
AÆne shu�es, shu�es with cuts, the Whitehouse module, and patience sorting

By Jason Fulman

Stanford University

Department of Mathematics

Building 380, MC 2125

Stanford, CA 94305

email:fulman@math.stanford.edu

http://math.stanford.edu/�fulman

1991 AMS Primary Subject Classi�cations: 20P05, 05E99

1



Proposed running head: AÆne shu�es

2



Abstract

Using representation theoretic work on the Whitehouse module, a formula is obtained for

the cycle structure of a ri�e shu�e followed by a cut. It is proved that the use of cuts does

not speed up the convergence rate of ri�e shu�es to randomness. Type A aÆne shu�es are

compared with ri�e shu�es followed by a cut. Although these probability measures on the

symmetric group S

n

are di�erent, they both satisfy a convolution property. Strong evidence is

given that when the underlying parameter q satis�es gcd(n; q�1) = 1, the induced measures on

conjugacy classes of the symmetric group coincide. This gives rise to interesting combinatorics

concerning the modular equidistribution by major index of permutations in a given conjugacy

class and with a given number of cyclic descents. Generating functions for the �rst pile size in

patience sorting from decks with repeated values are derived. This relates to random matrices.

Key words: card shu�ing, conjugacy class, sorting, random matrix, cycle structure, Whitehouse

module.

1 Introduction

In an e�ort to study the way real people shu�e cards, Bayer and Diaconis [BaD] performed a

de�nitive analysis of the Gilbert-Shannon-Reeds model of ri�e shu�ing. For an integer k � 1, a k-

shu�e can be described as follows. Given a deck of n cards, one cuts it into k piles with probability

of pile sizes j

1

; � � � ; j

k

given by

(

n

j

1

;���;j

k

)

k

n

. Then cards are dropped from the packets with probability

proportional to the pile size at a given time (thus if the current pile sizes are A

1

; � � � ; A

k

, the next

card is dropped from pile i with probability

A

i

A

1

+���+A

k

). It was proved in [BaD] that

3

2

log

2

n shu�es

are necessary and suÆce for a 2-shu�e to achieve randomness (the paper [A] had established this

result asymptotically in n). It was proved in [DMP] that if k = q is a prime power, then the

chance that a permutation distributed as a q-shu�e has n

i

i-cycles is equal to the probability

that a uniformly chosen monic degree n polynomial over the �eld F

q

factors into n

i

irreducible

polynomials of degree i.

These results have recently been extended to other Coxeter groups and placed in a Lie theoretic

setting. The paper [BeBe] de�nes hyperoctaheral shu�es using descent algebras and the paper

[BiHR] relates Gilbert-Shannon-Reeds shu�es to hyperplane walks. The paper [F2] de�nes ri�e

shu�ing for arbitrary real hyperplane arrangements, with convergence rates obtainable from the

theory in [BiHR]. The results of [DMP] are given a Lie theoretic formulation and extension, at least

for types A and B, in [F3] and [F4]. (Random polynomials are replaced by the semsimple orbits of
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the adjoint action of a �nite group of Lie type on its Lie algebra, and even in type A restrictions

on the characteristic are needed). The paper [F1] considers cycle structure of permutations after

biased shu�es, and generalizations based on dynamical systems appear in [La1],[La2].

It is worth commenting that the combinatorics of type A ri�e shu�es is intimitely connected

to cyclic and Hochschild homology [Han],[GerS] to the Poincar�e-Birkho�-Witt theorem [BeW], free

Lie algebras [Ga], and to Hopf algebras (Section 3.8 of [SSt]). In recent work, Stanley [Sta] has

related biased ri�e shu�es with representation theory of the symmetric group, thereby giving

an elementary probabilistic interpretation of Schur functions and a di�erent approach to some

work in the random matrix community. He recasts and extends results of [BaD] and [F1] using

quasisymmetric functions.

Using a construction of Cellini [Ce1],[Ce2], the paper [F5] studies combinatorially much more

intricate shu�es called aÆne shu�es (they are reviewed in Section 2). The conjectures of [F5] state

in type A that the chance that a permutation distributed as an aÆne q shu�e has n

i

i-cycles is

equal to the probability that a uniformly chosen monic degree n polynomial with constant term

1 over the �eld F

q

factors into n

i

irreducible polynomials of degree i (the abstraction of these

polynomials is semisimple conjugacy classes of �nite groups of Lie type). These conjectures are

remarkable in the sense that (unlike the Lie algebra case [F3]), no restrictions on the characteristic

are needed and there seems to be a reasonably natural way of associating to such a polynomial a

permutation in the right conjugacy class, such that choosing the polynomial at random induces the

aÆne shu�ing measure. As emerges in [F5] (which gives an application to dynamical systems and

hints at number theoretic applications), this conjecture seems challenging.

The second type of shu�e to be studied in this paper is ri�e shu�ing followed by a cut at

a uniformly chosen random position. Section 3 develops combinatorial preliminaries of shu�es

followed by cuts. It is shown there that doing r \k-shu�es followed by a cut" is the same as doing

r k-shu�es and then a single cut (this is known for k = 2 from [Ce3]). It is proved that the

total variation distance between a sequence of x ri�e shu�es and y cuts (performed in any order)

and the uniform distribution on S

n

is at least the total variation distance between a sequence

of x ri�e shu�es on S

n�1

and the uniform distribution on S

n�1

. In this precise sense cuts do

not help speed up ri�e shu�es. This perhaps surprising fact can be contrasted with a result of

Diaconis [D2], who used representation theory to show that although shu�ing by doing random

tranpositions gets random in

1

2

nlog(n) steps, the use of cuts at each stage drops the convergence

time to

3

8

nlog(n) steps. It would be worthwhile and interesting to systematically study the e�ect
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of cuts on convergence rates of shu�ing methods. Section 3 also shows that a ri�e shu�e followed

by a cut is at least as random (and sometimes moreso) than a cut followed by a ri�e shu�e.

Section 4 uses representation theoretic work on the Whitehouse module to obtain a formula for

the cycle structure of a ri�e shu�e followed by a cut. More precisely, it is shown that the chance

that a permutation distributed as a q ri�e shu�e followed by a cut has n

i

i-cycles is equal to the

probability that a uniformly chosen monic degree n polynomial with non-zero constant term over

the �eld F

q

factors into n

i

irreducible polynomials of degree i. The connection with representation

theory is illuminating; it follows for instance that the work of [DMP] on the cycle structure of

ri�e shu�es is equivalent to a representation theoretic result of Hanlon [Han]. The Whitehouse

module is interesting in its own right and appears in many places in mathematics; the interested

reader should see the transparencies for a talk on the Whitehouse module on Richard Stanley's

MIT website.

Section 5 gives strong evidence for the assertion that aÆne shu�es and shu�es followed by a

cut, though di�erent probability measures, coincide when lumped according to conjugacy classes

provided that the prime power q satis�es gcd(n; q� 1) = 1. This leads to fascinating combinatorics

concerning the modular equidistribution by major index of permutations in a given conjugacy class

and with a given number of cyclic descents.

Section 6 considers questions which turn out to be related to cycle structure in multiset per-

mutations. To motivate things, we follow the recent preprint [AD] in its description of patience

sorting (which can also be viewed as a toy model for Solitaire, a card game which unlike BlackJack

has been extremely diÆcult to analyze mathematically). The simplest case is that one starts with

a deck of cards labelled 1; 2; � � � ; n in random order. Cards are turned up one at a time and dealt

into piles on the table according to the rule that a card is placed on the leftmost pile whose top

card is of higher value. If no such pile exists, the card starts a new pile to the right. For example

the ordering

7513624

leads to the arrangement

1

5 2 4

7 3 6
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The survey paper [AD] details connections of patience sorting with ideas ranging from random ma-

trices and the Robinson-Schensted correspondence to interacting particle systems ([AD2],[BaiDeJ]

[Han],[Rai]). For example the number of piles in patience sorting is the length of the longest increas-

ing subsequence of a random permutation. After an appropriate renormalization, this statistic has

the same asymptotic distribution as the largest eigenvalue of a random traceless GUE matrix. The

usefulness of [AD] is its insight that other functions of the random shape obtained through patience

sorting have interesting structure. They give results for various pile sizes and suggest the search

for analogous results for the following two variations of patience sorting from decks with repeated

values: ties allowed (i.e. a card may be placed on a card of the same value) or ties forbidden.

Section 6 gives generating functions for the �rst pile size for these two variations, and also for the

case where each card is chosen at random from a �nite alphabet. We remark that our approach

also works for a game one could call m-Solitaire in which each card value may be placed on a given

pile up to m times (ties allowed and ties forbidden corresponding to m =1;m = 1 respectively).

As these games are of less interest and the calculation is grungier, we omit it.

It may strike the reader that Section 6, though involving cards and cycle structure, is unrelated

to card shu�ing. However, there is a relation. To elaborate, suppose one picks a random word

of length n from a totally ordered alphabet, where the probability of getting symbol i is x

i

. The

number of piles in patience sorting applied to the word is the length of the longest weakly increasing

subsequence. Each word corresponds to a possible ri�e shu�e and the longest increasing subse-

quence in the corresponding permutation is the longest weakly increasing subsequence in the word

[Sta].

To close the introduction, we introduce some terminology that will be used throughout the

paper. C

r

(m) will denote the Ramanujan sum

P

l

e

2�ilm=r

where the sum is over all l less than

and prime to r. An element w in the symmetric group S

n

is said to have a descent at position i

if 1 � i � n� 1 and w(i) > w(i + 1). The notation d(w) will denote the number of descents of w.

The major index of w, denote maj(w) will be the sum of the positions i at which w has a descent.

The permutation w is said to have a cyclic descent at n if w(n) > w(1). Then cd(w) is de�ned as

d(w) if w has no cyclic descent at n and as d(w) + 1 if w has a cyclic descent at n. As noted in

[Ce1], the concepts of descents and cyclic descents have analogs for all Weyl groups. (The descents

are the simple positive roots mapped to negative roots and w has a cyclic descent if it keeps the

highest root positive).
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2 Type A aÆne shu�es

This section gives six de�nitions for what we call type A aÆne k-shu�es. The �rst two are due to

Cellini [Ce1] and are the best in that they generalize to all Weyl groups. The next four are due to the

author [F5] and are very useful for computational purposes. (The �nal de�nition is a \physical"

description of aÆne type A 2-shu�es. A good problem is to extend the physical description to

higher values of k). In all of the de�nitions k is a positive integer. A seventh de�nition (which

is conjectural but very conceptual and potentially valid for all Weyl groups) appears in the �nal

section of [F5]. As it requires some e�ort to describe and will not be used here, we omit it.

De�nitions of aÆne type A k-shu�es

1. Let W

k

be the subgroup of the type A aÆne Weyl group generated by re
ections in the n

hyperplanes fx

1

= x

2

; � � � ; x

n�1

= x

n

; x

n

� x

1

= kg. This subgroup has index k

n�1

in the

aÆne Weyl group and has k

n�1

unique minimal length coset representatives, each of which

can be written as the product of a permutation and a translation. Choose one of these k

n�1

coset representatives uniformly at random and consider its permutation part. De�ne a type

A aÆne k-shu�e to be the distribution on permutations so obtained.

2. A type A aÆne k-shu�e assigns probability to w

�1

2 S

n

equal to

1

k

n�1

multiplied by the

number of integers vectors (v

1

; � � � ; v

n

) satisfying the conditions

(a) v

1

+ � � �+ v

n

= 0

(b) v

1

� v

2

� � � � � v

n

; v

1

� v

n

� k

(c) v

i

> v

i+1

if w(i) > w(i+ 1) (with 1 � i � n� 1)

(d) v

1

< v

n

+ k if w(n) > w(1)

3. A type A aÆne k-shu�e assigns probability to w

�1

2 S

n

equal to

1

k

n�1

multiplied by the

number of partitions with � n� 1 parts of size at most k� cd(w) such that the total number

being partitioned has size congruent to �maj(w) mod n. Equivalently, it assigns probability

equal to

1

k

n�1

multiplied by the number of partitions with � k � cd(w) parts of size at most

n� 1 such that the total number being partitioned has size congruent to �maj(w) mod n.

4. A type A aÆne k-shu�e assigns probability to w

�1

2 S

n

equal to
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1

nk

n�1

P

rjn;k�cd(w)

�

n+k�cd(w)�r

r

k�cd(w)

r

�

C

r

(�maj(w)) if k � cd(w) > 0

1

k

n�1

if k � cd(w) = 0;maj(w) = 0 mod n

0 otherwise:

5. A type A aÆne k-shu�e assigns probability to w

�1

2 S

n

equal to

1

k

n�1

1

X

r=0

Coeff: of q

r�n

in

�

q

maj(w)

�

k + n� cd(w) � 1

n� 1

��

;

whre

h

A

B

i

denotes the q-binomial coeÆcient

(1�q)���(1�q

A

)

(1�q)���(1�q

B

)(1�q)���(1�q

A�B

)

.

6. A type A aÆne 2 shu�e has the following physical description for the symmetric group S

2n

.

Step 1: Choose an even number between 1 and 2n with the probability of getting 2j equal to

(

2n

2j

)

2

2n�1

. From the stack of 2n cards, form a second pile of size 2j by removing the top j cards

of the stack, and then putting the bottom j cards of the �rst stack on top of them.

Step 2: Now one has a stack of size 2n � 2j and a stack of size 2j. Drop cards repeatedly

according to the rule that if stacks 1; 2 have sizes A;B at some time, then the next card comes

from stack 1 with probability

A

A+B

and from stack 2 with probability

B

A+B

. (This is equivalent

to choosing uniformly at random one of the

�

2n

2j

�

interleavings preserving the relative orders

of the cards in each stack).

The description of x

2

is the same for the symmetric group S

2n+1

, except that at the beginning

of Step 1, the chance of getting 2j is

(

2n+1

2j

)

2

2n

and at the beginning of Step 2, one has a stack

of size 2n+ 1� 2j and a stack of size 2j.

An important property of these shu�es is the so called \convolution property", which says that

a k

1

shu�e followed by a k

2

shu�e is equivalent to a k

1

k

2

shu�e. It is interesting that the type A

ri�e shu�es of [BaD] satisfy the same convolution property, as do some of the generalizations in

[F2].

The conjecture of [F5] that relates the cycle structure of permutations distributed as aÆne

q-shu�es to the factorization of polynomials with constant term 1 appears to be interesting. For

instance it is shown there that for the case of the identity conjugacy class of S

n

, it amounts to the

m = 0 case of following observation in \modular combinatorial reciprocity". We recently noticed
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that this reciprocity statement appears in an invariant theoretic setting as Hermite reciprocity in

[EJ].

For any positive integers x; y, the number of ways (disregarding order and allowing repetition)

of writing m (mod y) as the sum of x integers of the set 0; 1; � � � ; y � 1 is equal to the number of

ways (disregarding order and allowing repetition) of writing m (mod x) as the sum of y integers of

the set 0; 1; � � � ; x� 1

Let f

m;k;i;d

is the coeÆcient of z

m

in (

z

kd

�1

z

d

�1

)

i=d

and let � be the Moebius function. Let n

i

(w)

be the number of i-cycles in a permutation w. Then (loc. cit.) the conjecture is equivalent to the

truly bizarre assertion (which we intentionally do not simplify) that for all n; k,

X

m=0 mod n

Coef: of q

m

u

n

t

k

in

1

X

n=0

u

n

(1� tq) � � � (1� tq

n

)

X

w2S

n

t

cd(w)

q

maj(w)

Y

x

n

i

(w)

i

=

X

m=0 mod k�1

Coef: of q

m

u

n

t

k

in

1

X

k=0

t

k

1

Y

i=1

1

Y

m=1

(

1

1� q

m

x

i

u

i

)

1=i

P

dji

�(d)f

m;k;i;d

:

3 Shu�es followed by a cut

To begin we remark that although [BaD] o�ers a formula for a shu�e followed by a cut, the formula

is really for a cut followed by a shu�e, which is di�erent.

Let s be the element of the group algebra of S

n

denoting a k-ri�e shu�e. Let � be the cyclic

permutation (1 � � � n) and let c =

1

n

P

n�1

i=0

�

n

. Thus in this notation a shu�e followed by a cut is

simply cs. The inverse of an element

P

r

w

w of the group algebra will be taken to mean

P

r

w

w

�1

.

It is useful to recall the following formula of Bayer and Diaconis.

Theorem 1 ([BaD]) The coeÆcient of a permutation w in the element s is

1

k

n

 

n+ k � d(w

�1

)� 1

n

!

:

Theorem 2 derives an analogous formula for a shu�e followed by a cut.

Theorem 2 The coeÆcient of a permutation w in the element cs is

1

nk

n�1

 

n+ k � cd(w

�1

)� 1

n� 1

!

:

Proof: Consider instead the coeÆcient of w in s

�1

c. This coeÆcient is equal to
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1

n

n�1

X

k=0

Coeff: of w�

k

in s

�1

:

The element w�

k

maps i to w(i + k mod n). Consequently letting cd(w) be the number of cyclic

descents of w, there are cd(w) values of k for which w�

k

has cd(w) � 1 descents, and n � cd(w)

values of k for which w�

k

has cd(w) descents. Combining this with Theorem 1 shows that the

coeÆcient of w in s

�1

c is

1

nk

n

 

cd(w)

 

n+ k � cd(w)

n

!

+ (n� cd(w))

 

n+ k � cd(w) � 1

n

!!

;

which simpli�es to the formula in the statement of the theorem. 2

This yields the following combinatorial corollary.

Corollary 1 Let B

n;i

be the number of elements of S

n

with i cyclic descents. Let A

n;i

be the

number of elements of S

n

with i� 1 descents. Then

1. x

n�1

=

P

1�i�n�1

B

n;i

n

�

n+x�i�1

n�1

�

.

2. If n > 1 then B

n;i

= nA

n�1;i

.

Proof: The �rst assertion is immediate from Theorem 2. The second assertion follows from the

�rst together with the well-known facts that A

n;i

= A

n;n+1�i

and that A

n;i

is the unique sequence

satisfying Worpitzky's identity x

n

=

P

1�i�n

A

n;i

�

x+i�1

n

�

. 2

Theorem 3 appears in [Ce3] for the case k = 2. As noted there, it implies that (cs)

h

= cs

h

for

any natural number h. The proof given here is simpler.

Theorem 3 csc = cs.

Proof: Taking inverses and using the fact that c

�1

= c, it is enough to show that cs

�1

c = s

�1

c.

The coeÆcient of w in cs

�1

c is

1

n

n�1

X

k=0

Coeff: of �

k

w in s

�1

c:

It is easy to see that cd(�

k

w) = cd(w) for all k. The result now follows from Theorem 2. 2
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Next recall the notion of total variation distance jjP

1

�P

2

jj between two probability distributions

P

1

and P

2

on a �nite set X. It is de�ned as

1

2

X

x2X

jP

1

(x)� P

2

(x)j:

The book [D2] explains why this is a natural and useful notion of distance between probability

distributions. P

1

� P

2

(the convolution) is de�ned by P

1

� P

2

(�) =

P

�2S

n

P

1

(��

�1

)P

2

(�), and

P

1

� � � � � P

k

is de�ned inductively. The following elementary (and well known) lemma will be

helpful.

Lemma 1 Let P;Q be any measures on a �nite group G and let U be the uniform distribution on

G. Then jjP �Q� U jj � jjQ� U jj.

Theorem 4 shows that cuts do not speed up the convergence rate of ri�e shu�es.

Theorem 4 1. Let S

(k)

; C; U denote the probability distribution corresponding to a k-ri�e shuf-


e, a cut, and the uniform distribution respectively. Then jjC � S

(k)

� U jj � jjS

(k)

� C � U jj

and the inequality can be strict. (In words, a shu�e followed by a cut is more random than

a cut followed by a shu�e).

2. For n > 1, jjC � S

(k)

� U jj

S

n

= jjS

(k)

� U jj

S

n�1

.

3. Let W be the convolution of any �nite sequence of ri�e shu�es and cuts. Let W

0

be the

convolution of the same �nite sequence, but with the cuts eliminated. (By abuse of notation,

these can be viewed on any symmetric group). Then

jjW � U jj

S

n

� jjW

0

� U jj

S

n�1

:

Proof: For the �rst assertion, observe that Theorem 3 gives that C � S

(k)

= C � S

(k)

� C. Now

use Lemma 1. Computations with the symmetric group S

4

show that the inequality can be strict.

For the second assertion, let B(n; i) be the number of elements of S

n

with i cyclic descents and

let A(n; i) be the number of elements of S

n

with i� 1 descents. Observe that

jjC � S

(k)

� U jj =

1

2

n�1

X

i=1

B(n; i)

�

�

�

�

�

�

k+n�i�1

n�1

�

nk

n�1

�

1

n!

�

�

�

�

�

=

1

2

n�1

X

i=1

A(n� 1; i)

�

�

�

�

�

�

k+n�i�1

n�1

�

k

n�1

�

1

(n� 1)!

�

�

�

�

�

= jjS

(k)

� U jj

S

n

�1

:
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The second equality is the second part of Corollary 1 and the �nal equality follows from Theorem

1.

For the third assertion, the inequality is clear if W has no cuts. Otherwise, combining the fact

that S

(i)

� S

(j)

= S

(ij)

for any i; j with Theorem 3 shows that W is equivalent to a convolution of

the form S

(k

1

)

�C � S

(k

2

)

(with k

1

or k

2

possibly 0 and S

(0)

denoting the measure placing all mass

the identity). Now observe that

jjS

(k

1

)

� C � S

(k

2

)

� U jj

S

n

� jjC � S

(k

1

)

� C � S

(k

2

)

� U jj

S

n

= jjC � S

(k

1

k

2

)

� U jj

S

n

= jjS

(k

1

k

2

)

� U jj

S

n�1

:

The �rst equality is Lemma 1, the second equality comes from Theorem 3, and the third equality

is the second part of this theorem. 2

A formula for a cut followed by a ri�e shu�e appears in [BaD], though it is not evident how it

could be used to prove part 1 of Theorem 4.

As a �nal problem, we observe that the n-cycle � = (1 � � � n) is a minimal length Coxeter element

for type A. As there are analogs of shu�ing for other �nite Coxeter groups [BeBe],[F2], it may be

possible to extend the results of this paper to other Coxeter groups.

4 Representation theory

This section uses representation theory to obtain a formula for the cycle structure of a ri�e shu�e

followed by a cut.

It is useful to recall the notion of a cycle index associated to a character of the symmetric group.

Letting n

i

(w) be the number of i-cycles of a permutation w and N be a subgroup of S

n

, one de�nes

Z

N

(�) as

Z

N

(�) =

1

jN j

X

w2N

�(w)

Y

i

a

n

i

(w)

i

:

The cycle index stores complete information about the character �. For a proof of the following

attractive property of cycle indices, see [Fe].

Lemma 2 Let N be a subgroup of S

n

and � a class function on N . Then

12



Z

S

n

(Ind

S

n

N

(�)) = Z

N

(�):

Next, recall that an idempotent e of the group algebra of a �nite group G de�nes a character �

for the action of G on the left ideal KGe of the group algebra of G over a �eld K of characteristic

zero. For a proof of Lemma 3, which will serve as a bridge between representation theory and

computing measures over conjugacy classes, see [Han]. For its statement, let e < w > be the

coeÆcient of w in the idempotent e.

Lemma 3 Let C be a conjugacy class of the �nite group G, and let � be the character associated

to the idempotent e. Then

1

jGj

X

w2C

�(w) =

X

w2C

e < w > :

It is also convenient to de�ne

Z

S

n

(e) =

X

w2S

n

e < w >

Y

i

a

n

i

(w)

i

;

which makes sense for any element e of the group algebra. Note that one does not divide by the

order of the group. When e is idempotent and � is the associated character, Lemma 3 can be

rephrased as

Z

S

n

(�) = Z

S

n

(e):

To proceed recall the Eulerian idempotents e

j

n

, j = 1; � � � ; n in the group algebra QS

n

of the

symmetric group over the rationals. These can be de�ned [GerS] as follows. Let s

i;n�i

=

P

w

where the sum is over all

�

n

i

�

permutations w such that w(1) < � � � < w(i), w(i + 1) < � � � < w(n)

and let s

n

=

P

n�1

i=1

s

i;n�i

. Letting �

j

= 2

j

� 2, the e

j

n

are de�ned as

e

j

n

=

Y

i6=j

s

n

� �

i

(�

j

� �

i

)

:

They are orthogonal idempotents which sum to the identity.

The following result, which we shall need, is due to Hanlon. The symbol � denotes the Moebius

function of elementary number theory.

Theorem 5 ([Han])

1 +

1

X

n=1

n

X

i=1

k

i

Z

S

n

(e

i

n

) =

Y

i�1

(1� a

i

)

�(1=i)

P

dji

�(d)k

i=d

:

13



Theorem 6 ([Ga])

n

X

i=1

k

i

e

i

n

=

X

w2S

n

 

n+ k � d(w) � 1

n

!

w:

Remark: Combining Lemma 3 and Theorem 6, one sees that the formula for the cycle structure

of a ri�e shu�e [DMP] and Theorem 5 imply each other. It is interesting that both proofs used a

bijection of Gessel and Reutenauer [GesR].

To continue, we let e

j

n

denote the idempotent obtained by multiplying the coeÆcient of w in e

j

n

by sgn(w). Let �

n+1

be the n+1 cycle (1 2 � � � n+1) and �

n+1

=

1

n+1

P

n

i=0

(sgn�

i

n+1

)�

i

n+1

. Viewing

e

j

n

as in the group algebra of S

n+1

, Whitehouse [Wh] proves that for j = 1; � � � ; n the element �

n+1

e

j

n

is an idempotent in the group algebra QS

n+1

, which we denote by f

j

n+1

. Whitehouse's main result

is the following:

Theorem 7 ([Wh]) Let F

j

n+1

; E

j

n

be the irreducible modules corresponding to the idempotents f

j

n+1

and e

j

n

. Then

F

j

n+1

�

j

M

i=1

E

i

n+1

=

j

M

i=1

Ind

S

n+1

S

n

E

i

n

:

As �nal preparation for the main result of this section, we link the idempotent �

n+1

e

j

n

with

ri�e shu�es followed by a cut.

Lemma 4 The coeÆcient of w in

P

n

j=1

k

j

�

n+1

e

j

n

is sgn(w)

1

n+1

�

k+n�cd(w)

n

�

.

Proof: Given Theorem 6, this is an elementary combinatorial veri�cation. 2

Theorem 8 now derives the cycle structure of a permutation distributed as a shu�e followed by

a cut. So as to simplify the generating functions, recall that

P

dji

�(d) vanishes unless i = 1.

Theorem 8

1 +

X

n�1

X

w2S

n+1

1

(n+ 1)k

n+1

 

n+ k � cd(w)

n

!

Y

i

a

n

i

(w)

i

= 1�

1

k � 1

�

a

1

k

+

1

k � 1

Y

i�1

(1�

a

i

k

i

)

�1=i

P

dji

�(d)(k

i=d

�1)

:

If k = q is the size of a �nite �eld, this says that the cycle type of a permutation distributed as a

shu�e followed by the cut has the same law as the factorization type of a monic degree n polynomial

over F

q

with non-vanishing constant term.

14



Proof: Replacing a

i

by a

i

k

i

(�1)

i+1

, it is enough to show that

1 +

X

n�1

X

w2S

n+1

sgn(w)

1

(n+ 1)

 

n+ k � cd(w)

n

!

Y

i

a

n

i

(w)

i

= 1�

1

k � 1

� a

1

+

1

k � 1

Y

i�1

(1� (�1)

i+1

a

i

)

�1=i

P

dji

�(d)(k

i=d

�1)

:

Using Lemmas 2, 3, 4 and Theorem 7, one sees that

1 +

X

n�1

X

w2S

n+1

sgn(w)

1

(n+ 1)

 

n+ k � cd(w)

n

!

Y

i

a

n

i

(w)

i

= 1 +

1

X

n=1

n

X

j=1

k

j

Z

S

n+1

(f

j

n

)

= 1 +

1

X

n=1

n

X

j=1

k

j

j

X

i=1

Z

S

n+1

(Ind

S

n+1

S

n

(e

i

n

))�

1

X

n=1

n

X

j=1

k

j

j

X

i=1

Z

S

n+1

(e

i

n+1

)

= 1 + a

1

1

X

n=1

n

X

i=1

Z

S

n

(e

i

n

)(

k

n+1

� k

i

k � 1

)�

1

X

n=1

n

X

i=1

Z

S

n+1

(e

i

n+1

)(

k

n+1

� k

i

k � 1

)

= 1 + a

1

kZ

S

1

(e

1

) +

a

1

k � 1

k � 1

1

X

n=2

k

n

n

X

i=1

Z

S

n

(e

i

n

) +

1� a

1

k � 1

1

X

n=2

n

X

i=1

k

i

Z

S

n

(e

i

n

):

To simplify things further, recall that

P

n

i=1

Z

S

n

(e

i

n

) is a

n

1

since the e

i

n

's sum to the identity. The

above then becomes

1�

1

k � 1

� a

1

+

1� a

1

k � 1

(1 +

1

X

n=1

n

X

i=1

k

i

Z

S

n

(e

i

n

));

so the sought result follows from Theorem 5. 2

Before continuing, we observe that a combinatorial proof of Theorem 8 (which must exist) would

give a new proof of Theorem 7, by reversing the steps.

Upon hearing about Theorem 8, Persi Diaconis immediately asked for the expected number of

�xed points after a k-ri�e shu�e followed by a cut, suggesting that it should be smaller than for

a k ri�e shu�e. Using the methods of Section 5 of [DMP], one can readily derive analogs of all of

the results there. As an illustrative example, Corollary 2 shows that the expected number of �xed

points after a k-ri�e shu�e followed by a cut is the same as for a uniform permutation, namely 1

(the answer for k-ri�e shu�es is 1+1=k+ � � �+1=k

n�1

). Two other examples are worth mentioning

and will be treated in Corollary 3.
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Corollary 2 The expected number of �xed points after a k-ri�e shu�e followed by a cut is 1.

Proof: The case n = 1 is obvious. Multiplying a

i

by u in the statement of Theorem 8 shows that

1 +

X

n�1

X

w2S

n+1

u

n+1

1

(n+ 1)k

n+1

 

n+ k � cd(w)

n

!

Y

i

a

n

i

(w)

i

= 1�

1

k � 1

�

ua

1

k

+

1

k � 1

Y

i�1

(1�

u

i

a

i

k

i

)

�1=i

P

dji

�(d)(k

i=d

�1)

:

To get the generating function in u (for n 6= 1) for the expected number of �xed points in a

ri�e shu�e followed by a cut, one multiplies the right hand side by k, sets a

2

= a

3

= � � � = 1,

di�erentiates with respect to a

1

, and then sets a

1

= 1. Doing this yields the generating function

�u+ u

Y

i�1

(1�

u

i

k

i

)

�1=i

P

dji

�(d)k

i=d

:

The result now follows from the identity

Y

i�1

(1�

u

i

k

i

)

�1=i

P

dji

�(d)k

i=d

=

1

1� u

;

which is equivalent to the assertion that a monic degree n polynomial over F

q

has a unique factor-

ization into irreducibles, since 1=i

P

dji

�(d)k

i=d

is the number of irreducible polynomials of degree

i over the �eld F

k

. 2

Corollary 3 Fix u with 0 < u < 1. Let N be chosen from f0; 1; 2; � � �g according to the rule

that N = 0 with probability

1�u

1�u=k

and N = n � 1 with probability

(k�1)(1�u)u

n

k�u

. Given N , let

w be the result of a random k shu�e followed by a cut. Let N

i

be the number of cycles of w of

length i. Then the N

i

are independent and N

i

has a negative binomial distribution with parameters

1=i

P

dji

�(d)(k

i=d

�1) and (u=k)

i

. Consequently, for �xed k as n!1, the joint distribution of the

number of i cycles after a k-shu�e followed by a cut converges to independent negative binomials

with parameters 1=i

P

dji

�(d)(k

i=d

� 1) and (1=k)

i

.

Proof: Theorem 8 and straightforward manipulations give that

1 +

k � 1

k

X

n�1

X

w2S

n

u

n

nk

n�1

 

n+ k � cd(w) � 1

n� 1

!

Y

i

a

n

i

(w)

i

=

Y

i�1

(1�

a

i

u

i

k

i

)

�1=i

P

dji

�(d)(k

i=d

�1)

:
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Setting all a

i

= 1 gives the equation

1 +

(k � 1)u

k(1� u)

=

Y

i�1

(1�

u

i

k

i

)

�1=i

P

dji

�(d)(k

i=d

�1)

:

Taking reciprocals and multiplying by the �rst equation gives

(

1� u

1� u=k

) +

(k � 1)(1� u)

k � u

X

n�1

X

w2S

n

u

n

nk

n�1

 

n+ k � cd(w) � 1

n� 1

!

Y

i

a

n

i

(w)

i

=

Y

i�1

(

1�

u

i

k

i

1�

a

i

u

i

k

i

)

1=i

P

dji

�(d)(k

i=d

�1)

;

proving the �rst assertion of the corollary.

For the second assertion there is a technique simpler than that in [DMP]. Rearranging the last

equation gives that

(

1� u

1� 1=k

) +

X

n�1

X

w2S

n

(1� u)u

n

nk

n�1

 

n+ k � cd(w) � 1

n� 1

!

Y

i

a

n

i

(w)

i

=

1� u=k

1� 1=k

Y

i�1

(

1�

u

i

k

i

1�

a

i

u

i

k

i

)

1=i

P

dji

�(d)(k

i=d

�1)

:

Letting g(u) be a generating function with a convergent Taylor series, the limit coeÆcient of u

n

in

g(u)

1�u

is simply g(1). This proves the second assertion. 2

5 Conjugacy classes

The aim of this section is to give evidence for the conjecture at the end of Section 2, in the case

when gcd(q � 1; n) = 1. Note that under this assumption, a uniformly chosen degree n polynomial

with non-zero constant term and a uniformly chosen degree n polynomial with constant term 1

have the same chance of factoring into n

i

i-cycles. Hence in this case the conjecture amounts to the

assertion that aÆne shu�es and shu�es followed by a cut, though di�erent probability measures,

induce the same distribution on conjugacy classes. Before posing a problem which would explain

why this should hold, some lemmas are needed.

Lemma 5 If r > 1, then

P

r�1

j=0

C

r

(j) = 0.
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Proof: If l is relatively prime to r, then multiplication by l permutes the numbers f0; 1; � � � ; r�1g

mod r. Thus

r�1

X

j=0

C

r

(j) =

X

0�l�r

gcd(l;r)=1

r�1

X

j=0

e

2�ijl=r

= �(r)

r�1

X

j=0

e

2�ij=r

= 0:

2

Lemma 6 For n � 1, let t be the largest divisor of n such that gcd(cd � 1; t) = 1. Suppose that

gcd(n; q � 1) = 1 and that r divides n and q � cd. Then r divides t.

Proof: Observe that gcd(r; cd � 1) = 1. For suppose there is some a > 1 dividing r and cd � 1.

Then a divides q � cd and cd � 1, hence q � 1. Since a divides r and r divides n, it follows that a

divides n. This contradicts the assumption that gcd(q � 1; n) = 1. 2

Next we pose the problem of determining whether or not the following statement holds.

Statement 1: For n � 1, let t be the largest divisor of n such that gcd(cd� 1; t) = 1. Then for

every conjugacy class C of S

n

, the set of permutations in C with cd cyclic descents has its major

index equidistributed mod t.

Theorem 9 shows that if Statement 1 holds, then the conjecture about the cycle structure of

permutations distributed as aÆne shu�es is correct. Some evidence in favor of Statement 1 is then

given.

Theorem 9 Suppose that gcd(q � 1; n) = 1. If Statement 1 is correct, then aÆne shu�es and

shu�es followed by a cut have the same distribution on conjugacy classes.

Proof: Suppose that Statement 1 is correct and recall the third de�nition of aÆne q-shu�es in

Section 2. If q < cd(w) then both the aÆne q-shu�e and the q-ri�e shu�e followed by a cut

assign probability 0 to w. If q = cd(w), then the aÆne q-shu�e assigns probability

1

q

n�1

to w

if maj(w) = 0 mod n, and 0 otherwise. If q = cd(w), then the q-ri�e shu�e followed by a cut

associates probability

1

nq

n�1

to w. Since q = cd, the t in Statement 1 is equal to n, which implies

that for every conjugacy class C, the set of permutations in C with cd cyclic descents has major

index equidistributed mod n. Hence Statement 1 holds in this case.

The third and �nal case is that q > cd(w). Suppose that r > 1 divides n and q � cd. Lemma 6

implies that r divides t. Hence by Statement 1, for any conjugacy class C, the set of permutations

with cd cyclic descents has its major index equidistributed mod r. Consequently (the second

equality below holding by Lemma 5 and the equidistribution property mod r),
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n

X

cd=1

X

w2C

cd(w)=cd

1

nq

n�1

X

rjn;q�cd

 

n+q�cd(w)�r

r

q�cd(w)

r

!

C

r

(�maj(w))

=

n

X

cd=1

1

nq

n�1

X

rjn;q�cd

 

n+q�cd�r

r

q�cd

r

!

X

w2C

cd(w)=cd

C

r

(�maj(w))

=

n

X

cd=1

1

nq

n�1

 

n+ q � cd� 1

n� 1

!

X

w2C

cd(w)=cd

1

=

X

w2C

1

nq

n�1

 

n+ q � cd(w) � 1

n� 1

!

:

From Theorem 2 (the formula for a q-ri�e shu�e followed by a cut), Statement 1 follows. 2

Next we consider evidence in favor of the ideas of this section. Incidentally, given Section 4,

Proposition 1 con�rms Conjecture 1 of [F5] (in type A) when n is prime and q is a power of n.

Proposition 1 Suppose that n is prime and that q is a power of n. Then type A aÆne q-shu�es

are exactly the same as q-ri�e shu�es followed by a cut.

Proof: The probability that an aÆne q shu�e yields w is

1

nq

n�1

X

rjn;q�cd(w

�1

)

 

n+q�cd(w

�1

)�r

r

q�cd(w

�1

)

r

!

C

r

(�maj(w

�1

))

Since 1 � cd(w) � n�1 for any w in S

n

, the assumptions on n and q imply that the only r dividing

n and q � cd(w

�1

) is r = 1. The result now follows from Theorem 2. 2

Theorem 10 Statement 1 holds for the identity conjugacy class and for the conjugacy class of

simple transpositions.

Proof: For the identity conjugacy class, use the third de�nition of aÆne q-shu�es in Section 2,

together with the assumption that gcd(n; q � 1) = 1.

Next consider the case of simple transpositions. Suppose that n � 4, the other cases being

trivial. One checks that all simple transpositions (i; j) with i < j have either 2 or 3 cyclic descents.

The easy case is that of 2 cyclic descents. The possible values of (i; j) are then (i; i + 1) for

1 � i � n� 2, (1; n) and (n� 1; n). The values of the major index so obtained are f1; � � � ; ng and

each value is hit once. Thus Statement 1 holds in this case.
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The harder case is that of 3 cyclic descents. The relevant transpositions are (i; j) with 1 �

i; j < n and j 6= i + 1 (having major index i+ j � 1) and (i; n) with 2 � i < n� 1 (having major

index i+ n� 1).

First suppose that n is odd. It suÆces to prove that

P

w=(i;j)

cd(w)=3

x

maj(w) mod n

is a multiple of

x

n

�1

x�1

. Calculating gives

X

w=(i;j)

cd(w)=3

x

maj(w) mod n

=

(n�3)=2

X

i=1

x

i

n�i�1

X

j=i+1

x

j

+

1

x

n

(n�3)=2

X

i=1

x

i

n�2

X

j=n�i

x

j

+

1

x

n

n�3

X

i=(n�1)=2

x

i

n�2

X

j=i+1

x

j

+

n�3

X

i=1

x

i

=

1

x� 1

0

@

(n�3)=2

X

i=1

x

i

(x

n�i

� x

i+1

) +

1

x

n

(n�3)=2

X

i=1

x

i

(x

n�1

� x

n�i

)

1

A

+

1

x� 1

0

@

1

x

n

n�3

X

i=(n�1)=2

x

i

(x

n�1

� x

i+1

) + x

n�2

� x

1

A

=

n� 3

2

x

n

� 1

x� 1

;

as desired.

Next suppose that n = 2

a

with a > 0. It suÆces to prove that

P

w=(i;j)

cd(w)=3

x

maj(w) mod n

is a

polynomial multiple of

x

n=2

a

�1

x�1

. Calculating as above (and omitting the steps analogous to the

previous computation) gives that

X

w=(i;j)

cd(w)=3

x

maj(w) mod n

=

1

x� 1

(1 + x

2

+ x

4

+ � � � + x

n�2

� x� x

3

� x

5

� � � � � x

n�1

)

= �

x

n

� 1

x

2

� 1

= �

x

n=2

a

� 1

x� 1

x

(2

a

�1)n=2

a

+ � � �+ x

n=2

a

+ 1

x+ 1

:

Since n=2

a

is odd, it follows that x

(2

a

�1)n=2

a

+ � � �+ x

n=2

a

+ 1 is divisible by x+ 1. 2

6 Patience sorting

Having described the motivation in the introduction, we outline and then execute a strategy for

obtaining generating function information for the �rst pile size in patience sorting from decks with
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repeated values. The �rst step is to apply ideas of Foata to obtain generating functions for multiset

permutations by the number of cycles. The second step is to give a multiset records-to-cycles

bijection (generalizing the one used in [AD]), which converts information about the distribution of

cycles to information about the distribution of records. The �nal step is to read information o� of

the generating function.

Some notation is needed. Let ~a denote the vector (a

1

; a

2

; � � �) with a

i

� 0 and

P

a

i

< 1. Let

Mult(~a) denote the collection of all

�

P

a

i

a

1

;a

2

;���

�

words of length

P

a

i

formed from a

i

i's.

We recall Foata's theory of cycle structure for multisets [Fo], following Knuth's superb exposition

[Kn]. Suppose that the elements of the multiset are linearly ordered. Then multiset permutations

can be written in two-line notation

0

B

@

a a a b b c d d d d

c a b d d a b d a d

1

C

A

Foata introduced an intercalation product

T

which multiplies two multiset permutations � and �

by expressing � and � in two line notation, juxtaposing these two-line notations and then sorting

the columns in non-decreasing order of the top line. For example

a a b c d a b d d d

=

a a a b b c d d d d

c a d a b

T

b d d a d c a b d d a b d a d

Foata proved that if the elements of the multiset M be linearly ordered by the relation <, then the

permutations � of M correspond exactly to the possible intercalations

� = (x

11

� � � x

1n

1

y

1

)

T

(x

21

� � � x

2n

2

y

2

)

T

� � �

T

(x

t1

� � � x

tn

t

y

t

)

with y

1

� y

2

� � � � y

t

and y

i

< x

ij

for 1 � j � n

i

, 1 � i � t. This de�nes a notion of cycle

structure for multiset permutations by letting the cycles be the intercalation factors. Let C

i

(�) be

the number of length i cycles of � and C(�) =

P

C

i

(�) be the total number of cycles. Let C

0

i

(�)

be the number of i-cycles of �, where cycles with the same minimum value y

j

are counted at most

once. Let C

0

(�) =

P

C

0

i

(�). For example the multiset permutation

(431)

T

(231)

T

(4)

satis�es C

3

(�) = 2, C

0

3

(�) = 1, C(�) = 3, and C

0

(�) = 2.

Proposition 2 gives generating functions for multiset permutations.
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Proposition 2

1 +

X

~a

X

�2Mult(~a)

u

C(�)

Y

i�1

x

a

i

i

=

1

Y

k=1

1

1�

x

k

u

1�

P

j>k

x

j

1 +

X

~a

X

�2Mult(~a)

u

C

0

(�)

Y

i�1

x

a

i

i

=

1

Y

k=1

0

@

1 + u

x

k

1�

P

j>k

x

j

1�

x

k

1�

P

j>k

x

k

1

A

Proof: Both generating functions follow easily from Foata's method of representing permutations

by intercalations. The k's on the right hand-side index the letters of the alphabet. The point is

that cycles are formed by �xing a smallest element k and specifying an ordered choice of elements

larger than k; permutations are ordered multisets of such cycles.2

We remark that the generating functions of Proposition 2 are quasi-symmetric functions in the

sense that for any i

1

< � � � < i

n

and j

1

< � � � < j

n

the coeÆcients of x

i

1

1

� � � x

i

n

n

and x

j

1

1

� � � x

j

n

n

are

equal.

Theorem 11 converts information about the distribution of cycles to information about the

distribution of records. Some further notation is needed for its statement. Let �

rev

be the word

obtained by reading from right to left the bottom line in the 2-line form of �. Recalling the de�nition

of Solitaire from the introduction, let P

i

(�) and P

0

i

(�) be the number of cards in pile i of Solitaire

with ties allowed and ties forbidden respectively.

Theorem 11 1. For any given ~a, there is a bijection � : Mult(~a) 7! Mult(~a) such that if

R

1

; � � � ; R

t

are the positions of the left-to-right minima (ties are allowed) of �

rev

, then R

2

�

R

1

; R

3

� R

2

; � � � ; R

t

� R

t�1

; (

P

a

i

) + 1 � R

t

are the cycle lengths in Foata's factorization of

�(�).

2. P

1

(�) = C(�(�)) and P

0

1

(�) = C

0

(�(�)).

Proof: For the �rst assertion, de�ne �(�) as an intercalation of cycles formed by entries in the

bottom line of �, with cycles (from left-to-right) having lengths (

P

a

i

)+1�R

t

; R

t

�R

t�1

; � � � ; R

2

�

R

1

. The assertion is then evident, and the following example may help to untangle the notation.

The multiset permutation � = d d b c d b b c a b a c d b d has �

rev

= d b d c a b a c b b d c b d d

with R

1

(�

rev

) = 1, R

2

(�

rev

) = 2, R

3

(�

rev

) = 5, R

4

(�

rev

) = 7, and

P

a

i

+ 1 = 16. Thus forming

from � cycles of lengths 9; 2; 3; 1 gives �(�) as the intercalation

(d d b c d b b c a)

T

(b a)

T

(c d b)

T

(d):
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For the second assertion, we give the argument for the �rst equality, the argument for the second

assertion being analogous. The point is that the number of cards in pile 1 of Solitaire with ties

allowed applied to � is simply the number of left-to-right minima with ties allowed of �. The result

now follows from the �rst assertion. 2

Proposition 3 shows that when one considers random words from a �nite alphabet, there is a

factorization for the full cycle structure vector, not only the number of cycles. Recent work of Tracy

andWidom [TW] connects random words with randommatrices chosen from the Laguerre ensemble.

Let Word

n

(N) be the N

n

words of length n from an alphabet on N letters (say 1; 2; � � � ; N). Each

such word can be viewed as a multiset permutation.

Proposition 3

1 +

X

n

1

N

n

X

�2Word

n

(N)

N

Y

k=1

x

a

k

(�)

k

Y

i�1

u

C

i

(�)

i

=

Y

i�1

N

Y

k=1

 

1

1� u

i

x

k

N

(

P

N

j=k+1

x

j

N

)

i�1

!

:

(1� x) +

X

n

(1� x)x

n

N

n

X

�2Word

n

(N)

Y

i�1

u

C

i

(�)

i

=

Y

i�1

N

Y

k=1

1�

x

i

N

(

N�k

N

)

i�1

1�

u

i

x

i

N

(

N�k

N

)

i�1

:

1 +

X

n

1

N

n

X

�2Word

n

(N)

N

Y

k=1

x

a

k

(�)

k

Y

i�1

u

C

0

i

(�)

i

=

Y

i�1

N

Y

k=1

 

1 + u

i

x

k

N

1

1�

P

N

j=k+1

x

j

N

!

:

(1� x) +

X

n

(1� x)x

n

N

n

X

�2Word

n

(N)

Y

i�1

u

C

0

i

(�)

i

=

Y

i�1

N

Y

k=1

1 + u

i

x

N

1

1�

P

N

j=k+1

x

N

1 +

x

N

1

1�

P

N

j=k+1

x

N

:

Proof: For the �rst assertion, note by Foata's representation of multiset permutations as interca-

lations that each i-cycle is formed by �xing a smallest element k and specifying an ordered choice

of i � 1 elements larger than k to occupy the �rst i � 1 positions of the cycle. Since multiset

permutations are ordered multisets of such cycles, one concludes that

1 +

X

n

X

�2Word

n

(N)

N

Y

k=1

x

a

k

(�)

k

Y

i�1

u

C

i

(�)

i

=

Y

i�1

N

Y

k=1

1

1� u

i

x

k

(

P

N

j=k+1

x

j

)

i�1

:

Now replace each x

i

by

x

i

N

.

To prove the second assertion, replacing each x

i

by x in the �rst yields the equation

1 +

X

n

1

N

n

X

�2Word

n

(N)

x

n

Y

i�1

u

C

i

(�)

i

=

Y

i�1

N

Y

k=1

1

1�

u

i

x

i

N

(

N�k

N

)

i�1

:
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Setting all u

i

= 1 and taking reciprocals shows that

1� x =

Y

i�1

N

Y

k=1

 

1�

x

i

N

(

N � k

N

)

i�1

!

:

The result follows by multiplying the previous two equations.

The arguments for the third and fourth assertions are analogous. 2

The second and fourth equations have probabilistic interpretations. For instance in the second

equation, �x x such that 0 < x < 1. The equation then says that if one picks n geometrically

with probability (1 � x)x

n

and then picks � 2 Word

n

(N) uniformly at random, the random

variables C

i

(�) are sums of independent geometrics. In the fourth equation the C

0

i

become sums of

independent binomials. Lemma 7 permits asymptotic statements in the n!1 limit.

Lemma 7 If f(1) <1 and the Taylor series of f around 0 converges at u = 1, then

lim

n!1

[u

n

]

f(u)

1� u

= f(1):

Proof:Write the Taylor expansion f(u) =

P

1

n=0

a

n

u

n

. Then observe that [u

n

]

f(u)

1�u

=

P

n

i=0

a

i

. 2

As a corollary, one sees for instance that as n!1, the number of i-cycles of a random length n

word from the alphabet f1; � � � ; Ng converges to a sum of independent geometrics with parameters

(1 �

k

N

)

i�1

as k = 1; � � � ; N . For more on this type of factorization result and its applications,

see [LlS] for the symmetric groups, [DS] for the compact classical groups, and [F6] for the �nite

classical groups.

Finally, we consider the application of Proposition 2 and Theorem 11 to patience sorting. As

above, P

1

(�) and P

0

1

(�) be the number of cards in pile 1 of patience sorting with ties allowed and

ties forbidden respectively.

Theorem 12 Let � be chosen uniformly at random from the possible orderings of a deck of cards

with a

i

cards labelled i. Then E(P

1

) =

P

k

a

k

a

1

+���+a

k�1

+1

and E(P

0

1

) =

P

k

a

k

a

1

+���+a

k�1

+a

k

.

Proof: By Proposition 2 and Theorem 11,

1 +

X

~a

X

�2Mult(~a)

u

P

1

(�)

Y

i�1

x

a

i

i

=

1

Y

k=1

1

1�

x

k

u

1�

P

j>k

x

j

Di�erentiating with respect to u and setting u = 1 implies that the sought expectation is
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1

�

n

a

1

;a

2

;���

�

Coeff: of

Y

x

a

i

i

in

X

k

x

k

1�

P

x

i

1

1�

P

j�k

x

j

=

1

�

n

a

1

;a

2

;���

�

X

k:a

k

>0

X

b

k

;b

k

+1;����0

 

a

1

+ � � �+ a

k�1

+ b

k

+ b

k+1

+ � � �

a

1

; � � � ; a

k�1

; b

k

; b

k+1

; � � �

!

 

a

k

� 1� b

k

+ a

k+1

� b

k+1

+ � � �

a

k

� 1� b

k

; a

k+1

� b

k+1

; � � �

!

=

1

�

n

a

1

;a

2

;���

�

X

k:a

k

>0

1

a

1

! � � � a

k�1

!(a

k

� 1)!a

k+1

! � � �

X

b

k

;b

k+1

;����0

�

a

k

�1

b

k

��

a

k+1

b

k+1

��

a

k+2

b

k+2

�

� � �

�

P

a

i

�1

a

1

+���+a

k�1

+b

k

+b

k+1

+���

�

Letting s = b

k

+ b

k+1

+ � � �, this simpli�es to

X

k:a

k

>0

a

k

+a

k+1

+����1

X

s=0

1

P

a

i

�

a

k

+a

k+1

+����1

s

�

�

P

a

i

�1

a

1

+���+a

k�1

+s

�

=

X

k:a

k

>0

1

P

a

i

�

P

a

i

�1

a

1

+���+a

k�1

�

a

k

+a

k+1

+����1

X

s=0

 

a

1

+ � � �+ a

k�1

+ s

s

!

=

X

k:a

k

>0

a

k

a

1

+ � � �+ a

k�1

+ 1

=

X

k

a

k

a

1

+ � � �+ a

k�1

+ 1

The second calculation is similar. 2

As a �nal result, we study patience sorting applied to I

2n

, the �xed point free involutions in

the symmetric group S

2n

. By [Rai], the number of piles in such a game relates to the eigenvalues

of random symplectic and orthogonal matrices. Consequently this restricted version of patience

sorting merits further study. Proposition 4 shows that the generating function for the �rst pile size

factors.

Proposition 4

X

�2I

2n

x

P

1

(�)

=

n

Y

i=1

(x

2

+ 2(i� 1))

Proof: The proposition is proved by induction, the base case being trivial. Suppose that the

proposition holds for I

2(n�1)

. Given � 2 I

2n

let j be the symbol with which 2n is switched. If

j 6= 1, then P

1

(�) is the same as P

1

(�

0

) where �

0

is obtained by crossing the symbols j and 2n out

of �. If j = 1, then P

1

(�) = P

1

(�

0

) + 2, where P

1

(�

0

) is obtained by crossing the symbols 1; 2n out

of �. Consequently,
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X

�2I

2n

x

P

1

(�)

= (2n� 2)

X

�2I

2n�2

x

P

1

(�)

+ x

2

X

�2I

2n�2

x

P

1

(�)

and the result follows by induction. 2
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