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and Basili [3] for gl(n) (with some restrictions on the characteristic). In particular,
this variety is irreducible for Mat(n� k). It will have a large number of components
for some of the other simple Lie algebras. For example, when g= sp(2n� k) and the
characteristic of k is not 2, the number of irreducible components is the number of
partitions of n with all parts of distinct sizes.

Our methods would give similar answers for the special orthogonal Lie algebras
in characteristic not 2. We do not work out the details of this case and leave it to the
interested reader.

The organization of this paper is as follows. Section 2 treats the general linear
groups. It gives a new proof of the Feit-Fine theorem, obtains asymptotic information
from it, and enumerates commuting pairs of nilpotent matrices. Section 3 studies the
Lie algebra of the finite unitary groups GU(n� q), giving unitary analogs of all the
results in Section 2. Section 4 studies the Lie algebra of the finite symplectic groups
Sp(2n� q) in the case of odd characteristic, giving symplectic analogs of all the results
in Section 2.

2. General Linear Groups

We use the following notation for partitions. Let λ be a partition of some non-negative
integer |λ | into parts λ1 ≥ λ2 ≥ ·· · . Let mi(λ ) be the number of parts of λ of size i,
and let λ ′ be the partition dual to λ in the sense that λ ′

i = mi(λ )+mi+1(λ )+ · · · . It
is also useful to define the diagram associated to λ by placing λi boxes in the ith row.
We use the convention that the row index i increases as one goes downward. So the
diagram of the partition (5441) is

and λ ′
i can be interpreted as the size of the ith column.

The notation (1�q)r will denote (1−1�q)
(

1−1�q 2) · · · (1−1�q r).
The next two lemmas are well known and will be useful. Lemma 2.1 is due to

Euler and is proved on [1, p. 19].

Lemma 2.1.

�
m≥0

um

(1�q)m
=�

l≥0

1
1−u�q l �

Lemma 2.2 is elementary. In its statement, and for the rest of the paper, we let
d(φ) denote the degree of a polynomial φ . For completeness, we include a proof.

Lemma 2.2.
�
φ

(

1−ud(φ)
)

= 1−uq�

where the product is over all monic, irreducible polynomials over the finite field Fq.

2 J. Fulman and R. Guralnick

Let S0 = 1 and for n≥ 1, let Sn be the number of ordered pairs of commuting elements
of the Lie algebra of Sp(2n� q) in odd characteristic. We will prove that

�
n≥0

Snun

|Sp(2n� q)|
=

∏i≥1
(

1+ui
)

∏i≥1∏l≥0 (1−ui�q 2l−1)
�

Our methods will also work for odd characteristic orthogonal groups, but we do not
treat them as this is quite tedious and the ideas are the same as for odd characteristic
symplectic groups. On the other hand, for various reasons (e.g., nilpotent classes
are no longer determined by their Jordan form even in the algebraic group and the
description of semisimple classes is different as well), even characteristic symplectic
and orthogonal groups are much trickier, and are beyond the scope of this paper.

It is easy to extract asymptotic information from our generating functions. For
example, from the original Feit-Fine result, we will conclude that for q fixed and n
tending to infinity,

lim
n→∞

Gn

q n2+n
= �

j≥1

(

1−1�q j)− j �

This is consistent with the fact that the variety of n×n commuting matrices over an
algebraically closed field has dimension n2+n.

Finally, we derive an analog of the Feit-Fine theorem for nilpotent commuting
pairs. Let NG0 = 1, and for n ≥ 1, let NGn be the number of ordered pairs of com-
muting nilpotent n×nmatrices over Fq. We will prove that

�
n≥0

NGnun

|GL(n� q)|
=�

i≥1
�
l≥1

1
1−ui�q l �

We also obtain generating functions for NUn
(

the number of ordered pairs of com-
muting nilpotent elements of the Lie algebra of GU(n� q)

)

, and for NSn
(

the number
of ordered pairs of commuting nilpotent elements of the Lie algebra of the odd char-
acteristic symplectic group Sp(2n� q)

)

.
We note there has been quite a lot of work on commuting varieties. One of the first

results in this area is the result of Motzin and Taussky [13] that the variety of commut-
ing pairs in Mat(n� k) with k algebraically closed is irreducible of dimension n2+n.
This was extended by Richardson [16] to reductive Lie algebras g in characteristic 0
and by Levy [11] in good characteristic with a mild extra assumption. It follows eas-
ily that in this case the dimension of the commuting variety is dimg+ rank g. Recall
that good characteristic means any characteristic in type A, characteristic not 2 for
groups of types B�C, and D, and characteristic not 2 or 3 for G2� F4� E6, and E7 and
characteristic not 2� 3, or 5 for E8. Very good characteristic means good characteristic
for groups not of type A and characteristic not dividing n+1 for groups of type An.

There has also been quite a bit of study of the variety of commuting nilpotent
pairs in a simple Lie algebra g corresponding to a Dynkin diagram in good character-
istic. The components are in bijection with the set of distinguished orbits of nilpotent
elements (i.e., the centralizer in the group contains no nontrivial torus) and all com-
ponents have dimension dimg (under the assumption that the characteristic is very
good). This was proved by Premet [14] after some earlier results of Baranovosky [2]
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and Basili [3] for gl(n) (with some restrictions on the characteristic). In particular,
this variety is irreducible for Mat(n� k). It will have a large number of components
for some of the other simple Lie algebras. For example, when g= sp(2n� k) and the
characteristic of k is not 2, the number of irreducible components is the number of
partitions of n with all parts of distinct sizes.

Our methods would give similar answers for the special orthogonal Lie algebras
in characteristic not 2. We do not work out the details of this case and leave it to the
interested reader.

The organization of this paper is as follows. Section 2 treats the general linear
groups. It gives a new proof of the Feit-Fine theorem, obtains asymptotic information
from it, and enumerates commuting pairs of nilpotent matrices. Section 3 studies the
Lie algebra of the finite unitary groups GU(n� q), giving unitary analogs of all the
results in Section 2. Section 4 studies the Lie algebra of the finite symplectic groups
Sp(2n� q) in the case of odd characteristic, giving symplectic analogs of all the results
in Section 2.

2. General Linear Groups

We use the following notation for partitions. Let λ be a partition of some non-negative
integer |λ | into parts λ1 ≥ λ2 ≥ ·· · . Let mi(λ ) be the number of parts of λ of size i,
and let λ ′ be the partition dual to λ in the sense that λ ′

i = mi(λ )+mi+1(λ )+ · · · . It
is also useful to define the diagram associated to λ by placing λi boxes in the ith row.
We use the convention that the row index i increases as one goes downward. So the
diagram of the partition (5441) is

and λ ′
i can be interpreted as the size of the ith column.

The notation (1�q)r will denote (1−1�q)
(

1−1�q 2) · · · (1−1�q r).
The next two lemmas are well known and will be useful. Lemma 2.1 is due to

Euler and is proved on [1, p. 19].

Lemma 2.1.

�
m≥0

um

(1�q)m
=�

l≥0

1
1−u�q l �

Lemma 2.2 is elementary. In its statement, and for the rest of the paper, we let
d(φ) denote the degree of a polynomial φ . For completeness, we include a proof.

Lemma 2.2.
�
φ

(

1−ud(φ)
)

= 1−uq�

where the product is over all monic, irreducible polynomials over the finite field Fq.
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This is equal to ∑i(λ ′
i )

2, as can be seen by writing

λ ′
i = mi(λ )+mi+1(λ )+ · · · .

Now, we reprove the Feit-Fine theorem.

Proof of Theorem 1.1. We let [un] f (u) denote the coefficient of un in an expression
f (u). It follows from Lemmas 2.3 and 2.4 that Gn

(

the number of ordered pairs of
commuting elements of Mat(n, q)

)

is equal to

|GL(n, q)|[un]∏
φ
∑
λ

u|λ |d(φ)

∏i
(

1/q d(φ)
)

mi(λ )
,

where the product is over all monic irreducible polynomials φ over Fq and the sum is
over all partitions λ . This is equal to

|GL(n, q)|[un]∏
φ
∏
i≥1

∑
m≥0

uim·d(φ)
(

1/q d(φ)
)

m

.

By Lemma 2.1, this is equal to

|GL(n, q)|[un]∏
φ
∏
i≥1
∏
l≥0

1
1−ui·d(φ)/q l·d(φ) .

Switching the order of the products and applying Lemma 2.2 shows that this is equal
to

|GL(n, q)|[un]∏
i≥1
∏
l≥0
∏
φ

1
1−ui·d(φ)/q l·d(φ)

= |GL(n, q)|[un]∏
i≥1
∏
l≥0

1
1−ui/q l−1 .

This completes the proof.

Next we derive asymptotic information from the Feit-Fine generating function.
As in the previous proof, given a power series f (u), let [un] f (u) denote the coef-

ficient of un in f (u). The following lemma will be useful.

Lemma 2.5. If the Taylor series of f around 0 converges at u= 1, then

lim
n→∞

[un]
f (u)
1−u

= f (1).

Proof. Write the Taylor expansion f (u) = ∑∞
n=0anu

n. Then observe that [un] f (u)1−u =

∑n
i=0 ai.

Theorem 2.6. For q fixed,

lim
n→∞

Gn

q n2+n
=∏

j≥1

(

1−1/q j)− j
.

4 J. Fulman and R. Guralnick

Proof. By unique factorization in Fq[x], the coefficient of un in the reciprocal of the
left-hand side is the number of degree-n monic polynomials with coefficients in Fq.
This is equal to q n, which is the coefficient of un in (1−uq)−1.

We let Mat(n, q) denote the set of n×n matrices (not necessarily invertible) over
the field Fq. Recall the definition of the rational canonical form of an element of
Mat(n, q). This associates to each monic, irreducible polynomial φ over Fq a partition
λφ such that

�
φ
d(φ)|λφ |= n.

For further background on rational canonical forms, one can consult [9, Chapter 6].
Lemma 2.3 is proved by Stong [19], and calculates the number of elements of

Mat(n, q) with a given rational canonical form.

Lemma 2.3. Suppose that {λφ} is a possible rational canonical form of an element
ofMat(n, q). Equivalently, suppose that

�
φ
d(φ)|λφ |= n.

Then the number of elements ofMat(n, q) with rational canonical form {λφ} is equal
to

|GL(n, q)|

∏φ q
d(φ)∑i(λ ′

φ , i)
2
∏i

(

1/q d(φ)
)

mi(λφ )

.

(

Recall that λ ′
φ , i is the size of the ith column of the partition λφ .

)

Lemma 2.4 counts the number of elements of Mat(n, q) which commute with a
given element of Mat(n, q) which has rational canonical form {λφ}.

Lemma 2.4. Let x be an element of Mat(n, q) with rational canonical form {λφ}.
Then the number of elements ofMat(n, q) which commute with x is equal to

�
φ
qd(φ)∑i(λ ′

φ , i)
2
.

Proof. Note that the exponent in the statement of the result is precisely the dimen-
sion of the centralizer of x (either in Mat(n, q) or Mat(n, k) where k is the algebraic
closure of our finite field). Note that the centralizer breaks up into the product of the
centralizers corresponding to each irreducible polynomial φ . By passing to a splitting
field for φ , it suffices to assume that φ has degree 1 and indeed that φ(x) = x.

Now we can decompose the underlying space V into a direct sum V1⊕ ·· · ⊕Vm
where x acts via a single Jordan block on Vi for size λi. Then the dimension of the
centralizer is the sum of the dimensions of Homk[x](Vi,V j). SinceVi and V j are cyclic
k[x]-modules, this dimension is the minimum of λi, λ j. Clearly,

�
i, j≥1

min(λi, λ j) = 2�
k<l

kmk(λ )ml(λ )+�
i
imi(λ )2.
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This is equal to ∑i(λ ′
i )

2, as can be seen by writing

λ ′
i = mi(λ )+mi+1(λ )+ · · · .

Now, we reprove the Feit-Fine theorem.

Proof of Theorem 1.1. We let [un] f (u) denote the coefficient of un in an expression
f (u). It follows from Lemmas 2.3 and 2.4 that Gn

(

the number of ordered pairs of
commuting elements of Mat(n, q)

)

is equal to

|GL(n, q)|[un]∏
φ
∑
λ

u|λ |d(φ)

∏i
(

1/q d(φ)
)

mi(λ )
,

where the product is over all monic irreducible polynomials φ over Fq and the sum is
over all partitions λ . This is equal to

|GL(n, q)|[un]∏
φ
∏
i≥1

∑
m≥0

uim·d(φ)
(

1/q d(φ)
)

m

.

By Lemma 2.1, this is equal to

|GL(n, q)|[un]∏
φ
∏
i≥1
∏
l≥0

1
1−ui·d(φ)/q l·d(φ) .

Switching the order of the products and applying Lemma 2.2 shows that this is equal
to

|GL(n, q)|[un]∏
i≥1
∏
l≥0
∏
φ

1
1−ui·d(φ)/q l·d(φ)

= |GL(n, q)|[un]∏
i≥1
∏
l≥0

1
1−ui/q l−1 .

This completes the proof.

Next we derive asymptotic information from the Feit-Fine generating function.
As in the previous proof, given a power series f (u), let [un] f (u) denote the coef-

ficient of un in f (u). The following lemma will be useful.

Lemma 2.5. If the Taylor series of f around 0 converges at u= 1, then

lim
n→∞

[un]
f (u)
1−u

= f (1).

Proof. Write the Taylor expansion f (u) = ∑∞
n=0anu

n. Then observe that [un] f (u)1−u =

∑n
i=0 ai.

Theorem 2.6. For q fixed,

lim
n→∞

Gn

q n2+n
=∏

j≥1

(

1−1/q j)− j
.
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Let NG0 = 1, and for n≥ 1, let NGn be the number of ordered pairs of commuting
n×n nilpotent matrices over Fq. We give a generating function for these numbers.

Theorem 2.9.

�
n≥0

NGnun

|GL(n� q)|
=�

i≥1
�
l≥1

1
1−ui�q l �

Proof. Lemma 2.3 shows that the number of n×n nilpotent matrices of Jordan type
λ is equal to

|GL(n� q)|
q∑i(λ ′

i )
2 ∏i(1�q)mi(λ )

�

Combining this with Lemma 2.8 gives that

NGn = |GL(n� q)| �
|λ |=n

1
∏i(1�q)mi(λ )q

mi(λ )
�

Thus

NGn = |GL(n� q)|[un]�
i≥1

�
m≥0

uim

(1�q)mqm �

Now replacing u by ui�q in Lemma 2.1 gives that

�
m≥0

uim

(1�q)mqm =�
l≥1

1
1−ui�q l �

It follows that
NGn = |GL(n� q)|[un]�

i≥1
�
l≥1

1
1−ui�q l �

proving the theorem.

3. Unitary Groups

We first prove some analogs of the GL case.
We let F = Fq2 and let k be its algebraic closure. Let F0 be the subfield of F of

order q. Let y q = ȳ be the nontrivial element of the Galois group of F�F0. We extend
this map to an F0 automorphism of Mat

(

n� q2
)

. Let A� denote the transpose of A.
Since GU(n� q) is the set of matricesU

(

in Mat
(

n� q2
))

satisfyingUŪ� = I, the
Lie algebra of GU(n� q) is the set of matrices A ∈ Mat

(

n� q2
)

such that Ā� = −A.
We call these matrices skew Hermitian. We will occasionally write GLε(n� q) for
GL(n� q) with ε =+ and GU(n� q) with ε =−.

Choose 0 �= θ ∈ F so that θ̄ =−θ (if F has characteristic 2, then take θ = 1 and
if F has odd characteristic, just take θ so that θ 2 ∈ F0 is a nonsquare). Then A skew
Hermitian implies that B := θA is Hermitian

(

i.e., B̄� = B
)

. Let h denote the set of
Hermitian matrices. Note that the orbits of GU(n� q) on h are in bijection with those
of θh and of course the set of commuting pairs are in bijection as well. Thus, we will
obtain counts for the set of commuting pairs in h (note that h is a Jordan algebra).

We first observe that the orbits of GU(n� q) on h are in bijection (which is not size
preserving) with those of GL(n� q) on Mat(n� q).

6 J. Fulman and R. Guralnick

Proof. We know that

Gn = |GL(n� q)|[un]∏
i≥1
∏
l≥0

1
1−ui�q l−1

= |GL(n� q)|q n[un]∏
i≥1
∏
l≥0

1
1−ui�q i+l−1

= q n2+n(1�q)n[un]∏
i≥1
∏
l≥0

1
1−ui�q i+l−1 �

Thus,

lim
n→∞

Gn

q n2+n
=∏

j≥1

(

1−1�q j) lim
n→∞

[un]∏
i≥1
∏
l≥0

1
1−ui�q i+l−1 �

Since the i= 1� l = 0 case of 1�
(

1−ui�q i+l−1) is equal to 1�(1−u), it follows from
Lemma 2.5 that

lim
n→∞

[un]∏
i≥1
∏
l≥0

1
1−ui�q i+l−1 =∏

j≥1

(

1−1�q j)− j−1�

which implies the theorem.

Remark 2.7. Let Com(G) denote the number of ordered pairs of commuting elements
of a finite group G. It is easy to see that Com(G) is equal to k(G)|G|, where k(G) is
the number of conjugacy classes of G. From [8], limn→∞

k(GL(n,q))
qn = 1. Thus,

lim
n→∞

Com(GL(n� q))
q n2+n

= lim
n→∞

|GL(n� q)|
q n2

=∏
j≥1

(

1−1�q j)�

To close this section, we enumerate pairs of commuting nilpotent n×n matrices.
The following lemma will be helpful. See Lemma 3.10 for a more general result.

Lemma 2.8. The number of nilpotent n×n matrices that commute with a fixed nilpo-
tent matrix of type λ is equal to

q∑i(λ ′
i )
2−∑imi(λ )�

Proof. Let A be a nilpotent matrix of type λ .
Let C be the centralizer of A in the full matrix ring. The structure of C is well

known; see [17, p. 251]. In particular, dimC = ∑i(λ ′
i )

2. Moreover,

C�N ∼=Mat(m1� q)×·· ·×Mat(mr� q)�

where N is the nilpotent radical ofC and mi = mi(λ ).
By [17, p. 235], the number of nilpotent matrices in Mat(m� q) is qm2−m. Since

an element ofC is nilpotent if and only if it is nilpotent modulo N, it follows that the
total number of nilpotent elements in C is

qdimC−∑imi(λ )�

and the result follows.
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Let NG0 = 1, and for n≥ 1, let NGn be the number of ordered pairs of commuting
n×n nilpotent matrices over Fq. We give a generating function for these numbers.

Theorem 2.9.

�
n≥0

NGnun

|GL(n� q)|
=�

i≥1
�
l≥1

1
1−ui�q l �

Proof. Lemma 2.3 shows that the number of n×n nilpotent matrices of Jordan type
λ is equal to

|GL(n� q)|
q∑i(λ ′

i )
2 ∏i(1�q)mi(λ )

�

Combining this with Lemma 2.8 gives that

NGn = |GL(n� q)| �
|λ |=n

1
∏i(1�q)mi(λ )q

mi(λ )
�

Thus

NGn = |GL(n� q)|[un]�
i≥1

�
m≥0

uim

(1�q)mqm �

Now replacing u by ui�q in Lemma 2.1 gives that

�
m≥0

uim

(1�q)mqm =�
l≥1

1
1−ui�q l �

It follows that
NGn = |GL(n� q)|[un]�

i≥1
�
l≥1

1
1−ui�q l �

proving the theorem.

3. Unitary Groups

We first prove some analogs of the GL case.
We let F = Fq2 and let k be its algebraic closure. Let F0 be the subfield of F of

order q. Let y q = ȳ be the nontrivial element of the Galois group of F�F0. We extend
this map to an F0 automorphism of Mat

(

n� q2
)

. Let A� denote the transpose of A.
Since GU(n� q) is the set of matricesU

(

in Mat
(

n� q2
))

satisfyingUŪ� = I, the
Lie algebra of GU(n� q) is the set of matrices A ∈ Mat

(

n� q2
)

such that Ā� = −A.
We call these matrices skew Hermitian. We will occasionally write GLε(n� q) for
GL(n� q) with ε =+ and GU(n� q) with ε =−.

Choose 0 �= θ ∈ F so that θ̄ =−θ (if F has characteristic 2, then take θ = 1 and
if F has odd characteristic, just take θ so that θ 2 ∈ F0 is a nonsquare). Then A skew
Hermitian implies that B := θA is Hermitian

(

i.e., B̄� = B
)

. Let h denote the set of
Hermitian matrices. Note that the orbits of GU(n� q) on h are in bijection with those
of θh and of course the set of commuting pairs are in bijection as well. Thus, we will
obtain counts for the set of commuting pairs in h (note that h is a Jordan algebra).

We first observe that the orbits of GU(n� q) on h are in bijection (which is not size
preserving) with those of GL(n� q) on Mat(n� q).
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where ε =+ if d is even and − if d is odd.

Proof. Let X be the centralizer of A in GL(n, k). This has a unipotent radicalU andQ
is just the fixed points ofU under the endomorphism of GL(n, k) defining GLε(n, q).
For any Steinberg-Lang endomorphism on a connected unipotent group, the size of
the fixed point group is as given.

So we now focus on the reductive part of the centralizer. Let V denote the natural
module (over F).

First suppose that d is even. Then φ(x) = φ1(x)φ2(x) where φ1(x) has degree d/2
and φ2(x) is the Galois conjugate of φ1(x) under the q power map.

It follows that V = V1⊕V2 where Vi is the kernel of φi(A)n. Then V1 and V2 are
totally singular spaces (with respect to the Hermitian form) and A has characteristic
polynomial a power of φi(x) on Vi.

Let Ai denote the restriction of A to Vi. Clearly, the centralizer of A preserves
each Vi. Note that if g ∈ GU(n, q) fixes each Vi, then with respect to an appropriate
basis if gi denotes g restricted to Vi, then g2 = ḡ−�

1 . The subgroup stabilizing V1 and
V2 is isomorphic to GL

(

n/2, q2
)

and the centralizer of A in U is isomorphic to the
centralizer of A1 in GL

(

n, q2
)

. The result then follows by the result for GL.
Now suppose that d is odd. Then φ(x) remains irreducible over F. By the unique-

ness of the canonical forms, we may assume that V is an orthogonal direct sum of
subspaces Vi such that on Vi the rational canonical form has all blocks the same

(

i.e.,
the minimal and characteristic polynomials are both powers of φ(x)

)

.
By considering the GL case (over k) we see that the reductive part of the central-

izer (up to conjugacy) preserves each Vi. Thus, it suffices to assume that V = Vi. In
the notation given above, this means that λ1 = λ , e1 = e, and deλ = n.

First suppose that φ(x) is the minimal polynomial of A (i.e., A is a semisimple
element and λ = 1). Then we can decompose the space as a direct sum of e orthogo-
nal spaces each of dimension d so that A acts irreducibly on each space. By the GL
case, the centralizer in GL(n, F) is just GL

(

e, q 2d). We can view the standard Her-
mitian form as inducing one on the e dimensional vector space over Fq2d and clearly
GL

(

e, q 2d
)

∩GU(de, q) = GU(e, q), as claimed.
Finally suppose that λ > 1. Then we can decompose the space as V1⊕ ·· ·⊕Vλ

(this is not an orthogonal decomposition and indeed V1 will be totally singular) so
that the matrix of A with respect to this decomposition is









B I 0 · · · 0
0 B I · · · 0

· · ·
0 0 0 · · · B









.

Here B is semisimple and has minimal polynomial φ(x) and characteristic poly-
nomial φ(x)e. We can take the Hermitian form preserved by this matrix to be in
block diagonal form (as in the above equation) with the antidiagonal blocks all being
I and all other blocks being 0. So we need to compute the centralizer with respect
to the unitary group preserving this form and as before we only need to compute
the reductive part of this centralizer. Again, considering the case of GL, we see that
the reductive part of the centralizer will be block diagonal. It is straightforward to

8 J. Fulman and R. Guralnick

Lemma 3.1. Let A ∈Mat
(

n, q2
)

. Then A is similar to an element of h if and only if
A is similar to an element ofMat(n, q). Moreover, A, B∈ h are conjugate in GL(n, k)
if and only if they are conjugate by an element of GU(n, q).

Proof. First suppose that A ∈ h. Since Ā� = A and A and A� are similar, it follows
that A and Ā are similar. Thus all invariant factors of A are defined over F0, whence A
is similar to an element of Mat(n, q).

Conversely, assume that A ∈Mat(n, q). Since all nondegenerate Hermitian forms
of dimension n over F are equivalent, it suffices to show that A is self adjoint with
respect to someHermitian form, i.e., AH =HĀ� for some invertibleHermitian matrix
H. By [20], AS= SA� for some symmetric invertible matrix S∈GL(n, q). Of course,
S is Hermitian and A is self adjoint with respect to the inner product determined by S,
whence the first statement holds.

We now prove the last statement. Of course, if A, B are conjugate via an ele-
ment of GU(n, q) they are conjugate in GL(n, k). The other direction follows by the
Lang-Steinberg theorem ([18, Theorem 10.1]). If B=UAU−1, then A, B ∈ h implies
that UAU−1 = Ū−�AŪ�. Thus, Ū�U centralizes A. By the Lang-Steinberg theo-
rem (since the centralizer of A in GL(n, k) is connected), Ū�U = X̄�X for some X
centralizing A. Thus,UX−1AXU−1 = B andUX−1 ∈ GU(n, q).

Lemma 3.2. Let A ∈ h. Then the dimension of the centralizer (over F0) of A in h is
the same as the dimension of the centralizer (over F) of A in Mat

(

n, q2
) (

which is
the same as the dimension of the centralizer inMat(n, k)

)

.

Proof. We can write Mat
(

n, q2
)

= h⊕αh (as F0 spaces) for any element α ∈ F \F0.
Note that the map X → [A, X ] preserves this decomposition. Thus, C, the central-
izer of A, is a direct sum of its intersections with h and αh. Clearly, dimF0C ∩
h = dimF0 αh. Letting kC denote the centralizer of A in Mat(n, k), we thus obtain
dimF0C∩h= dimFC = dimk kC.

Lemma 3.3. Let A ∈ h. Let f (x) ∈ F0[x] denote the characteristic polynomial of A
and factor f (x) =∏iφi(x)ei where the φi are distinct monic irreducible polynomials in
F0[x]. Let V denote the column space of dimension n over F. Then V is an orthogonal
direct sum of spaces Vi such that the characteristic polynomial of A on Vi is a power
of φi with φi �= φ j.

Proof. By the previous lemma, for any given similarity class, there is a representative
that is of the form given. Also by the previous lemma, the similarity class determines
the orbit under the unitary group and the result follows.

We now want to determine the centralizer of A ∈ h. By the previous lemma, it
suffices to do this under the assumption that the characteristic polynomial of A is
φ(x)m where φ(x) ∈ F0[x] is irreducible of degree d. The similarity class of such
an A

(

given φ(x)
)

is determined by a partition of m. So write m = ∑i eiλi where
λ1 > λ2 > · · · and the partition has ei parts of length λi.
Lemma 3.4. Let A ∈ h. Let G = GU(n, q). Then CG(A) has unipotent radical Q of
order q� where � is the dimension of the unipotent radical of CGL(n,k)(A) and

CG(A)/Q∼=∏
i
GLε (ei, q d),

Author's personal copy
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where ε =+ if d is even and − if d is odd.

Proof. Let X be the centralizer of A in GL(n, k). This has a unipotent radicalU andQ
is just the fixed points ofU under the endomorphism of GL(n, k) defining GLε(n, q).
For any Steinberg-Lang endomorphism on a connected unipotent group, the size of
the fixed point group is as given.

So we now focus on the reductive part of the centralizer. Let V denote the natural
module (over F).

First suppose that d is even. Then φ(x) = φ1(x)φ2(x) where φ1(x) has degree d/2
and φ2(x) is the Galois conjugate of φ1(x) under the q power map.

It follows that V = V1⊕V2 where Vi is the kernel of φi(A)n. Then V1 and V2 are
totally singular spaces (with respect to the Hermitian form) and A has characteristic
polynomial a power of φi(x) on Vi.

Let Ai denote the restriction of A to Vi. Clearly, the centralizer of A preserves
each Vi. Note that if g ∈ GU(n, q) fixes each Vi, then with respect to an appropriate
basis if gi denotes g restricted to Vi, then g2 = ḡ−�

1 . The subgroup stabilizing V1 and
V2 is isomorphic to GL

(

n/2, q2
)

and the centralizer of A in U is isomorphic to the
centralizer of A1 in GL

(

n, q2
)

. The result then follows by the result for GL.
Now suppose that d is odd. Then φ(x) remains irreducible over F. By the unique-

ness of the canonical forms, we may assume that V is an orthogonal direct sum of
subspaces Vi such that on Vi the rational canonical form has all blocks the same

(

i.e.,
the minimal and characteristic polynomials are both powers of φ(x)

)

.
By considering the GL case (over k) we see that the reductive part of the central-

izer (up to conjugacy) preserves each Vi. Thus, it suffices to assume that V = Vi. In
the notation given above, this means that λ1 = λ , e1 = e, and deλ = n.

First suppose that φ(x) is the minimal polynomial of A (i.e., A is a semisimple
element and λ = 1). Then we can decompose the space as a direct sum of e orthogo-
nal spaces each of dimension d so that A acts irreducibly on each space. By the GL
case, the centralizer in GL(n, F) is just GL

(

e, q 2d). We can view the standard Her-
mitian form as inducing one on the e dimensional vector space over Fq2d and clearly
GL

(

e, q 2d
)

∩GU(de, q) = GU(e, q), as claimed.
Finally suppose that λ > 1. Then we can decompose the space as V1⊕ ·· ·⊕Vλ

(this is not an orthogonal decomposition and indeed V1 will be totally singular) so
that the matrix of A with respect to this decomposition is









B I 0 · · · 0
0 B I · · · 0

· · ·
0 0 0 · · · B









.

Here B is semisimple and has minimal polynomial φ(x) and characteristic poly-
nomial φ(x)e. We can take the Hermitian form preserved by this matrix to be in
block diagonal form (as in the above equation) with the antidiagonal blocks all being
I and all other blocks being 0. So we need to compute the centralizer with respect
to the unitary group preserving this form and as before we only need to compute
the reductive part of this centralizer. Again, considering the case of GL, we see that
the reductive part of the centralizer will be block diagonal. It is straightforward to

Author's personal copy
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This is equal to |GU(n� q)| multiplied by the coefficient of un in

∏
φ

d(φ ) even

∏
i≥1

∑
m≥0

uim·d(φ)

(1�q d(φ))m
∏
φ

d(φ ) odd

∏
i
∑
m≥0

uim·d(φ)

∏i(1�q d(φ))m,q �→−q
�

By Lemma 2.1, this is equal to

|GU(n� q)|[un]∏
φ
∏
i≥1
∏
l≥0

1
1− (ui(−1)l�q l)d(φ)

�

Switching the order of the products and applying Lemma 2.2 shows that this is equal
to

|GU(n� q)|[un]∏
i≥1
∏
l≥0
∏
φ

1
1− (ui(−1)l�q l)d(φ)

= |GU(n� q)|[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q l−1 �

This completes the proof.

Theorem 3.8 determines the asymptotics of the sequenceUn.

Theorem 3.8. For q fixed,

lim
n→∞

Un

q n2+n
= ∏

i odd

(

1−1�q i)−1 ∏
i even

(

1−1�q i)−�i/4��

Proof. We know that

Un = |GU(n� q)|[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q l−1

= |GU(n� q)|q n[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q i+l−1 �

Thus,

lim
n→∞

Un

q n2+n
=∏

j≥1

(

1− (−1) j�q j) lim
n→∞

[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q i+l−1 �

Since the i= 1� l = 0 case of 1�
(

1− (−1)lui�qi+l−1) is equal to 1�(1−u), it follows
from Lemma 2.5 that

lim
n→∞

Un

q n2+n
=

1
(1−1�q)

·
1

(1+1�q 2)(1−1�q 2)

·
1

(1−1�q3)(1+1�q3)(1−1�q3)

10 J. Fulman and R. Guralnick

see that if x is block diagonal centralizing A, then all diagonal blocks are the same.
By the previous case, this implies that x ∈ GU

(

e, q d
)

and clearly any such element
commutes with A, whence the result.

Lemma 3.5 is a unitary analog of Lemma 2.3 and the proof is identical given the
previous results.

Lemma 3.5. The orbits of GU(n, q) on its Lie algebra correspond to {λφ} satisfying

�
φ
d(φ)|λφ |= n,

that is to the possible rational canonical forms of an element of Mat(n, q). The size
of the orbit corresponding to data {λφ} is

|GU(n, q)|
∏φCφ (λ )

.

Here,
Cφ (λ ) = q d(φ)∑i(λ ′

φ , i)
2

�
i

(

1/q d(φ))
mi(λφ )

if d(φ) is even, and

Cφ (λ ) = q d(φ)∑i(λ ′
φ , i)

2

�
i

(

1/q d(φ))
mi(λφ ),q �→−q

if d(φ) is odd. Here the notation
(

1/q d(φ))
mi(λφ ),q �→−q means that we replace q by

−q in the expression
(

1/q d(φ))
mi(λφ )

.

Lemma 3.6 is a unitary analog of Lemma 2.4, and the proof is identical given the
previous results.

Lemma 3.6. Let x be an element of the Lie algebra of GU(n, q), with data {λφ}.
Then the number of elements of the Lie algebra of GU(n, q) which commute with x is
equal to

�
φ
q d(φ)∑i(λ ′

φ , i)
2
.

Now we prove the unitary analog of the Feit­Fine theorem. Let U0 = 1 and for
n≥ 1, letUn be the number of ordered pairs of commuting elements of the Lie algebra
of GU(n, q).

Theorem 3.7.

�
n≥0

Unun

|GU(n, q)|
=�

i≥1
�
l≥0

1
1− (−1)lui/q l−1 .

Proof. Let [un] f (u) denote the coefficient of un in an expression f (u). It follows from
Lemmas 3.5 and 3.6 thatUn is equal to |GU(n, q)| multiplied by the coefficient of un

in

�
φ

d(φ ) even

�
λ

u|λ |d(φ)

∏i(1/q d(φ))mi(λ )
�
φ

d(φ ) odd

�
λ

u|λ |d(φ)

∏i(1/q d(φ))mi(λ ),q �→−q
.
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This is equal to |GU(n� q)| multiplied by the coefficient of un in

∏
φ

d(φ ) even

∏
i≥1

∑
m≥0

uim·d(φ)

(1�q d(φ))m
∏
φ

d(φ ) odd

∏
i
∑
m≥0

uim·d(φ)

∏i(1�q d(φ))m,q �→−q
�

By Lemma 2.1, this is equal to

|GU(n� q)|[un]∏
φ
∏
i≥1
∏
l≥0

1
1− (ui(−1)l�q l)d(φ)

�

Switching the order of the products and applying Lemma 2.2 shows that this is equal
to

|GU(n� q)|[un]∏
i≥1
∏
l≥0
∏
φ

1
1− (ui(−1)l�q l)d(φ)

= |GU(n� q)|[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q l−1 �

This completes the proof.

Theorem 3.8 determines the asymptotics of the sequenceUn.

Theorem 3.8. For q fixed,

lim
n→∞

Un

q n2+n
= ∏

i odd

(

1−1�q i)−1 ∏
i even

(

1−1�q i)−�i/4��

Proof. We know that

Un = |GU(n� q)|[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q l−1

= |GU(n� q)|q n[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q i+l−1 �

Thus,

lim
n→∞

Un

q n2+n
=∏

j≥1

(

1− (−1) j�q j) lim
n→∞

[un]∏
i≥1
∏
l≥0

1
1− (−1)lui�q i+l−1 �

Since the i= 1� l = 0 case of 1�
(

1− (−1)lui�qi+l−1) is equal to 1�(1−u), it follows
from Lemma 2.5 that

lim
n→∞

Un

q n2+n
=

1
(1−1�q)

·
1

(1+1�q 2)(1−1�q 2)

·
1

(1−1�q3)(1+1�q3)(1−1�q3)
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Proof. Let A ∈ h be nilpotent of type λ . As we have already noted, the dimension
of the centralizer of A is ∑i(λ ′

i )
2. We have also seen that the reductive part of the

centralizer of A is a direct product of GL(mi(λi)), whence the rank of the centralizer
is ∑imi(λ ). Thus, the result follows by Lemma 3.10.

Let NU0 = 1, and for n ≥ 1, let NUn be the number of ordered pairs of commut-
ing n× n nilpotent matrices in the Lie algebra of GU(n� q). Theorem 3.12 gives a
generating function for these numbers.

Theorem 3.12.

�
n≥0

NUnun

|GU(n� q)|
=�

i≥1
�
l≥1

1
(1+(−1)lui�q l)

�

Proof. From Lemma 3.5 we know that the total number of elements of the Lie algebra
of GU(n� q) which are nilpotent of type λ is equal to

|GU(n� q)|
q∑(λ

′
i )
2 ∏i(1�q)mi(λ ),q �→−q

�

Here the notation (1�q)mi(λ ),q �→−q means that we replace q by −q in the expression
(1�q)mi(λ ).

Combining this with Lemma 3.11 gives that

NUn = |GU(n� q)| �
|λ |=n

1
∏i qmi(λ )(1�q)mi(λ ),q �→−q

= |GU(n� q)|[un]�
i≥1

�
m≥0

uim

qm(1�q)m,q �→−q

= |GU(n� q)|[un]�
i≥1

�
m≥0

[

(−1)ui
]m

[qm(1�q)m]q �→−q
�

It follows from Lemma 2.1 that

�
m≥0

[

(−1)ui
]m

qm(1�q)m
= �

l≥1

1
1+ui�q l �

Replacing q by −q gives that

�
m≥0

[

(−1)ui
]m

[qm(1�q)m]q �→−q
=�

l≥1

1
1+(−1)lui�q l �

Hence,

NUn = |GU(n� q)|[un]�
i≥1

�
l≥1

1
(1+(−1)lui�q l)

�

12 J. Fulman and R. Guralnick

·
1

(1+1/q 4)(1−1/q 4)(1+1/q 4)(1−1/q 4)
· · ·

= ∏
i odd

(1−1/q i)−1 ·
1

(1+1/q 2)(1−1/q 2)

·
1

(1+1/q3)(1−1/q3)

·
1

(1+1/q 4)(1−1/q 4)(1+1/q 4)(1−1/q 4)
· · · .

Writing
(

1+1/q k
)(

1−1/q k
)

=
(

1−1/q 2k) shows that this is equal to

∏
i odd

(

1−1/qi
)−1 ∏

i even

(

1−1/q i)−�i/4�
.

Remark 3.9. Let Com(G) denote the number of ordered pairs of commuting elements
of a finite group G. As mentioned earlier, Com(G) is equal to k(G)|G|, where k(G)
is the number of conjugacy classes of G. From [8],

lim
n→∞

k(GU(n, q))
q n =∏

i≥1

(

1+1/q i
)

(

1−1/q i
) .

Thus,

lim
n→∞

Com(GU(n, q))
q n2+n

=∏
i≥1

(

1+1/q i
)

(

1−1/q i
) lim
n→∞

|GU(n, q)|
q n2

= ∏
i odd

(

1+1/q i
)

(

1−1/q i
)∏
i≥1

(

1+1/q i).

Next we enumerate pairs of commuting nilpotent matrices in the Lie algebra of
GU(n, q). The following two lemmas will be useful for that purpose.

Lemma 3.10. Let G be a connected algebraic group with Lie algebra g over an alge-
braically closed field of characteristic p. Let F be a Lang-Steinberg endomorphism
of G (so GF is a finite group). The number of nilpotent elements in (Lie(G))F is
qdimG−rank G (where q= qF is the size of the field associated with F).

Proof. Let Q be the unipotent radical of G. Of course Q is F-invariant. Let h be the
Lie algebra of Q. Then h consists of nilpotent elements and hF will have cardinality
qdimQ. Thus, we can pass to the case that G is reductive. In that case, we just apply a
result of Lehrer [10, Cor. 1.15] (this also follows by a result of Steinberg [18] in good
characteristic — Steinberg proves the corresponding result for unipotent elements).

Lemma 3.11. The number of nilpotent n× n matrices which are in the Lie algebra
of GU(n, q) and which commute with a fixed nilpotent matrix of type λ in the Lie
algebra of GU(n, q) is equal to

q∑i(λ ′
i )
2−∑imi(λ ).
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Proof. Let A ∈ h be nilpotent of type λ . As we have already noted, the dimension
of the centralizer of A is ∑i(λ ′

i )
2. We have also seen that the reductive part of the

centralizer of A is a direct product of GL(mi(λi)), whence the rank of the centralizer
is ∑imi(λ ). Thus, the result follows by Lemma 3.10.

Let NU0 = 1, and for n ≥ 1, let NUn be the number of ordered pairs of commut-
ing n× n nilpotent matrices in the Lie algebra of GU(n� q). Theorem 3.12 gives a
generating function for these numbers.

Theorem 3.12.

�
n≥0

NUnun

|GU(n� q)|
=�

i≥1
�
l≥1

1
(1+(−1)lui�q l)

�

Proof. From Lemma 3.5 we know that the total number of elements of the Lie algebra
of GU(n� q) which are nilpotent of type λ is equal to

|GU(n� q)|
q∑(λ

′
i )
2 ∏i(1�q)mi(λ ),q �→−q

�

Here the notation (1�q)mi(λ ),q �→−q means that we replace q by −q in the expression
(1�q)mi(λ ).

Combining this with Lemma 3.11 gives that

NUn = |GU(n� q)| �
|λ |=n

1
∏i qmi(λ )(1�q)mi(λ ),q �→−q

= |GU(n� q)|[un]�
i≥1

�
m≥0

uim

qm(1�q)m,q �→−q

= |GU(n� q)|[un]�
i≥1

�
m≥0

[

(−1)ui
]m

[qm(1�q)m]q �→−q
�

It follows from Lemma 2.1 that

�
m≥0

[

(−1)ui
]m

qm(1�q)m
= �

l≥1

1
1+ui�q l �

Replacing q by −q gives that

�
m≥0

[

(−1)ui
]m

[qm(1�q)m]q �→−q
=�

l≥1

1
1+(−1)lui�q l �

Hence,

NUn = |GU(n� q)|[un]�
i≥1

�
l≥1

1
(1+(−1)lui�q l)

�
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4. Symplectic Groups

Here we consider the symplectic case. There are several extra difficulties in charac-
teristic 2. So let F = Fq with q an odd prime power. Let G= Sp(2n, q). Let sp be the
Lie algebra of G. This can be viewed in a number of ways.

One way is as follows. Let J denote the skew symmetric matrix defining G (i.e.,
G is the stabilizer of J). Then

sp :=
{

A ∈Mat(n, q) |AJ = (AJ)�
}

.

We can also view sp as the linear transformations on the natural module V for G
which are self adjoint with respect to the alternating form defining G. Note that V is
a self-dual G-module and so V ∼=V ∗ (whereV ∗ denotes the dual module).

First let us make some remarks, working over the algebraic closure k of F. Note
that if x ∈ sp, then if 0 �= α is an eigenvalue of x, so is −α and the generalized α
eigenspace of x is totally singular. The sum of the generalized α and−α eigenspaces
is nonsingular and the Jordan form of x on the α space is the same as the −α space.
Moreover, the centralizer in Sp(2m) is just the centralizer of x in GL(m) (on the α)
space. In particular, the centralizer is connected.

We next compute the dimension of the centralizer of an element x ∈ sp. As usual,
we reduce to the case where the characteristic polynomial of x is a power of an irre-
ducible polynomial φ(x) or the product of two irreducible polynomials φi(x) where
φ2(x) = (−1)dφ1(−x) where d is the degree of φi. In the first case note that either
φ(x) = x or φ(x) has even degree 2d

(

and φ(x) = φ(−x)
)

.
Next consider the case that φ(x) = x (i.e., x is nilpotent). Then the orbit of x under

Sp(2n, k) is determined by the Jordan form of x which can be described as a partition
of n. Let λ1 ≥ λ2 ≥ ·· · ≥ λr (such a partition corresponds to an element of sp if and
only if the multiplicity of the odd pieces in the partition is even).

Recall that sp as a module either for G or for the Lie algebra is isomorphic to
Sym2(V ) and this is a direct summand of V ⊗V (which is isomorphic to V ⊗V ∗ as a
module for x) since we are assuming that q is odd. Since the dimension of the fixed
point space on V ⊗V depends only on the partition and not on the characteristic,
the same is true for the dimension of the fixed point space on Sym2(V ). This is well
known (for example, this can be computed in characteristic 0 using the decomposition
of Sym2(V ) as an SL(2)-module). This proves the first expression in the following
lemma.

Lemma 4.1. Let x ∈ sp be nilpotent with Jordan block sizes λ1 ≥ λ2 ≥ ·· · ≥ λr on
the natural module. Then the dimension of the centralizer of x in sp is equal to both:

(1)
∑
j<i

λi+∑
i
�λi/2�,

and

(2)
∑
i
(λ ′

i )
2/2+o(λ )/2,

where o(λ ) is the number of odd parts of λ .
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Proof. The expression in part 1 of the lemma is equal to

∑
j<i

λi+∑
i
λi/2+o(λ )/2=∑

i
λi(i−1)+ |λ |/2+o(λ )/2

=∑
i

(

λ ′
i
2

)

+ |λ |/2+o(λ )/2

=∑
i
(λ ′

i )
2/2+o(λ )/2.

Now consider the case that φ(x) �= x.
Then the class of the element is determined by φ(x)

(

or the φi(x)
)

and a partition
of n/d.

To compute the dimension of the centralizer of x in sp, we can work over the
algebraic closure (or any extension field) and so reduce to the case where the charac-
teristic polynomial is a power of φ1(x)φ2(x). Then we can write V = V1⊕V2 where
each Vi is a maximal totally singular subspace,Vi is invariant under x and the charac-
teristic polynomial of x on Vi is a power of φi(x). Then we see that the centralizer of
x in sp is isomorphic to the centralizer of xi (the restriction of x to Vi) in the algebra
of linear transformations of Vi and so the result for GL gives Theorem 4.2 below.

Recall that Jordan canonical form associates to each monic, irreducible polyno-
mial φ over Fq a partition λφ such that

∑
φ
d(φ)|λφ |= 2n.

This data arises from an element of sp if and only if:

(1) The partition λx has all odd parts occur with even multiplicity.
(2) For every φ , the partition λφ is equal to the partition λφ , where φ is defined as

(−1)d(φ)φ(−x).

Thus, we have proved:

Theorem 4.2. If {λφ} is the data corresponding to an element of sp, then the dimen-
sion of its centralizer in sp is equal to

∑
i

(

λ ′
x, i
)2
/2+o(λx)/2+ ∑

φ=φ
φ �=x

d(φ)∑
i

(

λ ′
φ , i

)2
/2+ ∑

{φ ,φ}
φ �=φ

d(φ)∑
i

(

λ ′
φ , i

)2
.

Finally, we need to count how many elements there are in sp with a given canon-
ical form. This amounts to computing the centralizers in Sp. As in the discussion for
centralizers in sp, we can reduce to the three cases as above. It is a bit more involved
as we now need the order of the centralizer rather than just the dimension.

For nilpotent elements, the centralizer is not usually connected in the algebraic
group and so the orbits break up over the finite field. However, since the centralizer
dimension in the Lie algebra depends only on the orbit over k, we only need to know
the following.
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Proof. The expression in part 1 of the lemma is equal to

∑
j<i

λi+∑
i
λi/2+o(λ )/2=∑

i
λi(i−1)+ |λ |/2+o(λ )/2

=∑
i

(

λ ′
i
2

)

+ |λ |/2+o(λ )/2

=∑
i
(λ ′

i )
2/2+o(λ )/2.

Now consider the case that φ(x) �= x.
Then the class of the element is determined by φ(x)

(

or the φi(x)
)

and a partition
of n/d.

To compute the dimension of the centralizer of x in sp, we can work over the
algebraic closure (or any extension field) and so reduce to the case where the charac-
teristic polynomial is a power of φ1(x)φ2(x). Then we can write V = V1⊕V2 where
each Vi is a maximal totally singular subspace,Vi is invariant under x and the charac-
teristic polynomial of x on Vi is a power of φi(x). Then we see that the centralizer of
x in sp is isomorphic to the centralizer of xi (the restriction of x to Vi) in the algebra
of linear transformations of Vi and so the result for GL gives Theorem 4.2 below.

Recall that Jordan canonical form associates to each monic, irreducible polyno-
mial φ over Fq a partition λφ such that

∑
φ
d(φ)|λφ |= 2n.

This data arises from an element of sp if and only if:

(1) The partition λx has all odd parts occur with even multiplicity.
(2) For every φ , the partition λφ is equal to the partition λφ , where φ is defined as

(−1)d(φ)φ(−x).

Thus, we have proved:

Theorem 4.2. If {λφ} is the data corresponding to an element of sp, then the dimen-
sion of its centralizer in sp is equal to

∑
i

(

λ ′
x, i
)2
/2+o(λx)/2+ ∑

φ=φ
φ �=x

d(φ)∑
i

(

λ ′
φ , i

)2
/2+ ∑

{φ ,φ}
φ �=φ

d(φ)∑
i

(

λ ′
φ , i

)2
.

Finally, we need to count how many elements there are in sp with a given canon-
ical form. This amounts to computing the centralizers in Sp. As in the discussion for
centralizers in sp, we can reduce to the three cases as above. It is a bit more involved
as we now need the order of the centralizer rather than just the dimension.

For nilpotent elements, the centralizer is not usually connected in the algebraic
group and so the orbits break up over the finite field. However, since the centralizer
dimension in the Lie algebra depends only on the orbit over k, we only need to know
the following.
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Lemma 4.3. The number of nilpotent elements in sp corresponding to a partition
λ1 ≥ λ2 ≥ ·· · ≥ λr is

|Sp(2n� q)|
q∑i(λ ′

i )
2/2+o(λ )/2∏i(1−1�q 2) · · · (1−q 2�mi(λ )/2�)

Proof. Since we are in good characteristic, the number of nilpotent elements with a
given Jordan form is the same as the number of unipotent elements in Sp(2n� q) with
the same distribution of Jordan blocks. This number is determined in [7].

For the elements in sp that do not have 0 as an eigenvalue, we have seen that
the centralizers in the algebraic group are connected, whence the Sp(2n� k)-orbits
intersect sp(2n� q) are just the Sp(2n� q) orbits. So we just need to compute the
centralizers in Sp(2n� q).

The next result gives the number of elements in sp(2n� q) with a given Jordan
canonical form.

Theorem 4.4. If {λφ} is the data corresponding to an element x of sp, then the
number of elements of sp corresponding to this data is equal to |Sp(2n� q)|multiplied
by:

1

q∑i(λ ′
x, i)

2/2+o(λx)/2∏i
(

1−1�q2
)

· · ·
(

1−1�q2�mi(λx)/2�
)

·∏
φ=φ
φ �=x

1

qd(φ)∑i(λ ′
φ , i)

2/2∏i
(

1+1�q d(φ)/2
)

· · ·
(

1− (−1)mi(λφ )�qmi(λφ )d(φ)/2
)

· ∏
{φ ,φ}
φ �=φ

1

q d(φ)∑i(λ ′
φ , i)

2
∏i

(

1−1�q d(φ)
)

· · ·
(

1−1�qmi(λφ )d(φ)
)

�

Proof. By the discussion before Lemmas 4.1 and 4.3 it suffices to reduce to the case
where φ �= x and φ is either irreducible

(

and φ(x) = φ(−x)
)

or φ = φ1φ2 where φ1 is
irreducible and φ2 is the dual polynomial of φ1 (i.e., its roots are the negatives of the
roots of φ1).

In the latter case, V decomposes as a direct sum of two totally isotropic spaces
V1⊕V2 where the element has characteristic polynomial a power of φi on Vi and the
action on V2 is the dual of the action onV1. Thus, the centralizer of x is isomorphic to
the centralizer in GL(V1) of x restricted to V1 and the result follows by Lemma 2.4.

So it remains to consider the case that φ is irreducible. The unipotent radical of
the centralizer has order qdimQ where Q is the unipotent radical of the centralizer in
the algebraic group (and so can be computed as above). So we only have to identify
the reductive part. Modulo the unipotent radical, we see that we can reduce to the case
where all parts of the partition have the same size e (this can be seen in the algebraic
group). Let m denote this multiplicity and let 2d be the degree of φ .

If we pass to a quadratic extension of our finite field, we are in the previous case
and so the reductive part of the centralizer is GL

(

m� q2d
)

. Arguing as we did in the
unitary case, we see that the reductive part of the centralizer is GU

(

m� q d
)

.
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Recall that φ is defined as (−1)d(φ)φ(−x). Note that if a monic irreducible poly-
nomial φ �= x satisfies φ = φ , then φ has even degree. We let N(2d, q) denote the
number of monic irreducible polynomials φ of degree 2d such that φ = φ . It is also
helpful to let M(d, q) denote the number of unordered pairs {φ , φ} of monic, irre-
ducible, degree d polynomials such that φ �= φ .

The following enumerative lemma will be helpful. It is a symplectic analog of
Lemma 2.2.

Lemma 4.5. (1)

∏
d≥1

(

1−ud
)−N(2d,q)∏

d≥1

(

1−ud
)−M(d,q)

=
1−u
1−qu

.

(2)

∏
d≥1

(

1+ud
)−N(2d,q)∏

d≥1

(

1−ud
)−M(d,q)

= 1.

Proof. To prove the first assertion, note that any monic polynomial (not necessarily
irreducible) which is invariant under the involution f (x) �→ (−1)d( f ) f (−x) factors
uniquely into irreducibles as a product of powers of φ where φ = φ and of powers of
φφ where φ �= φ . Hence, the coefficient of un in

(1−u)−1∏
d≥1

(

1−ud
)−N(2d,q)∏

d≥1

(

1−ud
)−M(d,q)

is equal to the number of monic degree 2n polynomials f such that f (x) = f (−x).
This is equal to q n, which is the coefficient of un in 1

1−qu , proving the first part of the
theorem.

To prove the second part of the theorem, we claim that

(1−u)−1∏
d≥1

(

1−u2d
)−N(2d,q)∏

d≥1

(

1−ud
)−2M(d,q)

=
1

1−qu
.

Indeed, the claimed equation follows since the coefficient of un on the left-hand side
counts the total number of monic degree-n polynomials, as does the coefficient of un

in 1/(1− qu). Dividing the claimed equation by the first assertion of the theorem
immediately proves the second assertion of the theorem.

Let S0 = 1, and for n ≥ 1, let Sn be the number of ordered pairs of commuting
elements of the Lie algebra of Sp(2n, q). Armed with the above results, we can now
derive a generating function for the sequence Sn.

Theorem 4.6.

∑
n≥0

Snun

|Sp(2n, q)|
=

∏i≥1
(

1+ui
)

∏i≥1∏l≥0(1−ui/q2l−1)
.

Proof. It is immediate from Theorems 4.2 and 4.4 that Sn is equal to |Sp(2n, q)|
multiplied by the coefficient of u2n in ABC where

A= ∑
λ

i odd =⇒mi(λ) even

u|λ |

∏i(1−1/q 2)(1−1/q 4) · · ·
(

1−1/q 2�mi(λ )/2�
) ,
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B= ∏
φ=φ
φ �=x

∑
λ

ud(φ)|λ |

∏i(1+1/q d(φ)/2) · · · (1− (−1)mi(λ )/qmi(λ )d(φ)/2)
,

C = ∏
{φ ,φ}
φ �=φ

∑
λ

u2d(φ)|λ |

∏i(1−1/q d(φ)) · · · (1−1/qmi(λ )d(φ))
.

Note that in A, the sum is over all partitions such that the odd parts occur with even
multiplicity, and that in B andC, the sum is over all partitions.

Note that A= (A1)(A2) where

A1= ∏
i odd

∑
m even

uim

(1−1/q 2)(1−1/q 4) · · · (1−1/qm)
,

and A2 is equal to

∏
i even
i≥2

[

∑
m even

uim

(1−1/q 2) · · · (1−1/qm)
+ ∑

m odd

uim

(1−1/q 2) · · · (1−1/qm−1)

]

.

Applying Lemma 2.1 gives that

A1= ∏
i odd

∏
l≥0

1
(1−u2i/q 2l)

,

A2= ∏
i even
i≥2

(

1+ui
)

∏
l≥0

1
(1−u2i/q 2l)

.

Next observe that

B= ∏
φ=φ
φ �=x

∏
i≥1

∑
m≥0

uimd(φ)

(1+1/q d(φ)/2) · · · (1− (−1)m/qmd(φ)/2)

= ∏
φ=φ
φ �=x

∏
i≥1
∏
l≥0

1
(1− (−1)luid(φ)/q ld(φ)/2)

,

where the second equality used Lemma 2.1.
Similarly,

C = ∏
{φ ,φ}
φ �=φ

∏
i≥1

∑
m≥0

u2imd(φ)

(1−1/q d(φ)) · · · (1−1/qmd(φ))

= ∏
{φ ,φ}
φ �=φ

∏
i≥1
∏
l≥0

1
(1−u2id(φ)/q ld(φ))

.
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Switching the order of the products in B and C, and then applying both parts of
Lemma 4.5 gives that

BC =∏
l≥0
∏
i≥1

[

∏
d≥1

(

1− (−1)lu2id
/

q ld
)−N(2d,q)

∏
d≥1

(

1−u2id/q ld
)−M(d,q)

]

= ∏
l even
l≥0

∏
i≥1

(

1−u2i/q l
)

(1−u2i/q l−1)
.

Hence,

ABC = (A1)(A2)(BC) =
∏i≥1

(

1+u2i
)

∏i≥1∏l≥0
(

1−u2i/q 2l−1
) ,

which proves the theorem.

Next we use Theorem 4.6 to obtain asymptotic information about the number of
commuting pairs in the Lie algebra of Sp(2n, q).

Theorem 4.7. For q fixed,

lim
n→∞

Sn
q2n2+2n

=∏
i≥1

(

1+1/q i)(1−1/q i)−�(i+1)/2�
.

Proof. We know from Theorem 4.6 that

Sn = |Sp(2n, q)|[un]
∏i≥1

(

1+ui
)

∏i≥1∏l≥0
(

1−ui/q 2l−1
)

= |Sp(2n, q)|q n[un]
∏i≥1

(

1+ui/q i
)

∏i≥1∏l≥0(1−ui/q 2l+i−1)

= q 2n2+2n(1−1/q 2) · · ·(1−1/q 2n)

· [un]
∏i≥1

(

1+ui/q i
)

∏i≥1∏l≥0(1−ui/q 2l+i−1)
.

Thus,

lim
n→∞

Sn
q 2n2+2n

=∏
j≥1

(

1−1/q 2 j) lim
n→∞

[un]
∏i≥1

(

1+ui/q i
)

∏i≥1∏l≥0(1−ui/q 2l+i−1)
.

Since the i= 1, l = 0 case of 1/
(

1−ui/q 2l+i−1) is equal to 1/(1−u), it follows
from Lemma 2.5 and elementary manipulations that

∏
j≥1

(

1−1/q 2 j) lim
n→∞

[un]
∏i≥1

(

1+ui/q i
)

∏i≥1∏l≥0(1−ui/q 2l+i−1)

is equal to

∏
i≥1

(

1+1/q i)(1−1/q i)−�(i+1)/2�
.
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Remark 4.8. Let Com(G) denote the number of ordered pairs of commuting elements
of a finite group G. As mentioned earlier, Com(G) is equal to k(G)|G|, where k(G)
is the number of conjugacy classes of G. From [8], since q is odd, one has that

lim
n→∞

k(Sp(2n� q))
q n =∏

i≥1

(

1+1�q i
)4

(1−1�q i)
�

Thus,

lim
n→∞

Com(Sp(2n� q))
q 2n2+2n

=∏
i≥1

(

1+1�q i
)4

(1−1�q i)
lim
n→∞

|Sp(2n� q)|
q 2n2+n

=
∏i≥1

(

1+1�q i
)4

∏i odd(1−1�q i)
�

Our next goal is to count the number of nilpotent commuting pairs in sp.
We first require a result of Richardson [15, Lemma 6.6] (which can be proved

quite easily in our special case). Note that for G= Sp(2n� k) all characteristics other
than 2 are very good.

Lemma 4.9. ([15]) Let G be a simple algebraic group over an algebraically closed
field k. Assume that the characteristic is very good for G. Let g be the Lie algebra of
G. If x ∈ g, then {y ∈ g|[x� y] = 0} is the Lie algebra ofCG(x).

Lemma 4.10. If an element x of sp is nilpotent of type λ , then its centralizer in sp

has size
q∑i(λ ′

i )
2/2+o(λ )/2−∑i�mi(λ )/2��

Proof. Note that we are in very good characteristic. As we have already seen, the
dimension of the centralizer in the group of a nilpotent element x is ∑i(λ ′

i )
2�2+

o(λ )�2. It follows by [12] that the rank of the centralizer is ∑i�mi(λ )�2�. By the
result of Richardson above, the same is true for the centralizer of x in sp. The result
now follows by Lemma 3.10,

This leads to the following theorem. In its statement, we let NS0 = 1, and let
NSn denote the number of commuting ordered pairs of nilpotent elements in the Lie
algebra of Sp(2n� q).

Theorem 4.11.

∑
n≥0

NSnun

|Sp(2n� q)|
=

∏i≥1
(

1+ui
)

∏i≥1∏l≥0(1−ui�q 2l+1)
�

Proof. It follows from Lemmas 4.3 and 4.10 that NSn is equal to

|Sp(2n� q)| ∑
|λ |=2n

i odd =⇒mi(λ) even

1
∏i

(

1−1�q 2
)

· · ·
(

1−1�q 2�mi(λ )/2�
)

q�mi(λ )/2�
�
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Letting [un] f (u) denote the coefficient of un in a power series f (u), it follows that

NSn = |Sp(2n� q)|
[

u2n
]

AB�

where

A= ∏
i odd

∑
m even

uim

(1−1�q 2) · · · (1−1�qm)qm/2 �

B= ∏
i even
i≥2

∑
m

uim

(1−1�q 2) · · · (1−1�q 2�m/2�)q �m/2�

= ∏
i even
i≥2

(

1+ui
)

∑
m even

uim

(1−1�q 2) · · · (1−1�qm)qm/2 �

It follows from Lemma 2.1 that

AB=
∏i≥1

(

1+u2i
)

∏i≥1∏l≥0(1−u2i�q 2l+1)
�

proving the theorem.
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