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Abstract

Generating function techniques are used to study the probability that an ele-
ment of a classical group defined over a finite field is separable, cyclic, semisimple
or regular. The limits of these probabilities as the dimension tends to infinity are
calculated in all cases, and exponential convergence to the limit is proved. These
results complement and extend earlier results of the authors, G. E. Wall, and Gu-
ralnick & Lübeck.
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CHAPTER 1

Introduction, Tables, and Preliminaries

1.1. Introduction

An n × n matrix X over a field F is said to be separable if its characteristic
polynomial cX(t) is separable (in the sense that it has no repeated roots in the
algebraic closure of F ), semisimple if its minimal polynomial mX(t) is separable,
cyclic if cX(t) is equal to the minimal polynomial mX(t), and regular if its cen-
traliser in the corresponding algebraic group over the algebraic closure of F has
dimension equal to the Lie rank of the group. The term cyclic recognises that X
is cyclic in this sense if and only if the vector space of 1 × n row vectors over F
is cyclic as a right F 〈X〉 -module. In most (but not quite all) classical groups an
element is cyclic if and only if it is regular; an element is separable if and only if
it is regular and semisimple; and over a finite field an element is semisimple if and
only if it is a p′ -element, where p is the characteristic of the field.

Throughout this paper we treat matrix groups over the finite field Fq , thinking
of q as fixed but allowing the dimension to grow large. Our aim is to give accurate
estimates for the probability that an element of a classical group over Fq is of
one of the above kinds. In almost all cases these probabilities are of the form
1 − aq−1 + b(n)q−2 or 1 − aq−3 + b(n)q−4 (depending on the codimension of the
variety of matrices that do not have the relevant property), where a is a constant
depending on the group and the property, and b(n) depends on the dimension n of
the group but is bounded above and below independently of n provided that n is
large enough to avoid trivialities (n > 1 usually suffices). Thus these probabilities
tend to 1 as q → ∞ uniformly in n . Such estimates are not only of intrinsic
interest: they have turned out to be useful for the design and analysis of algorithms
in computational group theory [16], [19]; further applications are to the study of
monodromy groups of curves [7], [8], [10], and to random generation of simple
groups [9].

The paper is in three chapters. The first consists of

• Section 1.1 (this section), containing an overview of the results,
• Section 1.2, containing summary tables,
• Section 1.3, in which preliminaries are collected.

Most of the latter is devoted to a discussion of the polynomials that arise
as characteristic polynomials of matrices in classical groups. The second chapter
consists of

• Section 2.1, on the unitary groups,
• Section 2.2, on the symplectic groups,
• Section 2.3, on the orthogonal groups,
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2 1. INTRODUCTION, TABLES, AND PRELIMINARIES

which are devoted to extending the methods of Wall [23] to treat the probabilities
of separable and cyclic matrices in the named groups. The third chapter consists
of

• Section 3.1, on semisimple matrices,
• Section 3.2, on regular matrices in orthogonal groups.

An explanation of context and a discussion of some open problems are included in
this introductory section.

Background. Before amplifying our aims and ambitions, we recall some earlier
work (Fulman [5], [6]; Guralnick & Lübeck [12]; Neumann & Praeger [17], [18];
Wall [23]) about separable and cyclic matrices. Let M(n, q) denote the set of
all n × n matrices over Fq . Denote by sM(n, q), sGL(n, q) the proportion of
separable elements in M(n, q), GL(n, q) respectively, and by cM(n, q), cGL(n, q)
the corresponding proportions of cyclic matrices. The main results of [17] are the
bounds

1− 1

(q2 − 1)(q − 1)
< cM(n, q) < 1− 1

q2(q + 1)
,

1− q2

(q2 − 1)(q − 1)
− 1

2q
−2 − 2

3q
−3 < sM(n, q) < 1− q−1 + q−2 + q−3,

which hold for n > 2. Let sM(∞, q), sGL(∞, q), cM(∞, q), cGL(∞, q) be the limits
of the proportions defined above as n→ ∞ . Using generating function techniques,
it was proved independently in [6] and [23] that these limits exist and that

sM(∞, q) =
∏
r>1

(1− q−r) , cM(∞, q) = (1− q−5)
∏
r>3

(1− q−r) ,

and

sGL(∞, q) = 1− q−1 , cGL(∞, q) =
1− q−5

1 + q−3
.

In [23] the following explicit estimate for speed of convergence was obtained:

|cGL(n, q)− cGL(∞, q)| 6 1

qn(q − 1)
,

and it was shown that in fact the convergence rate is very nearly q−2n in the sense
that |cGL(n, q)− cGL(∞, q)| = o(r−n) for any r in the range 1 < r < q2 .

In what follows we consider the situation in other classical groups. We use n to
denote the dimension of the group, while for the symplectic and orthogonal groups
it is also convenient to use the parameter m specified in Table 1 (see p. 7). Thus
the classical groups other than GL are:

the unitary group U(n, q) (as a subgroup of GL(n, q2));
the symplectic group Sp(2m, q);
the orthogonal group O(2m+ 1, q);
the orthogonal groups O+(2m, q) and O−(2m, q).

The results of [17] are extended in [18] to these groups. It is proved there that if
G is a classical subgroup of GL(n, q)

(
or, in the case of the unitary groups U(n, q),
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a subgroup of GL(n, q2)
)
and ν(G) := Prob[X ∈ G is non-cyclic] , then

ν(G) 6



q−3 +O(q−4) if SL(n, q) 6 G 6 GL(n, q),

q−3 +O(q−4) if SU(n, q) 6 G 6 GU(n, q),

(τ(G) + 1)q−3 +O(q−4) if Sp(2m, q) 6 G 6 GSp(2m, q),

1
2τ(G)q

−1 +O(q−2) if Ω(n, q) 6 G 6 GO(n, q),

where the constants implicit in the O notation depend on the type of the group G
but not on n , and the numbers τ(G) take values 1 or 2 in the symplectic case,
1, 2 or 4 in the orthogonal case. Here GU(n, q), GSp(n, q), and GO(n, q) denote
the “general classical groups”, that is, the subgroup of the general linear group
consisting of all matrices which leave the relevant form invariant modulo scalars.
Similar results for separable elements have been proved by Guralnick and Lübeck
[12]. They prove that if r′(G) := Prob[X ∈ G is non-separable] then

r′(G) 6



(q − 1)−1 + 2(q − 1)−2 if G ∼ SL(n, q)

(q − 1)−1 + 4(q − 1)−2 if G ∼ SU(n, q)

(τ(G) + 1)(q − 1)−1 + (q − 1)−2 if G ∼ Sp(2m, q)

(q − 1)−1 + 2(q − 1)−2 if G ∼ O±(2m, q)

2(q − 1)−1 + 2(q − 1)−2 if G ∼ O(2m+ 1, q), q odd

where τ(G) is the same as for cyclic matrices, and G ∼ X(n, q) means that G is
an almost simple classical group of type X, and, in each case, the bounds may be
a little different for a few small values of n .

In the present paper we extend the methods of Fulman and Wall for separable
and cyclic matrices to the classical groups other than GL; we also extend them for
all the classical groups (including GL) to two other important types of matrices,
namely semisimple and regular elements. These extensions turn out to be rather
delicate and non-trivial, especially for the orthogonal groups and for semisimple
elements. In each case, if pn is the relevant probability for n × n matrices, our
aims are

(i) to prove the existence of the limit p∞ of pn as n → ∞ , and to find an
expression for it as a function of the field size q ;

(ii) where p∞ is given by a complicated infinite product, to find effective
upper and lower bounds as simple functions of q ;

(iii) to find explicit estimates for the convergence rate of pn to the limit, that
is for the difference |pn − p∞| .

With respect to aims (ii) and (iii) we are guided by the ambition to derive estimates
which are sufficiently accurate that they may be used to yield good estimates for
the probabilities pn themselves.

Because the methods of Wall and Fulman are based on careful study of gener-
ating functions for the probabilities pn , we have as a subsidiary aim

(iv) to understand the generating functions in some detail and, in particular,
to find extensions of them from the unit disc in the complex plane (their
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natural domain of definition) to larger discs in which the functions have a
pole at z = 1, and perhaps a few other poles, but are otherwise analytic.

These larger discs will usually have radius q or q2 . Their boundaries will, in fact, be
natural boundaries for the functions (in the sense that there is no analytic extension
to any larger domain than the open disc), but we do not prove such facts.

Separable matrices and cyclic matrices. To complement the work of Wall and
Fulman we treat separable and cyclic matrices first. We treat them together because
it turns out—somewhat surprisingly—that the relevant probabilities are closely
related. We use sG(n, q) to denote the probability that an element of the classical
group G(n, q) is separable, and cG(n, q) to denote the probability that it is cyclic.
Our first objective is to compute the limits sG(∞, q) and cG(∞, q), as n → ∞ ,
and the rates of convergence to these limits, where G is one of U, Sp, O, O+ ,
O− . That these limits exist is not a priori obvious, but emerges very naturally
from the methods of Fulman and Wall. For the symplectic and orthogonal groups
the limiting probabilities depend on whether the characteristic is 2 or not.

In contrast to the case of M(n, q) and GL(n, q), we have been unable to find
simple expressions for sG(∞, q) and cG(∞, q). Nevertheless, as will emerge, we do
have formulae for them—see Theorems 2.1.3, 2.1.9, 2.2.3, 2.2.9, 2.3.4 and 2.3.11, or
Tables 2 and 6 (our tables include the results for GL for comparison). Although
these formulae are expressed as infinite products of complicated expressions, they
can be used to give good estimates—see Theorems 2.1.4, 2.1.12, 2.2.6, 2.2.14, 2.3.5
and the last paragraph of §2.3, or Tables 4 and 8. From the form of the infinite
products it is quite easy to see that they can be expanded to yield expressions
for the limiting probabilities as power series in q−1 . Wall treats the series for the
general linear group in some detail in [23, §7]. The papers by Lehrer [13] and Lehrer
& Segal [14] give topological and cohomological interpretations of the coefficients
of these power series. In particular, in [13] Lehrer gives interesting connections
between sG(n, q) and representation theory of the Weyl group of G . The first ten
terms of the power series are summarized in Tables 3 and 7.

The method allows one to estimate the rate of convergence to the limiting
values. It is exponential in the following sense.

Let G(n, q) be a finite classical group of dimension n over Fq , and let m
be related to n as in Table 1. Then for any ε > 0 there exists m0 such
that, for all m > m0 ,

|sG(n, q)− sG(∞, q)| < (q − ε)−m

and

|cG(n, q)− cG(∞, q)| < (q2 − ε)−m.

This is a compendium of the last assertions of Theorems 2.1.3, 2.1.9, 2.2.3, 2.2.9,
2.3.4, and 2.3.11. Although it gives the “correct” rate of convergence in very crude
terms, it is too inexplicit to be of much practical use. Exploiting Wall’s method of
comparison of power series we can deduce bounds of the form

|sG(n, q)− sG(∞, q)| < ks,Gps,G(m)q−m

and

|cG(n, q)− cG(∞, q)| < kc,Gpc,G(m)q−2m
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where ks,G , kc,G are certain constants and ps,G , pc,G are certain functions closely
related to the partition function (see Theorems 2.1.6, 2.1.11, 2.2.5, 2.2.13, 2.3.6,
2.3.8, 2.3.12, and 2.3.13). These lead to weaker but quite explicit bounds which are
also given in those theorems and listed in Tables 5 and 9.

Semisimple matrices. For a classical group G define ssG(n, q) to be the
proportion of semisimple matrices in G . As has been mentioned above, in [12]
Guralnick and Lübeck derived upper bounds for 1− sG(n, q), which are very use-
ful for large q , in order to have such bounds for 1− ssG(n, q). Their theorems
carry little or no information when q is small, however. Using our generating func-
tion methods we are able to find good estimates for ssG(n, q) also for small values
of q .

In [6], the limit as n → ∞ of the probability that an element of M(n, q) or
GL(n, q) is semisimple was computed in terms of Rogers–Ramanujan type products.
In §3.1 we find analogous products for ssG(∞, q) and we give estimates for the
rate of convergence to this limit. Although the expressions for the limits are even
more complicated than those for the probabilities of separable or of cyclic matrices,
they can be used to give explicit bounds and to express the limiting probabilities
ssG(∞, q) as power series in q−1 , the first few terms of which we have computed.
Bounds for the rate of convergence have also been computed. The results for
semisimple matrices are summarized in Tables 10 to 13.

Regular elements. Recall that an element of a finite classical group G of char-
acteristic p is called regular if its centraliser in the corresponding group over an
algebraic closure of Fp has minimal possible dimension, namely the rank of G . A
theorem of Steinberg [20] states that the non-regular elements form a variety of
codimension 3. For this reason (see [17]) one should expect that for large n the
probability that an element of G(n, q) is regular would be 1 − c q−3 + O(q−4) for
some constant c .

For the general linear, unitary and symplectic groups it is quite well known
that an element is regular if and only if it is cyclic. In orthogonal groups however,
the concepts differ. Both are important. Whereas cyclic elements are useful for
computational group theory, regular elements play an important role in the rep-
resentation theory of algebraic groups and of finite groups of Lie type. Examples
of non-cyclic regular elements in even-dimensional orthogonal groups appeared in
the last section of [17]. The distinction between cyclic and regular elements of
the finite orthogonal groups has been clarified in [11]. By way of contrast with
Steinberg’s theorem the non-cyclic matrices form a subvariety of codimension 1 in
an orthogonal group.

Let rOϵ(2m, q), rO(2m+1, q) be the probabilities that elements of Oϵ(2m, q),
or of O(2m+ 1, q) respectively, are regular, and define

rOϵ(∞, q) := lim
m→∞

rOϵ(2m, q) , rO(∞, q) := lim
m→∞

rO(2m+ 1, q) .

In §3.2 we find expressions for these limiting probabilities. They may, as usual, be
expanded as power series in q−1 , and we give the first few terms in Table 14.

When q is even there is a natural isomorphism O(2m + 1, q) ∼= Sp(2m, q),
and this carries regular elements of O(2m + 1, q) bijectively to cyclic elements of
Sp(2m, q). Thus when q is even rO(2m + 1, q) = cSp(2m, q) and rO(∞, q) =
cSp(∞, q).
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Open problems. Let pG(∞, q) denote any of the limiting probabilities treated
in this paper. As was mentioned above, it was proved by Wall [23] and by
Fulman [6] that the numbers sGL(∞, q) and cGL(∞, q)

(
limiting probabilities for

separable and cyclic matrices respectively in GL(n, q)
)
are rational functions of q .

Problem 1. Which others of the numbers pG(∞, q) are rational functions
of q?

It is tempting to believe that at least sU(∞, q) and cU(∞, q) should be rational
because the generating functions associated with the unitary groups are very closely
related to those for the general linear groups (see Theorem 2.1.13), but we have
been unable to settle the matter even in this case.

In all cases there is an expansion pG(∞, q) = 1 − a1q
−1 + a2q

−2 + · · · as a
power series in q−1 .

Problem 2. Investigate the nature of the coefficients when pG(∞, q) is ex-
pressed as a power series in q−1 .

As far as we can calculate we find that the coefficients of powers of q−1 are inte-
gers for all of these limits, except for orthogonal groups where in some cases the
coefficients are fractions with denominator 2 or 4. For separable matrices this has
been proved and explained by Lehrer [13] (in the general linear case) and by Lehrer
and Segal [14] (in general) in terms of cohomology and representation theory. For
some of the probabilities for unitary groups it has recently been proved by one of us
(JEF). But much about integrality remains to be proved and explained. It would,
moreover, be valuable and interesting to have explicit information about the rate
of growth of the coefficients.

In the case of semisimple matrices in GL(n, q) there is a remarkable formula
for the limiting probability that was proved by Fulman [5, 6]:

ssGL(∞, q) =
∏
r>1,

r≡0,±2 (mod 5)

(1− q1−r)

(1− q−r)
.

An important ingredient in the proof is a version of one of the Rogers–Ramanujan
identities, namely the formula

1 +
∑
n>1

1

|GL(n, q)|
=

∏
m>1,

m≡±1 (mod 5)

1

1− q−m
.

Sums analogous to the left side of this identity occur in our formulae for limiting
probabilities of semisimple elements in other classical groups. This motivates the
following question.

Problem 3. Are there analogues of the Rogers–Ramanujan identities that ex-
press

1 +
∑
n>1

1

|U(n, q)|
, 1 +

∑
m>1

1

|Sp(2m, q)|

and

1 +
∑
m>1

( 1

|O+(2m, q)|
+

1

|O−(2m, q)|

)
in a useful way as infinite products?
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As has already been stated, our methods are developed from those of Fulman [6]
and Wall [23]. They are differ significantly from those of Neumann & Praeger [18]
and Guralnick & Lübeck [12] and they give significantly different results. On
the one hand the generating function methods give far greater precision; on the
other hand we have been able to succeed with them only for the classical groups
themselves, and not for any other groups G in the range Ω 6 G 6 GΩ, where
Ω is the simple algebraic group that is normal in G and GΩ is its normaliser
(the so-called ‘conformal’ group) in the general linear group. In an earlier draft of
this paper we had formulated as a fourth problem the need to develop a method
for handling the generating functions associated with these other groups. Good
progress on this has, however, recently been made by John Britnell in work for his
Oxford DPhil thesis (see [3], [4]). For another approach to Britnell’s results, using
combinatorics of maximal tori, see [8].

1.2. Tables

Although in our studies of separable and cyclic matrices our focus is on the
unitary, symplectic and orthogonal groups we include results about GL in our
tables for comparison and for completeness. They are taken from Fulman [5], [6]
and Wall [23].

G = GL U Sp O Oϵ

n = m m 2m 2m+ 1 2m

Table 1. Relationship between m and n .

Note that the group orders are given by

|GL(n, q)| =
n−1∏
i=0

(qn − qi); |U(n, q)| =
n−1∏
i=0

(qn − (−1)n−iqi) ;

|Sp(2m, q)| =
m∏
i=1

q2i−1(q2i − 1); |O(2m+ 1, q)| = 2
m∏
i=1

q2i−1(q2i − 1) ;

|Oϵ(2m, q)| = 2(qm − ϵ1)

m−1∏
i=1

q2i(q2i − 1) where ϵ ∈ {+, −} .
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Group G q Limiting probability sG(∞, q)

GL(n, q) any 1− 1
q

U(n, q) any
(
1 + 1

q

) ∏
d odd

(
1− 2

qd(qd+1)

)Ñ(q;d)

any q2−1
q2+1

∏
d odd

(
1− 1

(qd+1)2

)Ñ(q;d)∏
d>1

(
1 + 1

q4d−1

)M̃(q;d)

Sp(2m, q) odd
(
1− 1

q

)2∏
d>1

(
1− 2

qd(qd+1)

)N∗(q;2d)

even
(
1− 1

q

)∏
d>1

(
1− 2

qd(qd+1)

)N∗(q;2d)

odd q(q−1)3

(q2−1)2

∏
d>1

(
1− 1

(qd+1)2

)N∗(q;2d)

×
∏
d>1

(
1 + 1

(q2d−1)

)M∗(q;d)

even (q−1)2

(q2−1)

∏
d>1

(
1− 1

(qd+1)2

)N∗(q;2d)

×
∏
d>1

(
1 + 1

(q2d−1)

)M∗(q;d)

O(2m+ 1, q) any sSp(∞, q)

O±(2m, q) odd sSp(∞, q)

O±(2m, q) even 1
2sSp(∞, q)

Table 2. Separable matrix limiting probabilities.

The numbers M̃ , Ñ , M∗ , N∗ enumerate certain kinds
of irreducible polynomials—see Section 1.3, pp. 23, 26.
For unitary and symplectic groups two forms are given.

Theorems 2.1.3, 2.2.3 and 2.3.4 refer.
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Group G q Limiting probability sG(∞, q) mod O(q−10)

GL(n, q) any 1− q−1

U(n, q) any 1− q−1 − 2q−3 + 4q−4 − 6q−5 + 14q−6

− 28q−7 + 52q−8 − 106q−9 + · · ·

Sp(2m, q) odd 1− 3q−1 + 5q−2 − 10q−3 + 23q−4 − 49q−5

+ 100q−6 − 208q−7 + 439q−8 − 915q−9 + · · ·

even 1− 2q−1 + 2q−2 − 4q−3 + 9q−4 − 17q−5

+ 32q−6 − 64q−7 + 130q−8 − 258q−9 + · · ·

O(2m+ 1, q) any sSp(∞, q)

O±(2m, q) odd sSp(∞, q)

O±(2m, q) even 1
2sSp(∞, q)

Table 3. Separable matrix limiting probabilities as power series.

Group G q sG(∞, q) lower bound sG(∞, q) upper bound

GL(n, q) any 1− q−1 1− q−1

U(n, q) any 1− q−1 − 2q−3 + 2q−4 1− q−1 − 2q−3 + 6q−4

2 0.4147 0.4157

3 0.6283 0.6286

Sp(2m, q) odd 1− 2q−1 + 2q−2 1− 2q−1 + 2q−2

− 4q−3 + 4q−4 − 4q−3 + 9q−4

even 1− 3q−1 + 5q−2 1− 3q−1 + 5q−2

− 10q−3 + 12q−4 − 10q−3 + 23q−4

2 0.2833 0.2881

3 0.3487 0.3493

O(2m+ 1, q) any same as for SSp(∞, q) same as for SSp(∞, q)

O±(2m, q) odd same as for SSp(∞, q) same as for SSp(∞, q)

O±(2m, q) even 1
2×bound for SSp(∞, q) 1

2×bound for SSp(∞, q)

Table 4. Explicit bounds for separable matrix limiting probabilities.

Theorems 2.1.4, 2.2.6 and 2.3.5 refer.
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Group G q First bound Second bound

GL(n, q) any 3(q−1)
(2q−3) p2(n) q

−n 8(q−1)
(2q−3)

(
2
3 q
)−n

U(n, q) any 3(q+1)
(2q−3) p2(n) q

−n 8(q+1)
(2q−3)

(
2
3 q
)−n

Sp(2m, q) odd 3(q−1)
(2q−3) p3(m) q−m 23(q−1)

(2q−3)

(
2
3 q
)−m

Sp(2m, q) even 3(q−1)
(2q−3) p2(m) q−m 8(q−1)

(2q−3)

(
2
3 q
)−m

O(2m+ 1, q) odd same as SSp(2m, q) same as SSp(2m, q)

O(2m+ 1, q) even same as SSp(2m, q) same as SSp(2m, q)

O±(2m, q) odd 3(q−1)(2q−1)
2(2q−3) p3(m) q−m 23(q−1)(2q−3)

2(2q−3)

(
2
3 q
)−m

O±(2m, q) even 3(q−1)(q+2)
2(2q−3) p2(m) q−m 4(q−1)(q+2)

2q−3

(
2
3 q
)−m

Table 5. Convergence rates for separable matrices:

explicit upper bounds for |sG(∞, q)− sG(n, q)| .
The second bound is weaker than the first but easier to compute.

The functions p2 and p3 are closely related to
the partition function—see Lemma 1.3.9.
Theorems 2.1.6, 2.2.5, 2.3.6 and 2.3.8 refer.
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Group G q Limiting probability cG(∞, q)

GL(n, q) any
(
1− 1

q5

)/(
1 + 1

q3

)
U(n, q) any

(
1 + 1

q

) ∏
d odd

(
1− 1

qd(qd+1)

)Ñ(q;d)

×
∏
d>1

(
1 + 1

q2d(q2d−1)

)M̃(q;d)

any
(
1− 1

q2

) ∏
d odd

(
1 + (qd−1)

q3d(qd+1)

)Ñ(q;d)

×
∏
d>1

(
1 + 1

q6d

)M̃(q;d)

any (q2−1)(q3−1)
q(q4+1)

∏
d odd

(
1 + 1

(qd+1)(q2d−1)

)Ñ(q;d)

×
∏
d>1

(
1 + 1

(q2d−1)(q4d+1)

)M̃(q;d)

Sp(2m, q) any
∏
d>1

(
1− 1

qd(qd+1)

)N∗(q;2d)∏
d>1

(
1 + 1

qd(qd−1)

)M∗(q;d)

odd q3(q3−1)
(q2+1)(q4−1)

∏
d>1

(
1 + 1

(qd+1)(q2d−1)

)N∗(q;2d)

×
∏
d>1

(
1 + 1

(qd−1)(q2d+1)

)M∗(q;d)

even (q3−1)
q(q2+1)

∏
d>1

(
1 + 1

(qd+1)(q2d−1)

)N∗(q;2d)

×
∏
d>1

(
1 + 1

(qd−1)(q2d+1)

)M∗(q;d)

O(2m+ 1, q) any
(
1− 1

q

)
cSp(∞, q)

O±(2m, q) odd
(
1− 1

q +
1

2q2

)
cSp(∞, q)

O±(2m, q) even
(
1− 1

2q

)
cSp(∞, q)

Table 6. Cyclic matrix limiting probabilities.

The numbers M̃ , Ñ , M∗ , N∗ enumerate certain kinds
of irreducible polynomials—see Section 1.3, pp. 23, 26.

For unitary groups three forms and
for symplectic groups two forms are given.
Theorems 2.1.9, 2.2.9 and 2.3.11 refer.
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Group G q Limiting probability cG(∞, q) mod O(q−10)

GL(n, q) any (1− q−5)/(1 + q−3)
= 1− q−3 − q−5 + q−6 + q−8 − q−9 + · · ·

U(n, q) any 1− q−3 − q−5 + q−6 − 2q−7 + 3q−8 − 5q−9 + · · ·

Sp(2m, q) odd 1− 3q−3 + 2q−4 − 3q−5 + 8q−6

− 11q−7 + 19q−8 − 32q−9 + · · ·

even 1− 2q−3 + q−4 − 2q−5 + 4q−6

− 5q−7 + 9q−8 − 14q−9 + · · ·

O(2m+ 1, q) odd (1− q−1) cSp(∞, q)

= 1− q−1 − 3q−3 + 5q−4 − 5q−5 + 11q−6

− 19q−7 + 30q−8 − 51q−9 + · · ·

even (1− q−1)cSp(∞, q)

= 1− q−1 − 2q−3 + 3q−4 − 3q−5

+ 6q−6 − 9q−7 + 14q−8 − 23q−9 + · · ·

O±(2m, q) odd (1− q−1 + 1
2q

−2) cSp(∞, q)

= 1− q−1 + 1
2q

−2 − 3q−3 + 5q−4 − 13
2 q

−5

+ 12q−6 − 41
2 q

−7 + 34q−8 − 113
2 q−9 + · · ·

O±(2m, q) even (1− 1
2q

−1) cSp(∞, q)

= 1− 1
2q

−1 − 2q−3 + 2q−4 − 5
2q

−5

+ 5q−6 − 7q−7 + 23
2 q

−8 − 37
2 q

−9 + · · ·

Table 7. Cyclic matrix limiting probabilities as power series.
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Group G q cG(∞, q) lower bound cG(∞, q) upper bound

GL(n, q) any (1− q−5)/(1 + q−3) (1− q−5)/(1 + q−3)

U(n, q) any (1− q−3)/(1 + q−4) 1− q−3

Sp(2m, q) odd 1− 3q−3 + q−4 − q−5 1− 3q−3 + 2q−4 + q−5

even 1− 2q−3 − q−5 1− 2q−3 + q−4 + q−5

O(2m+ 1, q) any k1×bound for cSp(∞, q) k1×bound for cSp(∞, q)

O±(2m, q) odd k2×bound for cSp(∞, q) k2×bound for cSp(∞, q)

O±(2m, q) even k3×bound for cSp(∞, q) k3×bound for cSp(∞, q)

Table 8. Explicit bounds for cyclic matrix limiting probabilities.

Here k1 := 1− q−1 , k2 := 1− q−1 + 1
2q

−2 and k3 := 1− 1
2q

−1 .
Theorems 2.1.12, 2.2.14, 2.3.11 (and 2.3.14) refer.

Group G q First bound Second bound

GL(n, q) any 3(q−1)
2q2−3 p2(n) q

−2n 8(q−1)
2q2−3

(
2
3 q

2
)−n

U(n, q) any 3(q+1)
2q2−3 p2(n) q

−2n 8(q+1)
2q2−3

(
2
3 q

2
)−n

Sp(2m, q) odd 3(q−1)
2q2−3 p3(m) q−2m 23(q−1)

2q2−3

(
2
3 q

2
)−m

Sp(2m, q) even 3(q−1)
2q2−3 p2(m) q−2m 8(q−1)

2q2−3

(
2
3 q

2
)−m

O(2m+ 1, q) odd 3q(q−1)
2q2−3 p3(m) q−2m 23q(q−1)

2q2−3

(
2
3 q

2
)−m

O(2m+ 1, q) even 3(q2−1)
2q2−3 p2(m) q−2m 8(q2−1)

2q2−3

(
2
3 q

2
)−m

O±(2m, q) odd 3q2(q−1)
2q2−3 p3(m) q−2m 23q2(q−1)

2q2−3

(
2
3 q

2
)−m

O±(2m, q) even 3q2(q−1)
2q2−3 p2(m) q−2m 8q2(q−1)

2q2−3

(
2
3 q

2
)−m

Table 9. Convergence rates for cyclic matrices:

explicit upper bounds for |cG(∞, q)− cG(n, q)| .
The second bound is weaker than the first but easier to compute.

Theorems 2.1.11, 2.2.13, 2.3.12 and 2.3.13 refer.
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Group G q Limiting probability ssG(∞, q)

GL(n, q) any
∏

r≡0,±2 (mod 5)

(
(1− 1

qr−1 )
)
/
(
(1− 1

qr )
)

U(n, q) any
(
1 + 1

q

) ∏
d odd

Aq,d(1)
Ñ(q;d)

∏
d>1

Bq2,d(1)
M̃(q;d)

Sp(2m, q) odd
(
1− 1

q

)2
F (1)2

∏
d>1

Aq,d(1)
N∗(q;2d)

∏
d>1

Bq,d(1)
M∗(q;d)

even
(
1− 1

q

)
F (1)

∏
d>1

Aq,d(1)
N∗(q;2d)

∏
d>1

Bq,d(1)
M∗(q;d)

O(2m+ 1, q) odd
(
1− 1

q

)2
F+(1)F (1)

×
∏
d>1

Aq,d(1)
N∗(q;2d)

∏
d>1

Bq,d(1)
M∗(q;d)

even sSp(∞, q)

O±(2m, q) odd 1
2

(
F+(1)

2 + F (1)2
)(
1− 1

q

)2
×
∏
d>1

Aq,d(1)
N∗(q;2d)

∏
d>1

Bq,d(1)
M∗(q;d)

O±(2m, q) even 1
2F+(1)

(
1− 1

q

)∏
d>1

Aq,d(1)
N∗(q;2d)

∏
d>1

Bq,d(1)
M∗(q;d)

Table 10. Semisimple matrix limiting probabilities.

The numbers M̃ , Ñ , M∗ , N∗ enumerate certain

kinds of irreducible polynomials—see Section 1.3;

Aq,d(1) =
(
1− 1

qd

)(
1 +

∑
m>1

1
|U(m,qd)|

)
;

Bq,d(1) =
(
1− 1

qd

)(
1 +

∑
m>1

1
|GL(m,qd)|

)
;

F+(1) = 1 +
∑
m>1

(
1

|O−(m,q)| +
1

|O+(m,q)|
)

F (1) = 1 +
∑
m>1

1
|Sp(m,q)| ; —see Section 3.1.

Theorems 3.1.13, 3.1.15 and 3.1.18 refer.
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Group G q Limiting probability ssG(∞, q) mod O(q−10)

GL(n, q) any 1− q−1 + q−3 − 2q−4 + 2q−5 − q−6

− q−7 + 3q−8 − 4q−9 + · · ·
U(n, q) any 1− q−1 − q−3 + 2q−4 − 2q−5 + 5q−6

− 9q−7 + 11q−8 − 20q−9 + · · ·

Sp(2m, q) odd 1− 3q−1 + 5q−2 − 7q−3 + 11q−4 − 19q−5

+ 32q−6 − 56q−7 + 104q−8 − 195q−9 + · · ·

even 1− 2q−1 + 2q−2 − 2q−3 + 3q−4 − 5q−5

+ 8q−6 − 15q−7 + 29q−8 − 52q−9 + · · ·

O(2m+ 1, q) odd 1− 2q−1 + 2q−2 − 2q−3 + 3q−4 − 5q−5

+ 8q−6 − 16q−7 + 34q−8 − 64q−9 + · · ·

even ssSp(∞, q)

O±(2m, q) odd 1− 2q−1 + 5
2q

−2 − 7
2q

−3 + 11
2 q

−4 − 19
2 q

−5

+ 33
2 q

−6 − 61
2 q

−7 + 117
2 q−8 − 215

2 q−9 + · · ·

even 1
2 − 1

2q
−1 + 1

2q
−6 − 2q−7 + 9

2q
−8 − 15

2 q
−9 + · · ·

Table 11. Semisimple matrix limiting probabilities as power series.
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Group G q ssG(∞, q) lower bound ssG(∞, q) upper bound

GL(n, q) any 1− q−1 + q−3 − 2q−4 1− q−1 + q−3

U(n, q) any 1− q−1 − q−3 − 2q−4 1− q−1 − q−3 + 3q−4

2 0.4698 0.4724

3 0.6498 0.6501

Sp(2m, q) odd 1− 3q−1 + 5q−2 1− 3q−1 + 5q−2

− 7q−3 + 6q−4 − 7q−3 + 13q−4

even 1− 2q−1 + 2q−2 1− 2q−1 + 2q−2

− 2q−3 + q−4 − 2q−3 + 5q−4

2 0.3476 0.3481

3 0.3819 0.3821

O(2m+ 1, q) odd 1− 2q−1 + 2q−2 1− 2q−1 + 2q−2

− 2q−3 − 2q−4 − 2q−3 + 7q−4

3 0.5046 0.5053

O±(2m, q) odd 1− 2q−1 + 5
2q

−2 1− 2q−1 + 5
2q

−2

− 7
2q

−3 − 7
2q

−3 + 21
2 q

−4

3 0.5244 0.5252

O±(2m, q) even 1
2

(
1− q−1 − 3q−4

)
1
2

(
1− q−1 + 5q−4

)
2 0.2513 0.2515

Table 12. Explicit bounds for semisimple matrix limiting probabilities.

Theorems 3.1.14, 3.1.17 and 3.1.20 refer.
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Group G q First bound Second bound

GL(n, q) any 3(q−1)
2q−3 p2(n)q

−n 8(q−1)
2q−3

(
2
3 q
)−n

U(n, q) any 3(q+1)
2q−3 p4(n)q

−n 63(q+1)
2q−3

(
2
3 q
)−n

Sp(2m, q) odd 3(q+1)
2q−3 p3(m) q−m 23(q+1)

2q−3

(
2
3 q
)−m

Sp(2m, q) even 12q2(q+1)
(2q−3)(2q2−3) p3(m) q−m 92q2(q+1)

(2q−3)(2q2−3)

(
2
3 q
)−m

O(2m+ 1, q) odd same as for Sp(2m, q) same as for Sp(2m, q)

O(2m+ 1, q) even same as for Sp(2m, q) same as for Sp(2m, q)

O±(2m, q) odd 9(q+1)2

2(2q−3) p3(m) q−m 69(q+1)2

2(2q−3)

(
2
3 q
)−m

O±(2m, q) even 6q2(q+1)(q+2)
(2q−3)(2q2−3) p3(m) q−m 46q2(q+1)(q+2)

(2q−3)(2q2−3)

(
2
3 q
)−m

Table 13. Convergence rates for semisimple matrices:

explicit upper bounds for |ssG(∞, q)− ssG(n, q)| .
The second bound is weaker than the first but easier to compute.

Theorems 3.1.22, 3.1.24, 3.1.27, 3.1.29 and 3.1.31 refer.

Group G q Limiting probability rG(∞, q)

O(2m+ 1, q) odd
(
1 + 1

q2(q+1)

)
cSp(∞, q)

= 1− 2q−3 + q−4 − 2q−5 + 4q−6 − 5q−7

+ 10q−8 − 15q−9 + · · ·

O(2m+ 1, q) even cSp(∞, q)

= 1− 2q−3 + q−4 − 2q−5 + 4q−6 − 5q−7

+ 9q−8 − 14q−9 + · · ·

O±(2m, q) odd
(
1 + 1

q2(q+1) +
1

2q4(q+1)2

)
cSp(∞, q)

= 1− 2q−3 + q−4 − 2q−5 + 9
2q

−6 − 6q−7

+ 23
2 q

−8 − 37
2 q

−9 + · · ·

O±(2m, q) even
(
1 + 1

2q2(q+1)

)
cSp(∞, q)

= 1− 3
2q

−3 + 1
2q

−4 − 3
2q

−5 + 5
2q

−6 − 3q−7

+ 6q−8 − 9q−9 + · · ·

Table 14. Regular orthogonal matrix limiting probabilities.

Theorems 3.2.3 and 3.2.5 refer.
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1.3. Preliminaries

We shall be working with power series generating functions expressed as infi-
nite products and with the characteristic and minimal polynomials of matrices in
classical groups. The tools needed come from analysis and from the combinatorial
theory of polynomials over finite fields. Some are well known, others less familiar.
They are collected in this section in the forms most appropriate for our purposes.

Recall (see, for example, Ahlfors [1], Ch. 5, §2.2, pp. 189–191) that (if an 6= −1
for all n then)

∏
n(1 + an) is said to converge if there exists l 6= 0 such that∏N

n=1(1 + an) → l as N → ∞ ; it is said to converge absolutely if
∏N
n=1(1 + |an|)

converges. A product which converges absolutely certainly converges. Moreover,
if the terms an are analytic functions of a complex variable u and convergence is
uniform over a domain D in the complex plane then the limit will be analytic over
D . A basic criterion for absolute convergence replaces products with sums:

Lemma 1.3.1. The following are equivalent:

(a)
∏
(1 + an) converges absolutely (and uniformly over D );

(b)
∑

log(1 + an) converges absolutely (and uniformly over D );
(c)

∑
|an| converges absolutely (and uniformly over D ).

The form in which this is most useful in our work is

Corollary 1.3.2. The product
∏(

1+an(u)
)m(n)

, where the exponents m(n)
are non-negative integers, converges absolutely (and uniformly over D ) if and only
if
∑

m(n) |an(u)| converges (uniformly over D ).

We write D(R) throughout for the open disc {u ∈ C |u| < R} . In determining
the limiting probabilities of the generating functions considered in this paper, we
shall sometimes use the following standard result about analytic functions.

Lemma 1.3.3. Suppose that g(u) =
∑
n>0 anu

n and g(u) = f(u)/(1 − u) for

|u| < 1 . If f(u) is analytic in D(R) , where R > 1 , then limn→∞ an = f(1) and
|an − f(1)| = o(r−n) for any r such that 1 < r < R .

Proof. Define F (1) := f ′(1) and F (u) := (f(1) − f(u))/(1 − u) elsewhere in
D(R). Then F is analytic in that disc and must be represented by a Taylor series∑

bnu
n converging there. If 1 < r < R then

∑
bnr

n converges and so bnr
n → 0

as n → ∞ , that is |bn| = o(r−n). Now g(u) = f(1)/(1− u)− F (u) and therefore
an = f(1)− bn . Thus an → f(1) and |an − f(1)| = o(r−n) as n→ ∞ .

Lemma 1.3.4. (a) If 0 6 x 6 1 and n ∈ N then

1− nx+

(
n

2

)
x2 −

(
n

3

)
x3 6 (1− x)n 6 1− nx+

(
n

2

)
x2 .

(b) If 0 < ai < 1 for all i then
∏
(1− ai) > 1−

∑
ai .

Proof. The first of these is easily proved by elementary calculus or by induction
on n . The second is proved for the finite case

∏n
1 (1− ai) by induction on n , and

then for an infinite product by taking the limit as n→ ∞ .

Following Wall [23], given formal power series A(u) =
∑
anu

n and B(u) =∑
bnu

n , we write A(u) � B(u) if an 6 bn for all n . We write |A|(u) for the
series

∑
|an|un . In all cases of interest the power series that arise will converge

in some neighbourhood of 0 in the complex plane, and then we work with the
functions they represent. Care is needed: for example, it is not generally true that if
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A1(u) � B1(u) and A2(u) � B2(u) then A1(u)A2(u) � B1(u)B2(u). This is true,
however, if B1(u), B2(u) are non-negative in the sense that all their coefficients are
non-negative. In particular, if A(u) = B(u)C(u) then |A|(u) � |B|(u) |C|(u). It
is not hard to see that these facts may be extended to infinite products. Similarly,
it is not generally true that if B1(u) � B2(u) then A(B1(u)) � A(B2(u)), but
this does hold if A(u), B1(u), B2(u) are non-negative.

Lemma 1.3.5. (a) If a > 2 , k > 1 and A(u) := (1 − auk)/(1 − u) then
|A|(u) � (a− 1)/(1− u) .

(b) If b > 2 , k is an even positive integer and B(u) := (1 − buk)/(1 + u) then
|B|(u) � (b− 1)/(1− u) .

(c) Suppose that C(u) = 1 +
∑
n>1 cnu

n where 1 > c1 > c2 > · · · > 0 . If

D(u) := C(u)/(1 + u) then |D|(u) � 1/(1− u) .

(d) If C(u) =
∑
n>0 cnu

n where cn > 0 for all n and
∑
cn converges then

C(u)/(1− u) � C(1)/(1− u) .

Proof. For (a) note that the nth coefficient of A(u) is 1 if 0 6 n 6 k − 1 and is
−(a− 1) if n > k . Similarly, part (b) comes from the fact that the nth coefficient
of B(u) is (−1)n if 0 6 n 6 k − 1 and is (−1)n−1(b− 1) if n > k .

For (c) write D(u) as 1 +
∑
n>1 dnu

n . Then dn = (−1)n
(
1 − c1 + c2 − · · · +

(−1)ncn
)
. If n is even then

(1− c1) + · · ·+ (cn−2 − cn−1) + cn = (−1)ndn = 1− (c1 − c2)− · · · − (cn−1 − cn) ,

while if n is odd then

(1− c1) + · · ·+ (cn−1 − cn) = (−1)ndn = 1− (c1 − c2)− · · · − (cn−2 − cn−1)− cn .

Thus 0 6 (−1)ndn 6 1 and so |D|(u) � 1+
∑
n>1 u

n , that is, |D|(u) � 1/(1−u).
For (d) note that C(u)/(1 − u) =

∑
n>0 dn u

n where dn :=
∑

06m6n cm 6
C(1), and so C(u)/(1− u) � C(1)

∑
n>0 u

n = C(1)/(1− u).

Lemma 1.3.6. For each natural number n let cn , dn be real numbers and let
mn , rn , sn be non-negative integers. Define

A(u) :=
∏
n

(
1 +

cn u
rn

1 + dn usn

)mn

.

Then

|A|(u) � exp
(∑

n

mn |cn|urn
1− |dn|usn

)
.

Proof. For a function g(u) represented by a non-negative power series we have
1 + g(u) � exp g(u), and as these are again represented by non-negative power
series (1+g(u))m � exp(mg(u)) for non-negative integers m . If B(u) is the power
series expansion of cu/(1+du) for real numbers c , d , then |B|(u) = |c|u/(1−|d|u).
It follows that if

C(u) :=
(
1 +

cn u
rn

1 + dn usn

)mn

then

|C|(u) �
(
1 +

|cn|urn
1− |dn|usn

)mn

� exp
(mn |cn|urn
1− |dn|usn

)
,



20 1. INTRODUCTION, TABLES, AND PRELIMINARIES

and therefore that |A|(u) � exp
(∑

n

mn |cn|urn
1− |dn|usn

)
, as the lemma states.

Just as in Wall’s work, the technique of comparison of power series, applied
to our generating functions, leads via the following lemma to the function Ω(u)
defined by

Ω(u) :=
∏
i>1

(1− ui) .

Lemma 1.3.7. exp
( ∑
m>1

1

m

um

1− um

)
= Ω(u)−1 .

Proof. (See, for example, Wall [23, p. 272] or Apostol [2, p. 317].)

log Ω(u)−1 = −
∑
i>1

log(1− ui) =
∑
i>1

∑
m>1

uim

m

=
∑
m>1

1

m

∑
i>1

uim =
∑
m>1

1

m

um

1− um
,

and applying the exponential function gives the required result.

Let p(n) be the number of partitions of n and let pr(n) for r > 1 be defined
inductively by the prescription p1(n) := p(n) and pr(n) := 1 +

∑n
m=1 pr−1(m)

for r > 1. By a well-known theorem of Euler Ω(u)−1 = 1 +
∑
n>1 p(n)u

n . The
following has a straightforward inductive proof:

Lemma 1.3.8. If r > 0 then
1

(1− u)r
Ω(u)−1 = 1 +

∑
n>1

pr+1(n)u
n .

Since the product defining Ω(u) converges for |u| < 1, given c > 1 the series∑
p(n)c−n converges and therefore there exists k > 0 such that p(n) 6 kcn for all

n . We shall need explicit forms of this inequality; we shall also need similar bounds
for the functions pr(n).

Lemma 1.3.9. For r := 1, 2, 3, . . . let pr(n) be the function derived from
summing the partition function p(n) as above. Then:

(a) p(n) 6 3
2p(n− 1) for n > 7 ;

(b) p(n) 6 ( 32 )
n for n > 0 ;

(c) for r > 1 there exists N(r) such that pr(n) 6 3
2pr(n− 1) for n > N(r) ;

(d) for r > 1 there exists k(r) > 0 such that pr(n) 6 k(r) ( 32 )
n for n > 0 ;

(e) for small r the following values of N(r) and k(r) are best possible:

r : 1 2 3 4 5

N(r) : 7 7 10 12 14

k(r) : 1 640
243

145 408
19 683

1 230 848
59 049

94 429 184
1 594 323

k(r) : 1 2.633 · · · 7.387 · · · 20.844 · · · 59.228 · · ·

k′(r) : 1 8/3 23/3 21 178/3

The last line of this table records a number k′(r) , more convenient for our purposes
than k(r) , for which pr(n) 6 k′(r) ( 32 )

n for n > 0 .
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Proof. Of course, clauses (a) and (b) are special cases of (c) and (d) respectively.
We have picked them out for special mention because of their special importance
and because they provide the base step of a proof by induction.

Define p0(n) to be the number of partitions of n that have no parts of size
1. Clearly p(n) = p(n − 1) + p0(n) and we propose to show that p0(n) 6 1

3p(n)
if n > 7. Given a partition λ with no parts of size 1 define new partitions λ′

and λ′′ as follows: λ′ is the same as λ except that its smallest part a has been
replaced by parts 1 and a− 1; λ′′ is the same as λ except that its largest part b
has been replaced by b parts equal to 1. Then λ′ = µ′ if and only if λ = µ and
similarly λ′′ = µ′′ if and only if λ = µ . Moreover, if n is odd then there are no
coincidences amongst partitions λ , µ′ , ν′′ (for partitions λ , µ , ν without parts
of size 1), while if n is even then there is precisely one such coincidence, namely
µ′ = ν′′ when µ = ν = 1

2n × 2 (that is, µ and ν consist of 1
2n parts of size 2).

Thus p(n) > 3p0(n) − 1 for n > 1. If n > 7 then there are partitions such as
3× 1 + (n− 3) which are not of the form λ , λ′ or λ′′ where λ has no parts of size
1. Consequently p(n) > 3p0(n) if n > 7.

It follows immediately that p(n) 6 p(n− 1) + 1
3p(n) if n > 7, whence p(n) 6

3
2p(n − 1), as stated in (a). That p(n) 6 ( 32 )

n for n 6 6 may be verified directly,
and then (b) follows by induction from (a).

To prove (c) and (d) we proceed by induction on r . The generating function∑
pr(n)u

n is expressible as (1 − u)−(r−1)Ω(u)−1 , and this is analytic in the unit
disc D(1). It follows that

∑
pr(n)(

2
3 )
n converges, and so certainly there must exist

n0 such that pr(n0) 6 3
2pr(n0 − 1). If n > max{N(r − 1), n0} then

pr(n) = pr(n0) +

n∑
m=n0+1

pr−1(m) 6 pr(n0) +
3
2

n−1∑
m=n0

pr−1(m) ,

that is, pr(n) 6 pr(n0) − 3
2pr(n0 − 1) + 3

2pr(n − 1), and so pr(n) 6 3
2pr(n − 1).

This proves (c), and (d) follows immediately with

k(r) := max{pr(n)( 23 )
n 0 6 n 6 N(r)} .

The verification of (e) is now routine and is left to the reader.

Although one might expect elementary facts like (a) and (b) to go back to
Euler in the mid-eighteenth century we do not know if or where exactly they are
to be found in the literature. A famous theorem of Hardy & Ramanujan tells

us that p(n) ∼ eπ
√

2n/3/(4
√
3n) as n → ∞ . Comparing the sum with an in-

tegral and using integration by parts one sees that p2(n) ∼ eπ
√

2n/3/(2π
√
2n),

that p3(n) ∼
√
3eπ

√
2n/3/(2π2) as n→ ∞ , and that analogous formulae may be

worked out for pr(n) in general. Several of our estimates below are of the form
|En| < k0

∑
m>n pr(m)Q−m , where En is the difference between a member of a

sequence and its limit, r is at most 5, and Q is q or q2 . Since pr(m+1) 6 3
2pr(m)

for large m such estimates yield that

|En| < k0 pr(n)Q
−n
∑
m>1

( 23Q)−m = k pr(n)Q
−n ,

where k := 3k0/(2Q−3). Thus we have |En| < KQ−(n−c
√
n) for suitable constants

K and c . In this form these estimates are inexplicit in that we are unable to calcu-
late appropriate values for K . There are explicit estimates with quite elementary
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proofs, such as the bound p(n) < eπ
√

2n/3 (see, for example, [2, Theorem 14.5]).
They are, however, not quite as easy to exploit as the bounds given in Lemma 1.3.9
and, as the latter are more than adequate for practical purposes, we shall not need
the more sophisticated theorems.

We turn now to polynomials over finite fields. For d > 1 let N(q; d) denote
the number of monic irreducible polynomials ϕ(t) of degree d over Fq for which
ϕ(0) 6= 0, that is, monic irreducible polynomials other than t . These numbers may
be expressed using the Möbius function µ . Recall that for a positive integer n ,

µ(n) =


(−1)r if n = p1p2 · · · pr where p1, p2, . . . , pr

are distinct prime numbers;

0 if n is not square-free.

Lemma 1.3.10. (a) N(q; 1) = q − 1 , and if d > 1 , then

N(q; d) =
1

d

∑
r|d

µ(r)qd/r =
1

d
qd −O(qd/2) .

(b)
∏
d>1

(1− ud)−N(q;d) =
1− u

1− qu
for |u| < q−1 .

(c)
∏
d>1

(1 + ud)−N(q;d) =
(1 + u)(1− qu)

1− qu2
for |u| < q−1 .

Proof. Assertion (a) is well known (see for example [15, Theorem 3.25]). As-
sertion (b) is to be found in [23, p. 258] and is easily seen to be equivalent to [6,
Lemma 4]. Since it provides a model for later theorems we nevertheless give a
proof. Write

∏
d>1(1 − ud)−N(q;d) as

∏
ϕ(1 + udeg(ϕ) + u2 deg(ϕ) + · · · ) where ϕ

ranges over monic irreducible polynomials such that ϕ(0) 6= 0 (that is, monic irre-
ducible polynomials ϕ(t) other than t). Expanding the product and using unique
factorization we see that for n > 1 the coefficient of un is the number of monic
polynomials f(t) of degree n over Fq such that f(0) 6= 0, hence qn − qn−1 . Since
N(q; d) < qd/d , by Corollary 1.3.2 the product converges for |u| < q−1 . The series
1+
∑
n>1(q

n−qn−1)un also converges for |u| < q−1 and its sum is (1−u)/(1−qu).
Expansion of the product is valid whenever it, its factors, and the result all converge
absolutely, and therefore (b) holds as an equality between complex functions for
|u| < q−1 . Assertion (c) follows from (b) and the fact that 1+x = (1−x2)÷(1−x).

Next we consider the characteristic and minimal polynomials of matrices in the
unitary groups. Since U(n, q) is a subgroup of GL(n, q2), the relevant polynomials
are monic polynomials over the field Fq2 . The map σ : x 7→ xq is an involutory
automorphism of Fq2 and it induces an automorphism of the polynomial ring Fq2 [t]
in an obvious way, namely σ :

∑
06i6n ait

i 7→
∑

06i6n a
σ
i t
i . An involutory map

ϕ 7→ ϕ̃ is defined on those monic polynomials ϕ ∈ Fq2 [t] that have non-zero constant
coefficient, by

ϕ̃(t) := ϕ(0)−σtdeg(ϕ)ϕσ(t−1) .

Thus if

ϕ(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0
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with a0 6= 0 then its ∼-conjugate is given by

ϕ̃(t) = tn + (a1a
−1
0 )σtn−1 + · · ·+ (an−1a

−1
0 )σt+ (a−1

0 )σ ,

and an element b in some extension field of Fq2 is a root of ϕ if and only if b−q is

a root of ϕ̃ . We say that ϕ is self-conjugate (or ∼-self-conjugate) if ϕ(0) 6= 0 and

ϕ̃ = ϕ . In this case, an element b in some extension field of Fq2 is a root of ϕ if
and only if b−q is also a root; obviously, the roots b, b−q are equal if and only if
bq+1 = 1.

Lemma 1.3.11. (a) For n > 1 , the number P̃ (n) of self-conjugate monic
polynomials ϕ of degree n in Fq2 [t] is qn + qn−1 .

(b) If ϕ(t) is a self-conjugate monic irreducible polynomial over Fq2 then
deg(ϕ) is odd.

Proof. Write n in the form 2k+ δ , where δ is 0 or 1, and let ϕ(t) =
∑

06i6n ait
i ,

with an = 1 and a0 6= 0. Then ϕ(t) is self-conjugate if and only if an−i = (aia
−1
0 )σ

for 0 6 i 6 k . Thus all the coefficients of ϕ(t) are determined by a0, . . . , ak . While
a1, . . . , ak−1 (and also ak if n is odd) may be chosen arbitrarily, a0 must satisfy

aq+1
0 = 1. Thus if n is odd there are qn+qn−1 self-conjugate monic polynomials in

Fq2 [t] . If n is even then ak = (aka
−1
0 )q , whence either ak = 0, or aq−1

k = aq0 = a−1
0 .

For a given choice of a0 (such that aq+1
0 = 1) the equation aq−1

k = a−1
0 has q − 1

solutions for ak . Thus in all there are q choices for ak . Therefore when n is even
there are (q2)k−1(q + 1)q , that is, qn + qn−1 self-conjugate monic polynomials in
Fq2 [t] .

Now suppose that ϕ(t) is monic, self-conjugate and irreducible in Fq2 [t] , and
let n := deg(ϕ). Let b be a root of ϕ in its splitting field K over Fq2 (so that

b generates K over Fq2 ) and let Φ be the Frobenius automorphism a 7→ aq
2

of
K . Then ord(Φ) = |K : Fq2 | = deg(ϕ) = n . Since ϕ is self-conjugate b−q is also
a root of ϕ , and therefore there is an automorphism τ of K over Fq2 such that

τ : b 7→ b−q . Then τ2 : b 7→ bq
2

and so τ2 = Φ. Since τ ∈ 〈Φ〉 ∼= Zn , it follows
that n is odd, as stated in (b).

Let Ñ(q; d) denote the number of monic irreducible self-conjugate polynomials

ϕ(t) of degree d over Fq2 , and let M̃(q; d) denote the number of (unordered)

conjugate pairs {ϕ, ϕ̃} of monic irreducible polynomials of degree d over Fq2 that
are not self-conjugate.

Lemma 1.3.12. Let d be a positive integer.

(a): ([6, Theorem 9]) If d is even then Ñ(q; d) = 0 , while if d is odd, then

Ñ(q; d) =
1

d

∑
r|d

µ(r)(qd/r + 1) =
1

d
qd −O(qd/3) .

(b): ([6, Theorem 9])

M̃(q; d) =



1
2 (q

2 − q − 2) if d = 1,

1

2d

∑
r|d

µ(r)(q2d/r − qd/r) if d > 1 and d is odd,

1

2d

∑
r|d

µ(r)q2d/r if d is even.
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Thus M̃(q; d) = (q2d/2d)−O(qd) .

Corollary 1.3.13. If d > 1 then Ñ(q; d) = N(q; d) if d is odd, Ñ(q; d) = 0

if d is even, and M̃(q; d) = N(q; 2d) .

Proof. Suppose first that d > 1 and d is odd. By the lemma,

Ñ(q; d) =
1

d

∑
r|d

µ(r)(qd/r + 1) =
1

d

∑
r|d

µ(r)qd/r

since
∑
r|d

µ(r) = 0 when d > 1. Thus Ñ(q; d) = N(q; d). Also, from the definitions,

M̃(q; d) = 1
2

(
N(q2; d)− Ñ(q; d)

)
, and so

M̃(q; d) =
1

2d

∑
r|d

µ(r)(q2d/r − qd/r)

=
1

2d

∑
r|d

(µ(r)q2d/r + µ(2r)q2d/2r) =
1

2d

∑
r|2d

µ(r)q2d/r .

Therefore M̃(q; d) = N(q; 2d).

Now suppose that d > 1 and d is even. Then Ñ(q; d) = 0 and so M̃(q; d) =
1
2N(q2; d) = (2d)−1

∑
r|d µ(r)q

2d/r . If r | 2d and r - d then, since d is even, r is

divisible by 4 and µ(r) = 0. Therefore

M̃(q; d) = (2d)−1
∑
r|d

µ(r)q2d/r = (2d)−1
∑
r|2d

µ(r)q2d/r ,

and so M̃(q; d) = N(q; 2d), as the corollary states.

The following infinite product expressions involving the numbers Ñ(q; d) and

M̃(q; d) are analogues of Lemma 1.3.10(b) and turn out to be fundamental for our
calculations.

Lemma 1.3.14. For |u| < q−1 ,

(a)
∏
d odd

(1− ud)−Ñ(q;d)
∏
d>1

(1− u2d)−M̃(q;d) =
1 + u

1− qu
;

(b)
∏
d odd

(1 + ud)−Ñ(q;d)
∏
d>1

(1 + u2d)−M̃(q;d) =
(1 + u2)(1− qu)

(1 + u)(1− qu2)
;

(c)
∏
d odd

(1 + ud)−Ñ(q;d)
∏
d>1

(1− u2d)−M̃(q;d) =
1− u

1 + qu
;

(d)
∏
d odd

(1− ud

1 + ud

)Ñ(q;d)

=
(1− u)(1− qu)

(1 + u)(1 + qu)
.

Proof. Define

B(u) :=
∏
d odd

(1− ud)−Ñ(q;d)
∏
d>1

(1− u2d)−M̃(q;d) .

Then

B(u) =
∏
ϕ=ϕ̃

(
1 +

∑
n>1

un deg(ϕ)
) ∏
ϕ̸=ϕ̃

(
1 +

∑
n>1

u2n deg(ϕ)
)
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where the polynomials ϕ are monic and irreducible with coefficients in Fq2 and

the second product ranges over unordered pairs {ϕ, ϕ̃} such that ϕ 6= ϕ̃ . It is

not hard to see that B(u) = 1 +
∑
d>1 P̃ (d)u

d , where P̃ (d) is the number of

monic polynomials f of degree d over Fq2 , such that f(0) 6= 0 and f = f̃ . By

Lemma 1.3.11, this number is qd+qd−1 . Substituting for P̃ (d) and summing we find
that B(u) = (1+u)/(1− qu) as formal power series. But, just as in Lemma 1.3.10,
by Corollary 1.3.2 the infinite products converge absolutely for |u| < q−1 and so
B(u) = (1 + u)/(1 − qu) as functions of a complex variable u for |u| < q−1 ,
and this proves Part (a). To get (b) we use (a) twice, exploiting the fact that
(1+x) = (1−x2)/(1−x). Substitution of −u for u in (a) yields (c), and then (d)
follows from (a) and (c) by division.

Now we consider the analogous theory for the symplectic groups Sp(n, q) and
orthogonal groups Oϵ(n, q). Since these are subgroups of GL(n, q) the character-
istic and minimal polynomials of their elements are monic polynomials over the
field Fq . For a monic polynomial ϕ(t) ∈ Fq[t] of degree n with non-zero constant
coefficient, we define the ∗-conjugate ϕ∗(t) by

ϕ∗(t) := ϕ(0)−1tnϕ(t−1) .

Thus if

ϕ(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0

then

ϕ∗(t) = tn + a1a
−1
0 tn−1 + · · ·+ an−1a

−1
0 t+ a−1

0 ;

moreover, an element b in some extension field of Fq satisfies ϕ(b) = 0 if and only
if it satisfies ϕ∗(b−1) = 0. We say that ϕ is self-conjugate (or ∗ -self-conjugate) if
ϕ(0) 6= 0 and ϕ∗ = ϕ . For a self-conjugate monic polynomial ϕ(t), an element b
in some extension field of Fq is a root of ϕ if and only if b−1 is also a root. And
of course b−1 = b if and only if b = ±1.

This last observation points to the importance of ±1 as roots of self-conjugate
polynomials and therefore to a particular difference between fields of odd and of
even characteristic: we define

e(q) :=

{
2 if q is odd,

1 if q is even,

so that e is the number of square roots of 1 in Fq .
Lemma 1.3.15. (a) If ϕ(t) = tn + an−1t

n−1 + · · · + a1t + a0 then ϕ(t) is
self-conjugate if and only if a0 = ±1 and an−i = a0ai for 1 6 i 6 n − 1 . (In
particular, if a0 = 1 then ϕ(t) is self-conjugate if and only if it is palindromic.)

(b) For n > 1 , let P ∗(n) be the number of monic self-conjugate polynomials
ϕ(t) over Fq of degree n . Then

P ∗(n) = q⌊n/2⌋ + (e− 1)q⌊(n−1)/2⌋ ,

where e := e(q) . Exactly q⌊n/2⌋ of these polynomials have constant term 1 (and,
when q is odd, the rest have constant term −1).

(c) If ϕ(t) is a monic self-conjugate irreducible polynomial over Fq then
ϕ(t) = t+ 1 or ϕ(t) = t− 1 or deg(ϕ) is even.
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Proof. Let ϕ(t) =
∑

06i6n ait
i , with an = 1 and a0 6= 0. Then ϕ(t) is self-

conjugate if and only if an−i = aia
−1
0 for 0 6 i 6 n . Taking i to be n we see that

the constant coefficient a0 satisfies a20 = 1. Therefore a0 = ±1 and an−i = a0ai
for 0 6 i 6 n , and this proves (a).

Write n as 2k+δ , where δ is 0 or 1. All the coefficients of ϕ(t) are determined
by a0, . . . , ak . To define a monic self-conjugate polynomial a1, . . . , ak−1 may be
chosen arbitrarily. If n is odd then ak may also be chosen arbitrarily and so
P ∗(n) = eqk . If n is even then, since ak = a0ak , if a0 = 1 then ak may be chosen
arbitrarily whereas if a0 6= 1 then ak = 0. It follows that (when n is even) the
number P ∗(n) of such polynomials is qk if q is even and it is qk+qk−1 if q is odd.
Thus the formula in (b) holds in all cases.

Now suppose that ϕ(t) is monic, irreducible and self-conjugate, and let b be a
root of ϕ in some extension field of Fq . Then, as we observed above, b−1 is also a
root of ϕ . If for some root b we have b = b−1 , then as ϕ is irreducible, it follows
that ϕ(t) = t±1. If this is not the case, then the roots occur in pairs and so deg(ϕ)
is even, as (c) states.

Let N∗(q; d) denote the number of monic irreducible self-conjugate polynomials
ϕ(t) of degree d over Fq , and let M∗(q; d) denote the number of (unordered)
conjugate pairs {ϕ, ϕ∗} of monic, irreducible non-self-conjugate polynomials of
degree d over Fq . The numbers N∗(q; d) and M∗(q; d) may be calculated as
follows.

Lemma 1.3.16. Let d be a positive integer and let e := e(q) .

(a) N∗(q; d) =


e if d = 1,

0 if d is odd and d > 1,

d−1
∑

r|d, r odd

µ(r)(qd/2r + 1− e) if d is even.

In particular, N∗(q; d) = d−1qd/2 +O(qd/6) .

(b) M∗(q; d) =


1
2 (q − e− 1) if d = 1,

1
2N(q; d) if d is odd and d > 1,

1
2

(
N(q; d)−N∗(q; d)

)
if d is even.

In particular, M∗(q; d) = (2d)−1qd +O(qd/2) .

(c) N∗(q; 2d) =


M∗(q; d) + 1 if d = 1,

M∗(q; d) if d is odd and d > 1,

M∗(q; d) +N∗(q; d) if d is even.

Proof. By Lemma 1.3.15(c), N∗(q; 1) = e and N∗(q; d) = 0 if d is odd and
d > 1. Suppose that d is even, say d = 2m . There is a bijection between the
monic irreducible polynomials of degree d over Fq and the sets of roots of these
polynomials, the latter being sets of algebraically conjugate elements of Fqd . Let
ϕ(t) be a monic self-conjugate irreducible polynomial of degree d and let α be one
of its roots in Fqd . Since ϕ is irreducible α generates Fqd over Fq ; since ϕ is

self-conjugate α−1 is also a root of ϕ ; since d > 1, α 6= α−1 . It follows that the
assignment α 7→ α−1 extends to an automorphism σ of Fqd over Fq which is such
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that σ2 = 1 but σ 6= 1. The only involutory automorphism of Fqd is the map

τ : x 7→ xq
m

, and so σ = τ , that is, σ : x 7→ xq
m

for all x ∈ Fqd . Therefore α

satisfies αq
m+1 = 1. Conversely, suppose that α generates Fqd over Fq and that

αq
m+1 = 1. Let ϕ be the minimal polynomial of α over Fq . Then ϕ is monic and

irreducible of degree d over Fq . Moreover, if β is a root of ϕ then β = αq
i

for some

i and so βq
m+1 = 1. Therefore βτ = β−1 and since this is true of all the roots

β , ϕ = ϕ∗ . Thus the root-sets of self-conjugate monic irreducible polynomials of
degree d over Fq are sets of d algebraically conjugate generators α of Fqd over Fq
satisfying αq

m+1 = 1 and it follows that

N∗(q; d) =
1

d

∣∣{α ∈ Fqd αq
m+1 = 1 and α generates Fqd over Fq }

∣∣ .
Consider elements α ∈ Fqd such that αq

m+1 = 1 and α 6= ±1. They are not fixed
by τ and therefore |Fqd : Fq(α)| is odd. For an odd divisor r of d define

Er := {α ∈ Fqd/r αq
m+1 = 1 and α 6= ±1 } .

Then

Er = {α ∈ Fqd αq
m+1 = 1, αq

d/r−1 = 1 and α 6= ±1 }

and it follows that |Er| = hcf (qm + 1, qd/r − 1)− e , that is

|Er| = hcf (qm + 1, q2m/r − 1)− e = qm/r + 1− e .

Now α generates Fqd if and only if

α ∈ E1 \
( ⋃

{Er r |m , r prime, r odd}
)
.

By the Inclusion-Exclusion Principle we therefore have that

N∗(q; d) =
∑

r|m, r odd

µ(r)(qm/r + 1− e) ,

and this completes the proof of (a). The asymptotic estimate follows immediately.
Part (b) follows from (a) since N(q; d) = N∗(q; d) + 2M∗(q; d).

To prove (c) we treat the cases d odd and d even separately. If d = 1 the
result is immediate from (a) and (b). If d > 1 and d is odd then

M∗(q; d) =
1

2
N(q; d) =

1

2d

∑
r|d

µ(r)qd/r,

and

N∗(q; 2d) =
1

2d

∑
r|2d, r odd

µ(r)(q2d/2r + 1− e)

=
1

2d

∑
r|d

µ(r)(qd/r + 1− e) .
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But
∑
r|d µ(r) = 0 since d > 1, and so N∗(q; 2d) = M∗(q; d) as (c) states. Now

suppose that d is even. Then

2d
(
N∗(q; 2d)−M∗(q; d)

)
= 2dN∗(q; 2d)− dN(q; d) + dN∗(q; d) [by (b)]

=
∑

r|d, r odd

µ(r)(qd/r + 1− e)−
∑
r|d

µ(r)qd/r +
∑

r|d, r odd

µ(r)(qd/2r + 1− e)

=
∑

r|d, r odd

µ(r)qd/2r −
∑

r|d, r even

µ(r)qd/r + 2
∑

r|d, r odd

µ(r)(1− e) .

Thus if d = 2m then

2d
(
N∗(q; 2d)−M∗(q; d)

)
=

∑
r|d, r odd

µ(r)qm/r −
∑
s|m

µ(2s)qm/s + 2
∑

r|d, r odd

µ(r)(1− e) .

But µ(2s) = 0 if s is even and µ(2s) = −µ(s) if s is odd. Therefore

2d
(
N∗(q; 2d)−M∗(q; d)

)
= 2

∑
r|m, r odd

µ(r)qm/r + 2
∑

r|d, r odd

µ(r)(1− e) ,

and it follows that N∗(q; 2d)−M∗(q; d) = N∗(q; d), as required.

There are important infinite product expressions analogous to those given in
Lemmas 1.3.10 and 1.3.14.

Lemma 1.3.17. As usual, let e := e(q) . If |u| < q−1 then

(a)
∏
d>1

(1− ud)−N
∗(q;2d)

∏
d>1

(1− ud)−M
∗(q;d) =

(1− u)e

1− qu
;

(b)
∏
d>1

(1 + ud)−N
∗(q;2d)

∏
d>1

(1 + ud)−M
∗(q;d) =

(1 + u)e(1− qu)

1− qu2
;

(c)
∏
d>1

(1− ud)−N
∗(q;2d)

∏
d>1

(1 + ud)−M
∗(q;d) =

(1− u)e−1(1 + u)e

1− qu2
;

(d)
∏
d>1

(1 + ud)−N
∗(q;2d)

∏
d>1

(1− ud)−M
∗(q;d) = 1− u ;

(e)
∏
d>1

(
1− ud

1 + ud

)N∗(q;2d)

=
1− qu

(1− u)e−1
;

(f)
∏
d>1

(
1− ud

1 + ud

)M∗(q;d)

=
(1 + u)e(1− qu)

(1− u)(1− qu2)
.

Proof. The proof of (a) is analogous to those of Lemmas 1.3.10(b) and 1.3.14(a).
Define

B(z) := (1− z2)−e
∏
d>1

(1− z2d)−N
∗(q;2d)

∏
d>1

(1− z2d)−M
∗(q;d) .
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Then

B(z) =
(
1 +

∑
m>1

z2m
)e ∏

ϕ=ϕ∗,
deg(ϕ)>1

(
1 +

∑
m>1

zm deg(ϕ)
) ∏
ϕ ̸=ϕ∗

(
1 +

∑
m>1

z2m deg(ϕ)
)

where the polynomials ϕ are monic and irreducible with coefficients in Fq . Multi-
plying out we find that the coefficient of zn in B(z) is 0 if n is odd and it is
the number of self-conjugate monic polynomials f of degree n over Fq that are
divisible by (t−1) and (t+1) with even multiplicity if n is even. These are precisely
the self-conjugate monic polynomials f of degree n over Fq with f(0) = 1 and

by Lemma 1.3.15 (b), there are exactly qn/2 such polynomials. Thus B(z) =
1 +

∑
d>1 q

dz2d = 1/(1 − qz2). Now replacing z2 with u we obtain the required

result as an equation between formal power series. Since N∗(q; 2d) ∼ (2d)−1qd and
M∗(q; 2d) ∼ (2d)−1qd the infinite products and sums converge for |u| < q−1 and so
(a) holds as an equation between functions of the complex variable u in the open
disc D(q−1).

As in the unitary case, (b) follows immediately from (a) and the fact that
1+ x = (1− x2)/(1− x). For (d) recall that N(q; d) = N∗(q; d) + 2M∗(q; d), while
N∗(q; 1) = e and N∗(q; d) = 0 for odd d > 1. Substituting into Lemma 1.3.10(b)
we find that∏

d>1

(1− u2d)−N
∗(q;2d)

∏
d>1

(1− ud)−2M∗(q;d) =
(1− u)1+e

(1− qu)
.

Part (d) follows immediately from this and Part (a) by division. Substituting u2

for u in (a) and dividing each side of the equation by the corresponding expression
in (d) yields (c). Parts (e) and (f) follow from (a) and (d), and from (a) and (c)
respectively, by division.

Remark 1.3.18. Parts (c), (d) may be interpreted as equations between func-
tions of a complex variable valid in the open disc D(q−1/2).

In the case of (c) the product
∏
d>1 (1 − ud)−N

∗(q;2d)
∏
d>1 (1 + ud)−M

∗(q;d)

may be rewritten as
∏
d>1 (1 − u2d)−N

∗(q;2d)
∏
d>1 (1 + ud)N

∗(q;2d)−M∗(q;d) . Since

N∗(q; 2d) ∼ qd/2d the product
∏
d>1 (1 − u2d)−N

∗(q;2d) converges absolutely if

q|u|2 < 1. Similarly, since |N∗(q; 2d) − M∗(q; d)| = O(qd/2) the product∏
d>1 (1 + ud)N

∗(q;2d)−M∗(q;d) converges absolutely if q1/2|u| < 1. Thus the pro-

duct on the right of (c) may be rearranged so as to converge for |u| < q−1/2 .
Equation (d) may be treated similarly.

Lemma 1.3.19. (a)
y

x+ y

(
1 +

x

y + 1

)
= 1− x

(y + 1)(x+ y)
.

(b)
y

y − x

(
1− x

y(y + 1)

)
= 1 +

xy

(y + 1)(y − x)
.

The proof is a simple algebraic manipulation which we leave to the reader. We
shall refer to Lemma 1.3.19(p)[U ,Q ] to mean part (p) (where p is a or b) with x , y
replaced by U , Q respectively. Usually U and Q will be ±ud and ±qd .





CHAPTER 2

Separable and cyclic matrices in classical groups

2.1. The unitary groups

The unitary group U(n, q) can be defined as the subgroup of GL(n, q2) preserv-
ing a non-degenerate sesquilinear form. Recall that the map x 7→ xq is an involutory
automorphism of the field Fq2 , and that a sesquilinear form with respect to this
automorphism on an n -dimensional vector space V over Fq2 is a bi-additive map
〈 〉 : V ×V → Fq2 such that 〈ax, by〉 = abq〈x, y〉 for all a, b ∈ Fq2 . One such form is
given by 〈x, y〉 =

∑n
i=1 xiy

q
i , where x = (x1, . . . , xn) and y = (y1, . . . , yn). It is

well known (see for example [21, Chapter 10 and Theorem 7.4]) that any two non-
degenerate sesquilinear forms are equivalent, so that the group U(n, q) is unique
up to conjugacy in GL(n, q2). The order of U(n, q) is qn(n−1)/2

∏n
i=1(q

i − (−1)i)
(see [21, p.118]).

Separable unitary matrices. Let SU(u) (or sometimes SU(q;u)) be the gener-
ating function for the probability sU(n, q) that an element in a unitary group over
Fq2 is separable. Thus

SU(u) := SU(q;u) := 1 +
∑
n>1

sU(n, q)u
n .

Theorem 2.1.1. Let Ñ(q; d) , M̃(q; d) be as defined on p. 23. Then

SU(u) =
∏
d odd

(
1 +

ud

qd + 1

)Ñ(q;d) ∏
d>1

(
1 +

u2d

q2d − 1

)M̃(q;d)

.

Proof. This result may be deduced from the factorisation of the cycle index of
the unitary groups derived in [6, Theorem 10]. One needs to note that an element
X of U(n, q) is separable if and only if the partition λϕ(X) (involved in the cycle
index) associated with each monic irreducible polynomial ϕ(t) has norm at most
1. This is true because the characteristic polynomial of X is

∏
ϕ(t)|λϕ(X)| . We

shall, however, sketch a direct proof of the theorem.
For each separable matrix X ∈ U(n, q), its characteristic polynomial cX(t)

is a product of distinct monic irreducible polynomials ϕ(t) such that ϕ(0) 6= 0;

moreover, if ϕ(t) divides cX(t), then also ϕ̃(t) divides cX(t). Conversely, each
monic polynomial c(t) of degree n over Fq2 which has this property occurs as
cX(t) for some X in U(n, q) (see [22]) and the set of matrices X ∈ U(n, q) such
that cX(t) = c(t) forms a conjugacy class of U(n, q). Hence the proportion of
elements U(n, q) with characteristic polynomial c(t) is |CU(n,q)(X)|−1 , where X
is one such and CU(n,q)(X) is its centraliser.

31
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Write c(t) as
∏r
i=1 ϕi(t)

∏s
j=1 ψj(t)ψ̃j(t) where the irreducible factors ϕi are

self-conjugate and the others are not. There is a corresponding primary decompos-
ition X = X1⊕· · ·⊕Xr⊕Y1⊕· · ·⊕Ys , corresponding to an orthogonal direct sum
decomposition of V , in which Xi has characteristic and minimal polynomial ϕi and

Yj has characteristic and minimal polynomial ψjψ̃j . The centraliser CU(n,q)(X)
is the direct product of the centralisers CU(ni,q)(Xi), CU(2mj ,q)(Yj), where ni :=
deg (ϕi), mj := deg (ψj). Now |CU(ni,q)(Xi)| = qni + 1, and CU(2mj ,q)(Yj) is the

centraliser in GL(mj , q
2) of a matrix with characteristic polynomial ψj(t), whence

|CU(2mj ,q)(Yj)| = q2mj − 1 (see [22, p.34]). Thus the contribution to sU(n, q) from

matrices with characteristic polynomial c(t) is
(∏

i (q
ni +1)

∏
j (q

2mj −1)
)−1

and
the theorem is proved by writing

∏
d odd

(
1 +

ud

qd + 1

)Ñ(q;d) ∏
d>1

(
1 +

u2d

q2d − 1

)M̃(q;d)

as ∏
ϕ=ϕ̃

(
1 +

udeg(ϕ)

qdeg(ϕ) + 1

) ∏
ψ ̸=ψ̃

(
1 +

u2 deg(ψ)

q2 deg(ψ) − 1

)
and expanding this product of products as a sum.

By using Lemma 1.3.14 we obtain a different infinite product expression for
SU(u) which, on applying Lemma 1.3.3, allows us to determine the limiting prob-
ability sU(∞, q). Define

Ṽ (u) :=
∏
d odd

(
1− ud(ud + 1)

qd(qd + 1)

)Ñ(q;d) ∏
d>1

(
1− u2d(u2d − 1)

q2d(q2d − 1)

)M̃(q;d)

and

W̃ (u) :=
∏
d odd

(
1− 1

qd + 1

ud

qd + ud

)Ñ(q;d)∏
d>1

(
1 +

1

q2d − 1

u2d

q2d + u2d

)̃M(q;d)

.

These are analogues for the unitary group of the functions S(q, z) and T (q, z) de-
fined by Wall in Section 6 of [23]. Note that, by Corollary 1.3.2 and Lemma 1.3.12,

the products defining Ṽ (u) converge for |u| < √
q and so Ṽ (u) is analytic in the

open disc D(
√
q). Similarly, the products in the expression for W̃ (u) converge for

|u| < q and so W̃ (u) is analytic in D(q).

Theorem 2.1.2. The generating function SU(u) has an analytic extension to
a function analytic in the open disc D(q) , except for a pole of order 1 at u = 1 .
Explicitly,

SU(u) =
(1 + u

q )

1− u
Ṽ (u) =

(1− u2

q )(1 +
u
q )

(1− u)(1 + u2

q2 )
W̃ (u) ,

where Ṽ (u) , W̃ (u) are as defined above.
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Proof. From Lemma 1.3.14(a) (with u replaced by u/q ), and Theorem 2.1.1 we
have

SU(u) =
1 + u

q

1− u
×
∏
d odd

((
1 +

ud

qd + 1

)(
1− ud

qd

))Ñ(q;d)

×
∏
d>1

((
1 +

u2d

q2d − 1

)(
1− u2d

q2d

))M̃(q;d)

,

and so

SU(u) =
1 + u

q

1− u
×
∏
d odd

(
1− ud(ud + 1)

qd(qd + 1)

)Ñ(q;d)

×
∏
d>1

(
1− u2d(u2d − 1)

q2d(q2d − 1)

)M̃(q;d)

.

This proves the first equation and consequently also the first assertion of the theo-
rem.

By using Lemma 1.3.14(b) with u replaced by u/q together with Theorem
2.1.1, we find that

SU(u) =

(
1− u2

q

)(
1 + u

q

)(
1− u

)(
1 + u2

q2

) W1(u)W2(u) ,

where

W1(u) :=
∏
d odd

(( 1

1 +
(
u
q

)d)(1 + ud

qd + 1

))Ñ(q;d)

,

and

W2(u) :=
∏
d>1

(( 1

1 +
(
u
q

)2d)(1 + u2d

q2d − 1

))M̃(q;d)

.

The second equation of the theorem now follows from Lemma 1.3.19(a)[ud, qd ] and
from 1.3.19(a)[−u2d,−q2d ].

Theorem 2.1.3.

sU(∞, q) =
(
1 +

1

q

) ∏
d odd

(
1− 2

qd(qd + 1)

)Ñ(q;d)

=
q2 − 1

q2 + 1

∏
d odd

(
1− 1

(qd + 1)2

)Ñ(q;d) ∏
d>1

(
1 +

1

q4d − 1

)M̃(q;d)

,

and if 1 < r < q , then |sU(n, q)− sU(∞, q)| < o(r−n) as n→ ∞ .

Proof. From the previous theorem SU(u) = (1− u)−1f(u), where f is analytic in
the open disc D(q) and

f(1) =
(
1 +

1

q

)
Ṽ (1) =

(q2 − 1

q2 + 1

)
W̃ (1) .

An application of Lemma 1.3.3 now gives the existence and the required values of
sU(∞, q), and also the rate of convergence of sU(n, q) to sU(∞, q).
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We have been unable to simplify either of the infinite product expansions for
sU(∞, q) and, in particular, we do not know whether or not it reduces to a rational
function of q , as sGL(∞, q) does. It is expressible as a power series in q−1 whose
first few terms can be calculated to be

1− 1

q
− 2

q3
+

4

q4
− 6

q5
+

14

q6
− 28

q7
+

52

q8
− 106

q9
+O

( 1

q10

)
as in Table 3. For practical purposes the following estimates should suffice.

Theorem 2.1.4. For all q

1− 1

q
− 2

q3
+

2

q4
< sU(∞, q) < 1− 1

q
− 2

q3
+

6

q4
.

For small q in fact

0.4147 < sU(∞, 2) < 0.4157 and 0.6283 < sU(∞, 3) < 0.6286 .

Proof. Taking α := q2d + qd − 1 we may re-write the factor 1− 2/qd(qd + 1)
appearing in the first expression for sU(∞, q) in Theorem 2.1.3 as (1− α−1) ÷
(1 + α−1) . For x > 0 the function (1 − x−1)/(1 + x−1) is monotone increasing
and so

1− 1
q2d

1 + 1
q2d

< 1− 2

qd(qd + 1)
6

1− 1
(q2+q−1)d

1 + 1
(q2+q−1)d

for all d > 1 since q2d < q2d+qd−1 6 (q2+q−1)d . Therefore by Lemma 1.3.14(d)(
1 +

1

q

) (1− 1
q2 )(1−

1
q )

(1 + 1
q2 )(1 +

1
q )
< sU(∞, q) <

(
1 +

1

q

) (1− 1
q2+q−1 )(1−

q
q2+q−1 )

(1 + 1
q2+q−1 )(1 +

q
q2+q−1 )

.

After simplification this yields that

(1− 1
q )(1−

1
q2 )

(1 + 1
q2 )

< sU(∞, q) <
(1− 1

q )(1 +
2
q )(1−

1
q2 )

(1 + 2
q −

1
q2 )

.

Here the lower bound is rather a poor one and we seek a better one in the next
paragraph. The upper bound is quite good and leads to the one given in the
statement of the theorem as follows. Suppose, seeking a contradiction, that

(1− 1
q )(1 +

2
q )(1−

1
q2 )

(1 + 2
q −

1
q2 )

> 1− 1

q
− 2

q3
+

6

q4
.

Multiplying both sides by (1 + 2
q − 1

q2 ), expanding and simplifying, we find that

14q − 6 6 0, which is plainly false. Thus sU(∞, q) 6 1− 1
q −

2
q3 + 6

q4 .

To derive an acceptable lower bound we use the second expression for sU(∞, q)
in Theorem 2.1.3 to write

sU(∞, q) =
1− 1

q2

1 + 1
q2

×A×B ,

where

A :=
∏
d odd

(
1− 1

q2d

)Ñ(q;d) ∏
d>1

(
1 +

1

q4d

)M̃(q;d)

,

and

B :=
∏
d odd

(1− 1
(qd+1)2

1− 1
q2d

)Ñ(q;d) ∏
d>1

(
1 + 1

q4d−1

1 + 1
q4d

)M̃(q;d)

.
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Lemma 1.3.14(b) with u replaced by −1/q2 , yields that

A =
(1− 1

q2 )(1−
1
q3 )

(1 + 1
q4 )(1 +

1
q )

=
(1− 1

q )(1−
1
q3 )

(1 + 1
q4 )

.

To deal with B we note that 1 − 1
(qd+1)2

> 1 − 1
q2d

and 1 + 1
(q4d−1)

> 1 + 1
q4d

.

Therefore, since Ñ(q; 1) = q+1, we have that B >
(
(1− 1

(q+1)2 )/(1−
1
q2 )
)q+1

and

sU(∞, q) >
(1− 1

q )(1−
1
q2 )(1−

1
q3 )

(1− 1
q8 )

× C where C :=

(
1− 1

(q+1)2

)q+1(
1− 1

q2

)q .

Now

log
(
1− 1

(q + 1)2

)q+1

= −
∑
m>1

1

m (q + 1)2m−1

and

log
(
1− 1

q2

)q
= −

∑
m>1

1

mq2m−1
,

and therefore

logC =
∑
m>1

1

m

( 1

q2m−1
− 1

(q + 1)2m−1

)
>

1

q
− 1

q + 1
+

1

2 q3
− 1

2 (q + 1)3

>
1

q(q + 1)
+

3

2q2(q + 1)2
.

It is elementary algebra to check that if q > 7 then

1

q(q + 1)
+

3

2q2(q + 1)2
>

1

q2
− 1

q3
+

2

q4
.

Thus if q > 7 then logC > 1
q2 − 1

q3 + 2
q4 and so C > 1 + 1

q2 − 1
q3 + 2

q4 . This

inequality can be checked directly for 3 6 q < 7. It fails for q = 2, but the
inequality C > 1 + 1

q2 − 1
q3 + 2

q4 − 1
q8 may be calculated to hold for q = 2 and

therefore holds for all q > 2. Now(
1− 1

q8

)−1

C >
(
1 +

1

q8

)(
1 +

1

q2
− 1

q3
+

2

q4
− 1

q8

)
> 1 +

1

q2
− 1

q3
+

2

q4
,

by Lemma 1.3.4, and it is again a matter of elementary algebra to prove that(
1− 1

q2

)(
1− 1

q3

)(
1 +

1

q2
− 1

q3
+

2

q4

)
> 1− 2

q3
.

It follows that

sU(∞, q) >
(1− 1

q )(1−
1
q2 )(1−

1
q3 )

(1− 1
q8 )

C >
(
1− 1

q

)(
1− 2

q3

)
,

that is, sU(∞, q) > 1− 1
q −

2
q3 + 2

q4 which is the promised lower bound.
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These bounds are not good enough to be useful for small values of q . They
can be somewhat improved as follows. Using the transformation exploited in the
first paragraph of this proof we find that

sU(∞, q) =
(
1 +

1

q

)(1− 1
q2+q−1

1 + 1
q2+q−1

)q+1 ∏
d odd, d>3

(
1− 1

q2d+qd−1

1 + 1
q2d+qd−1

)Ñ(q;d)

.

If d > 3 then (
q2 +

1

4q

)d
< q2d + qd − 1 <

(
q2 +

1

3q

)d
,

and so, arguing as in the first part of the proof, we find that

(
1 +

1

q

)
λq+1

(
(1− 4q

4q3+1 )(1−
4q2

4q3+1 )

(1 + 4q
4q3+1 )(1 +

4q2

4q3+1 )

)

< sU(∞, q) <
(
1 +

1

q

)
µq+1

(
(1− 3q

3q3+1 )(1−
3q2

3q3+1 )

(1 + 3q
3q3+1 )(1 +

3q2

3q3+1 )

)
,

where

λ :=

(
1− 1

q2+q−1

)(
1 + 4q

4q3+1

)(
1 + 1

q2+q−1

)(
1− 4q

4q3+1

) and µ :=

(
1− 1

q2+q−1

)(
1 + 3q

3q3+1

)(
1 + 1

q2+q−1

)(
1− 3q

3q3+1

) .
We do not pursue this analysis further in general. The expressions for the bounds,
although complicated, are easy to calculate with. Substituting q = 2 and q = 3 we
find that 0.4147 < sU(∞, 2) < 0.4157 and 0.6283 < sU(∞, 3) < 0.6286, and this
completes the proof.

The convergence rate given in Theorem 2.1.3 is too inexplicit to be useful
in practice. The method of Wall [23, §6] may be adapted to unitary matrices
as follows. Recall from pp. 18–20 that, given two power series A(u) =

∑
anu

n ,
B(u) =

∑
bnu

n , we write A(u) � B(u) if an 6 bn for all n and we write |A|(u)
for

∑
|an|un ; also that Ω(u) :=

∏
i>1(1 − ui) , so that Ω(u)−1 =

∑
n>0 p(n)u

n

where p(n) is the number of partitions of n
(
and p(0) = 1

)
; and that p2(n) :=∑n

m=0 p(m).

Lemma 2.1.5. (a) Let A(u) := (1− qu)SU(qu) . Then

|A|(u) � (1 + qu2)

(1− u)
Ω(u)−1 .

(b) |sU(n, q)− sU(n− 1, q)| < (q + 1)p2(n)q
−n for n > 2 .

Proof. Theorem 2.1.2 gives that

A(u) =
(1− qu2)(1 + u)

(1 + u2)
W̃ (qu) ,

where W̃ (u) is the product defined on p. 32. It follows that

|A|(u) � (1 + qu2)(1 + u)

(1− u2)
|W̃ |(qu) = (1 + qu2)

(1− u)
|W̃ |(qu) .
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Applying Lemma 1.3.6 to the definition of W̃ (qu) we see that

|W̃ |(qu) � exp
( ∑
d odd

Ñ(q; d)ud

(qd + 1)(1− ud)
+
∑
d>1

M̃(q; d)u2d

(q2d − 1)(1− u2d)

)
.

Now Ñ(q; d) 6 (qd + 1)/d and M̃(q; d) 6 (q2d − 1)/(2d) (see Lemma 1.3.12).
Therefore

|W̃ |(qu) � exp
( ∑
d odd

ud

d(1− ud)
+
∑
d>1

u2d

2d(1− u2d)

)
= exp

(∑
d>1

ud

d(1− ud)

)
.

Thus |W̃ |(qu) � Ω(u)−1 by Lemma 1.3.7, and the first assertion of the lemma
follows.

Taking the coefficient of un on both sides of (a) and using Lemma 1.3.8 we see
that if n > 2 then |sU(n, q)− sU(n− 1, q)|qn 6 cn where cn := p2(n)+ q p2(n− 2).
Since p2(n) is monotone increasing we certainly have cn < (q + 1)p2(n) and so
|sU(n, q)− sU(n− 1, q)| < (q + 1)p2(n)q

−n for n > 2, as the lemma states.

We use this to improve the convergence rate in Theorem 2.1.3 and to produce
an explicit estimate.

Theorem 2.1.6. If 6 6 n < n′ 6 ∞ and k := (q + 1)/(2q − 3) then

|sU(n′, q)− sU(n, q)| < 3k p2(n)q
−n < 8k

(
2
3 q
)−n

.

Proof. If n < n′ 6 ∞ then

|sU(n′, q)− sU(n, q)| 6
n′∑

m=n+1

|sU(m, q)− sU(m− 1, q)|

<

n′∑
m=n+1

(q + 1)p2(m)q−m .

By Lemma 1.3.9, if n > 6 then

n′∑
m=n+1

(q + 1)p2(m)q−m 6 (q + 1)p2(n)q
−n

n′−n∑
m=1

( 32 )
mq−m < 3k p2(n)q

−n .

Thus |sU(n′, q) − sU(n, q)| < 3k p2(n)q
−n if 6 6 n < n′ 6 ∞ , and the fact that

|sU(n′, q)− sU(n, q)| < 8k ( 23q)
−n now follows from Lemma 1.3.9(e).

As was observed in §1.3 the Hardy–Ramanujan estimates for p(n) give more

precise information of the form |sU(∞, q)− sU(n, q)| < q−n+O(
√
n) , but we do not

propose to pursue details here.

Cyclic unitary matrices. Let CU(u) be the generating function for the probability
cU(n, q) that an element in a unitary group over Fq2 is cyclic, that is,

CU(u) := 1 +
∑
n>1

cU(n, q)u
n .
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The proof of the following theorem is similar to that of Theorem 2.1.1. Since an
element X of U(n, q) is cyclic if and only if the partition λϕ(X) in the cycle index
has at most 1 row for all ϕ , it may also be deduced from the factorisation of the
cycle index for the unitary groups derived in [6, Theorem 10].

Theorem 2.1.7.

CU(u) =
∏
d odd

(
1 +

ud

(qd + 1)(1− (u/q)d)

)Ñ(q;d)

×
∏
d>1

(
1 +

u2d

(q2d − 1)(1− (u/q)2d)

)M̃(q;d)

.

Proof. The characteristic polynomial cX(t) of a cyclic matrix X ∈ U(n, q), is
monic of degree n over Fq2 and is a product of monic irreducible polynomials ϕ(t),

such that ϕ(t) 6= t and ϕ(t)a divides cX(t) if and only if ϕ̃(t)a does also. Each such
polynomial c(t) arises as cX(t) for some X in U(n, q), and the subset of matrices
X ∈ U(n, q) such that cX(t) = c(t) forms a conjugacy class of U(n, q) (see [22]).
Thus the proportion of elements of U(n, q) with characteristic polynomial c(t) is
|CU(n,q)(X)|−1 , where X is one such.

In the primary decomposition of a cyclic matrix X , there is a unique summand
corresponding to each irreducible polynomial ϕ(t) dividing c(t), and, as in the
case of separable matrices, |CU(n,q)(X)| is a certain product with one term for
each self-conjugate monic irreducible ϕ(t) dividing c(t), and one term for each

pair {ϕ(t), ϕ̃(t)} of non-self-conjugate monic irreducible polynomials dividing c(t).
Suppose that the monic irreducible polynomial ϕ(t) of degree d divides c(t) with
multiplicity a > 1. If ϕ(t) is self-conjugate then the term for ϕ(t) in |CU(n,q)(X)|
is the order of the centraliser in U(da, q) of a cyclic matrix Xϕ ∈ U(da, q) with

characteristic polynomial ϕ(t)a , which is qd(a−1)(qd + 1) (see [22, p. 34]). The

term for a pair {ϕ(t), ϕ̃(t)} of non-self-conjugate monic irreducible polynomials
is the order of the centraliser in GL(da, q2) of a cyclic matrix Xϕ ∈ GL(da, q2)

with characteristic polynomial ϕ(t)a , and this is q2d(a−1)(q2d− 1) (see [22, p. 34]).
Exactly as in the case of separable matrices (see the proof of Theorem 2.1.1) it
follows that

CU(u) =
∏
d odd

(
1 +

ud

qd + 1
+

u2d

qd(qd + 1)
+

u3d

q2d(qd + 1)
+ · · ·

)Ñ(q;d)

×
∏
d>1

(
1 +

u2d

q2d − 1
+

u4d

q2d(q2d − 1)
+

u6d

q4d(q2d − 1)
+ · · ·

)M̃(q;d)

.

Summing the infinite series occurring for each d in the infinite products yields the
result.

Wall has discovered a direct relationship between the generating functions for
separable and cyclic probabilities in the case of the general linear groups [23]. There
is a similar relationship between the generating functions SU(u) and CU(u). Later
we shall show that in fact the functions for the unitary groups may be expressed
in terms of those for the general linear groups, and that therefore the following
theorem follows from Wall’s.

Theorem 2.1.8. CU(u) =
(1 + u/q)SU(−u/q)

1− u
.
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Proof. By Theorem 2.1.7, Lemma 1.3.19(b)[ud, qd ] and 1.3.19(b)[−u2d,−q2d ],

CU(u) =
∏
d odd

(
1 +

ud

(qd + 1)(1− (u/q)d)

)Ñ(q;d)

×
∏
d>1

(
1 +

u2d

(q2d − 1)(1− (u/q)2d)

)M̃(q;d)

=
∏
d odd

(( 1

1− (u/q)d

)(
1− (u/q)d

qd + 1

))Ñ(q;d)

×
∏
d>1

(( 1

1− (u/q)2d

)(
1 +

(u/q)2d

q2d − 1

))M̃(q;d)

.

Applying Lemma 1.3.14(a) we see that

CU(u) =
1 + u/q

1− u

∏
d odd

(
1− (u/q)d

qd + 1

)Ñ(q;d) ∏
d>1

(
1 +

(u/q)2d

q2d − 1

)M̃(q;d)

.

Therefore by Theorem 2.1.1, CU(u) = (1 + u/q)SU(−u/q)/(1− u), as claimed.

We may now determine the limiting value cU(∞, q) (in three different forms)
and the rate of convergence to this limit.

Theorem 2.1.9.

cU(∞, q) =
(
1 +

1

q

)∏
d odd

(
1− 1

qd(qd + 1)

)Ñ(q;d)∏
d>1

(
1 +

1

q2d(q2d − 1)

)M̃(q;d)

=
(
1− 1

q2

) ∏
d odd

(
1 +

qd − 1

q3d(qd + 1)

)Ñ(q;d) ∏
d>1

(
1 +

1

q6d

)M̃(q;d)

=
(1− 1

q2 )(1−
1
q3 )

1 + 1
q4

∏
d odd

(
1 +

1

(qd + 1)(q2d − 1)

)Ñ(q;d)

×
∏
d>1

(
1 +

1

(q2d − 1)(q4d + 1)

)M̃(q;d)

,

and if 1 < r < q2 then |cU(n, q)− cU(∞, q)| < o(r−n) as n→ ∞ .

This comes from Theorems 2.1.8, 2.1.1, 2.1.2 and Lemma 1.3.3. The second and

third expressions for cU(∞, q) are (1−q−2) Ṽ (−q−1) and (1−q−2)(1−q−3)
(1+q−4) W̃ (−q−1)

respectively.

Our next observation yields a far more explicit bound for the convergence rate
than the last assertion of the theorem above, which is therefore more useful in
practice. It is an intriguing relationship between the numbers cU(n, q) and sU(n, q)
implied by Theorem 2.1.8 and analogous to Wall’s formula (3.17) in [23]. A direct
proof of this relationship would be desirable.

Theorem 2.1.10. For n > 2

cU(n, q)− cU(n− 1, q) = (−q)−n
(
sU(n, q)− sU(n− 1, q)

)
.

This comes from taking the coefficient of un on both sides of Theorem 2.1.8 in
the form (1− u)CU(u) = (1 + u/q)SU(−u/q).
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Theorem 2.1.11. If 6 6 n < n′ 6 ∞ and k := (q + 1)/(2q2 − 3) then

|cU(n′, q)− cU(n, q)| < 3k p2(n) q
−2n < 8k

(
2
3 q

2
)−n

.

Proof. It follows from the previous theorem and Lemma 2.1.5(b) that

|cU(n, q)− cU(n− 1, q)| < (q + 1)p2(n)q
−2n

for n > 2. Arguing as in the proof of Theorem 2.1.6 we find that if 6 6 n < n′ 6 ∞
then

|cU(n′, q)− cU(n, q)| < (q + 1)p2(n)q
−2n

n′−n∑
m=1

( 32 )
mq−2m ,

from which it follows that |cU(n′, q)−cU(n, q)| < 3kp2(n)q
−2n . Lemma 1.3.9 gives,

|cU(n′, q)− cU(n, q)| < 8k
(
2
3q

2
)−n

, as our theorem states.

As in the case of sU(∞, q), we do not know whether or not cU(∞, q) is, in fact,
a rational function of q . It may be expressed as a power-series in q−1 whose first
few terms may be calculated to be

1− 1

q3
− 1

q5
+

1

q6
− 2

q7
+

3

q8
− 5

q9
+

8

q10
− 11

q11
+

21

q12
+O

( 1

q13

)
.

For practical purposes we prove:

Theorem 2.1.12.
1− q−3

1 + q−4
< cU(∞, q) < 1− q−3 .

Proof. Since cU(q) =
(
(1− q−2)(1− q−3)/(1 + q−4)

)
W̃ (−q−1) we seek estimates

for W̃ (−q−1). From the definition on p. 32,

W̃ (−q−1) =
∏
d odd

(
1 +

1

(qd + 1)(q2d − 1)

)Ñ(q;d)

×
∏
d>1

(
1 +

1

(q2d − 1)(q4d + 1)

)M̃(q;d)

,

and so certainly

W̃ (−q−1) >
(
1 +

1

(q + 1)(q2 − 1)

)q+1

> 1 +
1

q2 − 1
.

Therefore

cU(∞, q) >
(1− q−2)(1− q−3)

(1 + q−4)

(
1 +

1

q2 − 1

)
,

that is, cU(∞, q) > (1− q−3)(1 + q−4)−1 , which is the promised lower bound.
For the upper bound we use the fact that if x > 0 then 1 + x < ex . This tells

us that

log W̃ (−q−1) <
∑
d odd

Ñ(q; d)

(qd + 1)(q2d − 1)
+
∑
d>1

M̃(q; d)

(q2d − 1)(q4d + 1)
.

In each of these sums we treat the first term separately; also, we use the fact that

if d > 1 then Ñ(q; d) < (qd − 1)/d and M̃(q; d) < (q2d − 1)/(2d). Thus

log W̃ (−q−1) < Ã+
∑
d odd

1

dq2d
+
∑
d>1

1

2dq4d
= Ã+

∑
m>1

1

mq2m
,
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where Ã :=
Ñ(q; 1)

(q + 1)(q2 − 1)
− 1

q2
+

M̃(q; 1)

(q2 − 1)(q4 + 1)
− 1

2q4
. Therefore

log W̃ (−q−1) < Ã+ log
1

1− q−2
.

It follows that W̃ (−q−1) < eÃ/(1− q−2) and

cU(∞, q) <
(1− q−2)(1− q−3)

(1 + q−4)
× eÃ

(1− q−2)
= (1− q−3)× eÃ

(1 + q−4)
,

and what remains is to prove that eÃ < 1+ q−4 . Here is a sketch of a proof. Since

Ñ(q; 1) = q + 1 and M̃(q; 1) = 1
2 (q

2 − q − 2),

Ã =
1

q2 − 1
− 1

q2
+

q2 − q − 2

2(q2 − 1)(q4 + 1)
− 1

2q4

=
2q6 − q5 − q4 + q2 + 1

2q4(q2 − 1)(q4 + 1)
.

It follows easily that

Ã <
1

q4
− 1

2(q + 1)(q4 + 1)
<

1

q4
− 1

2q8
< log(1 + q−4) .

Therefore eÃ < 1 + q−4 and cU(∞, q) < 1− q−3 , as the theorem states.

A relationship between the unitary and general linear groups. Let SGL(q;u) and
CGL(q;u) be the generating functions for the probabilities that an element of
GL(n, q) is separable or cyclic, respectively. In [23] Wall starts from the obser-
vation that

SGL(q;u) =
∏
d>1

(
1 +

ud

qd − 1

)N(q;d)

,

CGL(q;u) =
∏
d>1

(
1 +

ud

qd − 1
+

u2d

qd(qd − 1)
+

u3d

q2d(qd − 1)
+ · · ·

)N(q;d)

,

and proves the lovely theorems that we have taken as the model for our treatment
of the unitary groups. He proves that CGL(q;u) = (1− u/q)SGL(q;u)/(1− u) and
that SGL(q;u) has an analytic continuation analytic in the open disc D(q), except
for a simple pole at u = 1. The fact that the functions SU(q;u), CU(q;u) behave
in the same way turns out to be no accident, as the following theorem shows.

Theorem 2.1.13. SU(q;u) =
SGL(q

2;u2)

SGL(−q;−u)
, CU(q;u) =

CGL(q
2;u2)

CGL(−q;−u)
.

Proof. From Theorem 2.1.1 and Corollary 1.3.13 we know that

SU(q;u) =
∏
d odd

(
1 +

ud

qd + 1

)N(q;d) ∏
d>1

(
1 +

u2d

q2d − 1

)N(q;2d)

.

Replacing q by −q and u by −u we find that

SU(−q;−u) =
∏
d odd

(
1 +

ud

qd − 1

)N(−q;d) ∏
d>1

(
1 +

u2d

q2d − 1

)N(−q;2d)
,
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where now N(q′; d) for negative q′ has to be defined by Lemma 1.3.10(a). Clearly,
N(−q; d) = −N(q; d) if d is odd and so

SU(−q;−u) = SGL(q;u)
−1 × F (q;u) ,

where

F (q;u) :=
∏
d>1

(
1 +

u2d

q2d − 1

)N(q;2d)+N(−q;2d)
.

From Lemma 1.3.10(a) it is easy to see that N(q; 2d)+N(−q; 2d) = N(q2; d) for all
d . Therefore F (q;u) = SGL(q

2;u2) and SU(q;u) = SGL(−q;−u)−1 SGL(q
2;u2).

The analogous fact for CU can be proved in the same way or it can be deduced
from Theorem 2.1.8 and the corresponding theorem proved by Wall for the general
linear groups.

Two points about this theorem are worthy of note. First, the method can be
applied to the generating functions for probabilities of quite a wide range of events
in the unitary groups. It is applicable whenever the property of the matrix X (such
as being separable, being cyclic, or being semisimple) is such that the restriction on
the partitions associated to irreducible polynomials by the rational canonical form
of X (as described by Fulman in his work on cycle index generating functions [5, 6])
is independent of the polynomial. Secondly, one might hope that since the residue
of SGL(u) at its pole at u = 1 is a rational function of q , it might be possible to
deduce that the same was true of the residue of SU(u) there, hence of sU(∞, q).
We have been unable to do this and do not know whether or not sU(∞, q) is a
rational function of q .

2.2. The symplectic groups

The symplectic group Sp(2m, q) is that subgroup of GL(2m, q) which preserves
a non-degenerate alternating form on V , the vector space F2m

q on which GL(2m, q)
naturally acts. Recall that an alternating form on V is a bilinear map 〈〉 : V ×V →
Fq such that 〈x, x〉 = 0 for all x ∈ V , and that non-degenerate alternating forms
exist only on even dimensional spaces. One such form on V is given by 〈x, y〉 =∑m
i=1(x2i−1y2i − x2iy2i−1), where x = (x1, . . . , x2m) and y = (y1, . . . , y2m), and

any other is equivalent to this (see, for example, [21, Chapter 8 and Theorem 7.4]),
so Sp(2m, q) is unique up to conjugacy in GL(2m, q). The order of Sp(2m, q) is

qm
2 ∏m

i=1(q
2i − 1).

Separable symplectic matrices. Let SSp(u) (or SSp(q;u) when the dependence on q
needs to be made explicit) be the generating function for the probability sSp(2m, q)
that an element of a finite symplectic group over Fq is separable. It turns out to
be convenient to index the terms of the generating function by the parameter (in
this case Lie rank) m , where n = 2m as in Table 1 (p. 7). Thus,

SSp(u) := SSp(q;u) := 1 +
∑
m>1

sSp(2m, q)u
m .

First we derive an infinite product expression for SSp(u) analogous to Wall’s pro-
duct expansion for SGL(u) and to the expression for SU(u) in Theorem 2.1.1. As
for both those theorems, this result can be derived from the factorisation of the
cycle index for the symplectic groups in [6, Theorem 12]. We sketch a direct proof
analogous to the proof given for Theorem 2.1.1 above.
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Theorem 2.2.1. With N∗(q; d) and M∗(q; d) defined as on p. 26 we have

SSp(u) =
∏
d>1

(
1 +

ud

qd + 1

)N∗(q;2d) ∏
d>1

(
1 +

ud

qd − 1

)M∗(q;d)

.

Proof. Let X be a separable symplectic matrix. The vector space V has even
dimension and admits an X -invariant primary decomposition with one summand
for each monic irreducible ∗ -self-conjugate (as defined on p. 25) polynomial dividing
cX(t), and one summand for each conjugate pair of monic irreducible non-self-
conjugate polynomials dividing cX(t). In particular, each primary summand is
nonsingular and therefore has even dimension. It follows that the polynomials t−1
and t+1 do not divide cX(t), and hence that the characteristic polynomial cX(t) of
a separable matrix X ∈ Sp(2m, q) is a product of monic irreducible self-conjugate
polynomials of even degree (see Lemma 1.3.15(c)), and conjugate pairs of monic
irreducible non-self-conjugate polynomials.

The remainder of the proof is very similar to that given for Theorem 2.1.1. We
simply note (see [22, p.38] for proofs) that, if the characteristic polynomial of X ∈
Sp(2d, q) is a monic irreducible self-conjugate polynomial, then |CSp(2d,q)(X)| =
qd + 1, while if cX(t) = ϕ(t)ϕ∗(t), with ϕ(t) irreducible and non-self-conjugate,
then |CSp(2d,q)(X)| = qd − 1.

Just as in the general linear and unitary cases, there are other infinite product
expansions for SSp(u) which exhibit the fact that it has a continuation to a larger
disc, in which it is analytic apart from a simple pole at u = 1. These allow us to
apply Lemma 1.3.3 to prove the existence and determine the limiting probability
sSp(∞, q). In the symplectic case the function corresponding to Wall’s S(q, z) in
[23, §6] is defined by

V ∗(u) :=
∏
d>1

(
1− ud(ud + 1)

qd(qd + 1)

)N∗(q;2d) ∏
d>1

(
1− ud(ud − 1)

qd(qd − 1)

)M∗(q;d)

,

and there are two functions which are analogues of his T (q, z), namely,

W ∗
1 (u) :=

∏
d>1

(
1− 1

qd + 1

ud

qd + ud

)N∗(q;2d)∏
d>1

(
1 +

1

qd − 1

ud

qd + ud

)M∗(q;d)

,

and

W ∗
2 (u) :=

∏
d>1

(
1 +

1

qd + 1

ud

qd − ud

)N∗(q;2d)∏
d>1

(
1 +

1

qd − 1

ud

qd + ud

)M∗(q;d)

.

From Corollary 1.3.2 it follows easily that V ∗ is analytic in the open disc D(
√
q)

and W ∗
1 , W

∗
2 are analytic in D(q).

Theorem 2.2.2. Let e := e(q) (that is, recall, e = 1 if q is even and e = 2 if
q is odd). Then

SSp(u) =
(1− u

q )
e

1− u
V ∗(u) =

(1− u2

q )

(1− u)(1 + u
q )
e
W ∗

1 (u),

where V ∗(u) and W ∗
1 (u) are as defined above.
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Proof. From Lemma 1.3.17(a) (with u replaced by u/q ), and Theorem 2.2.1, we
have that

SSp(u) =
(1− u

q )
e

1− u

∏
d>1

((
1 +

ud

qd + 1

)(
1− ud

qd

))N∗(q;2d)

×
∏
d>1

((
1 +

ud

qd − 1

)(
1− ud

qd

))M∗(q;d)

=
(1− u

q )
e

1− u

∏
d>1

(
1− ud(ud + 1)

qd(qd + 1)

)N∗(q;2d)∏
d>1

(
1− ud(ud − 1)

qd(qd − 1)

)M∗(q;d)

=
(1− u

q )
e

1− u
V ∗(u) .

To derive the second expression for SSp(u) we start from Theorem 2.2.1 and
use Lemma 1.3.17(a) twice, once with u replaced by u/q and once with u replaced
by (u/q)2 , to get that

SSp(u) =
(1− u2

q )(1−
u
q )
e

(1− u)(1− u2

q2 )
e
S(u)T (u) =

(1− u2

q )

(1− u)(1 + u
q )
e
S(u)T (u) ,

where

S(u) :=
∏
d>1

(( 1− (uq )
d

1− (uq )
2d

)(
1 +

ud

qd + 1

))N∗(q;2d)

and

T (u) :=
∏
d>1

(( 1− (uq )
d

1− (uq )
2d

)(
1 +

ud

qd − 1

))M∗(q;d)

.

The proof is now completed in exactly the same way as that of Theorem 2.1.2.

Theorem 2.2.3. Let e := e(q) . Then

sSp(∞, q) =
(
1− 1

q

)e
V ∗(1)

=
(
1− 1

q

)e∏
d>1

(
1− 2

qd(qd + 1)

)N∗(q;2d)

.
Also,

sSp(∞, q) =
(1− 1

q )
e+1

(1− 1
q2 )

e
W ∗

1 (1)

=
(1− 1

q )
e+1

(1− 1
q2 )

e

∏
d>1

(
1− 1

(qd + 1)2

)N∗(q;2d)∏
d>1

(
1 +

1

(q2d − 1)

)M∗(q;d)

.

If 1 < r < q then |sSp(2m,q) − sSp(∞,q)| < o(r−m) as m→ ∞ .

This follows immediately from the previous theorem and Lemma 1.3.3. As in
the case of the unitary groups (see Theorem 2.1.5), the last assertion of this theorem
can be made more explicit.

Lemma 2.2.4. (a) Let A(u) := (1− qu)SSp(qu) . Then

|A|(u) � (q − 1)

(1− u)e
Ω(u)−1 ,
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where e = e(q) and Ω(u) is as defined on p. 20.

(b) |sSp(2m, q) − sSp(2m − 2, q)| < (q − 1)pe+1(m)q−m , where pr(m) is as
defined on p. 20.

Proof. By Theorem 2.2.2 (1− qu)SSp(qu) =
1− qu2

(1 + u)e
W ∗

1 (qu), where

W ∗
1 (qu) =

∏
d>1

(
1− 1

qd + 1

ud

1 + ud

)N∗(q;2d) ∏
d>1

(
1 +

1

qd − 1

ud

1 + ud

)M∗(q;d)

.

Lemma 1.3.5(b) gives that |A|(u) � (q − 1)

(1− u)e
|W ∗

1 |(qu). Apply Lemma 1.3.6:

|W ∗
1 |(qu) � exp

∑
d>1

(N∗(q; 2d)

qd + 1

ud

1− ud
+
M∗(q; d)

qd − 1

ud

1− ud

)
.

From Lemma 1.3.16 we know that N∗(q; 2d) < (qd + 1)/(2d) and M∗(q; 2d) 6
(qd − 1)/(2d). Therefore

|W ∗
1 |(qu) � exp

∑
d>1

( 1

2d

ud

1− ud
+

1

2d

ud

1− ud

)
= exp

∑
d>1

(1
d

ud

1− ud

)
.

Thus |W ∗
1 |(qu) � Ω(u)−1 by Lemma 1.3.7 and so we have (a). Part (b) follows

immediately from Lemma 1.3.8.

In the same way as for the unitary groups we can now derive the following
explicit estimates for the rate of convergence of sSp(2m, q) to sSp(∞, q).

Theorem 2.2.5. Let k := (q − 1)/(2q − 3) .
If q is odd and 9 6 m < m′ 6 ∞ then

|sSp(2m′, q)− sSp(2m, q)| < 3k p3(m)q−m < 23k
(
2
3 q
)−m

.

If q is even and 6 6 m < m′ 6 ∞ then

|sSp(2m′, q)− sSp(2m, q)| < 3k p2(m)q−m < 8k
(
2
3 q
)−m

.

The derivation of this from the previous lemma using Lemma 1.3.9 is exactly
the same as that of Theorem 2.1.6 from Lemma 2.1.5 and is therefore omitted.

Using Theorem 2.2.3 and Lemma 1.3.16(a), one may express sSp(∞, q) as a
power series in q−1 . Its leading terms are not hard to calculate: if q is odd they
are

1− 3

q
+

5

q2
− 10

q3
+

23

q4
− 49

q5
+

100

q6
− 208

q7
+

439

q8
− 915

q9
+O

( 1

q10

)
,

while if q is even they are

1− 2

q
+

2

q2
− 4

q3
+

9

q4
− 17

q5
+

32

q6
− 64

q7
+

130

q8
− 258

q9
+O

( 1

q10

)
.

The following explicit bounds are useful in practice.

Theorem 2.2.6. If q is odd then

1− 3

q
+

5

q2
− 10

q3
+

12

q4
< sSp(∞, q) < 1− 3

q
+

5

q2
− 10

q3
+

23

q4
,
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and if q is even then

1− 2

q
+

2

q2
− 4

q3
+

4

q4
< sSp(∞, q) < 1− 2

q
+

2

q2
− 4

q3
+

9

q4
.

For small values of q we have

0.2833 < sSp(∞, 2) < 0.2881 and 0.3487 < sSp(∞, 3) < 0.3493 .

Proof. The calculation has to be done with a little care if errors are to be of order
at most q−4 . For the lower bound we use the first expression for sSp(∞, q) and seek
estimates for the infinite product in Theorem 2.2.3. We start from the observation
that

1− 1/q2d

1 + 1/q2d
= 1− 2

q2d + 1
< 1− 2

qd(qd + 1)
.

Define

A∗
1 :=

∏
d>1

((1 + 1
q2d

1− 1
q2d

)(
1− 2

qd(qd + 1)

))N∗(q;2d)

.

Then

sSp(∞, q) =
(
1− 1

q

)e
A∗

1

∏
d>1

(
1− 1

q2d

1 + 1
q2d

)N∗(q;2d)

.

Substituting u := 1/q2 into the equation of Lemma 1.3.17(e) we find that

sSp(∞, q) = A∗
1

(
1− 1

q

)e+1(
1− 1

q2

)e−1 ,

and it remains to bound A∗
1 from below. It is easy to calculate that(

1 + 1
q2d

1− 1
q2d

)(
1− 2

qd(qd + 1)

)
= 1 +

2

qd(qd + 1)2
,

and so A∗
1 =

∏
d>1

(
1+

2

qd(qd + 1)2

)N∗(q;2d)

. In the product defining A∗
1 each factor

> 1, and so

A∗
1 >

(
1 +

2

q(q + 1)2

) 1
2 (q+1−e)(

1 +
2

q2(q2 + 1)2

) 1
4 (q

2+1−e)
.

Substituting small values of q we find that sSp(∞, 2) > 0.2833 · · · and sSp(∞, 3) >
0.3487 · · · . For general q we use the fact that

1 +
2

qd(qd + 1)2
> 1 +

2

q3d
− 4

q4d

to see that

A∗
1 >

(
1 +

2

q3
− 4

q4

) 1
2 (q+1−e)(

1 +
2

q6
− 4

q8

) 1
4 (q

2+1−e)

> 1 +
(q + 1− e

2

)( 2

q3
− 4

q4

)
+
(q2 + 1− e

4

)( 2

q6
− 4

q8

)
= 1 +

1

q2
− 1 + e

q3
+

2(e− 1)

q4
+

1

2q4
− 1 + e

2q6
+
e− 1

q8

> 1 +
1

q2
− 1 + e

q3
+

2(e− 1)

q4
.



2.2. THE SYMPLECTIC GROUPS 47

Now if q is odd then

sSp(∞, q) >
(
1 +

1

q2
− 3

q3
+

2

q4

) (1− 1
q )

2

(1 + 1
q )

,

and the bound sSp(∞, q) > 1− 3
q +

5
q2 − 10

q3 + 12
q4 follows by elementary algebra. If

q is even then

sSp(∞, q) >
(
1 +

1

q2
− 2

q3

)(
1− 1

q

)2
,

and our lower bound for sSp(∞, q) follows again by elementary algebra.
For the upper bound we use the second expression for sSp(∞, q) in Theo-

rem 2.2.3 and seek a good bound for W ∗
1 (1). We have

W ∗
1 (1) =

∏
d>1

(
1− 1

(qd + 1)2

)N∗(q;2d)∏
d>1

(
1 +

1

(q2d − 1)

)M∗(q;d)

= A∗
2

∏
d>1

((
1− 1

(qd + 1)2

)(
1 +

1

q2d − 1

))N∗(q;2d)

,

where

A∗
2 :=

∏
d>1

(
1 +

1

q2d − 1

)M∗(q;d)−N∗(q;2d)

=
∏
d>1

(
1− 1

q2d

)N∗(q;2d)−M∗(q;d)

.

Now define A∗
3 :=

∏
d>1

α(qd)N
∗(q;2d) , where

α(x) :=
(
1− 1

(x+ 1)2

)(
1 +

1

x2 − 1

)(x3 − 1

x3 + 1

)
.

Then

sSp(∞, q) =
(1− 1

q )
e+1

(1− 1
q2 )

e
A∗

2 A
∗
3

∏
d>1

(1 + 1
q3d

1− 1
q3d

)N∗(q;2d)

=
(1− 1

q )
e+1(1− 1

q3 )
e−1

(1− 1
q2 )

e+1
A∗

2 A
∗
3

by Lemma 1.3.17(e). Since 1 − 1
q2d

< 1 for d > 1 and N∗(q; 2d) −M∗(q; d) > 0

(see Lemma 1.3.16(c)) we know that

A∗
2 <

(
1− 1

q2

)N∗(q;2)−M∗(q;1)(
1− 1

q4

)N∗(q;4)−M∗(q;2)

,

and so by Lemma 1.3.16(c) again

A∗
2 <

(
1− 1

q2

)(
1− 1

q4

)N∗(q;2)

=
(
1− 1

q2

)(
1− 1

q4

) 1
2 (q+1−e)

.

Also, α(qd) < 1 for all d and so A∗
3 < α(q)

1
2 (q+1−e) . Thus we find that

sSp(∞, q) <
(1− 1

q )
e+1(1− 1

q3 )
e−1

(1− 1
q2 )

e

((
1− 1

q4

)
α(q)

) 1
2 (q+1−e)

.

Substituting q = 2, e = 1 we find that sSp(∞, 2) < 0.2880 · · · and substituting
q = 3, e = 2 we get sSp(∞, 3) < 0.3492 · · · by direct calculation. For larger values
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of q we use the facts (which we leave the reader to check) that
(
1 − 1

q4

)
α(q) <

1− 4

q4
+

6

q5
and

(
1− 4

q4
+

6

q5

) 1
2 (q+1−e)

< 1− 2

q3
+

2e+ 1

q4
+

2− e

q5
.

It is now routine manipulation to show that if q is odd (so that e = 2) then

(1− 1
q )

3(1− 1
q3 )

(1− 1
q2 )

2

(
1− 2

q3
+

5

q4

)
< 1− 3

q
+

5

q2
− 10

q3
+

23

q4
,

while if q is even (so that e = 1) then

(1− 1
q )

2

(1− 1
q2 )

(
1− 2

q3
+

3

q4
+

1

q5

)
< 1− 2

q
+

2

q2
− 4

q3
+

9

q4
,

and this completes the proof of the theorem.

Cyclic symplectic matrices. Let CSp(u) be the generating function for the prob-
ability cSp(2m, q) that an element of a finite symplectic group over Fq is cyclic.
As in the case of separable symplectic matrices, we index the terms of the power
series by the Lie rank m . Thus

CSp(u) := 1 +
∑
m>1

cSp(2m, q)u
m .

First we state an infinite product expression for CSp(u) which is analogous to the
expression for CU(u) in Theorem 2.1.7.

Theorem 2.2.7. Let e := e(q) . Then

CSp(u) =
( 1

1− u
q

)e∏
d>1

(
1 +

ud

(qd + 1)(1− ud

qd
)

)N∗(q;2d)

×
∏
d>1

(
1 +

ud

(qd − 1)(1− ud

qd
)

)M∗(q;d)

.

As for Theorem 2.1.7, this result can be derived from the factorisation of the
cycle index for the symplectic groups given in [6]. There is also a direct proof which
is analogous to that given for unitary groups. There are two variations from the
unitary case. First, the form of the infinite product expression is a little different
from that for the unitary groups. The reason is that the polynomials t − 1 and
t + 1, as the only self-conjugate polynomials of odd degree (see Theorem 1.3.16),
require a separate term in the product. These polynomials correspond to plus and
minus cyclic unipotent symplectic matrices. Secondly, computing this term causes a
slight complication, since if m > 2, the cyclic unipotent matrices in Sp(2m, q) form
two conjugacy classes (rather than a single class), with each such matrix having a
centraliser of order 2qm (see [22, p.36]). We leave further details to the reader and
turn to two different infinite product expressions for CSp(u).
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Theorem 2.2.8. Let e := e(q) and let W ∗
2 (u) be as defined on p. 43. Then

(a)

CSp(u) =
1

1− u

∏
d>1

(
1− ud

qd(qd + 1)

)N∗(q;2d) ∏
d>1

(
1 +

ud

qd(qd − 1)

)M∗(q;d)

.

(b) CSp(u) =
(1− u2

q3 )(1−
u
q2 )

(1− u)(1− u2

q4 )
e
W ∗

2 (u/q) .

(c) In particular, CSp(u) has a continuation to a function which is analytic in the
open disc D(q2) except for a simple pole at u = 1 .

Proof. Since (
1− ud

qd

)(
1 +

ud

(qd + 1)(1− ud

qd
)

)
= 1− ud

qd(qd + 1)
,

and (
1− ud

qd

)(
1 +

ud

(qd − 1)(1− ud

qd
)

)
= 1 +

ud

qd(qd − 1)
,

part (a) follows from Theorem 2.2.7 by means of Lemma 1.3.17(a) with u re-
placed by u/q . To derive (b) we divide each factor 1 − (ud/qd(qd + 1)) in (a) by
(1 − (ud/q2d)) and each factor 1 + (ud/qd(qd − 1)) by (1 + (ud/q2d)). Then from
Lemma 1.3.19(a)[−(u/q)d, qd ] and Lemma 1.3.19(a)[−(u/q)d,−qd ], together with
definition of W ∗

2 (u), it follows that

CSp(u)
∏
d>1

(
1− ud

q2d

)−N∗(q;2d) ∏
d>1

(
1 +

ud

q2d

)−M∗(q;d)

=
1

1− u
W ∗

2 (u/q) .

It now follows from Lemma 1.3.17(c) that

CSp(u)
(1− u

q2 )
e−1(1 + u

q2 )
e

(1− u2

q3 )
=

1

1− u
W ∗

2 (u/q) ,

and (b) follows, as does (c) since W ∗
2 (u) is analytic in the disc D(q).

We can now determine the limiting value cSp(∞, q). The following theorem is
an immediate consequence of the preceding one and Corollary 1.3.2.

Theorem 2.2.9.

cSp(∞, q) =
∏
d>1

(
1− 1

qd(qd + 1)

)N∗(q;2d) ∏
d>1

(
1 +

1

qd(qd − 1)

)M∗(q;d)

and

cSp(∞, q) =
(1− q−3)(1− q−2)

(1− q−4)e
W ∗

2 (q
−1)

=
(1− q−3)(1− q−2)

(1− q−4)e

∏
d>1

(
1 +

1

(qd + 1)(q2d − 1)

)N∗(q;2d)

×
∏
d>1

(
1 +

1

(qd − 1)(q2d + 1)

)M∗(q;d)

.

Furthermore, if 1 < r < q2 then |cSp(2m, q)− cSp(∞, q)| < o(r−m) as m→ ∞ .
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Our next result, which has some curiosity value in its own right, and is analo-
gous to, though rather different from, Theorem 2.1.10 and Wall’s formula (3.17) in
[23], leads to an explicit convergence-rate.

Theorem 2.2.10. Let s′Sp(m, q) be the probability that an element of Sp(2m, q)
is separable and its characteristic polynomial has an even number of self-conjugate
irreducible factors, and define s′′Sp(m, q) to be the probability that an element is
separable and its characteristic polynomial has an odd number of self-conjugate
irreducible factors. Then

cSp(2m, q)− cSp(2m− 2, q) = q−m
(
s′Sp(m, q)− s′′Sp(m, q)

)
.

Proof. From Theorem 2.2.8 (a)

(1− u)CSp(u) =
∏
d>1

(
1− (u/q)d

qd + 1

)N∗(q;2d) ∏
d>1

(
1 +

(u/q)d

qd − 1

)M∗(q;d)

.

The coefficient of um in (1 − u)CSp(u) is cSp(2m, q) − cSp(2m − 2, q), while the
coefficient of um in the infinite product expression on the right side of this equation
is q−mpm , where pm is the coefficient of um in∏

d>1

(
1− ud

qd + 1

)N∗(q;2d) ∏
d>1

(
1 +

ud

qd − 1

)M∗(q;d)

.

It follows from Theorem 2.2.1 that pm = s′Sp(m, q)− s′′Sp(m, q) and the theorem is
proved.

Corollary 2.2.11. |cSp(∞, q)− cSp(2m, q)| 6
1

(q − 1)qm
.

Proof. Since, obviously, |s′Sp(k, q) − s′′Sp(k, q)| 6 1 for all k , we have as required

that |cSp(∞, q)− cSp(2m, q)| <
∑

k>m+1

q−k = 1/((q − 1)qm).

In order to improve the estimate in this corollary one may use Wall’s method
of comparison of power series. Recall that Ω(u) =

∏
i>1(1− ui).

Lemma 2.2.12. Let A(u) := (1− q2u)CSp(q
2u) . Then

|A|(u) � (q − 1)

(1− u)e
Ω(u)−1 ,

where e = e(q) and Ω(u) is as defined on p. 20.

Proof. By Theorem 2.2.8(b),

A(u) =
(1− qu2)(1− u)

(1− u2)e
W ∗

2 (qu) =
(1− qu2)

(1 + u)(1− u2)e−1
W ∗

2 (qu) .

Using Lemma 1.3.5(b) and the fact that (1 − u2)−1 � (1 − u)−1 we derive that
|A|(u) � (q − 1)(1− u)−e |W ∗

2 |(qu). Now

W ∗
2 (qu) =

∏
d>1

(
1 +

1

qd + 1

ud

1− ud

)N∗(q;2d) ∏
d>1

(
1 +

1

qd − 1

ud

1 + ud

)M∗(q;d)

and the method of proof of Lemma 2.2.4 yields that |W ∗
2 (qu)| � Ω(u)−1 . Thus

|A|(u) � (q − 1)(1− u)−e Ω(u)−1 , as the lemma states.
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Comparing this lemma with Lemma 2.2.4(a) we see that essentially the same
theorem will follow, except for a change of q to q2 at certain points:

Theorem 2.2.13. Let k := (q−1)/(2q2−3) . If q is odd and 9 6 m < m′ 6 ∞
then

|cSp(2m′, q)− cSp(2m, q)| < 3k p3(m)q−2m < 23k
(
2
3 q

2
)−m

.

If q is even and 6 6 m < m′ 6 ∞ then

|cSp(2m′, q)− cSp(2m, q)| < 3k p2(m)q−2m < 8k
(
2
3 q

2
)−m

.

Details of the proofs are left to the reader.

Using the values of N∗(2d) and M∗(d) given in Lemma 1.3.16, one may express
cSp(∞, q) as a power series in q−1 . For odd q the leading terms are

1− 3

q3
+

2

q4
− 3

q5
+

8

q6
− 11

q7
+

19

q8
− 32

q9
+O

( 1

q10

)
,

while for even q they are

1− 2

q3
+

1

q4
− 2

q5
+

4

q6
− 5

q7
+

9

q8
− 14

q9
+O

( 1

q10

)
.

For practical purposes the following bounds are more helpful, however.

Theorem 2.2.14. If q is odd then

1− 3

q3
+

1

q4
− 1

q5
< cSp(∞, q) < 1− 3

q3
+

2

q4
+

1

q5

and if q is even then

1− 2

q3
− 1

q5
< cSp(∞, q) < 1− 2

q3
+

1

q4
+

1

q5

Proof. We use the second expression for cSp(∞, q) given in Theorem 2.2.9:

W ∗
2 (q

−1) >
(
1 +

1

(q + 1)(q2 − 1)

)N∗(q;2) (
1 +

1

(q − 1)(q2 + 1)

)M∗(q;1)

=
(
1 +

1

(q + 1)(q2 − 1)

) 1
2 (q+1−e) (

1 +
1

(q − 1)(q2 + 1)

) 1
2 (q−1−e)

,

and so by Lemma 1.3.4(b),

W ∗
2 (q

−1) > 1 +
q + 1− e

2(q + 1)(q2 − 1)
+

q − 1− e

2(q − 1)(q2 + 1)

= 1 +
q2

q4 − 1
− e (q3 − 1)

(q2 − 1)(q4 − 1)

> 1 +
1

q2
− e

q(q2 − 1)
.

Therefore

cSp(∞, q) >
(1− q−3)(1− q−2)

(1− q−4)e

(
1 + q−2 − e

q(q2 − 1)

)
=

(1− q−3)

(1− q−4)e
(1− q−4 − e q−3)

> (1− (e+ 1)q−3 − q−4)(1 + e q−4) .
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From this it is not at all hard to derive that

cSp(∞, q) > 1− (e+ 1)q−3 + (e− 1)q−4 − q−5,

which is the lower bound given in the theorem.
As in the proof of Theorem 2.1.12, for the upper bound we use the fact that if

x > 0 then log(1 + x) < x . This tells us that

logW ∗
2 (q

−1) <
∑
d>1

( N∗(q; 2d)

(qd + 1)(q2d − 1)
+

M∗(q; d)

(qd − 1)(q2d + 1)

)
.

In this sum we treat the first term separately; also, we use the fact that N∗(q; 2d) 6
qd/(2d) and if d > 1 then M∗(q; d) < (qd − q)/(2d). After a little manipulation
we find that

logW ∗
2 (q

−1) < A∗ +
∑
d>1

1

dq2d
,

where A∗ :=
N∗(q; 2)

(q + 1)(q2 − 1)
+

M∗(q; 1)

(q − 1)(q2 + 1)
− 1

q2
. Thus

logW ∗
2 (q

−1) < A∗ + log
1

1− q−2
,

and it follows that W ∗
2 (q

−1) < exp(A∗)/(1− q−2) and

cSp(∞, q) <
(1− q−2)(1− q−3)

(1− q−4)e
× exp(A∗)

(1− q−2)
=

(1− q−3)

(1− q−4)e
× exp(A∗) .

To finish the calculation we need to estimate exp(A∗). Now

A∗ =
q + 1− e

2 (q + 1)(q2 − 1)
+

q − 1− e

2 (q − 1)(q2 + 1)
− 1

q2

=
1

q2(q4 − 1)
− e (q3 − 1)

(q2 − 1)(q4 − 1)

6 −e
( (q3 − 1)

(q2 − 1)(q4 − 1)
− 1

q2(q4 − 1)

)
,

and it is routine to check that the coefficient of −e here is greater than q−3 . Thus
A∗ < −e q−3 and

cSp(∞, q) <
(1− q−3)

(1− q−4)e
exp(−e/q3)

< (1− q−3)(1− e q−3 + 1
2e

2 q−6)(1 + e q−4) .

It is not hard to check from this that

cSp(∞, q) < 1− (e+ 1) q−3 + e q−4 + q−5 ,

and this completes the proof of the theorem.
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2.3. The orthogonal groups

The orthogonal groups Oϵ(n, q) are defined as subgroups of GL(n, q) pre-
serving a non-degenerate quadratic form Q on an n -dimensional vector space
V over Fq (see, for example, [21, Chapter 11] for details). If n is even, say
n = 2m > 2, and V = Fnq then there are two such forms up to equivalence

under linear transformations of V . Choose a ∈ Fq such that t2 + t + a is ir-
reducible in Fq[t] . Any non-degenerate quadratic form is equivalent either to
Q+ or to Q− , where Q+(x1, . . . , xn) =

∑m
i=1 x2i−1x2i and Q−(x1, . . . , xn) =

x21+x1x2+ax
2
2+
∑m
i=2 x2i−1x2i . The subgroups of GL(n, q) preserving these forms

are O+(n, q) and O−(n, q) respectively. Their orders are given by |Oϵ(2m, q)| =
2qm

2−m(qm − ϵ1)
∏m−1
i=1 (q2i − 1).

Now take n to be odd, say n = 2m + 1 > 1. If q is even then every non-
degenerate quadratic form is equivalent to x21 +

∑m
i=1 x2ix2i+1 , and so there is just

one orthogonal group O(2m + 1, q). For the orthogonal group of this canonical
form the vector e1 , where e1 = (1, 0, . . . , 0), is invariant, and the action of O(2m+
1, q) on the quotient space V/〈e1〉 yields the famous isomorphism O(2m+ 1, q) →
Sp(2m, q). If q is odd any non-degenerate quadratic form is equivalent under
linear transformations either to Q or to bQ , where Q(x1, . . . , xn) =

∑
x2i and b

is a fixed non-square in Fq . Thus, although there are two inequivalent forms, they
give rise to the same group O(2m+ 1, q). For odd q the order of O(2m+ 1, q) is

2qm
2 ∏m

i=1(q
2i − 1).

The concept of type of an orthogonal space may be modified and extended to
spaces of odd dimension in such a way that the types of a collection of summands
in an orthogonal decomposition of V determine the type of V . Define

τ(V ) :=



ϵ 1 if n is even and V has type ϵ ,

1 if n is odd, q is even,

1 if n is odd, q ≡ 1 (mod 4), Q ∼
∑
x2i ,

−1 if n is odd, q ≡ 1 (mod 4), Q ∼ b
∑
x2i ,

in if n is odd, q ≡ 3 (mod 4), Q ∼
∑
x2i ,

(−i)n if n is odd, q ≡ 3 (mod 4), Q ∼ b
∑
x2i ,

where i =
√
−1 ∈ C and b is a non-square in Fq . It is not hard to prove that if

V = V1 ⊕⊥ · · · ⊕⊥ Vk then τ(V ) =
∏
τ(Vi).

Separable orthogonal matrices. It turns out to be sensible to define generating
functions SOϵ(u), SO(u) for the chance that an element of Oϵ(2m, q), O(2m+1, q)
respectively, is separable, as follows (these functions depend on q and could well
be denoted SOϵ(q;u), SO(q;u), but since we think of q as fixed we suppress the
dependence on q ):

SO+(u) := 1 +
∑
m>1

sO+(2m, q)um ; SO−(u) :=
∑
m>1

sO−(2m, q)um ;

SO(u) := 1 +
∑
m>1

sO(2m+ 1, q)um .

Effectively this treats the zero-dimensional space as being of + type. We shall
express these generating functions in terms of two other functions. The first is
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SSp(u), for which, recall from Theorem 2.2.1, we have

SSp(u) =
∏
d>1

(
1 +

ud

qd + 1

)N∗(q;2d) ∏
d>1

(
1 +

ud

qd − 1

)M∗(q;d)

.

The second is the function XO(u) (or XO(q;u)) defined by

XO(u) :=
∏
d>1

(
1− ud

qd + 1

)N∗(q;2d) ∏
d>1

(
1 +

ud

qd − 1

)M∗(q;d)

.

By Lemma 1.3.16, N∗(q; 2d) and M∗(q; d) have size O(qd/(2d)), and it follows
from Corollary 1.3.2 that XO(u) is analytic in the open unit disc. We shall prove
later that it is in fact analytic in the disc D(q).

Theorem 2.3.1. Let e := e(q) , the number of square roots of 1 in Fq . Then

(a) SO+(u2) + SO−(u2) + e uSO(u
2) = (1 + u)eSSp(u

2) ,

(b) SO+(u2)− SO−(u2) = XO(u
2) .

Proof. The proofs are similar in strategy to those of Theorems 2.1.1 and 2.2.1, but
care is needed to account for the type of the quadratic forms involved. All unproved
assertions we make about conjugacy classes and centraliser sizes can be found in [22,
p. 40]. Suppose that X is an orthogonal matrix, preserving a non-degenerate qua-
dratic form Q on an n -dimensional vector space V over Fq , where n may be even
or odd. Then cX(t) is ∗ -self-conjugate as defined on p. 25, and there is a unique
primary decomposition of V , that is, an X -invariant orthogonal direct sum decom-
position with one summand of V for each monic irreducible self-conjugate poly-
nomial ϕ(t) dividing cX(t), and one summand for each conjugate pair {ϕ(t), ϕ∗(t)}
of monic irreducible non-self-conjugate polynomials dividing cX(t). Each primary
summand is non-singular with respect to the quadratic form. The centraliser of X
in the orthogonal group is the direct product of the centralisers of the orthogonal
transformations induced by X on the primary summands. Now suppose that X is
separable. For a monic irreducible self-conjugate polynomial ϕ(t) of degree 2d , the
corresponding summand in the primary decomposition is of negative type, and the
corresponding centraliser order is qd + 1 (the same as in the symplectic case). For
a pair {ϕ, ϕ∗} of monic irreducible non-self-conjugate polynomial divisors, each of
degree d , the corresponding summand in the primary decomposition is of positive
type, and the corresponding centraliser order is qd − 1 (again the same as in the
symplectic case). However, in contrast to the case of symplectic groups, it is possi-
ble for the polynomials t−1 and t+1 to divide cX(t), since there are non-singular
1-dimensional orthogonal spaces; in these cases the corresponding centraliser has
order 2 if q is odd and order 1 if q is even.

Now if q is odd consider the right side of the equation in part (a) in the form:

(1 + 1
2u+ 1

2u)
e
∏
d>1

(
1 +

u2d

qd + 1

)N∗(q;2d) ∏
d>1

(
1 +

u2d

qd − 1

)M∗(q;d)

.

One of the factors 1+ 1
2u+

1
2u is there to track whether or not t−1 occurs as a divisor

of cX(t): each of the two terms 1
2u corresponds to a 1-dimensional summand of V

with eigenvalue 1; there are two of them since the quadratic form on this summand
can be either x21 or bx21 where b is a non-square; the coefficients 1

2 account for the
fact that the centralisers have order 2. This factor occurs a second time to account
for the identical situation which occurs for a possible divisor t + 1 of cX(t). It
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follows from the remarks in the previous paragraph that, for n even and positive,
the coefficient of un in the expansion of the product is sO+(n, q)+sO−(n, q), while
for n odd, the coefficient of un in this expansion is 2sO(n, q) accounting for the
two types of forms. The constant term on each side of equation (a) is clearly 1.
These considerations prove part (a) when q is odd. If q is even the factor 1 + u
tracks whether or not t− 1 is a divisor of cX(t) but in this case there is only one
possibility for the one-dimensional summand and its centraliser is of order 1. The
rest of the argument proceeds as before.

We prove (b) by modifying the product on the right side of (a). In that product
each factor 1+ u2d/(qd+1) corresponds to a self-conjugate irreducible polynomial
ϕ of degree 2d and is of the form 1 + |CO(Xϕ)|−1u2d , where Xϕ is an orthogonal
matrix with characteristic polynomial ϕ , and CO(Xϕ) denotes its centraliser in
the appropriate orthogonal group. Similarly, each factor 1 + u2d/(qd − 1) is of
the form 1 + |CO(Xϕ)|−1u2d , and the factor 1 + 1

2u + 1
2u or 1 + u is of the form

1 + |CO(Xϕ)|−1u + |CO(Xϕ)|−1u or 1 + |CO(Xϕ)|−1u , respectively. Now mod-
ify the right side of equation (a) by replacing each coefficient |CO(Xϕ)|−1 with
τϕ|CO(Xϕ)|−1 , where τϕ := τ(Vϕ) and Vϕ is the orthogonal space on which Xϕ

is acting. When q is odd the two summands 1
2u ,

1
2u in the factors corresponding

to irreducible polynomials t − 1 and t + 1 cancel (since they are multiplied by 1
and −1 or i and −i respectively), and therefore the factor (1 + u)2 is replaced
by a factor 1; when q is even we may delete the factor 1 + u because the left
side of (b) deals only with even-dimensional spaces, whereas the summand u cor-
responds to odd-dimensional spaces. Also the factors 1+u2d/(qd+1) are replaced
by 1− u2d/(qd + 1) and the factors 1 + u2d/(qd − 1) are unchanged. The product
therefore becomes∏

d>1

(
1− u2d

qd + 1

)N∗(q;2d) ∏
d>1

(
1 +

u2d

qd − 1

)M∗(q;d)

,

and, because of the multiplicative property of τ , when it is expanded it gives
positive weighting to spaces of type + and negative weighting to spaces of type − .
Then the usual argument proves (b).

Theorem 2.3.2. Define e′ := e(q) − 1 , so that e′ = 0 if q is even, e′ = 1 if
q is odd. Then

(a) SO(u) = SSp(u) ,

(b) SOϵ(u) = 1
2 (1 + e′u)SSp(u) +

1
2ϵXO(u) .

where XO(u) is as defined on p. 54 above.

Proof. In Theorem 2.3.1(a), the terms contributing to the coefficient of an odd
power u2m+1 in the left side of the equation arise from choosing 2u from the
factor (1 + u)2 , or u from (1 + u) respectively, on the right side. Part (a) follows
immediately. Similarly, comparing even powers on each side of this equation we see
that

SO+(u2) + SO−(u2) = (1 + e′ u2)SSp(u
2) ,

and parts (b), (c) follow from this and Theorem 2.3.1(b).

Lemma 2.3.3. Let e := e(q) as usual, and let W ∗
2 (u) be as defined on p. 43.

Then
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XO(u) =
1− u2

q(
1− u

q

)e−1(
1 + u

q

)e W ∗
2 (u) ,

and this provides an analytic continuation of XO(u) to the disc D(q) .

Proof. We use Lemma 1.3.17(c) with u replaced by u/q to get that

XO(u) =
1− u2

q(
1− u

q

)e−1(
1 + u

q

)e X1(u)X2(u) ,

where

X1(u) :=
∏
d>1

(( 1

1− (uq )
d

)(
1− ud

qd + 1

))N∗(q;2d)

and

X2(u) :=
∏
d>1

(( 1

1 + (uq )
d

)(
1 +

ud

qd − 1

))M∗(q;d)

.

The proof is now completed in exactly the same way as that of Theorem 2.1.2.

If q is odd then, by Theorem 2.3.2, SO+(u) − SSp(u) = − 1
2 (1 − u)SSp(u) +

1
2XO(u) and from Theorem 2.2.2 it follows that (1− u)SSp(u) is analytic in D(q).
By the above lemma therefore, SO+(u)−SSp(u) is (or may be analytically continued
to a function which is) analytic in the disc D(q). Exactly the same argument applies
to SO−(u)−SSp(u). Thus if q is odd then each of SO+(u), SO−(u), SO(u) is of the
form f(u)/(1−u), where f(u) is analytic in D(q) and f(1) = SSp(∞, q). Similarly,
but more obviously, if q is even then each of SO+(u), SO−(u), SO(u) is of the form
f(u)/(1 − u), where f(u) is analytic in D(q), but f(1) = 1

2SSp(∞, q) in the O+

and O− cases and f(1) = SSp(∞, q) in the odd-dimensional case. Consequently,
by Lemma 1.3.3 and Theorem 2.2.3 we have the following theorem.

Theorem 2.3.4. For separable orthogonal matrices the limiting probabilities
are given by

sO(∞, q) = sSp(∞, q) and sO+(∞, q) = sO−(∞, q) = 2e−2sSp(∞, q) ,
where

sSp(∞, q) =
(
1− 1

q

)e ∏
d>1

(
1− 2

qd(qd + 1)

)N∗(q;2d)

.

Moreover, if 1 < r < q then |sO(2m+1, q)−sO(∞, q)| < o(r−m) and |sOϵ(2m, q)−
sOϵ(∞, q)| < o(r−m) as m→ ∞ .

From Theorem 2.2.6 we have the immediate corollary

Theorem 2.3.5. If q is odd and s is any of sO(∞, q) , sO+(∞, q) , sO−(∞, q) ,
then

1− 3

q
+

5

q2
− 10

q3
+

12

q4
< s < 1− 3

q
+

5

q2
− 10

q3
+

23

q4
.

If q is even then

1− 2

q
+

2

q2
− 4

q3
+

4

q4
< sO(∞, q) < 1− 2

q
+

2

q2
− 4

q3
+

9

q4
,

while if s is either of sO+(∞, q) , sO−(∞, q) , then

1

2

(
1− 2

q
+

2

q2
− 4

q3
+

4

q4

)
< s <

1

2

(
1− 2

q
+

2

q2
− 4

q3
+

9

q4

)
.
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As with the other classical groups, the convergence rate given in the last sen-
tence of Theorem 2.3.4 can be made more explicit. Since SO(u) = SSp(u) the
following theorem is an immediate consequence of what we have proved for separ-
able symplectic matrices.

Theorem 2.3.6. (a) Let A(u) := (1− qu)SO(qu) and let e = e(q) . Then

|A|(u) � (q − 1)

(1− u)e
Ω(u)−1 .

(b) Let k := (q − 1)/(2q − 3) . If q is odd and 9 6 m < m′ 6 ∞ then

|sO(2m′ + 1, q)− sO(2m+ 1, q)| < 3k p3(m)q−m < 23k
(
2
3 q
)−m

.

If q is even and 6 6 m < m′ 6 ∞ then

|sO(2m′ + 1, q)− sO(2m+ 1, q)| < 3k p2(m)q−m < 8k
(
2
3 q
)−m

.

For even-dimensional orthogonal groups the situation is similar to that for
symplectic groups but not quite the same.

Lemma 2.3.7. Define Aϵ(u) := (1− qu)SOϵ(qu) . Then

|Aϵ|(u) �


1
2 (q − 1)(2q − 1)× (1− u)−2 Ω(u)−1 if q is odd,

1
2 (q − 1)(q + 2)× (1− u)−1 Ω(u)−1 if q is even,

where Ω(u) is as defined on p. 20.

Proof. It is convenient to treat the cases q even and q odd separately. Suppose
first that q is odd, so that e = 2. By Theorem 2.3.2

2Aϵ(u) = (1− qu)(1 + qu)SSp(qu) + ϵ (1− qu)XO(qu)

and so by Theorem 2.2.2 and Lemma 2.3.3

2Aϵ(u) =
(1 + qu)(1− qu2)

(1 + u)2
W ∗

1 (qu) + ϵ
(1− qu)(1− qu2)

(1− u2)(1 + u)
W ∗

2 (qu) ,

where W ∗
1 and W ∗

2 are as defined on p. 43. It follows from Lemma 1.3.5 that
if A(u) := (1 + qu)(1− qu2)/(1 + u)2 then |A|(u) � (q − 1)2/(1 − u)2 . Simi-
larly, examining coefficients we see that (1 − qu)/(1 − u2) � q/(1 − u), and from
Lemma 1.3.5(b) we have that (1− qu2)/(1+ u) � (q− 1)/(1− u), and therefore if
A(u) := (1− qu)(1− qu2)/(1− u2)(1 + u) then |A|(u) � (q2−q)/(1−u)2 . In the
course of proving Lemmas 2.2.4 and 2.2.12 it was shown that |W ∗

1 (qu)| � Ω(u)−1

and |W ∗
2 (qu)| � Ω(u)−1 . The assertion made in the lemma follows immediately.

Now suppose that q is even, so that e = 1. By Theorem 2.3.2

2Aϵ(u) = (1− qu)SSp(qu) + ϵ (1− qu)XO(qu) ,

and so by Theorem 2.2.2 and Lemma 2.3.3

2Aϵ(u) =
(1− qu2)

(1 + u)
W ∗

1 (qu) + ϵ
(1− qu)(1− qu2)

(1 + u)
W ∗

2 (qu) .

By Lemma 1.3.5, if A(u) := (1 − qu2)/(1 + u) then |A|(u) � (q − 1)/(1− u)
and it follows easily that if A(u) := (1 − qu)(1 − qu2)/(1 + u) then |A|(u) �
(q2 − 1)/(1− u) . As we noted, one has the inequalities |W ∗

1 (qu)| � Ω(u)−1 and
|W ∗

2 (qu)| � Ω(u)−1 . Again, the assertion made in the lemma follows immediately.
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Now the argument that produced Theorem 2.2.5 from Lemma 2.2.4(a) yields
the following theorem.

Theorem 2.3.8. Let p2 , p3 be as defined on p. 20. If q is odd, 9 6 m < m′ 6
∞ , and k := (q − 1)(2q − 1)/2(2q − 3) then

|sOϵ(2m′, q)− sOϵ(2m, q)| < 3k p3(m)q−m < 23k
(
2
3 q
)−m

;

if q is even, 6 6 m < m′ 6 ∞ , and k := (q − 1)(q + 2)/2(2q − 3) then

|sOϵ(2m′, q)− sOϵ(2m, q)| < 3k p2(m)q−m < 8k
(
2
3 q
)−m

.

The fact that SO(u) = SSp(u) when q is even can be seen directly. A non-
degenerate form Q on an odd dimensional vector space V over Fq is singular
(when q is even) in the sense that the associated bilinear form φ , which is defined
by φ(u, v) := Q(u + v) − Q(u) − Q(v), has a radical V ⊥ of dimension 1. The
corresponding orthogonal group O(2m+ 1, q) acts faithfully on the quotient space
V/V ⊥ as the symplectic group Sp(2m, q). If X ∈ O(2m + 1, q) then X fixes
V ⊥ elementwise, and so cX(t) is divisible by t − 1. Recall from the proof of
Theorem 2.2.1 that t − 1 does not divide the characteristic polynomial of any
separable matrix in Sp(2m, q). Therefore a matrix X ∈ O(2m+ 1, q) is separable
if and only if the element of Sp(2m, q) induced by X is separable. It follows that
sO(2m+1, q) = sSp(2m, q) for all m , and this explains the equality SO(u) = SSp(u)
when q is even. We have found no such explanation for the phenomenon when q
is odd.

Cyclic orthogonal matrices. For the same reasons as for separable matrices we
define the generating functions for the probability that an orthogonal matrix is
cyclic according to the convention that the zero-dimensional space has type +.
Thus

CO+(u) := 1 +
∑
m>1

cO+(2m, q)um ; CO−(u) :=
∑
m>1

cO−(2m, q)um ;

CO(u) := 1 +
∑
m>1

cO(2m+ 1, q)um .

Our first result is a partner to Theorem 2.3.1. Define

X ′
O(u) :=

∏
d>1

(
1− ud

(qd + 1)(1 + (uq )
d)

)N∗(q;2d)

×
∏
d>1

(
1 +

ud

(qd − 1)(1− (uq )
d)

)M∗(q;d)

,

the analogue for the cyclic case of the function XO(u) that appeared in the separ-
able case.

Theorem 2.3.9. Let e := e(q) (so that, recall, e is the number of square roots
of 1 in Fq ). Then

(a) CO(u) = (1− u
q )CSp(u) ,

(b) COϵ(u) = 1
2

(
(1− u

q )
e + u

)
CSp(u) +

1
2 ϵX

′
O(u) .

Proof. As for other classical groups, the theorem can be deduced from factor-
izations of the sum and difference of the cycle index generating functions for the
orthogonal groups, but it can also be proved directly. What lies behind it is an
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argument similar to that for Theorem 2.3.2. To deal with the case where q is odd
we consider the product(

1 +
u

1− u2

q

)2∏
d>1

(
1 +

u2d

qd + 1

qd

qd − u2d

)N∗(q;2d)∏
d>1

(
1 +

u2d

qd − 1

qd

qd − u2d

)M∗(q;d)

.

The proof that on expansion this yields CO+(u2)+CO−(u2)+ 2uCO(u
2) is similar

to that of Theorem 2.3.1, using information about conjugacy classes and centraliser
sizes that may be found in the final section of [22]. Special care is needed only for
the primary components corresponding to the irreducible polynomials t − 1 and
t+1. If the primary component of a cyclic orthogonal matrix corresponding to either
of these is non-zero then it has odd dimension and can have type + or − . There
is a single conjugacy class of cyclic elements of O(2m + 1, q) with characteristic
polynomial (t − 1)2m+1 , and a single class with characteristic polynomial (t +
1)2m+1 . The centraliser has order 2qm . Thus for each of the polynomials t − 1

and t+1 the generating function should have a factor 1+
u

1
+
u3

q
+
u5

q2
+ · · · , and

this explains the term
(
1 +

u

1− u2

q

)2
.

Now suppose that q is even. The situation is similar to that for odd q , except
that now a cyclic primary component correponding to the irreducible polynomial
t − 1 must either have dimension 1 or have even dimension. If the dimension is
1 then the centraliser order is 1; if the dimension is 2m , where m > 1, then the
component corresponding to the polynomial (t− 1)2m can have type + or − and
for either type the centraliser order is 2qm−1 . Thus there should be a factor

1 + u+ u2 +
u4

q
+
u6

q2
+
u8

q3
+ · · · ,

and we find that

CO+(u2) + CO−(u2) + uCO(u
2) =

(
1 + u+

u2

1− u2

q

)
×
∏
d>1

(
1 +

u2d

qd + 1

qd

qd − u2d

)N∗(q;2d) ∏
d>1

(
1 +

u2d

qd − 1

qd

qd − u2d

)M∗(q;d)

.

Focussing on the terms of odd degree we see that, whatever the parity of q ,

CO(u
2) =

( 1

1− u2

q

)e−1 ∏
d>1

(
1 +

u2d

qd + 1

qd

qd − u2d

)N∗(q;2d)

×
∏
d>1

(
1 +

u2d

qd − 1

qd

qd − u2d

)M∗(q;d)

,

where e := e(q), and part (a) of the theorem follows from Theorem 2.2.7. Focussing
on the terms of even degree we find that

CO+(u2) + CO−(u2) =
(
1 +

u2

(1− u2

q )
e

)∏
d>1

(
1 +

u2d

qd + 1

qd

qd − u2d

)N∗(q;2d)

×
∏
d>1

(
1 +

u2d

qd − 1

qd

qd − u2d

)M∗(q;d)

,
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and so, again by Theorem 2.2.7,

CO+(u2) + CO−(u2) =
(
1 +

u2

(1− u2

q )
e

)(
1− u2

q

)e
CSp(u

2) .

Thus CO+(u) +CO−(u) =
(
(1− u

q )
e+ u

)
CSp(u). Arguing as for Theorem 2.3.1(b)

we find also that CO+(u2)−CO−(u2) = X ′
O(u

2), and part (b) of the theorem follows
immediately.

Proposition 2.3.10. The function X ′
O(u) defined on p. 58 satisfies X ′

O(u) =
(1− u

q )SSp(
u
q ) , and is analytic in the open disc D(q2) .

Proof. From the definition of X ′
O(u) and Lemma 1.3.17 (d) with u replaced by

u/q , we find that

X ′
O(u)

1− u
q

=
∏
d>1

a(q;u)N
∗(q;2d)

∏
d>1

b(q;u)M
∗(q;d) ,

where a(q;u) :=
(
1− ud

(qd + 1)(1 + (uq )
d)

)(
1 +

(u
q

)d)
and b(q;u) :=

(
1 +

ud

(qd − 1)(1− (uq )
d)

)(
1−

(u
q

)d)
.

Simple algebra then yields that

X ′
O(u)

1− u
q

=
∏
d>1

(
1 +

ud

qd(qd + 1)

)N∗(q;2d) ∏
d>1

(
1 +

ud

qd(qd − 1)

)M∗(q;d)

= SSp

(u
q

)
,

by Theorem 2.2.1. By Theorem 2.2.2, (1 − u)SSp(u) is analytic in the open disc
D(q), and hence X ′

O(u) is analytic in D(q2).

Our next theorem records the limiting probabilities and an inexplicit estimate
for the convergence rates for cyclic orthogonal matrices.

Theorem 2.3.11. (a) The limiting probabilities for orthogonal matrices are
related to those for symplectic matrices as follows:

cO(∞, q) = (1− 1
q ) cSp(∞, q) ;

cO+(∞, q) = cO−(∞, q) = 1
2

(
(1− 1

q )
e + 1

)
cSp(∞, q)

=

{
(1− 1

q +
1

2q2 ) cSp(∞, q) if q is odd,

(1− 1
2q ) cSp(∞, q) if q is even.

where e := e(q) as usual, so that e = 1 if q is even and e = 2 if q is odd.

(b) If 1 < r < q2 then |cO(2m + 1, q) − cO(∞, q)| < o(r−m) as m → ∞ and
|cOϵ(2m, q)− cOϵ(∞, q)| < o(r−m) as m→ ∞ .

This follows immediately from the form of the generating functions given in
Theorem 2.3.9, together with Lemma 1.3.3 and Proposition 2.3.10. The fact that
1−CO(∞, q) = q−1+O(q−2) and 1−CO±(∞, q) = e

2q
−1+O(q−2) is a manifestation

of the fact that the non-cyclic matrices form a subvariety of codimension 1 in an
orthogonal group.
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To make Part (b) explicit we use Wall’s method again.

Theorem 2.3.12. (a) If A(u) := (1− q2u)CO(q
2u) then

|A|(u) �


(q2 − q)

(1− u)2
Ω(u)−1 if q is odd,

(q2 − 1)

(1− u)
Ω(u)−1 if q is even,

where Ω(u) is as defined on p. 20.

(b) Let p2 , p3 be as defined on p. 20. If q is odd, 9 6 m < m′ 6 ∞ , and
k := q(q − 1)/(2q2 − 3) then

|cO(2m′ + 1, q)− cO(2m+ 1, q)| < 3k p3(m)q−2m < 23k
(
2
3 q

2
)−m

;

if q is even, 6 6 m < m′ 6 ∞ , and k := (q2 − 1)/(2q2 − 3) then

|cO(2m′ + 1, q)− cO(2m+ 1, q)| < 3k p2(m)q−2m < 8k
(
2
3 q

2
)−m

.

Proof. We know from Theorems 2.3.9(a) and 2.2.8 that

A(u) =
(1− qu)(1− qu2)

(1 + u)(1− u2)e−1
W ∗

2 (qu),

where e = e(q). We proved Part (a) in the course of proving Lemma 2.3.7, and
Part (b) follows by an argument we have now used several times before.

For the even-dimensional groups we have a similar theorem:

Theorem 2.3.13. Let ϵ be + or − and let e := e(q) .

(a) If Aϵ(u) := (1−q2u)COϵ(q2u) then |Aϵ|(u) � q2(q − 1)

(1− u)e
Ω(u)−1 , where Ω(u)

is as defined on p. 20.

(b) Let k := q2(q− 1)/(2q2 − 3) and let p2 , p3 be as defined on p. 20. If q is odd
and 9 6 m < m′ 6 ∞ then

|cOϵ(2m′, q)− cOϵ(2m, q)| < 3k p3(m)q−2m < 23k
(
2
3 q

2
)−m

,

If q is even and 6 6 m < m′ 6 ∞ then

|cOϵ(2m′, q)− cOϵ(2m, q)| < 3k p2(m)q−2m < 8k
(
2
3 q

2
)−m

.

Proof. Suppose first that q is even, so that e = 1. From Theorem 2.3.9 and
Proposition 2.3.10 we know that

2Aϵ(u) = (1 + (q2 − q)u)(1− q2u)CSp(q
2u) + ϵ(1− q2u)(1− qu)SSp(qu) ,

and therefore, from Theorems 2.2.2 and 2.2.8(b),

2Aϵ(u) =
(1 + (q2 − q)u)(1− qu2)

(1 + u)
W ∗

2 (qu) + ϵ
(1− q2u)(1− qu2)

(1 + u)
W ∗

1 (qu) .

Examining the coefficients of the power series defined by

B(u) :=
(1 + (q2 − q)u)(1− qu2)

1 + u

we find that |B|(u) � (q − 1)(q2 − 1)/(1− u) (in fact, for q > 2 we have |B|(u) �
(q3 − 2q2 + 1)/(1− u) but we will ignore this). Similarly, note that if one defines
C(u) := (1− q2u)(1− qu2)/(1 + u) then |C|(u) � (q − 1)(q2 + 1) ÷ (1− u) . We
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already know that |W ∗
1 |(qu) � Ω(u)−1 and |W ∗

2 |(qu) � Ω(u)−1 . It follows that
|Aϵ|(u) �

(
q2(q − 1)/(1− u)

)
Ω(u)−1 , as required in this case.

Now suppose that q is odd. Using the same theorems as in the case where q
is even we see that

2Aϵ(u) = (1 + (q2 − 2q)u+ q2u2)(1− q2u)CSp(q
2u)

+ ϵ (1− q2u)(1− qu)SSp(qu) ,

and that
2Aϵ(u) =

(1 + (q2 − 2q)u+ q2u2)(1− qu2)

(1 + u)(1− u2)
W ∗

2 (qu)

+ ϵ
(1− q2u)(1− qu2)

(1 + u)2
W ∗

1 (qu) .

For
B(u) :=

(1 + (q2 − 2q)u+ q2u2)(1− qu2)

(1 + u)(1− u2)

we find that B(u) = B0(u)/(1− u2) where

B0(u) := 1+(q2−2q−1)u+(q+1)u2−(q3−2q2+q+1)u3−(q2−q−1)
∑
m>4

(−u)m,

from which it follows easily that |B|(u) � (q − 1)(q2 − 1)/(1 − u)2 . For C(u) :=
(1− q2u)(1− qu2)/(1+u)2 we have |C|(u) � (q−1)(q2+1)/(1−u)2 . It follows as
above that |Aϵ|(u) �

(
q2(q− 1)/(1− u)2

)
Ω(u)−1 , as was to be shown for part (a).

Part (b) follows in the same way as Theorem 2.2.13 from Lemma 2.2.12.

From Theorem 2.3.11(a) and Theorem 2.2.14 one may derive explicit upper and
lower bounds for cO(∞, q) and cO±(∞, q). After a little simplification to remove
terms of higher order than q−4 , the results are:

Theorem 2.3.14. If q is odd then

1− 1

q
− 3

q3
+

3

q4
< cO(∞, q) < 1− 1

q
− 3

q3
+

5

q4

and

1− 1

q
+

1

2q2
− 3

q3
+

5

2q4
< cO±(∞, q) < 1− 1

q
+

1

2q2
− 3

q3
+

5

q4
.

If q is even then

1− 1

q
− 2

q3
+

1

q4
< cO(∞, q) < 1− 1

q
− 2

q3
+

3

q4

and

1− 1

2q
− 2

q3
+

1

2q4
< cO±(∞, q) < 1− 1

2q
− 2

q3
+

5

2q4
.



CHAPTER 3

Semisimple and regular matrices in classical
groups

3.1. Semisimple matrices

The previous chapter was devoted to developing the ideas of Wall [23] for the
cases of separable and cyclic matrices in the unitary, symplectic and orthogonal
groups. Here we turn to semisimple matrices. For a classical group X define
ssX(m, q) to be the probability that an element of X(n, q) is semisimple (i.e. diag-
onalizable over an algebraic closure of Fq ), where m is related to the dimension n
as in Table 1. Then, as usual, define ssX(∞, q) := limm→∞ ssX(m, q).

Every separable matrix is semisimple; moreover, a semisimple matrix is either
separable or non-cyclic; if n > 2 then the n × n identity matrix In is semisimple
but not separable. The following is an immediate consequence:

Proposition 3.1.1. For any classical group X and for 2 6 m 6 ∞ ,

sX(m, q) < ssX(m, q) 6 sX(m, q) + 1− cX(m, q) .

The lower bound is the basis of the work [12] by Guralnick and Lübeck, who, in
order to estimate ssX(m, q) use geometric-combinatorial ideas related to, although
different from, those used in [17] and [18], to give upper bounds for 1− sX(m, q).
Their methods have, however, not yielded useful bounds when q 6 4, values of q
that are quite important in computational contexts, whereas the generating function
methods succeed for all q . From the proposition and the values for sX(∞, q) and
cX(∞, q) given in the case of GL in [23] and [6], and for other classical groups in
preceding sections of this paper, one obtains estimates for ssX(∞, q). For example,

Proposition 3.1.2. 1− 1

q
< ssGL(∞, q) < 1− 1

q
+

1

q3
+

1

q5
;

1− 1

q
− 2

q3
+

4

q4
< ssU(∞, q) < 1− 1

q
− 1

q3
+

7

q4
;

if q is odd then

1− 3

q
+

5

q2
− 10

q3
+

12

q4
< ssSp(∞, q) < 1− 3

q
+

5

q2
− 7

q3
+

23

q4
;

and if q is even then

1− 2

q
+

2

q2
− 4

q3
+

4

q4
< ssSp(∞, q) < 1− 2

q
+

2

q2
− 2

q3
+

10

q4
.

This approach is unnecessary for GL where Fulman’s infinite product formula
quoted on p. 66 not only makes such estimates unnecessary but also yields better
inequalities such as

1− 1

q
+

1

q3
− 2

q4
< ssGL(∞, q) < 1− 1

q
+

1

q3
.

63
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It is somewhat unsatisfactory for the unitary group since it cannot yield estimates
correct to order q−3 . It is seriously unsatisfactory for the symplectic groups when
q is small, and it is even less satisfactory for the orthogonal groups, for which
1− cG(∞, q) = O(q−1).

To obtain exact formulae that may be used to compute to any desired accuracy
or to obtain better estimates for ssX(∞, q), and to obtain the rates of convergence
of ssX(m, q) to ssX(∞, q), we use the generating functions defined as follows:

SSX(u) := 1 +
∑
m>1

ssX(m, q)u
m ,

with the exception that

SSO−(u) :=
∑
m>1

ssO−(m, q)um ,

because the zero-dimensional orthogonal space should be treated as being of positive
type. For these generating functions we have the following theorems.

Theorem 3.1.3. (See [6]) SSGL(u) =
∏
d>1

(
1 +

∑
m>1

udm

|GL(m, qd)|

)N(q;d)

.

Theorem 3.1.4.

SSU(u) =
∏
d odd

(
1 +

∑
m>1

udm

|U(m, qd)|

)Ñ(q;d)∏
d>1

(
1 +

∑
m>1

u2dm

|GL(m, q2d)|

)̃M(q;d)

.

To simplify the corresponding statements in the symplectic and orthogonal
cases we make some more definitions:

Y ∗
1 (u) :=

∏
d>1

(
1 +

∑
m>1

udm

|U(m, qd)|

)N∗(q;2d)∏
d>1

(
1 +

∑
m>1

udm

|GL(m, qd)|

)M∗(q;d)

;

Y ∗
2 (u) :=

∏
d>1

(
1 +

∑
m>1

(−1)m udm

|U(m, qd)|

)N∗(q;2d)∏
d>1

(
1 +

∑
m>1

udm

|GL(m, qd)|

)M∗(q;d)

;

F (u) := 1 +
∑
m>1

um

|Sp(2m, q)|
;

F+(u) := 1 +
∑
m>1

( 1

|O+(2m, q)|
+

1

|O−(2m, q)|

)
um ;

F−(u) := 1 +
∑
m>1

( 1

|O+(2m, q)|
− 1

|O−(2m, q)|

)
um .

Since |Sp(2m, q)| = O(qm(2m+1)) and |O±(2m, q)| = O(qm(2m−1)) these three
power series converge everywhere in C and so F (u), F+(u), F−(u) are entire
functions (analytic in the whole complex plane). Note that, since |O(2m+ 1, q)| =
e|Sp(2m, q)| , we have

F (u) = 1 + e
∑
m>1

um

|O(2m+ 1, q)|
= e

∑
m>0

um

|O(2m+ 1, q)|
.

The functions Y ∗
1 (u) and Y ∗

2 (u) may be thought of as perturbations of SSp(u) and
the function XO(u) defined on p. 54 respectively.

Theorem 3.1.5. Let e := e(q) . Then SSSp(u) = F (u)e Y ∗
1 (u) .
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Theorem 3.1.6. Let e := e(q) . Then

SSO+(u2) + SSO−(u2) + e uSSO(u
2) =

(
F+(u

2) + uF (u2)
)e
Y ∗
1 (u

2)

and SSO+(u2)− SSO−(u2) = F−(u
2)e Y ∗

2 (u
2) .

These two theorems may be derived by specialisation from product factori-
sations of the cycle index generating functions of the symplectic and orthogonal
groups; they can also be proved by arguments similar to those sketched for The-
orems 2.1.7, 2.2.1, and 2.3.1. We therefore leave the details to the reader. From
Theorem 3.1.6 it is a simple matter to separate out the individual generating func-
tions SSO(u), SSO+(u) and SSO−(u):

Theorem 3.1.7. Let e := e(q) . Then

SSO(u) = F+(u)
e−1 F (u)Y ∗

1 (u) ,

SSOϵ(u) = 1
2

(
F+(u)

e + (e− 1)uF (u)2
)
Y ∗
1 (u) +

1
2ϵ F−(u)

e Y ∗
2 (u) .

As with the probability of separable and cyclic matrices, our main objective is
to use the above theorems to give information about ssX(∞; q) for classical groups
X. We approach the problems of evaluating ssX(∞; q) and estimating the rate of
convergence of ssX(m; q) to ssX(∞; q) through the following theorem.

Theorem 3.1.8. Let X be one of the classical groups. Then

(a) SSX(u) =
TX(u)

1− u
, where TX(u) is analytic in the open disc D(q) ;

(b) if 1 < r < q then |ssX(∞, q)− ssX(m, q)| < o(r−m) as m→ ∞ .

Proof. We treat only the case where X = GL in detail: the others are similar and
are left to the reader. Using Lemma 1.3.10(c) we find that

SSGL(u)
(1− u)(1 + u

q )

1− u2

q

=
∏
d>1

((
1 +

∑
m>1

udm

|GL(m, qd)|

)(
1 +

ud

qd

)−1
)N(q;d)

.

Now (
1 +

∑
m>1

udm

|GL(m, qd)|

)(
1 +

ud

qd

)−1

= 1 +
∑
n>1

cd,n
udn

qdn

where

cd,n := (−1)n +
(−1)n−1qd

qd − 1
+

n∑
k=2

(−1)n−kqdk

|GL(k, qd)|

= (−1)n
( −1

qd − 1
+

n∑
k=2

(−1)kqdk

|GL(k, qd)|

)
.

In this sum the terms are alternating in sign and strictly decreasing in magnitude.
Therefore |cd,n| 6 1/(qd − 1) for n > 1, and∣∣∣∑

n>1

cd,n
udn

qdn

∣∣∣ <∑
n>1

|u|dn

qdn(qd − 1)
=

1

qd − 1

|u|d

qd
1

1− (|u|d/qd)

provided that |u|d < qd , that is, |u| < q . Now we apply Corollary 1.3.2 together
with the inequality N(q; d) < qd/d to see that∏(

1 +
∑
n>1

cd,n
udn

qdn
)N(q;d)



66 3. SEMISIMPLE AND REGULAR MATRICES IN CLASSICAL GROUPS

defines a function T0(u) which is analytic in the open disc D(q). Then

SSGL(u) =
1

1− u

1− (u2/q)

1 + (u/q)
T0(u) ,

and this is the required result with TGL(u) := (1− u2

q )T0(u)/(1+
u
q ). Part (b) now

follows immediately from Lemma 1.3.3, and the proof is complete.

We turn now to the evaluation of ssX(∞, q). In [5] and [6] the first author has
used one of the Rogers–Ramanujan identities to show that

ssGL(∞, q) =
∏
r>1

r≡0,±2 (mod 5)

(1− 1
qr−1 )

(1− 1
qr )

.

We have been unable to prove analogous formulae for the other classical groups.
Nevertheless, we can produce infinite product expansions which converge sufficiently
fast to be useful. They are expressed in terms of the following functions:

Aq,d(u) := 1− ud

qd(qd + 1)
−
∑
m>2

( 1

qd |U(m− 1, qd)|
− 1

|U(m, qd)|

)
udm ;

Bq,d(u) := 1 +
ud

qd(qd − 1)
−
∑
m>2

( 1

qd |GL(m− 1, qd)|
− 1

|GL(m, qd)|

)
udm .

The usefulness of these functions comes from the following observations.

Lemma 3.1.9. (a) Aq,d(u) =
(
1− ud

qd

)(
1 +

∑
m>1

udm

|U(m, qd)|

)
.

(b) Bq,d(u) =
(
1− ud

qd

)(
1 +

∑
m>1

udm

|GL(m, qd)|

)
.

(c) If |u| < q then Aq,d(u) = 1− ud(ud + 1)

qd(qd + 1)
+ α , where |α| < 3|u|2dq−4d .

(d) If |u| < q then Bq,d(u) = 1− ud(ud − 1)

qd(qd − 1)
+ β , where |β| < 3|u|2dq−4d .

(e) Y ∗
1 (u) =

(1− u
q )
e

1− u

∏
d>1

Aq,d(u)
N∗(q;2d)

∏
d>1

Bq,d(u)
M∗(q;2d) .

Proof. For parts (a) and (b) we simply multiply out the right sides of their
equations and collect terms of degree dm in u . For (c) recall that |U(m, qd)| =∏

16i6m(qdm − (−1)iqd(m−i)), and so Aq,d(u) = 1− ud(ud+1)
qd(qd+1)

+ α , where

α :=
u2d

qd(qd + 1)(q2d − 1)
−
∑
m>3

( 1

qd |U(m− 1, qd)|
− 1

|U(m, qd)|

)
udm.

Estimating quite crudely we see that
∣∣u2d/(qd(qd + 1)(q2d − 1)

)∣∣ < |u|2d/q4d and
also that if m > 3 then

0 <
1

qd |U(m− 1, qd)|
− 1

|U(m, qd)|
<

1

qd |U(m− 1, qd)|
<

1

q5d(m−2)
.
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Therefore if |u| < q then certainly∣∣∣ ∑
m>3

( 1

qd |U(m− 1, qd)|
− 1

|U(m, qd)|

)
udm

∣∣∣ < 2|u|3d

q5d
<

2|u|2d

q4d
,

and the inequality |α| < 3|u|2d/q4d follows immediately. This proves (c), and (d) is
similar. Part (e) is an immediate consequence of the definition of Y ∗

1 (u) (see p. 64)
together with Lemma 1.3.17(a).

Corollary 3.1.10. The function Y ∗
1 (u) is analytic in the open disc D(q

1
2 )

except for a simple pole at u = 1 .

Proof. Focus on the description of Y ∗
1 (u) given in (e) of the lemma. Using parts

(c) and (d) and Corollary 1.3.2 together with the facts that N∗(q; 2d) < qd − 1
and M∗(q; d) < qd − 1, we see that the infinite products

∏
d>1Aq,d(u)

N∗(q;2d) and∏
d>1Bq,d(u)

M∗(q;2d) converge provided that
∑(

|u|d(|u|d + 1)q−d + 3|u|2dq−3d
)

converges, which it does if |u|2 < q . Therefore Y ∗
1 is analytic in D(q

1
2 ).

For future use we record the following inequalities.

Lemma 3.1.11.
(
1− 1

qd(qd + 1)

)2
< Aq,d(1) <

(
1− 1

qd(qd + 1)

)2
+

1

q9d

and 1 +
1

q2d(q2d − 1)
< Bq,d(1) < 1 +

1

q2d(q2d − 1)
+

2

q9d
.

Proof. From the definition of Aq,d(u) we see that

Aq,d(1) =
(
1− 1

qd(qd + 1)

)2
+
∑
m>3

qd − 1

qd |U(m, qd)|
.

Since |U(m, qd)| =
∏

16i6m
(qdm − (−1)iqd(m−i)), estimating quite crudely we find

that ∑
m>3

qd − 1

qd |U(m, qd)|
<

1

q4d(qd + 1)2(q3d + 1)

(
1 +

1

q3d
+

1

q6d
+ · · ·

)
=

1

qd(qd + 1)2(q6d − 1)
<

1

q9d
.

Therefore (
1− 1

qd(qd + 1)

)2
< Aq,d(1) <

(
1− 1

qd(qd + 1)

)2
+

1

q9d
.

A very similar calculation, which we omit, proves the second assertion.

Lemma 3.1.12. Aq,d(1) >
(1− 1

q2d

1 + 1
q2d

)(1 + 1
q3d

1− 1
q3d

)(1− 1
q4d

1 + 1
q4d

)(
1− 1

q4d

)
,

Aq,d(1) <
(1− 1

q2d

1 + 1
q2d

)(1 + 1
q3d

1− 1
q3d

)(1− 1
q4d

1 + 1
q4d

)(
1− 1

q4d

)(
1 +

1

q5d

)4
,

and 1 +
1

q4d
< Bq,d(1) <

(
1 +

1

q4d

)(
1 +

1

q5d

)
.
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The proof is omitted. Although somewhat tedious in the case of Aq,d(1), it is
a routine calculation using the previous lemma.

With this preparation we can embark now on our promised exploitation of the
generating functions ssX(u). Our first aim is to find exact formulae and good
bounds for ssX(∞, q) and we begin with the unitary case.

Theorem 3.1.13. With Aq,d and Bq,d as defined above we have that

ssU(∞, q) =
(
1 +

1

q

) ∏
d odd

Aq,d(1)
Ñ(q;d)

∏
d>1

Bq2,d(1)
M̃(q;d) .

Proof. Lemma 1.3.14(a) with u replaced by u/q may be used to re-write the
formula for SSU(u) given in Theorem 3.1.4. The calculation is essentially the same
as for Theorem 2.1.2 and, together with Lemma 3.1.9(a), (b), yields that

SSU(u) =
1 + u

q

1− u

∏
d odd

Aq,d(u)
Ñ(q;d)

∏
d>1

Bq2,d(u
2)M̃(q;d).

It is not hard to calculate from Lemma 3.1.9(c), (d) that the two products represent
functions that are analytic in the open discs D(q1/2) and D(q3/4) respectively, and
so Lemma 1.3.3 delivers the given value of ssU(∞, q).

This description of ssU(∞, q), though complicated, may be used to show that
in the unitary case the upper bound given in Proposition 3.1.2 is more realistic
than the lower bound.

Theorem 3.1.14. 1− 1

q
− 1

q3
− 2

q4
< ssU(∞, q) < 1− 1

q
− 1

q3
+

3

q4
.

For small values of q we have the better bounds

0.4698 < ssU(∞, 2) < 0.4724 and 0.6498 < ssU(∞, 3) < 0.6501 .

Proof. From Theorem 3.1.13, Lemma 3.1.12 and Lemma 1.3.14 we derive that

ssU(∞, q) >
(
1 +

1

q

) ∏
d odd

(1− 1
q2d

1 + 1
q2d

)Ñ(q;d) ∏
d odd

(1 + 1
q3d

1− 1
q3d

)Ñ(q;d)

×
∏
d odd

(1− 1
q4d

1 + 1
q4d

)Ñ(q;d)∏
d odd

(
1− 1

q4d

)Ñ(q;d)∏
d>1

(
1 +

1

q8d

)̃M(q;d)

=
(
1 +

1

q

)
×

(1− 1
q2 )(1−

1
q )

(1 + 1
q2 )(1 +

1
q )

×
(1 + 1

q3 )(1 +
1
q2 )

(1− 1
q3 )(1−

1
q2 )

×
(1− 1

q4 )(1−
1
q3 )

(1 + 1
q4 )(1 +

1
q3 )

×
(1− 1

q4 )(1−
1
q7 )

(1 + 1
q8 )(1 +

1
q3 )

=
(1− 1

q )(1−
1
q4 )

2(1− 1
q7 )

(1 + 1
q3 )(1 +

1
q4 )(1 +

1
q8 )

.

Now

(1− 1
q )(1−

1
q4 )

2(1− 1
q7 )

(1 + 1
q3 )(1 +

1
q4 )(1 +

1
q8 )

=
(1− 1

q )(1−
1
q3 )(1−

1
q4 )

3(1− 1
q7 )

(1− 1
q6 )(1−

1
q16 )

> (1− 1
q )(1−

1
q3 )(1−

1
q4 )

3 ,
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and the inequality ssU(∞, q) > 1− 1
q −

1
q3 − 2

q4 follows easily.

For the upper bound we note that, by Lemma 3.1.12, if L is the lower bound
treated above then ssU(∞, q) < L×M , where

M :=
∏
d odd

(
1 +

1

q5d

)4Ñ(q;d) ∏
d>1

(
1 +

1

q10d

)M̃(q;d)

.

From Lemma 1.3.14 we see that

M =

(
(1 + 1

q5 )(1−
1
q9 )

(1 + 1
q10 )(1−

1
q4 )

)4 ∏
d>1

(
1 +

1

q10d

)−3M̃(q;d)

<
(1 + 1

q5 )
4(1− 1

q9 )
4

(1− 1
q4 )

4
.

Therefore

ssU(∞, q) <
(1− 1

q )(1−
1
q4 )

2(1− 1
q7 )

(1 + 1
q3 )(1 +

1
q4 )(1 +

1
q8 )

×
(1 + 1

q5 )
4(1− 1

q9 )
4

(1− 1
q4 )

4

=
(1− 1

q )(1 +
1
q4 )(1 +

1
q5 )

4(1− 1
q7 )(1−

1
q9 )

4

(1 + 1
q3 )(1−

1
q8 )(1−

1
q16 )

.

Since (1− 1
q7 )(1−

1
q9 )

4 < (1− 1
q8 )(1−

1
q16 ), we have

ssU(∞, q) <
(1− 1

q )(1 +
1
q4 )(1 +

1
q5 )

4

(1 + 1
q3 )

,

and it is easy (if a little tedious) to deduce that ssU(∞, q) < 1 − 1
q − 1

q3 + 3
q4 , as

required.
To get more accurate estimates for small values of q we use the facts, easily

proved by the arguments above, that

ssU(∞, q) = C ×
(1− 1

q )(1−
1
q4 )

2(1− 1
q7 )

(1 + 1
q3 )(1 +

1
q4 )(1 +

1
q8 )

= D ×
(1− 1

q )(1−
1
q4 )

2(1− 1
q7 )

(1 + 1
q3 )(1 +

1
q4 )(1 +

1
q8 )

×

(
(1 + 1

q5 )(1−
1
q9 )

(1 + 1
q10 )(1−

1
q4 )

)4

,

where C :=
∏
d odd

C
Ñ(q;d)
q,d

∏
d>1

C ′
q,d

M̃(q;d)
, D :=

∏
d odd

D
Ñ(q;d)
q,d

∏
d>1

D′
q,d

M̃(q;d)
and

Cq,d := Aq,d(1)×
(1 + 1

q2d

1− 1
q2d

)(1− 1
q3d

1 + 1
q3d

)(1 + 1
q4d

1− 1
q4d

)( 1

1− 1
q4d

)
,

C ′
q,d := Bq2,d(1)×

( 1

1 + 1
q8d

)
,

Dq,d := Cq,d ×
( 1

(1 + 1
q5d

)4

)
,

D′
q,d := C ′

q,d ×
( 1

(1 + 1
q10d

)4

)
.

Lemma 3.1.12 tells us that Cq,d > 1, C ′
q,d > 1 and Dq,d < 1, D′

q,d < 1. Therefore

C > C
Ñ(q;1)
q,1 = C q+1

q,1 and D < D
Ñ(q;1)
q,1 = D q+1

q,1 . Using these bounds in the
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above formulae for ssU(∞, q) and using also Lemma 3.1.11 modified in the case
where q = 2 to say that A2,1(1) > (1 − 1

2 )
(
1 +

∑
16m63

1
|U(m,2)|

)
, we find that

0.4698 < ssU(∞, 2) < 0.4724 and 0.6498 < ssU(∞, 3) < 0.6501, as the theorem
states.

We turn now to the symplectic groups.

Theorem 3.1.15. Define a(q) :=
∏
d>1

Aq,d(1)
N∗(q;2d)

∏
d>1

Bq,d(1)
M∗(q;d) and let

e := e(q) as usual. Then ssSp(∞, q) =
(
1 − 1

q

)e
F (1)e a(q) , where F (u) is as

defined on p. 64, so that F (1) = 1 +
∑
m>1

1

|Sp(2m, q)|
.

The proof of is very similar to that of Theorem 3.1.13 and is omitted. Our next
aim is to find usable bounds for ssSp(∞, q). To this end we first bound a(q).

Lemma 3.1.16. Let a(q) be as defined in Theorem 3.1.15 and let e := e(q) as
usual. Then

1− 1

q
+

e

q2
− 2e

q3
+

2e− 2

q4
< a(q) < 1− 1

q
+

e

q2
− 2e

q3
+

3e+ 3

q4
.

Also, 0.5953 < a(2) < 0.5956 and 0.7919 < a(3) < 0.7921 .

Proof. Since a(q) =
∏
d>1Aq,d(1)

N∗(q;2d)
∏
d>1Bq,d(1)

M∗(q;d) , Lemmas 3.1.12
and 1.3.17 imply that

(1− 1
q )

(1− 1
q2 )

e−1

(1− 1
q3 )

e−1

(1− 1
q2 )

(1− 1
q3 )

(1− 1
q4 )

e−1

(1− 1
q4 )(1−

1
q7 )

(1− 1
q8 )

e
< a(q)

and

a(q) <
(1− 1

q )

(1− 1
q2 )

e−1

(1− 1
q3 )

e−1

(1− 1
q2 )

(1− 1
q3 )

(1− 1
q4 )

e−1

(1− 1
q4 )(1−

1
q7 )

(1− 1
q8 )

e

×
(1− 1

q9 )
4

(1− 1
q4 )

4(1 + 1
q5 )

4e

∏
d>1

(
1 +

1

q5d

)−3M∗(q;d)

.

It follows that

(1− 1
q )(1−

1
q3 )

e(1− 1
q4 )

2−e(1− 1
q7 )

(1− 1
q2 )

e
< a(q) <

(1− 1
q )(1−

1
q3 )

e

(1− 1
q2 )

e(1− 1
q4 )

e+2
,

and it is now routine algebra to check that

1− 1

q
+

e

q2
− 2e

q3
+

2e− 2

q4
< a(q) < 1− 1

q
+

e

q2
− 2e

q3
+

3e+ 3

q4
.

For small values of q these inequalities are rather too crude to be helpful but
using the same technique as in the unitary case we find that

a(q) =
(1− 1

q )

(1− 1
q2 )

e−1

(1− 1
q3 )

e−1

(1− 1
q2 )

(1− 1
q3 )

(1− 1
q4 )

e−1

(1− 1
q4 )(1−

1
q7 )

(1− 1
q8 )

e

×
∏
d>1

Cd(q)
N∗(q;2d)

∏
d>1

Dd(q)
M∗(q;d) ,
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where

Cd(q) :=
q2d + 1

q2d − 1

q3d − 1

q3d + 1

q4d + 1

q4d − 1

q4d

q4d − 1
×Aq,d(1)

and

Dd(q) :=
q4d

q4d + 1
×Bq,d(1) .

Now Cd(q) > 1 and Dd(q) > 1 by Lemma 3.1.12, and it follows that

a(q) >
(1− 1

q )

(1− 1
q2 )

e−1

(1− 1
q3 )

e−1

(1− 1
q2 )

(1− 1
q3 )

(1− 1
q4 )

e−1

(1− 1
q4 )(1−

1
q7 )

(1− 1
q8 )

e

×
∏

16d6k
Cd(q)

N∗(q;2d)
∏

16d6k
Dd(q)

M∗(q;d) ,

for any k > 0. Using the bounds Ad,q(1) >
(
1 − 1

qd

)(
1 +

∑
16m63

1
|U(m,qd)|

)
and Bd,q(1) >

(
1 − 1

qd

)(
1 +

∑
16m63

1
|GL(m,qd)|

)
which follow immediately from

Lemma 3.1.9(a), (b), and taking k := 3 when q = 2 and k := 2 when q = 3 we
calculate that a(2) > 0.59534 · · · and a(3) > 0.79195 · · · .

Upper bounds for a(q) for particular values of q may be found in a similar way.
But here is an alternative technique. It follows from Lemma 3.1.11 that Aq,d(1) < 1
and Aq,d(1)Bq,d(1) < 1. Also N∗(q; 2d) >M∗(q; d) by Lemma 1.3.16(c), and so

Aq,d(1)
N∗(q;2d)Bq,d(1)

M∗(q;d)

= Aq,d(1)
(N∗(q;2d)−M∗(q;d))

(
Aq,d(1)Bq,d(1)

)M∗(q;d)

< 1 .

It follows that
a(q) <

∏
16d6k

Aq,d(1)
N∗(q;2d)Bq,d(1)

M∗(q;d)

for any k > 0. Using the upper bounds for Aq,d(1) and Bq,d(1) in Lemma 3.1.11(
except in the case q = 2, d = 1 when we use the better bound Aq,d(1) <

(
1 −

1
q

)(
1+ 1

q16 +
∑

16m63
1

|U(m,qd)|
))

, and taking k := 8 when q = 2 and k := 6 when

q = 3 we calculate that a(2) < 0.59558 · · · and a(3) < 0.79205 · · · . This completes
the proof of the lemma.

Theorem 3.1.17. If q is odd then

1− 3

q
+

5

q2
− 7

q3
+

6

q4
< ssSp(∞, q) < 1− 3

q
+

5

q2
− 7

q3
+

13

q4
,

and if q is even then

1− 2

q
+

2

q2
− 2

q3
+

1

q4
< ssSp(∞, q) < 1− 2

q
+

2

q2
− 2

q3
+

5

q4
.

Also, 0.3476 < ssSp(∞, 2) < 0.3481 and 0.3819 < ssSp(∞, 3) < 0.3821 .

Proof. By Theorem 3.1.15, ssSp(∞, q) =
(
1− 1

q

)e
F (1)e a(q). From the facts that

F (1) = 1 +
∑
m>1

1

|Sp(2m, q)|
and |Sp(2m, q)| =

∏
16i6m

(q2i − 1)q2i−1 it follows (see

Lemma 3.1.19 below) that

1 +
1

q(q2 − 1)
+

1

q4(q2 − 1)(q4 − 1)
< F (1) < 1 +

1

q(q2 − 1)
+

2

q10
.
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Our lower and upper bounds for ssSp(∞, q) when q is 2 or 3 can be calculated
immediately from the corresponding bounds for a(2) and a(3) given in the previous
lemma.

For general q we use the fact (see Lemma 3.1.19 below) that(
1 +

1

q3

)(
1 +

1

q5

)
< F (1) <

(1 + 1
q5 )

(1− 1
q3 )

.

In the proof of Lemma 3.1.16 we showed that

(1− 1
q )(1−

1
q3 )

e(1− 1
q4 )

2−e(1− 1
q7 )

(1− 1
q2 )

e
< a(q) <

(1− 1
q )(1−

1
q3 )

e

(1− 1
q2 )

e(1− 1
q4 )

e+2
,

and it follows that

ssSp(∞, q) >
(1− 1

q )
e+1(1− 1

q6 )
e(1− 1

q4 )
2−e(1 + 1

q5 )
e(1− 1

q7 )

(1− 1
q2 )

e

and

ssSp(∞, q) <
(1− 1

q )
e+1(1 + 1

q5 )
e

(1− 1
q2 )

e(1− 1
q4 )

e+2
.

It is now straightforward to check the inequalities displayed in the statement of the
theorem.

We turn now to the orthogonal groups.

Theorem 3.1.18. Let e := e(q) , let a(q) be as defined in Theorem 3.1.15, and
let F (u) , F+(u) be as defined on p.64. Then

ssO(∞, q) = F+(1)
e−1 F (1) (1− q−1)e a(q) ,

and ssO+(∞, q) = ssO−(∞, q) = 1
2

(
F+(1)

e + (e− 1)F (1)2
)
(1− q−1)e a(q) .

In particular, if q is even then ssO(∞, q) = ssSp(∞, q) .

Proof. By Theorem 3.1.7

SSO(u) = F+(u)
e−1 F (u)Y ∗

1 (u) ,

SSOϵ(u) = 1
2

(
F+(u)

e + (e− 1)uF (u)2
)
Y ∗
1 (u) +

1
2ϵ F−(u)

e Y ∗
2 (u) ,

where the functions Y ∗
1 (u), Y

∗
2 (u), F (u), F+(u), F−(u) are defined near the

beginning of this chapter. We have observed that F (u), F+(u) and F−(u) are
analytic in the whole plane. In Corollary 3.1.10 we have seen that Y ∗

1 (u) is analytic

in the open disc D(q
1
2 ) except for a simple pole at u = 1. It is not hard to show

that Y ∗
2 (u) behaves like the function XO(u) defined on p. 54 and is analytic in

D(q) (cf. Lemma 2.3.3). Thus if y∗1 is the residue of Y ∗
1 (u) at its pole at u = 1

then the residues of the functions

F+(u)
e−1 F (u)Y ∗

1 (u) and(
F+(u)

e + (e− 1)uF (u)2
)
Y ∗
1 (u) + ϵF−(u)

e Y ∗
2 (u)

at u = 1 are

F+(1)
e−1 F (1) y∗1 and

(
F+(1)

e + (e− 1)F (1)2
)
y∗1 ,

respectively. From Lemma 3.1.9(e) and Corollary 3.1.10 we know that y∗1 =
(
1 −

1
q

)e
a(q) and the theorem now follows from Lemma 1.3.3 in the usual way.
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The equation ssO(∞, q) = ssSp(∞, q) when q is even, which can be read off
from our formulae for these limiting probabilities, is a manifestation of the fact
that, since semisimple elements correspond under the isomorphism O(2m+1, q) ∼=
Sp(2m, q), we have ssO(2m+ 1, q) = ssSp(2m, q) for all m .

In order to obtain bounds for the limiting probabilities in the orthogonal case
we need bounds for F (1), F+(1) and F+(1)

2 + F (1)2 . Those are given in the
following lemma.

Lemma 3.1.19. For all q

1 +
1

q(q2 − 1)
+

1

q4(q2 − 1)(q4 − 1)
< F (1) < 1 +

1

q(q2 − 1)
+

2

q10
,

and

1 +
q

q2 − 1
+

1

(q2 − 1)(q4 − 1)
< F+(1) < 1 +

q

q2 − 1
+

2

q6
.

Also, if q > 3 then

1 +
1

q
+

1

2q2
+

2

q3
+

1

q4
< 1

2

(
F+(1)

2 + F (1)2
)
< 1 +

1

q
+

1

2q2
+

2

q3
+

3

q4
.

Proof. By definition F (1) = 1+
∑
m>1

1

|Sp(2m, q)|
, and from the well-known formula

|Sp(2m, q)| =
∏m
i=1 q

2m−1(q2m − 1), certainly

F (1) > 1 +
1

q(q2 − 1)
+

1

q4(q2 − 1)(q4 − 1)
.

For an upper bound we start from the fact that if m > 2 then, as is easily estab-
lished,

|Sp(2m, q)| > q4(q2 − 1)(q4 − 1)× q10(m−2) .

Therefore

F (1) < 1 +
1

q(q2 − 1)
+

1

q4(q2 − 1)(q4 − 1)

∑
m>2

1

q10(m−2)

= 1 +
1

q(q2 − 1)
+

q6

(q2 − 1)(q4 − 1)(q10 − 1)
.

Since (q2 − 1)(q4 − 1)(q10 − 1) > 1
2q

16 we have

F (1) < 1 +
1

q(q2 − 1)
+

2

q10

as stated in the first part of the lemma.

Recall that |Oϵ(2m, q)| = 2qm
2−m(qm− ϵ)

∏m−1
i=1 (q2i− 1). From the definition

(p. 64) of F+(u) we have

F+(1) = 1 +
∑
m>1

( 1

|O+(2m, q)|
+

1

|O−(2m, q)|

)
.

Certainly therefore

F+(1) > 1 +
1

2(q − 1)
+

1

2(q + 1)
+

1

2q2(q2 − 1)2
+

1

2q2(q4 − 1)

= 1 +
q

q2 − 1
+

1

(q2 − 1)(q4 − 1)
.
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Also

1

|O+(2m, q)|
+

1

|O−(2m, q)|
=

1

2qm2−m

(m−1∏
i=1

1

q2i − 1

)( 1

qm − 1
+

1

qm + 1

)
=

1

qm2−2m

m∏
i=1

1

q2i − 1

6 1

(q2 − 1)(q4 − 1)q8(m−2)
if m > 2 .

Therefore

F+(1) < 1 +
q

q2 − 1
+

1

(q2 − 1)(q4 − 1)

∑
m>2

1

q8(m−2)

= 1 +
q

q2 − 1
+

q8

(q2 − 1)(q4 − 1)(q8 − 1)
.

Now (q2 − 1)(q4 − 1)(q8 − 1) > 1
2q

14 and so

F+(1) < 1 +
q

q2 − 1
+

2

q6

and this is the upper bound for F+(1) in the statement of the lemma.
From what has already been proved it follows that F+(1) > 1+ q−1 + q−3 and

that F (1) > 1 + q−3 . Therefore

F+(1)
2 > 1 +

2

q
+

1

q2
+

2

q3
+

2

q4
, F (1)2 > 1 +

2

q3
,

and
1
2

(
F+(1)

2 + F (1)2
)
> 1 +

1

q
+

1

2q2
+

2

q3
+

1

q4
,

which is the required lower bound. For an upper bound, note that if q > 3 then
F+(1) < 1 + q−1 + q−3 + 2q−5 and F (1) < 1 + q−3 + 2q−5 . Therefore

F+(1)
2 + F (1)2 < 2 +

2

q
+

1

q2
+

4

q3
+

2

q4
+

8

q5
+

6

q6
+

8

q8
+

8

q10
,

and if q > 3 we easily find that

1
2

(
F+(1)

2 + F (1)2
)
< 1 +

1

q
+

1

2q2
+

2

q3
+

3

q4
.

This completes the proof of the lemma.

Theorem 3.1.20. If q is odd then

1− 2

q
+

2

q2
− 2

q3
− 2

q4
< ssO(∞, q) < 1− 2

q
+

2

q2
− 2

q3
+

7

q4
and

1− 2

q
+

5

2q2
− 7

2q3
< ssO±(∞, q) < 1− 2

q
+

5

2q2
− 7

2q3
+

21

2q4
.

For q = 3 we have

0.5046 < ssO(∞, 3) < 0.5053 and 0.5244 < ssO±(∞, 3) < 0.5252 .

If q is even then ssO(∞, q) = ssSp(∞, q) , for which Theorem 3.1.17 gives
bounds, and

1

2
− 1

2q
− 3

2q4
< ssO±(∞, q) <

1

2
− 1

2q
+

5

2q4
.
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For q = 2 we have 0.2513 < ssO±(∞, 2) < 0.2515 .

Proof. The values of ssO(∞, q) and ssO±(∞, q) are given by Theorem 3.1.18. If

q is odd then ssO(∞, q) =
(
1 − 1

q

)2
F+(1)F (1)a(q). It is straightforward to check

that (1− 1
q )(1 +

q
q2−1 ) = 1− 1

q(q+1) , that (1 − 1
q )(1 +

1
q(q2−1) ) = 1− 1

q +
1

q2(q+1) ,

and that(
1− 1

q(q + 1)

)(
1− 1

q
+

1

q2(q + 1)

)
= 1− 1

q
+

1

q2
+

3

q3
− 3q + 4

q3(q + 1)2

> 1− 1

q
− 1

q2
+

3

q3
− 3

q4
.

Therefore by Lemmas 3.1.16 and 3.1.19 we have

ssO(∞, q) >
(
1− 1

q
− 1

q2
+

3

q3
− 3

q4

)(
1− 1

q
+

2

q2
− 4

q3
+

2

q4

)
and the lower bound given in the theorem follows easily. For the upper bound a
very similar argument proves that(

1− 1

q

)2
F+(1)F (1) < 1− 1

q
− 1

q2
+

3

q3
− 2

q4
,

so we have

ssO(∞, q) <
(
1− 1

q
− 1

q2
+

3

q3
− 2

q4

)(
1− 1

q
+

2

q2
− 4

q3
+

9

q4

)
,

and again the upper bound given in the theorem follows easily.

If q is odd then ssO±(∞, q) = 1
2

(
F+(1)

2 + F (1)2
)(
1− 1

q

)2
a(q) and so we find

that

ssO±(∞, q) <
(
1 +

1

q
+

1

2q2
+

2

q3
+

3

q4

)(
1− 1

q

)2(
1− 1

q
+

2

q2
− 4

q3
+

9

q4

)
<
(
1− 1

q
− 1

2q2
+

2

q3
+

1

2q4

)(
1− 1

q
+

2

q2
− 4

q3
+

7

q4

)
< 1− 2

q
+

5

2q2
− 7

2q3
+

21

2q4
.

The calculations for the lower bound, and for the bounds when q is even, are very
similar and are omitted. Given all the information we have collected, calculations
of the bounds for q = 2 and q = 3 are also straightforward

(
although for q = 2

we use a variant of the upper bound for F+(1) given in Lemma 3.1.19, namely
F+(1) < 1 + q

q2−1 + 1
(q2−1)(q4−1) +

2
q15

)
, and these complete the proof.

It is worth observing that when q is even all semisimple elements of the ortho-
gonal groups O±(2m, q) lie in the subgroup Ω±(2m, q) of index 2. Thus, with an
obvious notation, ssO±(∞, q) = 1

2ssΩ±(∞, q), and to some extent this explains the

factor 1
2 in the bounds in this case.

From Fulman’s product formula for ssGL(∞, q) cited above (p. 66) it is very
easy to compute the first few terms of the formal power series in q−1 that rep-
resents this limiting probability in the sense of [23, §7]. The formulae given in
Theorems 3.1.13, 3.1.15 and 3.1.18 permit a similar calculation of ssG(∞, q) for
the other classical groups G . For the unitary groups we calculated logAq,d(1) and
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logBq,d(1), then
∑
d odd Ñ(q; d) logAq,d(1) and

∑
d>1 M̃(q; d) logBq,d(1) to the de-

sired accuracy—in our case modulo O(q−10). This gave log
(∏

d oddAq,d(1)
Ñ(q;d)×∏

d>1Bq2,d(1)
M̃(q;d)

)
, which, after exponentiation and multiplication by (1 + q−1),

yielded ssU(∞, q) as

1− 1

q
− 1

q3
+

2

q4
− 2

q5
+

5

q6
− 9

q7
+

11

q8
− 20

q9
+O

( 1

q10

)
.

For the symplectic and othogonal groups we used the same strategy to compute
a(q) (defined in Theorem 3.1.15). When q is odd it turns out to be

1− 1

q
+

2

q2
− 4

q3
+

7

q4
− 13

q5
+

22

q6
− 42

q7
+

77

q8
− 138

q9
+O

( 1

q10

)
,

and when q is even it turns out to be

1− 1

q
+

1

q2
− 2

q3
+

3

q4
− 5

q5
+

8

q6
− 15

q7
+

27

q8
− 46

q9
+O

( 1

q10

)
.

The values of ssSp(∞, q), ssO(∞, q) and ssO±(∞, q) listed in Table 11 were then
obtained quite easily from the formulae in Theorems 3.1.15 and 3.1.18.

To complete our study of the probability that an element of a classical group is
semisimple we study convergence rates. Recall (see p. 20) that pr(n) is defined in-
ductively by the prescription p1(n) := p(n), where p(n) is the number of partitions
of n (and p(0) := 1), and pr(n) :=

∑n
m=0 pr−1(m).

Lemma 3.1.21. Let A(u) := (1− qu)SSGL(qu) . Then

|A|(u) � (q − 1)

(1− u)
Ω(u)−1 ,

where Ω(u) is as defined on p. 20. Therefore (by Lemma 1.3.8),

|ssGL(n, q)− ssGL(n− 1, q)| 6 (q − 1)p2(n)q
−n .

Proof. By the proof of Theorem 3.1.8,

A(u) =
1− qu2

1 + u

∏
d>1

(
1 +

∑
n>1

cd,n u
dn
)N(q;d)

,

where |cd,n| 6 1/(qd − 1) for n > 1. Thus, by Lemma 1.3.5(b),

|A|(u) �
( q − 1

1− u

) ∏
d>1

(
1 +

∑
n>1

udn

qd − 1

)N(q;d)

=
( q − 1

1− u

) ∏
d>1

(
1 +

1

qd − 1

ud

1− ud

)N(q;d)

.

From Lemma 1.3.6 and the fact that N(q; d) 6 (qd − 1)/d ,

|A|(u) �
( q − 1

1− u

)
exp

(∑
d>1

N(q; d)

qd − 1

ud

1− ud

)
�
( q − 1

1− u

)
exp

(∑
d>1

1

d

ud

1− ud

)
.

Thus |A|(u) �
( q − 1

1− u

)
Ω(u)−1 by Lemma 1.3.7, as the lemma states.
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Theorem 3.1.22. If 6 6 n < n′ 6 ∞ and k := (q − 1)/(2q − 3) then

|ssGL(n
′, q)− ssGL(n, q)| < 3k p2(n)q

−n < 8k
(
2
3 q
)−n

.

This is an immediate consequence of the previous lemma and Lemma 1.3.9.

Lemma 3.1.23. Let A(u) := (1− qu)SSU(qu) . Then

|A|(u) � (q + 1)

(1− u)3
Ω(u)−1 ,

where Ω(u) is as defined on p. 20. Therefore

|ssU(n, q)− ssU(n− 1, q)| 6 (q + 1) p4(n) q
−n .

Proof. By Theorem 3.1.4

SSU(u) =
∏
d odd

(
1 +

∑
m>1

udm

|U(m, qd)|

)Ñ(q;d)∏
d>1

(
1 +

∑
m>1

u2dm

|GL(m, q2d)|

)̃M(q;d)

,

and so by Lemma 1.3.14(b),

A(u) =
(1− qu2)(1 + u)

(1 + u2)

∏
d odd

Bd(u)
Ñ(q;d)

∏
d>1

Cd(u)
M̃(q;d) ,

where

Bd(u) :=
(
1 +

∑
m>1

qdm udm

|U(m, qd)|

)( 1

1 + ud

)
and

Cd(u) :=
(
1 +

∑
m>1

q2dm u2dm

|GL(m, q2d)|

)( 1

1 + u2d

)
.

Writing Bd(u) = 1 +
∑
n>1 bd,nu

dn we find that

bd,n = (−1)n
(
1− qd

qd + 1
+ ε
)
= (−1)n

( 1

qd + 1
+ ε
)
,

where ε :=

n∑
m=2

(−1)mqdm

|U(m, qd)|
. In this sum the terms are alternating in sign and

decreasing monotonically in magnitude. Thus 0 6 ε 6 qd
/(

(qd + 1)(q2d − 1)
)
and

|bd,1| =
1

qd + 1
while |bd,n| <

qd

q2d − 1
for n > 2.

Therefore

|Bd|(u) = 1 +
∑
n>1

|bd,n|udn � 1 +
1

qd − 1

∑
n>1

udn = 1 +
1

qd − 1

ud

1− ud
.

The factors Cd(u) may be treated similarly. If we write Cd(u) = 1+
∑
n>1 cd,nu

2dn

we find, as in the proofs of Theorem 3.1.8 and Lemma 3.1.21 (with q there replaced
by q2 here), that |cd,n| 6 1/(q2d − 1), so that

|Cd|(u) � 1 +
1

q2d − 1

u2d

1− u2d
.
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Now let

A0(u) :=
(1− qu2)(1 + u)

(1 + u2)
, A1(u) :=

∏
d odd

Bd(u)
Ñ(q;d)

∏
d>1

Cd(u)
M̃(q;d) .

Clearly,

|A0|(u) �
(1 + qu2)(1 + u)

(1− u2)
=

1 + qu2

1− u
,

and so |A0|(u) � (q + 1)/(1 − u). To treat A1(u) we use Lemma 1.3.6 together

with the facts that Ñ(q; 1) = q + 1, Ñ(q; d) 6 (qd − 1)/d for odd d > 1, and

M̃(q; d) 6 (q2d − 1)/(2d):

|A1|(u) �
(
|B1|(u)

)q+1 ∏
d>3,
d odd

(
|Bd|(u)

)Ñ(q;d) ∏
d>1

(
|Cd|(u)

)M̃(q;d)

�
(
|B1|(u)

)2
exp

( ∑
d>1,
d odd

1

d

ud

1− ud
+
∑
d>1

1

2d

u2d

1− u2d

)

=
(
|B1|(u)

)2
exp

(∑
d>1

1

d

ud

1− ud

)
.

Thus |A1|(u) �
(
|B1|(u)

)2
Ω(u)−1 by Lemma 1.3.7. We have seen that

|B1|(u) � 1 +
1

q − 1

u

1− u

and therefore trivially

|B1|(u) � 1 +
u

1− u
=

1

1− u
.

Putting this all together we find that |A|(u) � (q + 1)(1 − u)−3Ω(u)−1 . It fol-
lows from Lemma 1.3.8 that |ssU(n, q) − ssU(n − 1, q)|qn 6 (q + 1)p4(n), that is,
|ssU(n, q)− ssU(n− 1, q)| 6 (q + 1) p4(n) q

−n , as was to be proved.

As a corollary we have from Lemma 1.3.9 the following bounds:

Theorem 3.1.24. If 11 6 n < n′ 6 ∞ and k := (q + 1)/(2q − 3) then

|ssU(n′, q)− ssU(n, q)| < 3k p4(n)q
−n < 63 k

(
2
3 q
)−n

.

In preparation for our treatment of the symplectic and orthogonal groups we
first prove the following lemma.

Lemma 3.1.25. Define

A1(u) := Y ∗
1 (qu)

∏
d>1

(1 + ud)−N
∗(q;2d)

∏
d>1

(1 + ud)−M
∗(q;d) ,

and

A2(u) := Y ∗
2 (qu)

∏
d>1

(1− ud)−N
∗(q;2d)

∏
d>1

(1 + ud)−M
∗(q;d) ,

where Y ∗
1 (u) , Y

∗
2 (u) are as defined on p. 64. Define also e := e(q) , and k0 := 1 if

q is odd and k0 := 4q2

2q2−3 if q is even. Then

|Ai|(u) � k0 (1− u)e−2 Ω(u)−1
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for i = 1, 2 , where Ω(u) is as defined on p. 20.

Proof. We deal first with A1(u). We have

A1(u) =
∏
d>1

((
1 +

∑
m>1

qdm udm

|U(m, qd)|

)( 1

1 + ud

))N∗(q;2d)

×
∏
d>1

((
1 +

∑
m>1

qdm udm

|GL(m, qd)|

)( 1

1 + ud

))M∗(q;d)

=
∏
d>1

(
1 +

∑
n>1

bd,nu
dn
)N∗(q;2d) ∏

d>1

(
1 +

∑
n>1

cd,nu
dn
)M∗(q;d)

,

where bd,n is as in our treatment of the unitary case and cd,n is as in the general
linear and unitary cases. Thus

|bd,1| =
1

qd + 1
, |bd,n| <

qd

q2d − 1
for n > 2, and |cd,n| 6

1

qd − 1
.

Also, N∗(q; 2d) = (qd + 1 − e)/2d if d is a power of 2, N∗(q; 2d) 6 (qd − 1)/2d
otherwise, and M∗(q; d) 6 (qd − 1)/2d for d > 1 (see Lemma 1.3.16).

If q is odd, so that e = 2 and N∗(q; 2d) 6 (qd − 1)/2d for all d , then∏
d>1

(
1 +

∑
n>1

|bd,n|udn
)N∗(q;2d) ∏

d>1

(
1 +

∑
n>1

|cd,n|udn
)M∗(q;d)

� exp

(∑
d>1

(
N∗(q; 2d)

∑
n>1

|bd,n|udn
)
+
∑
d>1

(
M∗(q; d)

∑
n>1

|cd,n|udn
))

� exp

(∑
d>1

(∑
n>1

udn

2d

)
+
∑
d>1

(∑
n>1

udn

2d

))
= exp

∑
d>1

(∑
n>1

udn

d

)
,

and it follows that in this case (q odd) |A1|(u) � Ω(u)−1 as required.

Suppose now that q is even, so that e = 1. Define N∗∗(q; 2d) to be equal to
N∗(q; 2d)− 1 if d is a power of 2 and to be N∗(q; 2d) otherwise. Then∏

d>1

(
1 +

∑
n>1

bd,nu
dn
)N∗(q;2d) ∏

d>1

(
1 +

∑
n>1

cd,nu
dn
)M∗(q;d)

= B(u)C(u) ,

where

B(u) :=
∏
m>0

(
1 +

∑
n>1

b2m,n u
2mn

)
and

C(u) :=
∏
d>1

(
1 +

∑
n>1

bd,n u
dn
)N∗∗(q;2d) ∏

d>1

(
1 +

∑
n>1

cd,n u
dn
)M∗(q;d)

.

The same calculation as that for odd q yields that |C|(u) � Ω(u)−1 .
To deal with B(u) we define Bd(u) := 1 +

∑
n>1 bd,n u

dn and note (see the

definition of bd,n above) that Bd(u) = (1+ud)−1
(
1+

∑
m>1

qdm udm

|U(m,qd)|
)
. It is a well

known observation by Euler that since (1− u)
∏n−1
m=0(1 + u2

m

) = 1− u2
n

, we have
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m>0(1 + u2

m

) = 1/(1− u), and so

B(u) =
∏
m>0

B2m(u) = (1− u)
∏
m>0

(
1 +

∑
n>1

q2
mn u2

mn

|U(n, q2m)|

)
.

We shall prove that∏
m>0

(
1 +

∑
n>1

q2
mn u2

mn

|U(n, q2m)|

)
�
( 2q2

2q2 − 3

)
(1− u)−1 .

The first step is to note that if n > 1 then
qdn

|U(n, qd)|
<

1

q2d(n−1)
+

1

q2dn
: this is

easily checked if n = 1 or n > 3, and if n = 2 we observe that

q2d

|U(2, qd)|
=

qd

(qd + 1)(q2d − 1)
<

1

q2d
+

1

q4d
.

Therefore

1 +
∑
n>1

qdn udn

|U(n, qd)|
�
(
1 + ud

)(
1 +

∑
n>1

udn

q2dn

)
=
(
1 + ud

)(
1− ud

q2d

)−1

,

and ∏
m>0

(
1 +

∑
n>1

q2
mn u2

mn

|U(n, q2m)|

)
�

∏
m>0

(1 + u2
m

)
∏
m>0

(
1− u2

m

q2m+1

)−1

�
∏
m>0

(1 + u2
m

)
∏
k>1

(
1− uk

q2k

)−1

= (1− u)−1Ω(u/q2)−1 .

Now Ω(u/q2)−1 =
∑

p(n)q−2n un and we know from Lemma 1.3.9 that p(n)q−2n 6(
2q2/3

)−n
for all n > 0. Thus Ω(u/q2)−1 � (1− (3u/2q2))−1 , and∏

m>0

(
1 +

∑
n>1

q2
mn u2

mn

|U(n, q2m)|

)
� 1

(1− u)(1− (3u/2q2))
� 2q2

2q2 − 3
(1− u)−1 ,

where the last assertion comes from Lemma 1.3.5(d). It now follows that |B|(u) �
(1 + u) × 2q2

2q2−3 (1 − u)−1 � 4q2

2q2−3 (1 − u)−1 , and so in this case (q even) we have

|A1|(u) � 4q2

2q2−3 (1−u)
−1Ω(u)−1 . This completes the proof of the lemma for A1(u).

To deal with A2(u) notice that, when expressed as the product of two infinite
products, it is the same as A1(u) except that in the first factor ud is replaced by
−ud throughout. Thus

A2(u) =
∏
d>1

(
1 +

∑
n>1

(−1)nbd,nu
dn
)N∗(q;2d) ∏

d>1

(
1 +

∑
n>1

cd,nu
dn
)M∗(q;d)

,

where bd,n and cd,n are exactly as in our analysis of A1(u). The rest of the proof
for A1(u) therefore applies to give the result for A2(u), and this completes the
proof of the lemma.

We now turn to the symplectic groups.



3.1. SEMISIMPLE MATRICES 81

Lemma 3.1.26. Define A(u) := (1− qu)SSSp(qu) , and let k0 := 1 if q is odd,

k0 := 4q2

2q2−3 if q is even, as in Lemma 3.1.25. Then

|A|(u) � (q + 1)k0 (1− u)−2Ω(u)−1 ,

where Ω(u) is as defined on p. 20. Consequently, by Lemma 1.3.8,

|ssSp(2m, q)− ssSp(2m− 2, q)| < (q + 1)k0 p3(m)q−m.

Proof. By Theorem 3.1.5, SSSp(u) = F (u)e Y ∗
1 (u), where e = e(q) (so that,

recall, e = 2 if q is odd and e = 1 if q is even), F (u) = 1 +
∑
m>1

um

|Sp(2m, q)|
, and

Y ∗
1 (u) =

∏
d>1

(
1 +

∑
m>1

udm

|U(m, qd)|

)N∗(q;2d) ∏
d>1

(
1 +

∑
m>1

udm

|GL(m, qd)|

)M∗(q;d)

.

By Lemma 1.3.17(b),

A(u) =
1− qu2

(1 + u)e
F (qu)e Y ∗

1 (qu)
∏
d>1

(1 + ud)−N
∗(q;2d)

∏
d>1

(1 + ud)−M
∗(q;d) ,

and so A(u) = A1(u)A3(u) where A1(u) is as defined in the preceding lemma and

A3(u) :=
1− qu2

(1 + u)e
F (qu)e .

Now F (qu) = 1+
1

q2 − 1
u+

1

q2(q2 − 1)(q4 − 1)
u2+· · · , and Lemma 1.3.5(c) applied

e times shows that |A3|(u) � (1 + qu2)(1 − u)−e � (1 + q)(1 − u)−e . The result
now follows from Lemma 3.1.25.

Exactly as for the general linear and unitary cases we now have the following
theorem.

Theorem 3.1.27. Let k :=
q + 1

2q − 3
if q is odd and k :=

4q2(q + 1)

(2q − 3)(2q2 − 3)
if q

is even. If 9 6 m < m′ 6 ∞ then

|ssSp(2m′, q)− ssSp(2m, q)| 6 3k p3(m) q−m < 23 k
(
2
3 q
)−m

.

The analysis for the orthogonal groups is similar. We treat the odd-dimensional
groups first.

Lemma 3.1.28. Let A(u) := (1 − qu)SSO(qu) , and let k0 := 1 if q is odd,

k0 := 4q2

2q2−3 if q is even, as in Lemma 3.1.25. Then

|A|(u) � (q + 1)k0 (1− u)−2Ω(u)−1 ,

where Ω(u) is as defined on p. 20. Consequently, by Lemma 1.3.8,

|ssO(2m+ 1, q)− ssO(2m− 1, q)| < (q + 1)k0 p3(m)q−m.

Proof. Write A(u) as A1(u)A3(u) where, as in the proof of Lemma 3.1.26, A1(u)
is the function defined in Lemma 3.1.25 and

A3(u) :=
1− qu2

(1 + u)e
F+(qu)

e−1 F (qu) .

It follows from Lemma 1.3.5(c) that F (qu)/(1+u) � (1−u)−1 . Although the same
result does not quite suffice to prove that F+(qu)/(1+u) � (1−u)−1 , the argument
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used in its proof does: for, examining coefficients we see that F+(qu)/(1 + u) =∑
n>1 dnu

n , where d0 = 1, d1 = −1/(q2 − 1), and d1 < dn < 0 for n > 2.
Therefore

|A3|(u) � (1 + qu2)(1− u)−e � (1 + q)(1− u)−e ,

and the result now follows from Lemma 3.1.25.

The following is an immediate consequence.

Theorem 3.1.29. Let k :=
q + 1

2q − 3
if q is odd and k :=

4q2(q + 1)

(2q − 3)(2q2 − 3)
if q

is even. If 9 6 m < m′ 6 ∞ then

|ssO(2m′ + 1, q)− ssO(2m+ 1, q)| 6 3k p3(m) q−m < 23 k
(
2
3 q
)−m

.

For the even-dimensional orthogonal groups the situation is similar.

Lemma 3.1.30. Let ϵ be + or − and let A(u) := (1− qu)SSOϵ(qu) . Also, let

k0 := 3
2 (q + 1)2 if q is odd and let k0 :=

2q2(q + 1)(q + 2)

2q2 − 3
if q is even. Then

|A|(u) � k0(1− u)−2 Ω(u)−1 , where Ω(u) is as defined on p. 20. Thus

|ssOϵ(2m, q)− ssOϵ(2m− 2, q)| < k0 p3(m)q−m .

Proof. By Theorem 3.1.7 and Lemma 1.3.17(b), (c),

A(u) = 1
2A1(u)A3(u) +

1
2ϵA2(u)A4(u)

where A1(u) and A2(u) are as defined in Lemma 3.1.25 and

A3(u) :=
1− qu2

(1 + u)e
(
F+(qu)

e + (e− 1)quF (qu)2
)

and

A4(u) :=
(1− qu)(1− qu2)

(1− u)e−1(1 + u)e
F−(qu)

e .

Arguing as in the proof of Lemma 3.1.28 (and treating the cases e = 1 and e = 2
separately), we find that

|A3|(u) �

{
(q + 1)2/(1− u)2 if q is odd,

(q + 1)/(1− u) if q is even.

Also, if q is odd so that e = 2 then

A4(u) =
(1− qu)(1− qu2)

(1− u2)

F−(qu)

1 + u
F−(qu) .

Since all the coefficients of F−(qu) lie between 0 and 1, by Lemma 1.3.5(c)

|A4|(u) �
(1 + qu)(1 + qu2)

(1− u2)

1

1− u
F−(qu) �

(q + 1)2

(1− u)

F−(qu)

(1− u)
.

Then Lemma 1.3.5(d) applies to give that |A4|(u) � (q+1)2F−(q)(1− u)−2 . Now
F−(q) = 1 + q

q2−1 + 1
(q2−1)(q2+1) + · · · and it is not hard to see that F−(q) < 2.

Thus if q is odd then |A4|(u) � 2(q + 1)2/(1 − u)2 . If q is even, so that e = 1
then

A4(u) = (1− qu)(1− qu2)
F−(qu)

(1 + u)
,

and so we find that |A4|(u) � (q + 1)2/(1− u) in this case.
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Now
|A|(u) � 1

2 |A1|(u) |A3|(u) + 1
2 |A2|(u) |A4|(u) ,

and so from Lemma 3.1.25

|A|(u) �


3
2 (q + 1)2 (1− u)−2 Ω(u)−1 if q is odd,

2q2(q + 1)(q + 2)

2q2 − 3
(1− u)−2 Ω(u)−1 if q is even,

as claimed.

As usual, the following theorem is an immediate consequence.

Theorem 3.1.31. Let ϵ ∈ {+, −} , and let k :=
3(q + 1)2

2(2q − 3)
if q is odd and

k :=
2q2(q + 1)(q + 2)

(2q − 3)(2q2 − 3)
if q is even. If 9 6 m < m′ 6 ∞ then

|ssOϵ(2m′, q)− ssOϵ(2m, q)| 6 3k p3(m) q−m < 23 k
(
2
3 q
)−m

.

3.2. Regular elements

Recall that an element of a finite classical group G is said to be regular if its
centraliser in the corresponding algebraic group over the algebraic closure of the
appropriate prime field has minimal possible dimension, namely, the Lie rank of
the group. As was mentioned in the introduction, for the groups GL, U and Sp
an element is regular if and only if it is cyclic, but, as was pointed out in [17], this
is not true in the orthogonal case. In this section we focus on the finite orthogonal
groups.

Let rOϵ(2m, q) and rO(2m+1, q) be the probabilities that elements of Oϵ(2m, q)
and of O(2m+1, q) respectively are regular. Of particular interest are the limiting
values

rOϵ(∞, q) := lim
m→∞

rOϵ(2m, q) and rO(∞, q) := lim
m→∞

rO(2m+ 1, q) .

These limits do not obviously exist but we shall use generating functions to prove
that they do and to evaluate them. Define

RO+(u) := 1 +
∑
m>1

rO+(2m, q)um ; RO−(u) :=
∑
m>1

rO−(2m, q)um ;

RO(u) := 1 +
∑
m>1

rO(2m+ 1, q)um .

To simplify the description of regular elements in the orthogonal groups we intro-
duce a little ad hoc terminology. Let U be a vector space over Fq equipped with an
orthogonal form φ , let X ∈ Aut (U,φ), and suppose that the characteristic poly-
nomial of X is (t− η)n , where η = ±1 (that is, X is unipotent or (−1)-potent).
We shall call X , or the X -module U , nearly cyclic if either U = {0} or there
is an X -invariant orthogonal direct sum decomposition U = U0 ⊕⊥ U1 in which
dimU0 = 1 and U1 is cyclic as X -module. Note that under these circumstances if
q is odd then dimU1 will be odd and dimU will therefore be even, whereas if q is
even then dimU1 will be even and dimU will be odd.

We shall treat fields of odd and even characteristic separately, dealing first with
odd q .
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Theorem 3.2.1. (See [11]). Let q be an odd prime power and X an ortho-
gonal matrix over Fq . Then X is regular if and only if

(a) for every monic irreducible polynomial ϕ other than t − 1 and t + 1 the
ϕ-primary component of X is cyclic and

(b) for η = ±1 , the (t − η)-primary component of X is cyclic if it is odd-
dimensional and nearly cyclic if it is even-dimensional.

What this means is that when q is odd:

an element of SOϵ(2m, q) is regular if and only if it is of the form Y ⊕⊥

X1⊕⊥X−1 , where Y is cyclic and does not have 1 or −1 as an eigenvalue,
X1 is unipotent and nearly cyclic, X−1 is (−1)-potent and nearly cyclic;

an element of Oϵ(2m, q) \ SOϵ(2m, q) is regular if and only if it is cyclic;

an element of SO(2m + 1, q) is regular if and only if it is of the form
Y ⊕⊥X−1 , where Y is cyclic and does not have −1 as an eigenvalue, and
X−1 is (−1)-potent and nearly cyclic;

an element of O(2m+ 1, q) \ SO(2m+ 1, q) is regular if and only if it is of
the form Y ⊕⊥X1 , where Y is cyclic and does not have 1 as an eigenvalue,
and X1 is unipotent and nearly cyclic.

With this preparation we can relate the generating functions for regular orthogonal
matrices to well-studied functions, namely CSp(u) as defined on p. 48 and X ′

O as
defined on p. 58, in the following way.

Theorem 3.2.2. Suppose that q is odd. For the odd-dimensional orthogonal
groups we have

RO(u) =
(
1 +

u

q(q2 − 1)
− u2

q2(q2 − 1)

)
CSp(u) .

For the even-dimensional groups

RO+(u) +RO−(u) =

((
1 +

u

q(q2 − 1)
− u2

q2(q2 − 1)

)2
+ u

)
CSp(u) ,

RO+(u)−RO−(u) =
(
1 +

u

q2 − 1

)2
X ′

O(u) .

Proof. The strategy is to consider the structure of the natural module V for a
regular orthogonal matrix X . The argument is the same as that for Theorem 2.3.9
except that special care is needed for the factors F1(u), F−1(u) of the infinite
product which enumerate primary components corresponding to the irreducible
polynomials t− 1 and t+ 1. It follows as in the proof of Theorem 2.3.9 that

RO+(u2) +RO−(u2) + 2uRO(u
2) = F1(u)F−1(u) ×

×
∏
d>1

(
1 +

u2d

qd + 1

qd

qd − u2d

)N∗(q;2d) ∏
d>1

(
1 +

u2d

qd − 1

qd

qd − u2d

)M∗(q;d)

,

and then from Theorem 2.2.7 that

RO+(u2) +RO−(u2) + 2uRO(u
2) =

(
1− u2

q

)2
F1(u)F−1(u)CSp(u

2) .

To find F1(u), F−1(u) we argue as follows. Clearly, F1(u) = F−1(u), so it is
sufficient to focus on the primary component for the polynomial t− 1, that is, the
unipotent component. This is either cyclic and of odd dimension or nearly cyclic
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and of even dimension; in either case it can have type + or − . There is a single
conjugacy class of unipotent cyclic elements of O(2m+ 1, q); the centraliser order
is 2qm (see [22]). There is a single class of nearly cyclic unipotent elements in
Oϵ(2, q), namely I2 , and the centraliser order is |Oϵ(2, q)| , that is, 2(q − ϵ1). For
m > 2 there are two classes of nearly cyclic unipotent matrices in Oϵ(2m, q). For
each class V = V0 ⊕⊥ V1 where dimV0 = 1 and V1 is a cyclic X -module. They
are distinguished by the type of V0 . The centraliser order is 4qm (see [22]). Thus

F1(u) = F−1(u) = 1 + f1(u) + f2(u) ,

where

f1(u) =
u

1
+
u3

q
+
u5

q2
+ · · · = u

1− (u2/q)

and

f2(u) =
u2

2(q − 1)
+

u2

2(q + 1)
+ 4

u4

4q2
+ 4

u6

4q3
+ · · ·

=
qu2

q2 − 1
+

u4

q2(1− (u2/q))
.

Here the coefficient 4 multiplying the term u2m/4qm in f2(u) comes from the fact
that there are 4 classes of unipotent matrices of size 2m corresponding to the 2
choices for type(V ) and the 2 independent choices for type(V0). We now have
that

RO+(u2) +RO−(u2) + 2uRO(u
2)

=
(
1− u2

q

)2(
1 +

u

1− (u2/q)
+

qu2

q2 − 1
+

u4

q2(1− (u2/q))

)2
CSp(u

2) .

The terms of odd degree yield, after some calculation, that

RO(u) =
(
1 +

u

q(q2 − 1)
− u2

q2(q2 − 1)

)
CSp(u)

which is the first assertion of the theorem. Similarly, picking out the terms of even
degree we find that

RO+(u) +RO−(u) =
((

1− u

q
+
u(q3 − u)

q2(q2 − 1)

)2
+ u
)
CSp(u) ,

which, after simple algebraic rearrangement, is the second assertion. The third
assertion is proved similarly, using the extended notion of type τ(V ) defined on
p. 53 in the same way as it is used in §2.3.

Theorem 3.2.3. For odd q , with cSp(∞, q) as described in Theorem 2.2.9 we
have

rO(∞, q) =
(
1 +

1

q2(q + 1)

)
cSp(∞, q) ;

rO+(∞, q) = rO−(∞, q) =
(
1 +

1

q2(q + 1)
+

1

2q4(q + 1)2

)
cSp(∞, q) .
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Proof. Since CSp(u) has a pole at u = 1 with residue cSp(∞, q), using Lemma 1.3.3
in the usual way we find that

rO(∞, q) =
(
1 +

1

q(q2 − 1)
− 1

q2(q2 − 1)

)
cSp(∞, q)

=
(
1 +

1

q2(q + 1)

)
cSp(∞, q) ,

as required. Since X ′
O(u) is analytic in the open disc D(q2) (see Prop. 2.3.10),

the third assertion of Theorem 3.2.2 implies that rO+(2m, q)− rO−(2m, q) → 0 as
m → ∞ , so that rO+(∞, q) = rO−(∞, q). Then, examining residues at u = 1 of
the functions occurring in the second assertion of that theorem we find that

rO+(∞, q) = rO−(∞, q) =
1

2

((
1 +

1

q2(q + 1)

)2
+ 1
)
cSp(∞, q) ,

and, after a very little elementary algebra, this completes the proof.

Corollary 3.2.4. Suppose that q is odd. Then

rO(∞, q) = 1− 2q−3 +O(q−4) and rO±(∞, q) = 1− 2q−3 +O(q−4) .

This follows immediately from the fact that cSp(∞, q) = 1 − 3q−3 + O(q−4)
when q is odd. It illustrates Steinberg’s theorem that the non-regular elements
form a subvariety of codimension 3 in an orthogonal group.

For the case when q is even, the theory is similar and we simply sketch
what happens. If X ∈ O(2m + 1, q) then X is regular if and only if all prim-
ary summands for monic irreducible polynomials other than t − 1 are cyclic and
the unipotent summand is nearly cyclic. In this case the natural homomorphism
O(2m + 1, q) → Sp(2m, q) maps regular elements to regular elements bijectively,
and so the proportion of regular elements in O(2m+ 1, q) is exactly the same as
the proportion of cyclic elements in Sp(2m, q), that is rO(2m+1, q) = cSp(2m, q).
For even dimensions the analogue of Theorem 3.2.1 holds in the form: the matrix
X in O±(2m, q) is regular if and only if for every monic irreducible polynomial
ϕ other than t − 1 the ϕ -primary component of X is cyclic, and the unipotent
component of X has one of the four following forms:

(1) cyclic (of even dimension 2k );
(2) I2 (the two-dimensional identity matrix);
(3) J2 ⊕⊥ J2 , where J2 is cyclic unipotent of dimension 2;
(4) J2 ⊕⊥ J2k−2 , where k > 3 and J2k−2 is cyclic unipotent of dimension

2k − 2.

In Case (1) the type of the underlying vector space summand can be + or − , and
the order of the centraliser C is 2qk−1 ; in Case (2) the type can be + or − , and
|C| = |Oϵ(2, q)| = 2(q−ϵ1); in Case (3) the type can be + or − , and |C| = 2q2 ; and
in Case (4) there are four types (depending on the type of the summand affording
J2 and the type of that affording J2k−2 ), and |C| = 4qk . We find that

RO+(u) +RO−(u) = f1(u)
(
1− (u/q)

)
CSp(u) ,

where
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f1(u) = 1 +

∞∑
k=1

uk

qk−1
+

u

2(q − 1)
+

u

2(q + 1)
+

∞∑
k=2

uk

qk

= 1 +
u

1− (u/q)
+

q u

q2 − 1
+

u2

q2
(
1− (u/q)

) .
Moreover, as in the proof of Theorem 2.3.9,

RO+(u)−RO−(u) =
(
1 +

u

q2 − 1

)
X ′

O(u) ,

and so, since X ′
O is analytic in the disc D(q2), rO+(2m, q) − rO−(2m, q) → 0 as

m→ ∞ .

Theorem 3.2.5. When q is even rO(∞, q) = cSp(∞, q) and

rO±(∞, q) =
(
1 +

1

2q2(q + 1)

)
cSp(∞, q) = 1− 3

2q
−3 +O(q−4) .

Proof. Evaluating the residue of RO+(u) + RO−(u) at its pole at u = 1 in the
usual way we find that

rO+(∞, q) + rO−(∞, q) =
(
2 +

1

q2(q + 1)

)
cSp(∞, q) ,

and the assertion of the theorem follows immediately.

In fact, using the expansions for cSp(∞, q) given on p. 51 we find that if q is
odd then

rO(∞, q) = 1− 2

q3
+

1

q4
− 2

q5
+

4

q6
− 5

q7
+

10

q8
− 15

q9
+O

( 1

q10

)
and

rO±(∞, q) = 1− 2

q3
+

1

q4
− 2

q5
+

9

2q6
− 6

q7
+

23

2q8
− 37

2q9
+O

( 1

q10

)
.

If q is even then

rO±(∞, q) = 1− 3

2q3
+

1

2q4
− 3

2q5
+

5

2q6
− 3

q7
+

6

q8
− 9

q9
+O

( 1

q10

)
.

Good upper bounds, lower bounds, and convergence rates can be derived for
the frequency of regular elements just as they can for cyclic matrices in orthogonal
groups. But what we have done is enough to emphasize the point that regular
elements in orthogonal groups are not the same as cyclic matrices and to exhibit
techniques that can give good statistical information. That is enough, and we stop
here.
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