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We study the combinatorics of addition using balanced 
digits, deriving an analog of Holte’s “amazing matrix” for 
carries in usual addition. The eigenvalues of this matrix 
for base b balanced addition of n numbers are found to be 
1, 1/b, · · · , 1/bn, and formulas are given for its left and right 
eigenvectors. It is shown that the left eigenvectors can be 
identified with hyperoctahedral Foulkes characters, and that 
the right eigenvectors can be identified with hyperoctahedral 
Eulerian idempotents. We also examine the carries that occur 
when a column of balanced digits is added, showing this 
process to be determinantal. The transfer matrix method 
and a serendipitous diagonalization are used to study this 
determinantal process.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper studies the combinatorics of “carries” in basic arithmetic, using balanced 
digits. To begin we describe the motivation for using balanced digits. When ordinary 
integers are added, carries occur. Consider a carries table with rows and columns indexed 
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by digits 0, 1, · · · , b − 1 (working base b) and a carry at (i, j) if i + j ≥ b. Thus when 
b = 5, labeling the rows and columns in the order 0, 1, 2, 3, 4 the carries matrix is

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 b

0 0 0 b b

0 0 b b b

0 b b b b

⎞
⎟⎟⎟⎟⎠ .

In general there are 
(
b
2
)

carries (so 10 when b = 5). If digits are chosen uniformly at 
random, the chance of a carry is 

(
b
2
)
/b2 = 1

2 − 1
2b .

The digits 0, 1, · · · , b −1 can be thought of as coset representatives for bZ ⊆ Z and the 
carries are cocycles [14]. For b odd (as assumed throughout this paper), consider instead 
the balanced representatives 0, ±1, · · · ± (b − 1)/2. One motivation for using balanced 
representatives is that they lead to fewer carries. For example, when b = 5, writing j for 
−j, the digits are {0, 1, 1, 2, 2}. Labeling the rows and columns in the order 2, 1, 0, 1, 2, 
the carries matrix is ⎛

⎜⎜⎜⎜⎝
b b 0 0 0
b 0 0 0 0
0 0 0 0 0
0 0 0 0 b

0 0 0 b b

⎞
⎟⎟⎟⎟⎠ .

(For example, (−2) + (−2) = −4 = −5 + 1.) Here there are 6 carries versus 10 for the 
classical choice. For general b, balanced carries lead to (b2 − 1)/4 carries. This is the 
smallest number possible [2,12].

Balanced digits are elementary but unfamiliar: for example in base 5, 13 is equal to 
122, and −9 is equal to 21. Negating numbers negates the digits and the sign of the 
number is the sign of its left-most digit. Balanced digits were introduced in 1726 by 
Colson [7]; see Cajori [6] or Chapter 4 of Knuth [16] for history and applications.

Of course, balanced digits may be used for addition with larger numbers. For example:

1011000

1212210
1112221

1210111

Here the numbers along the top row are the carries. When two numbers are added 
the possible carries are 0, 1, 1. If n numbers are added, the possible carries are 
−�n

2 �, · · · , �
n
2 �.

Suppose now that balanced digits base b are used, n numbers are added, and that 
the digits are chosen uniformly at random in { b−1 , · · · b−1}. Consider the carries along 
2 2
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the top, from right to left as κ1, κ2, · · ·. (Thus κ1 = 0 always.) It is easy to see that the 
{κi} form a Markov chain on the set −�n

2 �, · · · , �
n
2 �. For the classical choice of digits, 

this Markov chain was analyzed by Holte [13], with follow-up reviewed later in this 
introduction.

Let K(i, j) denote the transition matrix of the balanced carries Markov chain. Of 
course K(i, j) depends on b and n but this is suppressed. In the case that n is odd, 
we find that the matrix K(i, j) is the same as Holte’s amazing matrix for usual carries. 
However when n is even, new results emerge. In particular, the stationary distribution 
of the Markov chain is given by

π(j − n/2) = A(n, j)
2nn! 0 ≤ j ≤ n.

Here the A(n, j) are “signed Eulerian numbers”, defined carefully in Section 3. In par-
ticular, for n = 2, the chance of a carry −1, 0, 1 is 1

8 , 
3
4 , 

1
8 respectively. We find explicit 

formulae for the left and right eigenvectors of the balanced carries chain; we show that 
the left eigenvectors can be identified with Miller’s hyperoctahedral Foulkes characters 
[17], and that the right eigenvectors can be identified with hyperoctahedral Eulerian 
idempotents of Bergeron and Bergeron [3]. Before we finished writing this paper, the 
preprint [18] appeared, and there is some overlap with our work; one can deduce our 
formula for the left eigenvectors of K(i, j) from their paper.

Next we give a brief historical overview of the “type A” work that motivated this 
paper. The Markov chain of carries when n random integers are added mod b (with the 
usual choice of digits) was first studied by Holte [13], who dubbed the matrix “amazing”. 
He found that the eigenvalues are 1, 1/b, 1/b2, · · · , 1/bn−1, and identified the stationary 
distribution as A(n, k)/n!, with A(n, k) the kth Eulerian number—the number of per-
mutations in Sn with k descents. This says what percent of carries are k (0 ≤ k ≤ n −1). 
Holte further found closed formulae for the left and right eigenvectors of the transition 
matrix.

The connection between carries and shuffling was developed by the present au-
thors. The first proofs used generating functions and symmetric function theory [8], 
and an “aha” bijective proof was later found in [9]. An algebraic combinatorics proof 
appeared in [20] and Pang [21] studied the entire descent pattern after shuffles us-
ing Hopf algebras. Further connections between carries and shuffling can be found in 
[19], which appeared after the current paper. We note that Holte’s amazing matrix 
also appears in algebraic geometry, giving the Hilbert series of the Veronese embedding 
[5,8].

The connection of carries with Foulkes characters and Eulerian idempotents appears 
in [10], which identifies the left eigenvectors of Holte’s matrix with the Foulkes charac-
ters of the symmetric groups, and the right eigenvectors with the Eulerian idempotents. 
The transition to other types of reflection groups is studied in Miller [17], and we iden-
tify the left eigenvectors of the balanced carries chain with Miller’s hyperoctahedral
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Foulkes characters. We give a new proof of Miller’s recurrence for hyperoctahedral 
Foulkes characters. We also identify the right eigenvectors of the balanced carries chain 
with the Eulerian idempotents of the hyperoctahedral groups. For a different proof con-
necting the inverse of the Foulkes character table with Eulerian idempotents, one can 
see [17].

The above results describe “carries across the top”, when several long numbers 
are added. It is also fruitful to study the “carries down a column” when a sin-
gle column of random digits is added. For ordinary addition, this was studied in 
[4], which showed that the positions of the carries form a one-dependent determi-
nantal point process, with explicitly computable correlation functions. We use the 
transfer matrix method and a serendipitous diagonalization to show that the same 
is true for “carries down a column” when a column of random balanced digits is 
added.

Carries and cocycles make sense for any subgroup H of any group G. Choosing coset 
representatives X for H in G and then picking elements x in X from some natural 
probability distribution leads to a carries process. This is developed in [4] and [12]. 
Developing a parallel theory involving a nested sequence of subgroups (as in the present 
paper) suggests a world of math to be done.

The organization of this paper is as follows. Section 2 begins by deriving an ana-
log of Holte’s amazing matrix for balanced carries. When an odd number of numbers 
is added, we show that this reduces to Holte’s amazing matrix for ordinary carries, 
and when an even number of numbers is added, we show that it reduces to the type 
B carries chain of [8]. The argument is similar to Holte’s, and the result can also 
be deduced from the paper [18]. Section 3 shows that the eigenvalues of the carries 
chain are 1, 1/b, · · · , 1/bn and studies its left eigenvectors, giving an explicit formula 
and identifying them with Miller’s hyperoctahedral Foulkes characters. Section 4 gives 
a formula for its right eigenvectors, relating them to hyperoctahedral Eulerian idem-
potents. Section 5 studies “balanced carries down a column” as a determinantal point 
process.

2. Amazing matrix for balanced carries

We work in an odd base b, with digits 0, ±1, ±2, · · · , ±(b − 1)/2. For reasons which 
become clear in the remarks following Theorem 2.1, we add an even number n of 
numbers. Then the carries range from −n

2 to n
2 , and form a Markov chain on the 

set {−n
2 , −

n
2 + 1, · · · , n2 − 1, n2 }. Theorem 2.1 works out the transition matrix for this 

Markov chain.

Theorem 2.1. Let K(i, j) be the transition probability of the balanced carries Markov 
chain on the set {−n

2 , −
n
2 + 1, · · · , n2 − 1, n2 }, corresponding to the addition of an even 

number n of numbers. Then K(i, j) is equal to both:
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(1) The coefficient of xjb+(n+1)(b−1)/2−i in (1 + x + · · · + xb−1)n+1/bn.
(2)

1
bn

�j+n+1
b

b−1
2 − i

b �∑
l=0

(−1)l
(
n + 1

l

)(
n + jb + (n + 1) b−1

2 − i− lb

n

)
.

As an example of Theorem 2.1, when n = 2, with the rows indexed by i = −1, 0, 1
and the columns indexed by j = −1, 0, 1, the transition matrix is, for all odd b,

K(i, j) = 1
b2

⎛
⎜⎝

b2+4b+3
8

3
4(b2 − 1) b2−4b+3

8
b2−1

8
3b2+1

4
b2−1

8
b2−4b+3

8
3
4(b2 − 1) b2+4b+3

8

⎞
⎟⎠ .

Proof of Theorem 2.1. Suppose that the carry into a column is i, with −n
2 ≤ i ≤ n

2 . Let 
the n digits in the column be X1, · · · , Xn, with −(b − 1)/2 ≤ Xi ≤ (b − 1)/2 for all i. 
Then the carry to the next column is j precisely if

jb− (b− 1)/2 ≤ i + X1 + · · · + Xn ≤ jb + (b− 1)/2.

Letting X ′
i = Xi + (b − 1)/2 for all i, one has that 0 ≤ X ′

1, · · · , X ′
n ≤ b − 1, and that the 

carry to the next column is j exactly when

jb− (b− 1)/2 ≤ i + X ′
1 + · · · + X ′

n − n(b− 1)/2 ≤ jb + (b− 1)/2,

which is equivalent to

jb + (n− 1)(b− 1)/2 − i ≤ X ′
1 + · · · + X ′

n ≤ jb + (n + 1)(b− 1)/2 − i.

Thus K(i, j) is equal to 1/bn multiplied by the number of solutions to

X ′
1 + · · · + X ′

n + Y = jb + (n + 1)(b− 1)/2 − i,

where 0 ≤ Y ≤ b − 1. This is equal to 1/bn multiplied by the coefficient of 
xjb+(n+1)(b−1)/2−i in (1 + x + · · · + xb−1)n+1, proving part 1.

For part 2, let [xa]f(x) denote the coefficient of xa in f(x). Then by part 1,

K(i, j) = 1
bn

[
xjb+(n+1)(b−1)/2−i

](1 − xb

1 − x

)n+1

= 1
bn

∑
l≥0

(−1)l
(
n + 1

l

)[
xjb+(n+1)(b−1)/2−i−lb

]
(1 − x)−(n+1)

= 1
bn

�j+n+1
b

b−1
2 − i

b �∑
l=0

(−1)l
(
n + 1

l

)(
n + jb + (n + 1) b−1

2 − i− lb

n

)
. �
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Remarks.

(1) The type B carries chain in the paper [8] has the same transition matrix as the 
balanced chain, when the number of numbers being added is even. More precisely 
the chain in the paper [8] has state space {0, 1, · · · , n}, and the balanced chain has 
state space {−n/2, · · · , 0, · · · , n/2}. The chance that the type B chain in [8] (with b
replaced by (b − 1)/2) goes from i to j is the same as the chance that the balanced 
chain goes from i − n/2 to j − n/2. This follows immediately by comparing the 
formula in part 1 of Theorem 4.2 of [8] with the formula in Theorem 2.1.

(2) Consider the balanced carries chain when adding an odd number n of numbers. 
This is a Markov chain on the set {−(n − 1)/2, · · · , (n − 1)/2}, with transition 
probabilities given by Theorem 2.1 above. This is the same as Holte’s carries chain 
[13] on {0, 1, · · · , n − 1}. More precisely, for all 0 ≤ i, j ≤ n − 1, the chance that 
Holte’s chain moves from i to j is equal to the chance that the balanced chain moves 
from i − (n − 1)/2 to j− (n − 1)/2. This follows by comparing the formula in Holte’s 
paper with the formula in Theorem 2.1 above.

(3) Letting Kb denote the base b balanced carries transition matrix, one has that KaKb =
Kab. This follows from the fact (proved in Sections 3 and 4) that the eigenvalues of 
Kb are 1, 1/b, · · · , 1/bn, and that the eigenvectors are independent of b.

(4) While it is not emphasized here, the papers [8,9] develop a card shuffling interpre-
tation of the transition matrix and a host of card shuffling interpretations of the 
spectral properties developed here.

(5) Balanced arithmetic can be developed for even bases. For example, when b = 10
choose digits 0, ±1, ±2, ±3, ±4, 5 (or replace 5 by −5). The results seem similar but 
we have not fully worked out the details.

3. Left eigenvectors of the amazing matrix for balanced carries

This section studies the left eigenvectors of the balanced carries matrix when an even 
number n of numbers is added. The eigenvalues turn out to be 1, 1/b, 1/b2, · · · , 1/bn, and 
we derive an explicit formula for the left eigenvectors, identifying them with hyperocta-
hedral Foulkes characters. In particular, these eigenvectors turn out to be independent 
of b. The left and right eigenvectors have myriad uses for quantifying rates of convergence 
and the behavior of features of the carries process. These are detailed in Section 2 of [11].

Theorem 3.1. Let K be the transition matrix of the balanced carries chain of Section 2. 
The jth left eigenvector of K (where 0 ≤ j ≤ n), corresponding to the eigenvalue 1/bj, 
evaluated at the state i (where −n/2 ≤ i ≤ n/2), is given by

vnj [i] =
i+n/2∑
r=0

(−1)r
(
n + 1
r

)
(n + 2i− 2r + 1)n−j .
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For example, when n = 2, the matrix whose rows are the left eigenvectors of K with 
eigenvalue 1/bj (with 0 ≤ j ≤ 2) is given by

⎛
⎝ 1 6 1

1 0 −1
1 −2 1

⎞
⎠ .

When n = 4, the matrix of left eigenvectors is

⎛
⎜⎜⎜⎜⎝

1 76 230 76 1
1 22 0 −22 −1
1 4 −10 4 1
1 −2 0 2 −1
1 −4 6 −4 1

⎞
⎟⎟⎟⎟⎠ .

The left eigenvector corresponding to the eigenvalue 1 is proportional to the stationary 
distribution of the balanced carries chain. This has an interpretation in terms of descents 
of signed permutations, analogous to Holte’s interpretation of the stationary distribution 
of the usual carries chain in terms of descents in ordinary permutations. To describe this, 
we use the linear ordering

1 < 2 < · · · < n < −n < · · · < −2 < −1.

We say that

(1) σ has a descent at position i (1 ≤ i ≤ n − 1) if σ(i) > σ(i + 1).
(2) σ has a descent at position n if σ(n) < 0.

For example, −1 −2 −3 has three descents.
Let A(n, k) denote the number of signed permutations on n symbols with k descents. 

From Corollary 4.6 of [8], one has that

A(n, k) =
k∑

r=0
(−1)r

(
n + 1
r

)
(2k − 2r + 1)n.

Hence Theorem 3.1 implies that vn0 [i] is equal to the number of signed permutations with 
i +n/2 descents. For example when n = 4, the entries of the left eigenvector 1 76 230 76 1
are the number of signed permutations on 4 symbols with 0, 1, 2, 3, 4 descents respectively.

Next we proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. First note that 
∑i+n/2

r=0 (−1)r
(
n+1
r

)
(n + 2i − 2r + 1)n−j is the 

coefficient of x2i+n+1 in
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∑
r≥0

(−1)r
(
n + 1
r

)
x2r ·

∑
k≥0

kn−jxk =
(
1 − x2)n+1 ∑

k≥0

kn−jxk.

Using the well-known fact (easily proved by induction) that

∑
k≥0

knxk =
(
x
d

dx

)n

(1 − x)−1, (1)

it follows that vnj [i] is the coefficient of x2i+n+1 in

(
1 − x2)n+1

(
x
d

dx

)n−j

(1 − x)−1.

Note that

(
1 − x2)n+1

(
x
d

dx

)n−j

(1 − x)−1

is a polynomial of degree 2n + 1 (being equal to (1 + x)n+1(1 − x)j multiplied by the 
Eulerian polynomial (1 − x)n−j+1(x d

dx )n−j(1 − x)−1 of degree n − j).
Thus, using the notation for [xa]f(x) as the coefficient of xa in a power series f(x), 

it follows that

n/2∑
i=−n/2

K(i, k) · vnj [i]

=
∞∑

i=−∞
K(i, k) · vnj [i]

= 1
bn

∞∑
i=−∞

∑
l≥0

(−1)l
(
n + 1

l

)[
xkb+(n+1)(b−1)/2−i−lb

]
(1 − x)−(n+1) · vnj [i]

= 1
bn

∞∑
i=−∞

[
x2i+n+1](1 − x2)n+1

(
x
d

dx

)n−j

(1 − x)−1

·
∑
l≥0

(−1)l
(
n + 1

l

)[
xkb+(n+1)(b−1)/2−i−lb

]
(1 − x)−(n+1)

= 1
bn

∞∑
i=−∞

[
x2i+n+1](1 − x2)n+1

(
x
d

dx

)n−j

(1 − x)−1

·
∑
l≥0

(−1)l
(
n + 1

l

)[
x2kb+(n+1)(b−1)−2i−2lb](1 − x2)−(n+1)

= 1
bn

∑
(−1)l

(
n + 1

l

)[
x2kb+(n+1)b−2lb](x d

dx

)n−j

(1 − x)−1
l≥0
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= 1
bn

k+n/2∑
l=0

(−1)l
(
n + 1

l

)(
2kb + (n + 1)b− 2lb

)n−j

= 1
bj

k+n/2∑
l=0

(−1)l
(
n + 1

l

)(
2k + (n + 1) − 2l

)n−j

= 1
bj
vnj [k],

as needed. Note that the sixth equality used Eq. (1). �
Proposition 3.2 gives a recursive formula for the left eigenvectors of the balanced 

carries chain, which is very similar to that of the type A Foulkes characters on p. 306 of 
[15]. For 0 ≤ i, j ≤ n, define

wn
j [i] =

i∑
r=0

(−1)r
(
n + 1
r

)
(2i− 2r + 1)n−j .

Note that for n even, wn
j [i] = vnj [i − n/2].

Proposition 3.2. With notation as above,

wn
j [i] = wn−1

j−1 [i] − wn−1
j−1 [i− 1]

for all 1 ≤ i, j ≤ n. Moreover there are the boundary conditions wn
0 [i] = A(n, i) and 

wn
j [n] = (−1)j.

Proof. The recurrence wn
j [i] = wn−1

j−1 [i] − wn−1
j−1 [i − 1] follows from the fact in the proof 

of Theorem 3.1 that wn
j [i] is the coefficient of x2i+1 in

(
1 − x2)n+1

(
x
d

dx

)n−j

(1 − x)−1.

The equation wn
0 [i] = A(n, i) is clear from the formula for A(n, i) just preceding the 

proof of Theorem 3.1. To see that wn
j [n] = (−1)j , note from the proof of Theorem 3.1

that wn
j [n] is the coefficient of x2n+1 in the product of (1 +x)n+1(1 −x)j with the n −jth 

Eulerian polynomial. Since the n − jth Eulerian polynomial is monic of degree n − j, it 
follows that wn

j [n] = (−1)j . �
Remark. Comparing Theorem 5 of Miller’s paper [17] (in the case r = 2 of the hyperocta-
hedral group) with Theorem 3.1 shows that our left eigenvectors for the balanced carries 
chain are indeed equal to Miller’s hyperoctahedral Foulkes characters. The recurrence in 
our Proposition 3.2 is equivalent to the recurrence in his Theorem 7, though the proof 
is completely different.
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There is another derivation of the stationary distribution (left eigenvector correspond-
ing to eigenvalue 1) of the balanced carries chain, when an even number of numbers is 
added.

Theorem 3.3. For 0 ≤ j ≤ n, with n fixed,

lim
r→∞

Kr(0, j − n/2) = A(n, j)
2nn! .

To begin, recall the following lemma from [8].

Lemma 3.4. Let U1, · · · , Un be independent, identically distributed continuous uniform 
random variables on [0, 1]. Then

P

(
j − 1

2 ≤ U1 + · · · + Un ≤ j + 1
2

)
= A(n, j)

2nn! .

Now we prove Theorem 3.3.

Proof of Theorem 3.3. From the proof of Theorem 2.1, Kr(0, j − n/2) is equal to the 
probability that

(j − n/2)br + (n− 1)(br − 1)
2 ≤ X1 + · · · + Xn

≤ (j − n/2)br + (n + 1)(br − 1)
2 ,

where X1, · · · , Xn are discrete uniforms on {0, · · · , br−1}. This is equal to the probability 
that

(j − n/2)br + (n− 1)(br − 1)
2 ≤

n∑
i=1

Yi −
n∑

i=1

(
Yi − �Yi�

)

≤ (j − n/2)br + (n + 1)(br − 1)
2 ,

where Y1, · · · , Yn are continuous iid uniforms on [0, br]. Letting Ui = Yi/b
r be iid uniforms 

on [0, 1], it follows that Kr(0, j − n/2) is equal to the probability that

j − 1/2 − (n− 1)/
(
2br

)
≤

n∑
i=1

Ui − E ≤ j + 1/2 − (n + 1)/
(
2br

)
,

where E =
∑n

i=1(Yi − �Yi�)/br. Since E, (n − 1)/(2br), and (n + 1)/(2br) all tend to 0 
with probability 1 as r → ∞ and n, b are fixed, it follows from Slutsky’s theorem that



18 P. Diaconis, J. Fulman / Advances in Applied Mathematics 59 (2014) 8–25
lim
r→∞

Kr(0, j − n/2) = P

(
j − 1/2 ≤

n∑
i=1

Ui ≤ j + 1/2
)
.

Applying Lemma 3.4 finishes the proof of the theorem. �
Remark. There is a representation of the transition probabilities of the balanced carries 
chain which might be useful for bounding the total variation convergence rate of the 
balanced carries chain to its stationary distribution π (arguing as in Theorem 3.4 of [8]). 
Indeed, Theorem 3.3 and Lemma 3.4 give that for 0 ≤ j ≤ n,

π(j − n/2) = P
(
�U1 + · · · + Un + 1/2� = j

)
.

We want to quantify the convergence of Kr(0, j − n/2) to π(j) as r → ∞. By the proof 
of Theorem 2.1, it follows that Kr(0, j − n/2) is equal to

P

(
j − (n− 1)/

(
2br

)
≤ X1

br
+ · · · + Xn

br
+ 1/2 ≤ j + 1 − (n + 1)/

(
2br

))
,

where X1, · · · , Xn are discrete uniforms on {0, 1, · · · , br − 1}. For r large enough with 
respect to n, this almost says that

Kr(0, j − n/2) = P

(⌊
1
br

n∑
i=1

Xi + 1/2
⌋

= j

)
.

4. Right eigenvectors of the amazing matrix for balanced carries

This section describes the right eigenvectors of the balanced carries matrix K. As 
usual, we assume that the base b is odd, and that an even number of numbers is being 
added.

Theorem 4.1. Let K be the transition matrix of the balanced carries chain of Section 2. 
The jth right eigenvector of K (where 0 ≤ j ≤ n) corresponding to the eigenvalue 1/bj, 
evaluated at the state i (where −n/2 ≤ i ≤ n/2), is given by

un
j [i] =

[
xn−j

]
(x− n− 2i + 1)(x− n− 2i + 3) · · · (x− n− 2i + 2n− 1),

where [xa]f(x) denotes the coefficient of xa in f(x).

For example, when n = 2, the matrix whose columns are the right eigenvectors of K
with eigenvalue 1/bj (with 0 ≤ j ≤ 2) is given by

⎛
⎝ 1 4 3

1 0 −1

⎞
⎠ .
1 −4 3
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When n = 4, the matrix of right eigenvectors is

⎛
⎜⎜⎜⎜⎝

1 16 86 176 105
1 8 14 −8 −15
1 0 −10 0 9
1 −8 14 8 −15
1 −16 86 −176 105

⎞
⎟⎟⎟⎟⎠ .

Remark. The right eigenvectors allow describing the distribution of functionals of the 
carries chain {κj}. For example, the second eigenvector (corresponding to eigenvalue 
1/b) forming the second column of the matrices above, is −2ni. By scaling, the function 
i is an eigenvector. Translating into probability language, for s less than t,

E(κt|κs = m) = m/bt−s.

Similarly, the formulae of Theorem 4.1 show that explicit polynomials of degree a in κ
are eigenvectors of the chain with eigenvalues 1/ba.

Now we prove Theorem 4.1.

Proof of Theorem 4.1. Let V denote the matrix of left eigenvectors of the balanced 
carries chain. Thus the jth row of V has ith entry vnj [i]. Let U denote the matrix whose 
columns are the right eigenvectors of the balanced carries chain; thus the jth column of 
U has ith entry un

j [i]. We will prove that U = 2nn! · V −1, which implies the theorem 
since by Theorem 3.1, the eigenvalues of the carries matrix are distinct.

Letting uik = un
k [i] be the (i, k) entry of U (where −n/2 ≤ i ≤ n/2 and 0 ≤ k ≤ n) 

and vkj = vnk [j] be the (k, j) entry of V (where −n/2 ≤ j ≤ n/2 and 0 ≤ k ≤ n), one 
computes that

n∑
k=0

uikvkj =
n∑

k=0

[
xn−k

]
(x− n− 2i + 1)(x− n− 2i + 3) · · · (x− n− 2i + 2n− 1)vkj

=
n∑

k=0

[
xn−k

]
(x− n− 2i + 1)(x− n− 2i + 3) · · · (x− n− 2i + 2n− 1)

·
j+n/2∑
r=0

(−1)r
(
n + 1
r

)
(n + 2j − 2r + 1)n−k

=
j+n/2∑
r=0

(−1)r
(
n + 1
r

) n∑
k=0

(n + 2j − 2r + 1)n−k

·
[
xn−k

]
(x− n− 2i + 1)(x− n− 2i + 3) · · · (x− n− 2i + 2n− 1)

=
j+n/2∑

(−1)r
(
n + 1
r

)(
2(j − i) − 2r + 2

)
· · ·

(
2(j − i) − 2r + 2n

)

r=0
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= 2n
j+n/2∑
r=0

(−1)r
(
n + 1
r

)(
n + (j − i) − r

)
· · ·

(
1 + (j − i) − r

)

= 2nn!
j+n/2∑
r=0

(−1)r
(
n + 1
r

)(
n + j − i− r

n

)

= 2nn!
∑
r≥0

(−1)r
(
n + 1
r

)(
n + j − i− r

n

)

= 2nn! · δi,j ,

where the final equality is explained on p. 147 of [13]. �
Remark. The right eigenvectors are related to the type B riffle shuffles studied in [3]. 
More precisely, for 1 ≤ k ≤ n, one has the following generating function:

n∑
k=1

En,kx
k = 1

2nn!
∑
π∈Bn

(
x− 2d(π) + 1

)(
x− 2d(π) + 3

)
· · ·

(
x− 2d(π) + 2n− 1

)
π,

where the En,k are the Eulerian idempotents of the hyperoctahedral group Bn. Here 
d(π) is what [3] calls the number of descents of π (the definition of descents in [3] is 
slightly different than the definition earlier in this section). Thus

n∑
k=1

En,k(x− n)k = 1
2nn!

∑
π∈Bn

(
x− n− 2d(π) + 1

)(
x− n− 2d(π) + 3

)
· · ·

(
x− n− 2d(π) + 2n− 1

)
π.

Letting En,k[i] denote the value of En,k on a permutation with i descents, it follows that 
un
j [i] is equal to 2nn! multiplied by the coefficient of xn−j in 

∑n
k=1 En,k[i](x − n)k.

5. Balanced carries as a point process

This section works with an odd base b and digits 0, ±1, ±2, . . . , ±(b − 1)/2. Then 
successive carries when adding a column of digits are 0, ±b. As such, independent uni-
formly chosen digits generate a stationary, one-dependent marked point process. Call 
this X1, X2, . . . . See [4] for background on one-dependent processes.

Example 5.1. Working mod 5, consider Table 1. The carries are shown in the central 
column as X1 = −5, X2 = X3 = 0, X4 = 5, . . . (the carries are ±b in general). On the 
right are remainders −2, 1, 2, . . . . If the digits are independent and identically distributed 
in {0, ±1, ±2}, so are the remainders. If the remainders are Ri, there is a carry of −5 iff 
Ri −Ri+1 ≤ −3, a carry of 5 iff Ri −Ri+1 ≥ 3, and a zero carry otherwise. Replace “3” 
by (b + 1)/2 for general bases.
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Table 1
Carries down a column for b = 5 with signed digits. 
The right column shows the remainders. There is a 
− or + in the central column for a carry of −b or b.

2̄ − 2̄
2̄ 1
1 2
0 + 2
2 1̄
2 1
2̄ 1̄
1 0
1 1
1 + 2
1 2̄
3 = 12̄

From this description, it is easy to see that for any base, two successive ++ or −−
carries are impossible. For b ≥ 5, all other patterns occur with positive probability. For 
b = 3, ++, −−, +0+, and −0− are impossible. The probability distribution of this 
balanced carries process can be expressed via determinantal formulae from [4]. These 
authors determine the joint distribution for the process that records 1 or 0 as there is a 
carry or not (e.g., replace all ±b symbols by 1). Let ai = P (i − 1 consecutive ones) with 
a1 = 1. Theorem 4.1 in [4] gives

Theorem 5.2. For a stationary binary one-dependent process with ai = P (X1 = X2 =
. . . = Xi−1 = 1), a1 = 1 and a binary string t1, t2, . . . , tn−1 with k zeros at positions 
S = {s1 < s2 < . . . < sk} ⊆ [n − 1],

P (t1, . . . , tn−1) = det(asj+1−si)ki,j=0. (2)

The determinant is of a (k + 1) × (k + 1) matrix and s0 = 0, sk+1 = n, a0 = 1, and 
ai = 0 for i < 0.

Example 5.3.

P (0, 0, 0) = det

⎛
⎜⎜⎝

1 a2 a3 a4
1 1 a2 a3
0 1 1 a2
0 0 1 1

⎞
⎟⎟⎠ = 1 − 3a2 + a2

2 + 2a3 − a4.

Theorem 4.2 and Corollary 4.3 of [4] give expressions for (2) as skew Schur functions 
and for the higher order correlations in terms of the ai.

It thus remains to determine ai. These can be determined by the transfer matrix 
method and a serendipitous diagonalization.

Proposition 5.4. For odd b ≥ 3 and the balanced coset representatives 0, ±1, . . . , ±(b −
1)/2, a1 = 1 and the chance ai of i − 1 consecutive carries is
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ai =
{

8
bi+1

∑(b−1)/2
r=1 λ

(i−1)/2
r v2

r if i > 1 is odd,
8

bi+1

∑(b−1)/2
r=1 λ

(i−2)/2
r vrwr if i > 0 is even

where

1/λr = 4 sin2((2r − 1)π/2b
)
, 1 ≤ r ≤ (b− 1)/2,

vr =
(b−1)/2∑

j=1
sin

(
(2r − 1)jπ/b

)
, 1 ≤ r ≤ (b− 1)/2,

and

wr =
(b−1)/2∑

j=1
j · sin

(
(2r − 1)jπ/b

)
, 1 ≤ r ≤ (b− 1)/2.

Proof. The chance of any digit sequence of length i in the remainder column is 1/bi. For 
the pattern + − + − · · · of length i − 1, sequences of digit choices x1, x2, . . . , xi must 
be chosen so that x1, x2 yield a + (so x1 − x2 ≥ (b + 1)/2), x2, x3 result in a − (so 
x2 −x3 ≤ −(b +1)/2), and so on. Admissible sequences can be enumerated as paths in a 
graph. As an example, for b = 7, the digits are 0, ±1, ±2, ±3. The corresponding graph 
has adjacency matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(

0 A

AT 0

)
, A =

⎛
⎝ 1 1 1

0 1 1
0 0 1

⎞
⎠ .

Here the rows of M are labeled by the vertices −3, −2, −1, 1, 2, 3 from top to bottom, 
and the columns of M are labeled by the vertices −3, −2, −1, 1, 2, 3 from left to right. 
Thus

M2 =
(
AAT 0

0 ATA

)
, M3 =

(
0 AATA

ATAAT 0

)
,

M4 =
(
AATAAT 0

0 ATAATA

)
.

Suppose next that i is odd. The sum of the entries in (ATA)(i−1)/2 counts paths 
resulting in + −+ −· · · (i − 1 terms). The matrix ATA has (a, b) entry min(a, b). This is 
the correlation matrix for random walk S1, S2, . . . , S(b−1)/2 with Si = Y1 + . . . + Yi and 
Yi are independent with mean 0, variance 1. Its spectral decomposition is known [1]: the 
(b − 1)/2 × (b − 1)/2 matrix ATA with (i, j) entry min(i, j) has
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(1) eigenvalues λr with 1/λr = 4 sin2((2r − 1)π/2b), 1 ≤ r ≤ (b − 1)/2;
(2) corresponding eigenvectors

ψr(k) = sin
(
(2r − 1)kπ/b

)
, 1 ≤ r ≤ (b− 1)/2;

(3) the eigenvectors are orthogonal with

〈ψi, ψj〉 =
∑
k

ψi(k)ψj(k) = δijb/4.

From this, for any �,

(
ATA

)�
i,j

= 4
b

(b−1)/2∑
r=1

λ�
rψr(i)ψr(j).

Summing in i and j gives

1T
(
ATA

)�1 = 4
b

(b−1)/2∑
r=1

λ�
rv

2
r , vr =

∑
j

ψr(j) =
(b−1)/2∑

j=1
sin

(
(2r − 1)jπ/b

)
.

This gives the result for an even number of steps (so for i odd), since the probability of 
any length i digit sequence in the remainder column is 1/bi, and one must multiply by 2 
to account for the string + −+ −· · ·+− (i −1 terms) and − +− + · · ·−+ (i −1 terms).

Suppose next that i is even. By arguing as in the i odd case, to compute the chance 
of − + · · · − (i − 1 terms), we need to study

1TA
(
ATA

)�1.
Since 1TA = (1, 2, · · · , (b − 1)/2) we get that

1TA
(
ATA

)�1 = 4
b

(b−1)/2∑
r=1

λ�
r

(b−1)/2∑
i=1

(b−1)/2∑
j=1

iψr(i)ψr(j)

= 4
b

(b−1)/2∑
r=1

λ�
rvrwr,

where

vr =
(b−1)/2∑

j=1
sin

(
(2r − 1)jπ/b

)
, wr =

(b−1)/2∑
j=1

j · sin
(
(2r − 1)jπ/b

)
.

To obtain the theorem, we now set � = (i − 2)/2, divide by bi (the probability of any 
length i digit sequence in the remainder column), and multiply by 2 (to also account for 
the length i − 1 sequence + − · · ·+). �
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Example 5.5 (Balanced ternary). With b = 3 and coset representatives 0, ±1, the matrix 
M is 

( 0 1
1 0

)
. Thus M2 = Id, M3 = M , and so on. It follows directly that the chance of 

+ − + − · · · with length i − 1 is ai = 1/3i for all i. For the zero/one consolidation the 
chance of i − 1 ones is 2/3i.

Example 5.6 (Base 5). With b = 5 and coset representatives 0, ±1, ±2, the matrix M is

M =
(

0 A

AT 0

)
, A =

(
1 1
0 1

)

with

ATA =
(

1 1
1 2

)
,

(
ATA

)2 =
(

2 3
3 5

)
,

(
ATA

)3 =
(

5 8
8 13

)
, · · ·

We recognize (ATA)h =
( F2h−1 F2h

F2h F2h+1

)
, where Fi is the ith Fibonacci number. The sum 

of these entries is F2h−1 + 2F2h + F2h+1 = F2h+3. So a2i+1 = 2F2i+3/52i+1. Similarly 
a2i = 2F2i+2/52i. This gives ai = 2Fi+2/5i for all i:

ai = 2Fi+2

5i = 10
√

5
[(

1 +
√

5
10

)i+2

−
(

1 −
√

5
10

)i+2]
.

Acknowledgments

Diaconis was supported by NSF grant DMS 08-04324. Fulman was supported by NSA 
grant H98230-13-1-0219. The authors thank Danny Goldstein, Robert Guralnick, and 
Eric Rains for encouraging them to study balanced carries, and Xuancheng Shao and 
Kannan Soundararajan for their help with Section 5.

References

[1] F. Akesson, J. Lehoczky, Discrete eigenfunction expansion of multi-dimensional Brownian motion 
and the Ornstein–Uhlenbeck process, 1998, unpublished manuscript.

[2] N. Alon, Minimizing the number of carries in addition, SIAM J. Discrete Math. 27 (2013) 562–566.
[3] F. Bergeron, N. Bergeron, Orthogonal idempotents in the descent algebra of Bn and applications, 

J. Pure Appl. Algebra 79 (1992) 109–129.
[4] A. Borodin, P. Diaconis, J. Fulman, On adding a list of numbers (and other one-dependent deter-

minantal processes), Bull. Amer. Math. Soc. 47 (2010) 639–670.
[5] F. Brenti, V. Welker, The Veronese construction for formal power series and graded algebras, Adv. 

in Appl. Math. 42 (2009) 545–556.
[6] F. Cajori, A History of Mathematical Notations, vol. 1, Dover Publications, 1993.
[7] J. Colson, A short account of negativo-affirmative arithmetik, Philos. Trans. R. Soc. 34 (1726) 

161–173.
[8] P. Diaconis, J. Fulman, Carries, shuffling, and symmetric functions, Adv. in Appl. Math. 43 (2009) 

176–196.
[9] P. Diaconis, J. Fulman, Carries, shuffling, and an amazing matrix, Amer. Math. Monthly 116 (2009) 

788–803.
[10] P. Diaconis, J. Fulman, Foulkes characters, Eulerian idempotents, and an amazing matrix, J. Alge-

braic Combin. 36 (2012) 425–440.

http://refhub.elsevier.com/S0196-8858(14)00081-5/bib41s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4242s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4242s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib626F726F64696Es1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib626F726F64696Es1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4257s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4257s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4361s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib436Fs1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib436Fs1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4446s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4446s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib444632s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib444632s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib444633s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib444633s1


P. Diaconis, J. Fulman / Advances in Applied Mathematics 59 (2014) 8–25 25
[11] P. Diaconis, A. Pang, A. Ram, Hopf algebras and Markov chains: two examples and a theory, 
J. Algebraic Combin. 39 (2014) 527–585.

[12] P. Diaconis, X. Shao, K. Soundararajan, Carries, group theory, and additive combinatorics, 
arXiv:1309.0434, 2013.

[13] J. Holte, Carries, combinatorics, and an amazing matrix, Amer. Math. Monthly 104 (1997) 138–149.
[14] D. Isaksen, A cohomological viewpoint on elementary school arithmetic, Amer. Math. Monthly 109 

(2002) 796–805.
[15] A. Kerber, Applied Finite Group Actions, second edition, Algorithms Combin., vol. 19, Springer-

Verlag, Berlin, 1999.
[16] D. Knuth, The Art of Computer Programming, vol. 2. Seminumerical Algorithms, third edition, 

Addison–Wesley, Reading, MA, 1998.
[17] A. Miller, Foulkes characters for complex reflection groups, preprint, 2013.
[18] F. Nakano, T. Sadahiro, A generalization of carries processes and Eulerian numbers, Adv. in Appl. 

Math. 53 (2014) 28–43.
[19] F. Nakano, T. Sadahiro, A generalization of carries processes and a relation to riffle shuffles, 

arXiv:1403.8522, 2014.
[20] J.-C. Novelli, J.-Y. Thibon, Noncommutative symmetric functions and an amazing matrix, Adv. in 

Appl. Math. 48 (2012) 528–534.
[21] A. Pang, A Hopf-power Markov chain on compositions, in: 25th International Conference on Formal 

Power Series and Algebraic Combinatorics, in: Discrete Math. Theor. Comput. Sci. Proc., 2013, 
pp. 499–510.

http://refhub.elsevier.com/S0196-8858(14)00081-5/bib445052s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib445052s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib445353s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib445353s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib486Fs1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib49s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib49s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4Bs1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4Bs1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4B6Es1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4B6Es1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4E53s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4E53s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4E5332s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4E5332s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4E54s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib4E54s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib50s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib50s1
http://refhub.elsevier.com/S0196-8858(14)00081-5/bib50s1

	Combinatorics of balanced carries
	1 Introduction
	2 Amazing matrix for balanced carries
	3 Left eigenvectors of the amazing matrix for balanced carries
	4 Right eigenvectors of the amazing matrix for balanced carries
	5 Balanced carries as a point process
	Acknowledgments
	References


