
HALL-LITTLEWOOD POLYNOMIALS AND

COHEN-LENSTRA HEURISTICS FOR JACOBIANS OF

RANDOM GRAPHS

JASON FULMAN

Abstract. Cohen-Lenstra heuristics for Jacobians of random graphs
give rise to random partitions. We connect these random partitions to
the Hall-Littlewood polynomials of symmetric function theory, and use
this connection to give combinatorial proofs of properties of these ran-
dom partitions. In addition, we use Markov chains to give an algorithm
for generating these partitions.

1. Introduction

To a graph Γ, one can associate an abelian group SΓ, which has various
names in the literature: the sandpile group, the Jacobian, the critical group,
the Picard group. The size of SΓ is the number of spanning trees of Γ.
Lorenzini [9] asked about the distribution of group structures of SΓ, for
random graphs Γ. The papers [4] and [3], proposed Cohen-Lenstra heuristics
for the distribution of SΓ.

Wood [13] gives very concrete results about the p-Sylow subgroup SΓ,p of
SΓ. This is a finite abelian p-group. To describe her work, recall that finite
abelian p-groups correspond to integer partitions λ; the group ⊕Z/pλiZ
corresponds to the partition with parts λ1 ≥ λ2 ≥ · · · . Let Γ be an Erdös
-Rényi random graph on n vertices with independent edge probabilities 0 <
q < 1. Theorem 1.1 of [13] shows that as n → ∞, the chance that SΓ,p is
equal to an abelian p-group of type λ converges to

(1)

∏
i odd(1− 1/pi)

p
∑
i µi(µi+1)/2

∏λ1
i=1

∏bµi−µi+1
2

c
j=1 (1− 1/p2j)

.

Here µ is the partition obtained by transposing the diagram of the partition
λ. Note that equation (1) does not depend on the edge probability q of the
graph. The paper [3] also shows that (1) arises as the limiting distribution
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of cokernels of Haar distributed random symmetric matrices over the p-adic
integers.

Although Wood’s result implies that formula (1) must define a probability
distribution on the set of all partitions of all natural numbers, this is not
at all obvious from looking at formula (1). One of our contributions is to
relate formula (1) to Hall-Littlewood polynomials, thereby implying that
(1) defines a probability distribution. As a first step, note that (1) can be
rewritten as:

(2)

∏
i odd(1− 1/pi)

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

.

Here |λ| denotes the size of λ, n(λ) =
∑

i≥1(i−1)λi, and mi(λ) is the number
of parts of λ of size i. Next, consider the following identity on page 232 of
[10]:

(3)
∑
λ

dλ(t)−1Qλ(x; t) =
∏
i

1− txi
1− xi

∏
i<j

1− txixj
1− xixj

,

where Qλ(x; t) is a family of symmetric functions which are scalar multiples
of Hall-Littlewood polynomials, and

dλ(t) =
∏
i≥1

bmi(λ)/2c∏
j=1

(1− t2j).

Setting xi = 1/pi for all i, and t = 1/p, it follows from page 213 of [10] that

Qλ(x; t) =
1

p|λ|
Qλ(1, 1/p, 1/p2, · · · ; 1/p) =

1

pn(λ)+|λ| .

Hence with these values of the xi’s and t, the left hand side of (3) becomes∑
λ

1

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

.

The right hand side of (3) becomes

1

(1− 1/p)

∏
i<j

(1− 1/pi+j+1)

(1− 1/pi+j)
=

1

1− 1/p

∏
s≥4(1− 1/ps)b(s−2)/2c∏
s≥3(1− 1/ps)b(s−1)/2c

=
∏
i odd

(1− 1/pi)−1,

giving a combinatorial proof that formula (1) defines a probability measure.
One advantage to the formulation in terms of Hall-Littlewood polynomials

is that it suggests a two parameter family of probability measures general-
izing (1). Here we have in mind a parameter u (satisfying 0 < u < p), and
a natural number r. Then one can specialize the identity (3) by setting
x1 = u/p, x2 = u/p2, · · · , xr = u/pr, all other xi = 0, and t = 1/p. Section
2 of this paper will study two further specializations (the first being u arbi-
trary and r →∞, and the second being u = 1 and r arbitrary). Aside from
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their intrinsic interest, these two specializations will be useful. The first spe-
cialization will be used to find a formula (which we believe to be new) for
the chance that a partition λ chosen from the probability measure (1) has
a given size. The second specialization will be used to give a combinatorial
proof of the fact (proved algebraically as Corollary 9.4 of Wood [13]), that
the chance that λ chosen from (1) has exactly a parts is equal to

(4)

∏∞
i=a+1(1− 1/pi)

pa(a+1)/2
∏∞
i=1(1− 1/p2i)

.

In retrospect, it is perhaps not so surprising that Hall-Littlewood polyno-
mials should be usefully connected to Cohen-Lenstra heuristics for Jacobians
of random graphs. Indeed, in the case of number fields, the random par-
titions arising from Cohen-Lenstra heuristics for class groups were studied
from the viewpoint of Hall-Littlewood polynomials in [8], and this was our
main motivation for the current paper. Moreover in the case of elliptic
curves, one can easily deduce from formulas of Delaunay [5] that the ran-
dom partitions arising from Cohen-Lenstra heuristics for Tate-Shafarevich
groups are captured by the random partitions in [8]. We also mention a nice
recent paper of Delaunay and Jouhet [6] which uses combinatorics of Hall-
Littlewood polynomials to relate a model of Poonen and Rains to Cohen-
Lenstra heuristics for Tate-Shafarevich groups.

Section 3 of this paper uses Markov chains to study the probability mea-
sure (1). More precisely, we give an algorithm for generating such random
partitions, analogous to one in [7] for random partitions arising from Cohen-
Lenstra number field heuristics. This algorithm should be useful for studying
properties of the random partitions of (1) by computer simulations. More-
over, as a consequence of our methods, we get completely elementary proofs
(using nothing about Hall-Littlewood polynomials) both for the fact that (1)
defines a probability distribution, and for the fact that (4) gives the chance
that λ chosen from (1) has exactly a parts.

2. Hall-Littlewood polynomials

Hall-Littlewood polynomials appear in many places in algebraic combina-
torics, for example in the representation theory of GL(n, q) [10], as spherical
functions for GL(n) over the p-adic numbers [10], and in modular represen-
tation theory of the symmetric groups [11]. They interpolate between the
Schur functions and the monomial symmetric functions. All needed back-
ground on Hall-Littlewood polynomials can be found in Chapter 3 of the
text [10]. We also highly recommend the survey paper [12]. For connec-
tions of Hall-Littlewood polynomials to random partitions (different than
the random partitions studied here), see [8].
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2.1. First specialization. This subsection considers the specialization of
identity (3) with xi = u/pi for all i, and t = 1/p. By page 213 of [10],

Qλ(u/p, u/p2, · · · ; 1/p) =
u|λ|

p|λ|
Qλ(1, 1/p, 1/p2, · · · ; 1/p) =

u|λ|

pn(λ)+|λ| .

Thus the left hand side of (3) becomes∑
λ

u|λ|

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

.

The right hand side of (3) becomes

1

(1− u/p)
∏
i<j

(1− u2/pi+j+1)

(1− u2/pi+j)
=

1

1− u/p

∏
s≥4(1− u2/ps)b(s−2)/2c∏
s≥3(1− u2/ps)b(s−1)/2c

= (1− u/p)−1
∏
i≥3
i odd

(1− u2/pi)−1.

Thus we obtain the identity
(5)∑
λ

u|λ|

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

= (1− u/p)−1
∏
i≥3
i odd

(1− u2/pi)−1,

which implies that

(6) (1− u/p)
∏
i≥3
i odd

(1− u2/pi)
u|λ|

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

defines a probability measure on the set of all partitions of all natural num-
bers.

As a corollary of this observation, we deduce the following result, which
we believe to be new, and perhaps not so straightforward to prove by other
methods.

Theorem 2.1. If λ is chosen from the probability measure (1), then the
chance that the size of λ is equal to n is∏

i odd(1− 1/pi)

pn

n∑
j=0

j even

1

pj/2(1− 1/p2)(1− 1/p4) · · · (1− 1/pj)
.

Proof. The chance that the size of λ is n is equal to
∏
i odd(1− 1/pi) multi-

plied by the coefficient of un in∑
λ

u|λ|

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

.
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By (5), this is
∏
i odd(1− 1/pi) multiplied by the coefficient of un in

(1− u/p)−1
∏
i≥3
i odd

(1− u2/pi)−1.

Let [us]f(u) denote the coefficient of us in a power series f(u). Then

[un](1− u/p)−1
∏
i≥3
i odd

(1− u2/pi)−1

=

n∑
j=0

[un−j ](1− u/p)−1 · [uj ]
∏
i≥3
i odd

(1− u2/pi)−1

=
n∑
j=0

1

pn−j
[uj ]

∏
i≥3
i odd

(1− u2/pi)−1

=

n∑
j=0

j even

1

pn−j
[uj/2]

∏
i≥3
i odd

(1− u/pi)−1

=

n∑
j=0

j even

1

pn−j
1

p3j/2(1− 1/p2)(1− 1/p4) · · · (1− 1/pj)

=
1

pn

n∑
j=0

j even

1

pj/2(1− 1/p2)(1− 1/p4) · · · (1− 1/pj)
.

Note that the fourth equality used the identity

1 +
∑
m≥1

sm

(1− q) · · · (1− qm)
=

∏
m≥0

(1− sqm)−1

(with s = u/p3, q = 1/p2) from page 19 of [1]. This completes the proof. �

2.2. Second specialization. Throughout this subsection we let P (a) de-
note the probability that a partition chosen from (1) has exactly a parts.
As mentioned earlier, an explicit formula for P (a) is given by (4), and this
subsection will give a combinatorial proof of this result. Wood’s proof was
algebraic, and required a result of MacWilliams which enumerated the sym-
metric n× n matrices over a finite field according to their rank.

Consider the specialization of (3) with x1 = 1/p, x2 = 1/p2, · · · , xr =
1/pr, all other xi = 0, and t = 1/p. From page 213 of [10], letting l(λ)
denote the number of parts of λ, it follows that the left hand side of (3)
becomes
(7)∑

λ
l(λ)≤r

1

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

· (1− 1/p) · · · (1− 1/pr)

(1− 1/p) · · · (1− 1/pr−l(λ))
.
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One proves by induction on r that the right hand side of (3) specializes to

(1 + 1/p)(1 + 1/p2) · · · (1 + 1/pr).

Summarizing, it follows that

(8)
(1 + 1/p)−1 · · · (1 + 1/pr)−1

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

· (1− 1/p) · · · (1− 1/pr)

(1− 1/p) · · · (1− 1/pr−l(λ))

defines a probability measure on the set of all partitions of all natural num-
bers with at most r parts.

Now we prove the following theorem of Wood [13].

Theorem 2.2.

P (a) =

∏∞
i=a+1(1− 1/pi)

pa(a+1)/2
∏∞
i=1(1− 1/p2i)

.

Proof. Note that (7) can be rewritten as

(1− 1/p) · · · (1− 1/pr)
r∑
s=0

1

(1− 1/p) · · · (1− 1/pr−s)

·
∑

λ:l(λ)=s

1

pn(λ)+|λ|∏
i≥1

∏bmi(λ)/2c
j=1 (1− 1/p2j)

= (1− 1/p) · · · (1− 1/pr)

r∑
s=0

1

(1− 1/p) · · · (1− 1/pr−s)

P (s)∏
i odd(1− 1/pi)

This gives the equation

(1− 1/p) · · · (1− 1/pr)

r∑
s=0

1

(1− 1/p) · · · (1− 1/pr−s)

P (s)∏
i odd(1− 1/pi)

= (1 + 1/p)(1 + 1/p2) · · · (1 + 1/pr),

which starting with P (0) =
∏
i odd(1−1/pi), one can use to recursively solve

for P (1), then P (2), and so on.
Since this recursion has a unique solution, it is enough to show that

P (a) =

∏∞
i=a+1(1− 1/pi)

pa(a+1)/2
∏∞
i=1(1− 1/p2i)

does satisfy the recursion. And indeed,

(1− 1/p) · · · (1− 1/pr)

·
r∑
s=0

1

p(
s+1
2 )(1− 1/p) · · · (1− 1/ps)(1− 1/p) · · · (1− 1/pr−s)

= (1 + 1/p)(1 + 1/p2) · · · (1 + 1/pr).

The final equality used the q-binomial formula (page 78 of [2])
r∑
s=0

[r
s

]
q
qs(s+1)/2xs = (1 + xq)(1 + xq2) · · · (1 + xqr)
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with the substitutions x = 1, q = 1/p. Here[r
s

]
q

:=
(qr − 1) · · · (q − 1)

(qs − 1) · · · (q − 1)(qr−s − 1) · · · (q − 1)

is a q-binomial coefficient. This completes the proof. �

3. Markov chains

This section describes the probability measure (1) in terms of Markov
chains. Two proofs of our main result (Theorem 3.1) will be given. The first
proof is given in the interest of clarity, and assumes that (1) is a probability
measure and that a formula for P (a) is given by (4). The second proof is
more elementary, and as a byproduct yields both another proof that (1) is
a probability measure and another proof of the formula (4) for P (a).

It is convenient to set λ′0 (the height of an imaginary zeroth column)
equal to∞. We let Prob(E) denote the probability of an event E under the
measure (1).

Theorem 3.1. Starting with λ′0 = ∞, define in succession λ′1, λ
′
2, · · · ac-

cording to the rule that if λ′l = a, then λ′l+1 = b with probability

K(a, b) =

∏a
i=1(1− 1/pi)

p(
b+1
2 ) ∏b

i=1(1− 1/pi)
∏b(a−b)/2c
j=1 (1− 1/p2j)

.

Then the resulting partition is distributed according to (1).

Proof. (First proof) If λ is chosen from (1), the chance that λ′l = rl for all l
is

Prob(λ′0 =∞)
Prob(λ′0 =∞, λ′1 = r1)

Prob(λ′0 =∞)

·
∞∏
l=1

Prob(λ′0 =∞, λ′1 = r1, · · · , λ′l+1 = rl+1)

Prob(λ′0 =∞, λ′1 = r1, · · · , λ′l = rl)
.

Thus it is enough to prove that

Prob(λ′0 =∞, λ′1 = r1, · · · , λ′l−1 = rl−1, λ
′
l = a, λ′l+1 = b)

Prob(λ′0 =∞, λ′1 = r1, · · · , λ′l−1 = rl−1, λ
′
l = a)

=

∏a
i=1(1− 1/pi)

p(
b+1
2 ) ∏b

i=1(1− 1/pi)
∏b(a−b)/2c
j=1 (1− 1/p2j)

,

for all l, a, b, r1, · · · , rl−1 ≥ 0.
For the case l = 0, one needs to check that

P (b) =

∏
i odd(1− 1/pi)

p(
b+1
2 ) ∏b

i=1(1− 1/pi)
,
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and this follows from (4). For l > 0, one calculates that∑
λ:λ′1=r1,···λ

′
l−1

=rl−1

λ′
l
=a

Prob(λ)

=
1

p(
r1+1

2 )+···+(rl−1+1

2 )(1/p2)b(r1−r2)/2c · · · (1/p2)b(rl−1−a)/2c

·
∑

rl+1,rl+2,···

∏
i odd(1− 1/pi)

p(
a+1
2 )+(rl+1+1

2 )+···(1/p2)b(a−rl+1)/2c(1/p2)b(rl+1−rl+2)/2c · · ·

=
P (a)

p(
r1+1

2 )+···+(rl−1+1

2 )

· 1

(1/p2)b(r1−r2)/2c · · · (1/p2)b(rl−2−rl−1)/2c(1/p2)b(rl−1−a)/2c
,

where (1/p2)j denotes the product (1− 1/p2)(1− 1/p4) · · · (1− 1/p2j). Sim-
ilarly, observe that

∑
λ:λ′1=r1,···λ

′
l−1

=rl−1

λ′
l
=a,λ′

l+1
=b

Prob(λ)

=
P (b)

p(
r1+1

2 )+···+(rl−1+1

2 )+(a+1
2 )

· 1

(1/p2)b(r1−r2)/2c · · · (1/p2)b(rl−1−a)/2c(1/p2)b(a−b)/2c
.

Thus the ratio of these two expressions is

P (b)

p(
a+1
2 )P (a)(1/p2)b(a−b)/2c

=

∏a
i=1(1− 1/pi)

p(
b+1
2 ) ∏b

i=1(1− 1/pi)
∏b(a−b)/2c
j=1 (1− 1/p2j)

,

as desired. Note that the transition probabilities automatically sum to 1
because

∑
b≤a

∑
λ:λ′1=r1,···λ

′
l−1

=rl−1

λ′
l
=a,λ′

l+1
=b

Prob(λ)∑
λ:λ′1=r1,···λ

′
l−1

=rl−1

λ′
l
=a

Prob(λ)
= 1

for any measure on partitions. �

Proof. (Second proof) For this proof one only needs that (1) is a measure; it
will emerge that it is a probability measure, that is that summing (1) over
all λ yields 1. We let P (a) denote the mass that the measure (1) assigns to
the event that λ has a parts, and do not assume a formula for P (a). We
also let Prob(λ) denote the mass that the measure (1) assigns to λ.

Arguing as in the first proof, one calculates that
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∑
λ:λ′1=r1,···λ

′
l−1

=rl−1

λ′
l
=a,λ′

l+1
=b

Prob(λ)∑
λ:λ′1=r1,···λ

′
l−1

=rl−1

λ′
l
=a

Prob(λ)
=

P (b)

p(
a+1
2 )P (a)(1/p2)b(a−b)/2c

.

Since (1) defines a measure, it follows that∑
b≤a

P (b)

p(
a+1
2 )P (a)(1/p2)b(a−b)/2c

= 1.

From this recursion and the fact that P (0) =
∏
i odd(1 − 1/pi), one solves

for P (a) inductively, finding that

P (a) =

∏∞
i=a+1(1− 1/pi)

pa(a+1)/2
∏∞
i=1(1− 1/p2i)

.

Now note that∑
a

P (a) =
1∏

i≥1(1− 1/p2i)

∑
a≥0

∏
i≥a+1(1− 1/pi)

p(
a+1
2 )

=

∏
i(1− 1/pi)∏
i(1− 1/p2i)

∑
a≥0

1

p(
a+1
2 )(1− 1/p) · · · (1− 1/pa)

=

∏
i(1− 1/pi)∏
i(1− 1/p2i)

∏
i≥1

(1 + 1/pi)

= 1,

where the third equality used Identity 2.2.6 on page 19 of [1] (setting t =
q = 1/p there). It follows that (1) defines a probability measure. �
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