhet, F., p^{ℓ}-torsion points in finite abelian groups and combinatorial identities. Adv. Math. 258 (2014), 13-45.
[7] Delaunay, C., and Jouhet, F., The Cohen-Lenstra heuristics, moments and p^{j}-ranks of some groups. Acta Arith. 164 (2014), no 3, 245-263.
[8] Delaunay, C., Heuristics of Tate-Shafarevitch groups of elliptic curves defined over \mathbb{Q}, Experiment. Math. 10 (2001), 191-196.
[9] Delaunay, C., Averages of groups involving p^{l}-rank and combinatorial identities, J. Number Theory 131 (2011), 536-551.
[10] Ellenberg, J., Venkatesh, A., and Westerland, C., Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, Ann. of Math. (2) 183 (2016), 729-786.
[11] Fouvry, E., and Klüners, J., Cohen-Lenstra heuristics of quadratic number fields. Algorithmic number theory, 40-55, Lecture Notes in Comput. Sci., 4076, Springer, Berlin, 2006.
[12] Friedman, E., and Washington, L., On the distribution of divisor class groups of curves over a finite field. In Theorie des nombres (Quebec, $P Q$, 1987), pages 227-239. de Gruyer, Berlin, 1989.
[13] Fulman, J., A probabilistic approach to conjugacy classes in the finite general and unitary groups, J. Algebra 212 (1999), 557-590.
[14] Fulman, J., Hall-Littlewood polynomials and Cohen-Lenstra heuristics for Jacobians of random graphs, Annals Combin. 20 (2016), 115-124.
[15] Gerth III, F., The 4-class ranks of quadratic fields. Invent. Math 77 (1984), no. 3, 489-515.
[16] Gerth III, F., Extension of conjecture of Cohen and Lenstra. Exposition. Math. 5 (1987), no. 2, 181-184.
[17] Hardy, G. and Wright, E., An introduction to the theory of numbers, Fifth edition, Oxford Science Publications, 1979.
[18] Lubotzky, A. and Segal, D., Subgroup Growth. Progress in Mathematics, 212. Birkhäuser Verlag, Basel, 2003. xxii+453 pp.
[19] Macdonald, I., Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.
[20] Petrogradsky, V., Multiple zeta functions and asymptotic structure of free abelian groups of finite rank. J. Pure Appl. Algebra 208 (2007), 1137-1158.
[21] Speyer, D., An expectation of Cohen-Lenstra measure (answer). MathOverflow. https://mathoverflow.net/questions/9950 (visited on 01/19/2019).
[22] Stanley, R. and Wang, Y., The Smith normal form distribution of a random integer matrix, SIAM J. Discrete Math. 31 (2017), 2247-2268.
[23] Tse, L-S., Distribution of cokernels of $(n+u) \times n$ matrices over \mathbb{Z}_{p}, arXiv:1608.01714, 2016.
[24] Wood, M. M., The distribution of sandpile groups of random graphs, J. Amer. Math. Soc. 30 (2017), 915-958.
[25] Wood, M. M., Random integral matrices and the CohenLenstra heuristics, Preprint (2018). To appear in Amer. J. Math. https://preprint.press.jhu.edu/ajm/sites/ajm/files/AJM-wood-FINAL.pdf
[26] Wood, M. M., Cohen-Lenstra heuristics and local conditions, Res. Number Theory 4 (2018), no 4, Art. 41, 22 pp.
[27] Wright, D. J., Distribution of discriminants of abelian extensions, Proc. London Math. Soc. 58 (1989), 17-50.

Department of Mathematics, University of Southern California, Los Angeles, CA 90089

E-mail address: fulman@usc.edu
Department of Mathematics, University of California, Irvine, CA 926973875

E-mail address: nckaplan@math.uci.edu

[^0]: Date: Version of January 24, 2019.
 Key words and phrases. Cohen-Lenstra heuristics, Hall-Littlewood polynomial, Probability Measure, Random Matrices, Random Partitions, Finite Abelian Group.

 AMS classification numbers: 15B52,05E05.
 Fulman is supported by Simons Foundation Grant 400528. Kaplan is supported by NSA Young Investigator Grant H98230-16-10305, NSF Grant DMS 1802281 and by an AMSSimons Travel Grant. The authors thank the referees, Gilyoung Cheong, and Melanie Matchett Wood for helpful comments.

