
THE HYPERBOLIC REVOLUTION:

FROM TOPOLOGY TO GEOMETRY, AND BACK

FRANCIS BONAHON

The late nineteen seventies and early eighties saw a surprising convergence be-
tween topology and rigid geometry. This followed the groundbreaking work of Bill
Thurston on the geometrization of three-dimensional manifolds, but this was also
part of a larger trend that resulted in a period of intense cross-fertilization between
topology, geometry, dynamical systems, combinatorial group theory, and complex
analysis.

First, we should begin with the traditional difference between topology and ge-
ometry. Both fields consider geometric objects, but topologists allow themselves to
deform these objects and stretch distances, whereas geometers tend to focus on the
fine properties of these distances. As an illustration, it is well-known that topolo-
gists like to turn doughnuts into coffee mugs, whereas a typical result in geometry
would be the Polyhedron Rigidity Theorem of Cauchy, which says that it is impos-
sible to deform a convex polyhedron in euclidean space without changing the shape
of any of its faces.

1. The hyperbolic space

Among the geometries that can occur in dimension 3, the more fundamental one
is hyperbolic geometry.

The n–dimensional hyperbolic space is the half-space Hn = Rn−1× [0,∞) in Rn,
endowed with the hyperbolic metric defined as follows. First, for every differentiable
curve γ : [a, b] → Hn with γ(t) =

(
x1(t), x2(t), . . . , xn(t)

)
, we define its hyperbolic

arc length `hyp(γ) =
∫ b

a
1

xn(t)

√∑n
i=1 x

′
i(t)

2 dt (differing from the usual arc length

only by the 1
xn(t)

factor). The hyperbolic distance dhyp(P,Q) between two points

P , Q ∈ Hn is then defined as the infimum of the hyperbolic arc lengths `hyp(γ) over
all curves γ joining P = γ(a) to Q = γ(b).

What is not obvious from the above description is that the hyperbolic space Hn

is highly symmetric. In fact Hn is homogeneous in the sense that, for every P ,
Q ∈ Hn, there is an isometry ϕ of the metric space (Hn, dhyp) that sends P to
Q. It is even isotropic in the sense that we can require the isometry ϕ to send
an arbitrary direction at P to an arbitrary direction at Q. In this regard, it is as
symmetric as the usual euclidean space Rn.

Hyperbolic geometry made its first appearance in the context of Euclid’s Fifth
Postulate, in the early nineteenth century. Henri Poincaré [34, 35] was the first to
connect it to another major branch of mathematics, namely complex analysis and
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the theory of linear differential equations. About a century later, Thurston placed
hyperbolic geometry at the center of three-dimensional topology.

2. Knots in space

As an introduction to Thurston’s geometrization results for three-dimensional
manifolds, let us focus on their applications to knot theory. The results are then
easier to state, and give a good illustration of the more general ideas.

The author likes to say that knot theory is to the topologist what the fruit fly
is to the biologist: a small laboratory example where big theories can be tested,
which is easier to handle and to visualize than the long-term problems motivating
these theories, and which nevertheless is sufficiently complex to offer a challenging
testing ground.

A knot is a closed curve K in the euclidean space R3 that is smooth, namely
has a well-defined tangent (with no switchback) at each point, and that has no self-
intersection. The main problem in knot theory is to decide when two knots K and
K ′ can be deformed to each other, namely whether there exists a continuous family
of homeomorphisms (ϕt)t∈[0,1] of R3 such that ϕ0 is the identity and ϕ1(K) = K ′.

Figure 1. A few knots

Figure 1 offers a few examples. It is not immediately obvious that two of these
knots can be deformed to each other, and deep mathematics is required to prove
that no two of the remaining four knots can be deformed to each other.

This situation is fairly typical. To tackle the challenge of rigorously proving
that two knots that appear different cannot be deformed one to the other, math-
ematicians have traditionally used techniques of algebraic topology. One of the
early successes of such an approach was due to James W. Alexander and Garland
B. Briggs [2] who showed in 1927 that the knots of up to nine crossings listed in
the XIX-th century knot tables by Tait, Kirkman and Little [45, 16, 17, 20, 21]
were actually different.1 They did so by comparing the homology groups of cer-
tain branched covers of these knot. The following decades saw the development of
ever more sophisticated methods of algebraic topology to attack problems in knot
theory.

A less common approach to knot theory involved the cut-and-paste analysis of
special surfaces in the complement of the knot, as in the innovative work of Horst
Schubert [41, 42, 43].

Thurston’s Hyperbolization Theorem for knot complements provided a com-
pletely different type of knot invariants. To state this result, we need to mention a
couple of classical constructions of knots.

1To be completely accurate, there were a very small number of exceptions that Alexander and
Briggs could not settle.
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The first one is that of torus knots. These are the knots that can be drawn on
the surface of a standard torus in R3. More precisely, for coprime integers p and q,
the {p, q}–torus knot is represented by the curve parametrized by

t 7−→
(
(R+ r cos qt) cos pt, (R+ r cos pqt) sin pt, r sin qt

)
for arbitrary 0 < r < R. For instance, Figure 2 represents the {5,−4}–torus knot,
and the first three knots of Figure 1 are the {1, 0}, {2, 3} and {2,−3}–torus knots,
respectively. Torus knots are very well understood. In particular, when p and q
are different from ±1, the {p, q}–torus knot can be deformed to the {p′, q′}–torus
knot if and only if the set {p, q} is equal to {p′, q′} or to {−p′,−q′}; when p or q
are equal to ±1, the {p, q}–torus knot can be deformed to the unknot, namely the
first knot of Figure 1.

Figure 2. A torus knot

The second construction that we need is that of satellite knots. Suppose that
we are given a first knot K ⊂ R3 that cannot be deformed to the unknot, as well
as another knot L contained in the standard solid torus

V =
{(

(R+ ρ cos v) cosu, (R+ ρ cos v) sinu, ρ sin v
)
;u, v, ρ ∈ R, 0 ≤ ρ ≤ r

}
consisting of those points which are at distance at most r from the horizontal circle
C of radius R centered at the origin, for arbitrary r, R with 0 < r < R. We assume
in addition that L is non-trivial in the solid torus V , in the sense that it cannot
be deformed in V to a knot L′ which is disjoint from one of the cross-section disks
where the coordinate u is constant, or to the central circle C of V .

The knot K ⊂ R3 The knot L ⊂ V The satellite K′ ⊂ R3

Figure 3. A satellite knot

We can then tie V as a tube around the knot K, and consider the image of L.
More precisely, choose an injective continuous map φ : V → R3 which sends the
central circle C to the knot K. Assume in addition that ϕ is differentiable, and
that its jacobian is everywhere different from 0, so that the image K ′ = ϕ(L) is
now a new knot in R3. Any knot K ′ obtained in this way is said to be a satellite
of the knot K.

Theorem 1 (Hyperbolization Theorem for knot complements). Let K be a knot

in R3, and let R̂3 = R3 ∪ {∞} be obtained by adding to R3 a point ∞ at infinity.
Then, exactly one of the following holds:
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(1) K is a torus knot;
(2) K is a satellite of a non-trivial knot;

(3) the complement R̂3−K admits a complete metric d which induces the same
topology as the euclidean metric of R3 and which is locally isometric to the
hyperbolic metric of the hyperbolic space H3.

The first alternative is somewhat trivial, since torus knots are very well un-
derstood (and very rare). The second alternative can be essentially reduced to the
other two, through a unique factorization process of satellite knots into non-satellite
links [42, 14, 13, 5]. In practice, almost all knots satisfy the third alternative, and
therefore admit a hyperbolic metric, namely a metric d as in this third alternative.

The Hyperbolization Theorem is greatly enhanced by the following earlier result
of George Mostow [27, 28].

Theorem 2 (Mostow’s Rigidity Theorem). When the third case of Theorem 1
holds, the metric d is unique up to isometry. Namely, for any two such metrics d

and d′, there exists a map φ : R̂3 −K → R̂3 −K such that d′
(
φ(x), φ(y)

)
= d(x, y)

for every x, y ∈ R̂3 −K.

The incredible power of the combination of Theorems 1 and 2 is that they turn
the topological problem of deciding when two knots can be deformed to each other
into the rigid geometric problem of deciding when their associated hyperbolic met-
rics are isometric.

These metrics carry a lot of information. For instance they have a well-defined
volume. Theorem 2 then shows that, if two knots satisfy the third conclusion of
Theorem 1 and can be deformed to each other, then they must have the same
volume. This simple test is remarkably efficient to show that two knots cannot be
deformed to each other.

Figure 4. Two very similar knots

A more powerful invariant of the hyperbolic metric of a knot complement is its
Ford domain. This object was introduced in a 2–dimensional setting [10] by Lester
Ford,2 and generalized to knot complements by Bob Riley [38, 39, 40]. They provide
a tessellation of the euclidean plane by polygons, which is invariant under two
linearly independent translations and which carries additional pairing information.
See for instance [4, §12.4] for a more precise description. It then follows from
Theorem 2 that two knots can be deformed to each other if and only if there is a
similitude (namely a composition of an isometry with a homothety) of the Euclidean
plane that carries the tessellation associated to the first knot to the tessellation

2Also famous for being the President of the Mathematical Association of America from 1947
to 1948
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associated to the second one, and that preserves the pairing information. The “if
and only if” part of this statement is particularly impressive and useful.

As an example taken from [4], consider the two knots of Figure 4. These are
somewhat difficult to distinguish with the tools of algebraic topology that were
available before hyperbolic geometry techniques became available, and their com-
plements even have the same hyperbolic volume. However a quick inspection, for
instance counting the number of edges emanating from each vertex, shows that
there is no similitude of the euclidean plane that exchanges their respective Ford
tessellations, represented in Figure 5. It immediately follows that these two knots
cannot be deformed to each other.

Figure 5. The Ford tessellations of the knots of Figure 4

Another important property of these results is that they can be explicitly im-
plemented on a computer. Following up on the early pioneering work of Bob Riley
[38, 39], the software SnapPea developed by Jeff Weeks [53] has been particu-
larly influential among researchers in knot theory; see [9] for a current incarnation,
Python-based and called SnapPy, of the same tool.

3. Geometrization of general three-dimensional manifolds

Theorem 1 is a special case of a more general geometrization result for three-
dimensional manifolds. An n–dimensional (topological) manifold is a topological
space that is locally homeomorphic to the usual n–dimensional euclidean space

Rn. For instance, a surface is a two-dimensional manifold. The space R̂3 = R3 ∪
{∞} of Theorem 1 is a three-dimensional manifold, even near the point ∞ (and
is homeomorphic to the three-dimensional sphere S3 ⊂ R4); a knot complement

R̂3 −K is also a three-dimensional manifold.
More generally, an n–dimensional manifold-with-boundary (in a single word) is

a topological space M locally homeomorphic to Rn−1 × [0,∞), and its boundary
∂M consists of the points that go to Rn−1 × {0} under the corresponding local
homeomorphisms. In particular, a manifold as defined in the previous paragraph
is a manifold-with-boundary with empty boundary.

The general Geometrization Theorem for three-dimensional manifold is a little
difficult to state precisely while remaining within the limited scope of this article,
and we just want to give the flavor of this result.
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First of all, the Geometrization Theorem involves more geometries than hy-
perbolic geometry. A geometric structure on a manifold can be interpreted as a
metric that is locally homogeneous, in the sense that any two points have isometric
neighborhoods. These geometries are locally modeled on the homogeneous spaces
associated to Lie groups and, in dimension 3, the classification of Lie groups shows
that there is a limited number of possible models. In fact, there are only eight
geometries that are relevant for the Geometrization Theorem:

(1) the three isotropic geometries of the euclidean space R3, the three-dimensional
sphere S3 ⊂ R4, and the three-dimensional hyperbolic space H3;

(2) the two product geometries S2 × R and H2 × R, product of the euclidean
line R with the 2–dimensional sphere S2 ⊂ R3 and the hyperbolic plane H2,
respectively;

(3) two suitable defined twisted product geometries H2×̃R and R2×̃R;
(4) the Sol geometry, related to the unique three-dimensional solvable Lie

group.

See [36, 3] for a precise description of these geometries.
Then, one needs a topological notion of triviality for a surface contained in a

three-dimensional manifold. We cannot precisely describe this concept here, except
by saying that the definition is consistent with the terminology: a trivial surface is
obtained by a method that is too straightforward to be of much use. For instance,
the boundary of a small ball in a three-dimensional manifold M is a trivial sphere
in M ; similarly, the boundary of a thin tube around a simple closed curve in M
gives a trivial torus.

Theorem 3 (Geometrization Theorem for three-dimensional manifolds). Let M
be a connected three-dimensional manifold that is topologically finite, in the sense
that M = M − ∂M is obtained by removing its (possibly empty) boundary from a
compact manifold-with-boundary M . Then, at least one of the following holds:

(1) M admits a complete metric d which is locally isometric to one of the eight
geometric models listed above;

(2) M contains a non-trivial sphere, projective plane, torus or Klein bottle.

In most cases, the geometry that occurs in the first case is that of the hyper-
bolic space H3, and the other geometries occur only for a limited array of three-
dimensional manifolds. In that case, and under the additional hypothesis that each
component of the boundary ∂M is a torus or a Klein bottle, the same Mostow’s
Rigidity Theorem as in Theorem 2 guarantees that the hyperbolic metric on M is
unique up to isometry.

There is a small possible overlap between the two conclusions of Theorem 3, but
no possible overlap in the case of hyperbolic geometry. In particular, non-trivial
spheres, projective planes, tori or Klein bottles appear as topological obstructions
to the existence of a hyperbolic geometric structure, and of several of the other
geometric structures. We then benefit from two earlier pieces of work: one is the
Kneser-Milnor [19, 23] unique factorization of a three-dimensional manifold into
prime manifolds that contain no essential spheres or projective planes; the other
one is the Waldhausen-Jaco-Shalen-Johannson [13, 14] canonical splitting (origi-
nally developed for completely different purposes) of a prime manifold into pieces
that, either contain no essential tori or Klein bottles, or admits one of the seven
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non-hyperbolic geometries. In practice, this reduces the problem of the topolog-
ical classification of three-dimensional manifolds to the isometric classification of
hyperbolic three-dimensional manifolds. Three-dimensional hyperbolic geometry is
still very rich, but our discussion of Ford domains in §2 should give an idea of the
powerful techniques that are available in this field.

Thurston proved Theorem 3 in many cases, in particular when M is non-compact
(which includes the case of knot complements considered in §2), in the late nineteen
seventies. He also conjectured Theorem 3 in its full generality, which was then
known as the Thurston Geometrization Program until Grigori Perelman proved
it around 2000. Neither Thurston nor Perelman provided a complete exposition
of their proofs, but they circulated partial preprints [48, 50, 51, 31, 32] and gave
enough lectures to enable others to fill in all the details; see for instance [15, 29,
30, 7, 8, 18, 25, 26].

4. A broader perspective: using geometry to prove results in
topology and algebra

The Geometrization Program took place in, and contributed to, a broader trend
which in the last quarter of the twentieth century saw a closer integration between
topology, differential geometry, dynamical systems and group theory.

We already indicated how the combination of Thurston’s Hyperbolization Theo-
rem and Mostow’s Rigidity Theorem translates topological problems to hyperbolic
geometry questions, and can be used to prove theorems in knot theory. This in-
teraction between topology and geometry occurs, not just in the consequence of
these results, but also in the novel ideas introduced by Thurston for the proof of
his Hyperbolization Theorem.

Indeed, the flexibility of topology comes with the curse of a very large number
of degrees of freedom. Geometry can be used to introduce some rigidity in a topo-
logical situation, in order to make it easier to handle. As an example, consider
the 2–dimensional analogue of knot theory which studies, in a surface S, all simple
(namely smooth and without self-intersection) closed curves in S up to deforma-
tion. There is of course an overwhelming abundance of simple closed curves, and
of deformations between them. However, we can take advantage of the following
consequence of the Uniformization Theorem in complex analysis: if the topology
of the surface S is complicated enough that it does not belong to a small finite
number of exceptions such as the plane or the torus, the surface S can be endowed
with a hyperbolic metric d. Once such a hyperbolic metric is chosen, every sim-
ple closed curve can be deformed to a unique simple closed curve that is geodesic,
namely provides the shortest arc between any two of its points that are sufficiently
close to each other (a hyperbolic geodesic is thus the hyperbolic equivalent of a
straight line). This provides a one-to-one correspondence between, simple closed
curves considered up to deformation on the one hand, and simple closed geodesics
on the other hand. This greatly simplifies the original problem by eliminating the
need to consider deformations, provided that we restrict attention to a very specific
type of simple closed curves.

Thurston took advantage of this construction to introduce a certain completion
ML(S) of the set S(S) of simple closed curves in the surface S considered up to
deformation. The elements of ML(S) are measure-theoretic, or probabilistic, gen-
eralizations of simple closed geodesics and are called measured geodesic laminations.
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The space ML(S) is endowed with a natural topology (for which, rather surpris-
ingly, it is homeomorphic to a euclidean space Rn) and with a rescaling operation.
In particular, given a sequence in S(S), it makes sense to talk of the limit of this
sequence or, after suitably rescaling, of the asymptotic direction of this sequence in
ML(S).

This method of taking limits of objects that are only defined up to deformation
was a real conceptual breakthrough. It played a critical rôle in Thurston’s work on
surface diffeomorphisms [49] and on three-dimensional hyperbolic geometry [46, 47,
52]. Together with similar rigidification techniques, it also provided the impetus
and technical tools for much subsequent work by the low-dimensional geometry and
topology community.

At about the time when Thurston was pioneering the use of geometry to prove
results in topology, Mikhail Gromov [12] was translating insights from geometry
to abstract group theory. This comes from another situation where one considers
closed curves up to deformation in a topological space M , namely in the definition
of the fundamental group π1(M) of M . The Milnor-Švarc Lemma [37, 24] asserts
that, for a compact space M , the large scale properties of the fundamental group

π1(M) are essentially the same as those of the universal cover M̃ . In particular,
this has far reaching consequences when M is a compact riemannian manifold of
negative curvature. Building on the insights provided by the geometry, Gromov
was able to identify the key algebraic features that yield these consequences, and to
develop a purely algebraic theory of “groups that behave like fundamental groups
of negatively curved manifolds” (now called Gromov hyperbolic groups or nega-
tively curved groups). This gave an important boost to the field of combinatorial
group theory, further enhanced by the rich families of examples provided by the
Geometrization Theorem.

The Geometrization Program also greatly energized another area of mathemat-
ics. We already mentioned how Poincaré had inserted two- and three-dimensional
hyperbolic geometry into the world of complex analysis. In the century that fol-
lowed, the connection had become a little more tenuous (however, see for instance
[1, 22]), but was greatly invigorated by Thurston’s Hyperbolization Theorem. In-
deed, Thurston’s original proof combined both the complex analytic and the hyper-
bolic geometric aspects of kleinian groups. Conversely, the three-dimensional point
of view provided strong tools and insights for the corresponding complex analytic
problems. These insights were pushed one step further, first by Thurston and then
by Dennis Sullivan, to the dynamics of rational maps on Riemann surfaces; see for
instance Sullivan’s “dictionary” [44] between the theories of kleinian groups and of
complex dynamics.

Thurston’s Geometrization Program provided great results and tools that were
used to solve many topological problems. However, its even more lasting impact
may be the integration and cross-fertilization between numerous branches of mathe-
matics that it triggered: topology, geometry, complex analysis, combinatorial group
theory, dynamical systems, etc. From a sociological point of view, mathematics his-
torians may trace the germs of these developments to the Berkeley mathematical
school of the late nineteen sixties, where the same group of people were working
on topology, dynamical systems and rigid geometry. However, it is Bill Thurston’s
extraordinary talent that initiated this technical and conceptual revolution, which
led to one of the most productive periods in mathematics.
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