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Abstract

By algebraic group theory, there is a map from the semisimple conjugacy classes of a finite

group of Lie type to the conjugacy classes of the Weyl group. Picking a semisimple class uni-

formly at random yields a probability measure on conjugacy classes of the Weyl group. Using

the Brauer complex, it is proved that this measure agrees with a second measure on conjugacy

classes of the Weyl group induced by a construction of Cellini using the affine Weyl group.

Formulas for Cellini’s measure in type A are found. This leads to new models of card shuffling

and has interesting combinatorial and number theoretic consequences. An analysis of type C

gives another solution to a problem of Rogers in dynamical systems: the enumeration of uni-

modal permutations by cycle structure. The proof uses the factorization theory of palindromic

polynomials over finite fields. Contact is made with symmetric function theory.

Key words: Brauer complex, card shuffling, conjugacy class, dynamical systems, symmetric

function.

1 Introduction

In performing a definitive analysis of the Gilbert-Shannon-Reeds model of card-shuffling, Bayer

and Diaconis [BaD] defined a one-parameter family of probability measures on the symmetric

group Sn called k-shuffles. Given a deck of n cards, one cuts it into k piles with probability of

pile sizes j1, · · · , jk given by
( n
j1,···,jk

)
kn . Then cards are dropped from the packets with probability

proportional to the pile size at a given time (thus if the current pile sizes are A1, · · · , Ak, the next

card is dropped from pile i with probability Ai
A1+···+Ak

). They proved that 3
2 log2(n) 2-shuffles are

necessary and suffice to mix up a deck of n cards. Aldous [A] had previously obtained this bound

asymptotically in n; the paper [F4] shows that the use of cuts does not help to speed things up.

One motivation for the current paper is the fact that GSR measures are well-studied and appear

in many mathematical settings. The paper [Han] is a good reference for applications to Hochschild

homology (tracing back to Gerstenhaber and Schack [Ger]), and the paper [BW] describes the re-

lation with explicit versions of the Poincaré-Birkhoff-Witt theorem. Section 3.8 of [SSt] describes

GSR shuffles in the language of Hopf algebras. In recent work, Stanley [Sta] has related biased

riffle shuffles with the Robinson-Schensted-Knuth correspondence, thereby giving an elementary

probabilistic interpretation of Schur functions and a different approach to some work of interest

to the random matrix community. He recasts many of the results of [BaD] and [F1] using qua-

sisymmetric functions. Connections of riffle shuffling with dynamical systems appear in [BaD],
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[La1], [La2]. Generalizations of the GSR shuffles to other Coxeter groups, building on the papers

[BBHT],[BiHaRo] appear in [F2] and [F3].

For further motivation, it is useful to recall one of the most remarkable yet mysterious properties

of these k-shuffles. Since k-shuffles induce a probability measure on conjugacy classes of Sn, they

induce a probability measure on partitions λ of n. Consider the factorization of random degree n

polynomials over a field Fq into irreducibles. The degrees of the irreducible factors of a randomly

chosen degree n polynomial also give a random partition of n. The fundamental result of Diaconis-

McGrath-Pitman (DMP) [DMP] is that this measure on partitions of n agrees with the measure

induced by card shuffling when k = q. This allowed natural questions on shuffling to be reduced

to known results on factors of polynomials and vice versa. The DMP result is remarkable since

k-shuffles (like the shuffles studied here) are not constant on conjugacy classes.

There are three different proofs of the DMP result, each of them mysterious in its own way. The

first proof, in [DMP], is combinatorial and makes use of a magical bijection of Gessel and Reutenauer

[GesR]; they include a self-contained proof of this bijection. The second proof, in [Han], proves an

equivalent assertion about induced characters, but also uses the Gessel/Reutenauer bijection. (The

equivalence between the DMP theorem and the results on induced characters is not completely

obvious; see Section 4 of [F4] for explanation). The third, and perhaps most principled proof of

the equivalent assertion about induced characters appears in [BBGar], using facts about free Lie

algebras [Gar]. But it is unclear how to generalize free Lie Algebras to arbitrary types. Motivated

by the observation that degree n polynomials over Fq are the semisimple orbits of GL(n, q) on its

Lie algebra, the paper [F3] gave Lie theoretic reformulations and generalizations of the DMP result.

However the proofs still strike one as unnatural, and it is not clear when the generalizations hold. We

should in fairness point out that there is hope of a uniform generalization of the Gessel/Reutenauer

bijection, at least for the conjugacy class of Coxeter elements [Rei1],[Rei2] and that there is an

analog of the Free Lie algebra in type B [B].

The goal of the current article is to study a setting where these complications vanish and an

analog (Theorem 1) of the DMP result holds in all types, and can be proved in a uniform and

natural way. The key idea is to study semisimple conjugacy classes in groups such as SL(n, q)

rather than GL(n, q); then these polynomials can be viewed as points in Euclidean space, and the

extra geometric structure forces natural choices.

The precise contents of this paper are as follows. Section 2 begins by describing the algebraic

groups set-up and the map Φ from semisimple conjugacy classes to conjugacy classes of the Weyl
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group, giving examples. It makes a connection with the Gessel/Reutenauer map, demystifying it

somewhat. Section 3 gives a probabilistic version of a construction of Cellini [Ce1] and states the

analog of the DMP theorem, which will be proved in Section 7.

Section 4 focuses on understanding Cellini’s construction in types A. It emerges that in type

A the probability of a permutation involves both its number of cyclic descents and major index.

This is interesting because while combinatorialists have thoroughly studied the joint distribution

of permutations by descents, major index, and cycle structure [Ges], problems involving cyclic

descents have not been treated and are regarded by the experts as harder. It is also shown that

the type A construction leads to new models of card shuffling. Section 4 then shows that even for

the identity conjugacy class in type A, Theorem 1 gives an interesting result–a number theoretic

reciprocity law. For more general conjugacy classes, Theorem 1 is given a formulation in terms of

generating functions which highlights the connections with number theory.

Section 5 studies Cellini’s construction in type C. Unlike the type A case, formulas for type

C follow easily from work of Cellini (this is one of the few times in mathematics when the hyper-

octahedral group is easier to understand than the symmetric group). Thus the main point of this

section is to give interpretations in terms of card shuffling. This unifies work of [BaD] and [BB]

and implies a simple formula for Bayer-Diaconis hyperoctahedral shuffles. Some work of Bob Beals

on total variation distance of hyperoctahedral shuffles to uniform is understood is a new way.

Section 6 gives applications of the type C analog of the DMP theorem to dynamical systems.

Specifically, an alternate solution to a problem posed by Rogers [Ro] and solved in [Ga]–the enu-

meration of unimodal permutations by cycle structure–is given. The mathematics in this section

was accepted by J. Algebra in 1/01, prior to the appearance of the preprint [T]; hence Section

6 gives the first derivation of the cycle index of unimodal permutations. (The proof in [T], how-

ever, gives the first derivation using only symmetric functions and the Gessel-Reutenauer machine,

generalizing reasoning here for n-cycles). The cycle index leads to interesting asymptotic results.

The section closes by giving a more conceptual proof of a combinatorial result of Reiner. Further

generalizations of the DMP theorem based on symmetric functions are in [F5].

Section 7 uses the Brauer complex (an object originally introduced in modular representation

theory) to prove Theorem 1, conjectured in an early version of this paper. The proof presented

here is definitive and was provided by Professor Roger Carter in October 2000; he selflessly declined

to be a coauthor. His work supersedes the author’s type C odd characteristic proof and efforts to

exploit the viewpoint of semisimple conjugacy classes as points in Euclidean space; these partial

5



results remain at http://xxx.lanl.gov/ in the paper “Cellini’s ...” but have been cut from this final

version.

2 Algebraic Groups

Notation about algebraic groups will conform to that in [C1], which together with [Hu1] contains all

the relevant background for this paper. The book [Hu2] is a good reference for information about

Coxeter groups. Throughout G is a simple, simply connected group defined over the algebraic

closure of a finite field Fq. Letting F be a Frobenius automorphism of G, we suppose that G is

F -split. Pages 39-41 of [C1] list the groups GF . For instance in type An−1 the group is SL(n, q)

and in type Cn the group is Sp(2n, q). Let W denote the Weyl group. This is the symmetric group

in the first example and the hyperoctahedral group in the second example.

There is a natural map Φ from semisimple conjugacy classes c of GF to conjugacy classes of

the Weyl group. Let x be an element in the class c. Theorem 2.11 of [Hu1] implies that the

centralizers of semisimple elements of G are connected. Consequently CG(x), the centralizer in G

of x, is determined up to GF conjugacy. As is possible from page 33 of [C1], let T be an F -stable

maximally split maximal torus in CG(x); T is determined up to GF conjugacy. Proposition 3.3.3

of [C1] gives that the GF conjugacy classes of F -stable maximal tori of G are in bijection with

conjugacy classes of W . Define Φ(c) to be the corresponding conjugacy class of W .

Lemma 1 makes the map Φ explicit. Recall from Proposition 3.7.3 of [C1] that there is a

bijection between the semisimple conjugacy classes of GF and the F -stable orbits in T/W .

Lemma 1 Let T0 be a maximally split torus of G and let t0 ∈ T0 be a representative for the

semisimple conjugacy class c. Let Ψ0 be the root system of CG(t0), i.e. all roots α such that

α(t0) = 1. Suppose that F (t0) = tw0 and that w−1(Ψ+
0 ) = Ψ+

0 for some positive system of Ψ0. Then

Φ(c) is the conjugacy class of w.

Proof: Let T be an F -stable maximal torus of G obtained by twisting T0 by w. Let t be the

image of t0 under the corresponding conjugation map. Then T is a maximally split torus in C(t)

if and only if there is an F -stable Borel subgroup of C(t) containing T , which happens if and only

if there is a positive system of Ψ0 such that w−1(Ψ+
0 ) = Ψ+

0 . 2

Next we give two examples, which will be used later in this paper.

6



1. The first example is SL(n, q) with Weyl group the symmetric group on n symbols. The

semisimple conjugacy classes c correspond to monic degree n polynomials over Fq with con-

stant term (−1)n. Such a polynomial factors into irreducible polyomials. Let ni be the number

(counted with multiplicity) of these irreducible factors of degree i. Then the corresponding

conjugacy class Φ(c) has ni cycles of length i.

To see this from the lemma, note that t takes the form of a diagonal matrix, where the entries

along the diagonal are the roots of the characteristic polynomial in the algebraic closure. The

Frobenius map F acts by raising elements to the qth power, thus permuting the elements

along the diagonal. (This permutation is unique if for instance all of the irreducible factors

of the characteristic polynomial are distinct. If the irreducible factors aren’t all distinct, then

the root system Ψ0 is non-trivial, since the root ei− ej sends a diagonal matrix with diagonal

entries (x1, · · · , xn) to xi/xj , and hence some roots send t to 1). If one considers the particular

positive subsystem Ψ0 ∩ {ei − ej : i < j} of Ψ0, it is easy to see explicitly that there is a

unique w satisfying F (t0) = tw0 , w
−1(Ψ+

0 ) = Ψ+
0 and that w has ni cycles of length i.

We remark that the map Φ is closely related to the Gessel/Reutenauer map. The Ges-

sel/Reutenauer map associates to each multiset of primitive (i.e. not equal to any of its

proper rotations) necklaces on the symbols {0, 1, · · · , q − 1} a permutation w. This map is

carefully exposited in [GesR] and was used in shuffling work in [DMP]; we omit its definition

here.

If one fixes generators for the multiplicative group of each finite extension of Fq, the monic

degree n polynomials ϕ correspond to multisets of primitive necklaces [Go]. For example

suppose that θ is a generator of the multiplicative group of Fq3 . Then a degree 3 monic

irreducible polynomial corresponds to an orbit of θi under the Frobenius map, for some i.

Writing this i base q gives a size 3 primitive necklace. To each necklace entry one can

associate a root of ϕ, by taking θj where j is a number base q obtained by rotating i so that

the specified necklace entry is the leftmost digit of j. For example if the necklace is (01011)

and one is working base 2 then the middle 0 would correspond to θj where j is 01101 base

2. For what follows it is helpful to make 01101 an infinite word by repeating it 0110101101...

Now associated to ϕ one can form a diagonal matrix whose elements are the roots of ϕ,

ordered lexicographically by their associated infinite word. Then the permutation associated

to this matrix through Lemma 1 is equal to the permutation which the Gessel-Reutenauer
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map associated to the corresponding multiset of primitive necklaces.

2. The second example is type C. The group in question is Sp(2n, q) with Weyl group Cn the

group of signed permutations. The semisimple conjugacy classes c correspond to monic degree

2n polynomials ϕ(z) with constant term one that are invariant under the involution sending

ϕ(z) to ϕ̄(z) = z2nϕ(1/z)
ϕ(0) . Such polynomials can be more simply described as monic degree

2n polynomials which are palindromic in the sense that the coefficient of zi is equal to the

coefficient of z2n−i. These factor uniquely into irreducibles as

∏
{ϕj ,ϕ̄j}

[ϕjϕ̄j ]
rϕj

∏
ϕj :ϕj=ϕ̄j

ϕ
sϕj
j

where the ϕj are monic irreducible polynomials and sϕj
∈ {0, 1}. The conjugacy classes of Cn

correspond to pairs of vectors (λ⃗, µ⃗) where λ⃗ = (λ1, · · · , λn), µ⃗ = (µ1, · · · , µn) and λi (resp.

µi) is the number of positive (resp. negative) i cycles of an element of Cn, viewed as a signed

permutation. From Lemma 1 one can see that the conjugacy class of Cn corresponding to c

is then determined by setting λi =
∑

ϕ:deg(ϕ)=i rϕ and µi =
∑

ϕ:deg(ϕ)=2i sϕ.

3 Cellini’s Work

Next we recall the work of Cellini [C1] (the definition which follows differs slightly from hers, being

inverse, making use of her Corollary 2.1, and renormalizing so as to have a probability measure).

We follow her in supposing that W is a Weyl group (i.e. a finite reflection group which arises from

a Chevalley group). Let ∆ = {α1, · · · , αr} be a simple root system for W . Letting α0 denote the

negative of the highest root, let Π̃ = Π∪ α0. Define the cyclic descent Cdes(w) to be the elements

of Π̃ mapped to negative roots by w, and let cd(w) = |Cdes(w)|. For future use we remark that

the descent set of w is defined as the subset of ∆ mapped to negative roots by w.

For instance for Sn the simple roots with respect to a basis e1, · · · , en are ei − ei+1 for i =

1, · · · , n− 1 and α0 = en− e1. Thus the permutation 4 1 3 2 5 (in 2-line form) has 3 cyclic descents

and 2 descents. Type C examples will be treated in Section 5.

Now we use cyclic descents to define shuffles. For I ⊆ Π̃, put

UI = {w ∈ W |Cdes(w) ∩ I = ∅}.

Let Y be the coroot lattice. Then define ak,I by
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|{y ∈ Y | < −α0, y >= k,< αi, y >= 0 for αi ∈ I − α0, < αi, y >> 0 for αi ∈ Π̃− I}| if α0 ∈ I

|{y ∈ Y | < −α0, y >< k,< αi, y >= 0 for αi ∈ I,< αi, y >> 0 for αi ∈ Π− I}| if α0 6∈ I.

Finally, define an element xk of the group algebra of W by

xk =
1

kr

∑
I⊆Π̃

ak,I
∑
w∈UI

w.

Equivalently, the coefficient of an element w in xk is

1

kr

∑
I⊆Π̃−Cdes(w)

ak,I .

This coefficient will be denoted by xk(w) throughout the paper. We will refer to these xk as Affine

k-shuffles. Note that xk(w) is not constant on conjugacy classes.

In type An−1 this says that the coefficient of w is xk is equal to 1
kn−1 multiplied by the number

of integers vectors (v1, · · · , vn) satisfying the conditions

1. v1 + · · ·+ vn = 0

2. v1 ≥ v2 ≥ · · · ≥ vn, v1 − vn ≤ k

3. vi > vi+1 if w(i) > w(i+ 1) (with 1 ≤ i ≤ n− 1)

4. v1 < vn + k if w(n) > w(1)

From Cellini (loc. cit.), it follows that the xk satisfy the following two desirable properties:

1. (Measure) The sum of the coefficients in the expansion of xk in the basis of group elements

is 1. Equivalently,

∑
I⊆Π̃

ak,I |UI | = kr.

In probabilistic terms, the element xk defines a probability measure on the group W .

2. (Convolution) xkxh = xkh.
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The above definition of xk is computationally convenient for this paper. We note that Cellini

(loc. cit.) constructed the xk in the following more conceptual way, when k is a positive integer.

Let Wk be the index kr subgroup of the affine Weyl group that is generated by reflections in the

hyperplanes corresponding to {α1, · · · , αr} and also the hyperplane {< x,−α0 >= k}. There are

kr unique minimal length coset representatives for Wk in the affine Weyl group, and xk is obtained

by projecting them to the Weyl group.

The following problem is very natural. We remark that for GSR riffle shuffles, Problem 1 was

studied by Hanlon [Han]. Diaconis has been a vigorous advocate of such questions, emphasizing

the link with convergence rates of Markov chains [D].

Problem 1: Determine the eigenvalues (and multiplicities) of xk acting on the group algebra by

left multiplication. More generally, recall that the Fourier transform of a probability measure P at

an irreducible representation ρ is defined as
∑

w∈W P (w)ρ(w). For each ρ, what are the eigenvalues

of this matrix?

To close the section, we state the analog of the DMP theorem.

Theorem 1 Let G be a simple, simply connected group defined over the algebraic closure of a

finite field Fq. Letting F be a Frobenius automorphism of G, suppose that G is F -split. Let c be a

semisimple conjugacy class of GF chosen uniformly at random. Then for all conjugacy classes C

of the Weyl group W ,

∑
w∈C

Probability(Φ(c) = C) =
∑
w∈C

Coef. of w in xq.

4 Type A Affine Shuffles

To begin, we derive four expressions for xk in type An−1. For this recall that the major index of

w is defined by maj(w) =
∑

i:1≤i≤n−1
w(i)>w(i+1)

i. It is the sum of the positions of the descents of w. The

notation
[n
k

]
denotes the q-binomial coefficient (qn−1)···(q−1)

(qk−1)···(q−1)(qn−k−1)···(q−1)
. Let Cm(n) denote the

Ramanujan sum
∑

k e
2πikn

m where k runs over integers prime to m satisfying 1 ≤ k ≤ m.

The following lemma of Von Sterneck (see [Ram] for a proof in English) will be helpful. We em-

phasize that it is only used in the derivation of the fourth formula for xk; the first three expressions

will not require it.

Lemma 2 ([V]) The number of ways of expressing n as the sum mod m of k ≥ 1 integers of the
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set 0, 1, 2, · · · ,m− 1 repetitions being allowed is

1

m

∑
d|m,k

(
m+k−d

d
k
d

)
Cd(n).

Recall that xk(w) is the coefficient of w in xk. For us partitions have the standard number

theoretic meaning as in [HarW].

Theorem 2 In type An−1, xk(w) is equal to any of the following:

1. 1
kn−1 multiplied by the number of partitions with ≤ n− 1 parts of size at most k− cd(w) such

that the total number being partitioned has size congruent to −maj(w) mod n.

2. 1
kn−1 multiplied by the number of partitions with ≤ k− cd(w) parts of size at most n− 1 such

that the total number being partitioned has size congruent to −maj(w) mod n.

3.

1

kn−1

∞∑
r=0

Coeff. of qr·n in

(
qmaj(w)

[
k + n− cd(w)− 1

n− 1

])
.

4.

1
nkn−1

∑
d|n,k−cd(w)

(n+k−cd(w)−d
d

k−cd(w)
d

)
Cd(−maj(w)) if k − cd(w) > 0

1
kn−1 if k − cd(w) = 0,maj(w) = 0 mod n

0 otherwise

Proof: From the definition of xk,

xk(w) =
1

kn−1

∑
I⊆Π̃−Cdes(w)

ak,I

=
1

kn−1

∑
v1+···+vn=0,v1≥···vn−1≥vn,v1−vn≤k,v⃗∈Zn,

vi>vi+1 if ei−ei+1∈Cdes(w), and v1−vn<k if α0∈Cdes(w)

1

=
1

kn−1
Coeff. of q0 in

∑
v1≥···vn−1≥vn,v1−vn≤k,v⃗∈Zn,

vi>vi+1 if ei−ei+1∈Cdes(w), and v1−vn<k if α0∈Cdes(w)

qv1+···+vn .

Given a vector (v1, · · · , vn) with
∑

i vi = 0, one can translate it to (v1− vn, v2− vn, · · · , 0). The last

coordinate of the new vector is 0 and the sum of the coordinates in this new vector is a multiple of

n. Abusing notation, we call this new vector (v1, · · · , vn). Thus
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xk(w) =
1

kn−1

∞∑
r=0

Coeff. of qr·n in
∑

k≥v1≥···vn−1≥vn=0,v⃗∈Zn

vi>vi+1 if ei−ei+1∈Cdes(w), and v1<k if α0∈Cdes(w)

q
∑

vi .

Now let v′i = vi− |{j : i ≤ j ≤ n− 1, w(j) > w(j+1)}|. Then the expression for xk(w) simplifies to

1

kn−1

∞∑
r=0

Coeff. of qr·n in
∑

k−cd(w)≥v′1≥···v′n−1≥v′n=0,v⃗∈Zn

q
∑

v′i+
∑

i
|{j:i≤j≤n−1,w(j)>w(j+1)}|

=
1

kn−1

∞∑
r=0

Coeff. of qr·n in qmaj(w)
∑

k−cd(w)≥v′1≥···v′n−1≥v′n=0,v⃗∈Zn

q
∑

v′i .

This proves the first assertion of the theorem. The second assertion follows from the first by

viewing partitions diagramatically and taking transposes. The third assertion follows from either

the first or second assertions together with the well-known fact that the generating function for

partitions with at most a parts of size at most b is the q-binomial coefficient
[
a+b
a

]
. The fourth

assertion follows from the second and Lemma 2. 2

Next we connect xk in type A with card shuffling. First we consider the case k = 2. Writing

xk =
∑

cww in the group algebra, the notation x−1
k will denote

∑
cww

−1.

Theorem 3 When W is the symmetric group S2n, the element (x2)
−1 has the following probabilistic

interpretation:

Step 1: Choose an even number between 1 and 2n with the probability of getting 2j equal to
(2n2j)
22n−1 . From the stack of 2n cards, form a second pile of size 2j by removing the top j cards of the

stack, and then putting the bottom j cards of the first stack on top of them.

Step 2: Now one has a stack of size 2n − 2j and a stack of size 2j. Drop cards repeatedly

according to the rule that if stacks 1, 2 have sizes A,B at some time, then the next card comes from

stack 1 with probability A
A+B and from stack 2 with probability B

A+B . (This is equivalent to choosing

uniformly at random one of the
(2n
2j

)
interleavings preserving the relative orders of the cards in each

stack).

The description of x−1
2 is the same for the symmetric group S2n+1, except that at the beginning

of Step 1, the chance of getting 2j is
(2n+1

2j )
22n

and at the beginning of Step 2, one has a stack of size

2n+ 1− 2j and a stack of size 2j.

Proof: We argue for the case S2n, the case of S2n+1 being similar. Recall that in type A2n−1 the

coroot lattice is all vectors with integer components and zero sum with respect to a basis e1, · · · , e2n,
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that αi = ei − ei+1 for i = 1, · · · , 2n− 1 and that α0 = e2n − e1. The elements of the coroot lattice

contributing to some a2,I are:

(0, 0, · · · , 0, 0) I = Π̃− α0

(1, 0, 0, · · · , 0, 0,−1) I = Π̃− {α1, α2n−1}

(1, 1, 0, 0, · · · , 0, 0,−1,−1) I = Π̃− {α2, α2n−2}

· · · · · ·

(1, 1, · · · , 1, 0, 0,−1, · · · ,−1,−1) I = Π̃− {αn−1, αn+1}

(1, 1, · · · , 1, 1,−1,−1, · · · ,−1,−1) I = Π̃− αn

One observes that the inverses of the permutations in the above card shuffling description for a

given j contribute to uI where

I =


Π̃− α0 if 2j = 0

Π̃− {αk, α2n−k} if 2j = 2min(k, 2n− k)

Π̃− αn if 2j = 2n

The total number of such permutations for a fixed value of j is
(2n
2j

)
, the number of interleavings

of 2n− 2j cards with 2j cards preserving the relative orders in each pile. Since
∑n

j=0

(2n
2j

)
= 22n−1,

and
∑

I⊆Π̃ a2,I |UI | = 22n−1, the proof is complete. 2

Note that when n is prime and k is a power of n, the only contribution in the fourth formula

comes from d = 1. Using this observation, the follow-up paper [F4] shows that under these condi-

tions, the element x−1
k is the same as a k riffle shuffle followed by a cut at a uniform position. This

observation (and Theorem 3) suggest the following

Problem 2: Is there a useful “physical” description of the elements xk in type A for integer

k > 2, which renders some of its algebraic properties more transparent? Such a description exists

for GSR riffle shuffles [BaD] and explains why a k1 shuffle followed by a k2 shuffle is a k1k2 shuffle.

Next we observe that for the identity conjugacy class in type A, Theorem 1 has the following

consequence.

Corollary 1 For any positive integer n and prime power q, the number of ways (disregarding order

and allowing repetition) of writing 0 mod q− 1 as the sum of n integers from the set 0, 1, · · · , q− 1

is equal to the number of ways (disregarding order and allowing repetition) of writing 0 mod n as

the sum of q − 1 integers from the set 0, 1, · · · , n− 1.
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Proof: Consider kn−1 multiplied by the coefficient of the identity in xq in type An−1. By part 2

of Theorem 2, this is the number of ways of writing 0 mod n as the sum of q − 1 integers from the

set 0, 1, · · · , n − 1. Theorem 1 states that this is the number of monic degree n polynomials over

Fq with constant term 1 which factor into linear terms. Working in the multiplicative group of Fq,

this is clearly the number of ways of writing 0 mod q − 1 as the sum of n integers from the set

0, 1, · · · , q − 1. 2

We remark that Corollary 1 holds for any positive integers n, q. This can be seen from Lemma

2. It independently appeared in an invariant theoretic setting in [EJP].

Next we reformulate Theorem 1 in type A in terms of generating functions. This makes its

number theoretic content more visible, because one side is mod n and the other side is mod k − 1.

For its proof, Lemma 3 will be helpful. We use the notation that fm,k,i,d is the coefficient of zm in

( z
kd−1
zd−1

)i/d.

Lemma 3 The number of size i aperiodic necklaces on the symbols {0, 1, · · · , k − 1} with total

symbol sum m is 1/i
∑

d|i µ(d)fm,k,i,d .

Proof: This is an elementary Mobius inversion running along the lines of a result in [Rei1]. 2

Theorem 4 Let ni(w) be the number of i-cycles in a permutation w. Then Theorem 1 in type A

implies the assertion (which we intentionally do not simplify) that for all n, k,

∑
m=0 mod n

Coef. of qmuntk in
∞∑
n=0

un

(1− tq) · · · (1− tqn)

∑
w∈Sn

tcd(w)qmaj(w)
∏

x
ni(w)
i

=
∑

m=0 mod k−1

Coef. of qmuntk in
∞∑
k=0

tk
∞∏
i=1

∞∏
m=1

(
1

1− qmxiui
)
1/i
∑

d|i µ(d)fm,k,i,d .

Proof: The left hand side is equal to

∑
w∈Sn

∑
m=0 mod n

Coef. of qmtk−cd(w) in
1

(1− tq) · · · (1− tqn)
qmaj(w)

∏
x
ni(w)
i

=
∑
w∈Sn

∑
m=0 mod n

Coef. of qm in

[
n+ k − cd(w)− 1

n− 1

]
qmaj(w)

∏
x
ni(w)
i ,

where the last step uses Theorem 349 on page 280 of [HarW]. Note by part 3 of Theorem 2 that

this expression is precisely the cycle structure generating function under the measure xk, multiplied

by kn−1.
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To complete the proof of the theorem, it must be shown that the right hand side gives the cycle

structure generating function for degree n polynomials over a field of k elements with constant term

1 (by complex analysis it is enough to argue for k a prime power). Let ϕ be a fixed generator of

the multiplicative group of the field Fk of k elements, and let τi be a generator of the multiplicative

group of the degree i extension of Fk, with the property that τ
(ki−1)/(k−1)
i = ϕ. Recall Golomb’s

correspondence [Go] between monic irreducible degree i polynomials over Fk and size i aperiodic

necklaces on the symbols {0, 1, · · · , k − 1}. This correspondence goes by taking any root of the

polynomial, expressing it as a power of τi and then writing this power base k and forming a

necklace out of the coefficients of 1, k, k2, · · · , ki−1. It is then easy to see that the norm of the

corresponding polynomial is ϕ raised to the sum of the necklace entries. The result now follows

from Lemma 3. Note that there is no m = 0 term because the polynomial z can not divide a

polynomial with constant term 1. 2

It is perhaps interesting to compare the generating function in Theorem 4 with a generating

function of a similar flavor. For w ∈ Sn let d(w) = 1 + |{i : w(i) > w(i+ 1), 1 ≤ i ≤ n− 1|. Thus

d(w) is one more than the number of linear descents. Gessel [Ges] proved that

∞∑
n=0

un

(1− t)(1− tq) · · · (1− tqn)

∑
w∈Sn

td(w)qmaj(w)
∏

x
ni(w)
i

=
∞∑
k=1

tk
∞∏
i=1

∞∏
m=0

(
1

1− qmxiui
)
1/i
∑

d|i µ(d)fm,k,i,d .

This raises the following

Problem 3: What is the joint generating function for permutations by cyclic descents, major

index, and cycle structure? Can it be used to resolve Statement 1 in Section 5 of [F4]?

We remark that Theorem 8 in [F4] is equivalent to a generating function for permutations by

cyclic descents and cycle strcuture.

5 Type C Affine Shuffles

This section studies the xk in type Cn. We recall that the elements of Cn can be viewed as signed

permutations w on the symbols 1, · · · , n. From the description of the root system of page 42 of

[Hu2], it follows that (ordering the integers 1 < 2 < 3 < · · · < · · · < −3 < −2 < −1 as in [Rei1])

1. w has a descent at position i for 1 ≤ i ≤ n− 1 if w(i) > w(i+ 1).
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2. w has a descent at position n if w(n) < 0.

3. w has a cyclic descent at position 1 if w(1) > 0.

For example the permutation 3 1 −2 4 5 has a cyclic descent at position 1 and descents at positions

1 and 3.

Lemma 4, which follows easily from Theorem 1 of [Ce2], gives a formula for xk.

Lemma 4 Let d(w) and cd(w) denote the number of descents and cyclic descents of w ∈ Cn. Then

the coefficient of w in xk is

1
kn
( k−1

2
+n−d(w)
n

)
k odd

1
kn
( k
2
+n−cd(w)

n

)
k even

Proof: For the first assertion, from Theorem 1 of [Ce2], the coefficient of w in xk is

1

kn

n∑
l=d(w)

(
k−1
2

l

)(
n− d(w)

l − d(w)

)
=

1

kn

n∑
l=d(w)

(
k−1
2

l

)(
n− d(w)

n− l

)

=
1

kn

n∑
l=0

(
k−1
2

l

)(
n− d(w)

n− l

)

=
1

kn

(
k−1
2 + n− d(w)

n

)
.

The second assertion is similar and involves two cases. 2

Proposition 1 shows that the elements xk in type C arise from physical models of card-shuffling

(a careful reading of [Ce2] suggests that Cellini essentially knew this for k = 2). The models which

follow were considered previously in the literature for the special cases k = 2 in [BaD] and for k = 3

(and implicitly for higher odd k) in [BB]. The higher k models and the implied formulas for card

shuffling resulting from combining Lemma 4 and Proposition 1 may be of interest (no formula is

given for the k = 2 case in [BaD]).

Proposition 1 The element x−1
k in type Cn has the following description:

Step 1: Start with a deck of n cards face down. Choose numbers j1, · · · , jk multinomially with

the probability of getting j1, · · · , jk equal to
( n
j1,···,jk

)
kn . Make k stacks of cards of sizes j1, · · · , jk

respectively. If k is odd, then flip over the even numbered stacks. If k is even, the flip over the odd

numbered stacks.

Step 2: Drop cards from packets with probability proportional to packet size at a given time.

Equivalently, choose uniformly at random one of the
( n
j1,···,jk

)
interleavings of the packets.
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Proof: The proof proceeds in several cases, the goal being to show that the inverse of the above

processes generate w with the probabilities in Lemma 4. We give details for one subcase–the

others being similar–namely even k when w satisfies cd(w) = d(w). (The other case for k even is

cd(w) = d(w) + 1). The inverse of the probabilistic description in the theorem is as follows:

Step 1: Start with an ordered deck of n cards face down. Successively and independently, cards

are turned face up and dealt into one of k uniformly chosen random piles. The even numbered piles

are then flipped over (so that the cards in these piles are face down).

Step 2: Collect the piles from pile 1 to pile k, so that pile 1 is on top and pile k is on the bottom.

Consider for instance the permutation w given in 2-line form by −2 3 1 4 − 6 − 5 7. Note that

this satisfies cd(w) = d(w) because the top card has a negative value (i.e. is turned face up). It is

necessary to count the number of ways that w could have arisen from the inverse description. This

one does using a bar and stars argument as in [BaD]. Here the stars represent the n cards, and the

bars represent the k − 1 breaks between the different piles. It is easy to see that each descent in

w forces the position of two bars, except for the first descent which only forces one bar. Then the

remaining (k − 1) − (2d(w) − 1) = k − 2d(w) bars must be placed among the n cards as k−2d(w)
2

consecutive pairs (since the piles alternate face-up, face-down). This can be done in
( k
2
+n−cd(w)

n

)
ways, proving the result. 2

We remark that Proposition 1 leads to a direct proof of the convolution property in type C.

Next recall the notion of total variation distance ||P1−P2|| between two probability distributions

P1 and P2 on a finite set X. It is defined as

1

2

∑
x∈X

|P1(x)− P2(x)|.

The book [D] explains why this is a natural and useful notion of distance between probability

distributions. The remainder of this section computes the total variation distance of an Affine type

C k-shuffle to uniform in the case that k is even. The paper [BaD] attributes an equivalent result

to Bob Beals when k is a power of 2 (unpublished), but with a quite different method of proof. We

omit the case of odd k as the convergence rate to randomness has been determined in [BB].

Lemma 5 Let Nr be the number of w in Cn with r cyclic descents. Let Ar be the number w in Sn

with r descents. Then Nr+1 = 2nAr.

Proof: Lemma 4 shows that the chance that an Affine Type C k shuffle gives a signed permutation

w is
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1

kn

(
k/2 + n− cd(w)

n

)
.

Using the fact that these shuffles are a probability measure and dividing both sides of the resulting

equation by 2n, it follows that

n∑
r=1

Nr

2n

(
k/2 + n− r

n

)
= (k/2)n.

This can be rewritten as

n−1∑
r=0

Nr+1

2n

(
k/2 + n− r − 1

n

)
= (k/2)n.

Since this is true for all k, the relation can be inverted to solve for Nr+1. In the theory riffle shuffles

[BaD] one gets the equation (Worpitzky’s identity)

n−1∑
r=0

Ar

(
k + n− r − 1

n

)
= kn

for all k. Thus Nr+1 = 2nAr as desired. 2

Theorem 5 The total variation distance of an Affine type C k shuffle with k even to uniform is

equal to the total distance of a GSR k/2 riffle shuffle on Sn to uniform.

Proof: Lemma 4 shows that the chance that an Affine type C k shuffle gives a signed permutation

w is

1

kn

(
k/2 + n− cd(w)

n

)
.

Thus the total variation distance is equal to

n−1∑
r=0

Nr+1

∣∣∣∣∣ 1kn
(
k/2 + n− r − 1

n

)
− 1

2nn!

∣∣∣∣∣
=

n−1∑
r=0

2nAr

∣∣∣∣∣ 1kn
(
k/2 + n− r − 1

n

)
− 1

2nn!

∣∣∣∣∣
=

n−1∑
r=0

Ar

∣∣∣∣∣ 1

(k/2)n

(
k/2 + n− r − 1

n

)
− 1

n!

∣∣∣∣∣ .
From [BaD], one recognizes this last expression as the total variation distance between a k/2 riffle

shuffle and uniform. 2
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6 Dynamical Systems

Much of this section relates to the enumeration of unimodal permutations by cycle structure. This

problem is given two solutions: one using a more fundamental result of Gannon [Ga] and symmetric

functions, and another using Theorem 1 and the factorization theory of palindromic polynomials

(which actually proves a more general result). Some asymptotic consequences are derived. We give

a new proof of a result of Reiner [Rei1].

A unimodal permutation w on the symbols {1, · · · , n} is defined by requiring that there is some

i with 1 ≤ i ≤ n such that the following two properties hold:

1. If a < b ≤ i, then w(a) < w(b).

2. If i ≤ a < b, then w(a) > w(b).

Thus i is where the maximum is achieved, and the permutations 12 · · ·n and nn−1 · · · 1 are counted

as unimodal. For each fixed i there are
(n−1
i−1

)
unimodal permutations with maximum i, hence a

total of 2n−1 such permutations. As noted in [Ga], unimodal permutations are those which avoid

the patterns 213 and 312.

Motivated by biology and dynamical systems, Rogers [Ro] posed the problem of counting uni-

modal permutations by cycle structure. This problem was solved by Gannon who gave a construc-

tive proof of the following elegant (and more fundamental) result. For its statement, one defines

the shape s of a cycle (i1 · · · ik) on some k distinct symbols (call them {1, · · · , k}) to be the cycle

(τ(i1) · · · τ(ik)) where τ is the unique order preserving bijection between {i1, · · · , ik} and {1, · · · , k}.

Thus the shape of (523) is (312).

Theorem 6 ([Ga]) Let s1, s2, · · · denote the possible shapes of transitive unimodal permutations.

Then the number of unimodal permutations with ni cycles of shape si is 2
l−1, where l is the number

of i for which ni > 0.

Theorem 6 can be rewritten in terms of generating functions.

Corollary 2 Let ns(w) be the number of cycles of w of shape s. Let |s| be the number of elements

in s. Then

1 +
∞∑
n=1

un

2n−1

∑
w∈Sn

w unimodal

∏
s shape

xns(w)
s =

∏
s shape

(
2|s| + xsu

|s|

2|s| − xsu|s|
)
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(1− u) +
∞∑
n=1

(1− u)un

2n−1

∑
w∈Sn

w unimodal

∏
s shape

xns(w)
s =

∏
s shape

(
2|s| + xsu

|s|

2|s| + u|s|
)(

2|s| − u|s|

2|s| − xsu|s|
)

Proof: For the first equation, consider the coefficient of
∏

s x
ns
s u

∑
|s|ns on the left hand side. It

is the probability that a uniformly chosen unimodal permutation on
∑

|s|ns symbols has ns cycles

of shape s. The coefficient on the right hand side is 2|{s:ns>0}|−n. These are equal by Theorem 6.

To deduce the second equation, observe that setting all xs = 1 in the first equation gives that

1

1− u
=

∏
s shape

2|s| + u|s|

2|s| − u|s|
.

Taking reciprocals and multiplying by the first equation yields the second equation. 2

The second equation in Corollary 2 has an attractive probabilistic interpretation. Fix u such

that 0 < u < 1. Then choose a random symmetric group so that the chance of getting Sn

is equal to (1 − u)un. Choose a unimodal w ∈ Sn uniformly at random. Then the random

variables ns(w) are independent, each having distribution a convolution of a binomial( u|s|

2|s|+u|s| )

with a geometric(1− u|s|

2|s|
).

As another illustration of the second equation in Corollary 2, we deduce the following corollary,

extending the asymptotic results in [Ga] that asymptotically 2/3 of all unimodal permutations have

fixed points and 2/5 have 2-cycles.

Corollary 3 In the n → ∞ limit, the random variables ns converge (in finite dimensional distri-

bution) to the convolution of a binomial( 1
2|s|+1

) with a geometric(1 − 1
2|s|

) and are asymptotically

independent.

Proof: The result follows from the claim that if f(u) is analytic in a circle of radius greater than

1, then the n → ∞ limit of the coefficient of un in f(u)
1−u is f(1). To verify the claim, write the Taylor

expansion f(u) =
∑∞

n=0 anu
n and observe that the coefficient of un in f(u)

1−u =
∑n

i=0 ai. 2

Rogers and Weiss [RogW] used dynamical systems to count the number of transitive unimodal

permutation on n symbols. We offer a proof using symmetric function theory. The paper [T]

generalizes this argument to arbitrary cycle types.

Some notation is needed. A subset D = {d1, · · · , dk} of {1, 2, · · · , n − 1} defines a composition

C(D) of n with parts d1, d2−d1, · · · , n−dk. A standard Young tableau is said to have a descent at
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position i if i+ 1 occurs in a row lower than i. The descent set of a standard Young tableau thus

defines a composition of n.

Lemma 6 The number of transitive unimodal permutations on n symbols is

1

2n

∑
d|n

d odd

µ(d)2
n
d .

Proof: Symmetric function notation from Chapter 1 of Macdonald [Mac] is used. Thus pλ, hλ

, eλ, sλ are the power sum, complete, elementary, and Schur symmetric functions parameterized by

a partition λ. From Theorem 2.1 of [GesR], the number of n cycles with descent set D is the inner

product of a Lie character Ln = 1
n

∑
d|n µ(d)p

n
d
d and a Foulkes character FC(D). From the proof

of Corollary 2.4 of [GesR], FC(D) =
∑

|λ|=n βλsλ where βλ is the number of standard tableaux of

shape λ with descent composition C(D). Thus the sought number is

<
1

n

∑
d|n

µ(d)p
n
d
d , en +

n−1∑
i=2

si,(1)n−i + hn > .

Expanding these Schur functions using exercise 9 on page 47 of [Mac], using the fact that the pλ are

an orthogonal basis of the ring of symmetric functions with known normalizing constants (page 64

of [Mac]), and using the expansions of en and hn in terms of the pλ’s (page 25 of [Mac]) it follows

that

<
1

n

∑
d|n

µ(d)p
n
d
d , en +

n−1∑
i=2

si,(1)n−i + hn >

= <
1

n

∑
d|n

µ(d)p
n
d
d ,

∑
i even

hien−i >

=
1

n

∑
d|n

µ(d) < p
n
d
d ,

∑
i=1,···, n

d
di even

hdien−di >

=
1

n

∑
d|n

µ(d) < p
n
d
d , p

n
d
d

∑
i=1,···, n

d
di even

(−1)n−di−n
d
+i

d
n
d i!(nd − i)!

>

=
1

n

∑
d|n

µ(d)(−1)n−
n
d

∑
i=1,···, n

d
di even

(−1)i
(

n
d

i

)

=
1

2n

∑
d|n

d odd

µ(d)2
n
d .

2

Corollary 2 and Lemma 6 have the following immediate consequence.
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Corollary 4 Let ni(w) be the number of i-cycles of a permutation w. Then

1 +
∞∑
n=1

un

2n−1

∑
w∈Sn

w unimodal

∏
i

x
ni(w)
i =

∏
i

(
2i + xiu

i

2i − xiui
)

1
2i

∑
d|i

d odd

µ(d)2
i
d

.

Theorem 1 will yield a second proof of the enumeration of unimodal permutations by cycle

structure by relating the problem to the factorization theory of palindromic polynomials over finite

fields. The first step is to reformulate Theorem 1 in type C. The following lemmas, the first of

which is well known, will be helpful. The symbol µ denotes the Moebius function of elementary

number theory.

Lemma 7 The number of degree n irreducible polynomials over Fq is equal to

1

n

∑
d|n

µ(d)qn/d.

Lemma 8 ([FNP]) Let e = 1 if q is even and e = 2 if q is odd. Then the number of monic, degree

n polynomials f(z) over Fq with non-zero constant coefficient and invariant under the involution

f(z) 7→ f(0)−1znf(1z ) is
e if n = 1

0 if n is odd and n > 1

1
n

∑
d|n

d odd

µ(d)(q
n
2d + 1− e) Otherwise

Recall that xq(w) denotes the coefficient of w in xq.

Theorem 7 Let e = 1 if q is even and e = 2 if q is odd. Let λi(w) and µi(w) be the number of

positive and negative i-cycles of a signed permutation w in Cn. Then

1 +
∑
n≥1

unqn
∑

w∈Cn

xq(w)
∏
i≥1

x
λi(w)
i y

µi(w)
i

= (
1

1− x1u
)e−1

∏
m≥1

(
1 + ymum

1− xmum
)

1
2m

∑
d|m

d odd

µ(d)(q
m
d +1−e)

.

Proof: One argues separately for odd and even characteristic and first for prime powers. Taking

the coefficient of un
∏

i x
λi
i yµi

i on the left hand side of this equation and dividing by qn gives by

Lemma 4 the probability that w chosen according to the xq probability measure is in a conjugacy

class with λi positive i-cycles and µi negative i-cycles for each i. By Theorem 1, to verify the
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theorem for even prime powers it is enough to show that the coefficient of un
∏

i x
λi
i yµi

i on the right

hand side of this equation is the number of degree 2n monic self-conjugate polynomials over Fq

which factor as

∏
{ϕj ,ϕ̄j}

[ϕjϕ̄j ]
rϕj

∏
ϕj :ϕj=ϕ̄j

ϕ
sϕj
j

(with ϕj where sϕj
∈ {0, 1}) and λi =

∑
ϕ:deg(ϕ)=i rϕ and µi =

∑
ϕ:deg(ϕ)=2i sϕ. This follows readily

from Lemmas 7 and 8. The theorem now follows for arbitrary q since two functions analytic in a

region and agreeing on a set with an accumulation point (q = ∞) in that region must be equal. 2

Corollary 5 deduces the enumeration of unimodal permutations by cycle structure.

Corollary 5 Let ni(w) be the number of i-cycles of w ∈ Sn. Then

1 +
∞∑
n=1

un

2n−1

∑
w∈Sn

w unimodal

∏
i

x
ni(w)
i =

∏
i

(
2i + xiu

i

2i − xiui
)

1
2i

∑
d|i

d odd

µ(d)2
i
d

.

Proof: Given Theorem 7 with q = 2, it is enough to define a 2 to 1 map η from the 2n type Cn

characteristic 2 shuffles to unimodal elements of Sn, such that η preserves the number of i-cycles

for each i, disregarding signs. To define η, recalling Proposition 1 observe that the 2 shuffles are all

ways of cutting a deck of size n, then flipping the first pack, and choosing a random interleaving.

For instance if one cuts a 12 card deck at position 6, such an interleaving could be

[−6,−5, 7, 8,−4, 9,−3, 10,−2, 11,−1, 12].

Observe that taking the inverse of this permutation and disregarding signs gives

[11, 9, 7, 5, 2, 1, 3, 4, 6, 8, 10, 12].

Next one conjugates by the involution transposing each i with n + 1 − i, thereby obtaining a

unimodal permutation. Note that this map preserves cycle structure, and is 2 to 1 because the first

symbol (in the example −6, can always have its sign reversed yielding a possible shuffle). 2

The following corollary describes the n → ∞ asymptotics of cycle structure for type C affine q

shuffles. We omit the proof, which is essentially the same as Corollary 3.

Corollary 6 Let λi(w) and µi(w) be the number of positive and negative i-cycles of a signed

permutation w in Cn.
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1. Fix u such that 0 < u < 1. Then choose a random hyperoctahedral group so that the chance

of getting Cn is equal to (1− u)un. Choose w ∈ Cn according to the affine q shuffle measure.

Then the random variables {λm, µm} are independent. The λm (m ≥ 2) are distributed as

the convolution of 1
2m

∑
d|m µ(d)(qm/d + 1 − e) many geometrics with parameter 1 − um

qm and

λ1 is distributed as the convolution of 1
2(q + e − 1) many geometrics with parameter 1 − u

q .

The µm are distributed as the convolution of 1
2m

∑
d|m µ(d)(qm/d+1−e) many binomials with

parameter um/qm

1+um/qm .

2. Choose w ∈ Cn according to the affine q shuffle measure. Then in the n → ∞ limit, any finite

number of the random variables {λm, µm} are independent. The λm (m ≥ 2) are distributed

as the convolution of 1
2m

∑
d|m µ(d)(qm/d+1− e) many geometrics with parameter 1− 1

qm and

λ1 is distributed as the convolution of 1
2(q + e − 1) many geometrics with parameter 1 − 1

q .

The µm are distributed as the convolution of 1
2m

∑
d|m µ(d)(qm/d+1−e) many binomials with

parameter 1/qm

1+1/qm .

Remark: Type Cn shuffles also relate to dynamical systems in another way, analogous to the

type A construction for Bayer-Diaconis shuffles [BaD]. Here we describe the case k = 2. One drops

n points in the interval [−1, 1] uniformly and indepedently. Then one applies the map x 7→ 2|x|−1.

The resulting permutation can be thought of as a signed permutation, since some points preserve

and some reverse orientation. From Proposition 1, this signed permutation obtained after iterating

this map r times has the distribution of the type Cn shuffle with k = 2r. Lalley [La1] studied

the cycle structure of random permutations obtained by tracking n uniformly dropped points after

iterating a map a large number of times. His results applied to piecewise monotone maps, and he

proved that the limiting cycle structure is a convolution of geometrics. Hence Corollary 6 shows

that Lalley’s results do not extend to functions such as x 7→ 2|x| − 1.

As a final result, we deduce a new proof of the following result of Reiner. Here d(w) denotes

the number of descents of w ∈ Cn.

Corollary 7 ([Rei1])

∑
n≥0

un

(1− t)n+1

∑
w∈Cn

td(w)+1
∏
i

x
λi(w)
i y

µi(w)
i

=
∑
k≥0

tk
1

1− x1u

∏
m≥1

(
1 + ymum

1− xmum
)

1
2m

∑
d|m

m odd

µ(d)((2k−1)m/d−1)
.
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Proof: Taking coefficients of tk on both sides of the equation under question and then setting

q = 2k − 1 gives the equation

∑
n≥0

un
∑

w∈Cn

(
q−1
2 + n− d(w)

n

)∏
i

x
λi(w)
i y

µi(w)
i =

1

1− x1u

∏
m≥1

(
1 + ymum

1− xmum
)

1
2m

∑
d|m

m odd

µ(d)(qm/d−1)
.

However this equation follows from Theorem 7 for odd q and Lemma 4. 2

7 Proof of Theorem 1: The Brauer Complex

The purpose of this section is to report a proof, due to Professor Roger Carter, of Theorem 1.

The proof uses a geometric object called the Brauer complex. All relevant background (including

pictures) can be found in Section 3.8 of [C1]. The early version of this paper (Cellini’s ...) attempted

(unsuccessfully) to exploit the geometric set-up.

Let Y be the coroot lattice and W the Weyl group, so that < Y,W > is the affine Weyl group.

The group < Y,W > acts on the vector space Y ⊗R with Y acting by translations Ty : v 7→ v + y

and W acting by orthogonal transformations. The affine Weyl group has a fundamental region in

Y ⊗R given by

Ā1 = {v ∈ Y ⊗R| < αi, v >≥ 0 for i = 1, · · · , r, < −α0, v >≤ 1}.

Let Qp′ be the additive group of rational numbers s
t where s, t ∈ Z and t is not divisible by p (the

characteristic). Proposition 3.8.1 of [C1] shows that there is an action of F on Āp′ = Ā1∩ (Y ⊗Qp′)

given by taking the image of v ∈ Āp′ to be the unique element of Āp′ equivalent to F (v) under

< Y,W >.

We highlight the following facts.

Fact 1: (Proposition 3.7.3 of [C1]) The qr semisimple conjugacy classes of GF are in bijection

with the qr elements of Āp′ which are stable under the action of F .

As an example, for type A2 with q = 3, the 9 stable points are

1. (0, 0, 0),(1/2, 0,−1/2) corresponding to polynomials that factor into linear pieces

2. (1/4, 0,−1/4), (4/8, 1/8,−5/8), (5/8,−1/8,−4/8) corresponding to polynomials that are a

product of a linear and a degree 2 factor

3. (6/26, 2/26,−8/26), (8/26,−2/26,−6/26)(10/26, 4/26,−14/26), and (14/26,−4/26,−10/26)

corresponding to irreducible polyomials.
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The point v = (4/8, 1/8,−5/8) for instance is stable because 3v = v(23) + (1, 1,−2).

We remark that this bijection is not entirely canonical, because the isomorphism between the

multiplicative group of the algebraic closure of Fq and Qp′/Z (Proposition 3.1.3 of [C1]) is not

entirely canonical. In other words, we have chosen (a consistent set of) generators of the multi-

plicative groups of all of the finite extensions of Fq. The bijection in Fact 1 is canonical only after

this choice.

Fact 2: (Corollary 3.8.3 of [C1]) There is a bijection between semisimple conjugacy classes in

GF and simplices of maximal dimension in the Brauer complex.

For all that follows,

Āq = {v ∈ Y ⊗R :< αi, v >≥ 0 for i = 1, · · · , r, < −α0, v >≤ q}

Let I(y) be the set of αi with i ∈ {0, 1, · · · , r} such that y lies on the i-boundary wall of Āq.

We now describe Professor Carter’s proof of Theorem 1.

Proof: The proof proceeds in two steps. Step 1 is to show that there is a bijection between

semisimple classes c in GF and pairs (y, w) ∈ Y ×W such that y ∈ Y ∩Āq and I(y)∩Cdes(w−1) = ∅.

Step 2 is to show that Φ(c) is conjugate to w. The theorem then follows from the definition of xq.

Step 1: It is known that there is a bijection between simplices of maximal dimension in the

Brauer complex and elements ω in the affine Weyl group such that ω(Ā1) ⊂ Āq. The alcoves ω(Ā1)

are all obtained by first transforming by w ∈ W to give w(Ā1) and then translating by Ty for some

y ∈ Y . Let S be the union of the alcoves w(Ā1) for w ∈ W ; S is called the basic star. The sets

Ty(S) are called the stars and the centers of the stars are the elements of Y .

Each alcove ω(Ā1) which lies in Āq lies in some star whose center lies in Y ∩ Āq. Conversely,

if y ∈ Y ∩ Āq we wish to know which alcoves in the star Ty(S) lie in Āq. If y does not lie on any

boundary wall of Āq all alcoves in Ty(S) lie in Āq. If y lies on the boundary wall corresponding

to i ∈ {0, 1, · · · , r} then the alcove Tyw(Ā1) lies on the Āq-side of this boundary wall if and

only if w−1(αi) is a positive root. This can be seen by looking at the star S. Thus there is a

bijection between semisimple classes c in GF and pairs (y, w) ∈ Y ×W such that y ∈ Y ∩ Āq and

I(y) ∩ Cdes(w−1) = ∅.

Step 2: Let T0 be a maximal split torus of G and let Y0 = Hom(Qp′/Z, T0) be its co-character

group. Let T be an F -stable maximal torus of G obtained from T0 by twisting with w ∈ W . We

have conjugation maps T 7→ T0, Y 7→ Y0. Under these maps F : Y 7→ Y maps to w−1F : Y0 7→ Y0.

Let ω be an element of the affine Weyl group such that ω(Ā1) ⊂ Āq. From Section 3.8 of
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[C1], Ā contains a unique p satisfying F−1ω(p) = p i.e. F (p) = pw + y0. Let the walls of Āq be

H0,H1, · · · ,Hn. Let J = {i : p ∈ Hi}. J is a proper subset of {0, 1, · · · , n}. The roots αi, i ∈ J form

a simple system ΠJ in a subsystem ΦJ ⊂ Φ. From page 102 of [C1] the point p maps to an element

t0 ∈ T0. Then F (t0) = tw0 and t0 lies in the semisimple conjugacy class of GF corresponding to the

point p. ΦJ can be identitied with the root system of the centralizer of the semisimple conjugacy

class of GF corresponding to the point t0.

To complete the proof of Step 2, it suffices to show (by Lemma 1) that w(Φ+
J ) = Φ+

J . The

construction of the point p as the intersection of a sequence of increasingly small alcoves, each

obtained from the previous one by a map F−1ω which preserves the type of the walls, shows that

p lies in the J-face of Āq and of ω(Ā1) (the J-face of Āq is the intersection of the Hi for i ∈ J).

For i ∈ J let the wall Hi of Āq coincide with the wall of type j of ω(Ā1). The root orthogonal to

Hi pointing into Āq is αi. Consider the root orthogonal to the wall of type j for ω(Ā1) pointing

into ω(Ā1). Since ω(Ā1) = Ty0(w(Ā1)) this is the root orthogonal to the wall of type j for w(Ā1)

pointing into w(Ā1). This is the root w(αj) since the wall of type j for w(Ā1) is the image under

w of the wall of type j for Ā1. Hence αi = w(αj). This shows, since i, j ∈ J , that w(ΠJ) = ΠJ .

Hence w(Φ+
J ) = Φ+

J , as desired. 2

The results of this section raise

Problem 4: Is there an analog of the Brauer complex that sheds light on the problems in [F3],

or gives a general type Gessel/Reutenauer bijection?
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