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Abstract. Narayana numbers appear in many places in combinatorics
and probability, and it is known that they are asymptotically normal.
Using Stein’s method of exchangeable pairs, we provide an error of ap-
proximation in total variation to a symmetric binomial distribution of
order n−1, which also implies a Kolmogorov bound of order n−1/2 for
the normal approximation. Our exchangeable pair is based on a birth-
death chain and has remarkable properties, which allow us to perform
some otherwise tricky moment computations.

1. Introduction

We use the convention that the Narayana numbers N(n, k) are defined as

N(n, k) =
1

n

(
n

k − 1

)(
n

k

)
, 1 6 k 6 n

(some authors define them as 1
n

(
n
k

)(
n

k+1

)
, where 0 6 k 6 n − 1). The

Narayana numbers refine the Catalan numbers Cn = 1
n+1

(
2n
n

)
, since

n∑
k=1

N(n, k) = Cn.

The Catalan numbers are ubiquitous; see Stanley’s book [8] for 214 ob-
jects enumerated by Catalan numbers. The Narayana numbers also appear
in interesting places, and a good discussion of them is Chapter 2 of Pe-
tersen’s book [2]. Some places (there are many others!) in combinatorics
and probability where the Narayana numbers appear are: enumerating Dyck
paths by peaks [2], enumerating 231-avoiding permutations by descents [2],
enumerating non-crossing set partitions by the number of blocks [2], in the
stationary distribution for the partially symmetric exclusion process [1], and
in the enumeration of totally positive Grassmann cells [9].

Given these appearances of the Narayana numbers, it is natural to study
their limiting distribution. We define a probability distribution π on the
set {1, · · · , n} by

π(k) =
N(n, k)

Cn
=

(n+ 1)
(
n
k

)(
n

k−1
)

n
(
2n
n

)
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We let K be a random variable which is equal to k with probability π(k),
and we define a random variable W by

W =
K − µn
σn

where

µn =
n+ 1

2
, σ2n =

(n− 1)(n+ 1)

4(2n− 1)
.

It is observed in online lecture notes of Xi Chen (“Asymptotic normality in
combinatorics”, 2017) that W has mean 0 and variance 1, and is asymptot-
ically normal. This follows from Harper’s method for proving central limit
theorems for numbers with real rooted generating functions [3] by repre-
senting them as a sum of independent random Bernoulli random variables,
together with the fact that the generating function for Narayana polyno-
mials has real roots (see Section 4.6 of [2]). This approach combined with,
for example, the classical Berry-Esseen bound or even a refined translated
Poisson approximation of independent indicators [4, Example 3.3], will yield

a rate of convergence of σ−1n , which is order n−1/2. However, using a direct
exchangeable pairs approach, we show in this article that one can obtain
better rates.

First, we define the translated (almost) symmetric binomial distribution,
which will serve as the approximating distribution. While, ideally, we would
want to approximate K by the symmetric binomial distribution Bi(n, 1/2)
with n chosen to match the variance of K and shifted appropriately to
match the mean of K, the restriction that both n and the shift have to be
integer-valued requires some care in the exact definition.

For any real number x, let dxe be the smallest integer that is larger or
equal to x, let bxc be the largest integer that is smaller than or equal to x,
and let 〈x〉 = x − bxc. Note that x = bxc + 〈x〉 and x = dxe − 〈−x〉.
Assume µ ∈ R and σ2 > 0 are given. Let δ = 〈−4σ2〉, so that d4σ2e =

4σ2 + δ. Moreover, let t = 〈−µ+ 2σ2 + δ/2〉/d4σ2e. Denote by B̂i(µ, σ2) the
binomial distribution Bi(d4σ2e, 1/2− t) shifted by µ− d4σ2e(1/2− t).

It is not difficult to check that if X ∼ B̂i(µ, σ2), then X is integer-valued,
that EX = µ and that σ2 − 1/(4σ2) 6 VarX 6 σ2 + 1/4; in the context

of distributional approximation, we like to think of B̂i(µ, σ2) as a discrete
analogue to the normal distribution with mean µ and variance (almost) σ2.
The fact that we cannot match the variance exactly introduces only a very
small error in the setting we are concerned with.

Finally, for probability measures P and Q on Z, define the total variation
metric

dTV(P,Q) = sup
A⊂Z
|P [A]−Q[A]|

The purpose of this article is to prove the following explicit result, where L (K)
denotes the law of K.
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Theorem 1.1. For K defined as above, we have

dTV

(
L (K), B̂i(µ, σ2)

)
6

12

n
.

It is possible to deduce a Berry-Esseen-type bound from Theorem 1.1,
but the rates of convergence for an integer-valued random variable to the
normal distribution in Kolmogorov distance can never be better than the
scaling factor.

Corollary 1.2. There is a universal constant C such that

(1.1) sup
x∈R
|P[W 6 x]− Φ(x)| 6 C

n1/2
,

where Φ(x) is the standard normal distribution.

Remark 1.3. (1) The bound (1.1) also follows from the classical Berry-
Esseen bound for sums Sn = σ−1(X1+· · ·+Xn) of centered and independent,
but non-identically distributed random variables; we have

(1.2) sup
x∈R
|P[Sn 6 x]− Φ(x)| 6

C0
∑n

i=1E|Xi|3

σ3
,

where C0 is no bigger than 0.5606 [7]. Since the distribution of K can be
represented as a sum of independent indicator random variables, and since
the third central moment of an indicator random variable can always be
upper-bounded by its variance, we obtain from (1.2) that the left hand side
of (1.1) is bounded by C0σ

−1
n , which yields that, on the right hand side

of (1.1), we can take C = 1.59, since σn > n1/2/(2
√

2) for n > 2, as is easy
to prove.

(2) Applying a result of Shao and Su [6] to the exchangeable pair in
this paper, one can show that one can take C = 10 in Corollary 1.2. The
calculations involved are very similar to those in the present paper, but we
omit the details as the bound in the previous remark is sharper.

We can also deduce a local limit theorem from Theorem 1.1, since the
difference of the point probabilities are upper bounded by the total variation
distance and since the total variation rates are better than σ−1n . It should
also be fairly easy to prove this result directly using Stirling’s approximation.

Corollary 1.4. There is a universal constant C such that

σ1/2n sup
k∈Z

∣∣∣P[K = k]− 1

σn
ϕ
(k − µn

σn

)∣∣∣ 6 C

n1/2
,

where ϕ(x) is the standard normal density.

We will apply the following result, which we will prove later using similar
ideas as in [4, 5]. For its statement (and for the rest of the paper), recall that
a pair of random variables (X,X ′) on a state space is called exchangeable if
for all x1 and x2, we have P[X = x1, X

′ = x2] = P[X = x2, X
′ = x1]. Also,

as is typical in probability theory, let E(X|Y ) denote the expected value
of X given Y .
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Theorem 1.5. Assume (X,X ′) is an exchangeable pair of integer-valued
random variables with EX = µ and VarX = σ2, such that X ′ − X ∈
{−1, 0, 1} almost surely and such that

(1.3) E[X ′ − µ|X] = (1− λ)(X − µ).

Then, with S = S(X) = E{I[X ′ 6= X]|X},

(1.4) dTV

(
L (X), B̂i(µ, σ2)

)
6

√
VarS

2λσ2
+

1.4

σ2
.

Here L (X) denotes the law of X.

One of our contributions is to show how to apply Theorem 1.5 to prove
Theorem 1.1. This is not straightforward for two reasons. First, it is not
at all obvious how to construct an exchangeable pair (K,K ′) satisfying the
linearity condition (1.3). As we show in Section 2, we do this using a birth-
death chain on the state space {1, . . . , n}. We discovered this birth-death
chain through experimentation. Second, in order to compute V ar(S), it
turns out to be necessary to know the first four moments of the random
variable K. The generating function for Narayana numbers is complicated.
Indeed, from page 25 of [2], one has that∑

n>0

zn
n∑

k=1

N(n, k)tk−1

is equal to

(1.5)
1 + z(t− 1)−

√
1− 2z(t+ 1) + z2(t− 1)2

2tz
.

It is not at all clear how to extract the fourth moment of K from (1.5). We
show how to use properties of the exchangeable pair (W,W ′) to compute
the first four moments of W (of course the first and third moments are zero
by symmetry).

2. Proof of Theorem 1.1

Throughout we assume that n > 2 to avoid division by zero. In order to
study the asymptotic behaviour of K by Stein’s method, we will construct
an exchangeable pair (K,K ′). To do this, we first define a birth-death chain
on the set {1, . . . , n} by

p(k, k + 1) =
(n− k)(n− k + 1)

n(n− 1)
,

p(k, k − 1) =
k(k − 1)

n(n− 1)
,

p(k, k) =
2(k − 1)(n− k)

n(n− 1)
.

It is easy to see that π(i)p(i, j) = π(j)p(j, i) for all i and j. Thus this birth
death chain is reversible with respect to π. This allows us to construct an



STEIN’S METHOD AND NARAYANA NUMBERS 5

exchangeable pair (K,K ′) as follows: choose K ∈ {1, · · · , n} from π and
then obtain K ′ by taking one step according to the birth-death chain.

The next result shows that the exchangeable pair (K,K ′) satisfies the
linearity condition (1.3) of Theorem 1.5.

Lemma 2.1.

E[K ′ − µ|K] =

(
1− 2

n− 1

)
(K − µ).

Proof. We have

E[K ′ −K|K] = p(K,K + 1)− p(K,K − 1)

=
(n−K)(n−K + 1)−K(K − 1)

n(n− 1)

=
n− 2K + 1

n− 1
= − 2

n− 1

(
K − n+1

2

)
. �

As a corollary, we obtain the following result, which is also immediate
from the symmetry of the distribution π, but it is interesting to deduce it
using the pair (K,K ′).

Corollary 2.2. We have

EK =
n+ 1

2
.

Proof. From the proof of Lemma 2.1 and the exchangeability of K and K ′,
one has that

0 = E[K ′ −K] = E[E[K ′ −K|K]] = − 2

n− 1
E

[
K − n+ 1

2

]
.

�

Next we use the exchangeable pair to calculate EK2. The value of EK2

was stated in the online notes lecture notes of Xi Chen (“Asymptotic nor-
mality in combinatorics”, 2017). Our derivation uses the exchangeable
pair (K,K ′).

Lemma 2.3. We have

EK2 =
n3 + 2n2 − 1

4n− 2
.

Proof. Consider the quantity

E[(K ′)2 −K2|K].

On one hand, its expected value is equal to E[(K ′)2−K2] = 0. On the other
hand, the construction of (K,K ′) gives that its expected value is equal to
the expected value of

p(K,K + 1)
(
(K + 1)2 −K2

)
+ p(K,K − 1)

(
(K − 1)2 −K2

)
.

Using the definition of p(K,K + 1) and p(K,K − 1), it follows that

0 = E[(n−K)(n−K + 1)(2K + 1)−K(K − 1)(2K − 1)].
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Expanding this gives that

E[K2(2− 4n) + n(1 + n) + 2K(n2 − 1)] = 0.

So we can solve for EK2 in terms of EK, which we computed in Corol-
lary 2.2. �

Lemma 2.4. We have

EK3 =
(n2 + 2n− 2)(n+ 1)2

8n− 4
.

Proof. By symmetry of the distribution π, we have E(K − µ)3 = 0; that is,

E

[
K3 − 3K2

(
n+ 1

2

)
+ 3K

(
n+ 1

2

)2

−
(
n+ 1

2

)3
]

= 0.

Thus

EK3 = 3

(
n+ 1

2

)
EK2 − 3

(
n+ 1

2

)2

EK +

(
n+ 1

2

)3

.

The lemma now follows from Corollary 2.2 and Lemma 2.3. �

Lemma 2.5. We have

EK4 =
(n5 + 4n4 − 3n3 − 12n2 + 2n+ 6)(n+ 1)

4(2n− 1)(2n− 3)

Proof. Consider the quantity

E[(K ′)4 −K4|K].

On one hand, its expected value is equal to E[(K ′)4−K4] = 0. On the other
hand, the construction of (K ′,K) gives that its expected value is equal to
the expected value of

p(K,K + 1)
(
(K + 1)4 −K4

)
+ p(K,K − 1)

(
(K − 1)4 −K4

)
=

(n−K)(n−K + 1)

n(n− 1)

(
(K + 1)4 −K4

)
+
K(K − 1)

n(n− 1)

(
(K − 1)4 −K4

)
Since the K5 and K6 terms cancel out, this equality lets us solve for EK4 in
terms of EK3, EK2 and EK (which were computed in Lemmas 2.4 and 2.3
and Corollary 2.2), yielding the final expression. �

Next, we give an exact formula for VarS, where

S = S(K) = E[(K ′ −K)2|K].

Lemma 2.6. For n > 2,

VarS =
(n+ 1)(n− 2)

(2n− 1)2(2n− 3)(n− 1)
.
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Proof. Clearly

S(K) = p(K,K + 1) + p(K,K − 1)

= 1− p(K,K) = 1− 2(K − 1)(n−K)

n(n− 1)
.

Thus

(2.1) VarS =
4

n2(n− 1)2
Var[(K − 1)(n−K)].

To compute the variance of (K− 1)(n−K), we compute E[(K− 1)(n−K)]
and E[(K − 1)2(n−K)2].

It follows from Corollary 2.2 and Lemma 2.3 that

E[(K − 1)(n−K)] = −EK2 + (n+ 1)EK − n =
n(n− 1)(n− 2)

(4n− 2)
.

Similarly, since E[(K − 1)2(n−K)2] is equal to

EK4 − (2n+ 2)EK3 + (n2 + 4n+ 1)EK2 − (2n2 + 2n)EK + n2.

we can apply Corollary 2.2 and Lemmas 2.3, 2.4, and 2.5, to conclude that

E
[
(K − 1)2(n−K)2

]
=
n2(n4 − 7n3 + 19n2 − 23n+ 10)

4(4n2 − 8n+ 3)
.

Thus

Var[(K − 1)(n−K)] =
(n+ 1)n2(n− 1)(n− 2)

4(2n− 1)2(2n− 3)
.

The lemma now follows from (2.1). �

Putting the pieces together, we now prove the main result of this paper.

Proof of of Theorem 1.1. The theorem clearly holds for n 6 2. For n > 2,
we apply Theorem 1.5. By Lemma 2.1, E[K ′ − µ|K] = (1 − λ)(K − µ)
with λ = 2

n−1 . It follows easily from Lemma 2.6 that

dTV

(
L (K), B̂i(µ, σ2)

)
6

1

n

√
n2(n− 2)

(2n− 3)(n− 1)(n+ 1)
+

5.6(2n− 1)

(n− 1)(n+ 1)

It is not difficult to see that the fraction inside the square root is less than 1/2
and that 5.6n(2n− 1)(n− 1)−1(n+ 1)−1 6 11.2 for n > 2. �

3. Proof of Theorem 1.5

We only give a very compact proof, since much of the material is explained
in detail in [4, 5].

Proof of Theorem 1.5. Recall the definition of B̂i(µ, σ2) with the choices

of n, δ and t. It can be shown [5, (2.8)] that Z has distribution B̂i(µ, σ2) if
and only if

E
{

(Z − µ)Θg(Z)− σ2∆g(Z) + a(Z)∆g(Z)
}

= 0
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for all, say, bounded functions g : Z→ R, where Θg(k) = (g(k+1)+g(k))/2,
where ∆g(k) = g(k+ 1)− g(k), and where a(k) = nt2− (k−µ)t− δ/4. This
motivates the definition of the Stein operator

(Bg)(k) := (k − µ)Θg(k)− σ2∆g(k) + a(k)∆g(k)

and setting up the Stein equation

(3.1) (Bg)(k) = I[k ∈ A]−P[Z ∈ A]

for A ⊂ T := {0, . . . , n}+ µ− n(1/2− t) and Z ∼ B̂i(µ, σ2).
Now, it was shown [5, (2.4) and (2.8)] that there is a solution gA to (3.1)

that satisfies

(3.2) ‖∆gA‖∞ 6 1 ∧ 1

σ2
.

Using identity (3.1), the triangle inequality and (3.2), we obtain

dTV

(
L (X), B̂i(µ, σ2)

)
= sup

A⊂Z
|P[X ∈ A]−P[Z ∈ A]|

= sup
A⊂T
|(BgA)(X)|+P[X 6∈ T ]

6 sup
A⊂T

∣∣E{(X − µ)Θg(X)− σ2∆g(X)}
∣∣+

E|a(X)|
σ2

+P[X 6∈ T ].

(3.3)

We can use Chebychev’s inequality to bound

(3.4) P[X 6∈ T ] 6 P[|X − µ| > 2σ2 − 1] 6
σ2

(2σ2 − 1)2
6

0.61

σ2
,

where the last inequality holds as long as σ2 > 1.4, which we may assume
without loss of generality since otherwise (1.4) is trivial. Moreover,

(3.5) E|a(X)| 6 nt2 + σt+ δ/4 6 3/4

(see [5, after (2.17)] for the second inequality).
It remains to bound the first expression on the right hand side of (3.3); we

follow the line of argument in [4]. Using exchangeability and anti-symmetry,

0 = E
{

(X ′ −X)
(
g(X ′) + g(X)

)}
= E

{
(X ′ −X)

(
g(X ′)− g(X)

)}
+ 2E{(X ′ −X)g(X)}

(3.6)

Using (1.3), the second term equals

2E{(X ′ −X)g(X)} = −2λE{(X − µ)g(X)}.
so that (3.6) can be written as

(3.7) E{(X − µ)g(X)} =
1

2λ
E
{

(X ′ −X)
(
g(X ′)− g(X)

)}
.

To simplify the right hand side of (3.7), let Ii := I[X ′ − X = i] for i ∈
{−1,+1}, and making the case distinction whether X ′ − X = +1 or −1,
write

E
{

(X ′ −X)
(
g(X ′)− g(X)

)}
= E{I+1∆g(X)}+E{I−1∆g(X − 1)}.
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Using exchangeability,

E{I−1∆g(X − 1)} = E{I+1∆g(X)},

so that (3.7) yields

(3.8) E{(X − µ)g(X)} =
1

λ
E{I+1∆g(X)}

Replacing g(X) by g(X + 1) and using exchangeability again,

(3.9) E{(X − µ)g(X + 1)} =
1

λ
E{I+1∆g(X + 1)} =

1

λ
E{I−1∆g(X)}

Adding (3.8) and (3.9) and dividing by two,

E{(X − µ)Θg(X)} =
1

2λ
E{(I+1 + I−1)∆g(X)} =

1

2λ
E{S∆g(X)},

and it follows that

(3.10) E{(X − µ)Θg(X)− σ2∆g(X)} = E

{( S
2λ
− σ2

)
∆g(X)

}
.

Now, noticing that ES = 2λσ2, the right hand side of (3.10) can be
bounded by

(3.11)

√
VarS

2λ
‖∆g‖∞ 6

√
VarS

2λσ2
.

Combining bounds (3.4), (3.5), and (3.11) with (3.3) yields the claim. �
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