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Abstract

Generating functions for the number of commuting m-tuples in the symmetric groups are

obtained. We de�ne a natural sequence of \orbifold Euler characteristics" for a �nite group G

acting on a manifold X. Our de�nition generalizes the ordinary Euler characteristic of X=G

and the string-theoretic orbifold Euler characteristic. Our formulae for commuting m-tuples

underlie formulas that generalize the results of Macdonald and Hirzebruch-H�ofer concerning the

ordinary and string-theoretic Euler characteristics of symmetric products.

1 Introduction

Let X be a manifold with the action of a �nite group G. The Euler characteristic of the quotient

space X=G can be computed by the Lefschetz �xed point formula:

�(X=G) =

1

jGj

X

g2G

�(X

g

)

where X

g

is the �xed point set of g. Motivated by string theory, physicists have de�ned an \orbifold

characteristic" by

�(X;G) =

1

jGj

X

gh=hg

�(X

(g;h)

)

where the sum runs over commuting pairs and X

(g;h)

denotes the common �xed point set of g and

h.

We introduce a natural sequence of orbifold Euler characteristics �

m

(X;G) for m = 1; 2; : : : so

that �(X=G) and �(X;G) appear as the �rst two terms. Namely, if we denote by Com(G;m) the

set of mutually commuting m-tuples (g

1

; : : : ; g

m

) and by X

(g

1

;:::;g

m

)

the simultaneous �xed point

set, then we de�ne the m-th orbifold characteristic to be

�

m

(X;G) =

1

jGj

X

Com(G;m)

�(X

(g

1

;:::;g

m

)

): (1)

In the case of a symmetric product, i.e. X is the n-fold productM

n

and G is the symmetric group

S

n

, there are combinatorial formulas for �

1

and �

2

due to Macdonald [5] and Hirzebruch-H�ofer [3]

respectively. The main result of this note (Theorem 1) is a generalization of those formulas to �

m

for arbitrary m. In the case where M has (ordinary) Euler characteristic 1, our formulas specialize

to generating functions for jCom(S

n

;m)j, the number of commuting m-tuples in S

n

.

Finally, we remark that the �rst two terms in our sequence �

m

(X;G) of orbifold Euler character-

istics are the Euler characteristics of the cohomology theoriesH

�

G

(X;Q) andK

�

G

(X;Q) respectively.

This was observed by Segal, [1] who was led to speculate that the heirarchy of generalized cohomol-

ogy theories investigated by Hopkins and Kuhn [4] may have something to do with the sequence of

Euler characteristics de�ned in this paper (our de�nition is implicitly suggested in [1]). We hope

that our combinatorial formulas will provide clues to the nature of these theories.

2 Formulae

In this section we specialize to the case of symmetric products so that X = M

n

and G = S

n

.

For (�

1

; � � � ; �

m

) 2 Com(S

n

;m), let #(�

1

; � � � ; �

m

) be the number of connected components in the

graph on vertex set f1; � � � ; ng de�ned by connecting the vertices according to the permutations

�

1

; � � � ; �

m

. For instance, #(�

1

) is the number of cycles of �. The main result of this note is the

following theorem.
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Theorem 1 Let � denote the (ordinary) Euler characteristic of M . The generating function for

the orbifold Euler characteristic �

m

(M

n

; S

n

) satis�es the following formulas:

1

X

n=0

�

m

(M

n

; S

n

)u

n

=

1

X

n=0

u

n

n!

X

�

1

;:::;�

m

2Com(S

n

;m)

�

#(�

1

;:::;�

m

)

(2)

=

 

1

X

n=0

jCom(S

n

;m)j

u

n

n!

!

�

(3)

=

1

Y

i

1

;���;i

m�1

=1

(1� u

i

1

���i

m�1

)

��i

m�2

1

i

m�3

2

���i

m�2

: (4)

Remarks: We will show that Equation 2 follows directly from the de�nitions and a straight-

forward geometric argument. Equation 3 is proved in Lemma 1 and shows that it su�ces to prove

Equation 4 in the case � = 1. Our main result then should be regarded as Equation 4 which in light

of Equation 3 gives a generating function for the number of commuting m-tuples in S

n

. Note also

that for m = 1 Equation 4 is Macdonald's formula (1� u)

��

for the Euler characteristic of a sym-

metric product and for m = 2 Equation 4 is Hirzebruch and H�ofer's formula for the string-theoretic

orbifold Euler characteristic of a symmetric product.

To prove Equation 2 it su�ces to see that

�(M

(�

1

;:::;�

m

)

) = (�(M))

#(�

1

;:::;�

m

)

:

Partition f1; : : : ; ng into disjoint subsets I

1

; : : : ; I

#(�

1

;:::;�

m

)

according to the components of the

graph associated to (�

1

; : : : ; �

m

). Then the small diagonal in the product

Q

i2I

j

M

i

is �xed by

(�

1

; : : : ; �

m

) and is homeomorphic to M . The full �xed set of (�

1

; : : : ; �

m

) is then the product of

all the small diagonals in the subproducts associated to the I

j

's. By the multiplicative properties

of Euler characteristic we see that �(M

(�

1

;:::;�

m

)

) = (�(M))

#(�

1

;:::;�

m

)

:

Lemma 1 For � a natural number,

1

X

n=0

u

n

n!

X

�

1

;���;�

m

2Com(S

n

;m)

�

#(�

1

;���;�

m

)

=

 

1

X

n=0

u

n

jCom(S

n

;m)j

n!

!

�

Proof: It su�ces to show that an ordered m-tuple (�

1

; � � � ; �

m

) of mutually commuting elements

of S

n

contributes equally to the coe�cient of

u

n

n!

on both sides of the equation. The contribution

to this coe�cient on the left-hand side is �

#(�

1

;���;�

m

)

.

The right hand side can be rewritten as

1

X

n=0

u

n

n!

X

n

1

;���;n

�

:

P

n

i

=n

 

n

n

1

; � � � ; n

�

!

jCom(S

n

1

;m)j � � � jCom(S

n

�

;m)j:

Observe that

�

n

n

1

;���;n

�

�

jCom(S

n

1

;m)j � � � jCom(S

n

�

;m)j is the number of ways of decomposing

the vertex set f1; � � � ; ng into � ordered subsets S

1

; � � � ; S

�

of sizes n

1

; � � � ; n

�

and de�ning an ordered

m-tuple of mutually commuting elements of S

n

i

on each subset. Gluing these together de�nes

an ordered m-tuple of mutually commuting elements of S

n

. Note that the m-tuple (�

1

; � � � ; �

m

)

arises in �

#(�

1

;���;�

m

)

ways, because each of the #(�

1

; � � � ; �

m

) connected components of the graph

corresponding to (�

1

; � � � ; �

m

) could have come from any of the � subsets S

1

; � � � ; S

�

. 2
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Let us now recall some facts about wreath products of groups. All of this can be found in

Sections 4.1 and 4.2 of James and Kerber [2]. Given a group G, the wreath product GWrS

n

is

de�ned as a set by (g

1

; � � � ; g

n

;�) where g

i

2 G and � 2 S

n

. Letting permutations act on the right,

the group multiplication is de�ned by:

(g

1

; � � � ; g

n

;�)(h

1

; � � � ; h

n

; �) = (g

1

h

(1)�

�1
; � � � ; g

n

h

(n)�

�1
;��)

Furthermore, the conjugacy classes of GWrS

n

are parameterized as follows. Let Cl

1

; � � � ; Cl

i

be the conjugacy classes of G. Then the conjugacy classes of GWrS

n

correspond to arrays (M

j;k

)

satisfying the properties:

1. M

j;k

= 0 if j > i

2.

P

j;k

kM

j;k

= n

The correspondence can be made explicit. For (g

1

; � � � ; g

n

;�) 2 GWrS

n

, letM

j;k

be the number

of k-cycles of � such that multiplying the k g

i

whose subscripts lies in the k-cycle gives an element

of G belonging to the conjugacy class Cl

j

of G. The matrix so-de�ned clearly satis�es the above

two conditions.

Lemma 2 is a key ingredient of this paper. It says that centralizers of elements of wreath

products can be expressed in terms of wreath products; this will lead to an inductive proof of

Theorem 1.

Lemma 2 Let C

i

denote a cyclic group of order i. Then the centralizer in C

i

WrS

n

of an element

in the conjugacy class corresponding to the data M

j;k

is isomorphic to the direct product

Y

j;k

C

ik

WrS

M

j;k

Proof: To start, let us construct an element (g

1

; � � � ; g

n

;�) of C

i

WrS

n

with conjugacy class data

M

j;k

. This can be done as follows:

1. Pick � to be any permutation with

P

j

M

j;k

k-cycles

2. For each j choose M

j;k

of the k-cycles of � and think of them as k-cycles of type j

3. Assign (in any order) to the g

i

whose subscripts are contained in a k-cycle of type j of � the

values (c

j

; 1; � � � ; 1) where c

j

is an element in the jth conjugacy class of the group C

i

To describe the centralizer of this element (g

1

; � � � ; g

n

;�), note that conjugation in GWrS

n

works as

(h

1

; � � � ; h

n

; �)(g

1

; � � � ; g

n

;�)(h

�1

(1)�

; � � � ; h

�1

(n)�

; �

�1

)

= (h

1

g

(1)�

�1h

�1

(1)��

�1

�

�1

; � � � ; ���

�1

)

It is easy to see that if (h

1

; � � � ; h

n

; �) commutes with (g

1

; � � � ; g

n

;�), then � operates on theM

j;k

k-cycles of � of type j by �rst permuting these cycles amongst themselves and then performing

some power of a cyclic shift within each cycle. Further, among the h

i

whose subscripts lie in a

k-cycle of � of type j exactly one can be chosen arbitrarily in C

i

{the other h's with subscripts in

that k-cycle then have determined values.
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The direct product assertion of the theorem is then easily checked; the only non-trivial part

is to see the copy of C

ik

WrS

M

j;k

. Here the S

M

j;k

permutes the M

j;k

k-cycles of type j, and the

generator of the C

ik

corresponds to having � cyclically permuting within the k cycle and having

the h's with subscripts in that k-cycle equal to fc

j

; 1; � � � ; 1g, where c

j

is a generator of C

i

. 2

With these preliminaries in hand, induction can be used to prove the following result. Note

that by Lemma 1, only the i = 1 case of Theorem 2 is needed to prove the main result of this

paper, Theorem 1. However, the stronger statement (general i) in Theorem 2 makes the induction

work by making the induction hypothesis stronger.

Theorem 2 For m � 2,

1

X

n=0

u

n

jCom(C

i

WrS

n

;m)j

jC

i

WrS

n

j

=

1

Y

i

1

;���;i

m�1

=1

(

1

1� u

i

1

���i

m�1

)

i

m�1

i

m�2

1

i

m�3

2

���i

m�2

Proof: The proof proceeds by induction on m. We use the notation that if � denotes a conjugacy

class of a group G, then C

G

(�) is the centralizer in G of some element of � (hence C

G

(�) is well

de�ned up to isomorphism). For the base case m = 2 observe that

1

X

n=0

u

n

jCom(C

i

WrS

n

; 2)j

jC

i

WrS

n

j

=

1

X

n=0

u

n

jC

i

WrS

n

j

X

(M

j;k

):1�j�i

P

j;k

kM

j;k

=n

jC

i

WrS

n

j

jC

C

i

WrS

n

(M

j;k

)j

jC

C

i

WrS

n

(M

j;k

)j

=

1

X

n=0

u

n

X

(M

j;k

):1�j�i

P

j;k

kM

j;k

=n

1

=

1

Y

i

1

=1

(

1

1� u

i

1

)

i

For the induction step, the parameterization of conjugacy classes of wreath products and Lemma

2 imply that

1

X

n=0

u

n

jCom(C

i

WrS

n

;m)j

jC

i

WrS

n

j

=

1

X

n=0

u

n

jC

i

WrS

n

j

X

(M

j;k

):1�j�i

P

j;k

kM

j;k

=n

jC

i

WrS

n

j

jC

C

i

WrS

n

(M

j;k

)j

jCom(C

C

i

WrS

n

(M

j;k

);m� 1)j

= [

1

Y

k=1

1

X

a=0

u

ka

jCom(C

ik

WrS

a

;m� 1)j

jC

ik

WrS

a

j

]

i

= [

1

Y

k=1

1

Y

i

2

;���;i

m�1

=1

(

1

1� u

ki

2

���i

m�1

)

(ik)

m�2

i

m�3

2

���i

m�2

]

i

=

1

Y

i

1

;���;i

m�1

=1

(

1

1� u

i

1

���i

m�1

)

i

m�1

i

m�2

1

i

m�3

2

���i

m�2
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