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Abstract

Random walk on the chambers of hyperplanes arrangements is used to de�ne a family of

card shu�ing measures H

W;x

for a �nite Coxeter group W and real x 6= 0. By algebraic group

theory, there is a map � from the semisimple orbits of the adjoint action of a �nite group of Lie

type on its Lie algebra to the conjugacy classes of the Weyl group. Choosing such a semisimple

orbit uniformly at random thereby induces a probability measure on the conjugacy classes of

the Weyl group. For types A, B, and the identity conjugacy class ofW for all types, it is proved

that for q very good, this measure on conjugacy classes is equal to the measure arising from

H

W;q

. The possibility of re�ning � to a map to elements of the Weyl group is discussed.

Key words: card shu�ing, hyperplane arrangement, conjugacy class, adjoint action.

1 Introduction

In a mathematical study of ordinary ri�e shu�es of cards, Bayer and Diaconis [1] introduced a

one-parameter class of probability measures (which we denote by H

S

n

;x

) on the symmetric group.

When x = 2, these correspond to a model of shu�ing due to Gilbert-Shannon-Reeds which seems

close to the way real people shu�e. Repeated shu�ing k times (convolution on the symmetric

group) was shown in [1] to correspond to H

S

n

;2

k

. Further, a closed formula was found for H

S

n

;x

.

This was used to prove that

3

2

log

2

n+ c shu�es are necessary and su�ce to mix up n cards. The

paper [15] shows perhaps surprisingly that the use of random cuts does not speed the convergence

rate to randomness. In later work [9], a formula was given for the H

S

n

;x

measure of a conjugacy

class in S

n

. Letting a

i

be the number of i-cycles in a permutation in this conjugacy class, this

formula was shown to equal the chance that a random monic polynomial of degree n chosen over F

q

(with x = q) has a

i

irreducible factors of degree i. This correspondence between polynomials and

card shu�ing seemed mysterious. One of the aims of the present paper is to explain the mystery

3



and show how the results generalize to other Coxeter groups.

The �rst part of this paper de�nes signed measures H

W;x

for a �nite Coxeter group W and real

x 6= 0. By a signed measure is meant an element of the group algebra of W whose coe�cients sum

to one. The key tool in de�ning the measures H

W;x

will be the theory of random walks on the

chambers of hyperplane arrangements, as initiated in [5] and developed in [6]. As noted in [12] (a

follow-up to this paper), the measures de�ned here generalize to any real hyperplane arrangement.

The point of Section 2 is to focus on the case of arrangements coming from �nite Coxeter groups.

The paper [5] had a hyperplane de�nition for type A shu�ing, but not using group theoretically

de�ned face weights.

For type A these measures (not expressed using hyperplane walks) were discovered by Bayer

and Diaconis [1] in their analysis of ri�e shu�ing. Their work was extended to type B in [2]. (It is

amusing to note as in [1] that for tarot cards, which often have up/down directions, type B shu�ing

is a better model than type A shu�ing). For types A and B these measures also arise in explicit

versions of the Poincar�e-Birkho�-Witt theorem [4] and in splittings of Hochschild homology [19].

Section 3.8 of [23] describes the type A measure in the language of Hopf algebras.

Section 3 connects the measures H

W;x

with the �nite groups of Lie type. As mentioned in

the abstract, there is a natural map � from the semisimple orbits of the adjoint action of a �nite

group of Lie type on its Lie algebra to the conjugacy classes of the Weyl group. Choosing such a

semisimple orbit uniformly at random gives a probability measure on the conjugacy classes of the

Weyl group. For q very good, we show that in some cases this measure on conjugacy classes is

equal to the measure arising from H

W;q

. For instance in type A the semisimple orbits correspond

to monic degree n polynomials with vanishing coe�cient of x

n�1

. When the characteristic p is

a very good prime (i.e. p does not divide n), the chance that such a polynomial factors into a

i

irreducibles of degree i is equal to the chance that a random monic degree n polynomial has a

i
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irreducible factors of degree i.

A long term goal is to re�ne this map � so that it associates to each semisimple orbit an

element of W . Furthermore choosing an orbit at random and applying the re�ned map should give

the measures H

W;q

. In Section 4 of this paper we indicate how to do this unnaturally for types A

and B. A re�nement of � which is both natural and general remains elusive, but as explained in

the second paragraph of Section 4, could have important applications in algebraic number theory.

To close the introduction, we mention follow-up work. The paper [14] which considers analogous

issues for semisimple conjugacy classes of the �nite groups of Lie type. The combinatorics there

is signi�cantly more intricate, involving the a�ne Weyl group and leading to new shu�es which

we call a�ne shu�es. These seem quite interesting; for instance the formula for type A a�ne

shu�es involves Ramanujan sums and depends on a permutation through both its number of cyclic

descents and major index. Remarkably, the results of [14] analogous to those here seem to need no

restriction on the characteristic, and the conjectured re�nement of the map analogous to � uses

the a�ne Weyl group and is more natural than the re�nement considered here. Connections with

dynamical systems are also given. The paper [15] compares type A a�ne shu�es with shu�es

followed by cuts, giving strong evidence that when gcd(n; q � 1) = 1 these two measures, though

di�erent, are equidistributed on conjugacy classes.

2 De�nition and Properties of H

W;x

To begin we review work of Bidigare, Hanlon, and Rockmore [5]. Let A = fH

i

: i 2 Ig be a central

hyperplane arrangement (i.e. \

i2I

H

i

= 0) for a real vector space V . Let 
 be a vector in the

complement of A. Every H

i

partitions V into three pieces: H

0

i

= H

i

, the open half space H

+

i

of

V containing 
, and the open half space H

�

i

of V not containing 
. The faces of A are de�ned as
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the non-empty intersections of the form

\

i2I

H

�

i

i

where �

i

2 f0;�;+g. Equivalently, A cuts V into regions called chambers and the faces are the

faces of these chambers viewed as polyhedra.

A random process (henceforth called the BHR walk) on chambers is then de�ned as follows.

Assign weights v(F ) to the faces of A in such a way that v

F

� 0 for all F and

P

F

v(F ) = 1. Pick

a starting chamber C

0

. At step i, pick a face F

i

with chance of face F equal to v(F ) and de�ne

C

i

to be the chamber adjacent to F

i

which is closest to C

i�1

(separated from C

i�1

by the fewest

number of hyperplanes.) Such a chamber always exists.

To give our de�nition of H

W;x

, some additional notation is needed. Let L be the set of intersec-

tions of the hyperplanes in A, taking V 2 L. Partially order L by reverse inclusion. (This lattice

is not the same as the face lattice). Recall that the Moebius function � is de�ned by �(X;X) = 1

and

P

X�Z�Y

�(Z; Y ) = 0 if X < Y and �(X;Y ) = 0 otherwise. The characteristic polynomial of

L is de�ned as

�(L; x) =

X

X2L

�(V;X)x

dim(X)

:

Let � be a base of the positive roots of W . For J � �, let Fix(W

J

) denote the �xed space of the

parabolic subgroupW

J

in its action on V . Let L

Fix(W

J

)

denote the restricted poset fY 2 L(A)jY �

Fix(W

J

)g. De�ne Des(w) to be the simple positive roots which w maps to negative roots (also

known as the descent set of w) and let d(w) = jDes(w)j. Let N

W

(W

K

) be the normalizer of W

K

in W and let �(K) be the subsets of � equivalent to K under the action of W .

De�nition: For W a �nite Coxeter group and x 6= 0, de�ne H

W;x

(w) to be

X

K���Des(w)

jW

K

j�(L

Fix(W

K

)

; x)

x

n

jN

W

(W

K

)jj�(K)j

:
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To give a feeling for these measures and for later use, we recall formulas for types A and B

(obtained using descent algebras in the �rst reference given and arising from the above de�nition

in the second reference given).

� ([1],[5])

H

S

n

;x

(w) =

�

x+n�1�d(w)

n

�

x

n

:

Physically, the inverse of this measure is obtained by cutting at card k with probability

(

n

k

)

2

n

,

then doing a uniformly chosen random interleaving of the piles. The papers [9] and [11]

investigate the cycle structure and inversion structure of a random permutation chosen from

H

S

n

;x

.

� ([2],[12])

H

B

n

;x

(w) =

(x+ 2n� 1� 2d(w))(x + 2n� 3� 2d(w)) � � � (x+ 1� 2d(w))

x

n

n!

:

The inverse of this measure also has a physical description if x is odd, stated for x = 3 in

[2] and extended in [14]. One cuts multinomially into an odd number of piles, 
ips over the

even numbered piles, and then does a random interleaving. This is di�erent from the type B

notion in [1], which cuts into two piles. However these two types of shu�es can be placed in

a uni�ed setting, using the a�ne Weyl group [14]. In future work we hope to study physical

models of the shu�es H

W;x

for other �nite Coxeter groups, viewed as permutation groups.

Next we comment on some properties of the measures H

W;x

.

� ([12]) For types A;B;C;H

3

and rank 2 groups (but not for all types as is explained in below),

the measures H

W;x

convolve in the sense that

 

X

w2W

H

W;x

(w)w

! 

X

w2W

H

W;y

(w)w

!

=

X

w2W

H

W;xy

(w)w:
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Thus n x-shu�es is the same as an x

n

shu�e. Observe also that in the x ! 1 limit the

measures H

W;x

become the uniform distribution. The eigenvalues of an x-shu�e viewed as a

Markov chain are

1

x

i

,i = 0; � � � ; n� 1 with various multiplicities.

� The Coxeter complex of W has as faces the left cosets wW

K

and as chambers the elements

of W . Consider the BHR walks on the chambers of the Coxeter complex with face wieghts

v(wW

K

) =

jW

K

j�(L

Fix(W

K

)

; x)

x

n

jN

W

(W

K

)jj�(K)j

:

When these weights are non-negative, H

W;x

(w) can be interpreted as the probability of moving

from the identity chamber to w. Equations from page 282 of [21] imply that v(wW

K

) can

be rewritten as (�1)

n�jKj

�(L

Fix(W

K

)

;x)

x

n

�(L

Fix(W

K

)

;�1)

. As observed in [12], this leads to a notion of card

shu�ing for any real hyperplane arrangement or oriented matroid. The Coxeter case gives

rise to the factorization

�(L

Fix(W

K

)

; x) =

dim(Fix(W

K

))

Y

i=1

(x� b

K

i

)

from [21] where the b

K

i

are integers called coexponents. From the results and tables in [21],

all b

K

i

are less than or equal to the maximum exponent of W . From the table of bad primes

for crystallographic types on page 28 of [7], the bad primes are precisely the primes less than

the maximum exponent of W which are not equal to exponents of W . (Equivalently, a prime

is good if it divides no coe�cient of any root expressed as a linear combination of simple

roots.) Thus H

W;q

(w) � 0 if W is crystallographic and q is a good prime, because then every

face weight is non-negative. This may be regarded as evidence in favor of the the statement

in Problem 1 in Section 3.

� Orlik and Solomon [21] have calculated and tabulated �(L

Fix(W

K

)

; x) for all types. By the

previous remark, this gives a simple and uni�ed method for computing the measure H

W;x

.

Applied to W of type H

3

, one concludes that
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H

H

3

;x

(w) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(x+9)(x+5)(x+1)

120x

3

if d(w) = 0

(x+5)(x+1)(x�1)

120x

3

if d(w) = 1

(x+1)(x�1)(x�5)

120x

3

if d(w) = 2

(x�1)(x�5)(x�9)

120x

3

if d(w) = 3:

This formula, together with the formulas for H

W;x

forW of types A;B which appeared earlier

in this paper, suggest that H

W;x

satis�es the following factorization and reciprocity properties:

1. H

W;x

(w) splits into linear factors as a function of x.

2. H

W;x

(w) = H

W;�x

(ww

0

) where w

0

is the longest element of W .

In fact neither of these properties holds. This is evident from the following formula for H

H

4

;x

which is obtained by using tables of Orlik and Solomon as just described.

H

H

4

;x

(w) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(x+29)(x+19)(x+11)(x+1)

14400x

4

if d(w) = 0

(x+1)(x�1)(x

2

+30x+149)

14400x

4

if Des(w) = f�

1

g or Des(w) = f�

2

g

(x+1)(x�1)(x

2

+30x+269)

14400x

4

if Des(w) = f�

3

g or Des(w) = f�

4

g

(x+11)(x+1)(x�1)(x�11)

14400x

4

if d(w) = 2 and Des(w) 6= f�

3

; �

4

g

(x+1)

2

(x�1)

2

14400x

4

if Des(w) = f�

3

; �

4

g

(x+1)(x�1)(x�11)(x�19)

14400x

4

if d(w) = 3

(x�1)(x�11)(x�19)(x�29)

14400x

4

if d(w) = 4:

Incidentally this remark shows that H

H

4

;x

does not convolve. For H

W;�1

places all mass on the

longest element w

0

, so the convolution property would imply that H

H

4

;�x

(w) = H

H

4

;�x

(ww

0

).

Since w and ww

0

have complementary descent sets, this equality does not hold for w with

Des(w) = f�

3

; �

4

g. The same argument disproves the convolution property in many cases.
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Let id be the identity element of W and w

0

the longest element of W . Theorem 1 calculates

the values of the measure H

W;x

on these elements.

Theorem 1 Let m

1

; � � � ;m

r

be the exponents of W . Then

H

W;x

(w

0

) =

Q

r

i=1

(x�m

i

)

x

r

jW j

H

W;x

(id) =

Q

r

i=1

(x+m

i

)

x

r

jW j

:

Proof: The �rst assertion is easier. In fact,

H

W;x

(w

0

) =

�(L; x)

x

r

jW j

=

Q

r

i=1

(x�m

i

)

x

r

jW j

:

The �rst equality is from the de�nition of H

W;x

and the second equality is a well known factorization

of the characteristic polynomial of L (e.g. [21]).

For the second assertion, additional concepts are needed. Let L be the lattice in V generated

by

�

� and let

^

L = fv 2 V j < v; � >2 Z for all � 2 �g:

Let f = [

^

L : L] be the index L in

^

L. Let � = f�

i

g � �

+

be a set of simple roots contained in

a set of positive roots and let � be the highest root in �

+

. For convenience set �

0

= ��. Let

~

� = � [ f�

0

g. De�ne coe�cients c

�

of � with respect to

~

� by the equations

P

�2

~

�

c

�

� = 0 and

c

�

0

= 1. For S 6=

~

� a proper subset of

~

�, de�ne as in [24] p(S; x) to be the number of solutions y

in strictly positive integers to the equation

X

�2

~

��S

c

�

y

�

= x:

In the equations which follow W

K

1

; � � � ;W

K

l

with K

1

; � � � ;K

l

� � are representatives for the

parabolic subgroups of W under conjugation. In [21] it is proved that j�(K)j is the number of

J � � such that W

J

is conjugate to W

K

. We also make use of the fact [25] that if x is relatively
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prime to all c

�

, then for any S �

~

�; S 6=

~

�, if p(S; x) is non-zero then W

S

is conjugate to one of

W

K

1

; � � � ;W

K

l

: We denote conjugacy of parabolic subgroups by the symbol �. One concludes that

for in�nitely many (and hence all) non-zero x,

H

W;x

(id) =

X

K��

jW

K

j�(L

Fix(W

K

)

; x)

x

r

jN

W

(W

K

)jj�(K)j

=

l

X

i=1

jW

K

i

j�(L

Fix(W

K

i

)

; x)

x

r

jN

W

(W

K

i

)j

=

1

x

r

f

l

X

i=1

f jW

K

i

j�(L

Fix(W

K

i

)

; x)

jN

W

(W

K

i

)j

=

1

x

r

f

l

X

i=1

X

S�

~

�;S 6=

~

�

W

S

�W

K

i

p(S; x)

=

1

x

r

f

X

S�

~

�

S 6=

~

�

p(S; x)

=

1

x

r

jW j

r

Y

i=1

(x+m

i

):

The fourth and sixth equalities are results of [24]. 2

3 Semisimple Orbits of Lie Algebras

This section connects (in some cases) the signed measures H

W;x

with semisimple orbits of the

adjoint action of �nite groups of Lie type on their Lie algebras.

Let G be a connected semisimple group de�ned over a �nite �eld of q elements. Suppose also

that G is simply connected. Let G be the Lie algebra of G. Let F denote both a Frobenius

automorphism of G and the corresponding Frobenius automorphism of G. Suppose that G is F -

split (analogous results for non-split G are under investigation). Since the derived group of G is

simply connected (the derived group of a simply connected group is itself), a theorem of Springer

and Steinberg [26] implies that the centralizers of semisimple elements of G are connected. Let r

11



be the rank of G.

Now we de�ne a map � (studied in [20] in somewhat greater generality) from the F -rational

semisimple orbits c of G to W , the Weyl group of G. Pick x 2 G

F

\ c. Since the centralizers of

semisimple elements of G are connected, x is determined up to conjugacy in G

F

and C

G

(x), the

centralizer in G of x, is determined up to G

F

conjugacy. Let T be a maximally split maximal

torus in C

G

(x). Then T is an F -stable maximal torus of G, determined up to G

F

conjugacy. By

Proposition 3.3.3 of [7], the G

F

conjugacy classes of F -stable maximal tori of G are in bijection

with conjugacy classes of W . De�ne �(c) to be the corresponding conjugacy class of W .

For example, in type A

n�1

the semisimple orbits c of sl(n; q) correspond to monic degree n

polynomials f(c) whose coe�cient of x

n�1

vanishes. Such a polynomial factors as

Q

i

f

a

i

i

where

the f

i

are irreducible over F

q

. Letting d

i

be the degree of f

i

, �(c) is the conjugacy class of S

n

corresponding to the partition (d

a

i

i

). This follows from Section 3 of [8].

As is standard in Lie theory (e.g. [10]), call a prime p very good if it divides no coe�cient of

any root expressed as a linear combination of simple roots and is relatively prime to the index of

connection (the index of the coroot lattice in the weight lattice). For example in type A the very

good primes are those not dividing n.

Problem 1: When is the following statement true? \Let G be as above, and suppose that the

characteristic is a prime which is very good for G. Choose c among the q

r

F -rational semisimple

orbits of G uniformly at random. Then for all conjugacy classes C of W ,

Probability(�(c) = C) =

X

w2C

H

W;q

(w):"

Recall from the end of Section 2 that under the conditions of Problem 1, H

W;q

(w) � 0 for all

w 2 W . This may be taken as evidence that the statement in Problem 1 is correct. Theorems 2,

3, and 4 provide further evidence. In cases where the convolution property of W does not hold, we

12



have doubts as to whether the statement in Problem 1 is correct. Nevertheless, at present we have

no examples to the contrary (type D

4

would be a natural �rst place to look).

Theorem 2 The statement in Problem 1 holds for G of all types (i.e. A�D;E

6�8

; F

4

; G

2

) when

C is the identity conjugacy class of W .

Proof: Corollary 3.4 of [10] (see also Proposition 5.9 of [20]) states that for q very good, the

number of F -rational semisimple orbits c of G which satisfy �(c) = id is equal to

r

Y

i=1

q +m

i

1 +m

i

where r is the rank of G and m

i

are the exponents of W . Since there are a total of q

r

F -rational

semisimple orbits of G, and because jW j =

Q

r

i=1

(1 +m

i

),

Probability(�(c) = id) =

Q

r

i=1

(q +m

i

)

q

r

jW j

:

The proposition now follows from Theorem 1. 2

Theorem 3 The statement of Problem 1 holds for G of type A, for all conjugacy classes C of the

symmetric group S

n

.

Proof: Note that a monic, degree n polynomial f with coe�cients in F

q

de�nes a partition of n,

and hence a conjugacy class of S

n

, by its factorization into irreducibles. To be precise, if f factors

as

Q

i

f

a

i

i

where the f

i

are irreducible of degree d

i

, then (d

a

i

i

) is a partition of n. If the coe�cient of

x

n�1

in f vanishes, then f represents an F -rational semisimple orbit c of sl(n; q), and the conjugacy

class of S

n

corresponding to the partition (d

a

i

i

) is equal to �(c).

In [9] it is shown that if f is uniformly chosen among all monic, degree n polynomials with

coe�cients in F

q

, then the measure on the conjugacy classes of S

n

induced by the factorization of

f is equal to the measure induced by H

S

n

;q

. Thus, to prove the theorem, it su�ces to show that

13



the random partition associated to a uniformly chosen monic, degree n polynomial over F

q

has

the same distribution as the random partition associated to a uniformly chosen monic, degree n

polynomial over F

q

with vanishing coe�cient of x

n�1

. Since the characteristic p is assumed to be

very good, p does not divide n. Thus for a suitable choice of k, the change of variables x! x+ k

gives rise to a bijection between monic, degree n polynomials with coe�cient of x

n�1

equal to b

1

and monic, degree n polynomials with coe�cient of x

n�1

equal to b

2

, for any b

1

and b

2

. Since this

bijection preserves the partition associated to a polynomial, the theorem is proved. 2

Theorem 4 will con�rm the statement of Problem 1 for all G of type B. The proof will use

the following combinatorial objects introduced in [22]. As Lemma 1 will show, these objects have

interpretations in terms of polynomials. Let a Z-word of length m be a vector (a

1

; � � � ; a

m

) 2 Z

m

.

For such a word de�ne max(a) = max(ja

i

j)

m

i=1

. The cyclic group C

2m

acts on Z-words of length

m by having a generator g act as g(a

1

; � � � ; a

m

) = (a

2

; � � � ; a

m

;�a

1

). Call a �xed-point free orbit

P of this action a primitive twisted necklace of size m. The group Z

2

� C

m

acts on Z-words of

length m by having the generator r of C

m

act as a cyclic shift r(a

1

; � � � ; a

m

) = (a

2

; � � � ; a

m

; a

1

)

and having the generator v of Z

2

act by v(a

1

; � � � ; a

m

) = (�a

1

; � � � ;�a

m

). Call an orbit D of this

action a primitive blinking necklace of size m if its C

m

action is free (though its Z

2

� C

m

action

need not be). Let a signed ornament o be a set of primitive twisted necklaces and a multiset of

primitive blinking necklaces. Say that o has type (

~

�; ~�) = ((�

1

; �

2

; � � �); (�

1

; �

2

; � � �)) if it consists of

�

m

primitive blinking neclaces of size m and �

m

primitive twisted necklaces of size m. Also de�ne

the size of o to be the sum of the sizes of the primitive twisted and blinking necklaces which make

up o, and de�ne max(o) to be the maximum of max(D) and max(P ) for the primitive twisted and

blinking necklaces which make up o.

Lemma 1 Primitive twisted necklaces P of size m and with max(P ) �

q�1

2

correspond to irre-

14



ducible polynomials f(z) over F

q

of degree 2m satisfying f(z) = f(�z). Primitive blinking necklaces

D of size m and with max(D) �

q�1

2

correspond to products f(z)f(�z) with f(z); f(�z) a pair

of irreducible polynomial of degree m over F

q

. Signed ornaments given as sets of such P 's and

multisets of such D's correspond to polynomials of degree 2m over F

q

satisfying f(z) = f(�z).

Proof: For the �rst assertion, let F

q

2m
be the degree 2m extension of F

q

. Choose � in F

q

2m
such

that f�

q

i

: 1 � i � 2mg is a basis over F

q

. (Such a basis is called a normal basis and is known

to exist). Let f(z) be an irreducible polynomial of degree 2m satisfying f(z) = f(�z). Let �

be one of its roots in F

q

2m
. Writing � =

P

2m

i=1

c

i

�

q

i

, de�ne a vector (c

1

; � � � ; c

m

) associated to �.

Since the automorphism of F

q

2m de�ned by � ! �

q

m

is its unique automorphism of order two,

it follows that �

q

is assigned the vector (c

2

; � � � ; c

m

;�c

1

). Thus the action of the Frobenius map

x! x

q

corresponds to the action of Z

2

�C

m

on the vector (c

1

; � � � ; c

m

), and irreducible polynomials

correspond to primitive orbits.

For the second assertion, choose � in F

q

m

such that f�

q

i

: 1 � i � mg is a basis over F

q

.

Let f(z) be an irreducible polynomial of degree m. Let � be one of its roots in F

q

m

. Writing

� =

P

m

i=1

c

i

�

q

i

, de�ne a vector (c

1

; � � � ; c

m

) associated to �. The C

m

action on this vector is free

because f(z) is irreducible. The Z

2

action sends f(z) to f(�z).

For the �nal assertion, note that a polynomial f(z) satisfying f(z) = f(�z) can be factored

uniquely as a product

Y

f�

j

(z);�

j

(�z)g

[�

j

(z)�

j

(�z)]

r

�

j

Y

�

j

:�

j

(z)=�

j

(�z)

�

j

(z)

s

�

j

where the �

j

are monic irreducible polynomials and s

�

j

2 f0; 1g. 2

Theorem 4 proves the statement of Problem 1 for type B.

Theorem 4 The statement of Problem 1 holds for G of type B, for all conjugacy classes C of the

hyperoctahedral group B

n

.
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Proof: Note that because 2 is a bad prime for type B, it can be assumed that the characteristic

is odd. Recall that the type of a signed ornament is parameterized by pairs of vectors (

~

�; ~�), where

�

i

is the number of primitive blinking necklaces of size i and �

i

is the number of primitive twisted

necklaces of size i. From the theory of wreath products the conjugacy classes of the hyperoctahedral

group B

n

are also parameterized by pairs of vectors (

~

�; ~�), where �

i

(w) and �

i

(w) are the number

of positive and negative cycles of w 2 B

n

respectively.

The �rst step of the proof will be to show that the measure induced on pairs (

~

�; ~�) by choosing

a random signed ornament o of size n satisfying max(o) �

q�1

2

is equal to the measure induced on

pairs (

~

�; ~�) by choosing w 2 B

n

according to the measure H

B

n

;q

and then looking at its conjugacy

class. From the de�nition of descents given in Section 2, it is easy to see that if one introduces the

following linear order � on the set of non-zero integers:

+1 <

�

+2 <

�

� � �+ n <

�

� � � <

�

�n <

�

� � � <

�

�2 <

�

�1

then d(w), the number of descents of w 2 B

n

, can be de�ned as jfi : 1 � i � n : w(i) >

�

w(i+1)gj.

Here w(n+ 1) = n+ 1 by convention.

It is proved in [22] that there is a bijection between signed ornaments o of size n satisfying

max(o) �

q�1

2

and pairs (w;~s) where w 2 B

n

and ~s = (s

1

; � � � ; s

n

) 2 N

n

satisi�es

q�1

2

� s

1

� � � � �

s

n

� 0 and s

i

> s

i+1

when w(i) >

�

w(i + 1) (i.e. when w has a descent at position i). Further,

he shows that the type of o is equal to the conjugacy class vector of w. It is easy to see that if w

has d(w) descents, then the number of ~s such that

q�1

2

� s

1

� � � � � s

n

� 0 and s

i

> s

i+1

when

w(i) <

�

w(i+ 1) is equal to

 

q�1

2

+ n� d(w)

n

!

=

(q + 1� 2d(�)) � � � (q + 2n� 1� 2d(�))

2

n

n!

:

Lemma 1 implies that there are q

n

signed ornaments f of size n satisfying max(f) �

q�1

2

. Thus

choosing a random signed ornament induces a measure on w 2 B

n

with mass on w equal to

16



(q + 1� 2d(�)) � � � (q + 2n� 1� 2d(�))

q

n

jB

n

j

:

By the remarks in Section 2, this is exactly the mass on w under the measure H

B

n

;q

. Since in

Reiner's bijection the type of o is equal to the conjugacy class vector of w, we have proved that

the measure on conjugacy classes (

~

�; ~�) of B

n

induced by choosing w according to H

B

n

;q

is equal

to the measure on conjugacy classes (

~

�; ~�) of B

n

induced by choosing a signed ornament uniformly

at random and taking its type.

The second step in the proof is to show that if f is chosen uniformly among the q

n

semisimple

orbits of Spin(2n + 1; q) on its Lie algebra, then the chance that �(f) is the conjugacy class

(

~

�; ~�) of B

n

is equal to the chance that a signed ornament chosen randomly among the q

n

signed

ornaments o of size n satisfying max(o) �

q�1

2

has type (

~

�; ~�). It is well known that the semisimple

orbits of Spin(2n+1; q) on its Lie algebra correspond to monic, degree 2n polynomials f satisfying

f(z) = f(�z). From Section 3 of [8], one sees that �(f) can be described as follows. Factor f

uniquely into irreducibles as

Y

f�

j

(z);�

j

(�z)g

[�

j

(z)�

j

(�z)]

r

�

j

Y

�

j

:�

j

(z)=�

j

(�z)

�

j

(z)

s

�

j

where the �

j

are monic irreducible polynomials and s

�

j

2 f0; 1g. Then let �

i

(f) =

P

�:deg(�)=i

r

�

and �

i

(f) =

P

�:deg(�)=2i

s

�

. The result now follows from Lemma 1. 2

We remark that the statement of Problem 1 would be false if instead of choosing c uniformly

among the q

r

F -rational semisimple orbits of G, c were chosen uniformly among the q

r

semisimple

conjugacy classes of G

F

. For a simple counterexample, take G = SL(3; 5) and C the identity

conjugacy class of S

3

. There are only �ve monic polynomials f with coe�cients in F

5

which factor

into linear terms and satisfy f(0) = 1. The analog of the statement of Problem 1 would predict

17



that there are seven. For analogous, yet combinatorially more intricate developments for semisimple

conjugacy classes, see [14].

4 Re�ning the Map � to the Weyl group

As noted in the introduction, one long-term goal is to �nd a canonical way to associate to an

F -rational semisimple orbit c of G an element w of W . The conjugacy class of w should equal �(c)

and choosing c uniformly at random should induce the measure H

W;q

on W .

To see why such a result may be interesting, at least in type A, consider a simple algebraic

extension of Q with minimal polynomial f(x). At unrami�ed primes the Frobenius automorphism

is de�ned up to conjugacy in the Galois group. Viewed as a permutation of the roots of f(x), the

cycle structure of the Frobenius automorphism is given by the degrees of the irreducible factors of

the modulo p reduction of f(x). This is simply the map � in type A. Some important constructions

in algebraic number theory (see [16] for a survey) create generating functions combining this data

over all primes. It is not impossible that a natural re�nement of the Frobenius data will yield new

number theoretic constructions.

Next we indicate a somewhat unnatural way to re�ne the map � in types A and B. For type

A, the re�nement proceeds in two steps. De�ne a necklace on an alphabet to be a sequence of

cyclically arranged letters of the alphabet. A necklace is said to be primitive if it is not equal to

any of its non-trivial cyclic shifts. For example, the necklace (a a b b) is primitive, but the necklace

(a b a b) is not.

The �rst step is to associate to a monic degree n polynomial over F

q

a multiset of primitive

necklaces on a lexicographically ordered alphabet of q� 1 symbols. One way to do this is using the

concept of a normal basis, that is to choose for each n an element �

n

such that its conjugates �

p

j

n

for j = 0; � � � ; n�1 are a basis of F

p

n

over F

p

. Then a monic irreducible degree i polynomial gives a

18



primitive necklace of size i formed by the coe�cients c

j

of any one of its roots written as

P

c

j

�

p

j

i

.

(It is natural to require that for ijn, the norm of �

n

is �

i

.) This is the preferred method in the

case of semisimple adjoint orbits, because the involution sending f(x) to f(�x) takes negatives of

the necklace entries.

A second way to carry out this �rst step was noticed by Golomb [18]. For each n, pick an

element �

n

generating the multiplicative group of the �eld extension F

q

n

of F

q

. A root of an

irreducible polynomial � of degree i can be written �

x

i

. Considering the mod q expansion of x gives

a primitive necklace of size i on the symbols f0; 1; � � � ; q� 1g. This is the preferred construction in

the case of semisimple conjugacy classes, because the involution f(x) 7!

t

deg(f)

f(

1

t

)

f(0)

on polynomials

with non-zero constant term takes negatives of the necklace entries.

The next step in the construction is to associate to a multiset of primitive necklaces on f0; � � � ; q�

1g a permutation with cycle structure equal to that of the necklace. A way to do this was found by

Gessel and Reutenauer [17]. To each entry of a necklace, �rst associate the in�nite word obtained by

reading the necklace in the clockwise direction. Using the example from [17], consider the multiset

of necklaces

(1 2)(1 2)(2)(2 3)(2 3 2 3 3):

Then the entry 2 on the necklace (2 3) would give the word 23232323 � � �. One then orders lexico-

graphically the words obtained (after imposing an arbitrary order on equal necklaces), and replaces

each necklace entry by the lexicographic order of its associated word. The example would thus

yield the permutation

(1 3)(2 4)(5)(6 9)(7 11 8 12 10):

Arguing as in [9] (which doesn't mention correspondences between polynomials and necklaces)

shows that choosing a multiset of primitive necklaces on the symbols f0; � � � ; q � 1g of total size n

and applying the Gessel-Reutenauer map gives a permutation distributed according to H

S

n

;q

.
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For a B

n

analog, the bijection of Gessel should be replaced by the bijection of Reiner [22] used

in the proof of Theorem 4. The correspondence between signed ornaments and degree 2n monic

polynomials satisfying f(z) = f(�z) is given in the proof of Lemma 1.
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