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Single-cell transcriptomics of small microbial
eukaryotes: limitations and potential
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and David A Caron
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Single-cell transcriptomics is an emerging research tool that has huge untapped potential in the
study of microbial eukaryotes. Its application has been tested in microbial eukaryotes 50 μm or larger,
and it generated transcriptomes similar to those obtained from culture-based RNA-seq. However,
microbial eukaryotes have a wide range of sizes and can be as small as 1 μm. Single-cell RNA-seq
was tested in two smaller protists (8 and 15 μm). Transcript recovery rate was much lower and
randomness in observed gene expression levels was much higher in single-cell transcriptomes than
those derived from bulk cultures of cells. We found that the reason of such observation is that the
smaller organisms had much lower mRNA copy numbers. We discuss the application of single-cell
RNA-seq in studying smaller microbial eukaryotes in the context of these limitations.
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Single-cell transcriptomics has emerged in recent
years as a powerful tool in medical research to
study cell-to-cell variability (Saliba et al., 2014).
This technology is very appealing in the study of
the ecophysiology of microbial eukaryotes. Many
organisms of interest are not in culture, so large
numbers of cells are not available for transcrip-
tomic analyses. Even for those in culture, it would
be interesting to learn their gene expression in situ.
Single-cell transcriptomics offers the ability to
target organisms of interest from environmental
samples, therefore not wasting sequencing capacity
on non-target taxa. It also provides a means of
obtaining genetic information of several co-
occurring organisms in microbial communities
without the need to bin sequences or align to
reference genomes like in metatranscriptome stu-
dies. Kolisko et al. (2014) described the first
successful test of single-cell RNA-seq for microbial
eukaryotes. They reported that transcriptome cov-
erage from single cells was comparable to those of
culture-based transcriptomes for five different
ciliates with sizes ranging from 50 to 500 μm.
However, microbial eukaryotes have a wide range
of sizes and can be as small as 1 μm (Caron et al.,
2009). The feasibility of single-cell RNA-seq in
smaller microbial eukaryotes remains unknown.
Here we describe results that transcript recovery

rate using single-cell RNA-seq was significantly
limited in two small microbial eukaryotic organ-
isms. We estimated that these smaller organisms
contained only thousands to tens of thousands of
total mRNA molecules per cell. We discuss the
application of single-cell RNA-seq in small micro-
bial eukaryotes in the context of these limitations.

Single-cell and culture-based transcriptomes of two
microbial eukaryotes, the dinoflagellate Karlodium
veneficum (cell length of ~15 μm) and the haptophyte
Prymnesium parvum (cell length of ~8 μm), were
sequenced, assembled and compared. The assembled
transcriptomes contained 63 184 and 38 704 tran-
scripts for K. veneficum and P. parvum, respectively.
Most of these transcripts were detected in the culture-
based transcriptomes. In comparison, only ~15% of
the transcripts were detected in the transcriptomes of
single cells of K. veneficum on average, while the
average transcript recovery rate was ~3% for smaller
P. parvum single cells (Table 1). These rates were
much lower than those documented for ciliate species
of larger size (80–100%; Kolisko et al., 2014). When
single-cell data were combined, transcriptomes
summed from 10 K. veneficum cells recovered two-
thirds of the transcripts observed in the cultured-based
metatranscriptome, while transcripts summed from 18
P. parvum cells recovered less than one-third
(Figure 1). Lower gene recovery rate was also reported
by Kolisko et al. (2014) for their smallest cell
(Tetrahymena thermophile, ~ 50 μm) mainly because
490% of its reads were from one rRNA contig. No
such bias was observed in this study as reads from all
rRNA contigs combined, or the most represented
contig never accounted for 412% of total reads in
any single cell sample.
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In addition to low transcript recovery rates, we
also observed much larger variability among single-
cell transcriptomes than typically observed in mam-
malian studies. Approximately half of the transcripts
detected in single-cell transcriptomes were only
detected in one cell. Very few transcripts (220
K. venificum and 18 P. parvum transcripts), usually
those with highest expression levels in the culture-
based transcriptomes, were detected in all single
cells. Among transcripts detected in multiple cells,
expression levels often varied markedly between
different cells (Figure 1). Many known housekeeping
genes such as those encoding ribosomal proteins
were not detected in many cells. Despite the large
cell-to-cell variability on the gene level, the collec-
tive expression levels of major pathways and func-
tions were very similar across different cells, except
in one cell (cell #9) with extremely low transcript
recovery rate (Supplementary Figure 1). These
results suggested that the observed differences in
single-cell transcriptomes were unlikely the reflec-
tion of physiological differences among cells, but
rather of elevated stochasticity on the level of
individual genes.

Both low transcript recovery rate and high gene-
level variability could result from relatively low
RNA content per cell. Single-cell RNA-seq has been
applied successfully in human cells, which are
estimated to contain 50 000–300 000 mRNA mole-
cules per cell (Marinov et al., 2014). On the other
hand, it is considered not suitable for bacteria
(Taniguchi et al., 2010), which have only 200–2000
mRNA molecules per cell (Moran et al., 2013).
Numbers of mRNA molecules per cell in K. venefi-
cum and P. parvum were estimated using two
methods, based on either total RNA extraction
amounts or RNA spike-in standards. Results from
both methods were similar. K. veneficum and
P. parvum contained ~ 51 000 and ~4 800 mRNA
molecules per cell on average, respectively (Table 1).
These mRNA copy numbers limited the inventory of
transcripts that these two organisms could possibly
carry at any particular time. Our in silico simulations
showed that mRNA copy numbers fewer than

100 000 could significantly limit transcript recovery
rate in these two organisms (Supplementary
Figure 2A). In microbial eukaryotes of similar sizes,
which probably have similar mRNA copy numbers,
low transcript recovery rate per cell can be expected,
unless they have very small genomes.

Gene transcription generally occurs in stochastic
bursts (Golding et al., 2005; Suter et al., 2011), and
single-cell transcriptomes of cells with relatively few
mRNA molecules are much more susceptible to
biological and technical stochasticity (Marinov et al.,
2014). Because of the small mRNA copy numbers in
the two species examined in this study, it was
doubtful that the single-cell gene expression levels
and transcript presence/absence in different cells
were reliable. Average expression levels of tran-
scripts in single cells had no correlation with those
in cultures in both organisms, except for transcripts
with extremely high expression levels (Supple-
mentary Figure 2C and D). In human cells, 30–100
single cells are needed to reliably measure gene
expression levels (Marinov et al., 2014). In small
microbial eukaryotes, many more cells would be
needed to achieve the same goal. Caution is
warranted when interpreting single-cell transcrip-
tome comparisons of different samples, especially if
the cells are small.

Our data illustrated a simple but important
concept: when using single-cell transcriptomics with
microbes, size matters. Less efficient gene discovery
and higher stochasticity in gene expression levels
should be expected when designing experiments
using single-cell transcriptomics on smaller micro-
bial eukaryotes. However, such limitations should in
no way discourage the application of the technology
in studying these organisms. A simple solution
exists: combining multiple single-cell transcriptomes
of the same organism. Our simulations showed that,
in cells with mRNA copy numbers similar to
K. veneficum, 25 cells combined should recover
most transcripts. In smaller protists such as P.
parvum, more than 100 cells are likely needed
(Supplementary Figure 2B). With this in mind, we
tested microfluidic single-cell RNA-seq of P. parvum

Table 1 Summary of single cell and culture based transcriptomes of K. veneficum and P. parvum, and estimations of mRNA molecules
per cell in the two species

Species (cell length) Transcriptome assem-
bly (batch culture and
single cells combined)

Single-cell transcriptomes. No.
of transcripts detecteda

Estimation of mRNA molecules per cellb

No. of
transcripts

Size Single cells
(average)

All cells
combined

Based on amounts of RNA
extractedc

Based on RNA
spike-in

Karlodinium veneficum (~15μm) 63 184 50.9 Mbp 1532–19 001
(9334)

42 360 17 500–87 600 51 000

Prymnesium parvum (~8μm) 38 704 41.9 Mbp 394–2304
(1298)

10 672 3500–17 400 4880

aFPKM ⩾1. bAssume RNA extraction efficiency is 50%. cAssume 1–5% of total RNA is mRNA, average transcript length is 1000 nt.
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because of its demonstrated ability to capture a large
number of single cells quickly (Wu et al., 2014).
However, our test was less successful than antici-
pated for this species (we obtained nine single-cell
transcriptomes out of 96 wells), presumably because
P. parvum was smaller than smallest designed cell
size (10 μm) of any chip available at the time. The
transcriptomes obtained were similar to those
obtained from manually isolated cells (Figure 1b).
We believe that with some optimization, high-

throughput single-cell transcriptomics of microbial
eukaryotes should be achievable in the near future.

Single-cell transcriptomics has already been used
to advance our knowledge of microbial eukaryotes
(for example, Balzano et al., 2015 and Gravelis et al.,
2015). Undoubtedly, it will continue to shine as a
powerful tool in studying microbial eukaryotes in
nature, large and small, especially when gene
discovery is still one of the main goals in the field
(Keeling et al., 2014).

Figure 1 Heatmap of expression levels (in the form of Log2 of FPKM values) of K. veneficum (a) and P. parvum (b) transcripts in culture
and single cells. Transcripts were grouped by presence/absence in single cells. Transcripts detected in multiple cells were arranged by
hierarchical clustering of expression patterns among all samples.
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Methods and Materials 

Cell culture 

Prymnesium parvum strain UOBS-LP0109 (Texoma1) was isolated from Lake Texoma, 

Oklahoma, USA. Karlodinium veneficum strain K2 was isolated from Coronado Island, 

California, USA. P. parvum was grown in low phosphate (P/100) L1 media minus silica at 

18 ppt salinity and K. veneficum was grown in L1/2 media at 34 ppt salinity. All cultures 

were grown in 12:12 hours light:dark conditions at 15°C. Light intensity for P. parvum was 

75µEm-2s-1 and that for K. veneficum was 65µEm-2s-1. Cultures were sampled daily to 

monitor growth by counting cells using a Palmer-Maloney chamber after fixing 1 mL of 

culture with 1% formalin. Samples for transcriptomes were taken during late exponential 

phase. Cell density were ~41,000 and ~220,000 cells/mL for K. veneficum and P. parvum, 

respectively, at the time of sampling. 

 

Single cell isolation, RNA extraction and cDNA synthesis 

10 single cells of each species were hand picked using a micropipette and gently rinsed 

twice in filtered seawater and once in culture-grade PBS (Sigma-Aldrich Life Sciences, St. 

Louis, MO, USA #D1408). Total RNA from single cells was immediately extracted and 

cDNA was synthesized using the SMART-Seq v3 Ultra Low Input RNA Kit (Clontech 

Laboratories, Inc. Mountain View, CA, USA, # 634850). cDNA was amplified with 25 

cycles of PCR. Both RNA and final cDNA were quality screened using the Agilent 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA) and Qubit Fluorometer (ThermoFisher 

Scientific, Waltham, MA, USA). cDNA of one P. parvum cell did not pass quality control. 

10mL of the same K. veneficum and P. parvum cultures were taken for batch culture 

based transcriptome experiments. Cells were collected by centrifugation at 4,000 rpm for 

10 minutes at 4°C. Total RNA was immediately extracted using the RNeasy kit (Qiagen, 

Valencia, CA, USA, #74904) for K. veneficum or Direct-zol RNA MiniPrep with TRI 

reagent (Zymo, Irvine, CA, USA, #R2050S) for P. parvum. Total extracted RNA was 

quality checked using the Agilent 2100 Bioanalyzer and quantified using Qubit 

Fluorometer. 1 µL of 1:10,000 diluted ERCC RNA spike-in (ThermoFisher Scientific, 

#4456740) was added to 5 ng of total RNA of each species. cDNA was synthesized using 

the same SMART-Seq v3 Ultra Low Input RNA Kit but with 10 cycles of PCR.  



 

Microfluidic single cell isolation, RNA extraction, and cDNA synthesis 

A second culture of P. parvum under the same growth conditions (except for light intensity 

at 117µE m-2 s-1) was used to conduct single-cell transcriptome using the C1 Single-Cell 

Auto Prep system (Fluidigm, South San Francisco, CA, USA) following the manufacturer 

protocol (PN 100-7168). After the single cell capture step, the chip was removed from the 

instrument and examined immediately by microscopy. Single, live cells were observed in 

24 of 96 wells. Cell lysis, RNA extraction and cDNA sysnthesis were immediately carried 

out according to Fluidigm protocol (PN 100-7168). cDNA was quantified using Qubit 

Fluorometer before library preparation. Only 9 of 24 wells had sufficient cDNA to proceed. 

 

Library preparation and DNA sequencing 

Sequence libraries were created with the Nextera XT DNA Library Preparation Kit 

(Illumina, San Diego, CA, USA) using 150 pg of cDNA from manually picked single cells 

and batch cultures and 1 ng cDNA from Fluidigm single-cell isolations. Final libraries were 

quality checked using the Agilent 2100 Bioanalyzer before sequencing on a Illumina HiSeq 

2500 to obtain 100bp paired-end reads for manually picked single cells and batch cultures 

and 50bp paired-end reads for P. parvum cells captured using the Fluidigm C1. All 

sequencing was done at University of Southern California UPC Genome and Cytometry 

Core. Single cell and culture-based transcriptomes were sequenced at the same read depth. 

On average, about 4 million and 6 million read pairs were generated for P. parvum and K. 

veneficum cells and cultures, respectively. 

Original sequences are available through the NCBI sequence read archive (SRA) 

under the accession numbers SRX1430089 for the P. parvum batch culture sample, 

SRX1430091 for the P. parvum single cells picked manually, SRX1431799 for P. parvum 

single cells captured using Fluidigm C1, SRX1434822 for the K. veneficum batch culture 

sample, and SRX1434823 for K. veneficum single cells picked manually. 

 

Bioinformatic analyses 

Adapter sequences of SMART-Seq and Nextera XT kits were trimmed from sequences 

using Trimmomatic v. 0.32 (Bolger et al., 2014). Sequences were also quality filtered using 



Trimmomatic with the options “LEADING:5 TRAILING:5 SLIDINGWINDOW:5:15” for 

all sequences, plus “MINLEN:50” for 100bp sequences, and “MINLEN:35” for 50bp 

sequences. Sequences of the two batch culture samples were then aligned to ERCC spike-

in sequences using bowtie v. 0.12.7 (Langmead et al., 2009). A custom PERL script was 

used to count and remove sequences aligned to each spike-in sequence. Sequences from 

the batch culture sample and manually picked single cell samples of each organism were 

combined and assembled de novo using Trinity v. r20140717 (Grabherr et al., 2011). 

Sequences of P. parvum single cells captured using the Fluidigm C1 were not used to 

generate the assembly because they were collected from a comparable but different culture.  

Sequences from each sample were then aligned back to the assembled 

transcriptome to estimate transcript abundance in each sample using the script 

align_and_estimate_abundance.pl included in Trinity toolkit (Haas et al., 2013) with 

alignment method bowtie2 v. 2.2.3 (Langmead and Salzberg, 2012) and estimation method 

RSEM v. 1.2.23 (Li and Dewey, 2011). Transcripts with less than 5 total aligned read pairs 

were removed and not further analyzed. FPKM values of transcripts across different 

samples of the same organism were then normalized using the script 

abundance_estimates_to_matrix.pl included in Trinity toolkit (Haas et al., 2013). 

Normalized FPKM values were used in downstream analyses. 

Coding sequences from assembled transcriptomes were predicted using 

TransDecoder (Haas et al., 2013). KEGG annotation of predicted protein sequences were 

generated using KAAS annotation server (Moriya et al., 2007).  

Numbers of mRNA molecules per cell were estimated using two methods. In both 

methods, RNA extraction efficiency was assumed to be 50%. The first method was based 

on total RNA extracted from known numbers of cells. Total numbers of mRNA molecules 

were calculated assuming that 1-5% of total RNA was mRNA, and average mRNA length 

was 1000nt. In the second method, FPKM values of spike-in mRNA sequences that were 

detected in the transcriptome and their numbers of molecules were analyzed with linear 

regression. R2 was 0.894 and 0.955 for P. parvum and K. veneficum, respectively. Numbers 

of mRNA molecules for all transcripts were then calculated from their FPKM values using 

the resulting linear predictive model and summed.  



In silico simulation of single-cell transcriptomes were carried out as the following. 

For each transcript t, we assume it is expressed in a proportion pt (0 < pt ≤ 1) of all cells. 

Its expression level in those cells is FPKMt/pt, where FPKMt is the normalized FPKM 

value of t observed in the batch culture sample. In other cells, t is not expressed at all. 

However, we have no reliable estimate of the distribution of pt. We used a strategy as 

described in (Marinov et al., 2014) to produce a reasonable set of pt. In short, all transcripts 

were divided into ten percentile groups in order of their FPKM values. Each of the ten 

percentile groups from lowest to highest FPKM values was assigned a base probability 

from 0.1, 0.2, all the way up to 1. pt of transcripts of each percentile group were randomly 

generated to follow a normal distribution with a mean equal to the base probability and 

with the floor of pt set at 0.01. 

For each cell, a random number rt (0 < rt ≤ 1) was generated for each transcript t. t 

is considered expressed in this cell if rt ≥ pt. For a cell with n mRNA molecules, n rounds 

of random sampling with replacement of the expressed gene pool, T, with the probability 

of each gene being sampled equal to 

€ 

FPKMt / pt
FPKMt / pt

t∈T
∑

was carried out. Single molecule 

capture efficiency was assumed to be 0.5. In other words, each mRNA molecule has a 50% 

chance to be reverse transcribed, amplified, and appear in the final library. Numbers of 

transcripts with at least one molecule in the final library was tallied for each cell. 
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Figure S1. Heatmap of expression levels by KEGG pathways in K. veneficum from batch 
culture and single cells. In each sample, FPKM values of transcripts belonging to the same 
KEGG pathways were summed, log2-transformed, and plotted.  

 
 



Figure S2. In silico simulation showing transcript recovery rate in K. veneficum and P. 
parvum with different hypothetical mRNA copy numbers (A) and with multiple single cells 
combined (B). 50 simulations were carried out in both cases. Simulations were run based 
on FPKM values of transcripts in the culture-based sample (see Methods and Materials for 
detail). In (B), estimated mRNA copy numbers (Table 1) were used. The correlation of 
transcript expression levels in the culture-based samples and average single-cell expression 
levels of K. veneficum (C) and P. parvum (D) are shown. Each dot represents a transcript.  
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