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Abstract

Generating functions for the number of commuting m-tuples in the symmetric groups are
obtained. We define a natural sequence of “orbifold Euler characteristics” for a finite group G
acting on a manifold X. Our definition generalizes the ordinary Euler characteristic of X/G
and the string-theoretic orbifold Euler characteristic. Our formulae for commuting m-tuples
underlie formulas that generalize the results of Macdonald and Hirzebruch-Hofer concerning the
ordinary and string-theoretic Euler characteristics of symmetric products.

1 Introduction

Let X be a manifold with the action of a finite group G. The Euler characteristic of the quotient
space X/G can be computed by the Lefschetz fixed point formula:
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where X7 is the fixed point set of g. Motivated by string theory, physicists have defined an “orbifold
characteristic” by
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where the sum runs over commuting pairs and X (9-h) denotes the common fixed point set of ¢ and
h.

We introduce a natural sequence of orbifold Euler characteristics x,,(X,G) for m =1,2,... so
that x(X/G) and x(X,G) appear as the first two terms. Namely, if we denote by Com(G,m) the
set of mutually commuting m-tuples (g1, ..., gm) and by X(91--9m) the simultaneous fixed point

set, then we define the m-th orbifold characteristic to be
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In the case of a symmetric product, i.e. X is the n-fold product M" and G is the symmetric group
Sy, there are combinatorial formulas for x; and x2 due to Macdonald [5] and Hirzebruch-Héfer [3]
respectively. The main result of this note (Theorem 1) is a generalization of those formulas to x,
for arbitrary m. In the case where M has (ordinary) Euler characteristic 1, our formulas specialize
to generating functions for |Com(S,,m)|, the number of commuting m-tuples in S,,.

Finally, we remark that the first two terms in our sequence x,,, (X, G) of orbifold Euler character-
istics are the Euler characteristics of the cohomology theories H (X; Q) and K (X; Q) respectively.
This was observed by Segal, [1] who was led to speculate that the heirarchy of generalized cohomol-
ogy theories investigated by Hopkins and Kuhn [4] may have something to do with the sequence of
Euler characteristics defined in this paper (our definition is implicitly suggested in [1]). We hope
that our combinatorial formulas will provide clues to the nature of these theories.

2 Formulae

In this section we specialize to the case of symmetric products so that X = M" and G = §,,.
For (71, -+, 7y) € Com(S,,m), let #(m1,---,my) be the number of connected components in the
graph on vertex set {1,---,n} defined by connecting the vertices according to the permutations
1, ,Tm. For instance, #(m) is the number of cycles of 7. The main result of this note is the
following theorem.



Theorem 1 Let x denote the (ordinary) Euler characteristic of M. The generating function for
the orbifold Euler characteristic x,,,(M™",S,) satisfies the following formulas:
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Remarks: We will show that Equation 2 follows directly from the definitions and a straight-
forward geometric argument. Equation 3 is proved in Lemma 1 and shows that it suffices to prove
Equation 4 in the case xy = 1. Our main result then should be regarded as Equation 4 which in light
of Equation 3 gives a generating function for the number of commuting m-tuples in S,,. Note also
that for m = 1 Equation 4 is Macdonald’s formula (1 — «) X for the Euler characteristic of a sym-
metric product and for m = 2 Equation 4 is Hirzebruch and Hofer’s formula for the string-theoretic
orbifold Euler characteristic of a symmetric product.

To prove Equation 2 it suffices to see that

X(M(Trh...ﬂrm)) — (X(M))#(Tn,...,yr?n) ‘

Partition {1,...,n} into disjoint subsets Iy,..., I4(x, . ) according to the components of the
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graph associated to (my,...,m,,). Then the small diagonal in the product Hielj M; is fixed by
(1, ...,my) and is homeomorphic to M. The full fixed set of (wy,...,m,) is then the product of

all the small diagonals in the subproducts associated to the I;’s. By the multiplicative properties
of Euler characteristic we see that y (M (T1rmm)) = (y (M ))#(T1mm),

Lemma 1 For x a natural number,

n
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PROOF: It suffices to show that an ordered m-tuple (71, -, m,,) of mutually commuting elements
of S, contributes equally to the coefficient of % on both sides of the equation. The contribution
to this coefficient on the left-hand side is y# (71 mm)

The right hand side can be rewritten as

oo n .
% Z <n n " ) |Com(S,,,m)|---|Com(S,, ,m)|
n=0 """ IL17"'77LXZZ n;=n 13 »X

Observe that (

the vertex set {1, - -- 7/n} into x ordered subsets Sy, -+, S, of sizes ny,- -+, n, and defining an ordered
m-tuple of mutually commuting elements of .S;,, on each subset. Gluing these together defines
an ordered m-tuple of mutually commuting elements of S,,. Note that the m-tuple (7, -, m,)

m_ﬁmx)|00m(5’nl,m)| o+ |Com(S,, ,m)| is the number of ways of decomposing
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arises in y#! ™m) ways, because each of the # (7, -+, T,,) connected components of the graph

corresponding to (7, -+, 7y,) could have come from any of the x subsets Si,---,5,. O



Let us now recall some facts about wreath products of groups. All of this can be found in
Sections 4.1 and 4.2 of James and Kerber [2]. Given a group G, the wreath product GWrS,, is
defined as a set by (g1, -, gn; ) where g; € G and 7w € S,,. Letting permutations act on the right,
the group multiplication is defined by:

(!]l: T Gns 7r)(hlv T, hn; T) = (glh(l)r—lv T 7g’nh(n)rr—1;7r7—)

Furthermore, the conjugacy classes of GWrS,, are parameterized as follows. Let Cly,---,Cl;
be the conjugacy classes of G. Then the conjugacy classes of GWrS, correspond to arrays (M ;)
satisfying the properties:

1. M, =0if 5>
2. Y kM =mn

The correspondence can be made explicit. For (g1.---, g,;7) € GWrS,, let M; ;. be the number
of k-cycles of 7 such that multiplying the k ¢g; whose subscripts lies in the k-cycle gives an element
of G belonging to the conjugacy class Cl; of G. The matrix so-defined clearly satisfies the above
two conditions.

Lemma 2 is a key ingredient of this paper. It says that centralizers of elements of wreath
products can be expressed in terms of wreath products; this will lead to an inductive proof of
Theorem 1.

Lemma 2 Let C; denote a cyclic group of order . Then the centralizer in C;WrS,, of an element
in the conjugacy class corresponding to the data M;y, is isomorphic to the direct product

[[CuWrSu,,
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PROOF: To start, let us construct an element (g1, -- -, g,;7) of C;WrS, with conjugacy class data
M; .. This can be done as follows:

1. Pick 7 to be any permutation with 37, M;; k-cycles

2. For each j choose Mj; of the k-cycles of m and think of them as k-cycles of type 7

3. Assign (in any order) to the g; whose subscripts are contained in a k-cycle of type j of 7 the

values (¢j,1,---.1) where ¢; is an element in the jth conjugacy class of the group C;
To describe the centralizer of this element (g1.---,¢n;7), note that conjugation in GWrS,
works as
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It is easy to see that if (hy,---, h,;7) commutes with (g1, -- -, g,; ), then 7 operates on the M,
k-cycles of w of type 7 by first permuting these cycles amongst themselves and then performing
some power of a cyclic shift within each cycle. Further, among the h; whose subscripts lie in a
k-cycle of 7 of type j exactly one can be chosen arbitrarily in C;—the other A’s with subscripts in
that k-cycle then have determined values.



The direct product assertion of the theorem is then easily checked; the only non-trivial part
is to see the copy of CyyWrSyy, . Here the Sy, permutes the My k-cycles of type j, and the
generator of the C; corresponds to having 7 cyclically permuting within the & cycle and having
the h’s with subscripts in that k-cycle equal to {¢;,1,---,1}, where ¢; is a generator of C;. O

With these preliminaries in hand, induction can be used to prove the following result. Note
that by Lemma 1, only the ¢ = 1 case of Theorem 2 is needed to prove the main result of this
paper, Theorem 1. However, the stronger statement (general ¢) in Theorem 2 makes the induction
work by making the induction hypothesis stronger.

Theorem 2 Form > 2,
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PRrROOF: The proof proceeds by induction on m. We use the notation that if A denotes a conjugacy
class of a group G, then Cg(\) is the centralizer in G of some element of A (hence Ci(A) is well
defined up to isomorphism). For the base case m = 2 observe that
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For the induction step, the parameterization of conjugacy classes of wreath products and Lemma
2 imply that
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