Semisimple orbits of Lie algebras and card-shuffling measures on Coxeter groups

By Jason Fulman

Affiliation (at time of writing): Dartmouth College

Current Affiliation: Stanford University

Current Address: Department of Mathematics, Stanford University

Building 380, MC 2125

Stanford, CA 94305, USA
email:fulman@math.stanford.edu

1991 AMS Primary Subject Classifications: 20G40, 20F55

Proposed running head: Semisimple orbits of Lie algebras

Abstract

Random walk on the chambers of hyperplanes arrangements is used to define a family of card shuffling measures $H_{W, x}$ for a finite Coxeter group W and real $x \neq 0$. By algebraic group theory, there is a map Φ from the semisimple orbits of the adjoint action of a finite group of Lie type on its Lie algebra to the conjugacy classes of the Weyl group. Choosing such a semisimple orbit uniformly at random thereby induces a probability measure on the conjugacy classes of the Weyl group. For types A, B, and the identity conjugacy class of W for all types, it is proved that for q very good, this measure on conjugacy classes is equal to the measure arising from $H_{W, q}$. The possibility of refining Φ to a map to elements of the Weyl group is discussed.

Key words: card shuffling, hyperplane arrangement, conjugacy class, adjoint action.

1 Introduction

In a mathematical study of ordinary riffle shuffles of cards, Bayer and Diaconis [1] introduced a one-parameter class of probability measures (which we denote by $H_{S_{n}, x}$) on the symmetric group. When $x=2$, these correspond to a model of shuffling due to Gilbert-Shannon-Reeds which seems close to the way real people shuffle. Repeated shuffling k times (convolution on the symmetric group) was shown in [1] to correspond to $H_{S_{n}, 2^{k}}$. Further, a closed formula was found for $H_{S_{n}, x}$. This was used to prove that $\frac{3}{2} \log _{2} n+c$ shuffles are necessary and suffice to mix up n cards. The paper [15] shows perhaps surprisingly that the use of random cuts does not speed the convergence rate to randomness. In later work [9], a formula was given for the $H_{S_{n}, x}$ measure of a conjugacy class in S_{n}. Letting a_{i} be the number of i-cycles in a permutation in this conjugacy class, this formula was shown to equal the chance that a random monic polynomial of degree n chosen over F_{q} (with $x=q$) has a_{i} irreducible factors of degree i. This correspondence between polynomials and card shuffling seemed mysterious. One of the aims of the present paper is to explain the mystery
and show how the results generalize to other Coxeter groups.
The first part of this paper defines signed measures $H_{W, x}$ for a finite Coxeter group W and real $x \neq 0$. By a signed measure is meant an element of the group algebra of W whose coefficients sum to one. The key tool in defining the measures $H_{W, x}$ will be the theory of random walks on the chambers of hyperplane arrangements, as initiated in [5] and developed in [6]. As noted in [12] (a follow-up to this paper), the measures defined here generalize to any real hyperplane arrangement. The point of Section 2 is to focus on the case of arrangements coming from finite Coxeter groups. The paper [5] had a hyperplane definition for type A shuffling, but not using group theoretically defined face weights.

For type A these measures (not expressed using hyperplane walks) were discovered by Bayer and Diaconis [1] in their analysis of riffle shuffling. Their work was extended to type B in [2]. (It is amusing to note as in [1] that for tarot cards, which often have up/down directions, type B shuffling is a better model than type A shuffling). For types A and B these measures also arise in explicit versions of the Poincaré-Birkhoff-Witt theorem [4] and in splittings of Hochschild homology [19]. Section 3.8 of [23] describes the type A measure in the language of Hopf algebras.

Section 3 connects the measures $H_{W, x}$ with the finite groups of Lie type. As mentioned in the abstract, there is a natural map Φ from the semisimple orbits of the adjoint action of a finite group of Lie type on its Lie algebra to the conjugacy classes of the Weyl group. Choosing such a semisimple orbit uniformly at random gives a probability measure on the conjugacy classes of the Weyl group. For q very good, we show that in some cases this measure on conjugacy classes is equal to the measure arising from $H_{W, q}$. For instance in type A the semisimple orbits correspond to monic degree n polynomials with vanishing coefficient of x^{n-1}. When the characteristic p is a very good prime (i.e. p does not divide n), the chance that such a polynomial factors into a_{i} irreducibles of degree i is equal to the chance that a random monic degree n polynomial has a_{i}
irreducible factors of degree i.
A long term goal is to refine this map Φ so that it associates to each semisimple orbit an element of W. Furthermore choosing an orbit at random and applying the refined map should give the measures $H_{W, q}$. In Section 4 of this paper we indicate how to do this unnaturally for types A and B. A refinement of Φ which is both natural and general remains elusive, but as explained in the second paragraph of Section 4, could have important applications in algebraic number theory.

To close the introduction, we mention follow-up work. The paper [14] which considers analogous issues for semisimple conjugacy classes of the finite groups of Lie type. The combinatorics there is significantly more intricate, involving the affine Weyl group and leading to new shuffles which we call affine shuffles. These seem quite interesting; for instance the formula for type A affine shuffles involves Ramanujan sums and depends on a permutation through both its number of cyclic descents and major index. Remarkably, the results of [14] analogous to those here seem to need no restriction on the characteristic, and the conjectured refinement of the map analogous to Φ uses the affine Weyl group and is more natural than the refinement considered here. Connections with dynamical systems are also given. The paper [15] compares type A affine shuffles with shuffles followed by cuts, giving strong evidence that when $\operatorname{gcd}(n, q-1)=1$ these two measures, though different, are equidistributed on conjugacy classes.

2 Definition and Properties of $H_{W, x}$

To begin we review work of Bidigare, Hanlon, and Rockmore [5]. Let $\mathcal{A}=\left\{H_{i}: i \in I\right\}$ be a central hyperplane arrangement (i.e. $\cap_{i \in I} H_{i}=0$) for a real vector space V. Let γ be a vector in the complement of \mathcal{A}. Every H_{i} partitions V into three pieces: $H_{i}^{0}=H_{i}$, the open half space H_{i}^{+}of V containing γ, and the open half space H_{i}^{-}of V not containing γ. The faces of \mathcal{A} are defined as
the non-empty intersections of the form

$$
\cap_{i \in I} H_{i}^{\epsilon_{i}}
$$

where $\epsilon_{i} \in\{0,-,+\}$. Equivalently, \mathcal{A} cuts V into regions called chambers and the faces are the faces of these chambers viewed as polyhedra.

A random process (henceforth called the BHR walk) on chambers is then defined as follows. Assign weights $v(F)$ to the faces of \mathcal{A} in such a way that $v_{F} \geq 0$ for all F and $\sum_{F} v(F)=1$. Pick a starting chamber C_{0}. At step i, pick a face F_{i} with chance of face F equal to $v(F)$ and define C_{i} to be the chamber adjacent to F_{i} which is closest to C_{i-1} (separated from C_{i-1} by the fewest number of hyperplanes.) Such a chamber always exists.

To give our definition of $H_{W, x}$, some additional notation is needed. Let L be the set of intersections of the hyperplanes in \mathcal{A}, taking $V \in L$. Partially order L by reverse inclusion. (This lattice is not the same as the face lattice). Recall that the Moebius function μ is defined by $\mu(X, X)=1$ and $\sum_{X \leq Z \leq Y} \mu(Z, Y)=0$ if $X<Y$ and $\mu(X, Y)=0$ otherwise. The characteristic polynomial of L is defined as

$$
\chi(L, x)=\sum_{X \in L} \mu(V, X) x^{\operatorname{dim}(X)}
$$

Let Π be a base of the positive roots of W. For $J \subseteq \Pi$, let $F i x\left(W_{J}\right)$ denote the fixed space of the parabolic subgroup W_{J} in its action on V. Let $L^{F i x\left(W_{J}\right)}$ denote the restricted poset $\{Y \in L(\mathcal{A}) \mid Y \geq$ Fix $\left(W_{J}\right)$ \}. Define $\operatorname{Des}(w)$ to be the simple positive roots which w maps to negative roots (also known as the descent set of $w)$ and let $d(w)=|\operatorname{Des}(w)|$. Let $N_{W}\left(W_{K}\right)$ be the normalizer of W_{K} in W and let $\lambda(K)$ be the subsets of Π equivalent to K under the action of W.

Definition: For W a finite Coxeter group and $x \neq 0$, define $H_{W, x}(w)$ to be

$$
\sum_{K \subseteq \Pi-\operatorname{Des}(w)} \frac{\left|W_{K}\right| \chi\left(L^{F i x\left(W_{K}\right)}, x\right)}{x^{n}\left|N_{W}\left(W_{K}\right)\right||\lambda(K)|} .
$$

To give a feeling for these measures and for later use, we recall formulas for types A and B (obtained using descent algebras in the first reference given and arising from the above definition in the second reference given).

- ([1],[5])

$$
H_{S_{n}, x}(w)=\frac{\binom{x+n-1-d(w)}{n}}{x^{n}} .
$$

Physically, the inverse of this measure is obtained by cutting at card k with probability $\frac{\binom{n}{k}}{2^{n}}$, then doing a uniformly chosen random interleaving of the piles. The papers [9] and [11] investigate the cycle structure and inversion structure of a random permutation chosen from $H_{S_{n}, x}$.

- ([2],[12])

$$
H_{B_{n}, x}(w)=\frac{(x+2 n-1-2 d(w))(x+2 n-3-2 d(w)) \cdots(x+1-2 d(w))}{x^{n} n!} .
$$

The inverse of this measure also has a physical description if x is odd, stated for $x=3$ in [2] and extended in [14]. One cuts multinomially into an odd number of piles, flips over the even numbered piles, and then does a random interleaving. This is different from the type B notion in [1], which cuts into two piles. However these two types of shuffles can be placed in a unified setting, using the affine Weyl group [14]. In future work we hope to study physical models of the shuffles $H_{W, x}$ for other finite Coxeter groups, viewed as permutation groups.

Next we comment on some properties of the measures $H_{W, x}$.

- ([12]) For types A, B, C, H_{3} and rank 2 groups (but not for all types as is explained in below), the measures $H_{W, x}$ convolve in the sense that

$$
\left(\sum_{w \in W} H_{W, x}(w) w\right)\left(\sum_{w \in W} H_{W, y}(w) w\right)=\sum_{w \in W} H_{W, x y}(w) w .
$$

Thus $n x$-shuffles is the same as an x^{n} shuffle. Observe also that in the $x \rightarrow \infty$ limit the measures $H_{W, x}$ become the uniform distribution. The eigenvalues of an x-shuffle viewed as a Markov chain are $\frac{1}{x^{i}}, i=0, \cdots, n-1$ with various multiplicities.

- The Coxeter complex of W has as faces the left cosets $w W_{K}$ and as chambers the elements of W. Consider the BHR walks on the chambers of the Coxeter complex with face wieghts

$$
v\left(w W_{K}\right)=\frac{\left|W_{K}\right| \chi\left(L^{F i x\left(W_{K}\right)}, x\right)}{x^{n}\left|N_{W}\left(W_{K}\right)\right||\lambda(K)|} .
$$

When these weights are non-negative, $H_{W, x}(w)$ can be interpreted as the probability of moving from the identity chamber to w. Equations from page 282 of [21] imply that $v\left(w W_{K}\right)$ can be rewritten as $(-1)^{n-|K|} \frac{\chi\left(L^{F i x\left(W_{K}\right)}, x\right)}{x^{n} \chi\left(L^{F i x\left(W_{K}\right)},-1\right)}$. As observed in [12], this leads to a notion of card shuffling for any real hyperplane arrangement or oriented matroid. The Coxeter case gives rise to the factorization

$$
\chi\left(L^{F i x\left(W_{K}\right)}, x\right)=\prod_{i=1}^{\operatorname{dim}\left(F i x\left(W_{K}\right)\right)}\left(x-b_{i}^{K}\right)
$$

from [21] where the b_{i}^{K} are integers called coexponents. From the results and tables in [21], all b_{i}^{K} are less than or equal to the maximum exponent of W. From the table of bad primes for crystallographic types on page 28 of [7], the bad primes are precisely the primes less than the maximum exponent of W which are not equal to exponents of W. (Equivalently, a prime is good if it divides no coefficient of any root expressed as a linear combination of simple roots.) Thus $H_{W, q}(w) \geq 0$ if W is crystallographic and q is a good prime, because then every face weight is non-negative. This may be regarded as evidence in favor of the the statement in Problem 1 in Section 3.

- Orlik and Solomon [21] have calculated and tabulated $\chi\left(L^{F i x\left(W_{K}\right)}, x\right)$ for all types. By the previous remark, this gives a simple and unified method for computing the measure $H_{W, x}$. Applied to W of type H_{3}, one concludes that

$$
H_{H_{3}, x}(w)= \begin{cases}\frac{(x+9)(x+5)(x+1)}{120 x^{3}} & \text { if } d(w)=0 \\ \frac{(x+5)(x+1)(x-1)}{120 x^{3}} & \text { if } d(w)=1 \\ \frac{(x+1)(x-1)(x-5)}{120 x^{3}} & \text { if } d(w)=2 \\ \frac{(x-1)(x-5)(x-9)}{120 x^{3}} & \text { if } d(w)=3\end{cases}
$$

This formula, together with the formulas for $H_{W, x}$ for W of types A, B which appeared earlier in this paper, suggest that $H_{W, x}$ satisfies the following factorization and reciprocity properties:

1. $H_{W, x}(w)$ splits into linear factors as a function of x.
2. $H_{W, x}(w)=H_{W,-x}\left(w w_{0}\right)$ where w_{0} is the longest element of W.

In fact neither of these properties holds. This is evident from the following formula for $H_{H_{4}, x}$ which is obtained by using tables of Orlik and Solomon as just described.

$$
H_{H_{4}, x}(w)= \begin{cases}\frac{(x+29)(x+19)(x+11)(x+1)}{14400 x^{4}} & \text { if } d(w)=0 \\ \frac{(x+1)(x-1)\left(x^{2}+30 x+149\right)}{14400 x^{4}} & \text { if } \operatorname{Des}(w)=\left\{\alpha_{1}\right\} \text { or } \operatorname{Des}(w)=\left\{\alpha_{2}\right\} \\ \frac{(x+1)(x-1)\left(x^{2}+30 x+269\right)}{14400 x^{4}} & \text { if } \operatorname{Des}(w)=\left\{\alpha_{3}\right\} \text { or } \operatorname{Des}(w)=\left\{\alpha_{4}\right\} \\ \frac{(x+11)(x+1)(x-1)(x-11)}{14400 x^{4}} & \text { if } d(w)=2 \text { and } \operatorname{Des}(w) \neq\left\{\alpha_{3}, \alpha_{4}\right\} \\ \frac{(x+1)^{2}(x-1)^{2}}{14400 x^{4}} & \text { if } \operatorname{Des}(w)=\left\{\alpha_{3}, \alpha_{4}\right\} \\ \frac{(x+1)(x-1)(x-11)(x-19)}{14400 x^{4}} & \text { if } d(w)=3 \\ \frac{(x-1)(x-11)(x-19)(x-29)}{14400 x^{4}} & \text { if } d(w)=4 .\end{cases}
$$

Incidentally this remark shows that $H_{H_{4}, x}$ does not convolve. For $H_{W,-1}$ places all mass on the longest element w_{0}, so the convolution property would imply that $H_{H_{4},-x}(w)=H_{H_{4},-x}\left(w w_{0}\right)$. Since w and $w w_{0}$ have complementary descent sets, this equality does not hold for w with $\operatorname{Des}(w)=\left\{\alpha_{3}, \alpha_{4}\right\}$. The same argument disproves the convolution property in many cases.

Let $i d$ be the identity element of W and w_{0} the longest element of W. Theorem 1 calculates the values of the measure $H_{W, x}$ on these elements.

Theorem 1 Let m_{1}, \cdots, m_{r} be the exponents of W. Then

$$
\begin{aligned}
H_{W, x}\left(w_{0}\right) & =\frac{\prod_{i=1}^{r}\left(x-m_{i}\right)}{x^{r}|W|} \\
H_{W, x}(i d) & =\frac{\prod_{i=1}^{r}\left(x+m_{i}\right)}{x^{r}|W|} .
\end{aligned}
$$

Proof: The first assertion is easier. In fact,

$$
H_{W, x}\left(w_{0}\right)=\frac{\chi(L, x)}{x^{r}|W|}=\frac{\prod_{i=1}^{r}\left(x-m_{i}\right)}{x^{r}|W|}
$$

The first equality is from the definition of $H_{W, x}$ and the second equality is a well known factorization of the characteristic polynomial of L (e.g. [21]).

For the second assertion, additional concepts are needed. Let L be the lattice in V generated by $\check{\Phi}$ and let

$$
\hat{L}=\{v \in V \mid<v, \alpha>\in Z \text { for all } \alpha \in \Phi\} .
$$

Let $f=[\hat{L}: L]$ be the index L in \hat{L}. Let $\Pi=\left\{\alpha_{i}\right\} \subset \Phi^{+}$be a set of simple roots contained in a set of positive roots and let θ be the highest root in Φ^{+}. For convenience set $\alpha_{0}=-\theta$. Let $\tilde{\Pi}=\Pi \cup\left\{\alpha_{0}\right\}$. Define coefficients c_{α} of θ with respect to $\tilde{\Pi}$ by the equations $\sum_{\alpha \in \tilde{\Pi}} c_{\alpha} \alpha=0$ and $c_{\alpha_{0}}=1$. For $S \neq \tilde{\Pi}$ a proper subset of $\tilde{\Pi}$, define as in [24] $p(S, x)$ to be the number of solutions \mathbf{y} in strictly positive integers to the equation

$$
\sum_{\alpha \in \tilde{\Pi}-S} c_{\alpha} y_{\alpha}=x
$$

In the equations which follow $W_{K_{1}}, \cdots, W_{K_{l}}$ with $K_{1}, \cdots, K_{l} \subseteq \Pi$ are representatives for the parabolic subgroups of W under conjugation. In [21] it is proved that $|\lambda(K)|$ is the number of $J \subseteq \Pi$ such that W_{J} is conjugate to W_{K}. We also make use of the fact [25] that if x is relatively
prime to all c_{α}, then for any $S \subset \tilde{\Pi}, S \neq \tilde{\Pi}$, if $p(S, x)$ is non-zero then W_{S} is conjugate to one of $W_{K_{1}}, \cdots, W_{K_{l}}$. We denote conjugacy of parabolic subgroups by the symbol \sim. One concludes that for infinitely many (and hence all) non-zero x,

$$
\begin{aligned}
H_{W, x}(i d) & =\sum_{K \subseteq \Pi} \frac{\left|W_{K}\right| \chi\left(L^{F i x\left(W_{K}\right)}, x\right)}{x^{r}\left|N_{W}\left(W_{K}\right)\right||\lambda(K)|} \\
& =\sum_{i=1}^{l} \frac{\left|W_{K_{i}}\right| \chi\left(L^{F i x\left(W_{K_{i}}\right)}, x\right)}{x^{r}\left|N_{W}\left(W_{K_{i}}\right)\right|} \\
& =\frac{1}{x^{r} f} \sum_{i=1}^{l} \frac{f\left|W_{K_{i}}\right| \chi\left(L^{F i x\left(W_{K_{i}}\right)}, x\right)}{\left|N_{W}\left(W_{K_{i}}\right)\right|} \\
& =\frac{1}{x^{r} f} \sum_{i=1}^{l} \sum_{\substack{S \subseteq \bar{n}, S \neq \bar{\Pi} \\
W_{S} \sim W_{K_{i}}}} p(S, x) \\
& =\frac{1}{x^{r} f} \sum_{\substack{S \subset \tilde{\Pi} \\
S \neq \bar{\Pi}}} p(S, x) \\
& =\frac{1}{x^{r}|W|} \prod_{i=1}^{r}\left(x+m_{i}\right) .
\end{aligned}
$$

The fourth and sixth equalities are results of [24].

3 Semisimple Orbits of Lie Algebras

This section connects (in some cases) the signed measures $H_{W, x}$ with semisimple orbits of the adjoint action of finite groups of Lie type on their Lie algebras.

Let G be a connected semisimple group defined over a finite field of q elements. Suppose also that G is simply connected. Let \mathcal{G} be the Lie algebra of G. Let F denote both a Frobenius automorphism of G and the corresponding Frobenius automorphism of \mathcal{G}. Suppose that G is F split (analogous results for non-split G are under investigation). Since the derived group of G is simply connected (the derived group of a simply connected group is itself), a theorem of Springer and Steinberg [26] implies that the centralizers of semisimple elements of \mathcal{G} are connected. Let r
be the rank of G.
Now we define a map Φ (studied in [20] in somewhat greater generality) from the F-rational semisimple orbits c of \mathcal{G} to W, the Weyl group of G. Pick $x \in \mathcal{G}^{F} \cap c$. Since the centralizers of semisimple elements of \mathcal{G} are connected, x is determined up to conjugacy in G^{F} and $C_{G}(x)$, the centralizer in G of x, is determined up to G^{F} conjugacy. Let T be a maximally split maximal torus in $C_{G}(x)$. Then T is an F-stable maximal torus of G, determined up to G^{F} conjugacy. By Proposition 3.3.3 of [7], the G^{F} conjugacy classes of F-stable maximal tori of G are in bijection with conjugacy classes of W. Define $\Phi(c)$ to be the corresponding conjugacy class of W.

For example, in type A_{n-1} the semisimple orbits c of $s l(n, q)$ correspond to monic degree n polynomials $f(c)$ whose coefficient of x^{n-1} vanishes. Such a polynomial factors as $\prod_{i} f_{i}^{a_{i}}$ where the f_{i} are irreducible over F_{q}. Letting d_{i} be the degree of $f_{i}, \Phi(c)$ is the conjugacy class of S_{n} corresponding to the partition $\left(d_{i}^{a_{i}}\right)$. This follows from Section 3 of [8].

As is standard in Lie theory (e.g. [10]), call a prime p very good if it divides no coefficient of any root expressed as a linear combination of simple roots and is relatively prime to the index of connection (the index of the coroot lattice in the weight lattice). For example in type A the very good primes are those not dividing n.

Problem 1: When is the following statement true? "Let G be as above, and suppose that the characteristic is a prime which is very good for G. Choose c among the $q^{r} F$-rational semisimple orbits of \mathcal{G} uniformly at random. Then for all conjugacy classes C of W,

$$
\operatorname{Probability}(\Phi(c)=C)=\sum_{w \in C} H_{W, q}(w) . "
$$

Recall from the end of Section 2 that under the conditions of Problem 1, $H_{W, q}(w) \geq 0$ for all $w \in W$. This may be taken as evidence that the statement in Problem 1 is correct. Theorems 2, 3, and 4 provide further evidence. In cases where the convolution property of W does not hold, we
have doubts as to whether the statement in Problem 1 is correct. Nevertheless, at present we have no examples to the contrary (type D_{4} would be a natural first place to look).

Theorem 2 The statement in Problem 1 holds for G of all types (i.e. $A-D, E_{6-8}, F_{4}, G_{2}$) when C is the identity conjugacy class of W.

Proof: Corollary 3.4 of [10] (see also Proposition 5.9 of [20]) states that for q very good, the number of F-rational semisimple orbits c of \mathcal{G} which satisfy $\Phi(c)=i d$ is equal to

$$
\prod_{i=1}^{r} \frac{q+m_{i}}{1+m_{i}}
$$

where r is the rank of G and m_{i} are the exponents of W. Since there are a total of $q^{r} F$-rational semisimple orbits of \mathcal{G}, and because $|W|=\prod_{i=1}^{r}\left(1+m_{i}\right)$,

$$
\operatorname{Probability}(\Phi(c)=i d)=\frac{\prod_{i=1}^{r}\left(q+m_{i}\right)}{q^{r}|W|} .
$$

The proposition now follows from Theorem 1.

Theorem 3 The statement of Problem 1 holds for G of type A, for all conjugacy classes C of the symmetric group S_{n}.

Proof: Note that a monic, degree n polynomial f with coefficients in F_{q} defines a partition of n, and hence a conjugacy class of S_{n}, by its factorization into irreducibles. To be precise, if f factors as $\prod_{i} f_{i}^{a_{i}}$ where the f_{i} are irreducible of degree d_{i}, then $\left(d_{i}^{a_{i}}\right)$ is a partition of n. If the coefficient of x^{n-1} in f vanishes, then f represents an F-rational semisimple orbit c of $s l(n, q)$, and the conjugacy class of S_{n} corresponding to the partition $\left(d_{i}^{a_{i}}\right)$ is equal to $\Phi(c)$.

In [9] it is shown that if f is uniformly chosen among all monic, degree n polynomials with coefficients in F_{q}, then the measure on the conjugacy classes of S_{n} induced by the factorization of f is equal to the measure induced by $H_{S_{n}, q}$. Thus, to prove the theorem, it suffices to show that
the random partition associated to a uniformly chosen monic, degree n polynomial over F_{q} has the same distribution as the random partition associated to a uniformly chosen monic, degree n polynomial over F_{q} with vanishing coefficient of x^{n-1}. Since the characteristic p is assumed to be very good, p does not divide n. Thus for a suitable choice of k, the change of variables $x \rightarrow x+k$ gives rise to a bijection between monic, degree n polynomials with coefficient of x^{n-1} equal to b_{1} and monic, degree n polynomials with coefficient of x^{n-1} equal to b_{2}, for any b_{1} and b_{2}. Since this bijection preserves the partition associated to a polynomial, the theorem is proved.

Theorem 4 will confirm the statement of Problem 1 for all G of type B. The proof will use the following combinatorial objects introduced in [22]. As Lemma 1 will show, these objects have interpretations in terms of polynomials. Let a \mathbf{Z}-word of length m be a vector $\left(a_{1}, \cdots, a_{m}\right) \in \mathbf{Z}^{m}$. For such a word define $\max (a)=\max \left(\left|a_{i}\right|\right)_{i=1}^{m}$. The cyclic group $C_{2 m}$ acts on \mathbf{Z}-words of length m by having a generator g act as $g\left(a_{1}, \cdots, a_{m}\right)=\left(a_{2}, \cdots, a_{m},-a_{1}\right)$. Call a fixed-point free orbit P of this action a primitive twisted necklace of size m. The group $Z_{2} \times C_{m}$ acts on \mathbf{Z}-words of length m by having the generator r of C_{m} act as a cyclic shift $r\left(a_{1}, \cdots, a_{m}\right)=\left(a_{2}, \cdots, a_{m}, a_{1}\right)$ and having the generator v of Z_{2} act by $v\left(a_{1}, \cdots, a_{m}\right)=\left(-a_{1}, \cdots,-a_{m}\right)$. Call an orbit D of this action a primitive blinking necklace of size m if its C_{m} action is free (though its $Z_{2} \times C_{m}$ action need not be). Let a signed ornament o be a set of primitive twisted necklaces and a multiset of primitive blinking necklaces. Say that o has type $(\vec{\lambda}, \vec{\mu})=\left(\left(\lambda_{1}, \lambda_{2}, \cdots\right),\left(\mu_{1}, \mu_{2}, \cdots\right)\right)$ if it consists of λ_{m} primitive blinking neclaces of size m and μ_{m} primitive twisted necklaces of size m. Also define the size of o to be the sum of the sizes of the primitive twisted and blinking necklaces which make up o, and define $\max (o)$ to be the maximum of $\max (D)$ and $\max (P)$ for the primitive twisted and blinking necklaces which make up o.

Lemma 1 Primitive twisted necklaces P of size m and with $\max (P) \leq \frac{q-1}{2}$ correspond to irre-
ducible polynomials $f(z)$ over F_{q} of degree $2 m$ satisfying $f(z)=f(-z)$. Primitive blinking necklaces D of size m and with $\max (D) \leq \frac{q-1}{2}$ correspond to products $f(z) f(-z)$ with $f(z), f(-z)$ a pair of irreducible polynomial of degree m over F_{q}. Signed ornaments given as sets of such P 's and multisets of such D 's correspond to polynomials of degree $2 m$ over F_{q} satisfying $f(z)=f(-z)$.

Proof: For the first assertion, let $F_{q^{2 m}}$ be the degree $2 m$ extension of F_{q}. Choose α in $F_{q^{2 m}}$ such that $\left\{\alpha^{q^{i}}: 1 \leq i \leq 2 m\right\}$ is a basis over F_{q}. (Such a basis is called a normal basis and is known to exist). Let $f(z)$ be an irreducible polynomial of degree $2 m$ satisfying $f(z)=f(-z)$. Let β be one of its roots in $F_{q^{2 m}}$. Writing $\beta=\sum_{i=1}^{2 m} c_{i} \alpha^{q^{i}}$, define a vector $\left(c_{1}, \cdots, c_{m}\right)$ associated to β. Since the automorphism of $F_{q^{2 m}}$ defined by $\alpha \rightarrow \alpha^{q^{m}}$ is its unique automorphism of order two, it follows that β^{q} is assigned the vector $\left(c_{2}, \cdots, c_{m},-c_{1}\right)$. Thus the action of the Frobenius map $x \rightarrow x^{q}$ corresponds to the action of $Z_{2} \times C_{m}$ on the vector $\left(c_{1}, \cdots, c_{m}\right)$, and irreducible polynomials correspond to primitive orbits.

For the second assertion, choose α in $F_{q^{m}}$ such that $\left\{\alpha^{q^{i}}: 1 \leq i \leq m\right\}$ is a basis over F_{q}. Let $f(z)$ be an irreducible polynomial of degree m. Let β be one of its roots in $F_{q^{m}}$. Writing $\beta=\sum_{i=1}^{m} c_{i} \alpha^{q^{i}}$, define a vector $\left(c_{1}, \cdots, c_{m}\right)$ associated to β. The C_{m} action on this vector is free because $f(z)$ is irreducible. The Z_{2} action sends $f(z)$ to $f(-z)$.

For the final assertion, note that a polynomial $f(z)$ satisfying $f(z)=f(-z)$ can be factored uniquely as a product

$$
\prod_{\left\{\phi_{j}(z), \phi_{j}(-z)\right\}}\left[\phi_{j}(z) \phi_{j}(-z)\right]^{r_{\phi_{j}}} \prod_{\phi_{j} ; \phi_{j}(z)=\phi_{j}(-z)} \phi_{j}(z)^{s_{j}}
$$

where the ϕ_{j} are monic irreducible polynomials and $s_{\phi_{j}} \in\{0,1\}$.

Theorem 4 proves the statement of Problem 1 for type B.

Theorem 4 The statement of Problem 1 holds for G of type B, for all conjugacy classes C of the hyperoctahedral group B_{n}.

Proof: Note that because 2 is a bad prime for type B, it can be assumed that the characteristic is odd. Recall that the type of a signed ornament is parameterized by pairs of vectors $(\vec{\lambda}, \vec{\mu})$, where λ_{i} is the number of primitive blinking necklaces of size i and μ_{i} is the number of primitive twisted necklaces of size i. From the theory of wreath products the conjugacy classes of the hyperoctahedral group B_{n} are also parameterized by pairs of vectors $(\vec{\lambda}, \vec{\mu})$, where $\lambda_{i}(w)$ and $\mu_{i}(w)$ are the number of positive and negative cycles of $w \in B_{n}$ respectively.

The first step of the proof will be to show that the measure induced on pairs $(\vec{\lambda}, \vec{\mu})$ by choosing a random signed ornament o of size n satisfying $\max (o) \leq \frac{q-1}{2}$ is equal to the measure induced on pairs $(\vec{\lambda}, \vec{\mu})$ by choosing $w \in B_{n}$ according to the measure $H_{B_{n}, q}$ and then looking at its conjugacy class. From the definition of descents given in Section 2, it is easy to see that if one introduces the following linear order Λ on the set of non-zero integers:

$$
+1<_{\Lambda}+2<_{\Lambda} \cdots+n<_{\Lambda} \cdots<_{\Lambda}-n<_{\Lambda} \cdots<_{\Lambda}-2<_{\Lambda}-1
$$

then $d(w)$, the number of descents of $w \in B_{n}$, can be defined as $\left|\left\{i: 1 \leq i \leq n: w(i)>_{\Lambda} w(i+1)\right\}\right|$. Here $w(n+1)=n+1$ by convention.

It is proved in [22] that there is a bijection between signed ornaments o of size n satisfying $\max (o) \leq \frac{q-1}{2}$ and pairs (w, \vec{s}) where $w \in B_{n}$ and $\vec{s}=\left(s_{1}, \cdots, s_{n}\right) \in \mathbf{N}^{n}$ satisifies $\frac{q-1}{2} \geq s_{1} \geq \cdots \geq$ $s_{n} \geq 0$ and $s_{i}>s_{i+1}$ when $w(i)>_{\Lambda} w(i+1)$ (i.e. when w has a descent at position i). Further, he shows that the type of o is equal to the conjugacy class vector of w. It is easy to see that if w has $d(w)$ descents, then the number of \vec{s} such that $\frac{q-1}{2} \geq s_{1} \geq \cdots \geq s_{n} \geq 0$ and $s_{i}>s_{i+1}$ when $w(i)<_{\Lambda} w(i+1)$ is equal to

$$
\binom{\frac{q-1}{2}+n-d(w)}{n}=\frac{(q+1-2 d(\pi)) \cdots(q+2 n-1-2 d(\pi))}{2^{n} n!} .
$$

Lemma 1 implies that there are q^{n} signed ornaments f of size n satisfying $\max (f) \leq \frac{q-1}{2}$. Thus choosing a random signed ornament induces a measure on $w \in B_{n}$ with mass on w equal to

$$
\frac{(q+1-2 d(\pi)) \cdots(q+2 n-1-2 d(\pi))}{q^{n}\left|B_{n}\right|}
$$

By the remarks in Section 2, this is exactly the mass on w under the measure $H_{B_{n}, q}$. Since in Reiner's bijection the type of o is equal to the conjugacy class vector of w, we have proved that the measure on conjugacy classes $(\vec{\lambda}, \vec{\mu})$ of B_{n} induced by choosing w according to $H_{B_{n}, q}$ is equal to the measure on conjugacy classes $(\vec{\lambda}, \vec{\mu})$ of B_{n} induced by choosing a signed ornament uniformly at random and taking its type.

The second step in the proof is to show that if f is chosen uniformly among the q^{n} semisimple orbits of $\operatorname{Spin}(2 n+1, q)$ on its Lie algebra, then the chance that $\Phi(f)$ is the conjugacy class $(\vec{\lambda}, \vec{\mu})$ of B_{n} is equal to the chance that a signed ornament chosen randomly among the q^{n} signed ornaments o of size n satisfying $\max (o) \leq \frac{q-1}{2}$ has type $(\vec{\lambda}, \vec{\mu})$. It is well known that the semisimple orbits of $\operatorname{Spin}(2 n+1, q)$ on its Lie algebra correspond to monic, degree $2 n$ polynomials f satisfying $f(z)=f(-z)$. From Section 3 of [8], one sees that $\Phi(f)$ can be described as follows. Factor f uniquely into irreducibles as

$$
\prod_{\left\{\phi_{j}(z), \phi_{j}(-z)\right\}}\left[\phi_{j}(z) \phi_{j}(-z)\right]^{r_{\phi_{j}}} \prod_{\phi_{j} ; \phi_{j}(z)=\phi_{j}(-z)} \phi_{j}(z)^{\phi_{j}}
$$

where the ϕ_{j} are monic irreducible polynomials and $s_{\phi_{j}} \in\{0,1\}$. Then let $\lambda_{i}(f)=\sum_{\phi: \operatorname{deg}(\phi)=i} r_{\phi}$ and $\mu_{i}(f)=\sum_{\phi: d e g(\phi)=2 i} s_{\phi}$. The result now follows from Lemma 1 .

We remark that the statement of Problem 1 would be false if instead of choosing c uniformly among the $q^{r} F$-rational semisimple orbits of \mathcal{G}, c were chosen uniformly among the q^{r} semisimple conjugacy classes of G^{F}. For a simple counterexample, take $G=S L(3,5)$ and C the identity conjugacy class of S_{3}. There are only five monic polynomials f with coefficients in F_{5} which factor into linear terms and satisfy $f(0)=1$. The analog of the statement of Problem 1 would predict
that there are seven. For analogous, yet combinatorially more intricate developments for semisimple conjugacy classes, see [14].

4 Refining the Map Φ to the Weyl group

As noted in the introduction, one long-term goal is to find a canonical way to associate to an F-rational semisimple orbit c of \mathcal{G} an element w of W. The conjugacy class of w should equal $\Phi(c)$ and choosing c uniformly at random should induce the measure $H_{W, q}$ on W.

To see why such a result may be interesting, at least in type A, consider a simple algebraic extension of Q with minimal polynomial $f(x)$. At unramified primes the Frobenius automorphism is defined up to conjugacy in the Galois group. Viewed as a permutation of the roots of $f(x)$, the cycle structure of the Frobenius automorphism is given by the degrees of the irreducible factors of the modulo p reduction of $f(x)$. This is simply the map Φ in type A. Some important constructions in algebraic number theory (see [16] for a survey) create generating functions combining this data over all primes. It is not impossible that a natural refinement of the Frobenius data will yield new number theoretic constructions.

Next we indicate a somewhat unnatural way to refine the map Φ in types A and B. For type A, the refinement proceeds in two steps. Define a necklace on an alphabet to be a sequence of cyclically arranged letters of the alphabet. A necklace is said to be primitive if it is not equal to any of its non-trivial cyclic shifts. For example, the necklace ($a a b b$) is primitive, but the necklace $(a b a b)$ is not.

The first step is to associate to a monic degree n polynomial over F_{q} a multiset of primitive necklaces on a lexicographically ordered alphabet of $q-1$ symbols. One way to do this is using the concept of a normal basis, that is to choose for each n an element α_{n} such that its conjugates $\alpha_{n}^{p^{j}}$ for $j=0, \cdots, n-1$ are a basis of $F_{p^{n}}$ over F_{p}. Then a monic irreducible degree i polynomial gives a
primitive necklace of size i formed by the coefficients c_{j} of any one of its roots written as $\sum c_{j} \alpha_{i}^{p^{j}}$. (It is natural to require that for $i \mid n$, the norm of α_{n} is α_{i}.) This is the preferred method in the case of semisimple adjoint orbits, because the involution sending $f(x)$ to $f(-x)$ takes negatives of the necklace entries.

A second way to carry out this first step was noticed by Golomb [18]. For each n, pick an element β_{n} generating the multiplicative group of the field extension $F_{q^{n}}$ of F_{q}. A root of an irreducible polynomial ϕ of degree i can be written β_{i}^{x}. Considering the $\bmod q$ expansion of x gives a primitive necklace of size i on the symbols $\{0,1, \cdots, q-1\}$. This is the preferred construction in the case of semisimple conjugacy classes, because the involution $f(x) \mapsto \frac{t^{d e g(f)} f\left(\frac{1}{t}\right)}{f(0)}$ on polynomials with non-zero constant term takes negatives of the necklace entries.

The next step in the construction is to associate to a multiset of primitive necklaces on $\{0, \cdots, q-$ 1\} a permutation with cycle structure equal to that of the necklace. A way to do this was found by Gessel and Reutenauer [17]. To each entry of a necklace, first associate the infinite word obtained by reading the necklace in the clockwise direction. Using the example from [17], consider the multiset of necklaces

$$
(12)(12)(2)(23)(23233) .
$$

Then the entry 2 on the necklace (23) would give the word $23232323 \cdots$. One then orders lexicographically the words obtained (after imposing an arbitrary order on equal necklaces), and replaces each necklace entry by the lexicographic order of its associated word. The example would thus yield the permutation

$$
(13)(24)(5)(69)(71181210) .
$$

Arguing as in [9] (which doesn't mention correspondences between polynomials and necklaces) shows that choosing a multiset of primitive necklaces on the symbols $\{0, \cdots, q-1\}$ of total size n and applying the Gessel-Reutenauer map gives a permutation distributed according to $H_{S_{n}, q}$.

For a B_{n} analog, the bijection of Gessel should be replaced by the bijection of Reiner [22] used in the proof of Theorem 4. The correspondence between signed ornaments and degree $2 n$ monic polynomials satisfying $f(z)=f(-z)$ is given in the proof of Lemma 1 .

5 Acknowledgements

The author thanks Persi Diaconis, Dick Gross, Vic Reiner, and Eric Sommers for helpful discussions.

References

[1] Bayer, D. and Diaconis, P., Trailing the dovetail shuffle to its lair. Annals of Applied Probability 2, Number 2 (1992), 294-313.
[2] Bergeron, F. and Bergeron, N., Orthogonal idempotents in the descent algebra of B_{n} and applications. Journal of Pure and Applied Algebra 79, Number 2 (1992), 109-129.
[3] Bergeron, F., Bergeron, N., Howlett, R.B., and Taylor, D.E., A decomposition of the descent algebra of a finite Coxeter group. Journal of Algebraic Combinatorics 1 (1992), 23-44.
[4] Bergeron, N., and Wolfgang, L., The decomposition of Hochschild cohomology and the Gerstenhaber operations. Journal of Pure and Applied Algebra 104, Number 3 (1995), 243265.
[5] Bidigare, P., Hanlon, P., and Rockmore, D., A combinatorial description of the spectrum of the Tsetlin library and its generalization to hyperplane arrangements. Duke Math J. 99, Number 1 (1999), 135-174.
[6] Brown, K. and Diaconis, P., Hyperplane arrangements and random walk. Ann. of Probab. 26, Number 4 (1998), 1813-1854.
[7] Carter, R., Finite groups of Lie type. John Wiley and Sons, 1985.
[8] Carter, R., Centralizers of semisimple elements in the finite classical groups. Proc. London Math Soc. (3) 42 (1981), 1-41.
[9] Diaconis, P., McGrath, M., and Pitman, J., Riffle shuffles, cycles, and descents. Combinatorica 15, Number 1 (1995), 11-20.
[10] Fleischmann, P., Finite fields, root systems, and orbit numbers of Chevalley groups. Finite Fields Appl. 3 (1997), 33-47.
[11] Fulman, J., The combinatorics of biased riffle shuffles. Combinatorica 18, Number 2 (1998), 173-184.
[12] Fulman, J., Descent algebras, hyperplane arrangements, and shuffling cards. To appear in Proceedings of the American Math Society.
[13] Fulman, J., Counting semisimple orbits of finite Lie algebras by genus. J. Algebra 217 (1999), 170-179.
[14] Fulman, J., Cellini's descent algebra and semisimple conjugacy classes of finite groups of Lie type. Available at http://math.stanford.edu/~fulman.
[15] Fulman, J., Affine shuffles, shuffles with cuts, and patience sorting. Available at http://math.stanford.edu/~fulman.
[16] Gelbart, S., An elementary introduction to the Langlands program. Bull. Amer. Math. Soc. 10 (1984), 177-219.
[17] Gessel, I. and Reutenauer, C., Counting permutations with given cycle structure and descent set. Journal of Combinatorial Theory A 64 (1993), 189-215.
[18] Golomb, S., Irreducible polynomials, synchronization codes, primitive necklaces, and the cyclotomic algebra. Combinatorial Mathematics and its Applications. Univ. North Carolina Press (1969), 358-370.
[19] Hanlon, P., The action of S_{n} on the components of the Hodge decomposition of Hochschild homology. Michigan Mathematical Journal 37 (1990), 105-124.
[20] Lehrer, G., Rational tori, semisimple orbits and the topology of hyperplane complements. Comment. Math. Helvetici 67 (1992), 226-251.
[21] Orlik, P., and Solomon, L., Coxeter arrangements. Proceedings of Symposia in Pure Mathematics 40 (1983), 269-291.
[22] Reiner, V., Signed permutation statistics and cycle type. European Journal of Combinatorics 14 (1993), 569-579.
[23] Shnider, S., and Sternberg, S., Quantum groups. Graduate Texts in Mathematical Physics, II. International Press, 1993.
[24] Sommers, E., A family of affine Weyl group representations. Transform. Groups 2 (1997), 375-390.
[25] Sommers, E., A generalization of the Bala-Carter theorem for nilpotent orbits. Internat. Math. Res. Notices 11 (1998), 539-562.
[26] Springer, T.A., and Steinberg, R., Conjugacy classes. Springer Lecture Notes in Math. 131 (1969).

