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Abstract

Using symmetric function theory, we study the cycle structure and increasing subsequence

structure of permutations after iterations of various shuffling methods. We emphasize the role

of Cauchy type identities and variations of the Robinson-Schensted-Knuth correspondence.

Keywords: Card shuffling, RSK correspondence, cycle index, increasing subsequence.
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1 Introduction

In an unpublished effort to study the way real people shuffle cards, Gilbert-Shannon-Reeds intro-

duced the following model, called k-riffle shuffling. Given a deck of n cards, one cuts it into k

piles with probability of pile sizes j1, · · · , jk given by
( n
j1,···,jk

)
kn . Then cards are dropped from the

packets with probability proportional to the pile size at a given time (thus if the current pile sizes

are A1, · · · , Ak, the next card is dropped from pile i with probability Ai
A1+···+Ak

).

The theory of riffle shuffling is relevant to many parts of mathematics. One area of mathematics

influenced by shuffling is Markov chain theory [D2]. For instance Bayer and Diaconis [BayD] proved

that 3
2 log2(n) 2-shuffles are necessary and sufficient to mix up a deck of n cards and observed a

cut-off phenomenon. The paper [Hanl] gives applications of shuffling to Hochschild homology and

the paper [BW] describes the relation with explicit versions of the Poincaré-Birkhoff-Witt theorem.

Section 3.8 of [ShSter] describes GSR shuffles in the language of Hopf algebras. In recent work,

Stanley [Sta] has related biased riffle shuffles with the Robinson-Schensted-Knuth correspondence,

thereby giving an elementary probabilistic interpretation of Schur functions and a different approach

to some work of interest to the random matrix community. He recasts many of the results of [BayD]

and [F1] using quasisymmetric functions. Connections of riffle shuffling with dynamical systems

appear in [BayD], [La1], [La2], [F4]. Generalizations of the GSR shuffles to other Coxeter groups

appear in [BB],[F2], [F3], [F4], [F5].

It is useful to recall one of the most remarkable properties of GSR k-shuffles. Since k-shuffles

induce a probability measure on conjugacy classes of Sn, they induce a probability measure on

partitions λ of n. Consider the factorization of random degree n polynomials over a field Fq into

irreducibles. The degrees of the irreducible factors of a randomly chosen degree n polynomial also

give a random partition of n. The fundamental result of Diaconis-McGrath-Pitman (DMP) [DMP]

is that this measure on partitions of n agrees with the measure induced by card shuffling when

k = q. This allowed natural questions on shuffling to be reduced to known results on factors of

polynomials and vice versa. Lie theoretic formulations, generalizations, and analogs of the DMP

theorem appear in [F2],[F3],[F4].

The motivation behind this paper was to understand the DMP theorem and its cousins in terms

of symmetric function theory. (All notation will follow that of [Mac] and background will appear in

Section 2). For the DMP theorem itself Stanley [Sta] gives an argument using ideas from symmetric

theory. The argument in Section 3 is different and emphasizes the role of the RSK correspondence
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and the Cauchy identity ∑
λ

sλ(x)sλ(y) =
∑
λ

1

zλ
pλ(x)pλ(y).

Here sλ and pλ denote the Schur functions and power sum symmetric functions respectively, and

zλ is the centralizer size of a permutation of conjugacy type λ.

Given Section 3, it was very natural to seek card shuffling interpretations for the Cauchy type

identities

∑
λ

sλ′(x)sλ(y) =
∑
λ

ϵλ
zλ

pλ(x)pλ(y)

∑
λ

sλ(x)Sλ(y) =
∑
λ

all parts odd

2l(λ)

zλ
pλ(x)pλ(y)

∑
λ

sλ′(x)Sλ(y) =
∑
λ

all parts odd

2l(λ)ϵλ
zλ

pλ(x)pλ(y)

∑
λ

sλ(x)s̃λ(α, β, γ) =
∑
λ

1

zλ
pλ(x)p̃λ(α, β, γ)

Here λ′ denotes the transpose of a partition and ϵλ = (−1)|λ|−l(λ) where l(λ) is the number of parts

of λ. Sλ is a symmetric function studied for instance by Stembridge [Stem] and defined in Section

5. The symmetric function s̃λ(α, β, γ) is an extended Schur function to be discussed in Section 6.

(The fourth identity is actually a generalization of the second identity though it will be helpful to

treat them differently).

In fact these identities (and probably many identities from symmetric function theory) are

related to card shuffling. Section 4 relates the first of these identities to riffle shuffles followed

by reversing the order of the cards; the resulting cycle index permits calculations of interest to

real-world shufflers. Section 5 relates the second of these identities to the cycle structure of affine

hyperoctahedral shuffles, which are generalizations of unimodal permutations; the third identity

shows that dealing from the bottom of the deck has no effect for these shuffles. This gives a

non-Lie theoretic approach to some results in [F4] and proves a more general assertion. Although

there is some overlap with the preprint [Th] for the case of unimodal permutations, even in that

case the treatment here is quite different and forces into consideration a variation of the RSK

correspondence, which we believe to be new. We should also point out that Gannon [Gan] was the
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first to solve the problem of counting unimodal permutations by cycle structure, using completely

different ideas. (His results are not in the form of a cycle index and it would be interesting to

understand the results in this paper by his technique).

Section 6 develops preliminaries related to the case of extended Schur functions. It defines

models of card shuffling called (α⃗, β⃗, γ) shuffles (which include the GSR shuffles) and explains

how they iterate. This model contains other shuffles of interest such as iterations of the following

procedure. Given a deck of n cards, cut the deck into two piles where the sizes are k, n − k

with probability
(nk)
2n ; then shuffle the size k pile thoroughly and riffle it with the remaining cards.

This special case was first studied in [DFP] (their work was on convergence rates, not about cycle

structure or increasing subsequence structure). Section 6 proves that if one applies the usual RSK

correspondence to a permutation distributed as a (α⃗, β⃗, γ) shuffle, then the probability of getting

any recording tableau of shape λ is the extended Schur function s̃λ(α⃗, β⃗, γ). (When γ = 0 this is

equivalent to a result of Kerov/Vershik [KV] and Berele/Remmel [BeRe]. However the case γ ̸= 0

(which arises for the shuffle in this paragraph), is treated incorrectly in [KV] and not at all in

[BeRe]).

Section 7 applies the results of Sections 3 and 6 to find formulas for cycle structure after (α⃗, β⃗, γ)

shuffles; for instance it is proved that after such a shuffle on a deck of size n, the expected number

of fixed points is the sum of the first n extended power sum symmetric functions evaluated at the

relevant parameters. An upper bound on the convergence rate of these shuffles is derived. Section 7

closes with a discussion of convolutions of top to random shuffles, and remarks that for sufficiently

large n, 5/6log2(n) + clog2(e) 2-riffle shuffles bring the longest increasing subsequence to its limit

distribution.

Currently we are working on analyzing the Toeplitz determinants which arise in the analysis of

longest increasing subsequences after (α⃗, β⃗, γ) shuffles. We also note that there are many shuffles

of interest (e.g. iterations of top to random, iterations of riffle shuffles followed by cuts) for which

Toeplitz determinant expressions are unavailable. Analysis of these shuffles should be of interest

to computational biology.

2 Background

This section collects the facts from symmetric function theory which will be needed later. Chapter

1 of [Mac] is a superb introduction to symmetric functions. We review a few essentials here.
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The power sum symmetric functions pλ are an orthogonal basis of the ring of symmetric func-

tions. Letting zλ =
∏

i i
nini! be the centralizer size of the conjugacy of Sn indexed by the partition

λ with ni parts of size i, one has that

⟨pλ, pµ⟩ = δλµzλ.

The descent set of a permutation w is defined as the set of i with 1 ≤ i ≤ n − 1 such that

w(i) > w(i + 1); the ascent set is the set of i with 1 ≤ i ≤ n − 1 such that w(i) < w(i + 1). The

descent set of a standard Young tableau T is the set of i such that i+1 is in a lower row of T than

i. The RSK correspondence (carefully exposited in [Sa],[SVol2]) associates to a permutation w a

pair of standard Young tableau (its insertion tableau P (w) and its recording tableau Q(w)) and

the descent set of w is equal to the descent set of Q(w). Further the descent set of w−1 is equal

to the descent set of P (w), since Q(w−1) = P (w). Des(w) and Asc(w) will denote the descent and

ascent set of w respectively. The notation λ ⊢ n means that λ is a partition of n. The symbol fλ

denotes the number of standard Young tableau of shape λ.

The following result is a simple consequence of work of Gessel and Reutenauer [GR] and Garsia

[Gar].

Theorem 1 Let βλ(D) be the number of standard Young tableau of shape λ with descent set D.

Let Ni(w) be the number of i-cycles of a permutation w. Then

1.

∑
w∈Sn

Des(w)=D

∏
i≥1

x
Ni(w)
i = ⟨

∑
λ⊢n

sλ(y)βλ(D),
∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(y)

i/d

⟩

2.

∑
w∈Sn

Asc(w)=D

∏
i≥1

x
Ni(w)
i = ⟨

∑
λ⊢n

sλ′(y)βλ(D),
∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(y)

i/d

⟩.

Proof: The number of w in Sn with descent set D and ni i-cycles is the coefficient of
∏

i x
Ni(w)
i on

the left hand side of the first equation. Let τ be the partition with ni parts of size i and let Lieτ (y)

be the symmetric function associated with the corresponding Lie character (for background on Lie

characters and relevant symmetric function theory see [R]). By [GR], the number of w in Sn with

descent set D and ni i-cycles is equal to the inner product

⟨
∑
λ⊢n

sλ(y)βλ(D), Lieτ (y)⟩.
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From [Gar] it follows that Lieτ (y) is the coefficient of
∏

i x
ni
i in

∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(y)

i/d

.

This proves the first assertion.

For the second assertion, note that βλ′(D) = βλ({1, · · · , n− 1}−D). This follows from the fact

that if a permutation w has RSK shape λ and descent set D, then its reversal has RSK shape λ′

and ascent set D. Thus

⟨
∑
λ⊢n

sλ′(y)βλ(D),
∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(y)

i/d

⟩

= ⟨
∑
λ⊢n

sλ(y)βλ({1, · · · , n− 1} −D),
∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(y)

i/d

⟩

as desired. 2

3 Biased riffle shuffles

We emphasize from the start that the main result in this subsection is not new: it is equivalent to

assertions proved in [F1] and then in work of Stanley [Sta]. It was first proved for ordinary riffle

shuffles in [DMP]. The value of the current argument is that it underscores the role of RSK and

the Cauchy identity

∑
λ

sλ(x)sλ(y) =
∑
λ

1

zλ
pλ(x)pλ(y)

(the sums are over all partitions of all natural numbers).

Biased riffle shuffles were introduced in [DFP] and studied further in [F1]. A biased riffle shuffle

with parameters q⃗ = (q1, q2, · · ·) where
∑

qi = 1 is defined as follows. First cut the deck into piles

of sizes k1, k2, · · · by picking the k’s according to the distribution(
n

k1, k2, · · ·

)∏
i

qkii .

Now drop cards from the packets one at a time, according to the rule that at each stage the

probability of dropping from a packet is proportional to the number of cards in that packet. For

instance if there are 2 packets with sizes 3 and 5, then the next card would come from the first
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packet with probability 3/8. It is not hard to see that the probability that a biased riffle shuffle

gives a permutation w depends on w only through Des(w−1). The main case of interest is q1 =

· · · = qk = 1/k all other qi = 0 and corresponds to ordinary riffle shuffles [BayD].

To determine the cycle structure after a biased riffle shuffle we could make use of the following

result of Stanley [Sta].

Theorem 2 Let w be distributed as a biased riffle shuffle with parameters q⃗. Let T be a standard

Young tableau of shape λ. Then the probability that the RSK algorithm associates insertion tableau

T to w is equal to sλ(q⃗).

Instead (to simplify later sections) we will use the following similar result, which we record for

completeness.

Theorem 3 Let w be distributed as a biased riffle shuffle with parameters q⃗. Let T be a standard

Young tableau of shape λ. Then the probability that the RSK algorithm associates recording tableau

T to w is equal to sλ(q⃗).

Proof: Given a length n word J with positive integers as letters, let ai be the number of occur-

rences of symbol i in J respectively. Define a permutation w in two line form by putting 1, · · · , a1

in the positions occupied by the 1’s of J from left to right, then putting the next a2 numbers in

the positions occupied by the 2’s of J from left to right, and so on. For instance the word

1 3 2 1 2 2 1 3 1 2

corresponds to the permutation

1 9 5 2 6 7 3 10 4 8.

It is easy to see that in general the recording tableau of w under the RSK algorithm is equal to the

recording tableau of J under the RSK algorithm. Arguing as in [BayD], if the entries of the random

word J are chosen independently with probability qi of symbol i, then the resulting distribution on

permutations w is the same as performing a q⃗ biased riffle shuffle. As in [KV], the combinatorial

definition of the Schur function immediately implies that the chance that J has recording tableau

T is sλ(q⃗). 2

Lemma 1 could be simplified via Theorem 2 but we prefer not to take this path.
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Lemma 1 Let βλ(D) be the number of standard Young tableau of shape λ with descent set D.

If βλ(D) ̸= 0, then the probability that a biased q⃗-shuffle produces a specific permutation w with

Des(w−1) = D and RSK shape λ is equal to the probability that a biased q⃗-shuffle produces a

permutation with (P,Q) tableaux satisfying Des(P (w)) = D,shape(Q(w)) = λ divided by βλ(D)fλ.

Proof: Fix any permutation w such that Des(w−1) = D and such that w has RSK shape λ (this

is possible if βλ(D) ̸= 0). Let x be the probability of obtaining w after a biased q⃗ shuffle. Since

all w with Des(w−1) = D are equally likely, x = y/z where y is the probability that a biased q⃗

shuffle leads to a permutation with inverse descent set D and RSK shape λ, and z is the number of

permutations with inverse descent set D and RSK shape λ. Now y is the probability that after a

biased q⃗ shuffle one obtains a permutation w with Des(P (w)) = D, shape(Q(w)) = λ. Note that z

is simply βλ(D)fλ, since the insertion tableau can be any standard Young tableau of shape λ and

descent set D, and the recording tableau can be any standard Young tableau of shape λ. 2

Now we prove the main result in this subsection.

Theorem 4 Let En,q⃗ denote expected value under the biased riffle shuffle measure with parameters

q⃗. Let Ni(w) be the number of i-cycles of the permutation w. Then

∑
n≥0

unEn,q⃗(
∏
i

xNi
i ) =

∏
i,j

e
(uixi)

j

ij

∑
d|i µ(d)pjd(q⃗)

i/d

.

Proof: Let w be a fixed permutation such that Des(w−1) = D; then Probq⃗(D) will denote the

probability of obtaining w after a biased riffle shuffle with parameters q⃗. Using part 1 of Theorem

1 one concludes that the sought cycle index is

∑
n≥0

unEn,q⃗(
∏
i

xNi
i )

=
∑
n≥0

un
∑
ni≥0

(
∏
i

xni
i )

∑
D⊆{1,···,n−1}

Probq⃗(D)|{w : Des(w) = D,Ni(w) = ni}|

=
∑
n≥0

∑
D⊆{1,···,n−1}

Probq⃗(D)⟨
∑
λ⊢n

sλ(y)βλ(D),
∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩

=
∑
n≥0

⟨
∑
λ⊢n

sλ(y)
∑

D⊆{1,···,n−1}
Probq⃗(D)βλ(D),

∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩

Lemma 1 implies that ∑
D⊆{1,···,n−1}

Probq⃗(D)βλ(D)
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is 1
fλ

multiplied by the probability that the recording tableau of a permutation obtained after a

biased q⃗ shuffle has shape λ. By Theorem 3, this latter probability is sλ(q⃗)fλ. Hence the sought

cycle index is simply the inner product

⟨
∑
λ

sλ(y)sλ(q⃗),
∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩.

Applying the Cauchy identity yields

⟨
∑
λ

1

zλ
pλ(y)pλ(q⃗),

∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩.

Since ⟨pλ, pµ⟩ = δλ,µzλ this simplifies to

∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(q⃗)

i/d

.

2

We remark that for k-riffle shuffles the cycle index simplifies to

∏
i≥1

(
1

1− uixi
ki

)
1
i

∑
d|i µ(d)k

i/d

.

4 Dealing from the Bottom of the Deck

This section considers cycle structure of a biased riffle shuffle followed by dealing from the bottom

of the deck. This is equivalent to turning the deck upside down after shuffling. (Persi Diaconis

points out that someone running card guessing experiments might do this). The results in this

section are all new. Results about subsequence structure are omitted since reversing the order of a

permutation simply transposes its RSK shape. Forthcoming work indicates the connections of this

section with unitary groups.

Let λ′ denote the transpose of λ. Let l(λ) be the number of parts of λ and let ϵλ denote

(−1)|λ|−l(λ). Whereas the previous section used the Cauchy identity, this section uses the dual

Cauchy identity

∑
λ

sλ′(x)sλ(y) =
∑
λ

ϵλ
zλ

pλ(x)pλ(y)

(the sums are over all partitions of all natural numbers).
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Theorem 5 Let E′
n,q⃗ denote expected value under the biased riffle shuffle measure with parameters

q⃗ followed by reversing the order of the cards. Then

∑
n≥0

unE′
n,q⃗(

∏
i

xNi
i ) =

∏
i,j

e
((−u)ixi)

j

ij

∑
d|i µ(d)(−pjd(q⃗))

i/d

.

Proof: Let w be a fixed permutation such that Asc(w−1) = D; then Prob′q⃗(D) will denote the

probability of obtaining w after a q⃗ biased riffle shuffle followed by reversing the order of the cards.

Using part 2 of Theorem 1 one concludes that the sought cycle index is

∑
n≥0

unE′
n,q⃗(

∏
i

xNi
i )

=
∑
n≥0

un
∑
ni≥0

(
∏
i

xni
i )

∑
D⊆{1,···,n−1}

Prob′q⃗(D)|{w : Asc(w) = D,Ni(w) = ni}|

=
∑
n≥0

∑
D⊆{1,···,n−1}

Prob′q⃗(D)⟨
∑
λ⊢n

sλ′(y)βλ(D),
∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩

=
∑
n≥0

⟨
∑
λ⊢n

sλ′(y)
∑

D⊆{1,···,n−1}
Prob′q⃗(D)βλ(D),

∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩.

From the proof of Theorem 4,

∑
D⊆{1,···,n−1}

Prob′q⃗(D)βλ(D) =
∑

D⊆{1,···,n−1}
Probq⃗(D)βλ(D) = sλ(q⃗).

Consequently the sought cycle index is simply the inner product

⟨
∑
λ

sλ′(y)sλ(q⃗),
∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩.

Applying the dual Cauchy identity yields

⟨
∑
λ

ϵλ
zλ

pλ(y)pλ(q⃗),
∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(y)

i/d

⟩.

Since ⟨pλ, pµ⟩ = δλ,µzλ this simplifies to

∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)(−1)ji−i/dpjd(q⃗)

i/d

.

2

The case of most interest is q1 = · · · = qk = 1
k and all other qi = 0. Then the cycle index

simplifies to
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∏
i≥1

(
1

1− (−u)ixi

ki

)
1
i

∑
d|i µ(d)(−k)i/d

.

Much information can be gleaned from this cycle index in analogy with results in [DMP] for ordinary

riffle shuffles (i.e. when one deals from the top of the deck). We record three such results which

are perhaps the the most interesting.

Corollary 1 The expected number of fixed points after a k-riffle shuffle on n cards followed by

reversing the order of the cards is

1− 1

k
+

1

k2
· · ·+ (−1)n−1

kn−1
.

Proof: The generating function for fixed points is given by setting xi = 1 for all i > 1 in the cycle

index. This yields

(1 + x1u/k)
k
∏
i ̸=1

(
1

1− (−u)i

ki

)
1
i

∑
d|i µ(d)(−k)i/d

.

Multiplying and dividing by (1 + u/k)k gives

(1 + x1u/k)
k

(1 + u/k)k

∏
i

(
1

1− (−u)i

ki

)
1
i

∑
d|i µ(d)(−k)i/d

.

Observe that
1

1− u
=
∏
i≥1

(
1

1− (−u)i

ki

)
1
i

∑
d|i µ(d)(−k)i/d

since this is what one obtains by setting all xi = 1 in the cycle index. Hence the generating function

for fixed points is
(1 + x1u/k)

k

(1 + u/k)k(1− u)
.

Then one differentiates with respect to x1, sets x1 = 1, and takes the coefficient of un. 2

We remark that [DMP] showed that the expected number of fixed points for k-riffle shuffles on

an n-card deck is

1 +
1

k
+

1

k2
· · ·+ 1

kn−1
.

It is straightforward to compute higher moments for k shuffles followed by reversal.

The next goal is to determine the limit behavior of the distributions of the short cycles. The

answer differs considerably from the GSR riffle shuffle case, in which only convolutions of geometric

distributions come into play.

We require a simple lemma.
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Lemma 2 If f(u) has a Taylor series
∑

n≥0 anu
n which converges at u = 1, then the n → ∞ limit

of the coefficient of un in f(u)
1−u is f(1).

Proof: This follows because the coefficient of un in f(u)
1−u is a0 + · · ·+ an. 2

Recall that a binomial(n,p) random variable assumes the value x with probability
(n
x

)
px(1 −

p)n−x, and that a geometric(α) random variable assumes the value x with probability (1− α)αx.

Corollary 2 1. Fix u such that 0 < u < 1. Choose a random deck size with probability of getting

n equal to (1−u)un. Let Ni(w) be the number of i-cycles of w distributed as the reversal of a

k riffle shuffle. Then the random variables Ni are independent, where Ni (i odd) is a binomial

(1i
∑

d|i µ(d)k
i/d, ui/(ki + ui)) and Ni (i even) is the convolution of 1

i

∑
d|i µ(d)(−k)i/d many

geometrics with parameter ui/ki.

2. Let Ni(w) be the number of i-cycles of w distributed as the reversal of a k riffle shuffle. Then

as n → ∞ the random variables Ni converge in finite dimensional distribution to independent

random variables, where Ni (i odd) becomes a binomial (1i
∑

d|i µ(d)k
i/d, 1/(ki+1)) and Ni (i

even) becomes the convolution of 1
i

∑
d|i µ(d)(−k)i/d many geometrics with parameter 1/ki.

Proof: As noted after Theorem 5, the cycle index of a k-shuffle followed by reversing the order of

the cards is

∏
i≥1

(
1

1− (−u)ixi

ki

)
1
i

∑
d|i µ(d)(−k)i/d

.

The proof of Corollary 1 gives that

1

1− u
=
∏
i≥1

(
1

1− (−u)i

ki

)
1
i

∑
d|i µ(d)(−k)i/d

.

Dividing these equations implies that

∑
n≥0

(1− u)unE′
n,1/k,···,1/k(

∏
i

xNi
i )

=
∏
i odd

(
1 + uixi/k

i

1 + ui/ki
)
1/i
∑

d|i µ(d)k
i/d ∏

i even

(
1− ui/ki

1− uixi/ki
)
1/i
∑

d|i µ(d)(−k)i/d
.

This proves the first assertion of the theorem. The second assertion follows from dividing both

sides of this equation by 1− u and applying Lemma 2. (Note that if all but finitely many xi = 1,

13



only finitely many terms in the generating function remain. Since k ≥ 2 the Taylor series converges

at u = 1 provided that the remaining x’s aren’t too much larger than 1). 2

We remark that as k → ∞, the distribution of Ni in parts 1 and 2 converges to Poisson(ui/i)

and Poisson(1/i) respectively.

Finally we observe (Corollary 3) that the distribution of the large cycles is the same as for

random permutations (in contrast to the case of small cycles). One can guess this heuristically

from the generating function since the large i terms of the cycle index converge to those of random

permutations. The same happens for ordinary riffle shuffles (Proposition 5.5 of [DMP]). The dis-

tribution of large cycles in random permutations has been broadly studied ([VS] and the references

therein).

Corollary 3 Fix k and let L1, · · · , Lr be the lengths of the r longest cycles of π. Then for k fixed,

or growing with n as n → ∞,

|Prob′n,1/k,···,1/k(L1/n ≤ t1, · · · , Lr/n ≤ tr)− ProbSn(L1/n ≤ t1, · · ·Lr/n ≤ tr)| → 0

uniformly in t1, · · · , tr. (Here ProbSn denotes the uniform distribution on Sn).

Proof: Given the cycle index for k-shuffles followed by a reversal, this follows from minor modifi-

cations of either the arguments in [Hans] or [ABT]. 2

5 Unimodal Permutations and a Variation of the RSK Correspon-

dence

One goal of this section is to understand cycle structure after shuffling by the following method.

Generalized Shuffling Method on Cn

Step 1: Start with a deck of n cards face down. Let 0 ≤ y1, · · · , yk ≤ 1 be such that
∑

yi =

1. Choose numbers j1, · · · , j2k multinomially with the probability of getting j1, · · · , j2k equal to( n
j1,···,j2k

)∏k
i=1 y

j2i−1+j2i
i . Make 2k stacks of cards of sizes j1, · · · , j2k respectively. Flip over the even

numbered stacks.

Step 2: Drop cards from packets with probability proportional to packet size at a given time.

Equivalently, choose uniformly at random one of the
( n
j1,···,j2k

)
interleavings of the packets.

14



Cycle structure of this model of shuffling was analyzed for equal y in [F4]. (Actually there one

flipped over the odd numbered piles, but this has no effect on the cycle index as the resulting sums

in the group algebra are conjugate by the longest element in Sn. By a result of Schützenberger

exposited as Theorem A1.2.10 in [SVol2], conjugation by the longest element also has no effect

on RSK shape). The model was introduced for k = 1 (and thus y1 = 1) in [BayD]. Let E∗
n,y⃗ be

expectation on Cn after the above shuffling method. Let Ni(w) be the number of i-cycles of w in

Cn, disregarding signs. It is proved in [F4] that

Theorem 6

1 +
∑
n≥1

un
∑

w∈Cn

E∗
n, 1

k
,···, 1

k
(
∏
i≥1

x
Ni(w)
i )

=
∏
m≥1

(
1 + xmum/(2k)m

1− xmum/(2k)m
)

1
2m

∑
d|m

d odd

µ(d)(2k)
m
d

.

As the paper [F4] did not discuss asymptotics of long cycles, before proceeding we note the following

corollary, whose proof method is the same as that of Corollary 3.

Corollary 4 Fix k and let L1, · · · , Lr be the lengths of the r longest cycles of π. Then for k fixed,

or growing with n as n → ∞,

|Prob∗n,1/k,···,1/k(L1/n ≤ t1, · · · , Lr/n ≤ tr)− ProbSn(L1/n ≤ t1, · · ·Lr/n ≤ tr)| → 0

uniformly in t1, · · · , tr. (Here ProbSn denotes the uniform distribution on Sn).

A generalization of Theorem 6 will be proved later in this section. To this end, we require the

following variation of the RSK correspondence.

Variation of the RSK Correspondence: Order the set of numbers {±1, · · · ,±k} by

1 < −1 < 2 < −2 · · · < k < −k.

Given a word on these symbols, run the RSK algorithm as usual, with the amendments that a

symbol i can’t bump another i if i is positive, but must bump another i if i is negative. (This

guarantees that positive numbers appear at most once in each column and that negative numbers

appear at most once in each row).

For example the word

1 − 1 2 − 2 1 1 − 1 1 2 2 − 1 2 − 2

15



has insertion tableau P and recording tableau Q respectively equal to

1 1 1 1 −1 2 2 −2

−1 2 2

−1 −2

1 2 3 4 9 10 12 13

5 6 7

8 11

The proof of Theorem 7 runs along the same lines as the proof of the RSK correspondence as

presented in [Sa]. Hence we omit the details.

Theorem 7 Order the set of numbers {±1, · · · ,±k} by

1 < −1 < 2 < −2 · · · < k < −k.

Then the above variation on the RSK Correspondence is a bijection between length n words on the

symbols {±1, · · · ,±k} and pairs (P,Q) where

1. P is a tableau on the symbols {±1, · · · ,±k} satisfying P (a, b) ≤ P (a+1, b), P (a, b) ≤ P (a, b+

1) for all a, b where P (a, b) denotes the entry in the ath row and bth column of P .

2. If i is positive then it appears at most once in each column of P and if i is negative then it

appears at most once in each row of P .

3. Q is a standard Young tableau on the symbols {1, · · · , n}.

4. P and Q have the same shape.

The next result relates the shuffling model of this section with the above variation of the RSK

correspondence. For its statement, Sλ will denote the symmetric functions studied in [Stem] (a

special case of the extended Schur functions in [KV]). One definition of the Sλ is as the determinant

Sλ(y) = det(qλi−i+j)

where q−r = 0 for r > 0 and for r ≥ 0, qr is defined by setting∑
n≥0

qnt
n =

∏
i≥1

1 + yit

1− yit
.

We remark that Theorem 8 gives a simple probabilistic interpretation to Sλ, different from the

interpretation in [KV]. Of course in the next result one can let k → ∞ as well.
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Theorem 8 Let w be distributed as a shuffle of this section with parameters y1, · · · , yk after dis-

regarding the up/down pattern of the cards so that w is an unsigned permutation. Let Q be a

standard Young tableau of shape λ. Then the probability that the usual RSK correspondence asso-

ciates recording tableau Q to w is equal to 1
2nSλ(y1, · · · , yk). Consequently the probability that w

has RSK shape λ is equal to fλ
2nSλ(y1, · · · , yk).

Proof: Given a length n word J on the symbols {±1, · · · ,±k}, let ai, bi be the number of occur-

rences of the symbol i,−i in J respectively. Define a permutation w in two line form by putting

1, · · · , a1 in the positions occupied by the 1’s of J from left to right, then putting the next b1 num-

bers (arranged in decreasing order) in the positions occupied by the −1’s of J from left to right,

then the next a2 numbers (arranged in increasing order) in the positions occupied by the 2’s of J

from left to right, etc. For instance the word

1 − 1 2 − 2 1 1 − 1 1 2 2 − 1 2 − 2

corresponds to the permutation

1 7 8 13 2 3 6 4 9 10 5 11 12.

If the word entries are chosen independently with ±i having probability yi
2 , the resulting distribution

on permutations is the same as performing a y⃗ shuffle of this section and forgetting about signs.

It is easy to see that the recording tableau of w under the RSK algorithm is equal to the recording

tableau of J under our variant of the RSK algorithm. Let γi(P ) be the number of occurrences of

symbol i in a tableau P . By Theorem 7, the probability that J has recording tableau Q under our

variant of RSK is equal to

1

2n

∑
P

∏
i≥1

y
γi(P )+γ−i(P )
i

where P has shape λ and satisfies conditions 1,2 in Theorem 7. Theorem 9.2b of [Stem] shows that

this sum is equal to 1
2nSλ(y1, · · · , yk). 2

As mentioned in the introduction, Theorem 8 is relevant to random matrix theory. This is be-

cause the first row in the RSK shape of a random permutation w is equal to the length of the longest

increasing subsequence of w and has asymptotically the same distribution as the largest eigenvalue

of a random GUE matrix [BaiDeJ]. Studying longest increasing subsequences of w distributed as

a GSR k-riffle shuffle amounts to studying the longest weakly increasing subsequences in random
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length n words on k symbols, which has also been of interest to random matrix theorists [Sta, TW].

What Theorem 8 tells us is that studying longest increasing subsequences of w distributed as un-

signed type C shuffles amounts to studying weakly increasing subsequences in random length n

words on the symbols {±1, · · · ,±k}, where 1 < −1 < · · · < k < −k and the subsequence is not

allowed to contain a given negative symbol i more than once. For k fixed and random length n

words on the symbols {±1, · · · ,±k}, roughly half the symbols will be positive, and the negative

symbols can in total affect the length of the longest weakly increasing subsequence by at most k.

For example, one obtains the following corollary from the analogous results in [J] and [TW] for

weakly increasing subsequences in random words.

Corollary 5 For k fixed, the RSK shape after an unsigned Cn shuffle with y1 = · · · = yk = 1
k has

at most k rows and k columns. For large n the expected value of any of the k rows or columns is

asymptotic to n
2k .

We hope in future work to study the fluctuations around this limit shape, and to examine the case

when both n, k are large.

Theorem 9 determines the generating function for cycle structure after performing the general-

ized shuffling method on Cn with parameters y1, · · · , yk and forgetting about signs.

Theorem 9 Let E∗
n,y⃗ denote expected value under the generalized shuffling method on Cn with

parameters y1, · · · , yk after forgetting signs. As usual, let Ni(π) be the number of cycles of length i

of the permutation π. Then

∑
n≥0

unE∗
n,y⃗(

∏
i

xNi
i ) =

∏
i≥1

∏
j odd

e

(uixi/2
i)j

ij

∑
d|i

d odd

µ(d)(2pjd(y))
i/d

.

Furthermore, reversing the order of the cards has no effect on the cycle index.

Proof: Let w be a fixed permutation such that Des(w−1) = D and let Prob∗y⃗(D) be the probability

of obtaining w after a y⃗ unsigned type C shuffle.

Using part 1 of Theorem 1 and the fact that the probability of w depends only on w through

Des(w−1), it follows that the sought cycle index is

∑
n≥0

unE∗
n,y⃗(

∏
i

xNi
i )
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=
∑
n≥0

un
∑
ni≥0

(
∏
i

xni
i )

∑
D⊆{1,···,n−1}

Prob∗y⃗(D)|{w : Des(w) = D,Ni(w) = ni}|

=
∑
n≥0

∑
D⊆{1,···,n−1}

Prob∗y⃗(D)⟨
∑
λ⊢n

sλ(z)βλ(D),
∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(z)

i/d

⟩

=
∑
n≥0

⟨
∑
λ⊢n

sλ(z)
∑

D⊆{1,···,n−1}
Prob∗y⃗(D)βλ(D),

∏
i,j≥1

e
(uixi)

j

ij

∑
d|i µ(d)pjd(z)

i/d

⟩.

Arguing as in Theorem 4 shows that

∑
D⊆{1,···,n−1}

Prob∗y⃗(D)βλ(D) =
1

2n
Sλ(y).

Thus the sought cycle index is simply the inner product

⟨
∑
λ

sλ(z)Sλ(y),
∏
i,j≥1

e
(uixi/2

i)j

ij

∑
d|i µ(d)pjd(z)

i/d

⟩.

Applying the third identity in the introduction (due to Stembridge [Stem]) yields

⟨
∑
λ

all parts odd

2lλ

zλ
pλ(z)pλ(y),

∏
i,j≥1

e
(uixi/2

i)j

ij

∑
d|i µ(d)pjd(z)

i/d

⟩.

Since ⟨pλ, pµ⟩ = δλ,µzλ, this simplifies as desired to

∏
i

∏
j odd

e

(uixi/2
i)j

ij

∑
d|i

d odd

µ(d)(2pjd(y))
i/d

.

For the second assertion, Theorem 5 shows that the cycle index after reversing the card order

at the end is given by

∏
i

∏
j odd

e

((−u)ixi/2
i)j

ij

∑
d|i

d odd

µ(d)(−2pjd(y))
i/d

.

It is easy to see that the − signs all drop out. 2

We remark that in the case of greatest interest (y1 = · · · = yk = 1
k , all other yi = 0), one

recovers Theorem 6.

A unimodal permutation w on the symbols {1, · · · , n} is defined by requiring that there is some

i with 1 ≤ i ≤ n such that the following two properties hold:

1. If a < b ≤ i, then w(a) < w(b).

2. If i ≤ a < b, then w(a) > w(b).
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Thus i is where the maximum is achieved, and the permutations 12 · · ·n and nn−1 · · · 1 are counted

as unimodal. For each fixed i there are
(n−1
i−1

)
unimodal permutations with maximum i, hence a

total of 2n−1 such permutations. As noted in [Gan], unimodal permutations are those which avoid

the patterns 213 and 312.

Unimodal permutations are the shuffles of this section in the case k = 1 after forgetting about

signs; hence Theorem 6 (from [F4]) gives a cycle index for unimodal permutations. The paper

[Th], which appeared in between [F4] and this paper, obtained a count of unimodal permutations

by cycle structure and position of their maximum, denoted by max(w). We prove an equation

equivalent to Thibon’s result [Th]. The proof uses the notation that mi(λ) is the number of parts

of λ of size i.

Theorem 10 Let Ni(w) be the number of i-cycles of a permutation w.

1 +
∑
n≥1

un(1 + t)
∑

w unimodal

tmax(w)−1
∏
i

x
Ni(w)
i =

∏
i,j

e
(xiu

i)j

ij

∑
d|i µ(d)(t

jd−(−1)jd)i/d
.

Proof: A permutation on n symbols is unimodal with maximum at position k if and only if it has

descent set k, k + 1, · · · , n− 1. Hence Theorem 1 implies that

1 +
∑
n≥1

un(1 + t)
∑

w unimodal

tmax(w)−1
∏
i

x
Ni(w)
i

= ⟨1 + (1 + t)
∑
a,b≥0

s(a+1,1b)(z)t
aua+b+1,

∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(z)

i/d

⟩.

This can be further simplified using Macdonald’s identity (page 49 of [Mac])

1 + (t+ u)
∑
a,b≥0

s(a+1,1b)(z)t
aub =

∏
i≥1

1 + uzi
1− tzi

with t replaced by tu to yield

⟨
∏
i≥1

1 + uzi
1− tuzi

,
∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(z)

i/d

⟩

= ⟨e
∑

i≥1
uipi(z)(t

i−(−1)i)/i
,
∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(z)

i/d

⟩

= ⟨
∑
λ

pλ(z)u
|λ|∏

i(t
i − (−1)i)mi(λ)

zλ
,
∏
i,j≥1

e
x
j
i

ij

∑
d|i µ(d)pjd(z)

i/d

⟩

=
∏
i,j

e
(xiu

i)j

ij

∑
d|i µ(d)(t

jd−(−1)jd)i/d
.
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Note that we have used the identity

∏
i≥1

1

1− uzi
= e

∑
i≥1

pi(z)u
i/i
.

2

6 Extended Schur functions

The extended complete symmetric functions h̃k(α, β, γ) are defined by the generating function

∞∑
k=0

h̃k(α, β, γ)z
k = eγz

∏
i≥1

1 + βiz

1− αiz
.

For λ = (λ1, · · · , λn), the extended Schur functions are defined by

s̃λ = det(h̃λi−i+j)
n
i,j=1.

The extended Schur functions give the characters of the infinite symmetric group and are usefully

reviewed in [O]. Observe that s̃λ is obtained from taking the expression for sλ as a polynomial in the

hk and replacing hk by h̃k. Defining a homomorphism Φ on symmetric functions by Φ(hk) = h̃k, one

sees that any identity for ordinary symmetric functions gives a corresponding identity for extended

symmetric functions. That is how one derives the Cauchy identity

∑
λ

sλ(x)s̃λ(α, β, γ) =
∑
λ

1

zλ
pλ(x)p̃λ(α, β, γ)

for extended Schur functions from the usual Cauchy identity (e.g. Example 3.23 of [Mac] for the

case γ ̸= 0).

Since probabilities must be positive, one motivation for interpreting extended Schur functions

probabilistically is the following positivity result.

Theorem 11 ([E]) Let G(z) =
∑∞

k=0 gkz
k be such that g0 = 1 and all gk ≥ 0. Then

det(gλi−i+j)
n
i,j=1 ≥ 0

for all partitions λ if and only if

G(z) = eγz
∏
i≥1

1 + βiz

1− αiz

where γ ≥ 0 and
∑

βi,
∑

αi are convergent series of positive numbers.
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Next we define (α⃗, β⃗, γ) shuffles. We suppose that γ+
∑

αi+
∑

βi = 1 and that γ ≥ 0, αi, βi ≥ 0

for all i. Using these parameters, we define a random permutation on n symbols as follows. First,

create a word of length n by choosing letters n times independently according to the rule that one

picks i > 0 with probability αi, i < 0 with probability βi, and i = 0 with probability γ. We use the

usual ordering · · · < −1 < 0 < 1 < · · · on the integers. Starting with the smallest negative symbol

which appears in the word, let m be the number of times it appears. Then write {1, 2, · · · ,m} under

its appearances in decreasing order from left to write. If the next negative symbol appears k times

write {m+1, · · · ,m+ k} under its appearances, again in decreasing order from left to write. After

finishing with the negative symbols, proceed to the 0’s. Letting r be the number of 0’s, choose a

random permutation of the relevant r consecutive integers and write it under the 0’s. Finally, move

to the positive symbols. Supposing that the smallest positive symbol appears s times, write the

relevant s consecutive integers under its appearances in increasing order from left to right.

The best way to understand this procedure is through an example. Given the string

−2 0 1 0 0 2 − 1 − 2 − 1 1

one obtains each of the six permutations

2 5 8 6 7 10 4 1 3 9

2 5 8 7 6 10 4 1 3 9

2 6 8 5 7 10 4 1 3 9

2 6 8 7 5 10 4 1 3 9

2 7 8 5 6 10 4 1 3 9

2 7 8 6 5 10 4 1 3 9

with probability 1/6. In all cases the 1, 2 correspond to the −2’s, the 3, 4 correspond to the −1’s,

the 8, 9 correspond to the 1’s and the 10 corresponds to the 2. The symbols 5, 6, 7 correspond to

the 0’s and there are six possible permutations of these symbols. We call this probability measure

on permutations a (α⃗, β⃗, γ) shuffle.

The following elementary result (generalizing results in [BayD] and [DFP]) gives physical de-

scriptions of these shuffles and explains how they convolve. The proof method follows that of

[BayD].
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Proposition 1 1. A (α⃗, β⃗, γ) shuffle is equivalent to the following procedure. Cut the n card

deck into piles with sizes Xi indexed by the integers, where the probability of having Xi = xi

for all i is equal to
n!∏∞

i=−∞ xi!
γx0

∏
i>0

αxi
i

∏
i<0

βxi
i .

The top cards go to the non-empty pile with smallest index, the next batch of cards goes to

the pile with second smallest index, and so on. Then mix the pile indexed by 0 until it is a

random permutation, and turn upside down all of the piles with negative indices. Finally,

riffle the piles together as in the first paragraph of the introduction and look at the underlying

permutation (i.e. ignore the fact that some cards are upside down).

2. The inverse of a (α⃗, β⃗, γ) shuffle is equivalent to the following procedure. Randomly label each

card of the deck, picking label 0 with probability γ, label i > 0 with probability αi and label

i < 0 with probability βi. Deal cards into piles indexed by the labels, where cards with negative

or zero label are dealt face down and cards with positive label are dealt face up. Then mix the

pile labeled 0 so that it is a random permutation and turn all of the face up piles face down.

Finally pick up the piles by keeping piles with smaller labels on top.

3. Performing a (α⃗, β⃗, γ) shuffle k times is the same as performing the following shuffle. One

cuts into piles with labels given by k-tuples of integers (z1, · · · , zk) ordered according to the

following rule:

(a) (z1, · · · , zk) < (z′1, · · · , z′k) if z1 < z′1.

(b) (z1, · · · , zk) < (z′1, · · · , z′k) if z1 = z′1 ≥ 0 and (z2, · · · , zk) < (z′2, · · · , z′k).

(c) (z1, · · · , zk) < (z′1, · · · , z′k) if z1 = z′1 < 0 and (z2, · · · , zk) > (z′2, · · · , z′k).

The pile is assigned probability equal to the product of the probabilities of the variables cor-

responding to symbols in the k tuple. Then the shuffle proceeds as in part 1, where negative

piles (piles where the product of the coordinates of the k tuple are negative) are turned upside

down and piles with some coordinate equal to 0 are perfectly mixed before the piles are all

riffled together.

Examples As an example of Proposition 1, consider an (α1, α2;β1, β2; γ) shuffle with n = 11.

For part 1, it may turn out that X−2 = 2, X−1 = 1, X0 = 3, X1 = 2, and X2 = 3. Then the

deck is cut into piles {1, 2}, {3}, {4, 5, 6}, {7, 8}, {9, 10, 11}. The first two piles are turned upside
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down and the third pile is completely randomized, which might yield piles {2, 1}, {3}, {5, 4, 6},

{7, 8}, {9, 10, 11}. Then these piles are riffled together as in the GSR shuffle. This might yield the

permutation

5 2 7 4 8 9 10 3 1 11 6.

The inverse description (part 2) would amount to labeling cards 2,9 with −2, card 8 with −1, cards

1,4,11 with 0, card 3,5 with 1, and cards 6,7,10 with 2, and then mixing the 0 pile as 4, 1, 11. Note

that this leads to the permutation (inverse to the previous permutation)

9 2 8 4 1 11 3 5 6 7 10.

As an example of part 3, note that doing a (α1;β1; 0) shuffle twice does not give a (α⃗, β⃗, γ)

shuffle, but rather gives a shuffle with 4 piles in the order (−1, 1), (−1,−1), (1,−1), (1, 1) where

pile 1 has probability β1α1, pile 2 has probability β1β1, pile 3 has probability α1β1 and pile 4 has

probability α1α1. Piles 1 and 3 are turned upside down before the riffling takes place. From Section

5 of this paper one can still analyze the cycle structure and RSK shape of these shuffles even though

they aren’t (α⃗, β⃗, γ) shuffles. (Actually Section 5 of this paper looked at shuffles conjugate to these

shuffles by the longest element; this clearly has no effect on the cycle index and has no effect on

the RSK shape by a result of Schützenberger exposited as Theorem A1.2.10 in [SVol2]).

As another example of part 3, note that a shuffle with parameters (α1; 0; γ) repeated twice gives

a shuffle with 4 piles in the order (0, 0), (0, 1), (1, 0), (1, 1) where the first 3 piles are completely mixed

before all piles are riffled together. This is clearly the same as a (α2
1; 0; 1 − α2

1) shuffle, agreeing

with Lemma 2.1 of [DFP].

Berele and Remmel [BeRe] and independently Kerov and Vershik [KV] consider the following

analog of the RSK Correspondence (different from the variation in Section 5 as the BRKV version

uses the standard ordering on the integers). Given a word on the symbols {±1,±2, · · ·} one runs

the RSK correspondence with the amendments that a negative symbol is required to bump itself,

but that a positive symbol can’t bump itself. For example the word

1 − 1 2 − 2 1 1 − 2

has insertion tableau P and recording tableau Q respectively equal to
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−2 1 1

−2 2

−1

1

1 3 6

2 5

4

7

Theorem 12 ([BeRe],[KV]) The above variation on the Robinson-Schensted-Knuth correspon-

dence gives a bijection between words of length n from the alphabet of integers with the symbol

i appearing ni times and pairs (P,Q) where

1. The symbol i occurs ni times in P .

2. The entries of P are weakly increasing in rows and columns.

3. Each positive symbol occurs at most once in each column of P and each negative symbol occurs

at most once in each row of P .

4. Q is a standard Young tableau on the symbols {1, · · · , n}.

Furthermore,

s̃λ(α⃗, β⃗, 0) =
∑
P

shape(P )=λ

∏
i>0

α
ni(P )
i

∏
i<0

β
ni(P )
i .

Theorem 13 and Corollary 6 connect card shuffling to the extended Schur functions. When

α = 0, this result is essentially in [BeRe] and [KV]. The paper [KV] states a version of Theorem

12 in which there is also a parameter γ (their Proposition 3), but it is incorrect for γ ̸= 0 as the

following counterexample shows. Setting all parameters other than α1 = α and γ = 1 − α equal

to 0, it follows from the definitions that the extended Schur function s̃2 is equal to α2+1
2 . But if

Proposition 3 of [KV] were correct, it would also equal α2 + (1 − α)α = α since the two words

giving a Young tableau with 1 row of length 2 are 11 and 01. In fact as the 2 in the denominator

of α2+1
2 shows, one can’t interpret the extended Schur functions with γ ̸= 0 in terms of RSK and
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words on a finite number of symbols. This accounts for the extra randomization step (choosing a

random permutation for the symbols corresponding the 0’s) in our definition of (α⃗, β⃗, γ) shuffles.

Theorem 13 gives a probabilistic interpretation of s̃λ for all values of γ.

Theorem 13 Let π be distributed as a permutation under a (α⃗, β⃗, γ) shuffle. Let Q be any standard

Young tableaux of shape λ. Then the probability that π has Robinson-Schensted-Knuth recording

tableau equal to Q is s̃λ(α⃗, β⃗, γ).

Proof: First suppose that γ = 0. As indicated earlier in this section, each length n word w on the

symbols {±1,±2, · · ·} defines a permutation π. From this construction, it is easy to see that the

recording tableau of w under the BRKV variation of the RSK algorithm is equal to the recording

tableau of π under the RSK algorithm. Thus it is enough to prove that the probability that the

word w has BRKV recording tableau Q is s̃λ(α⃗, β⃗, 0). This is immediate from Theorem 12.

Now the case γ ̸= 0 can be handled by introducing m extra symbols between 0 and 1–call them

1/(m + 1), 2/(m + 1), · · · ,m/(m + 1) and choosing each with probability γ/m. Thus the random

word is on {±1,±2, · · ·} and these extra symbols. Each word defines exactly one permutation–the

symbols 1/(m+ 1), 2/(m+ 1), · · · ,m/(m+ 1) are treated as positive. By the previous paragraph,

the probability of obtaining recording tableau Q is equal to s̃λ(α⃗, β⃗) where the associated h̃k are

defined by
∞∑
k=0

h̃k(α, β)z
k = (

1

1− γz/m
)m
∏
i≥1

1 + βiz

1− αiz
.

As m → ∞, this distribution on permutations converges to that of a (α⃗, β⃗, γ) shuffle, and the

generating function of the h̃k converges to

∞∑
k=0

h̃k(α, β, γ)z
k = eγz

∏
i≥1

1 + βiz

1− αiz
.

2

Corollary 6 Let fλ be the number of standard Young tableau of shape λ. Let π be distributed as

a permutation under a (α⃗, β⃗, γ) shuffle. Then the probability that π has Robinson-Schensted-Knuth

shape λ is equal to fλs̃λ(α⃗, β⃗, γ).

We also note the following result.
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Corollary 7 Let fλ be the number of standard Young tableaux of shape λ. Then the chance that a

permutation distributed as a (α⃗−, β⃗−, γ−) shuffle on Poisson(γ+) symbols has RSK shape λ is

(γ+)|λ|fλSλ(α⃗
−, β⃗−, γ−)

eγ+ |λ|!
.

By standard manipulations (e.g. those used in [TW]) the chance that such a random permutation

has longest increasing subsequence length at most n is is equal to the Toeplitz determinant

1

eγ+ Dn

(
eγ

+/zeγ
−z

∞∏
r=1

1 + α−
r z

1− β−
r z

)

and the chance that such a permutation has longest decreasing subsequence length at most n is equal

to the Topelitz determinant
1

eγ+ Dn

(
eγ

+/zeγ
−z

∞∏
r=1

1 + β−
r z

1− α−
r z

)

Finally we connect card shuffling with work of Baik and Rains [BaiRa]. They study “extended

growth models” indexed by parameter sets which we call (α⃗+, β⃗+, γ+) and (α⃗−, β⃗−, γ−). The case

relevant to this paper is α⃗+ = β⃗+ = 0⃗. We assume without loss of generality (one can simply

rescale γ+)that γ− +
∑

α−
i +

∑
β−
i = 1. In this case, which we call BR(γ+, α⃗−, β⃗−, γ−), their

model becomes the following:

1. On [0, 1]× [0, 1] choose Poisson(γ+γ−) i.i.d. uniform points.

2. On [0, 1]× i (i ∈ {1, 2, · · ·}) choose Poisson(γ+α−
i ) i.i.d. uniform points.

3. On [0, 1]× i (i ∈ {−1,−2, · · ·}) choose Poisson(γ+β−
i ) i.i.d. uniform points.

They define a sequence of points (xi, yi) to be increasing if xi ≤ xi+1, yi ≤ yi+1 and

yi = yi+1 =⇒ yi ≥ 0.

They associate to their point process a random partition λ with λi defined by the property that

l∑
i=1

λi

is the size of the longest subsequence of points which is a union of l increasing subsequences.

They find a Toeplitz determinant expression for the probability that λ1 < k. Theorem 14

(which is well known for the case of random permutations (i.e. α⃗− = β⃗− = 0) relates their point

process to card shuffling measures on permutations and gives a formula for the chance that their

random partition is λ. (This gives another proof of Corollary 7).
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Theorem 14 Consider the random partition arising from the BR(γ+, α⃗−, β⃗−, γ−) point process.

The probability that this partition is equal to λ is the same as the probability that the RSK shape of

a permutation after a (α⃗−, β⃗−, γ−) shuffle on Poisson(γ+) symbols is equal to λ.

Proof: We associate to a realization of the BR(γ+, α⃗−, β⃗−, γ−) point process a random permu-

tation π as follows. First take the deck size to be the number of points (which has distribution

Poisson(γ+)). Rank the y coordinates of the points in increasing order, where one breaks ties for

negative y coordinates by defining the point with the larger x coordinate to be smaller and breaks

ties for positive y coordinates by defining the point with larger x coordinate to be larger. Then

π(i) is defined as the rank of the y coordinate of the point with the ith smallest x coordinate (with

probability one there is no repetition among x coordinates). For example, if the BR point process

yields the points

(.2, .3), (.3, .5), (.35,−8), (.4, 9), (.45, 9), (.5, 7), (.6,−2), (.7,−8)

then the resulting permutation would be (in 2-line form)

4 5 2 7 8 6 3 1.

It is easy to see that this distribution on permutations is the same as that arising from a (α⃗−, β⃗−, γ−)

shuffle. 2

7 Convergence Rates and Cycle Index of (α, β, γ) shuffles

First we derive an upper bound on the convergence rate of (α⃗, β⃗, γ) shuffles to randomness using

strong uniform times as in [DFP]. The separation distance between a probability P (π) and the

uniform distribution U(π) is defined as maxπ(1− P (π)
U(π)) and gives an upper bound on total variation

distance. Examples of the upper bound of Theorem 15 are considered later.

Theorem 15 The separation distance between k applications of a (α⃗, β⃗, γ) shuffle and uniform is

at most (
n

2

)[∑
i

(αi)
2 +

∑
i

(βi)
2

]k
.

Thus k = 2log 1∑
i
(αi)

2+
∑

i
(βi)

2
n steps suffice to get close to the uniform distribution.
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Proof: For each k, let Ak be a random n × k matrix formed by letting each entry equal i > 0

with probability αi, i < 0 with probability βi, and i = 0 with probability γ. Let T be the first time

that all rows of Ak containing no zeros are distinct; from the inverse description of (α⃗, β⃗, γ) shuffles

this is a strong uniform time in the sense of Sections 4B-4D of Diaconis [D1], since if all cards

are cut in piles of size one the permutation resulting after riffling them together is random. The

separation distance after k applications of a (α⃗, β⃗, γ) shuffle is upper bounded by the probability

that T > k [AD]. Let Vij be the event that rows i and j of Ak are the same and contain no zeros.

The probability that Vij occurs is
[∑

i(αi)
2 +

∑
i(βi)

2
]k
. The result follows because

Prob(T > k) = Prob(∪1≤i<j≤n)Vij

≤
∑

1≤i<j≤n

Prob(Vij)

=

(
n

2

)[∑
i

(αi)
2 +

∑
i

(βi)
2

]k
2

Taking logarithms of the defining identity for h̃k, one sees that

p̃1(α⃗, β⃗, γ) =
∑
i

αi +
∑
i

βi + γ = 1

and (for n ≥ 2)

p̃n(α⃗, β⃗, γ) =
∑
i

(αi)
n + (−1)n+1

∑
i

(βi)
n.

Theorem 16 gives a cycle index after (α⃗, β⃗, γ) shuffles.

Theorem 16 1. Let E
n,(α⃗,β⃗,γ)

denote expected value after a (α⃗, β⃗, γ) shuffle of an n card deck.

Let Ni(π) be the number of i-cycles of a permutation π. Then

∑
n≥0

unE
n,(α⃗,β⃗,γ)

(
∏
i

xNi
i ) =

∏
i,j

e
(uixi)

j

ij

∑
d|i µ(d)p̃jd(α⃗,β⃗,γ)

i/d

.

2. Let E′
n,(α⃗,β⃗,γ)

denote expected value after a (α⃗, β⃗, γ) shuffle of an n card deck followed by

reversing the order of the cards. Then

∑
n≥0

unE′
n,(α⃗,β⃗,γ)

(
∏
i

xNi
i ) =

∑
n≥0

unE
n,(β⃗,α⃗,γ)

(
∏
i

xNi
i ).
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Proof: Given the results of Section 6, the proof of the first part runs along exactly the same lines

as in the proof of Theorem 4. The second assertion follows from the observation that a (α⃗, β⃗, γ)

shuffle followed by reversing the order of the cards is conjugate (by the longest length element in

the symmetric group) to a (β⃗, α⃗, γ) shuffle. Alternatively, arguing as in the proof of Theorem 5,

one sees that the effect of reversing the cards on the cycle index of a (α⃗, β⃗, γ) shuffle is to get

∏
i,j

e
((−u)ixi)

j

ij

∑
d|i µ(d)(−p̃jd(α⃗,β⃗,γ))

i/d

.

2

Example 1 As a first application of Theorem 16, we derive an expression for the expected

number of fixed points, generalizing the expression in [DMP] for ordinary riffle shuffles. To get the

generating function for fixed points, one sets x2 = x3 = · · · = 1 in the cycle index. Using the same

trick as in [DMP], the generating function simplifies to

1

1− u

euxγ

euγ

∏
i≥1

1− uαi

1− uxαi

1 + uxβi
1 + uβi

.

Taking the derivative with respect to x and the coefficient of un, one sees that the expected number

of fixed points is

γ +
n∑

j=1

[
∑
i

(αi)
j + (−1)j+1(βi)

j ].

This is exactly the sum of the first n extended power sum functions at the parameters (α⃗, β⃗, γ).

Example 2 We suppose that β⃗ = 0⃗ and that α1 = · · · = αq = 1−γ
q . Then the cycle index

simplifies to

∏
i≥1

 1

1− xi(
u(1−γ)

q )i

 1
i

∑
d|i µ(d)q

i/d ∏
i≥1

e
uixi(1−(1−γ)i)

i .

Of particular interest is the further specialization q = 1. Then the cycle index becomes

1

1− x1u(1− γ)

∏
i≥1

e
uixi(1−(1−γ)i)

i .

Recall that a (1/2, 0, 1/2) shuffle takes a binomial(n,1/2) number of cards (a binomial(n,1/2)

random variable is equal to k with probability
(n
k

)
/2n), thoroughly mixes them, and then riffles

them with the remaining cards. Example 3 on page 140 of [DFP] proves (in slightly different

notation) that the iteration of k (1/2,0,1/2) shuffles is the same as a ((1/2)k, 0, 1− (1/2)k) shuffle.

They conclude (in agreement with Theorem 15) that a (1/2, 0, 1/2) shuffle takes log2(n) steps
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to be mixed, as compared to 3
2 log2(n) for ordinary riffle shuffles. They also establish a cut-off

phenomenon. From the computation of Example 1 one sees that the expected number of fixed

points also drops.

As another example, consider a (1−1/n, 0, 1/n) shuffle. Heuristically this is like top to random

and [DFP] proves that the convergence rate is the same (nlog(n) steps), which agrees with Theorem

15. From page 139 of [DFP], performing a (1−1/n, 0, 1/n) shuffle k times is the same as performing

a single ((1− 1/n)k, 0, 1− (1− 1/n)k) shuffle. Example 1 gives a formula for the expected number

of fixed points. See Example 4 for more discussion of iterations of top to random shuffles.

Next we consider the asymptotics of cycle structure. As usual, µ denotes the Moebius function

of elementary number theory. Note that considerable simplifications take place when q = 1 (the

interesting case) because
∑

d|i µ(d) is 1 if i = 1 and is 0 otherwise. We omit the details of the proof

as they are the same as for the corresponding results in Section 4.

Corollary 8 Suppose that β⃗ = 0⃗ and α1 = · · · = αq =
1−γ
q .

1. Fix u such that 0 < u < 1. Choose a random deck size with probability of getting n equal to

(1 − u)un. Let Ni(π) be the number of i-cycles of π distributed as a (α⃗, β⃗, γ) shuffle. Then

the random variables Ni are independent, where Ni is the convolution of a Poisson((ui(1 −

(1− γ)i))/i) with 1
i

∑
d|i µ(d)q

i/d many geometrics with parameter (u(1−γ)
q )i.

2. Let Ni(π) be the number of i-cycles of π distributed as a (α⃗, β⃗, γ) shuffle. Then as n → ∞ the

random variables Ni are independent, where Ni is the convolution of a Poisson((1−(1−γ)i)/i)

with 1
i

∑
d|i µ(d)q

i/d many geometrics with parameter (1−γ
q )i.

3. Fix q and let L1, · · · , Lr be the lengths of the r longest cycles of π. Then for q fixed, or growing

with n as n → ∞,

|Prob′
n,α⃗,β⃗,γ

(L1/n ≤ t1, · · · , Lr/n ≤ tr)− ProbSn(L1/n ≤ t1, · · ·Lr/n ≤ tr)| → 0

uniformly in t1, · · · , tr. (Here ProbSn denotes the uniform distribution on Sn).

Example 3 Consider the case when α1 = · · · = αq = β1 = · · · = bq = 1
2q and all other

parameters are 0. Theorems 13 and 16 imply that the distribution on RSK shape and cycle index

is the same as for the shuffles in Section 5, though we do not see a simple reason why this should

be so.
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Example 4 Another generalization of riffle shuffles are random walks coming from real hyper-

plane arrangements [BiHR]. The most interesting such shuffles are those where the weights on faces

of the Coxeter complex are invariant under the action of the symmetric group. It is straightforward

to see that such shuffles are mixtures of what can be called µ shuffles, where µ is a composition of

n. For a µ shuffle, one breaks the decks into piles of sizes µ1, µ2, · · · and then chooses uniformly at

random one of the
( n
µ1,µ2,···

)
possible interleavings. In what follows we also let µ denote the partition

of n given by ordering the parts of the composition by decreasing size.

For example the top to random shuffle is a (1, n − 1) shuffle. Let P (j, k, n) be the probability

that when k balls are dropped at random into n boxes, there are j occupied cells (thus by inclusion

exclusion P (n− j, k, n) =
∑n

r=j(−1)r−j
(n
r

)(r
j

)
(1− r/n)k). A result of [DFP] is that the iteration of

k top to random shuffles is equivalent to a mixture of (n− j, 1j) shuffles, where (n− j, 1j) is chosen

with probability P (j, k, n). Theorem 17 will give an expression for the increasing subsequence

structure after this process. For this a lemma is required. In its statement we use notation in

[Mac] that Kλµ is a Kostka number (the number of semistandard Young tableau of shape λ where

i appears µi times), and λ/µ denotes a tableau of skew shape λ/µ.

Lemma 3 Let T be a standard Young tableau of shape λ. The probability that a µ shuffle has

recording tableau T is equal to
Kλµ

( n
µ1,µ2,···

)
.

Proof: A µ shuffle corresponds to choosing at random a word where i appears µi times, and each

word has probability
( n
µ1,µ2,···

)
. It is easy to see that the RSK recording tableau of the word and the

corresponding permutation obtained after the shuffle are identical. Now the number of words of

length n where i appears µi times and with recording tableau T is equal to Kλµ, since such words

biject with the possible insertion tableau which have shape λ and weight µ. 2

Theorem 17 Let fλ/µ denote the number of standard tableau of shape λ/µ. Then the chance that

the RSK shape after k top to random shuffles is λ is equal to

f2
λ

n!

n∑
a=1

P (a, k, n)(n− a)!
fλ/(n−a)

fλ
.

Proof: From Lemma 3 and the description of iterations of top to random shuffles as mixtures of

µ shuffles, it follows that the sought probability is

fλ
n!

n∑
a=1

P (a, k, n)Kλ,(n−a,1a)(n− a)!.
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Finally observe the Kλ,(n−a,1a) = fλ/(n−a), since the n − a ones must appear in the first row and

what remains is a standard Young tableau. 2

Note that in Theorem 17,
f2
λ
n! corresponds to Plancherel measure and the rest is a correction term

(going to 1 as k → ∞ and n is fixed). It would be interesting to determine how many iterations

of top to random are necessary for the length of the longest increasing subsequence to be close to

that of a random permutation.

For comparison, one has the following result for ordinary 2-riffle shuffles. The result is corollary

of equation 1.27 of [J], together with the fact that k 2-riffle shuffles is the same as one 2k riffle

shuffle [BayD]. At the urging of Persi Diaconis, Arnab Chakraborty has made clever use of Gray

codes to run simulations on increasing subsequences after several 2-riffle shuffles for a n=52 card

deck.

Corollary 9 Let Ln denote the longest increasing subsequence of a random element of Sn and let

L2k
n denote the longest increasing subsequence of an element of Sn after k 2-riffle shuffles. Then

limn→∞Prob.(
Ln − 2n1/2

n1/6
≤ t) = F (t)

and

limn→∞Prob.(
L2k
n − 2n1/2

n1/6
≤ t) = F (t− e−c)

where 2k = ⌊ecn5/6⌋ and F (t) is the Tracy-Widom distribution. Thus for sufficiently large n,

5/6log2(n)+clog2(e) 2-riffle shuffles are necessary and suffice for the longest increasing subsequence

to be that of a random permutation .
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