Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric groups By Jim Bryan* and Jason Fulman

University of California at Berkeley and Dartmouth College

* Supported in part by a grant from the Ford Foundation.

Abstract

Generating functions for the number of commuting m-tuples in the symmetric groups are obtained. We define a natural sequence of "orbifold Euler characteristics" for a finite group G acting on a manifold X. Our definition generalizes the ordinary Euler characteristic of X / G and the string-theoretic orbifold Euler characteristic. Our formulae for commuting m-tuples underlie formulas that generalize the results of Macdonald and Hirzebruch-Höfer concerning the ordinary and string-theoretic Euler characteristics of symmetric products.

1 Introduction

Let X be a manifold with the action of a finite group G. The Euler characteristic of the quotient space X / G can be computed by the Lefschetz fixed point formula:

$$
\chi(X / G)=\frac{1}{|G|} \sum_{g \in G} \chi\left(X^{g}\right)
$$

where X^{g} is the fixed point set of g. Motivated by string theory, physicists have defined an "orbifold characteristic" by

$$
\chi(X, G)=\frac{1}{|G|} \sum_{g h=h g} \chi\left(X^{(g, h)}\right)
$$

where the sum runs over commuting pairs and $X^{(g, h)}$ denotes the common fixed point set of g and h.

We introduce a natural sequence of orbifold Euler characteristics $\chi_{m}(X, G)$ for $m=1,2, \ldots$ so that $\chi(X / G)$ and $\chi(X, G)$ appear as the first two terms. Namely, if we denote by $\operatorname{Com}(G, m)$ the set of mutually commuting m-tuples $\left(g_{1}, \ldots, g_{m}\right)$ and by $X^{\left(g_{1}, \ldots, g_{m}\right)}$ the simultaneous fixed point set, then we define the m-th orbifold characteristic to be

$$
\begin{equation*}
\chi_{m}(X, G)=\frac{1}{|G|} \sum_{\operatorname{Com}(G, m)} \chi\left(X^{\left(g_{1}, \ldots, g_{m}\right)}\right) \tag{1}
\end{equation*}
$$

In the case of a symmetric product, i.e. $\quad X$ is the n-fold product M^{n} and G is the symmetric group S_{n}, there are combinatorial formulas for χ_{1} and χ_{2} due to Macdonald [5] and Hirzebruch-Höfer [3] respectively. The main result of this note (Theorem 1) is a generalization of those formulas to χ_{m} for arbitrary m. In the case where M has (ordinary) Euler characteristic 1, our formulas specialize to generating functions for $\left|\operatorname{Com}\left(S_{n}, m\right)\right|$, the number of commuting m-tuples in S_{n}.

Finally, we remark that the first two terms in our sequence $\chi_{m}(X, G)$ of orbifold Euler characteristics are the Euler characteristics of the cohomology theories $H_{G}^{*}(X ; \mathbf{Q})$ and $K_{G}^{*}(X ; \mathbf{Q})$ respectively. This was observed by Segal, [1] who was led to speculate that the heirarchy of generalized cohomology theories investigated by Hopkins and Kuhn [4] may have something to do with the sequence of Euler characteristics defined in this paper (our definition is implicitly suggested in [1]). We hope that our combinatorial formulas will provide clues to the nature of these theories.

2 Formulae

In this section we specialize to the case of symmetric products so that $X=M^{n}$ and $G=S_{n}$. For $\left(\pi_{1}, \cdots, \pi_{m}\right) \in \operatorname{Com}\left(S_{n}, m\right)$, let $\#\left(\pi_{1}, \cdots, \pi_{m}\right)$ be the number of connected components in the graph on vertex set $\{1, \cdots, n\}$ defined by connecting the vertices according to the permutations π_{1}, \cdots, π_{m}. For instance, $\#\left(\pi_{1}\right)$ is the number of cycles of π. The main result of this note is the following theorem.

Theorem 1 Let χ denote the (ordinary) Euler characteristic of M. The generating function for the orbifold Euler characteristic $\chi_{m}\left(M^{n}, S_{n}\right)$ satisfies the following formulas:

$$
\begin{align*}
\sum_{n=0}^{\infty} \chi_{m}\left(M^{n}, S_{n}\right) u^{n} & =\sum_{n=0}^{\infty} \frac{u^{n}}{n!} \sum_{\pi_{1}, \ldots, \pi_{m} \in \operatorname{Com}\left(S_{n}, m\right)} \chi^{\#\left(\pi_{1}, \ldots, \pi_{m}\right)} \tag{2}\\
& =\left(\sum_{n=0}^{\infty}\left|\operatorname{Com}\left(S_{n}, m\right)\right| \frac{u^{n}}{n!}\right)^{\chi} \tag{3}\\
& =\prod_{i_{1}, \cdots, i_{m-1}=1}^{\infty}\left(1-u^{i_{1} \cdots i_{m-1}}\right)^{-\chi i_{1}^{m-2} i_{2}^{m-3} \cdots i_{m-2}} \tag{4}
\end{align*}
$$

Remarks: We will show that Equation 2 follows directly from the definitions and a straightforward geometric argument. Equation 3 is proved in Lemma 1 and shows that it suffices to prove Equation 4 in the case $\chi=1$. Our main result then should be regarded as Equation 4 which in light of Equation 3 gives a generating function for the number of commuting m-tuples in S_{n}. Note also that for $m=1$ Equation 4 is Macdonald's formula $(1-u)^{-\chi}$ for the Euler characteristic of a symmetric product and for $m=2$ Equation 4 is Hirzebruch and Höfer's formula for the string-theoretic orbifold Euler characteristic of a symmetric product.

To prove Equation 2 it suffices to see that

$$
\chi\left(M^{\left(\pi_{1}, \ldots, \pi_{m}\right)}\right)=(\chi(M))^{\#\left(\pi_{1}, \ldots, \pi_{m}\right)}
$$

Partition $\{1, \ldots, n\}$ into disjoint subsets $I_{1}, \ldots, I_{\#\left(\pi_{1}, \ldots, \pi_{m}\right)}$ according to the components of the graph associated to $\left(\pi_{1}, \ldots, \pi_{m}\right)$. Then the small diagonal in the product $\prod_{i \in I_{j}} M_{i}$ is fixed by $\left(\pi_{1}, \ldots, \pi_{m}\right)$ and is homeomorphic to M. The full fixed set of $\left(\pi_{1}, \ldots, \pi_{m}\right)$ is then the product of all the small diagonals in the subproducts associated to the I_{j} 's. By the multiplicative properties of Euler characteristic we see that $\chi\left(M^{\left(\pi_{1}, \ldots, \pi_{m}\right)}\right)=(\chi(M))^{\#\left(\pi_{1}, \ldots, \pi_{m}\right)}$.

Lemma 1 For χ a natural number,

$$
\sum_{n=0}^{\infty} \frac{u^{n}}{n!} \sum_{\pi_{1}, \cdots, \pi_{m} \in \operatorname{Com}\left(S_{n}, m\right)} \chi^{\#\left(\pi_{1}, \cdots, \pi_{m}\right)}=\left(\sum_{n=0}^{\infty} \frac{u^{n}\left|\operatorname{Com}\left(S_{n}, m\right)\right|}{n!}\right)^{\chi}
$$

Proof: It suffices to show that an ordered m-tuple $\left(\pi_{1}, \cdots, \pi_{m}\right)$ of mutually commuting elements of S_{n} contributes equally to the coefficient of $\frac{u^{n}}{n!}$ on both sides of the equation. The contribution to this coefficient on the left-hand side is $\chi^{\#\left(\pi_{1}, \cdots, \pi_{m}\right)}$.

The right hand side can be rewritten as

$$
\sum_{n=0}^{\infty} \frac{u^{n}}{n!} \sum_{n_{1}, \cdots, n_{\chi}: \sum n_{i}=n}\binom{n}{n_{1}, \cdots, n_{\chi}}\left|\operatorname{Com}\left(S_{n_{1}}, m\right)\right| \cdots\left|\operatorname{Com}\left(S_{n_{\chi}}, m\right)\right|
$$

Observe that $\binom{n}{n_{1}, \cdots, n_{\chi}}\left|\operatorname{Com}\left(S_{n_{1}}, m\right)\right| \cdots\left|\operatorname{Com}\left(S_{n_{\chi}}, m\right)\right|$ is the number of ways of decomposing the vertex set $\{1, \cdots, n\}$ into χ ordered subsets S_{1}, \cdots, S_{χ} of sizes n_{1}, \cdots, n_{χ} and defining an ordered m-tuple of mutually commuting elements of $S_{n_{i}}$ on each subset. Gluing these together defines an ordered m-tuple of mutually commuting elements of S_{n}. Note that the m-tuple $\left(\pi_{1}, \cdots, \pi_{m}\right)$ arises in $\chi^{\#\left(\pi_{1}, \cdots, \pi_{m}\right)}$ ways, because each of the $\#\left(\pi_{1}, \cdots, \pi_{m}\right)$ connected components of the graph corresponding to $\left(\pi_{1}, \cdots, \pi_{m}\right)$ could have come from any of the χ subsets S_{1}, \cdots, S_{χ}.

Let us now recall some facts about wreath products of groups. All of this can be found in Sections 4.1 and 4.2 of James and Kerber [2]. Given a group G, the wreath product $G W r S_{n}$ is defined as a set by $\left(g_{1}, \cdots, g_{n} ; \pi\right)$ where $g_{i} \in G$ and $\pi \in S_{n}$. Letting permutations act on the right, the group multiplication is defined by:

$$
\left(g_{1}, \cdots, g_{n} ; \pi\right)\left(h_{1}, \cdots, h_{n} ; \tau\right)=\left(g_{1} h_{(1) \pi^{-1}}, \cdots, g_{n} h_{(n) \pi^{-1}} ; \pi \tau\right)
$$

Furthermore, the conjugacy classes of $G W r S_{n}$ are parameterized as follows. Let $C l_{1}, \cdots, C l_{i}$ be the conjugacy classes of G. Then the conjugacy classes of $G W r S_{n}$ correspond to arrays $\left(M_{j, k}\right)$ satisfying the properties:

1. $M_{j, k}=0$ if $j>i$
2. $\sum_{j, k} k M_{j, k}=n$

The correspondence can be made explicit. For $\left(g_{1}, \cdots, g_{n} ; \pi\right) \in G W r S_{n}$, let $M_{j, k}$ be the number of k-cycles of π such that multiplying the $k g_{i}$ whose subscripts lies in the k-cycle gives an element of G belonging to the conjugacy class $C l_{j}$ of G. The matrix so-defined clearly satisfies the above two conditions.

Lemma 2 is a key ingredient of this paper. It says that centralizers of elements of wreath products can be expressed in terms of wreath products; this will lead to an inductive proof of Theorem 1.

Lemma 2 Let C_{i} denote a cyclic group of order i. Then the centralizer in $C_{i} W r S_{n}$ of an element in the conjugacy class corresponding to the data $M_{j, k}$ is isomorphic to the direct product

$$
\prod_{j, k} C_{i k} W r S_{M_{j, k}}
$$

Proof: To start, let us construct an element $\left(g_{1}, \cdots, g_{n} ; \pi\right)$ of $C_{i} W r S_{n}$ with conjugacy class data $M_{j, k}$. This can be done as follows:

1. Pick π to be any permutation with $\sum_{j} M_{j, k} k$-cycles
2. For each j choose $M_{j, k}$ of the k-cycles of π and think of them as k-cycles of type j
3. Assign (in any order) to the g_{i} whose subscripts are contained in a k-cycle of type j of π the values $\left(c_{j}, 1, \cdots, 1\right)$ where c_{j} is an element in the j th conjugacy class of the group C_{i}

To describe the centralizer of this element $\left(g_{1}, \cdots, g_{n} ; \pi\right)$, note that conjugation in $G W r S_{n}$ works as

$$
\begin{aligned}
& \left(h_{1}, \cdots, h_{n} ; \tau\right)\left(g_{1}, \cdots, g_{n} ; \pi\right)\left(h_{(1) \tau}^{-1}, \cdots, h_{(n) \tau}^{-1} ; \tau^{-1}\right) \\
= & \left(h_{1} g_{(1) \tau^{-1}} h_{(1) \tau \pi^{-1} \tau^{-1}}^{-1}, \cdots ; \tau \pi \tau^{-1}\right)
\end{aligned}
$$

It is easy to see that if $\left(h_{1}, \cdots, h_{n} ; \tau\right)$ commutes with $\left(g_{1}, \cdots, g_{n} ; \pi\right)$, then τ operates on the $M_{j, k}$ k-cycles of π of type j by first permuting these cycles amongst themselves and then performing some power of a cyclic shift within each cycle. Further, among the h_{i} whose subscripts lie in a k-cycle of π of type j exactly one can be chosen arbitrarily in C_{i}-the other h 's with subscripts in that k-cycle then have determined values.

The direct product assertion of the theorem is then easily checked; the only non-trivial part is to see the copy of $C_{i k} W r S_{M_{j, k}}$. Here the $S_{M_{j, k}}$ permutes the $M_{j, k} k$-cycles of type j, and the generator of the $C_{i k}$ corresponds to having τ cyclically permuting within the k cycle and having the h 's with subscripts in that k-cycle equal to $\left\{c_{j}, 1, \cdots, 1\right\}$, where c_{j} is a generator of C_{i}.

With these preliminaries in hand, induction can be used to prove the following result. Note that by Lemma 1, only the $i=1$ case of Theorem 2 is needed to prove the main result of this paper, Theorem 1. However, the stronger statement (general i) in Theorem 2 makes the induction work by making the induction hypothesis stronger.

Theorem 2 For $m \geq 2$,

$$
\sum_{n=0}^{\infty} \frac{u^{n}\left|\operatorname{Com}\left(C_{i} W r S_{n}, m\right)\right|}{\left|C_{i} W r S_{n}\right|}=\prod_{i_{1}, \cdots, i_{m-1}=1}^{\infty}\left(\frac{1}{1-u^{i_{1} \cdots i_{m-1}}}\right)^{m^{m-1} i_{1}^{m-2}} i_{2}^{m-3} \cdots i_{m-2}
$$

Proof: The proof proceeds by induction on m. We use the notation that if λ denotes a conjugacy class of a group G, then $C_{G}(\lambda)$ is the centralizer in G of some element of λ (hence $C_{G}(\lambda)$ is well defined up to isomorphism). For the base case $m=2$ observe that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{u^{n}\left|\operatorname{Com}\left(C_{i} W r S_{n}, 2\right)\right|}{\left|C_{i} W r S_{n}\right|} \\
= & \sum_{n=0}^{\infty} \frac{u^{n}}{\left|C_{i} W r S_{n}\right|} \sum_{\substack{\left(M_{j, k}\right): 1 \leq j \leq i \\
\sum_{j, k}^{k M_{j, k}=n}}} \frac{\left|C_{i} W r S_{n}\right|}{\left|C_{C_{i} W r S_{n}}\left(M_{j, k}\right)\right|}\left|C_{C_{i} W r S_{n}}\left(M_{j, k}\right)\right| \\
= & \sum_{n=0}^{\infty} u^{n} \sum_{\left(M_{j, k}\right): 1 \leq j \leq i} 1 \\
= & \prod_{i_{1}=1}^{\infty}\left(\frac{1}{1-u^{i_{1}}}\right)^{i}
\end{aligned}
$$

For the induction step, the parameterization of conjugacy classes of wreath products and Lemma 2 imply that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{u^{n}\left|\operatorname{Com}\left(C_{i} W r S_{n}, m\right)\right|}{\left|C_{i} W r S_{n}\right|} \\
& =\sum_{n=0}^{\infty} \frac{u^{n}}{\left|C_{i} W r S_{n}\right|} \sum_{\substack{\left(M_{j, k}\right): 1 \leq j \leq i \\
\sum_{j, k}, M_{j, k}=n}} \frac{\left|C_{i} W r S_{n}\right|}{\left|C_{C_{i} W r S_{n}}\left(M_{j, k}\right)\right|}\left|\operatorname{Com}\left(C_{C_{i} W r S_{n}}\left(M_{j, k}\right), m-1\right)\right| \\
& =\left[\prod_{k=1}^{\infty} \sum_{a=0}^{\infty} \frac{u^{k a}\left|\operatorname{Com}\left(C_{i k} W r S_{a}, m-1\right)\right|}{\left|C_{i k} W r S_{a}\right|}\right]^{i} \\
& =\left[\prod_{k=1}^{\infty} \prod_{i_{2}, \cdots, i_{m-1}=1}^{\infty}\left(\frac{1}{1-u^{k i_{2} \cdots i_{m-1}}}\right)^{(i k)^{m-2} i_{2}^{m-3} \cdots i_{m-2}}\right]^{i} \\
& =\prod_{i_{1}, \cdots, i_{m-1}=1}^{\infty}\left(\frac{1}{1-u^{i_{1} \cdots i_{m-1}}}\right)^{i^{m-1} i_{1}^{m-2} i_{2}^{m-3} \cdots i_{m-2}}
\end{aligned}
$$

References

[1] Atiyah, M. and Segal, G., On equivariant Euler characteristics. J. Geom. Phys.6, no. 4, 671-677 (1989).
[2] James, G. and Kerber, A., The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications. Volume 16, (1981).
[3] Hirzebruch, F. and Höfer, T., On the Euler number of an orbifold. Mathematische Annalen 286, 255-260 (1990).
[4] Hopkins, M., Kuhn, N., and Ravenel, D., Morava K-theories of classifying spaces and generalized characters for finite groups. Algebraic topology (San Feliu de Guxols), Lecture Notes in Math. 1509, 186-209 (1990).
[5] Macdonald, I.G., The Poincaré polynomial of a symmetric product. Proc. Camb. Phil. Soc. 58, 563-568 (1962).

