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Preface to the 30-th year edition
Dedicated to José Montesinos

on the occasion of his 65-th birthday

We began writing this monograph in 1979. It originally started as an article for
the conference proceedings [BroT], but it soon developed into a book project of its
own as the size of the manuscript was rapidly increasing. The two articles [BonS1]
and [BonS2] both originated as appendices to this book, as did the unpublished
part of the preprint [BonS3] that is dedicated to crystallographic groups. As time
passed by, we eventually became bogged down in the process, in large part because
of the overwhelming number of pictures and diagrams (about 640 in the current
version) and because of the rapid changes in technology occurring at the same time.
The book started as a camera-ready typescript with ink drawings, but we soon had
to move to the new norm of TEX and computer drawn pictures. In particular,
the book was used as developing ground for Sweet-TEX [Sie3], a TEX preprocessor
for Macintosh computers created by the second author; this had the unfortunate
outcome that many files became obsolete when Apple completely redesigned its
operating system. The fact that the authors became geographically separated, and
eventually drifted towards different scientific interests, did not help. By the late
1980s, we had collected the then-current state of the manuscript into an “official
version”, that we made freely available by request. However, very few pictures
were inserted in the text, it lacked bibliographic references, and it incorporated
very different styles. By all accounts, it was pretty much unreadable to anybody
but the authors. The next 20 years saw no change in the state of the manuscript,
until recently.

On the other hand, this work seems to have been reasonably influential. For
instance, a quick Internet search returns about 100 articles and books referring to
it (under many different titles!). We cannot help noting this fact with a certain
satisfaction, in particular if one takes into account that these references point to an
unpublished document that was difficult to access even as a preprint. Most of the
theoretical results underpinning this work had appeared in [BonS1] in a very general
form, but there clearly was a need for a precise description of their applications to
knot theory, and of the algorithmic methods that we had developed. Combined with
persistent exhortations from various colleagues and friends, this provided a strong
incentive to resume the task of putting the text in a form suitable for publication.

What follows is an extensively edited version of the text in its 1988 form.
Many events have occurred in low-dimensional topology in the 30 years that have
elapsed since we started this project, the most important one being the completion
of the geometrisation program for 3–dimensional manifolds and orbifolds. With
the corresponding hindsight and perspective, there are many parts that we would
probably write in a very different way right now. However, we decided to preserve
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iv PREFACE TO THE 30-TH YEAR EDITION

the historical data, and to remain faithful to the original. We limited our editing
to locally improving the clarity of the exposition, and we respected some of the
stylistic idiosyncrasies of the text. Updates and references to more recent work are
indicated in footnotes.

Several people have helped us with the technical aspects of the enterprise, in
particular in the early years for typing and picture drawing. This includes Valerie
Siviter, Bernadette Barbichon, Bernard Thomas and Banwari Lal Sharma. The
majority of the pictures of the current version were drawn by Julien Roger. We are
very grateful to all of them, as well as to Rob Kirby, Cameron Gordon and Andrew
Ranicki for pushing us to prepare this edition.

While preparing this revised version, the first author and Julien Roger were
partially supported by the grant DMS-0604866 from the U.S. National Science
Foundation.

A large part of the mathematics in this book can be traced back to a series of
lectures that José Montesinos gave at Orsay in the spring of 1976. In particular,
the first author fondly remembers the many meetings that he had with José in the
Jardin du Luxembourg in Paris, where José suggested as a possible research topic the
classification of what we call here Montesinos knots. This became the dissertation
[Bon1], and consequently launched the first author’s career as a mathematician
(in addition to providing material for several chapters in this monograph). It is a
pleasure to dedicate this book to José Montesinos as an acknowledgement of our
debt, and as a way to celebrate his 65-th birthday and his many contributions to
3–dimensional topology.

December 2009



Introduction

I was led to the consideration of the forms of knots by Sir W. Thom-
son’s1 Theory of Vortex Atoms, and consequently the point of
view which at least at first I adopted was that of classifying knots
by the number of their crossings. . .

The subject is very much more difficult and intricate than at
first sight one is inclined to think, and I feel that I have not suc-
ceeded in catching the key-note. When that is found, the various
results here given will, no doubt, appear in their real connection
with one another, perhaps even as immediate consequences of a
thoroughly adequate conception of the question.

P.J. Tait [Tai1], 1877.

A century after the Scottish physicist P.G. Tait wrote these words, it is still
a challenging task for the topologists of this day to acquire a theoretical under-
standing of knotting adequate to explain even the 630 or so (connected) knots
tabulated in the last century by Tait, T.P. Kirkman and C.N. Little [Tai1, Tai2,
Tai3, Kirk1, Kirk2, Lit1, Lit2, Lit3, Lit4]. These XIX-th century tabulations listed
connected knots of 6 11 crossings excepting the 11 crossing connected knots hav-
ing non-alternating projection. Since then, J.H. Conway [Conw] has tabulated the
missing (non-alternating) 11 crossing connected knots plus the links of 6 10 cross-
ings and very recently A. Caudron [Cau] has listed the 11 crossing links; concerning
tabulations, see also [Has1, Has2].

This is the task that we shall attempt here, and accomplish in part. To Thom-
son and Tait, our understanding would be disturbing inasmuch as it is more molec-
ular than atomic; indeed the first phenomena we explain are described by integrally
weighted trees a bit reminiscent of the organic molecule of the paraffin series.

A knot K in the 3–sphere S3 = R3 ∪ {∞} is a collection of smoothly and
disjointly embedded circles, namely K is a closed 1–submanifold of S3. Note that
our terminology is somewhat non-standard, in the sense that we do not require
knots to be connected, nor oriented. A link is a knot with > 2 components. Two
knots (S3,K1), (S

3,K2) are isomorphic or “the same” if there is a degree +1
(namely orientation-preserving) diffeomorphism f : S3 → S3 with f(K1) = K2.
Since a degree +1 diffeomorphism of S3 is isotopic to the identity [Cer], this is
equivalent to the property that K1 can be deformed to K2 in S3 by a smooth
isotopy.

In his remarkable heuristic work [Conw] on knot classification, J.H. Conway
made much use of 2–spheres smoothly embedded in S3 and cutting K transversely
in 4 points. We call these Conway spheres for the knot (S3,K). Figure 0.1

1= Lord Kelvin, or more precisely Baron Kelvin of Largs. See [Tho]
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vi INTRODUCTION

provides examples of such Conway spheres, obtained by capping off each of the
dotted curves by one disk located in front of the sheet of paper and another disk
in the back.

Figure 0.1.

A knot (S3,K) is arborescent if there exists a finite collection F1, . . . , Fn
of disjoint Conway spheres such that, if N is the closure of any component of
S3 −

⋃n
i=1 Fi, then the pair (N,K ∩ N) takes the simple form of Figure 0.2 after

suitable isotopic deformation in S3. In this figure, N is S3 with the interior of a
finite collection of disjoint balls deleted and K ∩ N is the intersection of N with
two standard circles.

Figure 0.2.

For example the Conway spheres dotted in Figure 0.1 reveal that knot to be
arborescent. In other words, arborescent knots are those that can be broken up
into (almost) trivial pieces by Conway spheres.

It was Conway who singled out this class and first studied their projections
[Conw]. He found that over 75% of the knots tabulated in the XIX–th century,
including nearly 90% of all knots and links of 6 10 crossings, are arborescent; see
also [Cau].

These arborescent knots are called algebraic by Conway because, in the frame-
work of [Conw], they are obtained from finitely many copies of the 1–crossing tan-
gle by applying a sequence of “sum” and “product” operations; see Chapter 14.
Unfortunately, the name of algebraic knot is also used to describe the iterated
torus knots that occur as links of algebraic complex singularities; see for instance
[Bra, Bur1, Bur2, Zar, EisN]. The two families have very little in common, in
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fact just the {2, n} {3, 4} and {3, 5} torus knots, as will be proved in Theorem A.8
in the Appendix. For this reason, we prefer to use the word “arborescent”, which
reflects the fact that the internal classification of these knots can be expressed in
terms of trees.

When just one Conway 2–sphere is required in our definition, the arborescent
knot is said to be a rational knot or a two-bridge knot . H. Schubert classified
these in 1956 [Sch3]. Rational knots already account for about 35% of the knots
tabulated in the XIX–th century.

In [Sch3], Schubert provides two very distinct proofs of the classification of
rational knots. One lengthy proof is very geometric, and shows that the Conway
sphere separating the pair (S3,K) in two rational tangles is unique up to isotopy
respecting the knot. The second proof, significantly shorter, is based on H. Seifert’s
observation that the 2–fold branched covering of a rational knot is a lens space
L(p, q) and on the classification of these lens spaces.

To a large extent, our approach to arborescent knots combines these two points
of view. José Montesinos [Mon1] showed that the 2–fold branched cover of an ar-
borescent knot is a graph manifold, in the sense of Waldhausen [Wal2]. Using
a Z2–equivariant version of Waldhausen’s classification of sufficiently large graph
manifolds [Wal2], we manage to classify (prime) arborescent knots by certain “al-
most canonical” weighted planar trees. For example the arborescent knot of Fig-
ure 0.1 is classified by the tree

2

2

−2

1 3

3

2

The edges of the tree are dual to a family of Conway 2–spheres which is uniquely
determined up to isotopy respecting the knot.

This classification in fact participated in the first proof (by K. Perko [Perk4],
assisted by Caudron [Cau]) that the 11–crossing knots listed in [Conw] are all
distinct. It also leads to a calculation of the symmetry groups of most arborescent
knots, given in Chapter 16.

Our work is theoretically more interesting here than might be suggested by
this “chemical” or “botanical” classification of arborescent knots. Indeed, from any
(prime) knot (S3,K) we manage to extract an arborescent part well-defined up to
isotopy (see Chapter 3). This is because the same techniques that we developed for
the classification of arborescent knots can be used for a Z2–equivariant version of
the characteristic splitting of 3–manifolds along incompressible tori discovered by
K. Johannson [Joh2], W. Jaco and P. Shalen [JacS2] (and originally suggested by
F. Waldhausen [Wal4]). We also make use of Thurston’s Geometrisation Theorem
[Thu1, Thu2] to strengthen our results by introducing additional rigidity to the
pieces of our decomposition that are not arborescent.

This theory was originally developed in terms of actions of Z2 on 3–dimensional
manifolds [Bon1]. We then found generalisations for finite group actions on 3–
manifolds, and more generally for orbifolds [BonS1, BonS2]. However, we use here
a more down-to-earth point of view where all the data can be seen right away in
S3.

It is a pleasure to acknowledge helpful comments of Michel Boileau and Alain
Caudron, who have been engaged in related work [Boi1, BoiS, BoiZ, Cau]. This
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work was also greatly inspired by lectures given by José Montesinos at Orsay in
1976, and by Bill Thurston’s Princeton lectures and lecture notes [Thu1] on hyper-
bolic structures.
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CHAPTER 1

Conway’s analysis of knot projections:

some secrets of its success

This chapter is a historical and heuristic excursion motivating several major
themes of this monograph. Although we will show the reader how to read our
observations between the lines of history, it is possible that the numbered theorems
of this chapter have never been clearly perceived before.

1.1. Knot projections

A knot in the 3-dimensional euclidean space R3, or in the 3–dimensional sphere
S3 = R3 ∪∞, is a compact 1–dimensional submanifold K of R3 or S3. We do not
require K to be connected, and a link will be a knot with at least two connected
components. Note that these conventions may not necessarily agree with those used
by other authors. In general, we will not be concerned with the possible orientations
of the knot K. However, the orientation of the ambient manifold R3 or S3 will play
a critical rôle.

Given a knot K in R3, for most directions of projection to R2 ⊂ R3, the
projected image of K is an immersed 1–manifold in R2 with no singularities worse

than double points of transverse self-intersection .
The projection plane R2 will habitually be viewed as the plane of the page

you are reading. The immersed 1–manifold can be thought of as a quadrivalent
graph Γ in the plane whose vertices are the above double points. (A graph is
quadrivalent when each vertex is adjacent to exactly 4 ends of edges.) Here are

examples: .
To retrieve the knot K from Γ up to isotopy of K in the 3–sphere S3 = R3∪∞,

we need only to indicate at each vertex which strand lies above the other: Each

crossing (= double point) becomes or . Call Γ with this extra data a knot
projection .

For a given crossing number (= number of vertices in Γ), there are clearly only
finitely many knot projections, up to isotopy of R2 ∪∞ = S2. Kirkman was expert
in finding them (see [Kirk1, Kirk2, Kirk3, Kirk4]), Tait and Little attempted to
organise the resulting knots into isotopy equivalence classes ( [Tai1, Tai2, Tai3, Lit1,
Lit2, Lit3, Lit4]). They had a number of standard isotopies, which they applied
to these projected knots: flyping, concealed flyping, etc. . . Compare [Conw] and
Chapter 14. Unfortunately the knots that they listed as distinct were at the time
only conjecturally so and, indeed, some were not distinct [Perk2]. Astonishingly, in
the 1950s, W. Haken (see [Hak3, Hak1, Hak2, Sch4, SchuS]) found an algorithmic
method which is capable of deciding whether two individual knots are isotopic; a
missing step in his method has been completed in the last few years (see [Hemi,
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4 1. CONWAY’S ANALYSIS OF KNOT PROJECTIONS

Wal5]). However, it remains an important problem to make Haken’s method, or
some other method, usable in practice. It was not Haken’s uniform method, but
a fortuitous combination of algebraic invariants, notably Alexander polynomials
and Reidemeister linking numbers in irregular branched covers, combined with our
classification of arborescent knots, that recently let K. Perko complete the job of
distinguishing the knots listed in the XIX-th century [Perk2]

1.
It should be added that, having clumsy methods capable (in principle) of listing

and distinguishing individual knots, does not of itself constitute a good understand-
ing of any one knot, nor is it a priori useful at all for any infinite class of knots. For
finite groups in place of knots this was obviously the initial state of affairs when
the theory of finite groups began; so it is no state in which to leave geometric knot
theory.

J.H. Conway’s heuristic analysis of knot projections [Conw] constituted the
beginnings of an understanding of what Tait, Kirkman and Little had seen. We
now reconstruct part of his analysis in simple terms that will suggest our intrinsic
(projection-independent) analysis of knots in later chapters.

Conway considers the class J of Jordan curves (namely embedded circles) in R2

that cut the knot projection Γ transversely, avoiding the double points (vertices).
Each C in J specifies a 2–sphere F ⊂ S3 up to isotopy respecting K: Writing R3

as R2 × R, it is the cylinder C × [−r, r] (where r is sufficiently large) with nearly
horizontal 2–disc caps added. For disjoint curves C1, . . . , Cn in J we get disjoint
2–spheres F1, . . . , Fn with F =

⋃
i Fi well-defined up to isotopy; we just insist that

ri < rj whenever Ci sits inside of Cj .
Like all knot tabulators, Conway was assuming that the knot K is neither a

disjoint union of two knots separated by an embedded sphere in S3, e.g. ,

nor a connected sum of two non-trivial knots, e.g. . Indeed, celebrated

connected sum theories of Kneser, Seifert and Schubert reduce the classification
of knots to those of this type; see §2.1. With this assumption, he was assured
(after isotopy of K) that Γ is irreducible in the sense that Γ is connected and

that the only Jordan curves in J meeting Γ in two points bound a vignette in
S2 = R2 ∪∞. (Note that the connectedness of Γ is actually implied by the second
condition, except in the case when Γ consists of two disjoint embedded circles.)

Thus Conway set out to analyse the class of all curves C ∈ J cutting Γ in 4
points. We call these Conway circles. By the rule given above, they determine
Conway spheres for the knot pair (S3,K), namely 2–spheres in S3 transversely
cutting K in 4 points.

(a) (b) (c) (d)
Figure 1.1.

Consider a family C1, . . . , Cn of disjoint Conway circles subject to the condition
that no closure D of a component of S2 −

⋃n
i=1 Ci gives a pair (D,Γ ∩ D) as in

1(Added 2009) See [HTW, Hos] for a more current update on knot tabulations.
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Figure 1.1(a), where D is an annulus, or as in Figure 1.1(b) where D is a disc. The
number n of Conway circles in such a family is easily seen to be bounded in terms
of the number c of crossings of the knot projection Γ (in fact, n 6 2c − 3). We
can therefore impose that, in addition, the family C1, . . . , Cn is maximal for the
above property. Namely, it cannot be enlarged to a family C1, . . . , Cn, Cn+1, . . . ,

Cn+k with k > 0 such that the closure of no component of S2 −
⋃n+k
i=1 Ci is as in

Figures 1.1(a) or (b).
The arborescent part of the projection Γ is defined as the union AΓ of all

closed-up componentsD of S2−
⋃n
i=1 Ci such that the pair (D,D∩Γ) is of one of the

forms (c), (d) of Figure 1.1. Actually, in the case of Figure 1.1(d), the component
D must have only 3 boundary components by maximality of

⋃n
i=1 Ci.

In the above paragraph, we began to use the phrase “closed-up component”. In
this case, this just means the closure of a component of S2−

⋃n
i=1 Ci. More generally,

if F is a codimension 1 submanifold of a manifold M , a closed-up component
of M − F is a component of the manifold with boundary obtained by splitting M
along F . Formally, this new manifold can be defined as the union of M − F and
of the unit normal bundle of F , with the obvious topology. When, as happens
in most cases in this monograph, every component of F separates M , a closed-up
component of M − F is of course just the closure of a component of M − F .

Theorem 1.1 below shows that this arborescent part AΓ is well-defined, namely
is independent of the original collection of curves Ci, up to isotopy of S2 respecting
Γ.

The projection is arborescent when the arborescent part AΓ is equal to the
whole sphere S2 = R2 ∪∞. A knot is arborescent , as defined in the introduction,
precisely if some projection is arborescent as defined here; see Chapters 3, 12 and
14.

Conway was undoubtedly aware of the following elementary planar result (see
[Conw, §2]). Even Kirkman had some premonitions in terms of flaps , which

are closely related to the picture of Figure 1.1(d).

Theorem 1.1. If from the interior of AΓ we delete and continue to delete
Conway circles Ci as long as the closed-up components of AΓ minus the remaining
Ci are of the form (c) or (d) of Figure 1.1, then the union GΓ ⊂ S

2 of all remaining
Ci among C1, . . . , Cn is well-defined up to isotopy of S2 respecting Γ.

In particular, AΓ itself is well-defined up to isotopy of S2 respecting Γ.

One of our major results (Theorem 3.3) is an analogue of this theorem for knots,
which makes no explicit reference to a knot projection. Actually, Theorem 1.1 can
be obtained as a corollary of the slightly more general form of Theorem 3.3 proved
in Chapters 7 and 9.

Here are a few indications of how to deduce Theorem 1.1 from the results of
Chapters 7 and 9, anticipating these two chapters and with the terminology used
there. Consider the knot pair (S3 − V,Γ− V ) where V is the interior of a tubular
neighbourhood of the vertex set of Γ. Note that any family F of disjoint pairwise
incompressible Conway 2–spheres in this pair arises from a family of disjoint Conway
circles in S2, up to isotopy respecting Γ. (Hint: First isotop F so that the number
of components of F ∩ R2 cannot be further reduced by an isotopy.) Also observe
that, if two families of disjoint Conway circles in (S2,Γ) have in their respective
complements no component as in Figure 1.1(a) or 1.1(b), then they are isotopic
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respecting Γ if and only if the connected components of their complements induce
the same partition of the vertex set of Γ. Then apply Theorems 7.1 and 9.1 to the
knot pair (S3 − V,Γ− V ), using Criterion 9.5.

Surely there are satisfactory 2–dimensional proofs of Theorem 1.1. One that
seems to work well is in close parallel with our proof of Theorem 3.3. Thoroughly
understanding this parallel should help the reader understand both results better.

The pair (AΓ,Γ ∩ AΓ) can be simply classified using a weighted planar tree,
defined in Chapter 14. Better, we will gain a good 3–dimensional understanding

of this part of the knot. To be more precise, let ĜΓ ⊂ R3 be the family of disjoint
Conway 2–spheres for (S3,K) associated to the family of Conway circles GΓ ⊂ R2

offered by Theorem 1.1. The union ÂΓ of those closed-up components of S3 − ĜΓ

which contain part of AΓ − S
2 gives a so-called “arborescent pair” (ÂΓ,K ∩ ÂΓ)

that will be satisfactorily analysed up to pair isomorphism in Chapters 12–13.
To study a closed-up component N of S2−GΓ that is not contained in AΓ, it is

convenient to shrink the closed-up components of S2−N to points to get a modified
quadrivalent graph ΓN in S2. Note that this new ΓN can be any quadrivalent planar

graph distinct from these four , , , , and such that every Jordan

curve meeting ΓN (transversely) in at most 4 points bounds a disk in S2 meeting

ΓN in one of the four ways: , , , . A graph in S2 with the above

properties will be called a Conway graph .
The best known Conway graphs are those of Turk’s head type (a × b)∗ with

ab vertices, a > 2, b > 3, made from an outer circle and a successively inscribed
regular b–gons, as in Figure 1.2. When the product ab factors uniquely, Conway
writes (ab)∗ for (a × b)∗ with a 6 b, e.g. 6∗ for (2 × 3)∗ and 8∗ for (2 × 4)∗. Up
to 10 vertices, there is just one other Conway graph, the graph 10∗∗ of Figure 1.2,
making a total of just five, namely: (2× 3)∗, (2× 4)∗, (3× 3)∗, (2 × 5)∗, 10∗∗.

(2 × 3)∗ (2 × 4)∗ 10∗∗

Figure 1.2.

There are two more of 11 crossings, but eight new ones of 12 crossings [Cau].
The modesty of this collection of graphs let Conway give his extension of the XIX-th
century tabulations.

To emphasise the dependence of Theorem 1.1 on the knot projection, we note
that any finite quadrivalent graph Γ ⊂ R2 can arise as the projection of a knot
K ⊂ R3 that is trivial , namely that is the boundary of a collection of disjoint
smoothly embedded 2–discs. (Just lay down string from above on R2 following
around the immersed curves of the projection Γ.) Thus, there is grave difficulty in
drawing conclusions about the knot (S3,K) from an analysis of the above sort.

Nevertheless, it is an experimental fact that a good projection of a knot reveals
a lot of intrinsic structure. For example, the following unproved conjecture has
been an axiom for all tabulators up to and including Conway.
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Conjecture 1.2 (Tait’s Alternating Projection Conjecture2). Suppose that

a knot projection on S2 is alternating, in the sense that no vignette nor

can be seen. Suppose also (as always) that the projection graph is connected

and irreducible in the sense that a circle meeting it in two points bounds a

vignette .

Then there exists no projection of the same knot with fewer crossings. Further
any other projection of the same knot with the minimal number of crossings is also
alternating, and is related to the first by a sequence of simple isotopic flyping moves

?
?

, and perhaps the global flype that similarly rotates the

whole projection by π about an axis in the plane.

This conjecture should be regarded as an empirical discovery of Tait’s. He
believed it easy to verify (see [Tai1, Lit4]). Note that it made his organisation
of Kirkman’s lists of alternating knot projections into knot equivalence classes a
routine matter. By 1930, the conjecture had been recognised as such and was
proved for the trivial knot by C. Bankwitz [Ban]. (For connected alternating
knots, the knot determinant A(−1) is in absolute value greater than or equal to the
crossing number of an alternating projection as above.)

Although Tait’s conjecture is beautiful and sweeping, it seems safe to coun-
terconjecture that, as the crossing number increases, the proportion of alternating
knots among all knots dwindles to zero.3

In Chapter 3, we will manage to restructure Conway’s analysis to make it
intrinsic to the knot. Although we will abandon projections and work in three di-
mensions, our result can be partially interpreted in terms of a projection as follows.

For any knot K in S3 that is simple for Schubert (the precise definition will be
given in Chapter 2, and means that the complement S3−K contains no non-trivial
2–sphere or torus), there exists a suitable projection Γ such that, for the family GΓ

of Conway circles of Theorem 1.1, a certain subfamily G∗
Γ of GΓ gives a family Ĝ∗

Γ

of Conway 2–spheres for (S3, L) that is characteristic, namely is invariant under
automorphisms of (S3,K) up to isotopy of S3 respecting K.

More precisely, say that a Conway circle C for the knot projection Γ ⊂ S2

bounds a rational tangle projection when it bounds a disk D such that the pair

(D,D∩Γ) is the union of vignettes and of one vignette . (Compare [Conw]

and §1.2 below.) Then, for a suitable projection of K, G∗
Γ will be obtained from the

family GΓ provided by Theorem 1.1 by deleting all circles bounding rational tangle

projections and certain circles bounding vignettes . The reader can return to

verify these statements after reading Chapter 3, where a full definition of Ĝ∗
Γ is

given (it is called G there).

2(Added 2009) The Tait Conjecture is now a theorem. The first part of the conjecture,
related to the number of crossings, was proved by L. Kauffman [Kau], K. Murasugi [Mur], and
Thistlethwaite [Thi], using the Jones polynomial. The full conjecture was obtained by W. Menasco
and M. Thistlethwaite [MenT]. The results of this monograph are actually one of the ingredients
of the Menasco-Thistlethwaite proof, together with polynomial knot invariants and cut-and-paste
geometric topology.

3(Added 2009) This has now been proved by the combination of results of A. Stoimenow
[Stoi], C. Sundberg and M. Thistlethwaite [SunT].
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In the next section, we shall see that at least some of the abandoned components
of GΓ that bound rational tangle projections can also give characteristic Conway
spheres for the knot (S3,K).

1.2. Rational tangle substitutions

Next we propose to show that, under certain conditions, additional compo-
nents of the arborescent part AΓ that are rational tangle projections tend to give
characteristic Conway spheres for a knot described by a given knot projection Γ.
The argument is based on hyperbolic geometry, mainly Thurston’s hyperbolic Dehn
surgery [Thu1, Chap. 5] (see also [BenP, Chap. E]), and the proof will be deferred
to Chapter 6. It is rather unfortunate that the results we obtain are mainly theo-
retical, and often difficult to work out in practice to get explicit information (but
see Chapter 4, and compare [Ril1, Ril2]). If there is some day a way to make these
arguments more explicit, it will surely have an impact already on tabulated knots.
See Chapter 6 for more discussion.

We first start by closely examining rational tangle projections, and their rela-
tionship with the pieces of knot they describe. This analysis is largely inspired by
[Conw, Sch3, Sie1].

For a knot projection Γ ⊂ S2, define a tangle projection as a compact surface
S ⊂ S2 together with the following extra information: Each component C of ∂S
transversely meets Γ in 4 points, and one of the four components of C−Γ is singled
out and oriented by, say, marking it with an arrow running parallel to it. See
Figure 1.3 for an example, and compare our formal definition of tangles in §§8.1
and 12.1.

This definition is easily related to the one in [Conw]. Indeed, any tangle in
Conway’s sense gives a tangle in the above sense with a disc as underlying surface
S, and with the arrow joining the South-West string to the South-East string.

k1

k2

k3

k4

Figure 1.3.

When the knot projection Γ ⊂ S2 ⊂ S3 describes a knot K ⊂ S3, we are
free to assume that K coincides with Γ outside of a small neighbourhood of its
vertices, and to require that the boundaries of tangle projections for Γ avoid this
small neighbourhood of the vertex set. Then, a tangle projection with underlying
surface S specifies a submanifold M of S3, up to isotopy respecting K. Namely
∂M consists of the Conway 2–spheres determined by the Conway circles ∂S (with
S2 ∩ ∂B = ∂S), and M is the closed-up component of S3 − ∂M containing S.
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Consider two tangle projections S, S′ for knot projections Γ, Γ′, describing the
knots K, K ′ and with associated 3–submanifolds M,M ′ ⊂ S3. (We will usually
denote by the same letter a tangle projection and its underlying surface.) These
two tangle projections are said to be equivalent when there is a degree +1 pair
isomorphism ϕ: (M,K ∩M)→ (M ′,K ′ ∩M ′) such that ϕ(∂S) = ∂S′ and ϕ sends
arrow to arrow.

Here, when we say that ϕ is an isomorphism, this notion will depend on the
category that we are working with. We are mostly interested in the category
DIFF of differentiable manifolds and differentiable maps, and in the category PL
of piecewise manifolds and piecewise maps. We could also use the category TOP
of topological manifolds and continuous maps, provided we restrict attention to
locally flat submanifolds, namely submanifolds admitting collar neighbourhoods.
Standard smoothing results in dimension 3 [Moi, KirbS] enable one to freely
go back and forth between these three categories. In general, the PL category
is more convenient for cut-and-paste constructions, whereas the DIFF category is
better adapted to hyperbolic geometry arguments. To return to the statement that
ϕ : (M,K ∩M) → (M ′,K ′ ∩M ′) is a degree +1 (or orientation-preserving)
pair isomorphism , we mean that ϕ is a homeomorphism from M to M ′ if we
are in the TOP category, a piecewise linear homeomorphism if we are in the PL
category, or a diffeomorphism if we are in the DIFF category; that ϕ sends K ∩M
to K ′ ∩M ′; and that it sends the orientation of M to the orientation of M ′. If
instead ϕ sends the orientation of M to the opposite of the orientation of M ′, then
it has degree −1. In particular, note that the degree ±1 refers to the orientations
of the 3–manifolds M , M ′, and not to orientations of the knots K, K ′ or of the
surfaces S, S′.

A tangle projection for a knot projection Γ is rational if its underlying surface
D is a disc and can be split along a family of Conway circles into a union of several

annuli (possibly none) and of one disc, respectively meeting Γ as and .

Given a disc D ⊂ S2 whose boundary meets the knot projection Γ in 4 points,
here is a quick algorithm to decide whether D comes from a rational tangle projec-
tion or not (the arrows are clearly irrelevant here): If no closed-up component of
D − Γ is a triangle bounded by an arc in ∂D and two edges of Γ ∩D, the answer
is no. Otherwise, for such a triangle T , a regular neighbourhood of T ∪ ∂D in

D offers a vignette ; then the closed-up complement D′ of this vignette in

D comes from a rational tangle projection if and only if so does D. The proof is
straightforward. By induction on the number of double points of D∩Γ, this clearly
offers a solution to the problem considered.

The terminology is motivated by the property that the equivalence class of a
rational tangle projection is classified by a certain rational number, possibly infinite,
called its slope or type (see Proposition 1.3). This property was first observed by
Conway [Conw], although it is already implicit in Schubert’s classification of 2–
bridge knots [Sch3].

The rule assigning a slope m ∈ Q∪∞ to a rational tangle projection will satisfy

the properties indicated in Figure 1.4, where it is understood that the vignettes ?

in Figure 1.4(b)–(f) represent the same portion of the knot projection. Here, we
adopt the convention that ∞ = −∞ = ∞ ± 1 = 1

0 and 0 = 1
∞ . Note that this

uniquely determines the slope by induction, once we have chosen a decomposition
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slopes: 0 m m − 1
m m− 1 m+ 1

(a) (b) (c) (d) (e) (f)

? ? ? ? ?

Figure 1.4.

of the rational tangle projection into annuli and one disc . For instance,

the slope of the rational tangle projection of Figure 1.3 is readily seen to be

−1
−1

1+1−1 + 1 + 1
+ 1 + 1− 1 = 0,

which is also the slope of the rational tangle projection of Figure 1.4(a). The reader
may enjoy untangling the strings in Figure 1.3, and check that these two rational
tangles are indeed isomorphic.

For practical computation, it is also useful to note the relation of Figure 1.5,

which is an immediate consequence of the ones in Figure 1.4. Here,
a

with
a ∈ Z denotes a right-handed half-twists if a > 0, and −a left-handed half-twists if
a 6 0, for instance if a = +3, and if a = −3.

slope m slope m− a− a′

a a′
? ?

Figure 1.5.

We need to check that this slope is independent of the chosen decomposition
of the rational tangle projection, and that it is an invariant of its equivalence class.
This is done in the next statement.

Proposition 1.3. There is a unique rule which associates a slope m ∈ Q∪∞
to each rational tangle projection, which is invariant by isomorphism of rational
tangle projections, and which satisfies the relations of Figure 1.4. Two rational
tangle projections are equivalent if and only if they have the same slope.

Proof. We will first give a more intrinsic construction of the slope m ∈ Q∪∞
(compare §8.1 to really see m as a slope).

Consider a knot projection Γ ⊂ S2, describing a knot K ⊂ S3 which is assumed
to coincide with Γ outside of a small neighbourhood of the vertices of this graph.
Then consider a rational tangle projection D for Γ, defining a knot pair (B,K ∩B)
bounded by the Conway sphere in S3 associated to the Conway circle ∂D ⊂ S2.

By progressively untangling the strings, observe that the knot pair (B,K∩B) is
isomorphic to the knot pair associated to the “simplest” rational tangle projection
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of Figure 1.4(a), namely to the knot pair drawn on Figure 1.6(a). It therefore

admits a (unique) double branched cover, which is a solid torus B̃ ∼= S1 ×D2; the
easiest way to see this last point is to consider Z2 acting on S1×D2 by the rotation
τ of angle π represented on Figure 1.6(b), and to check that the pair made of the
quotient (S1 × D2)/τ and of the image of the fixed point set of τ is isomorphic
to the pair of Figure 1.6(a). See also §A.1 in the Appendix for basic facts about
double branched covers.

(a) (b)

τ

Figure 1.6.

Let k1 be the component of ∂D − Γ marked by the arrow, and let k2, k3, k4
denote the other components of ∂D − Γ, in this order, starting from k1 and in the
direction opposite to the one specified by the arrow (see Figure 1.3). The preimage

of each arc ki in the double branched cover B̃ is a closed curve k̃i on the boundary

torus ∂B̃. Note that k̃1 is parallel to k̃3 on ∂B̃, that k̃2 is parallel to k̃4, and that

k̃1 meets k̃2 in exactly one point. Orient B̃ by the orientation of B ⊂ R3, orient ∂B̃

as boundary of B̃, and orient k̃1 and k̃2 so that the algebraic intersection number

[k̃1] · [k̃2] ∈ Z of cycles in H1(∂B̃;Z) is +1.

As [k̃1] and [k̃2] generate H1(∂B̃), let p[k̃1] + q[k̃2] generate the kernel of the

homomorphism H1(∂B̃) → H1(B̃) induced by the inclusion map. Then, we asso-
ciate the rational m = q

p ∈ Q ∪∞ to the rational tangle projection considered. In

other words, m is the slope of the 1–dimensional kernel of H1(∂B̃;R)→ H1(B̃;R)

in H1(∂B̃;R) identified to R2 by the base {[k̃1], [k̃2]}. Note that m is independent

of the choice of orientations for k̃1 and k̃2 (provided [k̃1] · [k̃2] = +1).
By construction, this slope m is clearly invariant by equivalence of rational

tangle projections. We have to check that the rule thus defined to associate a slope
m ∈ Q ∪ ∞ to each rational tangle projection satisfies the properties stated in
Figure 1.4.

The relations described by Figure 1.4(a) and Figures 1.4(b)(c)(d) are easy to
check.

For the relation presented by Figures 1.4(b)(e), let D′ denote the tangle pro-
jection of Figure 1.4(e) and consider the tangle projection D ⊂ D′ of Figure 1.4(b).
Then, denoting by primes the data associated to D′ as above, the knot pairs
(B,K ∩ B) and (B′,K ∩ B′) can be chosen so that B ⊂ B′. The closed-up com-

plement of B̃ in B̃′ is now a collar neighbourhood of ∂B̃′ in B̃′, which induces a

projection ∂B̃ → ∂B̃′. One then readily checks that, for suitable choices of orien-

tations, this projection sends [k̃2] to [k̃′2] and [k̃1] to [k̃′1] − [k̃′2]. The relations of
Figures 1.4(b)(e) now immediately follow.

The proof is similar for Figures 1.4(b)(f).
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The intrinsic nature of this construction makes it clear that equivalent rational
tangles have the same slope.

It remains to see that, conversely, two rational tangle projections D and D′

are equivalent when they have the same slope m = q
p ∈ Q ∪ ∞ (see [Conw] or

Chapters 12–13 for alternative proofs). Let K, B, B̃, k̃1, k̃2 be associated to D as
above and let primes distinguish similar data for D′.

The pair (B,K ∩ B) is such that there is a union k ⊂ ∂B of two disjoint arcs
with ∂k = K ∩ ∂B for which K ∩ B is obtained by pushing k − ∂k inside B, up

to isotopy fixing ∂B. The preimage of k in ∂B̃ consists of two closed curves k̃,

each of which is in the kernel of H1(∂B̃) → H1(B̃), and therefore homologous to

±(p[k̃1] + q[k̃2]).

Let k′ ⊂ ∂B′ and k̃′ ⊂ ∂B̃′ be similarly defined from D′.
We begin with an orientation-preserving isomorphism ψ : (∂B,K ∩ ∂B) →

(∂B′,K ′ ∩ ∂B′) sending ∂D to ∂D′ and arrow to arrow. Lift ψ to ψ̃ : ∂B̃ → ∂B̃.

After perturbation of ψ, we can assume that ψ̃(k̃) meets k̃′ transversely.

As D and D′ have the same slope q
p , each component of ψ̃(k̃) has algebraic

intersection number 0 with each component of k̃′. Since ∂B̃′ − k̃′ consists of two

open annuli, one concludes that at least one closed-up component of ∂B̃′− k̃′∪ ψ̃(k̃)
is a digon , and gives a similar digon between k′ and ψ(k) in ∂B′. After
a succession of intersection reductions using such digons, one eventually makes
k′ ∪ ψ(k) be the boundary of two disjoint digons in ∂B′, which yields an
isotopy fixing K ′ ∩ ∂B′ between k′ and ψ(k).

Since K and K ′ are respectively obtained by pushing k and k′ inside of B
and B′, we can use this isotopy to extend ψ to ψ : B → B′ sending K to K ′

(and still sending ∂D to ∂D′ and matching arrow to arrow). This proves that D
and D′ are equivalent when they have the same slope, and concludes the proof of
Proposition 1.3. �

After this preamble on rational tangle projections, we are now ready to prospect
for additional characteristic Conway spheres in knots.

Consider a knot projection Γ where the characteristic family GΓ of Conway
spheres provided by Theorem 1.1 is particularly simple in the following sense: The
arborescent part AΓ consists of disjoint rational tangle projections and GΓ is com-
pletely contained in AΓ. In other words, Γ is obtained from a Conway graph Γ0

by replacing a small neighbourhood of each of its vertices by a rational tangle pro-
jection. In saying this, we have of course neglected the arrow which, by definition,
is part of the data forming a rational tangle projection. For each component A′ of
AΓ, there are 8 possible choices of arrow on ∂A′, and each choice defines a slope
m ∈ Q, namely the slope of the rational tangle projection so defined.

Assuming that A ∪ Γ ⊂ R2 in S2 = R2 ∪∞, there is a natural convention to
choose arrows in a coherent way so that these slopes are well-defined: We give the
unique black and white checkerboard colouring to the regions of R2 cut out by the
Conway graph Γ0 such that the infinite region is white. For each component Av
of AΓ corresponding to a vertex v of Γ0, choose an arrow marking a component
of ∂Av − Γ located in a white region of R2 − Γ0. There are still four possible
choices of such an arrow for each vertex v of Γ0 but, because of the equivalences of
Figure 1.4(b)(c)(d), they all define the same slope mv ∈ Q.
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In this situation, we will say that the knot projection Γ is obtained from the
Conway graph Γ0 ⊂ R2 by substituting a rational tangle projection of slope
mv at each vertex v of Γ0.

We can slightly extend this construction by allowing ourselves to substitute a

rational tangle projection of slope 0 or ∞ at some vertices of Γ0, although

such vignettes do not give components of the arborescent part of the knot projection
so obtained. Observe however that we do not gain much generality by doing so;

indeed, such a substitution gives the same knot as a substitution , of the

type previously considered.

Theorem 1.4. For every Conway graph Γ0 ⊂ R2 = S2 −∞ and every vertex
v of Γ0, there is a finite subset Ev(Γ0) of Q ∪∞ with the following property: Let
Γ be a knot projection obtained by substituting a rational tangle projection of slope
mv ∈ (Q ∪ ∞) − Ev(Γ0) at each vertex v of Γ0. Similarly, let Γ′ be obtained
from another Conway graph Γ′

0 by substituting a rational tangle projection of slope
m′
v′ 6∈ Ev′(Γ

′
0) at each vertex v′ of Γ′

0. Then the two knots respectively described by
these knot projections are degree +1 isomorphic if and only if there is a degree ±1
isomorphism θ: S2 → S2 sending Γ0 to Γ′

0 and such that:

(1) if θ respects the colours of the components of S2 − Γ0 and S2 − Γ′
0, then

m′
θ(v) = mv for every vertex v of Γ0;

(2) otherwise, m′
θ(v) = −

1
mv

for every v ∈ Γ0.

Theorem 1.4 can be rephrased as follows. Given a Conway graph Γ0, call a
rational tangle substitution sufficiently complicated when, for each vertex v of
Γ0, the corresponding slope mv is not in the exceptional (finite) set Ev(Γ0). Then,
consider the class of knots that are obtained by sufficiently complicated rational
tangle substitutions on some Conway graph. Theorem 1.4 asserts that the only
isomorphisms between knots in this class are the obvious ones (use Proposition 1.3).

The proof of this result will be given in Chapter 6 (see Theorem 6.11), and
will be based on hyperbolic geometry. In light of known examples (see for instance
Chapter 4), it seems reasonable to conjecture that the exceptional sets Ev(Γ0) can
be relatively small, for instance with no more than 4 or 5 elements. See §6.2 for
more discussion of Ev(Γ0).





CHAPTER 2

Known factorisations:

connected sums and companionship

We propose to discuss classical first steps in the geometrical analysis of knots.
This includes the Kneser-Haken-Milnor theory of connected sums of 3–dimensional
manifolds, and the analysis of satellite knots initiated by Schubert. We will actu-
ally give our own version of Schubert’s decomposition of a satellite knot into its
companions, in a form that we believe is particularly convenient.

2.1. Connected sums and characteristic decompositions along tori

Knot theory can be understood as the analysis of pairs (S3,K), where K is a
knot in the 3–sphere S3. If, as we began doing in Chapter 1, we split the pair (S3,K)
along surfaces which are transverse to the knot, we obtain new pairs (M,L) where
M is a 3–dimensional manifold with boundary and where L is a 1–dimensional
submanifold of M . Our systematic reliance on such splitting constructions makes
it worth introducing a new term to describe these objects.

A knot pair is a pair (M,K) where M is an oriented connected compact 3–
manifold with (possibly empty) boundary, and where K is a proper 1–dimensional
submanifold ofM . Recall that the properness property means that ∂K = K∩∂M .
In general, we do not assume that a preferred orientation of K has been chosen.

Eventually, we will focus attention on the case where M is the complement of
finitely many disjoint balls in S3 but, initially, M can be any compact connected
oriented 3–manifold. However, we will progressively need to impose additional
restrictions.

The theory of connected sums of 3–manifolds initiated by H. Kneser [Kne] (see
also [Hak1, Hak2, Mil, Hemp]) can be applied to M −K to show that, without
essential loss of generality, one can assume thatM−K is irreducible, namely that
every 2–sphere in M −K is the boundary of a 3–ball in M −K. Indeed, this theory
tells us much more: there always exists a finite (unordered) collection of knot pairs
(M1,K1), . . . , (Ms,Ks), well defined up to isomorphism and permutations, so that
(M,K) ∼= (M1,K1)# . . .#(Ms,Ks) where # denotes connected sum avoiding the
knotsKi and, for each index i, eitherMi−Ki is irreducible or (Mi,Ki) is isomorphic
to (S2 × S1,∅).

ForM = S3, the fact that every (smooth) 2–sphere in S3 bounds a 3–ball [Ale]
shows that this irreducibility of S3 − K just means that no 2–sphere in S3 − K

separates two distinct components as in . If K is a link, one then calls

it unsplittable. Naturally enough, only unsplittable links (S3,K) are tabulated.

(One exception: the 2–component link is tabulated by Conway.)

15
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There is a celebrated pairwise version of this theory of connected sums, which
was initiated by H. Seifert [Sei2] and H. Schubert [Sch1]. An arbitrary knot K in
S3 with S3 −K irreducible is uniquely factored as a pairwise connected sum (see
Figure 2.1(b)) of knots (S3,K1), . . . , (S

3,Ks), where each pair (S3,Ki) is pairwise
irreducible in the sense that any 2–sphere in S3 transversely cutting Ki in two
points necessarily bounds a 3–ball B in S3, such that (B,Ki ∩B) is isomorphic to
the standard pair (B3, B1). For example, the knot in Figure 2.1(a) has three factors
as in Figure 2.1(b) from which it is retrieved by a simple sort of band connected
sum (dotted in Figure 2.1(b)) that is sufficiently specified by the correspondence of
components given by the two bands (making string orientation correspond).

(a) (b)

Figure 2.1.

Because of these facts, which were accepted without proof in the XIX-th cen-
tury, only pairwise irreducible knots have been tabulated.

This pairwise connected sum theory is subsumed (for knots in S3) by a more
recent theory concerning embedded 2–tori. This, too, was initiated by Schu-
bert [Sch2], but reached a satisfactory state only recently through the work of
F. Waldhausen [Wal4], K. Johannson [Joh1, Joh2], W.H. Jaco and P.B. Shalen
[JacS1, JacS2].

We now pause to describe this theory of embedded 2–tori, for a number of
reasons which, taken together, seem compelling:

(1) it subsumes the pairwise connected sum theory above;
(2) it had a role in suggesting our analysis of Conway 2–spheres (see Chap-

ter 3);
(3) we can offer an attractive formulation of it for knots in S3 as a unique

factorisation into characteristic companion knots (a rather similar factori-
sation of irreducible Z–homology 3–spheres played a crucial role in [Sie2]);

(4) this factorisation greatly facilitates the subsequent analysis of Conway
2–spheres, as presented in Chapter 3.

Consider an irreducible orientable 3–manifold X , not necessarily compact.
Shortly, X will be the complement M − K of the knot K in a knot pair (M,K).
A 2–torus F embedded in X is trivial if it is either compressible or peripheral as
defined below.

The torus F is compressible if there exists a 2–disc D in X such that D∩F =
∂D is essential in F , namely represents a non-trivial element of π1(F ). This D is
called an effective compression disc for F .

It is peripheral if some closed-up component of X − F is isomorphic to T 2 ×
[0,∞), with T 2 the standard 2–torus.

The manifold X is called geometrically atoroidal , or simply atoroidal , if it
contains no non-trivial 2–torus.

Remark 2.1. By the irreducibility of X , a compressible torus F ⊂ X bounds
either a solid torus, isomorphic to B2 × S1, or a 3–ball from which a knotted
wormhole has been drilled out. To see this, consider a regular neighbourhood U of
F ∪D in X and note that one component of its boundary ∂U is a 2–sphere.
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Remark 2.2. The 3–manifold X is called algebraically atoroidal if it sat-
isfies a similar condition for arbitrary continuous maps of S1 × S1 → X in place
of embeddings. Beware that other authors may use the term atoroidal for alge-
braically atoroidal. It is a deep fact that, provided X is Haken (namely contains a
closed incompressible surface), geometrically atoroidal is equivalent to algebraically
atoroidal unless X is a Seifert fibre space over S2 with 3 exceptional fibres or over
the disk B2 with 2 exceptional fibres. These Seifert fibre spaces are always geo-
metrically atoroidal. But they are not algebraically as there is an essential singular
2–torus over a suitable figure eight drawn in the base space. (See [Wal5] and the
singular torus theorems of [Feu1, Feu2, Joh2, JacS2, Sco1, Sco2].)

Remark 2.3. A knot K in S3 is pairwise irreducible whenever its complement

X = S3 −K is irreducible and atoroidal, except when K is the knot .

Proof of Remark 2.3. Suppose S is a 2–sphere that cuts K transversely in
2 points, and does not bound a 3–ball B in S3 with (B,K ∩B) ∼= (B3, B1). Both
points of K ∩ S lie on a single component K1 of K, since the intersection number
of any circle with S is zero. Now the regular neighbourhood N of K1 ∪ S has
two 2–tori as boundary. Using the property that S3 − K is atoroidal, one easily

reconstructs the pair (S3,K) and checks that K must be . �

The version of the characteristic submanifold theorem of Johannson and Jaco-
Shalen [Joh1, JacS1, Joh2, JacS2] that ignores the manifold boundary can be
stated as follows. For us the manifold X involved will usually be int(M)−K where
(M,K) is a knot pair.

Theorem 2.4 (Characteristic Torus Decomposition). Let X be an irreducible
orientable 3–manifold isomorphic to the interior of a compact manifold. Up to
isotopy in X, there exists a unique compact surface T in X satisfying the following
properties:

(a) Each component of T is a non-trivial 2–torus in X.
(b) Each component V of X − T is either a Seifert fibre space (namely has

a foliation by circles, with finite holonomy; see §A.1 in the Appendix) or
else is atoroidal.

(c) If any component of T is deleted, Property (b) fails. �

The surface T of Theorem 2.4 is the characteristic 2–torus family of X .
The uniqueness of T entails that it is preserved up to isotopy by every auto-

morphism of X . This property justifies the name “characteristic”. (Recall that, in
an abstract group, a subgroup is called characteristic when it is preserved by every
automorphism of the group.)

W. Thurston has proved the astounding theorem that whenever an atoroidal
component V in (b) is not a Seifert fibre space, it then has a complete hyperbolic
metric of finite volume, assuming that V is a Haken manifold; see [Thu2, Mor1].
The last assumption is conjecturally unnecessary1.

As impressive as it is, Theorem 2.4 has no impact on the existing tabulations
of connected knots. Indeed, the two simplest connected prime knots with a non

1(Added 2009) This Geometrisation Conjecture is now a theorem, by work of R.D. Hamilton,
G.Y. Perelman and others; see [Pere1, Pere2, Pere3, KleiL, CaoZ, ChoK, ChoLN, ChoEtAl,

MorT1, MorT2].
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trivial torus in their complement are the cables and of the trefoil; they

seem to have no projection with < 13 crossings. Readers interested mostly in the
tabulated connected knots thus have good reason to skip on to Chapter 3.

On the other hand, there is a generous handful of links of 6 10 crossings with
a non-trivial torus in their complement. They are drawn in Figure 2.2) with either
weighted tree notations for them from Chapter 12 or non-graphical notations from
Conway [Conw].

1
2

2

2

2

1

3

3
31

2:-20:-20

4

4

21

-(20.-2.-20.20)

-210:20:20

-(2.-2.-20.20)

1
1 1

2
22

22

1 1

−3
22

22

1
1 1

3
22

22

2
1 1

22

22

2

2

1 1

22

22

2

22

22

Figure 2.2.

It is unsettling to see such varied notations for links that are so similar. One
practical remedy for this is to factorise such links into their canonical companions
as will be described below. It then becomes no more necessary to tabulate such
“composite” links than it is to tabulate links that are non-trivial connected sums
of others.

We now introduce elementary splitting and splicing constructions, which con-
vert Theorem 2.4 into a unique factorisation of any knot pair (M,K) such that
M −K is irreducible and H1(M ;Q) = 0. This factorisation will split (M,K) into
knot pairs called its characteristic companions2.

2.2. The splitting construction

Suppose that we are given a knot pair (M,K), together with a surface T ⊂M−
K whose components T1, . . . , Tr are all 2–tori. At this point,M can be any compact
3–manifold, possibly with boundary, but must satisfy the crucial hypothesis that
H1(M,Q) = 0. Note that this implies that all boundary components of M are
2–spheres. The components of K can be either circles or intervals.

The closure Nj of any component ofM−T gives rise to a knot pair (Mj ,Kj) as
follows. We simply plug every (torus) component of ∂Nj − ∂M with a solid torus.
Clearly the way we glue on the solid tori to Nj matters but, by good fortune,
our hypothesis that H1(M,Q) = 0 provides a canonical way to do the gluing (up
to automorphism of the solid tori). Namely, we insist that the meridian of each
solid torus glued on be null-homologous in M −Nj (when pushed outwards). This

2(Added 2009) See also [Bud1, Bud2] for a more recent account.
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meridian is determined up to sign since, by an exact homology sequence calculation,
both closed-up components of the complement of any 2–torus Ti in M+ behave
homologically like solid tori, where M+ is the closed 3-manifold obtained from M
by plugging all boundary components with 3–balls.

The knot Kj in Mj consists of old components K ∩Nj , plus new components
that are the cores of the solid tori Mj − int(Nj).

The knot pairs (Mj ,Kj) deriving from the closed-up components Nj of M −T
are called the companions of (M,K) for the torus family T .

The way the closed-up components Nj of M −K fit together in M is recorded
by the companionship tree Γ for the torus family T , defined as follows: The
vertices vj correspond to the closed-up components Nj of M − T , and the edges
ei are associated to the components Ti of T . The edge ei joins the vertices vj and
vk when the corresponding component Ti of T separates the closed-up components
Nj and Nk of M − T . Moreover, each vertex vj has one free bond for each closed
component of K ∩Nj , namely a germ of edge emanating from vj but leading to no
other vertex. The fact that this graph is a tree, is a consequence of H1(M,Q) = 0.

Note that our trees are not exactly 1–dimensional simplicial complexes inas-
much as the vertices have bonds, namely “germs of edges”, that may or may not
lead to another vertex. The reader can readily formalise this notion of graph. A
bond of such a graph is tied when it is contained in an edge, and free otherwise.

The valence of a vertex is its number of bonds. For example, has three

vertices (with respective valences 4, 3 and 1), two edges and four free bonds. We
do not symmetrically allow free edges; namely each edge ties precisely two bonds.

Thus, each vertex vj of our companionship tree has one free bond for each
circle component of K ∩Nj , and one tied bond for each torus component of ∂Nj,
or equivalently for each new component of the knot Kj in the companion knot pair
(Mj,Kj).

For an edge ei joining vertices vj and vk, there is a preferred isomorphismKji
∼=

Kki (up to isotopy) between the knot components associated to the bonds tied by
ei, namely between the new knot components Kji ⊂ Kj and Kki ⊂ Kk arising from
Ti in the above splitting construction. This isomorphism is the one making string
orientations correspond so that in the algebraic linking number ℓ(Kji,Kki) ∈ Z

in M is equal to +1 when Kji and Kki are pushed near Ti, so that they can
be considered as simultaneously lying in M . A short-hand way to specify this
identification is to draw arrows coherently on the circles Kji and Kki.

In practice, one should draw the new components Kji and Kki very near Ti in
M , each null-homologous on its side of Ti in M − Ti. Then orient both curves so
that ℓ(Kji,Kki) = +1 when we push each to the opposite side of Ti.

We are most interested in this splitting construction in the case where T is the
characteristic 2–torus family of Theorem 2.4 in the complement X = M −K of a
knot pair (M,K). In this situation, the knot pairs (Mj ,Kj) are the characteristic
companions of (M,K), and Γ is the characteristic companionship tree for
(M,K).

Then, for each j, the complement Mj − Kj of the knot pair (Mj ,Kj) is ir-
reducible and is either atoroidal or Seifert fibred (or both). Under the additional
hypothesis that no component of ∂M meets the knot K in 1 or 2 points, each com-
panion (Mj ,Kj) for whichMj−Kj is Seifert fibred has empty boundary ∂Mj = ∅,
and the fibration can be chosen to a extend to a Seifert fibration of Mj in which
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each component of Kj is a circle fibre. Note that a component of Kj may be an

infinitely singular fibre, for which nearby fibres are meridians .

We summarise the properties of this characteristic splitting in the following
statement.

Lemma 2.5. Let (M,K) be an irreducible knot pair with H1(M,Q) = 0, and
such that no component of ∂M meets the knot K in 1 or 2 points. Then its charac-
teristic companionship tree Γ and its characteristic companion pairs (Mj ,Kj) are
such that:

(i) (Mj ,Kj) is irreducible, and is either atoroidal or Seifert fibred;

(ii) (Mj ,Kj) is not isomorphic to the knot pair formed by the trivial knot

or by the Hopf link in S3, unless the splitting is trivial in the sense
that (Mj ,Kj) = (M,K) and Γ is reduced to the vertex vj ;

(iii) if the edge ei joins the vertices vj and vk and if the corresponding knot
pairs (Mj ,Kj) and (Mk,Kk) are Seifert fibred, the Seifert fibrations can-
not be chosen so that they induce fibrations on the boundary tori ∂Vji and
∂Vki that match under the gluing map ϕjk.

Conversely, if the companions and companion tree associated to a family T ⊂M−K
of tori satisfies the above three conditions, then T is the characteristic family of
Theorem 2.4.

Proof. Condition (i) is identical to Condition (b) of Theorem 2.4. Condi-
tion (ii) comes from the fact that every torus in the characteristic family T is
non-trivial, and that no two components of T can be parallel by the Minimality
Condition (c) of Theorem 2.4. The same Minimality Condition (c) clearly implies
Condition (iii).

For the converse statement, the only thing to check is that Conditions (ii)-(iii)
imply the Minimality Condition (c) of Theorem 2.4. This follows from the classical
property that, for any nontrivial torus in a Seifert manifold, the Seifert fibration
can always be chosen so that the torus is a union of fibres; see [Wal2, Satz 2.8]. �

We are leaving as an exercise to the reader the task of translating this third
condition (iii) of Lemma 2.5 in terms of Seifert invariants of the Seifert fibration;
compare the Appendix.

We are mostly interested in knot pairs (M,K) that are contained in the 3–
sphere S3. Since its boundary must consist of 2–spheres, M is then isomorphic to
the closure of the complement of finitely many disjoint balls in S3. Quite satis-
factorily, the companions (Mj ,Kj) provided by our splitting construction are also
embeddable in S3.

Lemma 2.6. Let (M1,K1), (M2,K2), . . . , (Mr,Kr) be the characteristic com-
panions of the irreducible knot pair (M,K) with H1(M,Q) = 0. If M is embeddable
in the 3–sphere S3, then so are the Mj.

Proof. Consider such a companion (Mj ,Kj), associated to the closed-up
component Nj of M − T , where T is the characteristic 2–torus family of Theo-
rem 2.4. The boundary spheres are clearly irrelevant here, so it is convenient to
plug all sphere boundary components of M , Nj and Mj with 3–balls, which gives
3–manifolds M+ ∼= S3, N+

j and M+
j , respectively. We can disregard the knots K

and Kj .
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Applying Sublemma 2.7 below to N = N+
i ⊂M

+ ∼= S3 then shows that Mj is

contained in M+
j = N̂ ∼= S3. �

Sublemma 2.7. Let N be a connected 3–submanifold of S3 whose boundary

consists of tori, and let N̂ be obtained from N by gluing a solid torus Vi along each
component Ti of ∂N , in such a way that the meridian curve of Vi in ∂Vi = Ti is

homologous to 0 in S3 − int(N). Then N̂ is isomorphic to S3.

Proof of Sublemma 2.7. We proceed by induction on the number of com-
ponents of ∂N , starting the induction with the trivial case where ∂N = ∅.

Assume that the property is proved for every submanifold of S3 with fewer
boundary components than N , and that N has at least one boundary component
T1. By [Ale], at least one of the two closed-up components of S3 − T1 is a solid
torus U1.

If int(U1) is disjoint from N , the solid tori U1 and V1 have the same meridian

curves in T1, and we can therefore arrange that V1 = U1. Then N̂ is obtained from
N ′ = N ∪ U1 ⊂ S3 by gluing solid tori along its boundary components, one fewer

than for N . By induction hypothesis, it follows that N̂ ∼= S3.
If int(U1) meets N , then N is contained in the solid torus U1. Choose a different

embedding ϕ: U1 → S3 with image an unknotted solid torus ϕ(U1), for which the
closure U ′

1 of S3−ϕ(U1) is a solid torus. In addition, the embedding can be chosen
so that it sends a longitude of U1, namely a curve in T1 that is homologous to 0 in
S3 − int(U1), to a longitude of ϕ(U1). We then conclude by applying the previous
case to ϕ(N) instead of N . �

In particular, the characteristic companions of a knot (S3,K) in S3 are knots
(S3,Kj).

In §2.4 we will present an inverse construction, called splicing, for the splitting
construction that we just described. However, we first give a few examples of
companions and companionship trees.

2.3. Examples of characteristic companions and companionship trees

In all these examples, we will ask the reader to believe us when we claim that,
for each of the companion pairs (Mj ,Kj) indicated, the complement Mj − Kj is
either atoroidal or Seifert fibred. These claims can be a posteriori justified using
the results of later chapters, in particular Chapters 4, 5 and 8.

Example 2.8. The characteristic companionship tree of the doubled trefoil
knot

is
v1 v2

, where v1 and v2 respectively correspond to and .
The 6 negative half twists seen on the band of the second knot are worth

explaining. The general reason for them is clear: The boundary of a Seifert surface

for the trefoil knot seems to twist −6 times compared with a horizontal band: .

Note that this is also −2 times the linking number in S3 of the two edges of this
horizontal band. This linking number is quickly calculated for any projection of a
connected knot, as follows: orient the knot and add up the signs of the crossings:

+1 for , −1 for .
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Example 2.9. The characteristic companions of

are and

and the characteristic companionship tree has the form .

Example 2.10. The example

was suggested by Pierre Soury [Sou1, Sou2, Sou3]. It has characteristic compan-

ionship tree where each vertex corresponds to a copy of the Borromean

rings

In fact, Soury was using companionship trees to create many links with un-
knotted components. He was probably the first to take this sort of tree seri-
ously. The Lacan school of psychoanalysis was contemplating links as paradigms
of complex relationships; see in particular the years 1973-80 of J. Lacan’s seminar
[Lac1, Lac2, Lac3, Lac4, Lac5, Lac6, Lac7].

Example 2.11. Let (S3,K1), (S3,K2), (S3,K3) and (S3,K4) be four con-
nected knots, each with S3−Ki atoroidal and not Seifert fibred. Then the connected

sum (S3,K1#K2#K3#K4) has characteristic companionship tree v0

v1
v2
v3
v4

where

the vertex v0 corresponds to the “key chain” with the free bond of v0 as-

sociated to the big circle, and where the other vi with i > 0 each correspond to
(S3,Ki). See also Remark 2.12.

As a further exercise, the reader can give the characteristic companions of the
links in Figure 2.2, and observe that they suffice to distinguish these links.

2.4. The splicing construction

It should be clear that the companionship tree for a family T of 2–tori in the
complement of a knot pair (M,K) with H1(M,Q) = 0 has been loaded with so
much information that the knot pair (M,K) and the torus family T in M −K can
be recovered from it. To avoid any misunderstanding, we make quite explicit what
the starting materials are for this inverse construction called splicing .

The splicing construction starts with any finite collection of knot pairs (Mj ,Kj)
with H1(Mj,Q) = 0, together with a tree Γ where each vertex vj is associated to
one of these knot pairs (Mj ,Kj), and where each bond of vj is associated to a circle
component of Kj . In addition, for every edge ei binding a bond of the vertex vj
to a bond of a vertex vk, we are given an identification between the components
Kji ⊂ Kj and Kki ⊂ Kk associated to these bonds. This identification Kji

∼= Kki
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is only defined up to isotopy and, in practice, specified by matching orientations on
Kji and Kki.

For each vertex vj of Γ, let Nj be obtained from Mj by removing the inte-
rior of a regular neighbourhood Vji of each component Kji of Ki that corresponds
to a tied bond of vj . The boundary torus ∂Vji comes with a preferred meridian
µji and longitude λji, respectively generating the kernels of the homomorphisms
H1(∂Vji) → H1(Vji) and H1(∂Vji) → H1

(
M − int(Vji)

)
. Choose consistent orien-

tations on µji and λji so that their algebraic intersection number is µji · λji = +1
on ∂Vji, oriented as boundary of Vji; there are two possible choices for such ori-
entations, which both provide the same identification µji ∼= λji up to isotopy. In
addition, by projection in Vji, the longitude λji has a natural identification with
the core Kji of Vji, well-defined up to isotopy.

Now, suppose that the edge ei ties two bonds of vj and vk, respectively asso-
ciated to the components Kji ⊂ Kj and Kki ⊂ Kk. We then have identifications
µji ∼= λji ∼= Kji

∼= Kki
∼= λki ∼= µki, where the middle isomorphism is part of the

splicing data. By projection, we also have natural isomorphisms ∂Vji ∼= µji × λji
and ∂Vki ∼= µki × λki. We can then glue the manifolds Nj and Nk along their
boundary components ∂Vji ∼= µji × λji and ∂Vki ∼= µki × λki by the gluing map
ϕ: ∂Vji → ∂Vki which, for the above identifications µji ∼= λji ∼= λki ∼= µki, trans-
lates as the map (x, y) 7→ (y, x). Note that ϕ is orientation-reversing, so that the
orientations of Nj and Nk match to give an orientation on the glued manifold.

Performing this gluing operation for all the edges ei of Γ, the manifolds Nj are
now glued together to form a 3–manifoldM . Let K be the image inM of the union
of the Nj ∩Kj . We now have a knot pair (M,K). We already observed that M
is oriented by the orientations of the Mj . An immediate computation shows that
H1(M,Q) = 0.

The splicing construction is specially designed to be the inverse of the split-
ting construction of §2.2, provided the knot pairs (Mj ,Kj) satisfy the following
additional conditions of Lemma 2.5.

Remark 2.12 (Compare Example 2.11). Let the splicing tree Γ be

where the knot pair associated to the central vertex is the link in S3, with
the two components marked with arrows corresponding to the two tied bonds, and
where the other two vertices correspond to connected knots (S3,K1) and S

3,K2),
respectively oriented by arrows and . The resulting spliced knot (S3,K)
then is none other than the pairwise connected sum K1#K2 in S3, defined using
the orientations indicated:

K1 K2 K1#K2
This example illustrates the need to specify the isomorphisms Kij

∼= Kki in
the splicing data. Indeed it is well known that the pairwise connected sum of two
connected knots depends on the choice of matching orientations on each knot, at
least for non-invertible knots such as the knot 817 of Examples 16.20 and 18.11.
Recall that a knot (S3,K) is invertible if there exists a degree +1 automorphism
of (S3,K) which reverses the orientation of K.
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Remark 2.13. On the other hand, the simplest knots have so much symmetry
that very often, for splicing to be well-defined, the arrows and even the specifica-
tion of the bound components are immaterial. Thus the link of Example 2.9 is
unambiguously obtained by splicing one component of its first companion to one
component of the second companion, with no need to specify which components
and identifications. Indeed, for each of its two companions (S3,K1) and (S3,K2),
there exists a degree +1 isomorphism of (S3,Ki) exchanging its two components,
and another one reversing the orientation of each component.

WhenM is embeddable in S3, we saw in Lemma 2.6 that the splitting construc-
tion applied to the knot pair (M,K) provides knot pairs (Mj,Kj) where each Mj

is embeddable in S3. However, the converse is far from being true. For instance, we
can take the crude example where the companionship tree is , and where the
companions are non-trivial connected knots in S3. Then, in the knot pair (M,∅)
provided by the splicing construction, the manifold M is a Z–homology sphere but
is not a genuine 3–sphere since the gluing torus T is an incompressible 2–torus in
it.

Thus we have a technical problem to solve: Given a splicing construction pre-
sented by a tree Γ, such that each vertex knot pair (Mj ,Kj) is embeddable in
S3, give an effective criterion to decide when the resulting knot pair (M,K) has
M ∼= S3.

A solution is offered by the following statement.

Lemma 2.14. Consider the splicing tree

Γ0 =
v0

v1
v2
v3

vk
where the knot pairs (Mi,Ki) associated to the vertices vi are such that Mi

∼=
S3. Let (M,K) be the result of splicing according to this data. In particular, K is
connected and can be identified to the component K∗

0 of K0 ⊂M0 corresponding to
the free bond. Suppose in addition that, for each i = 1, . . . , k, the connected knot
(Mi,Ki) is non-trivial. Then:

(1) M is isomorphic to S3 precisely if the k circles K0−K
∗
0 bound k disjoint

discs in M0.
(2) (M,K) is isomorphic to the trivial knot (S3, S1) precisely if the (k + 1)

circles K0 bound (k + 1) disjoint discs in M0.

Proof. The proof is an exercise using the Loop Theorem (see [Hemp]) and
innermost disc arguments, exploiting the fact that the complement in Mj of a
tubular neighbourhood ofKj has an incompressible torus boundary when i > 0. �

We now give a recipe based on this lemma to decide whether a general splicing
tree Γ yields a pair (M,K) with M ∼= S3. It gradually simplifies Γ until a decision
is reached.

Algorithm 2.15.

(0) Suppress from each Kj all components that are not tied bonds of Γ. This
makes K = ∅ without changing M . Also, replace each Mi by the closed
manifoldM+

i obtained fromMi by plugging each (sphere) boundary com-
ponent with a 3–ball. This replaces M by the similarly defined closed
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manifoldM+, and reduces the embeddability problem to deciding whether
M+ ∼= S3.

(1) Consider the twigs of Γ, namely the univalent vertices , and mark with
an arrow those in which the bond corresponds to a knotted curve.

(2) If Γ is one of , or , then M+ ∼= S3 and M is embeddable in
S3. If Γ is , then M+ 6∼= S3 and M is not embeddable in S3. In any
other case we suppress the twigs lacking arrows, without affecting M .

After (0), we apply (1) and (2) as long as possible. When none apply, and we
still do not know whether M+ ∼= S3, we can go on to (3) below.

(3) Consider a subgraph

Γ0 =
v0

v1
v2
v3

vk
of Γ such that, for every vertex vj ∈ Γ0, each bond of vj in Γ also

appears in Γ0. Apply Lemma 2.14 to Γ0, with the Mi replaced by M+
i .

If, in the knot pair (M0,K0) associated to the central vertex v0 of Γ0,
the k components of K0 −K

∗
0 do not bound k disjoint disks in M0, then

M 6∼= S3 and M is not embeddable in S3. If, at the other extreme, the
k + 1 components of K0 bound k + 1 disjoint disks in M0, replace Γ0 by

in Γ and return to (2). Otherwise, replace Γ0 by and return to (2).

Note that the only information needed to apply Algorithm 2.15 is that we know
which subknots of the knot pairs (Mj ,Kj) associated to the vertices of Γ are trivial.
(A subknot is obtained by deleting some, namely > 0, components of Kj; trivial
means bounding disjoint discs in Mj .)

2.5. Conclusion

The chief purpose of this chapter has been to reduce the classification of arbi-
trary knots in S3 to the study of those knots (S3,K) that are simple for Schu-
bert , in the sense that (S3,K) is irreducible and (geometrically) atoroidal. Let us
recapitulate how the foregoing accomplishes this.

As a first easy step, the Kneser connected sum theory showed that the classi-
fication of arbitrary knots in S3 is equivalent to the classification of knots (S3,K)
such that S3 −K is irreducible.

Now consider two knots (S3,K) and (S3,K ′) of this sort. For them, we have
defined characteristic companionship trees Γ and Γ′, whose vertices correspond
to characteristic companion knots (S3,Ki) and (S3,K ′

i′), respectively, which each
are either simple for Schubert or Seifert fibred (or both), and whose edges specify
identifications between some components of these knots. More precisely, an edge ek
joining the vertices associated to (S3,Ki) and (S3,Kj) in Γ specifies an isomorphism
θk: Kik → Kjk of a circle inKi to a circle inKj, this θk being specified up to isotopy;
similarly in Γ′.

Theorem 2.4, and its corollary the uniqueness of the splitting construction of
§2.2, show that (S3,K) ∼= (S3,K ′) with degree +1, precisely if there exists an
isomorphism

f :
∐

i

(S3,Ki) −→
∐

i′

(S3,K ′
i′)
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of degree +1 on each 3–sphere, making the string identifications specified by the
edges of Γ and Γ′ match in the following sense: For each edge ek of Γ specifying an
identification θk between circle components L1 and L2 of two distinct Ki, there is
an edge e′k′ of Γ

′ that specifies an identification θ′k′ between f(L1) and f(L2), and
θ′k′ ◦ f|L1

= f|L2
◦ θk up to isotopy.

Thus to decide whether (S3,K) is degree +1 isomorphic to (S3,K ′) it suffices
to know, for every pair of vertices vi ∈ Γ and v′i′ ∈ Γ′:

(a) whether there is a degree +1 pair isomorphism (S3,Ki) → (S3,Ki′) of
the characteristic companions respectively associated to vi and vi′ and, if
so,

(b) which isomorphisms Ki → K ′
i′ of 1–manifolds are realised by such pair

isomorphisms.

Note that, given an answer to (a), Question (b) amounts to knowing something
about the automorphisms of (S3,Ki), namely their effect on the components of Ki.
Also, from a practical point of view, one does not need to consider all pairs {vi, v

′
i′},

but only those where the two vertices are in correspondence by a combinatorial
isomorphism between the trees Γ and Γ′.

If (S3,Ki) is Seifert fibred, Waldhausen classification of Seifert manifolds [Wal2]
tells how to answer (a) and (b) systematically. If (S3,Ki) is not Seifert fibred, it is
simple for Schubert and, in case (S3,Ki) appear in knot and link tables along with
their symmetry groups, then questions (a) and (b) are answered.

Thus the question of isomorphism of the two knots (S3,K) and (S3,K ′) can
be settled by studying the isomorphism and symmetry problems posed by their
characteristic companions. These are exactly the problems that we address in
following chapters.



CHAPTER 3

The arborescent part of a knot

In the preceding chapter, we explained how the study of an arbitrary knot in
S3 can be reduced to the study of knots (S3,K) that are simple for Schubert, in
the sense that S3 −K is irreducible and (geometrically) atoroidal.

This section will describe how one can use Conway 2–spheres to cut out certain
characteristic parts of such a knot (S3,K), notably an arborescent part A. This
arborescent part A will be a codimension 0 submanifold of S3 whose boundary con-
sists of Conway 2–spheres; and A will be well-defined up to isotopy of S3 respecting
K. The definition is so designed that A is all of S3 precisely if the knot (S3,K) is
arborescent as defined in the Introduction or in Chapter 1, namely if it is algebraic
in the sense of Conway.

The proof that A is well-defined, which will be given in Chapter 7, is reasonably
short. However, further study of the structure of A (see Chapters 9, 11 and follow-
ing) requires patient geometrical analysis of surfaces (in Chapters 8 and 10). In this
chapter, we concentrate on definitions, constructions, examples, and statements of
results.

3.1. Characteristic splittings

Consider any knot pair (M,K). By a surface F in the knot pair (M,K),
we mean a proper 2–submanifold of M , which cuts K nicely in the sense that
∂F ∩K = ∅ and that the intersections of K and F in M are transverse, with local
model the z–axis cutting the xy–plane in R3. Remember that the property that
the submanifold F is proper means that F ∩ ∂M = ∂F .

A boundary surface F in the knot pair (M,K) is a codimension 0 submani-
fold of ∂M such that K ∩ ∂F = ∅.

Let F be a surface or a boundary surface in the knot pair (M,K). Then a
pairwise compression 2–disc for F in (M,K) is a 2–disc D ⊂ M with ∂D =
(F − K) ∩ D so that D meets K in 6 1 point, transversely. We say that D is
ineffective or futile if ∂D is the boundary of a 2–disc D′ ⊂ F meeting K in as
many points as does D. Otherwise, D is effective.

The surface F is pairwise incompressible in (M,K) if:

(1) there exists no effective compression disc for F in (M,K);
(2) no component of F is the boundary of a 3–ball B in M such that K ∩B

is empty or is an arc unknotted in B.

One easily sees that a surface is pairwise incompressible if and only if each of
its components is pairwise incompressible. This only requires an innermost circle
argument for Condition (1), and compare Lemma 7.2 for Condition (2).

An argument of (Kneser and) Haken provides us with the following:

27
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Parallelism Principle. For any pairwise irreducible knot pair (M,K) there
exists an integer N such that, if F is a closed pairwise incompressible surface in
(M,K) with > N components, then at least two of its components are pairwise
parallel, namely separated by a closed-up component of (M,K) − F which is a
product with the interval, respecting K.

The reader will find a proof of this result in [Hemp, p.140] for the particular
case when K = ∅, which readily extends to the general case.

(a) (b) (c)

F
D

F
D

F

Figure 3.1.

In a knot (S3,K), we now consider pairwise incompressible Conway spheres,
namely 2–spheres cutting K transversely in four points. For example, in Fig-
ures 3.1(a) and 3.1(b) the Conway sphere F is pairwise compressible by a dotted
2–disc D. We will prove in Chapter 8 that the Conway sphere F of Figure 3.1(c)
is pairwise incompressible.

Suppose now that K ⊂ S3 is a knot which is simple for Schubert. According
to Haken’s Parallelism Principle mentioned above, there exists a maximal finite
collection F1, . . . , Fn of disjoint pairwise incompressible Conway spheres in S3 no
two of which are pairwise parallel. This maximal family will of course be empty if
(S3,K) contains no pairwise incompressible Conway sphere.

LetN be the closure in S3 of a component of S3−
⋃
i Fi. We callN elementary

if the knot pair (N,K ∩N) is obtained from the pair of Figure 3.2(a) by plugging
0, 1, 2 or 3 of its three holes with a rational tangle pair , namely a knot pair
isomorphic to the pair of Figure 3.2(b). Thus N has 3, 2, 1 or 0 Conway spheres
on its boundary. Figure 3.2(c) gives an example of such an elementary N , with one
boundary component.

(a) (b) (c)

Figure 3.2.

The arborescent part A of the knot (S3,K) is the union of the closed-up
components of S3 −

⋃
i Fi that are elementary.
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Theorem 3.1 (proved in Chapter 7). For a knot (S3,K) which is simple for
Schubert, the arborescent part A so constructed is well-defined in the sense that, up
to isotopy of S3 respecting K, it is independent of the family F we started with.

As a consequence, the arborescent part A is invariant under all automorphisms
of (S3,K), up to isotopy respecting K. Namely A is characteristic for (S3,K).

The reader should be warned that the surface F =
⋃
i Fi itself is in general not

characteristic in (S3,K), as the 90◦–rotation θ in Figure 3.3 shows.

Fθ(F )

Figure 3.3.

We will be able to give a very satisfactory analysis of the arborescent part
(A,K ∩ A) of the knot (S3,K) in terms of integrally weighted planar trees in
Chapters 12–13. The non-arborescent part A∗ = S3 − int(A) of the knot is much
more mysterious; we shall begin to study (A∗,K ∩ A∗) in Chapters 4–6 using
hyperbolic geometry.

The first step in studying (A,K ∩A) and the complementary pair (A∗,K ∩A∗)
is to extract from F a characteristic family of Conway spheres in it. For A∗ the
result is optimal.

Theorem 3.2 (proved in Chapter 7). The surface F ∩ A∗ is well-defined in
(A∗,K ∩ A∗), up to isotopy respecting K.

By a more lengthy argument, we will show in Chapter 9, that some of the
components of F ∩A form a collection of Conway 2–spheres which is characteristic
in (A,K ∩A). We now formulate this result so as to include Theorems 3.1 and 3.2.

Let a Montesinos pair be a knot pair built from a pair of the type shown in
Figures 3.4(a) or 3.4(b) (with any number of holes), by plugging some of the holes
with rational tangle pairs. In particular, every elementary pair is also a Montesinos
pair. Conversely, observe that a Montesinos pair can be split into elementary
pairs along a family of Conway spheres (consider in particular the sphere Σ of
Figure 3.4(b)) and, as a consequence, is arborescent.

We will extend this definition of Montesinos pairs in Chapter 8 to allow more
circle components in the pair of Figure 3.4(b), but this has no influence on the
present discussion as we restrict attention to knots which are simple for Schubert.
It was J. Montesinos who identified in [Mon1] the 2–fold branched coverings of
these knot pairs as Seifert fibre spaces, and the covering translation as a fibre
preserving automorphism giving a certain reflection of the base; see also [Mon2]
and the Appendix.
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(a) (b)

Σ

Figure 3.4.

From the collection of Conway spheres F1, . . . , Fn in (S3,K) delete, and con-
tinue to delete, members in the interior of A as long as the remaining Fi split A
into Montesinos pairs.

Theorem 3.3 (proved in Chapter 9). When this process of deletion can proceed
no further, the union G of the remaining Conway 2–spheres among F1, . . . , Fn is
well-defined by (S3,K), up to isotopy of S3 respecting K.

By maximality of F , each closed-up component (M,L) of (S3,K) − F has
the following property: Any pairwise incompressible Conway sphere in (M,L) is
pairwise parallel to a boundary component. By analogy with the term “simple for
Schubert” introduced in Chapter 2, we will say that any knot pair (M,L) with the
above property is simple for Conway .

Then, summarising the properties of G, we can rephrase Theorem 3.3 in the
following form, which is readily seen to be equivalent.

Theorem 3.4. Given a knot (S3,K) that is simple for Schubert there is, up to
isotopy respecting K, a unique surface G ⊂ S3 such that:

(a) the components of G are pairwise incompressible Conway spheres, no two
of which are pairwise parallel;

(b) each closed-up component N of S3−G gives a pair (N,K∩N) that either
is simple for Conway, or else is a Montesinos pair;

(c) when any component is omitted from G, Property (b) fails. �

Theorems 3.3 and 3.4 admit much generalisation. In [BonS1], we have worked
out one generalisation, that is a characteristic submanifold theorem for compact
3–orbifolds. It includes Theorems 3.3 and 3.4 by associating to each knot pair
(M,K) the (unique) 3–orbifold with underlying topological space M and with K
as singular set, where the isotropy group is generated at each point by a rotation
of π; see [Thu1, Chapter 13] [BonS1, BonS2] for the language of orbifolds.

Each open component (N,K∩N) of (S3,K)−G that is in the non-arborescent
part A∗ admits a fascinating hyperbolic structure revealed by Thurston’s Orbifold
Geometrisation Theorem, applied to the orbifold associated to (N,K∩N) as above
(see §5.3 for more discussion). Indeed, Thurston proves thatN can be endowed with
what we call a π–hyperbolic structure, namely a complete metric space structure on
N making the pair (N,K∩N) locally isometric to the pair (H3/ρ, γ/ρ) where ρ is a
π–rotation around a geodesic γ of the hyperbolic 3–space H3. Such a π–hyperbolic
structure also amounts to a complete Riemannian metric of constant curvature −1

on the double branched covering Ñ of the pair (N,K ∩N) for which the covering

involution is an isometry. (This Ñ will have as many cusps as N has Conway
spheres in its frontier.)
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We will discuss these π–hyperbolic structures in more detail in Chapter 5,
and will give several examples in Chapter 4. One cardinal fact is that such a π–
hyperbolic structure on the pair (N,K∩N) is unique up to isotopy of N respecting
K ∩N . Thus, any geometric invariant of this metric turns out to be a topological
invariant of the pair (N,K∩N), and consequently of the knot (S3,K). For instance,

the (finite) volume of the hyperbolic manifold Ñ gives such an invariant. See also
the characteristic markings we will define in Chapters 17. Other applications of
these π–hyperbolic structures will be found in Chapters 5 and 6.

3.2. An example

Let us give an example illustrating Theorems 3.1, 3.3 and 3.4. Justifying the
corresponding statements will require results from later chapters so, at this point,
we can only direct the reader to the appropriate assertions.

M1 M2 M3

M4

M5

Figure 3.5.

Consider the knot (S3,K) drawn in Figure 3.5. Here, a maximal family F
consists of four Conway spheres (dotted in Figure 3.5). The arborescent part A lies
in the largest dotted sphere and is the union of three elementary pairs (M3,K∩M3),
(M4,K ∩M4) and (M5,K ∩M5). The surface G of Theorem 3.3 is F minus the
boundary of M5. The non-arborescent part is the union of two (closed-up) π–
hyperbolic pieces (M1,K∩M1) and (M2,K∩M2). They were constructed to be π–
hyperbolic: Indeed, M1 is the quotient of the complete hyperbolic figure eight knot
complement (see [Thu1, Chap. 3]) by the 180◦ rotation illustrated in Figure 3.6(a),
in such a way that K ∩M1 is the projection of the axis of the rotation; similarly,
M2 is the quotient of the (complete hyperbolic) Whitehead link complement by
the rotation of Figure 3.6(b). Thurston’s construction of hyperbolic metrics on
these knot complements readily shows that they can be chosen to be respected
by the involutions shown (see also §4.2). In each case, the string arises from the
rotation axis; to see that the quotients are the open 3–ball int(B3) and S2×]0, 1[,
respectively, note that the quotients of the tubular neighbourhoods of the knots are
balls.
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(a)

(b)

Figure 3.6.

To prove that F is actually maximal and that G = F−∂M5 is the characteristic
family of Conway spheres defined by Theorems 3.3 and 3.4, we need to use results
from later chapters:

Each component of F is pairwise incompressible and each closed-up compo-
nent of (S3,K) − F is simple for Conway, by application of Theorem 5.2 to the
π–hyperbolic pieces, and of Theorem 8.15 to the elementary Montesinos pieces.
Moreover, no closed-up component of (S3,K)− F gives a pairwise parallelism be-
tween two components of F by Theorem 5.7 and our classification of Montesinos
pairs in Chapter 11. This proves that F is really a maximal family of pairwise
incompressible Conway spheres.

Further, by Theorems 5.2 and 8.15 again, each closed-up component of (S3,K)−
F is pairwise irreducible, is simple for Schubert and contains no non-trivial annulus
avoiding K. By an innermost circle argument, it follows that (S3,K) is simple
for Schubert, and the hypotheses of Theorems 3.1 and 3.4 are consequently satis-
fied. Also, Theorem 5.7 asserts that the π–hyperbolic pieces M1 and M2 are not
Montesinos pairs. Thus, the arborescent part of the knot is really the union of
M3, M4 and M5 as announced. That G satisfies the Mimimality Condition (c)
of Theorem 3.4 is proved by our analysis of this characteristic splitting in Chap-
ter 9, in particular Criterion 9.5, together with our classification of “necklaces” in
Montesinos pairs in Chapter 10 (compare also Chapters 12 and 13).

3.3. Practical search for characteristic Conway spheres

Given any knot (S3,K) that is simple for Schubert, it can be a challenging
problem to find practically and rigorously the characteristic arborescent part A of
Theorem 3.1 and also, in the non-arborescent part A∗, the characteristic surface
F ∩ A∗ of Theorem 3.2, which we have just succeeded doing for one interesting
example. (As mentioned above, the problem of finding the characteristic surface
G ∩ A in A is solved in Chapters 9 or 12–13.)

This problem is easily reduced to the two following steps:

(1) Find a family G′ of disjoint pairwise incompressible Conway spheres in
(S3,K) such that each closed-up component of (S3,K) − G′, either is
simple for Conway, or is a Montesinos pair.

(2) GivenG′ as in (1), identify exactly which closed-up components of (S3,K)−
G′ are Montesinos pairs.



3.3. PRACTICAL SEARCH FOR CHARACTERISTIC CONWAY SPHERES 33

Certainly, Problem (1) can in principle be solved by the kind of algorithm de-
veloped byW. Haken in the 1950s; see [Hak3, Hak1, Hak2, Sch4, SchuS]. However,
his algorithm is still too cumbersome to be very useful in practice, although the
techniques of branched surfaces may eventually succeed in making it more workable
(see [FloO, Oer, JacO]).

It should also be noted that, still at least theoretically, Haken’s algorithm can
be used to answer Problem (2) if the family G′ found in Problem (1) is non-empty,
namely if (S3,K) contains a pairwise incompressible Conway sphere. Indeed, we
will later prove, in Proposition 7.4 and Theorem 8.15(b) (compare also Proposi-
tions 8.14 and 8.20), the following statement: Consider a pairwise irreducible knot
pair (N,L) with pairwise incompressible non-empty boundary, such that every pair-
wise incompressible Conway sphere in (N,L) is pairwise parallel to a boundary
component; then (N,L) is a Montesinos pair if and only if it contains a pairwise
incompressible surface which is, either an annulus avoiding L, or a disc transversely
cutting L in two points, and which is not trivially obtained by pushing inside of
N the interior of a subsurface of ∂N . As the latter condition is precisely the kind
of statement whose validity can be decided by Haken’s algorithm, applying this
algorithm to each closed-up component (N,L) of (S3,K)−G′ solves Problem (2).

As indicated above, Haken’s algorithm is in general not easy to work out in
practice. In the case of alternating knots, there is however a very efficient way to
solve Problem (1), which was developed by W. Menasco in [Men1] and [Men2].
Menasco’s algorithm, which was originally inspired by Haken’s methods, runs as
follows.

Starting from an alternating knot projection Γ ⊂ S2 describing (S3,K), Menasco
singles out two kinds of Conway spheres in (S3,K) which can be read directly from
Γ; these are called the normal Conway spheres of type (I) or (II), respectively,
associated to the projection Γ. The normal Conway spheres of type (I) are exactly
those associated to Conway circles of Γ, as in Chapter 1. The normal Conway
spheres of type (II) are less easy to see, and occur when Γ can be decomposed as in
Figure 3.7(a); the normal Conway sphere defined (up to pairwise isotopy) by such
a decomposition is the one associated to the dotted Conway circle in the other pro-
jection of (S3,K) shown in Figure 3.7(b). (This Conway sphere can also be directly
seen on Figure 3.7(a) as a plane parallel to the projection plane.) These normal
Conway spheres were already encountered by Conway; see Figure 10 of [Conw].

(a) (b)

? ? ? ? ? ? ? ?

Figure 3.7.

Then, Menasco proves:
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Theorem 3.5 ([Men1, Men2]). Let Γ ⊂ S2 be an alternating knot projection
which is irreducible, namely such that any circle cutting Γ in two points bounds a

vignette . Then:

(a) The knot (S3,K) described by Γ is simple for Schubert.
(b) Every family of disjoint pairwise incompressible Conway spheres in (S3,K)

can be pairwise isotoped to a family of normal Conway spheres.
(c) A normal Conway sphere of type (II) is always pairwise incompressible.

A normal Conway sphere of type (I) is pairwise incompressible if and
only if the corresponding Conway circle does not bound a rational tangle
projection.

Actually, Menasco’s theorem readily extends to alternating knot pair pro-
jections, consisting of a compact surface S ⊂ S2, of an immersed 1–submanifold
Γ ⊂ S with only double point singularities, and of some crossing information at the
double points of Γ. Such a knot pair projection readily describes a knot pair (M,K)
where M is the complement of disjoint open balls in S3. A knot pair projection is

alternating when it contains no vignette nor .
Given a knot pair projection, one can define normal Conway spheres of type

(I) or (II) in the corresponding knot pair in exactly the same way as for a knot
projection. Then, the conclusions of Theorem 3.5 still hold if the knot projection
Γ ⊂ S2 is replaced by any alternating knot pair projection (S,Γ′) where Γ′ meets
each component of S in an even number of points, and if the knot (S3,K) is replaced
by the knot pair (M,K ′) determined by (S,Γ′). This extension of Theorem 3.5 is
easily checked by a simple scrutiny of Menasco’s proofs. When ∂(S,Γ) consists of
Conway circles, it can also be deduced from Theorem 3.5 by enlarging Γ′ ⊂ S to a
suitable alternating knot projection Γ ⊂ S2 (exercise!).

Menasco’s results now readily provide a solution to Problem (1) for alternating
knots. Indeed, consider a knot (S3,K) described by an irreducible alternating
projection Γ ⊂ S2. Start with a family C of disjoint Conway circles for Γ that is
maximal for the properties that no circle of C bounds a rational tangle projection,
and that no two components of C are parallel respecting Γ. The family C defines
a family G′

1 of normal Conway spheres of type (I). Then, consider the closed-up
components of (S2,Γ)−C which are of the type of Figure 3.7(a), where the inside
of the bubbles can be empty, and let G′

2 be the union of the corresponding normal
Conway spheres of type (II). (A closed-up component of (S2,Γ)−C can sometimes
be seen in the form of Figure 3.7(a) in several ways, and therefore give several
normal Conway spheres of type (II); arbitrarily choose one such normal sphere in
this case.)

We claim that G′ = G′
1 ∪G

′
2 is a solution to Problem (1) for (S3,K). Indeed,

each component of G′ is pairwise incompressible by Theorem 3.5. Also, each closed-
up component of (S3,K)−G′ that is adjacent to a type (II) component of G′ is a
Montesinos pair (see Figure 3.7(b), and note that the bubbles there either are empty
or are rational tangle projections). And all other closed-up components of (S3,K)−
G′ are simple for Conway by the above mentioned extension of Theorem 3.5 to knot
pair projections. Thus, G′ has the properties sought in Problem (1).1

To conclude this section we should also mention the following consequence of
a result of T. Kobayashi [Kob]: Assume that the knot (S3,K) admits a bridge

1(Added 2009) See also [MenT] for Problem (2) for alternating knots.
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presentation with n bridges; namely that K ⊂ S3 − ∞ = R3 can be isotoped so
that the restriction to K of the projection to the first coordinate of R3 is a Morse
function with n maxima (and n minima). Then, the surface G of Theorems 3.3
and 3.4 has at most 3(n − 2) components. This statement follows by applying
Kobayashi’s result on Heegaard splittings to the 2–fold branched cover of the knot
K.2

2(Added 2009) See also more recent work by M. Scharlemann and J. Schultens [SchaS] who,
among other things, show that the splitting of Theorem 3.4 can have at most n − 1 Montesinos
pieces.
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π–hyperbolic structures





CHAPTER 4

π–hyperbolicity: first examples

Our study, outlined in the last chapter, of pairwise incompressible Conway
spheres in a knot (S3,K) which is simple for Schubert pushes the limit of our un-
derstanding into certain characteristic parts M ⊂ S3 bounded by Conway spheres.
The interior of the knot pair (M,K ∩ M) admits a complete metric that is π–
hyperbolic in the sense that it is locally isometric to

(
H3/ρ, axis(ρ)/ρ

)
, where ρ

is a rotation of angle π in the hyperbolic 3–space H3. This chapter is devoted to
the description of a few examples of such π–hyperbolic metrics. The reader who is
not too familiar with the hyperbolic space H3 may find it helpful to first read the
beginning of §5.1 for an introduction.

4.1. Conway graphs and hyperbolic polyhedra

When considering the arborescent part of a knot pair projection in §1.1, we
saw that each closed-up component of its complement is associated to some Conway
graph, and defines a knot pair in S3. We propose to construct π–hyperbolic metrics
of the interior of these knot pairs.

Remember from Chapter 1 that a Conway graph is a connected quadrivalent

graph Γ embedded in S2 ⊂ S3, distinct from , , and , and

such that every Jordan curve in S2 transversely meeting Γ in 6 4 points bounds a

vignette , , or . A Conway graph defines a knot pair projection

(S,Γ ∩ S) where S is the complement of a family of disjoint open vignettes

around the vertices of Γ. We are interested in the knot pair (M,K) described
by this knot pair projection. Note that the interior of (M,K) is isomorphic to
(S3 − V,Γ− V ) where V is the set of vertices of Γ.

Proposition 4.1. For any Conway graph Γ ⊂ S2 ⊂ S3 with set of vertices V ,
the pair (S3 − V,Γ− V ) admits a finite volume π–hyperbolic structure.

Proof. In [And1, And2], E.M. Andreev characterised which combinatorial
types and which dihedral angles can be realised by convex polyhedra in the hy-
perbolic 3–space H3 with finite volume and with acute angles. In particular, if Γ
is a Conway graph in S2 and if B3

+ = (R2 × R+) ∪∞ is the upper hemisphere of
S3 = R3 ∪∞ delimited by S2 = R2 ∪ ∞, Andreev showed that there is a proper
embedding of B3

+−V in H3 such that: Each face, namely each closed-up component
of S2−Γ, is sent to a planar hyperbolic polygon with vertices at infinity; each edge,
namely each component of Γ − V , is sent to a complete geodesic of H3, and the
images of the adjacent faces locally form a dihedron of angle π

2 near this geodesic.

In addition, the image of B3
+ − V in H3 has finite volume.

Equip B+ − V with the metric induced by this embedding, and extend it
(uniquely) to a path metric on S3 − V that is invariant by the reflection through

39
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S2. (A path metric on a topological space is a function assigning a length to each
path in this space, and satisfying certain obvious condition so that the function
d(x, y), defined as the minimum of the lengths of path joining x to y, is a distance
compatible with the topology of the space; see [Gro].) We claim that this metric
is π–hyperbolic, namely locally isometric to H3/ρ for some π–rotation ρ of H3.

On S3 − S2, the metric is clearly locally isometric to H3.
Near a point of S2 − Γ, this metric is locally isometric to the double of a half-

space delimited by a hyperbolic plane of H3. As this double is isometric to H3, the
metric is again locally isometric to H3 near such a point.

Near Γ−V , however, our space is locally isometric to the double of a dihedron of
angle π

2 in H3, delimited by two hyperbolic planes P1 and P2 meeting orthogonally

in H3. If these two planes are chosen so that their intersection is the axes of the
π–rotation ρ, one readily sees that this double is isometric to H3/ρ.

The metric we have constructed is therefore π–hyperbolic. It is clearly com-
plete. Its volume is twice the volume of B3

+ − V , and is therefore finite. �

For the Turk’s head graphs (2 × k)∗ of §1.1, it is not difficult to find the
hyperbolic polyhedron promised by Andreev’s theorem in the above proof. Indeed,
take for H3 the model of the unit ball in R3 (see §5.1), and place the vertices of
the two k–gon faces of (2 × k)∗ on two circles parallel to and at equal euclidean
distance d from the equator (this distance d is to be specified later), arranging that
one k–gon is rotated by π

k with respect to the other. Fill in the edges of (2×k)∗ by

geodesics on the unit sphere S2. Each face of (2× k)∗ now lies on a unique circle,
which is the frontier of a unique hyperbolic plane in H3. For each face, delete from
H3 the open half-space delimited by this hyperbolic plane and containing the face
of (2× k)∗ in question. This gives a hyperbolic polyhedron with faces at infinity.

d

d

Figure 4.1.

A quick euclidean geometry argument readily shows that there is a unique value
of d for which the dihedral angles of this polyhedron are all equal to π

2 . Indeed,

the hyperbolic dihedral angles between two hyperbolic planes P1, P2 in H3 is equal
to the euclidean angle between the two circles delimiting these planes P1 and P2

in the unit sphere S2 bounding H3. Near every vertex, we have angles for d

small and angles for d near 1, and we consequently have right angles for
some value of d in-between.This value of d is unique by monotonicity of the angles
of the trapezoids, expressed as a function of d.
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As a matter of fact, such variational techniques are at the core of Andreev’s
proof [And1, And2].

We next give a similar use of hyperbolic polyhedra to put a π–hyperbolic met-
ric on the knot pair (S3 − V,Γ − V ) associated to another quadrivalent graph Γ
embedded in S3 and to its vertex set V . Here, Γ is not planar any more but we
will exploit its symmetry.

Consider the 1–skeleton Γ of a symmetric 4–simplex ∆4 centred at 0 ∈ R4, and
embed Γ by radial projection in the unit 3–sphere S3 ⊂ R4. Topologically, Γ is
the embedded graph of Figure 4.2. We want to show that (S3 − V,Γ − V ) has a
π–hyperbolic structure, where V is the vertex set of Γ.

Figure 4.2.

To do this, consider the quotient of S3 by the full symmetry group S5 of
(S3,Γ). It is a copy of a tetrahedral fundamental domain Q with vertices v0, v1,
v2, v3, where vi is the image of the centre of an i–face of ∆4 (so that the centre
of any i–face projects to the same point as vi in the quotient space S3/S5). Let
nij denote the number of copies of Q in S3 that are adjacent to the edge vivj . By
inspection, one finds that n01 = 6, n02 = 4, n03 = 6, n12 = 4, n13 = 4, and n23 = 6.

Assume that we are given an identification of Q−v0 with a hyperbolic tetrahe-
dron in H3 with a vertex at infinity, so that the two faces adjacent to the edge vivj
make an angle of 2π

nij
, except at v0v1 where they make an angle of π

n01
= π

6 . Extend

this metric to a path metric on S3 − V = S5(Q − v0) by the action of S5. The
same argument as before shows that this metric is complete, is locally isometric to
H3 outside of Γ− V = S5(v0v1 − v0), and is locally isometric to H3/ρ near Γ− V
(where ρ is still a π–rotation of H3).

Andreev’s theorem for the tetrahedron (see [Luo] for this case) abstractly as-
serts the existence of a hyperbolic tetrahedron with the dihedral angles indicated,
but it is very easy to construct it “by hand”. For this, it is convenient to consider
the upper half space model for H3. Take v0 to be ∞, and choose 3 points w1,
w2, w3 forming a euclidean triangle of angles π

6 ,
π
2 ,

π
3 in the plane R2 bounding

H3. Choose v1 on the geodesic v0w1, high enough so that the hyperbolic plane P
cutting v0w1 orthogonally at v1 also meets v0w2 and v0w3 and define v2 and v3 as
the respective intersections of this plane with v0w2 and v0w3 (see Figure 4.3); note
that this hyperbolic plane P is just a euclidean hemisphere centred at w1. Then the
hyperbolic tetrahedron v0v1v2v3 has the dihedral angles required except perhaps
along v2v3. Observe that this dihedral angle at v2v3 is approximately π

2 when v1 is
close to ∞, and is π

6 at the critical value of v1 for which v3 = w3. Thus, there is a
(unique) choice of v1 which gives the hyperbolic tetrahedron wanted.
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Figure 4.3.

As indicated before, this defines a complete π–hyperbolic metric on (S3−V,Γ−
V ) where Γ is the embedded graph of Figure 4.2. This metric has finite volume
since so does the hyperbolic tetrahedron which we used.

This example has two “platonic” companions (each with far more vertices).
Namely we can replace Γ by the 1–skeleton of the cellulation of S3 by 8 cubes or by
120 dodecahedra. The associated tessellating hyperbolic tetrahedron differs from
the one just built only in that the dihedral angle at the edge v2v3 is not π

3 but π
4

or π
5 , respectively.

4.2. Hyperbolic Dehn surgery along the figure-eight knot

In this section, we consider the knots obtained by gluing a rational tangle pair
to the knot pair (M1,K ∩ M1) of Figure 3.5, and analyse which ones admit a
π–hyperbolic metric. This stems from the observation that the double branched
coverings of these knots are obtained by Dehn surgery along the figure-eight knot,
and we rely heavily on Thurston’s analysis of these manifolds in [Thu1, §4].

Consider a knot (S3,K) and its exterior M , namely M = S3 − int(W ) is the
closed-up complement of a tubular neighbourhood W of K in S3. The operation of
gluing a solid torus V to M along ∂M gives a new closed 3–manifold. A manifold
of this type is said to be obtained by Dehn surgery along K.

Up to degree +1 isomorphism, such a manifold M(µ, λ) is characterised by
a pair of coprime integers (µ, λ), defined only modulo simultaneous sign reversal,
which are called the Dehn surgery coefficients (see for instance [Rol, §9F]).
These are defined as follows: Choose in H1(∂M) a meridian m and a longitude l
for K, namely such that [l] = 0 in H1(M) and [m] = 0 in H1(W ), oriented so that
their intersection number is [m] · [l] = +1 in ∂M = ∂W oriented as boundary of
W . Then, a meridian of V is homologous to µ[m] + λ[l] on ∂M = ∂V .

When K is the figure-eight knot, Thurston gives in [Thu1, §4] a subtle but
explicit construction of a hyperbolic structure on M(µ, λ) for (µ, λ) outside of the
rectangle |µ| 6 4, |λ| 6 1. (Beware that Thurston’s coefficients (µ, λ) differ from
ours by a sign reversal.) We are going to exploit this analysis to give many examples
of π–hyperbolic knots.
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From the π–rotation τ of Figure 3.6, we get an involution on the exterior M
of the figure-eight knot. This gives a knot pair (N,L) where N = M/τ and L is
the image of the fixed point set of τ . If we identify the quotient S3/τ to S3 so
that the axis of τ projects to the union of the z–axis union the point ∞, the image
B =W/τ of the tubular neighbourhoodW of K is the stretched ball represented in
Figure 4.4(a); compare Figure 3.6. In particular, in Figure 4.4(a), N is the closed-
up complement of the ball B in S3, and L is the intersection of N with the z–axis
union ∞. Unknotting B in S3, we can then draw (N,L) as in Figure 4.4(b).

(a) (b)

B

B

L

L

Figure 4.4.

From the knot pair projection for (N,L) given by Figure 4.4(b), we can obtain
a knot projection by substituting to B a rational tangle pair projection, in the
sense of §1.2. The resulting knot L q

p
in S3 depends only on the slope q

p of the

rational tangle projection substituted, defined using §1.2 and the arrow shown in
Figure 4.4(b).

Consider the double branched covering of (S3, L q
p
). The preimage of N in

this space is the double branched covering of (N,L), namely M equipped with the
involution τ . Also, the preimage of the rational tangle pair substituted to B is a
solid torus V (compare Figure 1.6). Thus, the double branched covering of (S3, L q

p
)

is a manifoldM(µ, λ) obtained by Dehn surgery along the figure-eight complement,
with covering involution coinciding with τ on the knot exterior M .

How are the slope q
p and the Dehn surgery coefficient (µ, λ) related? Remember

that q
p is defined as follows (see §1.2): Choose a basis [k̃1], [k̃2] for H1(∂M) such

that, in the description of (N,L) by the knot pair projection of Figure 4.4(b),

k̃1 projects onto the arc k1 of ∂N ∩ R2 marked by the arrow and k̃2 projects to
an adjacent arc k2 of ∂N ∩ R2, where R2 is the projection plane; moreover, the

intersection number [k̃1] · [k̃2] is +1 on ∂M = ∂V oriented as boundary of the solid
torus V . Then q

p is defined by the property that the kernel of H1(∂V )→ H1(V ) is

generated by p[k̃1] + q[k̃2].
If m and l are the meridian and longitude of the figure-eight knot, it follows

from the original construction of (N,L) that the orientations can be chosen so that

[k̃2] = m, and then [k̃1] = −l + km for some k ∈ Z. So λ = −p and µ = pk + q.
To determine the precise value of k, one could scrutinise the construction of (N,L)
more closely. The easiest way is however to observe that the double branched
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covering M(λ, µ) of L q
p
in S3 has infinite H1 if and only if (µ, λ) = ±(0, 1); on the

other hand, the complement of L−4 contains a non-trivial torus (see Figure 4.5)
lifting to two non-separating tori in the double branched covering of this knot. Thus
q
p = −4 corresponds to (λ, µ) = ±(0, 1), which gives k = +4.

Therefore, the relation between the slope q
p and the surgery coefficients (µ, λ)

is that µ
λ = − q

p − 4.

Substituting various rational tangle projections in Figure 4.4, we get in partic-
ular the knots illustrated in Figure 4.5 and 4.6.

substitution

slope m =

knot

(µ, λ) =

+1 0 −1 −2 −3 −4 −5
2 2

2 3

4

3 3

1

−2

4 5

−2

3 7

{3, 7}
torus knot

(−5, 1) (−4, 1) (−3, 1) (−2, 1) (−1, 1) (0, 1) (1, 1)

Perko’s knot

Figure 4.5.

substitution

slope m =

knot

(µ, λ) =

−6 −7 −8 − 1
2 + 1

2 ∞

(2, 1)

{3, 8}
torus knot

(3, 1) (4, 1) (−7, 2) (−9, 2) (1, 0)

-310:20:20 2.-3.-20.20
with orientation reversed

Figure 4.6.

For substitutions of slopes q
p = 0, −1, −2, −3, the knot L q

p
is arborescent and

is described in Figure 4.5 by the weighted planar tree that is going to characterise
it in the plumbing calculus to be developed in Chapter 12. Observe that L q

p
is not

simple for Schubert if qp = −4 or −8, and is Seifert fibred for q
p = −5, −6, −7 and

∞. We will see in §5.2 that these properties prevent these (S3, L q
p
) from admitting

π–hyperbolic structures. On the other hand, we will prove that all other (S3, L q
p
)

are π–hyperbolic.
The other substitutions that appear in Figures 4.5 and 4.6 are the remaining

ones for which we were sure to get a knot with 6 11 crossings, which could conse-
quently be identified in Conway’s tabulations. The first one L1 is rather notorious.
This 10 crossing knot was doubly listed by Little and Conway, as Perko discovered
in [Perk2]. The projection illustrated is Conway’s 3:−20:−20, and the other pro-
jection listed by Conway is 21:−20:−20 modulo reversal of the orientation of S3.
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(These two projections also appear as 10161 and 10162 in [Rol].) The 11–crossing
knots L− 1

2
and L+ 1

2
are tabulated by Conway as −310:20:20 for the first one, and

2 .−3 .20 with orientation of S3 reversed for the second one.
As announced, we are now going to prove that all (S3, L q

p
) with q

p 6= 0, −1,

−2, −3, −4, −5, −6, −7, −8, ∞ are π–hyperbolic. This amounts to showing that
their double branched coveringsM(µ, λ) admit a hyperbolic metric that is invariant
by the covering involution τ . Observe that the above restriction of q

p amounts to

exclude the M(µ, λ) with |µ| 6 4 and |λ| 6 1.
In [Thu1, §4], Thurston explicitly constructs hyperbolic structures on theM(µ, λ)

with (µ, λ) outside of the rectangle |µ| 6 4, |λ| 6 1. For this, he starts from the
complement M∞ = S3 − K ∼= int(M) of the figure-eight knot (S3,K), which he
constructs from two copies of a symmetric hyperbolic tetrahedron with vertices
at infinity in H3. This defines a finite volume hyperbolic metric on M∞. Then,
Thurston modifies this metric by deforming these two hyperbolic tetrahedra to get
some incomplete hyperbolic metric on S3 − K, whose completion is identified to
M(µ, λ) for suitable deformations.

It is a curious fact that, although τ : M∞ → M∞ can be seen as an explicit
isometric involution exchanging the two hyperbolic tetrahedra building M∞, the
same is not true for τ : M(µ, λ) → M(µ, λ). Indeed, the two tetrahedra are not
isometric any more in the latter case. So, we have to turn to more elaborate
arguments to make τ :M(µ, λ)→M(µ, λ) an isometry.

An alternative to prove this would be to apply Thurston’s Geometrisation The-
orem for orbifolds, as discussed in §5.3, to conclude that M(µ, λ) admits some geo-
metric structure that is invariant by τ . For (M,L) outside of the rectangle |µ| 6 4,
|λ| 6 1, we know by [Thu1, §4] that M(µ, λ) admits a hyperbolic structure, and
this compels the τ–invariant geometric structure to be hyperbolic.

However, instead of using this difficult theorem which is not yet accessible to
the public1, we favour an ad hoc proof which uniquely relies on the easier hyper-
bolisation theorem for manifolds (see [Thu2, Thu3, Thu4, Thu5, Mor1]).

So, consider the hyperbolic metric on M(µ, λ) constructed in [Thu1, §4]). By
construction, the core C of the solid torus V = M(µ, λ) − int(M) is geodesic for
this metric.

Now, Mostow’s rigidity theorem [Mos1, Mos2] gives an isometric involution τ ′

of M(µ, λ) which is homotopic to τ . We will show that τ ′ is conjugate to τ , which
will complete the proof.

First, observe that τ ′ sends the closed geodesic C to itself. Indeed, since τ(V ) =
V , the closed geodesic τ(C) is homotopic and thus equal to C. Therefore, adjusting
M and τ by an isotopy of M(µ, λ), we can assume that ρ′(M) = ρ(M) =M .

Now, τ and τ ′ induce two automorphisms of M . Lemma 4.2 below, applied to
ϕ = (τ ′τ−1)|M , shows that these two automorphisms of M are homotopic. Taking
this lemma for granted, this concludes the proof that τ and τ ′ are conjugate in
M(µ, λ). Indeed, a theorem of Tollefson [Tol3], using the hypothesis that H1(M) 6=
0 (to construct a τ–equivariant hierarchy forM), then asserts that these restrictions
of τ and ρ′ toM are conjugate by an automorphism isotopic to the identity. An easy
argument on the solid torus V = M(µ, λ) − int(M) now extends this conjugation
to a conjugation between τ and τ ′ in all of M(µ, λ). Using this conjugation to

1(Added 2009) See [CooHK, BoiP, BoiMP, BoiLP] for current expositions.
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modify the hyperbolic metric on M(µ, λ), we have now managed that this metric
is invariant by τ , and thus induces a π–hyperbolic structure on the knot (S3, L q

p
).

To complete the proof that (S3, L q
p
) is π–hyperbolic, we however need to prove

the following lemma, whose proof was temporarily left aside.

Lemma 4.2. If ϕ is a self homotopy equivalence of M which extends to a map
ψ:M(µ, λ)→M(µ, λ) that is homotopic to the identity, then ϕ itself is homotopic
to the identity.

Proof. We first show that we can assume ψ periodic. Indeed, the hyperbolic
structure on the figure-eight knot complement M∞ can easily be chosen so that
the boundary torus ∂M of M ⊂ M∞ is horospherical (see §5.2 for definitions).
By Mostow’s Rigidity Theorem [Mos1, Mos2] we can then assume that ϕ is the
restriction of an isometry of M∞.

In particular, ϕ is now periodic. (The isometry group of a finite volume hyper-
bolic manifold is easily seen to be compact and discrete, and therefore finite; see
for instance [Thu1, §5.7.4] or Corollary 5.12). The map ψ extending ϕ can then be
chosen to be also periodic, by an easy argument on the solid torusM(µ, λ)−int(M).

We claim that the fact that ψ is homotopic to the identity compels its order p
to be 1. Indeed, lifting a homotopy of ψ to the identity up to the universal covering

H3 of M(µ, λ), we get ψ̃: H3 → H3 covering ψ and fixing the sphere at infinity S2
∞

of H3 (see §5.1 for the definition of this sphere at infinity). Also, ψ̃p is an isometry
of H3 since it lifts the identity of M(µ, λ), and must consequently be the identity
of H3 as it fixes the sphere at infinity. We now have an order p homeomorphism

ψ̃ of the closed ball H3 ∪ S2
∞ that fixes its boundary S2

∞; it must be the identity
by M.H.A. Newman’s theorem [New, Smi, Dre]. In particular, ψ is the identity
and the lemma is proved (see [ConM] for a more general argument, and compare
Lemma 16.7). �

This completes the proof that the knot (S3, L q

p
) obtained by plugging a rational

tangle projection of slope q
p to the knot pair projection of Figure 4.4 admits a π–

hyperbolic structure if (and only if) q
p is different from 0, −1, −2, −3, −4, −5, −6,

−7, −8 and ∞.
We conclude this section by an observation. Since the figure-eight knot is am-

phicheiral, M(µ, λ) is isomorphic to −M(µ, λ) (namely M(µ, λ) with the opposite
orientation). In particular, the knots (S3, L q

p
) and (−S3, L−8− q

p
) have the same

double branched coverings. On the other hand we believe that these knots are never
isomorphic.

This is the case for the non π–hyperbolic knots listed in Figures 4.5 and 4.6.
Indeed, we will show in §8.3 and in the Appendix that the arborescent knots shown
are simple for Schubert and are not Seifert fibred, and (S3, L−4) is clearly not
amphicheiral since one of its components is a {2, 5} torus knot.

It is also the case for all but finitely many slopes q
p giving π–hyperbolic knots.

Indeed, we will show in Chapter 6 that, for all but finitely many q
p and q′

p′ , any

degree ±1 isomorphism (S3, L q
p
) → (S3, Lq′/p′) can be pairwise isotoped so as to

send (N,L) ⊂ (S3, L q

p
) to (N,L) ⊂ (S3, L q′

p′
). In particular, because there is no

degree −1 isomorphism (N,L)→ (N,L) (one component of L forms a (2, 5) torus
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knot), the two knots (S3, L q
p
) and (−S3, L q′

p′
) cannot be (degree +1) isomorphic in

this case.
This gives an infinite, although imperfectly specified, family of pairs of distinct

knots (S3, L q
p
) and (−S3, L−8− q

p
) which have the same double branched covering.

On the other hand, (S3, L q
p
) and (−S3, L−8− q

p
) are never mutation equivalent when

they are π–hyperbolic, since they are then simple for Conway (see Corollary 5.3).
Thus, we get a negative answer to [Kirb, Problem 1.22]. J.-M. Montesinos has
independently noticed examples of this sort.

4.3. Turk’s head knots

In this section, we again use Thurston’s hyperbolic Dehn surgery on the figure-
eight knot to get π–hyperbolic structures for the alternating knots with Turk’s head
projection (2× k)∗ of Chapter 1 with k > 4 (see Figure 4.7). Observe that (2× 2)∗

and (2 × 3)∗ respectively give the figure-eight knot and the Borromean rings; by
Theorem 5.7, these arborescent knots cannot admit a π–hyperbolic structure.

(2× 2)∗ (2× 3)∗ (2× 4)∗ (2× 5)∗

Figure 4.7.

To construct these π–hyperbolic structures, we are going to exploit the sym-
metry of the (2 × k)∗ knot by the 2π

k –rotation σk with axis perpendicular to the

projection plane. The quotient S3/σk is topologically S3, and contains the quotient
K of the knot and the image L of the fixed point set of σk, the two linked as in
Figure 4.8 (independent of k).

L

K

Figure 4.8.

To get a π–hyperbolic metric on the Turk’s head knot (2×k)∗, it clearly suffices
to find a metric on S3 = S3/σk for which S3 − K ∪ L is locally isometric to H3,
(S3 − K,L) is locally isometric to (H3/ρk, axis(ρk)), and (S3 − L,K) is locally
isometric to (H3/ρ2, axis(ρ2)), where ρn denotes any 2π

n –rotation of the hyperbolic

space H3. Indeed, such a metric on S3/σk will lift to a path metric on S3 that is
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locally isometric to H3 outside of the knot (2×k)∗ and is locally isometric to H3/ρ2
near this knot, namely to a π–hyperbolic metric for (2× k)∗. A metric of the type
we seek for S3/σk, namely locally isometric to some H3/ρn near each point, will be
called a hyperbolic metric with rotational singularities in Chapter 5, where we will
consider some general properties of these metrics.

Now, a trick is to observe that K and L can be interchanged by an ambient
isotopy in S3. Thus, if we pass to the 2–fold branched covering along K (not L),
then L lifts to become the figure-eight knot K0 in S3. The metric we seek for
S3/σk would then lift to a path metric on S3 so that (S3,K0) is locally isometric
to (H3/ρk, axis(ρk)).

It turns out that such metrics are readily provided by Thurston’s analysis
[Thu1, §4] of the hyperbolic Dehn surgery on the figure-eight knot. Indeed, by de-
formation of the hyperbolic metric on the knot complement M∞, Thurston obtains
hyperbolic orbifolds M(µ, λ) where the integers µ, λ are not necessarily coprime.
An introduction to orbifolds can be found in [Thu1, §13] or [BonS1] (see also §5.3),
but we can elementarily describe these M(µ, λ) as follows: The M(µ, λ) with µ, λ
coprime are just the hyperbolic manifolds that we encountered in §4.2, obtained by
gluing a solid torus V to the exterior M of the figure-eight knot. In the general
case, let d be the greatest common divisor of |µ| and |λ|. Then the hyperbolic orb-
ifold M(µ, λ) is topologically the manifold M(µd ,

λ
d ), but equipped with a (path)

metric which is locally isometric to H3/ρd, in such a way that the set of points
corresponding to the axis of ρd is exactly the core of the solid torus V glued on M
to construct M(µd ,

λ
d ).

In particular, M(k, 0) is S3 together with a metric making (S3,K0) locally
isometric to (H3/ρk, axis(ρk)), and Thurston obtains such M(k, 0) for all k > 4.
(The case k = 4 is not explicit in [Thu1, §4], but was explained to us by Bill
Thurston in a private conversation.)

To get the wanted metric on S3/σk, we need to arrange that the above metric
on (S3,K0) is invariant by the covering involution σ of the 2–fold branched covering
S3 → S3/σk of (S3/σk, L). Although we could use for that the arguments used in
§4.2, it turns out that this fact is immediately granted by Thurston’s construction
(at least for k > 4). Indeed, Thurston decomposes S3 − K0 into two hyperbolic
tetrahedra (with vertices at infinity), in such a way that the completion of S3−K0

with the induced metric gives (S3,K0) with the wanted metric. One observes that
these hyperbolic tetrahedra can be chosen so that σ maps each of them onto itself
by a π–rotation, and thus induces an isometry of (S3,K0).

Thus, we get for k > 4 the metric we wanted on S3/σ = S3/σk, which lifts to
a π–hyperbolic structure for the Turk’s head knot (2× k)∗ in S3.



CHAPTER 5

Hyperbolic metrics with rotational singularities

In Chapters 3 and 4, we introduced the notion of π–hyperbolic structures for
knot pairs, and gave a few examples. In the present chapter, we investigate some
general properties of these structures. In fact, our discussion will cover hyperbolic
structures with rotational singularities of angle 2π

k for k = 2, 3, . . . , which we al-
ready briefly encountered in §4.3 and whose analysis does not give much more trou-
ble than do π–hyperbolic structures. However, §5.3 will suggest that π–hyperbolic
structures are the singular hyperbolic structures most suited to knot theory.

5.1. Definitions

Before going further, it may be useful to recall a few facts about the hyperbolic
n–space Hn. See [Thu1, Thu6, BenP, Rat, Bon4] for more background material.

One description of the hyperbolic space Hn views it as the open unit ball
int(Bn) in Rn, equipped with the Riemannian metric which, at x ∈ int(Bn), is
2/(1−‖x‖2) times the euclidean metric of Rn. Another model for Hn, isometric to
the previous one, is the upper half-space Rn−1 × ]0,∞[ equipped with the metric
which is x−1

n times the euclidean metric at the point x = (x1, . . . , xn). These open
ball and upper half-space models for Hn are isometric by an inversion through a
suitable sphere in Rn ∪∞.

Also, the hyperbolic space Hn has many isometries. For instance, in the upper
half-space model, any homothety or euclidean isometry of Rn respecting Rn−1 gives
such an isometry of Hn. A less obvious example is provided by any inversion of
Rn ∪∞ through a sphere centred at some point of Rn−1. Further, in either model,
the full isometry group is the Möbius group generated by the inversions in the
spheres perpendicular to the frontier of the model. From this, we can see that
the isometry group acts transitively on Hn, and even on the space of points of Hn

equipped with an orthonormal basis for their tangent space. Thus, up to scaling
by a positive constant, the hyperbolic metric is the unique Riemannian metric
invariant under this group. The constant has been chosen so that the sectional
curvature is −1. A celebrated theorem of Cartan-Hadamard asserts that Hn is the
unique simply connected complete Riemannian manifold with constant sectional
curvature −1 (see for instance [Wol, CheE, Car]).

Using the isometry group of Hn, the geodesics of this Riemannian manifold are
easily determined. For instance, in the upper half space model Rn−1 × ]0,∞[, they
are precisely the traces of the circles and lines of Rn meeting Rn−1 orthogonally.
This leads to a natural compactification of Hn by a sphere at infinity Sn−1

∞

defined by adding an end point to each geodesic ray issued from a given point x.
Indeed, one easily checks that this compactification is independent of the base point
x. (Hint: For any geodesic ray issued from x and any x′ ∈ Hn, there is a unique
geodesic ray issued from x′ that stays at bounded distance from the first one.) In

49
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particular, the action of the isometry group of Hn continuously extends to Sn−1
∞ .

This sphere at infinity can of course be described as the unit sphere Sn−1 = ∂Bn for
the unit ball model, and as Rn−1 ∪∞ for the upper half space model Rn−1× ]0,∞[
for Hn.

Any isometry of Hn thus continuously acts on the ball Hn ∪ Sn−1
∞ and, by

Brouwer’s Fixed Point Theorem, must fix some point of this ball. By considering
their fixed point set, this separates the isometries of Hn different from the identity
into three disjoint classes, invariant by conjugation:

(a) The elliptic isometries are those fixing a point of Hn. In dimension 3,
the degree +1 elliptic isometries are thus rotations around geodesics.

(b) The loxodromic isometries are those acting by (non-trivial) translation
on some geodesic. In dimension 3 and degree +1, these are glide-rotations
along this geodesic.

(c) Lastly, the parabolic isometries are those fixing a single point of Sn−1
∞ .

In the upper half-space model for Hn, there are conjugated to (fixed point
free) euclidean isometries of this model.

By convention, the identity is considered to be simultaneously elliptic, loxodromic
and parabolic.

After this brief survey of the hyperbolic space, we can now define our hyperbolic
structures with rotational singularities.

For every integer k > 2, choose an isometric rotation ρk of angle 2π
k around a

geodesic of the hyperbolic 3–space H3. Any two choices for ρk are conjugated by
an isometry of H3, so that the quotient metric space H3/ρk is actually well defined
up to isometry.

Consider a pair (M,K) where K is a 1–dimensional submanifold of an ori-
entable 3–manifold M , and where M and K are without boundary but not neces-
sarily compact. A singular hyperbolic structure (with rotational singulari-
ties) on (M,K) is a complete metric space structure onM such that, for each point
x ∈M , there exists an isometry from a neighbourhood U of x to an open subset V
of some H3/ρk sending U ∩K to V ∩ axis(ρk). A point x ∈ K where this metric is
locally isometric to H3/ρk is said to be singular of order k or 2π

k –singular ; the

second terminology is motivated by the fact that H3/ρk is isometric to the space
obtained by identifying by ρk the two faces of a hyperbolic dihedron of angle 2π

k .
The above definition holds if we are working in the category TOP of topological

manifolds. For the differentiable category DIFF, note that H3/ρk has a natural
differentiable structure: The exponential map gives a preferred identification H3 ∼=
C × axis(ρk) (unique up to isometries of C); then the map (z, t) 7→ (zk, t) from
C× axis(ρk) to itself provides a homeomorphism H3/ρk ∼= C× axis(ρk) ∼= R3 well-
defined up to diffeomorphism of R3 and therefore defines a preferred differentiable
structure on H3/ρk. If we are working in the differentiable category DIFF, we
will therefore insist in the definition of singular hyperbolic structures that the local
isometries (M,K) ∼= (H3/ρk, axis(ρk)) be diffeomorphisms.

The piecewise linear category PL is not well adapted to this discussion, and we
will not use it in this chapter.

In the language of orbifolds (see [Thu1, §13] or [BonS1]) a singular hyperbolic
structure on (M,K) amounts to an identification of M with the underlying topo-
logical space of a complete hyperbolic 3–orbifold for which K corresponds to the
singular set of this orbifold. The hyperbolic 3–orbifolds that can occur in this way



5.2. TOPOLOGICAL RESTRICTIONS 51

are precisely those for which all the isotropy groups are cyclic, acting by hyperbolic
rotations.

Also, given such a singular hyperbolic structure on the connected pair (M,K),
a theorem due to Poincaré provides a discrete group G of isometries of H3 such that
(M,K) is isometric to (H3/G, (FixG)/G), where FixG denotes the set of points fixed
by some non-trivial element of G; see [Sin, Wol] or [Thu1, §3]. The completeness
of the metric of M is here essential.

In this situation, assume that G is finitely generated; this occurs for instance if
(M,K) has finite topological type, namely is homeomorphic to the interior of a
(compact) knot pair. Then, the celebrated Selberg Lemma [Sel] provides a finite
index normal subgroup G0 of G which has no torsion; indeed, any finitely generated
matrix group has this property. As G0 is discrete and torsion-free, it acts freely
on H3, and H3/G0 is a hyperbolic manifold (with no singularities). Thus, M is
isometric to the quotient of the hyperbolic manifold H3/G0 by the finite group of
isometries G/G0.

We collect these two remarks in a statement.

Proposition 5.1. Consider a complete singular hyperbolic pair (M,K). Then,
there exists a discrete group G of isometries of H3 and an isometry M → H3/G
sending K to Fix(G)/G. Moreover, if (M,K) has finite topological type, M is
isometric to the quotient of a hyperbolic manifold by a finite group of isometries. �

We have already encountered many examples of singular hyperbolic structures
in Chapters 3 and 4. In addition to π–hyperbolic structures, we constructed in
§4.3 a pair (S3,K ∪ L) admitting for every k > 4 a hyperbolic structure that is
π–singular along the circle K and 2π

k –singular along the circle L.

5.2. Topological restrictions

The existence of a singular hyperbolic structure entails very strong restrictions
on the topology of the pair. These are very classical, but we give proofs since none
seems available for this context1.

To state these restrictions, let us introduce the following definition: A closed
surface F embedded in the singular hyperbolic pair (M,K) is topologically spher-
ical when F is a sphere and the respective orders of the points of F ∩ K are ∅,
{n, n}, {2, 2, n}, {2, 3, 3}, {2, 3, 4} or {2, 3, 5}, with n > 2. Similarly, F is topolog-
ically euclidean when it is one of the following types:

(1) F is a torus avoiding K.
(2) F is a sphere and the respective orders of the points of F∩K are {2, 2, 2, 2},
{2, 3, 6}, {2, 4, 4} or {3, 3, 3}.

In other words, F is topologically spherical (resp. euclidean) if and only if the
pair (F, F∩K) admits a 2–dimensional singular spherical (resp. euclidean) structure
with the same orders of singularities as the hyperbolic structure of (M,K) at the
points of F ∩K (the definition of singular spherical or euclidean structures being
the same as that of singular hyperbolic structures); this immediately follows from
the classification of quotients of S2 and R2 by properly discontinuous groups of
isometries (see for instance [Thu1, §13.3]).

1(Added 2009) See the nice survey [Sco3] for more proofs, as well as [Bon3].
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Theorem 5.2. Let the interior of the (compact) knot pair (M,K) admit a
singular hyperbolic structure. Then (M,K) contains no sphere meeting K in one
point, every topologically spherical surface in (M,K) is pairwise compressible (and
therefore meets K in 0 or 2 points), and every pairwise incompressible topologically
euclidean surface in (M,K) is pairwise parallel to a boundary component.

Corollary 5.3. A knot pair whose interior admits a π–hyperbolic structure
is simple for Schubert and simple for Conway. �

Corollary 5.3 provides a useful tool to prove in practice that some splittings
of a given knot are actually the characteristic splittings defined in Chapters 2 or 3
(see for instance our discussion of the example of Figure 3.5).

Proof of Theorem 5.2. Let G be a discrete subgroup of isometries of H3

such that int(M) is isometric to H3/G. Let K̃ denote the preimage of K in H3,
consisting of a family of disjoint geodesics.

Considering the regular covering (H3 − K̃) → (M −K), one readily sees that
M contains no sphere meeting K in one point and that M −K is irreducible. Now,

consider a spherical surface F with F ∩K 6= ∅, and let F̃ be a component of its

preimage. As (F, F ∩ K) is topologically spherical, F̃ is a sphere (by an Euler

characteristic argument, for instance). In particular, it meets K̃ in an even number
of points and F ∩K therefore consists of exactly 2 points; thus (M,K) contains no
spherical surface meeting K in > 2 points. Considering in H3 a hyperbolic half-
plane bounded by a component of the (geodesic) preimage of K, an outermost arc
argument provides a disc ∆ in M such that ∂∆ is the union of the arc ∆ ∩K and
of an arc component of ∆ ∩ F (which may also contain closed components in the
interior of ∆). Using the irreducibility of M −K, it easily follows that F bounds
a 3–ball B in M3 such that B ∩K is an unknotted arc, namely that F is pairwise
compressible.

This proves the statement of Theorem 5.2 concerning topologically spherical
surfaces.

Consider now a pairwise incompressible topologically euclidean closed surface

F in int(M,K). Choose a component F̃ of its inverse image in H3 and let G0 be

the stabiliser of F̃ in G.
The surface F̃ is a proper submanifold of H3 (namely the intersection of F̃ with

any compact subset of H3 is compact). Moreover, it is incompressible: Otherwise

F̃ would admit, by the Equivariant Loop Theorem [MeeY1, MeeY2, MeeY3],
a G–equivariant compression disc which itself would provide an effective pairwise

compression disc for F in (M,K). Thus, F̃ is isomorphic to S2 or R2.

The projection F̃ → F is a regular branched covering, with translation group
G0. Because of the hypothesis that F is topologically euclidean, there is a regular
branched covering T → F whose branching indices above the points of F are the

same as those of F̃ → F , and such that T is a 2–torus. Now, F̃ → F factors

through an unbranched covering F̃ → T . In particular, F̃ is isomorphic to R2 and
G0 has a rank 2 abelian subgroup of finite index. Using this algebraic property of
G0, it is now an easy (and classical) exercise to show that G0 fixes some point x of
the sphere at infinity S2

∞.
Let Gx be the stabiliser of x in G. If we arrange that x =∞ in the upper half

space model for H3, then Gx is induced by a group of euclidean isometries of R3
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respecting the plane R2 bounding H3. A group of isometries which is (conjugated
to one) of this type is said to be parabolic.

The quotient (H3/Gx,Fix(Gx)/Gx) topologically is a product (G,P )×]0,∞[,
where G = R2/Gx and P is the image of the fixed points of Gx in R2. Observe
that F is pairwise incompressible in it. By [Wal3, Proposition 3.1] (or compare
Chapter 8), F is pairwise isotopic to (G,P ) × 1 in (G,P ) × ]0,∞[. In particular,
(G,P ) is isomorphic to (F, F ∩K), and G0 = Gx.

Adding to F̃ the fixed point x, we get a topological sphere F̃ ∪ x in H3 ∪ S2
∞.

(Use the fact that x is the unique limit point of any orbit of the parabolic group Gx
acting on H3 ∪S2

∞.) This topological sphere bounds a piece V of the ball H3 ∪S2
∞.

Since G0 = Gx, either gV = V or V ∩ gV = ∅ for every g ∈ G. Thus, F splits
int(M) into two pieces, one of which is (V − x)/G0.

As (V − x)/G0 is also a closed-up component of H3/G0 − F , it is a collar
isomorphic to (F,K ∩ F ) × [1,∞[ as a pair. Thus F is pairwise parallel to a
boundary component of (M,K).

This concludes the proof of Theorem 5.2. �

Define the volume of a singular hyperbolic pair as the volume of its set of
non-singular points (which is an honest Riemannian manifold). In view of the
Rigidity Theorem 5.11 to be proved in §5.4, it is important to know when a singular
hyperbolic pair has finite volume. The following result shows that this volume
finiteness is equivalent to certain topological properties of the knot pair.

Theorem 5.4. Let the interior of the (compact) knot pair (M,K) admit a
singular hyperbolic structure.

If this singular hyperbolic structure has finite volume, then each boundary com-
ponent of (M,K) is topologically euclidean.

Conversely, if all components of ∂(M,K) are topologically euclidean, the singu-
lar hyperbolic metric on int(M,K) has finite volume except in the following cases:

(i) M is a solid torus, and K either is empty or is the core of M .
(ii) (M,K) is a rational tangle pair, and the hyperbolic metric is only π–

singular.
(iii) (M,K) ∼= (F,K ∩F )× [0, 1] for some topologically euclidean surface F in

M .

Proof. A proof of Theorem 5.4 for the case when K = ∅ is well-known, and
appears for instance in [Thu1, §5]. We will use a parallel argument in the general
case.

The basic ingredient is the celebrated Margulis Lemma:

Lemma 5.5 (Margulis Lemma). There is a universal constant µ0 with the fol-
lowing property: For any discrete subgroup G of isometries of H3 and for any
x ∈ H3, the subgroup of G generated by isometries moving x at distance 6 µ0

is almost abelian, namely contains an abelian subgroup of finite index. �

A proof of this Margulis Lemma can be found in [Thu1, §5] (compare also
[Jør]). This result also generalises to complete Riemannian n–manifolds of bounded
curvature if “nilpotent” replaces “abelian”; see [BusK] for a proof.

We will apply this Margulis Lemma to a group G such that int(M) is isometric
to H3/G (see Proposition 5.1).
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Easy fixed point considerations show that the almost abelian subgroups G1 of
G are of one of the following two types:

(a) G1 respects a geodesic of H3, and is generated by a finite order rotation
respecting this geodesic and a glide-rotation along it (each possibly triv-
ial); note that the axis of the rotation can be orthogonal to the geodesic
if the rotation angle is π.

(b) G1 is parabolic, namely conjugated to a group of euclidean isometries of
the upper half-space model for H3.

In particular, a non-elliptic element of G is contained in a unique maximal
almost abelian subgroup of G. (Recall that the elliptic isometries of H3 are those
fixing some point of H3.)

This observation leads us to consider, for µ0 as in Lemma 5.5, the set W of
points x ∈ H3 that are moved at distance 6 µ0 by some non-elliptic element.
From the above analysis, one finds that each component of W is, either a tubular
neighbourhood of a geodesic of H3, consisting of all points at hyperbolic distance
6 ε from this geodesic, for some constant ε, or a horoball , conjugated to the part
of the upper half-space model lying above a horizontal euclidean plane.

This gives a natural decomposition of int(M) into the thin part Mthin(µ0) =
W/G, and the thick part Mthick(µ0) defined as the closure of int(M)−Mthin(µ0).
By construction, each component of Mthin(µ0) is, either a tubular neighbourhood
of a closed geodesic, or the quotient of a horoball B of H3 by its parabolic stabiliser
in G.

Lemma 5.6. The singular hyperbolic metric on int(M,K) has finite volume if
and only if the thick part Mthick(µ0) is compact.

Proof of Lemma 5.6. Choose in Mthick(µ0) a maximal family L of points
at distance > µ0 from each other. Observe that, by definition of Mthick(µ0), the
ball of radius 1

2µ0 around x ∈ L has a volume bounded from below, in terms of the
order of singularities of the hyperbolic metric along the (finitely many) components
of K.

If int(M) has finite volume, it follows that L is finite. By maximality of L,
Mthick(µ0) is now covered by the finitely many balls of radius µ0 centred at the
points of L. As a consequence, Mthick(µ0) is compact.

Conversely, assume thatMthick(µ0) is compact. Then, ∂Mthick(µ0) = ∂Mthin(µ0)
has finitely many components, so that the number of components of Mthin(µ0) is
also finite. Also, for each component ofMthin(µ0) which is the quotient of a horoball
B by its parabolic stabiliser GB in G, the quotient ∂B/GB is compact; an easy cal-
culation in the upper half-space model then shows that B/GB has finite volume,
bounded by the area of ∂B/GB. Since the components of Mthin(µ0) which are not
of this type are compact, it follows thatMthin(µ0) has finite volume. Consequently,
so does int(M) =Mthick(µ0) ∪Mthin(µ0).

This proves Lemma 5.6. �

We are now ready to prove Theorem 5.4.
If int(M,K) has finite volume, we showed in the proof of Lemma 5.6 that each

end of int(M) is isometric to the quotient of a horoball B by a parabolic group GB.
Topologically, B/GB is a product ∼= (∂B/GB) × [0,∞[, respecting the singularity
orders (consider the foliation of B by vertical lines in the upper half-space model).
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It follows that the corresponding component of ∂(M,K) is isomorphic to the topo-
logically euclidean surface ∂B/GB. This proves that, if int(M,K) has finite volume,
then every boundary component of (M,K) is topologically euclidean.

Conversely, consider a boundary component F of (M,K) that is topologically
euclidean.

If F is pairwise compressible, one easily sees, surgering F along an effective com-
pression disc and then using the pairwise irreducibility of (M,K) (Theorem 5.2),
that either M is a solid torus and K is empty or is the core of M , or (M,K) is a
rational tangle pair. These are Cases (i) and (ii) of Theorem 5.4.

Otherwise, let F ′ be obtained by pushing F inside of int(M,K) ∼= H3/G; and let

F̂ ′ be a component of the preimage of F ′ in H3. Since F ′ is pairwise incompressible,

the argument used in the proof of Theorem 5.2 shows that the stabiliser of F̃ ′ in G
is parabolic. Also, if V is the piece of H3 ∪ S2

∞ bounded by the topological sphere

made of F̂ ′ and of its limit point x ∈ S2
∞, the quotient of V − x by the stabiliser of

F̂ ′ gives a pairwise parallelism W ∼= (F ′,K ∩F ′)× [0,∞[ between (F ′,K ∩F ′) and
an end of int(M,K). Observe that, for t sufficiently large, the part F ′× [t,∞[ ofW
is contained in the image of Mthin(µ0) in int(M); this comes from the elementary
observation that, given a euclidean translation h of the upper half-space model, the
hyperbolic distance from y to h(y) tends to 0 when the height of y tends to +∞.
Also, if the component of ∂(M,K) adjacent to this parallelism F ′ × [0,∞[ is not
F , note that (M,K) is isomorphic to (F,K ∩ F )× [0, 1].

Thus, we have proved the following: For each topologically euclidean compo-
nent F of ∂(M,K), either F is adjacent to a component of Mthin(µ0) ⊂ int(M), or
(M,K) is one of the exceptions (i), (ii), (iii) of Theorem 5.4.

This readily proves that, if all components of ∂(M,K) are topologically eu-
clidean, either (M,K) is one of the exceptions (i), (ii), (iii), or Mthick(µ0) is com-
pact. In the latter case, Lemma 5.6 asserts that int(M,K) has finite volume.

This concludes the proof of Theorem 5.4. �

As a byproduct of the proof of Theorem 5.4, we can define a natural compact-
ification of a singular hyperbolic pair with finite volume.

Indeed, with the notation of Theorem 5.4 and assuming the volume of int(M,K)
finite, we showed that each end of int(M,K) has a neighbourhood isometric to the
quotient of a horoball B by its parabolic stabiliser GB. The horoball B has a
natural foliation by geodesics going to its asymptotic point in S2

∞ (these geodesics
are just vertical straight lines in the upper half-space model). In the quotient
B/GB ⊂ int(M), this foliation gives a foliation of B/GB by proper lines joining
∂B/GB to infinity. Adding an end point to each such line, one gets a natural
compactification of B/GB by a copy S of ∂B/GB. Observe that (B/GB) ∪ S has a
natural structure of differentiable manifold with boundary.

Doing this for all ends of int(M,K), we can thus use the singular hyperbolic
structure on int(M,K) to construct a differentiable manifold (M+,K+) whose in-
terior is naturally identified to int(M,K). Of course, (M+,K+) is isomorphic to
(M,K) by standard collaring theorems in dimension 3 but, in general, there is no
isomorphism (M+,K+)→ (M,K) extending the identification between their inte-
riors. For instance, although every geodesic of the foliation of B/GB converges to
a single point of ∂M+, there is no reason why it should have a single limit point
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in ∂M . We will require the hyperbolic metric to be tame near ∂M , by introducing
the following definition.

Consider a (compact) knot pair (M,K), possibly with boundary. A finite
volume singular hyperbolic structure on the knot pair (M,K) consists of:

(i) a singular hyperbolic metric with finite volume on its interior int(M,K);
(ii) an isomorphism (M,K)→ (M+,K+) (for the category DIFF or TOP we

are working in), respecting the identification int(M,K) = int(M+,K+),
between (M,K) and the natural compactification (M+,K+) of int(M,K)
defined as above by using its singular hyperbolic structure.

This definition is mostly designed for the following property to be satisfied: Let
(M,K) and (M ′,K ′) be two knot pairs, each equipped with a finite volume singular
hyperbolic structure. Then, any isometry int(M,K) → int(M ′,K ′) extends to an
isomorphism (M,K)→ (M ′,K ′).

A last topological restriction, which is important in view of the determination
of the arborescent part of a knot as in Chapter 3, is the following:

Theorem 5.7. Let the interior of the knot pair (M,K) admit a finite volume
singular hyperbolic structure. Then (M,K) cannot be Seifert fibred.

Also, (M,K) cannot be presented as a Montesinos pair in the sense of Chap-
ter 3, with possibly one ring R, in such a way that the points of K−R are π–singular.

Proof. Write int(M) as the quotient of H3 by a discrete group G of isometries
(Proposition 5.1).

Assume (M,K) Seifert fibred, in search of a contradiction, and lift this fibration
to a foliation of H3. First observe that any two leaves of this foliation stay at
bounded distance from each other in H3, and consequently have the same set of
cluster points in the sphere at infinity S2

∞.
If one leaf of this foliation is compact, its follows that so are all other leaves.

But the antipodal map on generic fibres gives an involution of H3 whose fixed point
set consists of circles, which is absurd by elementary Smith theory.

Thus, all leaves are non compact. Considering the subgroup of G generated
by the monodromy of a fibre of int(M) = H3/G, one sees that the lift of this fibre
is asymptotic to 1 or 2 points of S2

∞. Since these 1 or 2 points are asymptotic
to all leaves of H3, they must be respected by G. We conclude that G is either
parabolic or generated by some glide rotation along a geodesic of H3, contradicting
the hypothesis that H3/G has finite volume.

This concludes the proof that (M,K) cannot be Seifert fibred.
We will use this first part to prove the second statement of Theorem 5.7. As-

sume, in search of a contradiction, that (M,K) is a Montesinos pair, possibly with
a ring R, and that the points of K − R are π–singular. Then, M admits a 2–fold
cover N branched along K −R. By an observation of Montesinos [Mon1] (see also
the Appendix), N admits a Seifert fibration for which the preimage L of R consists
of 0, 2 fibres. On the other hand, the singular hyperbolic metric on (M,K) gives
a finite volume singular hyperbolic metric on (N,L), contradicting the existence of
this Seifert fibration. �

5.3. Existence theorems

Thurston announced in 1981 that Theorems 5.2, 5.4 and 5.7 admit a converse
provided the knot string K is not empty. This is part of his more general Orbifold
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Geometrisation Conjecture (see [Thu2, Sco3, BonS1]) which, when specialised to
orbifolds with rotational singularities, reduces to:

Conjecture 5.8 (Geometrisation Conjecture for knot pairs). Let (M,K) be a
knot pair where each component Ki of K is labelled by an integer ki > 2. Assume
that (M,K) contains no sphere meeting K in 1 point, that every (topologically)
spherical surface in (M,K) is pairwise compressible, and that the components of
(∂M, ∂K) are euclidean (for the obvious definition of “spherical” and “euclidean”
taking the labels ki into account). Assume moreover that every closed pairwise
incompressible euclidean surface in (M,K) is pairwise parallel to a boundary com-
ponent. Then the interior of (M,K) is isomorphic to some (X/G, (FixG)/G) such
that the stabiliser of a point of FixG located above the component Ki of K is cyclic
of order ki, and where X and G are of one of the following types:

(1) G is a finite covolume discrete group of isometries of the hyperbolic 3–space
X = H3, namely (M,K) has a finite volume singular hyperbolic structure.

(2) X is a Seifert manifold, G is finite and respects the fibration. An example
of this case is provided by elementary pairs as defined in Chapter 3 (see
[Mon1] and the Appendix).

(3) G is a finite isometry group of X = T 3 or T 2 × R, and respects no circle
fibration of X. An example of this type occurs for the figure eight knot
labelled by 3; see the discussion just above Proposition 5.10.

Thurston’s difficult proof of this conjecture (for K 6= ∅) is based on his hyper-
bolisation theorem for Haken manifolds [Thu1, Thu2, Mor1, Kap, Ota1, Ota2] and
on an analysis of the deformations and degenerations of such hyperbolic structures
under Dehn surgery2. However, for the case needed by Chapter 3, we feel of interest
to give a proof using only Thurston’s simpler manifold hyperbolisation theorem.

Theorem 5.9. Let (M,K) be a knot pair such that M ⊂ S3 and (∂M, ∂K)
consist of Conway spheres. Assume that (M,K) is pairwise irreducible, simple for
Schubert and simple for Conway. When ∂M = ∅, assume moreover that (M,K)
contains a pairwise incompressible surface. Then, exactly one of the following holds:

(a) (M,K) admits a finite volume complete π–hyperbolic structure.
(b) (M,K) is elementary, as defined in Chapter 3.

Proof of Theorem 5.9. Let M̂ be the double branched covering of (M,K),
which exists since M ⊂ S3 and (∂M, ∂K) consists of Conway spheres. Conclu-
sion (a) is then equivalent to the existence of a complete non-singular hyperbolic

structure of finite volume on int(M̂) for which the covering involution τ is an isom-
etry.

By pairwise irreducibility of (M,K), M̂ is irreducible (use [KimT] or the Equi-
variant Sphere Theorem of [MeeY1, MeeY2, MeeY3]). Also, when ∂M 6= ∅, the

pairwise incompressible surface F lifts to a surface F̂ ⊂ M̂ , which is incompress-

ible in M̂ by the Equivariant Loop Theorem [MeeY1, MeeY2, MeeY3]. As a

consequence, M̂ is a Haken manifold.

2(Added 2009) It is only relatively recently that detailed expositions of the proof of this
conjecture have become available. A proof in the full generality of the conjecture appears in
[BoiLP]. The slightly simpler case of knot pairs, as in the above statement of Conjecture 5.8,
was already fully expounded in [CooHK, BoiP, BoiMP]
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We now borrow a lemma from [Bon1, Lemme 3.1], which is also implicit in
[Tol2]; see [BonS1, Proposition 11] or [MeeS] for generalisations. This result asserts
that one of the following holds (possibly both):

(i) Every incompressible torus in M̂ is parallel to a boundary component

(namely M̂ is atoroidal);

(ii) M̂ admits a Seifert fibration preserved by τ .

The rough lines of the argument of [Bon1] and [Tol2] run as follows: Assuming

(i) fails, there exists a non-peripheral incompressible torus T in M̂ . After a sequence
of cut-and-paste isotopies, this torus can be chosen so that T − τ(T ) and τ(T )− T
consist of annuli. Then, a regular neighbourhood U of T ∪ τ(T ) admits a fibration
by circles that is preserved by τ . Each component of (∂U)/τ is a Conway sphere
or a torus avoiding K. It then follows from the hypotheses on (M,K) that each
component of M − U is a solid torus or a collar of a boundary component of M .
The circle fibration of U now easily extends to a Seifert fibration of M preserved
by τ , and (ii) holds.

First consider the case where (ii) holds. In [Mon1], Montesinos studied which

fibre-preserving involutions τ of a Seifert manifold M̂ give a quotient M̂/τ embed-

dable in S3. For these, either the pair (M̂/τ,Fixτ) is a Montesinos pair, as defined

in Chapter 3 or allowing more rings as in §8.2, or M̂/τ is S3 minus a collection of fi-
bres of a Seifert fibring of S3 and K consists of fibres of this fibration. Among such,
only elementary Montesinos pairs satisfy the hypotheses of Theorem 5.9. Indeed,
we will prove in Chapter 8 (see Theorem 8.15(b)) that non-elementary Montesinos
pairs always contain a non-trivial Conway sphere or a non-trivial torus avoiding the
knot. The possibility that (M,K) is Seifert fibred is excluded by the hypothesis

that it contains a pairwise incompressible surface F̂ which is not a torus disjoint
form K; indeed, Waldhausen’s classification of non-trivial surfaces in Seifert mani-
folds [Wal2] shows that such a surface would have to be transverse to the fibration,
which is impossible because H1(M) = H1(S

3) = 0.
Therefore, (b) holds in Case (ii).

In Case (i), Thurston’s Hyperbolisation Theorem [Thu2] asserts that int(M̂)
admits either a complete hyperbolic structure of finite volume or a Seifert fibration.

When int(M̂) is hyperbolic, Mostow’s theorem [Mos1] provides an involution τ ′

which is isometric on int(M̂) and homotopic to τ . By [Tol3], there exists ϕ isotopic
to the identity such that τ ′ = ϕτϕ−1 (the results of [Tol3] are stated with the

hypothesis that H1(M̂) 6= 0 but, when ∂M̂ = ∅, only the existence of F̂ is needed).
Changing the hyperbolic structure via ϕ, τ is now isometric, which gives a π–
hyperbolic structure on (M,K).

Finally, we have to consider the case where M̂ is Seifert fibred. Because we

are in Case (i), Waldhausen’s classification [Wal3] of incompressible surfaces in M̂

shows that the Seifert fibration can be chosen to be transverse to F̂ , so that F̂ splits

M̂ into two bundles with fibre the interval [0, 1]. Applying [Tol1, Theorem 3], one
can easily deform the Seifert fibration to make it invariant under τ , in which case
the discussion of Case (ii) enables us to conclude. �

If K is a knot in S3 such that (S3,K) is singular hyperbolic, Corollary 5.3 and
Thurston’s Hyperbolisation Theorem [Thu2, Mor1, Kap, Ota1, Ota2] show that
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S3 − K admits a finite volume hyperbolic structure. Indeed, S3 − K cannot be
Seifert fibred, by Theorem 5.7.

The converse is certainly not true, in that sense that, if S3 −K is hyperbolic,
not every labelling of the components of K can be realised by a singular hyperbolic
structure on (S3,K). For instance, although the figure-eight knot has a hyperbolic
complement [Thu1, §3], it does not admit any π– or 2π

3 –hyperbolic structure: Its
2–fold branched covering is a lens space (see the Appendix). We also saw in §4.3
that its 3–fold branched covering is the 2–fold branched covering of the Borromean
rings, and in particular admits a Seifert fibration with orbit space RP

2 and two
exceptional fibres, each with order 2 monodromy; beware that the order 3 covering
translation cannot respect the fibres (compare Theorem 16.18 and §18.1).

Proposition 5.10. Label by an integer ki > 2 each component Ki of a knot
(S3,K) whose complement has a complete hyperbolic structure. Then Thurston’s
Orbifold Geometrisation Theorem 5.8 implies that (S3,K) admits a hyperbolic struc-
ture that is 2π

ki
–singular near Ki, except when one of the following holds:

(a) (S3,K) contains a pairwise incompressible Conway sphere meeting only
components of K labelled by 2.

(b) (S3,K) is an elementary (Montesinos) pair and at most one ki is 6= 2,
corresponding to the ring of the pair (if any) as defined in Chapter 8.

(c) (S3,K) is the figure eight knot labelled by k = 3, or the two-component
link of Figure 4.8 with respective labels 2 and 3.

Note that there is only one such exception when all ki are > 3.

Proof. Assume that (a) does not hold. The sphere S3 contains no sphere
meeting K in 1 or 3 points for homological reasons and, since S3−K is hyperbolic,
(S3,K) is simple for Schubert and pairwise irreducible (see Theorem 5.2). Thus
Thurston’s Orbifold Geometrisation Theorem applies and provides one of three
things:

(i) the singular hyperbolic structure required;
(ii) a homeomorphism (S3,K) ∼= (X/G, (FixG)/G), for some finite group G

respecting a Seifert fibration of X , such that the order of the stabiliser of
a point of FixG is the label ki of the corresponding component of K. The
argument of [Mon1] straightforwardly extends to this situation to show
that Case (b) then holds;

(ii) the last possibility is a homeomorphism (S3,K) ∼= (R3/G, (FixG)/G) for
some crystallographic group G respecting no direction at infinity. By enu-
meration of these groups ([Dun1, Dun2, Burk1, Burk2, ITC, BonS3]),
this only yields the two labelled knots of Case (c). �

5.4. The Rigidity Theorem for singular hyperbolic structures

This section is devoted to proving the following uniqueness property for singular
hyperbolic structures.

Theorem 5.11 (Rigidity Theorem). Let (M,K) and (M ′,K ′) be two connected
knot pairs, each equipped with a finite volume singular hyperbolic structure. Assume
K 6= ∅. Then, every isomorphism ϕ: (M,K) → (M ′,K ′) respecting the order of
the singular points (namely sending a 2π

k –singular point to a 2π
k –singular point) is

pairwise isotopic to an isometry.
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Here ϕ0, ϕ1 : (M,K) → (M ′,K ′) are pairwise isotopic if they are isotopic
through a family of isomorphisms ϕt: (M,K)→ (M ′,K ′), 0 6 t 6 1, each sending
K to K ′ = ϕt(K). In the proof of Theorem 5.11, finding an isometry (M,K) →
(M ′,K ′) will be an easy consequence of Mostow’s Rigidity Theorem [Mos2]. The
difficult part of the proof will actually be to show that this isometry is pairwise
isotopic to ϕ.

Before going any further, let us mention some important corollaries of Theo-
rem 5.11.

Corollary 5.12. For a connected finite volume singular hyperbolic knot pair
(M,K) with K 6= ∅, the group π0 Aut(M,K) of isotopy classes of automorphisms
of (M,K) is finite.

Proof of Corollary 5.12 (assuming Theorem 5.11). By Theorem 5.11,
it suffices to show that the isometry group of (M,K) is finite.

An isometry is completely determined by the image of a point of the thick
partMthick(µ0) and of the image of an orthogonal basis for its tangent space. Since
Mthick(µ0) is compact by Lemma 5.6, it follows that this isometry group is compact.

Also, two isometries of int(M,K) ∼= H3/G which are sufficiently close on the
compact Mthick(µ0) lift to isometries of H3 which act similarly on the components
of the preimage of K. As the end points of these preimages are dense on the sphere
at infinity S2

∞, these two isometries coincide on S2
∞ and thus on H3. This proves

that the isometry group of (M,K) is discrete, and therefore finite (compare [Thu1,
§5.7] ). �

Corollary 5.13. Consider two degree +1 isomorphisms ϕ, ϕ′ : (M,K) →
(M ′,K ′) between connected finite volume singular hyperbolic knot pairs, which co-
incide on S ∩ ∂K for some component S of ∂M with S ∩ ∂K 6= ∅ . Then ϕ and
ϕ′ are pairwise isotopic.

Proof of Corollary 5.13 (assuming Theorem 5.11). Without loss of gen-
erality, we can clearly assume that (M,K) = (M ′,K ′), that ϕ′ = Id and, by Theo-
rem 5.11, that ϕ is an isometry of (M,K). We want to show that ϕ is the identity.

Identify int(M,K) to H3/G as in Proposition 5.1. As in the proof of The-
orem 5.7, the boundary component S defines a parabolic subgroup of G, up to
conjugation in G. For a suitable identification of H3 with the upper half-space
model R2×]0,∞[, this parabolic subgroup G∞ is generated by (euclidean) rotations
around lines x × ]0,∞[ of R2 × ]0,∞[, where x ranges over all points of a linear
lattice L in R2. These lines x× ]0,∞[ are the geodesic components of the preimage
of K − ∂K that are asymptotic to the point ∞ ∈ S2

∞ in H3.
Now, the isometry ϕ lifts to a euclidean isometry of this upper half space model

R2 × ]0,∞[ which has degree +1 and acts trivially on L/G∞ ∼= S × ∂K. It easily
follows that ϕ is the identity. �

Observe that, in Corollary 5.13, the condition that ϕ and ϕ′ have the same
degree is absolutely necessary. Indeed, if (M,K) is constructed from some graph
Γ ⊂ S2 ⊂ S3, namely if (M,K) is obtained from (S3,Γ0) by removing regular
neighbourhoods of the vertices of Γ0 (compare §1.2 and §4.1), the reflection through
S2 gives a degree −1 automorphism of (M,K) fixing K.

Proof of the Rigidity Theorem 5.11. By Proposition 5.1, the interiors
of (M,K) and (M ′,K ′) are respectively isometric to the quotients of H3 by two
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discrete groups of isometries G and G′. A first step is to note that, because ϕ :
(M,K)→ (M ′,K ′) respects the orders of singular points, it induces an isomorphism
ϕ∗ : G → G

′, well-defined modulo inner automorphisms of G and G′. This is a
consequence of the following remark.

Lemma 5.14. For every component Ki of K where the hyperbolic structure of
int(M,K) is 2π

ki
–singular, choose a meridian mi ∈ π1(M − K) of Ki. Then G is

isomorphic to the quotient of π1(M −K) by the subgroup normally generated by the
(mi)

ki .

Proof of 5.14. If K̃ denotes the preimage of K in H3, just note that π1(H
3−

K̃) is normally generated by the meridians of the components of K̃, and that each
of these meridians projects in π1(M −K) to a conjugate of some (mi)

ki . �

Now, as G and G′ have finite covolume, Mostow’s Rigidity Theorem [Mos1,

Mos2, Thu1, BenP] provides an isometry ψ̃ of H3 such that ϕ∗(α) = ψ̃αψ̃−1 for

every α ∈ G. In particular, ψ̃Gψ̃−1 = G′ and ψ̃ therefore induces an isomorphism
ψ: (M,K)→ (M ′,K ′). We will show that ϕ and ψ are pairwise isotopic.

The proof of Theorem 5.11 will be achieved by the following two claims.

Assertion 5.15. The isomorphism ϕ can be pairwise isotoped so that θ = ψ−1ϕ
is periodic.

Assertion 5.16. The periodic isomorphism θ is then the identity.

We begin by proving the easier of these two assertions, namely Assertion 5.16.
The argument is very similar to the one used in the proof of Lemma 4.2 (compare
also [ConM] or Lemma 16.7).

Proof of Assertion 5.16. Lift θ to θ̃ : H3 → H3 (use Lemma 5.14 and start

by lifting it to the complement H3− K̃ of the preimage of K in H3). Modulo inner

automorphism, the conjugation by θ̃ induces the same automorphism of G as ψ̃−1ϕ̃,

namely the identity. The lifting θ̃ can therefore be chosen so that it commutes with

every element of G. In particular, if θ is of order n, θ̃n is an element of the centre of

G and θ̃ is therefore periodic as G has trivial centre (easy exercise in the isometry
group of H3).

A standard argument considering end points of quasi-geodesics (see for instance

[Mos1, Mos2] [Thu1, §5.9] ) provides an extension of θ̃ to a homeomorphism of the
compact ball H3 ∪ S2

∞, where S2
∞ is the sphere at infinity of H3. Moreover, since

θ̃ commutes with the elements of G, the restriction θ̃|S2
∞

fixes the dense subset of

points fixed by some elements of G and is therefore the identity. Thus, θ̃ is a periodic
homeomorphism of a 3–ball that fixes the boundary. It now follows from Newman’s

theorem [New, Smi, Dre] that θ̃ is the identity, which proves Assertion 5.16. �

Proof of Assertion 5.15. The proof is quite simple when ∂K = ∅. Indeed,
by Thurston’s hyperbolisation theorem, int(M) − K then admits a finite volume
hyperbolic structure. Mostow’s theorem [Mos1, Mos2] provides an isometry θ′ of
int(M)−K that is homotopic, and therefore isotopic by [Wal3, Theorem 7.1], to the
restriction of θ. Since the isometry group of int(M)−K is finite (see Corollary 5.12
or [Thu1, §5.7]), θ

′ is periodic. Using a regular neighbourhood of K, the assertion
easily follows in this case.
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The proof in the general case involves the same ideas via a doubling argument.
For this, we need a first lemma.

Lemma 5.17. Let the knot pair (M,K) admit a finite volume singular hyperbolic
structure. Then every pairwise incompressible annulus A embedded in M −K with
∂A ⊂ ∂M is pairwise boundary parallel, namely obtained from a boundary surface
by pushing its interior inside of M (up to pairwise isotopy).

Proof of Lemma 5.17. Let int(M,K) be isometric to H3/G, and let GA be
the image of π1(A) ⊂ π1(M −K) in G (see Lemma 5.14). By pairwise incompress-
ibility of A, GA is non-trivial and fixes exactly one point x ∈ S2

∞; also, GA respects

a component Â of the preimage of A in H3.

Considering a fundamental domain, Â ∪ x is a topological sphere in H3 ∪ S2
∞;

in particular, it bounds a piece N of H3 ∪ S2
∞. As in the proof of Theorem 5.2,

the consideration of the annulus Â/GA in the solid torus H3/GA now shows that
(N − x)/GA provides a pairwise parallelism between A and an annulus in ∂M . �

Remark 5.18. There is an alternative proof of Lemma 5.17 which makes it a
purely combinatorial corollary of Theorems 5.2 and 5.7. Compare Proposition 7.4.

Now, consider the double (DM,DK) constructed by gluing two copies of (M,K)
along ∂M − ∂TM , where ∂TM consists of the torus components of ∂M (avoiding
K). Let τ denote the involution of DM exchanging its two halves.

Lemma 5.19. The interior of DM − DK admits a finite volume hyperbolic
metric for which τ is an isometry.

Such a τ–invariant hyperbolic structure can also be interpreted as a hyperbolic-
structure-with-totally-geodesic-boundary on (M − ∂TM)−K.

Proof of Lemma 5.19. Using Lemma 5.17 and Theorem 5.2, one easily sees
that (DM,DK) is simple for Schubert or, equivalently, contains no pairwise incom-
pressible non-peripheral torus. Also, DM −DK cannot be Seifert fibred: Indeed,
by [Wal2, Satz 2.8], the incompressible surface (∂M −∂TM)−K could be assumed
to be transverse to the fibration, and the [0, 1]–fibration so induced onM−K would
reveal non boundary parallel annuli, contradicting Lemma 5.17. Then, Thurston’s
hyperbolisation theorem asserts the existence of a finite volume hyperbolic structure
on int(DM −DK).

By Mostow’s theorem [Mos1, Mos2], τ is homotopic to an isometric involution
τ ′. A result of J. Tollefson already quoted [Tol3], in fact easy to prove “by hand”
in this case, then provides an isotopy conjugating τ to τ ′ and concludes our proof
of Lemma 5.19. �

If Dθ : (DM,DK) → (DM,DK) denotes the double of θ, Mostow’s Rigidity
Theorem provides an isometry (Dθ)′ of int(DM − K) that is homotopic to the
restriction of Dθ. As τ is isometric and commutes with Dθ, it must also commute
with (Dθ)′ by uniqueness in the conclusion of Mostow’s theorem. Thus, (Dθ′) is
the double Dθ′ of some isomorphism θ′ of (M − ∂TM)−K. Also, Dθ′ is periodic
by finiteness of the isometry group of int(DM −DK). By adjustment of θ′ near K,
it is now easy to construct a periodic isomorphism θ′′ of the compact pair (M,K)
such that the doubles Dθ and Dθ′′ are pairwise isotopic in (DM,DK).

To conclude the proof of the Rigidity Theorem 5.11, we must show that θ and
θ′′ are isotopic in (M,K). This will be accomplished by Proposition 5.20 below,
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applied to the surface ∂M−∂TM in (DM,DK); note that (DM,DK) cannot fibre
over S1 with ∂M − ∂TM a union of fibres as this would reveal annuli in (M,K)
contradicting Lemma 5.17.

Proposition 5.20. Let F be a closed surface embedded in the connected knot
pair (M,K) such that M −K is irreducible and F −K is incompressible in M −
K. Let ψ be an isomorphism of (M,K) preserving F and pairwise isotopic to the
identity. Then (at least) one of the following holds:

(i) There is a pairwise isotopy from ψ to the identity which respects F .
(ii) (M,K) fibres over S1 with F a union of fibres, and ψ is connected to

the identity by the composition of a pairwise isotopy respecting F and a
fibration-preserving pairwise isotopy.

Proof of Proposition 5.20. Clearly, an iterative argument reduces the proof
to the case where F is connected. Therefore, we can and do assume henceforth that
F is connected.

First, consider the case where the isotopy from ψ to the identity fixes ∂M and
a tubular neighbourhood U of K. To deal with this case, we will make use of
arguments from [Wal3].

Let M0 denote M − int(U). The isotopy gives by restriction a homotopy H :
M0 × [0, 1] → M0 fixing ∂M0 (namely H|∂M0)×[0,1] is the projection onto ∂M0).
Conversely, it is proved in [Wal3, §7] that the existence of such a homotopy implies
the existence of an isotopy from ψ|M0

to Id. The proof of this fact in pages 81–85 of
[Wal3] makes use of a hierarchy forM0. If the first surface of the hierarchy is chosen
to be F0 = F ∩M0, a careful examination of the proof shows that the isotopy of
ψ|M0

it provides, either fixes F0 ∪ ∂M0 and therefore extends to a pairwise isotopy
of type (i), or directly gives a pairwise isotopy of type (ii) in some case where
∂M0 = ∅. (Note that, when F0 is closed, one must use the arguments of Case 4
(the most elaborate case) of the proof of [Wal3, Theorem 7.1].)

Now, consider the general case where the pairwise isotopy may not fix K∪∂M .
Without loss of generality, we assume that ψ and the original pairwise isotopy fix
∂M , the arc components of K and the closed components of K avoided by F . Also,
we may require that the pairwise isotopy is “monotonic” (namely conjugated to a
rotation) on the other components of K. With the analysis of the previous case,
the proof of Proposition 5.20 will be completed by the following affirmation.

Claim 5.21. In the above situation, either the isotopy fixesK or Conclusion (ii)
of Proposition 5.20 holds.

The proof of Claim 5.21 will make use of the following notion: Consider two
surfaces F0 and G0 in a 3–manifold M0, such that ∂F0 = ∂G0 ⊂ ∂M0 and the
intersection of F0 and G0 is transverse (including near the boundary). A rel ∂
blister (or a product region) between F0 and G0 is an embedded copy P of Σ ×
[0, 1]/ ∼, where Σ is a compact surface, the relation ∼ pinches (∂Σ) × [0, 1] by
collapsing each arc ∗ × [0, 1] to a point, and F0 ∩ ∂P and G0 ∩ ∂P respectively
correspond to Σ × 0 and Σ × 1; moreover, it is required in the definition that
F0 ∩ int(P ) = ∅ and that G0 ∩ int(P ) may be non-empty only when Σ is a disc. A
fundamental lemma of Waldhausen [Wal3, Proposition 5.4] asserts that there exists
such a blister as soon as F0 and G0 are incompressible and homotopic in M0 by a
homotopy fixing their boundary.
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Proof of Claim 5.21. Assume that ψ does not fix K. By hypothesis, it
is anyway isotopic fixing K to an isomorphism ψ′ of (M,K) that is the identity
outside of a tubular neighbourhood U of K and “monotonically winds around K”
as in Figure 5.1.

U

K and U0

F ′ (dotted)

F0 and F

G0 and ψ′(F ′)

Figure 5.1.

By hypothesis, ψ′ is not the identity on at least one component of U . Let F ′

be the image of F by a small isotopy fixing a very small tubular neighbourhood
U0 ⊂ U of K, such that “ψ′ shifts in the direction of F ′” near at least one point of
F ∩K (as on the left side of Figure 5.1).

By construction the two surfaces F and ψ′(F ′) are isotopic fixing U0. It there-
fore follows from [Wal3, Proposition 5.4] that there is in M0 =M − int(U0) a rel ∂
blister between F0 = F ∩M0 and G0 = ψ′(F ′) ∩M0.

Each closed-up component ofM0−F0∪G0 that is contained in U meets ∂M0−
∂F0 or has non-connected intersection with F0 or G0, and therefore cannot be a
rel ∂ blister. There are exactly two closed-up components P1 and P2 ofM0−F0∪G0

meetingM0−U where P1, say, contains the “obvious parallelism” ∼= (F −U)× [0, 1]
between F − U and F ′ − U . As ψ′ shifts in the direction of F ′ near at least one
point of F ∩K, the intersection P1 ∩F0 is not connected (consider Figure 5.1) and
P1 cannot be a rel ∂ blister. Therefore, the rel ∂ blister between F0 and G0 is
necessarily P2. It easily follows that the winding directions of ψ′ near all points
of F ∩ K are non-trivial and agree with a normal orientation of F (forbidding in
particular the situation of Figure 5.1) and that P2−U ∼= (F −U)× [0, 1]. Therefore,
M −U fibres over S1 with fibre F −U and (M,K) consequently fibres over S1 with
fibre F .

Since the winding directions of ψ′ agree with a normal orientation of the fibre
F , there is a fibration preserving pairwise isotopy from ψ to a ψ1 that is pairwise
isotopic to the identity by an isotopy with smaller degree onK (and still ψ1(F ) = F
and ψ1|K = Id. By induction, it eventually follows that (ii) holds for ψ.

This completes the proof of Claim 5.21, of Proposition 5.20 and consequently
of the Rigidity Theorem 5.11. �
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Remark 5.22. The reader may have noticed that we proved a stronger form
of Proposition 5.20. Indeed, without any modification of the proof, the hypothesis
that ψ is isotopic to the identity can be replaced by the weakest assumption that ψ
is connected to the identity by a homotopyH:M×[0, 1]→M withH−1(K∪∂M) =
(K ∪ ∂M)× [0, 1] (compare [Wal3, Theorem 7.1]).

We will make further use of Proposition 5.20 and of blisters in Chapters 8 and
16. However, blisters will occur in a slightly different form, which we pause here to
describe.

In a knot pair (M,K), consider two surfaces F and G in general position
(namely the intersections F ∩ G and (∂F ) ∩ (∂G) are transverse). A pairwise
blister is a copy P of Σ× [0, 1]/ ∼ embedded in M with the following properties:

(a) ∼ pinches k× [0, 1], with k a compact 1–submanifold of ∂Σ, by collapsing
to one point each arc x× [0, 1] with x ∈ k.

(b) P ∩K is a finite collection of fibres x× [0, 1] with x in the interior of the
compact surface Σ.

(c) Σ× 0, Σ× 1 and the closure of (∂Σ− k)× [0, 1] are respectively contained
in F , G and ∂M .

(d) F ∩ int(P ) = ∅,
(1) G ∩ int(P ) can be non-empty only when Σ is a disc, P ∩ K = ∅ and

P ∩ ∂M is connected (possibly empty).

Proposition 5.23 (Blister Lemma). In a knot pair (M,K) with M −K irre-
ducible and ∂M − ∂K incompressible in M − K, consider two surfaces F and G
intersecting transversely such that F −K and G−K are incompressible in M −K.
If F and G are isotopic, then there exists a pairwise blister between F and G.

Proof. When ∂M = ∅, the existence of a pairwise blister is easily deduced
from the existence of rel ∂ blisters, making the isotopy from F to G “monotonic”
on the components of K as in the proof of Claim 5.21.

When ∂M 6= ∅, consider the double (DM,DK) obtained by gluing two copies
of (M,K) along their boundaries, and let τ be the involution of (DM,DK) that
exchanges these two copies. By the previous case, there is a pairwise blister P
between the doubles DF and DG. If τ(P )∩P = ∅, it immediately gives a pairwise
blister between F and G. Otherwise, τ(P ) = P as τ respects DF and DG. By
incompressibility of ∂M − ∂K, the intersection of ∂M = Fix(τ) with P is incom-
pressible and ∂–incompressible; by [Wal3, Lemma 3.4] it is therefore vertical for
the product structure of the blister P . The intersection of P with one half of DM
now provides a pairwise blister between F and G in (M,K). �





CHAPTER 6

π–hyperbolic structures and characteristic rational

tangles

Consider a knot (S3,K) that is simple for Schubert. In Chapter 3, we singled
out in (S3,K) a certain characteristic family G of pairwise incompressible Conway
spheres splitting (S3,K) into pieces which are, either Montesinos pairs, or (finite
volume) π–hyperbolic knot pairs. We want to go one step further and find new
characteristic Conway spheres in the closed-up components of (S3,K) − G. For
Montesinos pieces, this will be extensively done in the next chapters (in particu-
lar Chapter 10) in the course of our classification of arborescent knot pairs. This
chapter is devoted to discussing the case of the π–hyperbolic pieces; of course, the
characteristic Conway spheres we are looking for are going to be pairwise compress-
ible (see Theorem 5.2).

6.1. Short geodesic arcs

The very first device to find such characteristic Conway spheres is provided by
the Margulis Lemma encountered as Lemma 5.5 in §5.2.

Consider a finite volume π–hyperbolic knot pair (M,K). In §5.2, we gave a
natural decomposition of int(M,K) into a “thin part” Mthin(µ) and a “thick part”
Mthick(µ). Remember that here the constant µ is chosen to satisfy the conclusions of
the Margulis Lemma 5.5 and that, for some isometric identification int(M) ∼= H3/G,
the thin part Mthin(µ) consists of the images of points x ∈ H3 that are moved at
distance 6 µ by some non-elliptic element of G.

As seen in §5.2, the closure in (M,K) of each component ofMthin(µ) ⊂ int(M)
is of one of the following types:

(a) a collar neighbourhood of a boundary component in (M,K);
(b) a solid torus V and V ∩K either is empty or is the core of V ; this solid

torus can possibly be reduced to its core when this one has length µ;
(c) a rational tangle pair, or an arc joining K to itself and of length µ/2.

Clearly, if (M ′,K ′) is another π–hyperbolic knot pair, any isometry (M,K)→
(M ′,K ′) sends Mthin(µ) to M

′
thin(µ). Thus, by our Rigidity Theorem 5.11,

Proposition 6.1. Let (M,K) and (M ′,K ′) be two finite volume π–hyperbolic
knot pairs, and let µ be as in the Margulis Lemma 5.5. Then, any isomorphism
ϕ: (M,K)→ (M ′,K ′) can be pairwise isotoped to send Mthin(µ) to M

′
thin(µ). �

Corollary 6.2. The boundaries of the rational tangle components of Mthin(π)
form a characteristic family of Conway spheres in (M,K). �

The cores of the components of Mthin(µ) which are solid tori avoiding K also
give characteristic curves in (M,K). The other components of Mthin(µ), which are
just tubular neighbourhoods of components of ∂(M,K) or K, are less interesting.

67
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Unfortunately, Corollary 6.2 is not very useful in practice. This comes in partic-
ular from the indeterminacy in the choice of a constant µ satisfying the conclusions
of the Margulis Lemma 5.5. Indeed, if µ is chosen too small, the characteristic
family provided by Corollary is going to be empty in most cases (compare however
§6.2). The set of such µ is obviously an interval ]0, µ0[, but the lower estimates
for µ0 which are known so far are still very small. (See [BusK]; the best estimate
seems to be obtained from Jorgensen’s inequality [Jør].) It remains an important
problem to determine a good approximation of µ0, so as to make Corollary 6.2 more
convenient1.

Lacking such a good approximation, we can however try another method.
Indeed, first focus attention on the case when Mthin(µ) has rational tangle

components, and consider more closely the shape of one of them, V . As we saw
in §5.2, V is the projection in int(M) = H3/G of a tubular neighbourhood of a
geodesic g of H3. Moreover, the stabiliser of g in G is generated by a glide rotation
along g and a π–rotation whose axis meets orthogonally g. From this, it follows
that Gg is Gk for some arc k ⊂ g joining the axes of two distinct π–rotations of G,
and meeting them orthogonally. Also, the restriction k → p(k) of the projection
p : H3 → int(M) is an embedding, and V is a regular neighbourhood of p(k)
respecting K as in Figure 6.1.

K K

k

V

Figure 6.1.

Conversely, consider two π–rotations R1 and R2 of G, whose axes a1 and a2
have distinct endpoints on the sphere at infinity S2

∞. In H3, there is a shortest arc
k joining a1 to a2; this k is geodesic, and meets a1 and a2 orthogonally. Observe
that the orbit of k under the group generated by a1 and a2 is a whole geodesic g of
H3, and that the composition a1a2 is a glide-rotation along g. Thus, we are almost
in the same situation as before. The only difference is that the projection k → p(k)
may not be injective, so that the image of a small tubular neighbourhood of g does
not necessarily give a rational tangle pair (V,K ∩ V ) in (M,K) as in Figure 6.1.

In this situation, the Margulis Lemma ensures that k → p(k) is injective when
k has length 6 µ/2. Actually, the cores of the rational tangle components of
Mthin(M) are exactly all such p(k) with k of length < µ.

When there is no such k of length < µ/2, namely when the Margulis Lemma
does not yield any characteristic rational tangles, we can however consider the arcs
which are shortest among these k.

Proposition 6.3. In the finite volume π–hyperbolic pair (M,K) with interior
isometric to H3/G, consider the family K of geodesic arcs in H3/G joining two axes

1(Added 2009) See [Mey] for the current best estimate for µ0 which, surprisingly, has seen
no improvement in 20 years.
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of π–rotations of G and meeting these axes orthogonally. Then, for any λ > 0 there
are only finitely many arcs of length 6 λ in K modulo the action of G.

Proof. First observe that, for k ∈ K, its image p(k) by the projection p :
H3 → int(M) cannot be contained in a component of the thin part Mthin(µ) that
is adjacent to an end of int(M), namely in the quotient of a horoball of H3 by
its parabolic stabiliser in G. Indeed, the preimage of p(k) would then provide a
geodesic of H3 that is completely contained in this horoball, which is absurd.

Choose a compact W of H3 so that p(W ) contains the complement of these
cusp components of Mthin(µ). By the above remark, there is for each arc k ∈ K an
element g ∈ G such that gk meets W . Also, since G acts discontinuously on H3,
there are only finitely many arcs of length 6 λ in K which meet W . Therefore,
there are only finitely many elements of length 6 λ in K/G. �

In particular, there are finitely many projections p(k) in int(M) of arcs k ∈ K

of length 6 λ. Each of these p(k) is an arc in M , with possible self-intersections,
joining K to itself. It is always possible to perturb p(k) to an embedded arc k∗

joining K to itself; now, a regular neighbourhood B of k∗ in (M,K) gives a rational
tangle pair (B,K ∩B) in (M,K).

Clearly, for each k ∈ K, there are only finitely many embedded arcs k∗, up to
pairwise isotopy in (M,K), which are obtained by perturbation of p(k). Therefore,
for each λ > 0, we can consider the finite family Bλ of pairwise isotopy classes of
rational tangle pairs (B,B ∩K) in (M,K) which are obtained as above: Namely,
B is a regular neighbourhood of an embedded arc k∗ obtained by perturbation of
p(k) for some k ∈ K of length 6 λ.

Then, our Rigidity Theorem 5.11 readily shows that Bλ is characteristic in the
following weak sense.

Proposition 6.4. Consider two finite volume π–hyperbolic pairs (M,K) and
(M ′,K ′) and, for λ > 0, the above defined finite families Bλ and B

′
λ of (pairwise

isotopy classes of) rational tangle pairs in (M,K) and (M ′,K ′), respectively. Then,
for any B ∈ Bλ and any isomorphism ϕ: (M,K)→ (M ′,K ′) , the rational tangle
pair ϕ(B) is in B

′
λ. �

Of course, Proposition 6.4 requires a rather precise determination of the π–
hyperbolic structure of (M,K) and (M ′,K ′) to be very useful. However, there are
numerous examples of explicit π–hyperbolic structure where this argument can be
effectively applied; compare Chapter 4, [Thu1, Ril1, Ril2].

Also observe that, if λ is not too large, the projection p(k) of an arc k ∈ K of
length 6 λ is very likely to have few self-intersection points, which simplifies the
construction of the family Bλ and gives a stronger form of Proposition 6.4. For
instance, an easy cut-and-paste argument readily shows:

Proposition 6.5. With the data of Proposition 6.4, assume that ∂K = ∅

and that λ is the minimum of the lengths of the elements of K (this minimum is
realised, by Proposition 6.4). Then, any two distinct arcs of length λ of K have
disjoint interiors. As a consequence, the projections p(k) of the k ∈ K of length λ
form a characteristic finite family of arcs joining K to itself, whose interiors are
embedded and pairwise disjoint. �
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6.2. Rational tangle substitutions

In a knot projection with minimal crossing number, one often sees rational tan-
gle projections of moderately large complexity which give rational tangle pairs that
seem to be characteristic. In this section, we give a few reasons why these rational
tangle pairs could be characteristic, using hyperbolic geometry. In particular, we
will prove Theorem 1.4 of §1.2. Unfortunately, our arguments are more qualitative
that quantitative, and crucial specific questions remain unsettled.

The argument we are going to use is just a generalisation of the one of §4.2. It
is based, via double branched coverings, on Thurston’s theory of hyperbolic Dehn
surgery [Thu1, §5] [BenP].

Consider a compact 3–manifold M whose boundary consists of tori. The op-
eration of Dehn surgery (also called Dehn filling) consists of gluing solid tori
∼= S1 ×D2 to M along some components of ∂M to get a new 3–manifold M+.

As already indicated in §4.2 (see [Rol] for instance), the manifoldM+ obtained
by such a Dehn surgery is completely determined by its types at each component
T of ∂M . This type of the Dehn surgery at T is defined as the kernel of H1(T )→
H1(V ) if a solid torus V is glued along T in the construction, and is empty otherwise.

In practice, one chooses a basis {kT , lT } for H1(T ), and the type at T is de-
scribed by mT ∈ Q ∪ {∞,∅} defined as follows: mT is the symbol ∅ if no solid
torus V is glued at T ; otherwise, mT is the rational qp ∈ Q∪∞ such that pkT + qlT
generates the kernel of H1(T )→ H1(V ).

Suppose that, moreover, the interior of M is equipped with a finite volume
hyperbolic structure. Then, by deformation of this structure, Thurston shows in
[Thu1, §5] (see also [BenP]) that “most” Dehn surgeries on M give a hyperbolic
manifold. More precisely, he proves:

Theorem 6.6. Let M be a compact 3–manifold, whose interior admits a finite
volume hyperbolic structure. Then, for any component T of ∂M , there is a finite
set ET (M) of 1–dimensional subspaces of H1(T ) with the following property: For
any Dehn surgery on M whose type at each T does not belong to ET (M) (and can
in particular be empty), the interior of the manifold M+ so obtained admits a finite
volume hyperbolic structure.

Moreover, for M+ as above, the cores of the solid tori M+−M are the shortest
closed geodesics of int(M+). �

In the second half of Theorem 6.6, the statement that the cores of the com-
ponents of M+ −M are the shortest geodesics of int(M+) of course means that
they consist of all closed geodesics of length 6 λ of int(M+) for some λ > 0. Some
precise estimates on the lengths of these cores in terms of the Dehn surgery slopes
can be found in [NeuZ].

We will apply this theorem to the situation of §1.2, slightly generalised.
For this, consider a knot pair projection (S,Γ), consisting of a (compact)

subsurface S of the sphere S2, and of a 1–submanifold Γ immersed in S whose only
singularities are transverse double points, each equipped with an indication telling
which strand lies above the other one. Such a knot pair projection describes a knot
pair (M,K) as follows. Cap off each component of ∂S with two disks, one above
and one under S2. This gives a family S+ of 2–spheres in S3 with S+ ∩ S

2 = ∂S,
and M is taken to be the closed-up component of S3 − S+ containing S. The knot
string K ⊂M is obtained by perturbing Γ according to the crossing information.
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Suppose in addition that each boundary component of S meets Γ in 4 points,
so that the boundary of the knot pair (M,K) consists of Conway spheres.

If we glue rational tangle projections to (S,Γ) along some components of its
boundary, we get a new knot pair projection (S+,Γ+) which is said to be obtained
from (S,Γ) by rational tangle substitution . The knot pair (N+, L+) described
by (S+,Γ+) contains (N,L) described by (S,Γ) in a natural way and we will show
that, for most rational tangle substitutions, (N,L) is characteristic in (N+, L+).

By Proposition 1.3, the knot pair (N+, L+) depends only on (S,Γ) and on
the slopes of the rational tangle projections substituted. Recall that these slopes
∈ Q ∪ ∞ are defined as soon as each boundary component of (S,Γ) is equipped
with an arrow as in Figure 1.3. At a boundary component of S where no rational
tangle projection is glued, we say that we are performing there a rational tangle
substitution of slope ∅, where ∅ is just a standard symbol recalling the empty
substitution.

When (the interior of) (N,L) has a finite volume π–hyperbolic structure, we
have the following analogue of Theorem 6.6.

Proposition 6.7. Consider a finite volume π–hyperbolic knot pair (N,L) de-
scribed by a knot pair projection (S,Γ). Equip each boundary component of (S,Γ)
with an arrow as in §1.2 so as to define slopes for rational tangle substitutions.
Then, for each component C of ∂(S,Γ), there is a finite set EC(S,Γ) ⊂ Q ∪ ∞
with the following property: For any rational tangle substitution on (S,Γ) whose
type at each C is not a slope in EC(S,Γ) (but can be ∅ ), the knot pair (N+, L+)
described by the knot pair projection so obtained admits a finite volume π–hyperbolic
structure.

Moreover, let K denote the set of geodesic arcs in int(N+, L+) joining L+ to
itself and meeting L+ orthogonally, as in §6.1. Then the closed-up components of
(N+, L+)− (N,L) are regular neighbourhoods of arcs of K, and these geodesic arcs
are the shortest ones in K.

Proof. The π–hyperbolic structure on (N,L) lifts to a finite volume hyper-
bolic structure on (the interior of) its double branched coveringM . Also, the double
branched covering M+ of (N+, L+) is obtained by Dehn surgery on M (compare
§4.2). Thus, we are in the situation of Theorem 6.6, which provides us with a set
EC(S,Γ) of slopes for each component C of ∂(S,Γ), with the following property:
If (S+,Γ+) is obtained from (S,Γ) by a rational tangle substitution whose type at
each C is not a slope of EC(S,Γ), then (the interior of) M+ admits a finite volume
hyperbolic structure; moreover, the cores of the solid tori M+−M are the shortest
geodesics of M+.

To complete the proof, we clearly only have to show that this hyperbolic struc-
ture onM+ can be chosen so as to make the covering involution τ an isometry. But
this is done by the ad hoc argument we developed in §4.2. �

Remark 6.8. Although a mere reference to §4.2 is certainly faster, there is
another proof that τ can be made an isometry which is probably more conceptual.
It consists in checking that Thurston’s proof of Theorem 6.6 in [Thu1, §5] can be
made Z/2–equivariant. This actually amounts to a straightforward extension of
Theorem 6.6 to orbifolds, by consideration of the space of representations of G in
the isometry group of H3, where G is such that int(N,L) is isometric to H3/G.
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Remark 6.9. There is substantial evidence that the exceptional sets of slopes
EC(S,Γ) of Proposition 6.7 can be chosen to be relatively small, perhaps with no
more than 4 or 5 elements. This is indeed the case for all examples known. Also,
[CuGLS] seems to provide some progress towards this conjecture2.

Combining Proposition 6.7 with our Rigidity Theorem 5.11, we immediately
get:

Corollary 6.10. Consider two knot pair projections (S,Γ) and (S′,Γ′) whose
associated knot pairs (N,L) and (N ′, L′) admit a finite volume π–hyperbolic struc-
ture, and such that ∂S and ∂S′ have the same number of components. After labelling
these boundary components by arrows, let EC(S,Γ) and EC′(S′,Γ′) ⊂ Q∪∞ be the
exceptional sets of slopes associated to each component C of ∂S and C′ of ∂S′ by
Proposition 6.7.

Then, for any rational tangle substitution on (S,Γ) (resp. S′,Γ′) ) whose type
at each C (resp. C′ ) is not a slope in EC(S,Γ) (resp. EC′(S′,Γ′) ), any degree
±1 isomorphism ϕ: (N+, L+) → (N ′

+, L
′
+) between the resulting knot pairs can be

pairwise isotoped so as to send (N,L) ⊂ (N+, L+) to (N ′, L′) ⊂ (N ′
+, L

′
+). �

In other words, if (N+, L+) is obtained from (N,L) by a sufficiently complicated
rational tangle substitution, then (N,L) is characteristic in (N+, L+).

These results can be considerably sharpened in the case when the knot pair
projection (S,Γ) has no crossing, namely arises from a Conway graph Γ0 in S2 as
defined in Chapter 1. In particular, we can get rid in this case of the condition on
the number of boundary components.

For such a Conway graph Γ0 ⊂ S2, the knot pair projection (S,Γ) and the
knot pair (N,L) it describes are respectively obtained from (S2,Γ0) and (S3,Γ0)
by removing regular neighbourhoods of the vertices of Γ0. In particular, (N,L) has
a degree −1 involution τ fixing L, arising from the reflection of S3 through S2.

We are now ready to prove Theorem 1.4 of §1.2, slightly extended to allow
rational tangle substitutions of type ∅. For a Conway graph Γ0 ⊂ R2 = S2 −∞,
we adopt the convention of §1.2 to assign slopes to rational tangle substitutions,
using the checkerboard colouring of S2 − Γ0 that is white near ∞.

Theorem 6.11. For every Conway graph Γ0 ⊂ R2 = S2 −∞ and every vertex
v of Γ0, there is a finite subset Ev(Γ0) of Q ∪∞ with the following property:

Consider two such Conway graphs Γ0 and Γ′
0. Perform at each vertex v of Γ0 a

rational tangle substitution whose slope is not in Ev(Γ0) (but can be ∅ ). Similarly
perform at each vertex v′ of Γ′

0 a rational tangle substitution whose slope is not in
Ec′(Γ0). Then the knot pairs described by the resulting knot pair projections are
degree +1 isomorphic if and only if there is a degree ±1 isomorphism θ: S2 → S2

sending Γ0 to Γ′
0 such that:

(i) if θ respects the colours of the components of S2 − Γ0 and S2 − Γ′
0, then

m′
θ(v) = mv for every vertex v of Γ0 ;

(ii) otherwise, m′
θ(v) = −

1
mv

for every vertex v of Γ0 (with the convention that

− 1
∅

= ∅).

Proof. If (S,Γ) is the knot pair projection associated to Γ0, the exceptional
set of slopes Ev(Γ0) ⊂ Q ∪ ∞ are of course the EC(S,Γ) of Proposition 6.7 and
Corollary 6.10, where C is the component of ∂S corresponding to v.

2(Added 2009) See [Ago, Lack, LacM] for current results in this direction.
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In the situation of the theorem, let (N+, L+) and (N ′
+, L

′
+) denote the knot

pairs described by the rational tangle substitutions. By construction, (N+, L+) con-
tains the knot pair (N,L) obtained from (S3,Γ0) by removing a regular neighbour-
hood of the vertices of Γ0. Similarly for (N ′, L′) in (N ′

+, L
′
+). By Proposition 1.3, it

clearly suffices to show that any degree +1 isomorphism ϕ: (N+, L+) → (N ′
+, L

′
+)

can be pairwise isotoped to send N to N ′ and N ∩ S2 to N ′ ∩ S2.
First assume that Γ0 and Γ′

0 have the same number of vertices. Then Corol-
lary 6.10 asserts that ϕ can be pairwise isotoped so that ϕ(N) = N ′. Remember
that (N,L) has a degree −1 involution τ induced by the reflection of S3 through
S2, and that (N ′, L′) similarly has a reflection τ ′. By Corollary 5.13, the involu-
tions τ and ϕ−1

|N τ
′ϕ|N of (N,L) are pairwise isotopic since they both fix L. By

[Tol3] or an easy ad hoc argument, it follows that ϕ can be pairwise isotoped so
that τ = ϕ−1

|N τ
′ϕ|N in addition to ϕ(N) = N ′. In particular, ϕ(N ∩ S2) = N ′ ∩ S2

by fixed point considerations. This proves Theorem 6.11 when Γ0 and Γ′
0 have the

same number of vertices.
In the general case, assume for instance that Γ′

0 has at least as many vertices as
Γ0. By Proposition 6.7 and the Rigidity Theorem 5.11, ϕ can be pairwise isotoped
so that ϕ(∂N) ⊂ ∂N ′. We want to show that ϕ(N) = N ′.

Observe that ϕ(N,L) is obtained by rational tangle substitution on (N ′, L′).
By the first case, the automorphism ϕ|Nτϕ

−1
|N of ϕ(N,L) is pairwise isotopic to one

respecting N ′, N ′ ∩ S2, and each component of N ′ ∩ S2 − L. As its degree is −1,
this is possible only if all slopes of this rational tangle substitution are ∅, namely
if ϕ(N) = N ′. This proves that Γ0 and Γ′

0 necessarily have the same number of
vertices, and completes the proof of Theorem 6.11 (and Theorem 1.4). �
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CHAPTER 7

The arborescent part is characteristic

This chapter is devoted to proving the assertion of the title, which is Theo-
rem 3.1.

The argument is rather direct and elementary. It simultaneously proves the
somewhat stronger result that the potentially π–hyperbolic part is characteristic,
namely Theorem 3.2.

For a first reading, it is probably best to restrict attention, as in Chapter 3,
to a knot (S3,K) that is simple for Schubert. However, since the proofs work in
considerably greater generality without requiring any modification, we pause here
to set out, using language and facts from Chapter 3, four hypotheses that amply
suffice. (See also the end of this chapter).

Hypotheses. We consider knot pairs (M,K) such that:

(1) M ⊂ S3.
(2) There is no 2–sphere in (M,K) cutting K in 1 or 3 points.
(3) (M,K) is pairwise irreducible, namely contains no pairwise incompressible

2–sphere meeting K in 0 or 2 points.
(4) There is no 2–torus in M −K that is pairwise incompressible in (M,K).

Hypotheses (2) and (3) prevent ∂M from having a 2–sphere component cutting
K in 6 3 points, unless the corresponding componentM1 ofM is such that (M1,K∩
M1) ∼= (B3,∅) or (B3, B1). Also, Hypotheses (3) and (4) prevent ∂M − K from
having a 2–torus component unless the corresponding componentM1 ofM is a solid
torus for which K ∩M1 is its core or is empty. But these are the only restrictions
on (∂M, ∂K).

The only 2–tori in M −K allowed by these hypotheses are the inevitable pair-
wise compressible ones, namely: boundaries of tubular neighbourhoods of circles of
K or of circles in M −K, and boundaries of balls with empty wormhole, where the
ball lies in M −K.

One readily verifies that a knot pair (M,K) with M ⊂ S3 has a 2–fold
branched cover precisely if K meets each boundary component in an even num-
ber of points. (Hint: For any compact pair (N,L) with N an n-manifold and L
a codimension 2 submanifold, a 2–fold branched cover exists precisely if L is zero
in Hn−2(N, ∂N ;Z2).) Thus the Z2–equivariant arguments first exploited to prove
Theorems 3.1 and 3.2 in [Bon1] do not have the full generality of the arguments of
this section.

In (M,K) we consider a family F of disjoint pairwise incompressible Conway
2–spheres F1, . . . , Fn that is maximal for the property that no closed-up component
X of M − F is a pairwise parallelism ∼= (S2, 4 points)× [0, 1] and meets F .

If F is empty we say that (M,K) is simple for Conway , by analogy with
the term simple for Schubert introduced in Chapter 2. However let the reader

77
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be warned that the article [Conw] suggests that Conway would not in general
be content to call such a pair simple until some rational tangle pairs have been
extracted (see the discussion in §1.2 and Chapter 6).

The knot pair (M,K) decomposes as the union of the arborescent part A, union
of the elementary closed-up components ofM−F , and of its closed-up complement
A∗ =M − int(A). This section is devoted to proving that the surface G = F ∩A∗,
which was called F ∗ in Chapter 3, is characteristic. This surface G is the union of
all those Fi in F which lie on the boundary of one or two non-elementary closed-up
component of M − F .

Theorem 7.1. In the above situation, G is well-defined in (M,K) up to pair-
wise isotopy.

In the proof we will encounter Conway disks as well as Conway spheres. A
Conway disk in a knot pair (M,K) is a 2–disc D embedded in M with ∂D∩K =
∅, such that D cuts K in two points, transversely. Conway discs often occur as half
of a Conway sphere. As with compression discs, there is no a priori assumption
that ∂D ⊂ ∂M .

We shall need:

Lemma 7.2. In a pairwise irreducible knot pair (M,K), consider a family F of
disjoint pairwise incompressible closed surfaces. Then, for any closed-up component
N of M − F , the pair (N,K ∩N) is pairwise irreducible.

Proof. Consider a sphere S in N cutting K in 0 or 2 points. It bounds a
ball B in M so that the pair (B,K ∩ B) is isomorphic to the standard linear pair
(B3,∅) or (B3, B1). If B 6⊂ N , then B contains a component F ′ of F .

Since it is well known that B3 contains no nonempty incompressible surface
[Ale], it is sufficient now to establish the

Sublemma 7.3. In the linear pair (B3, B1) there is no pairwise incompressible
nonempty closed surface F ′.

D

D

B1

B2

B1

B2

(a) (b)

Figure 7.1.

Proof. Choose a linear 2–disc B2 bisecting B3 and containing B1. Seeking
a contradiction, we suppose F ′ exists. By a pairwise isotopy moving F ′, make the
intersection F ′ ∩ B2 transverse and minimal, in the sense that that the number
of components of F ′ ∩B2 cannot be reduced by any pairwise isotopy. Necessarily,
F ′ ∩ B2 6= ∅ by [Ale], since B2 splits B3 into two halves, the interior of each
isomorphic to an open ball. Consequently, there must somewhere be a configuration
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as in Figure 7.1(a) or (b), involving a 2–disc D in B2 with int(D)∩F ′ = ∅. In each
case, there appears a compression disc for F ′ that avoids B1: This is the disc D in
Case (a), and is constructed from two copies of the “half-disc” D in Case (b). In
both cases, one then uses the pairwise incompressibility of F ′ and the Alexander-
Schoenflies theorem [Ale] to show that this cannot happen: In case (a), F ′ ∩ B2

could be reduced by pairwise isotopy, and, in case (b), a component of F ′ would
be a pairwise compressible sphere meeting B1 in two points. �

Sublemma 7.3 concludes the proof of Lemma 7.2. �

Proof of Theorem 7.1. We have to show that, if G′ is constructed by the
same recipe as G (primes will distinguish data corresponding to G′), then G and
G′ are pairwise isotopic.

By a pairwise isotopy moving G′, we can make G∩G′ contain as many Conway
spheres as possible, say G1, . . . , Gk. Then we make G and G′ meet transversely
outside G1, . . . , Gk, in a number of circles that is minimal for pairwise isotopy
fixing G1,. . . , Gk. In this situation we aim to show that G = G′ = G ∩G′.

The 1–dimensional part of G ∩ G′ is now pairwise essential in (G,K ∩ G)
and in (G′,K∩G′), in the sense that no intersection circle is the boundary of a disc
in G or in G′ meeting K in 6 1 point. One needs the pairwise incompressibility
of G and G′ together with the pairwise irreducibility of (M,K) to verify this. By
elimination, one concludes that each closed-up component of G − G′ or G′ −G is
therefore a Conway sphere or disc, or an annulus avoiding K.

Let N be a closed-up component of M − G. Now G′ ∩ N is pairwise incom-
pressible in (N,K∩N). Indeed if D′ ⊂ N is a pairwise compression disc for G′∩N ,
the pairwise incompressibility of G′ in (M,K) shows there is a disc D1 ⊂ G

′, with
∂D1 = ∂D, meeting K in as many points as D′ (namely 6 1). An innermost disc
argument on D1 then reveals that D1 cannot leave N (as the innermost disc would
have to be a Conway disc).

The main burden of the proof of Theorem 7.1 lies in a proposition which, when
applied first to (N,K ∩N), shows that G′ ∩ int(N) = ∅. (Lemma 7.2 shows that
(N,K ∩N) is pairwise irreducible.)

Proposition 7.4. Given (M,K) as for Theorem 7.1, suppose that every pair-
wise incompressible Conway sphere in (M,K) is pairwise parallel to a boundary
component, and that (M,K) is connected but not elementary. Let ∂CM consist of
the components of ∂M that are Conway spheres. Consider a pairwise incompress-
ible surface F in (M,K) with ∂F ⊂ ∂CM , such that each component of F is a
Conway disc or an annulus disjoint from K.

Then, such an F necessarily lies in a pairwise collar of the boundary of (M,K),
namely in a neighbourhood U of ∂M such that (U,U ∩K) ∼= (∂M,K ∩∂M)× [0, 1].

Remark 7.5. It follows that each component of F is pairwise boundary parallel
in (M,K). However, it is convenient to neither use nor prove this fact until the
next Chapter 8.

We momentarily postpone the proof of Proposition 7.4 to complete the proof
of Theorem 7.1. The proposition certainly shows that G′ ⊂ (A ∪G).

Now the property that G′ ⊂ G can only fail if G′ meets int(A). Suppose this,
seeking a contradiction. It implies that a (non-elementary!) closed-up component
N ′ of A′∗ −G′ meets int(A).
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Then, by Proposition 7.4 applied to N ′ (in place of M), we must have N ′ ⊂ A.
Furthermore, on making F ∩ int(A) meet N ′ minimally, the same proposition shows
that N ′ lies entirely in an elementary closed-up component Z of A−F . (Recall that
F is the maximal family of Conway spheres we started with to define G.) Since Z
is simple for Conway by construction of F , we have that Z = N ′, a contradiction.

This proves that G′ ⊂ G. Symmetrically G ⊂ G′, so that G = G′ and the proof
of Theorem 7.1 is complete, assuming Proposition 7.4. �

The proof of Proposition 7.4 requires a little preparation.

Lemma 7.6 (for instruction only). A pairwise compressible Conway sphere Σ
in the unknot (S3, S1) is the boundary of a regular neighbourhood B of an embedded
arc J with ∂J = J ∩ S1, as in Figure 7.2(a). Equivalently, Σ bounds a ball B such
that (B,K ∩B) is a rational tangle pair, as in Figure 7.2(b).

Proof. The proof is straightforward. �

Σ

Σ

J

J

S1 ∩B

S1

(a) (b)

Figure 7.2.

Furthermore, we already know that every Conway 2–sphere in (S3, S1) is pair-
wise compressible (use Sublemma 7.3).

Lemma 7.7. Consider a pairwise compressible Conway sphere Σ in a pairwise
irreducible connected knot pair (M,K) with no 2–spheres cutting K in 1 or 3 points.
Then either Σ bounds a ball B giving a rational tangle (B,K ∩B), or the following
holds: Σ splits (M,K) into two pieces, and one of these pieces is obtained from the
pair in Figure 7.3 by gluing in some knot pair (M0,K0) along the 2–sphere Σ′.

Furthermore, the complement of int(M0,K0) in (M,K) is isomorphic to the
unknotted pair (B3, B1). As a consequence, M0 contains all of ∂M and all of K
except for an arc.

Σ′ Σ

Figure 7.3.
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Proof of Lemma 7.7. Let D be an effective pairwise compression disc for Σ
in (M,K). Our hypotheses assure that ∂D cuts Σ into two Conway discs ∆1 and
∆2, and that D ∩K = ∅. Now ∆1 ∪D and ∆2 ∪D are two separating spheres by
pairwise irreducibility. Hence Σ also splits M into two pieces.

D ∆1∆2

Σ

Σ1 Σ2

Figure 7.4.

Denote by N the closed-up component of M −Σ containing D, and let U be a
regular neighbourhood of Σ∪D in N . Clearly, the pair (U,K∩U) is as in Figure 7.4.
The boundary ∂U consists of three spheres Σ, Σ1, Σ2, the latter two each meeting
K in two points. By pairwise irreducibility of (M,K), both of Σ1, Σ2 bound balls
B1, B2 in M each meeting K in an unknotted arc. If B1 and B2 are both disjoint
from int(U), then (N,K ∩N) is a rational tangle pair. If one ball, say B1, meets
U , then it contains U and therefore Σ2; so B2 can be chosen disjoint from int(U)
(use Sublemma 7.3). This gives the desired result. �

Proof of Proposition 7.4. Consider a component F0 of F . We want to
find a pairwise collar neighbourhood N0

∼= ∂CM × [0, 1] of ∂CM in (M,K), which
contains F0 in its interior and such that F ∩N0 consists of certain whole components
of F and cylindrical pieces (that are a product with [0, 1] in N0). Clearly this
result, applied successively at most as many times as F has components, yields
Proposition 7.4.

The proof of this result, which we call 7.4∗ or the inductive form of 7.4,
distinguishes cases.

Proof of 7.4∗ when F0 is a Conway disc. Let U be a regular neighbour-
hood, respecting K and F −F0, of the union of F0 and of the component S of ∂CM
containing ∂F0. The pair (U,K ∩ U) is elementary with three boundary compo-
nents as described in Figure 7.5. In it, S1 and S2 are two Conway sphere boundary
components of U disjoint from F0, and S is a third containing ∂F0.

We know by hypothesis that each Si is either pairwise compressible or pairwise
parallel to a component of (∂M, ∂K).

S

S1 S2F0

Figure 7.5.

Assertion 7.8. One of S1, S2 is pairwise parallel to S.
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The assertion implies the desired result. Indeed, suppose that Ei ∼= S2 ×
[0, 1] gives a pairwise parallelism in (M,K) between Si and S ⊂ ∂CM . Then,
by a connectivity argument, Ei contains U and so also F0; adding to Ei a collar
neighbourhood of ∂CM − S respecting K and F , we clearly get the collaring N0

required to prove 7.4∗.

Proof of Assertion 7.8. We suppose the contrary and seek a contradiction
in every case.

By hypothesis, either Si is pairwise parallel to the boundary by a parallelism
Ei disjoint from U , or Si is pairwise compressible.

Suppose the second alternative, and consider an effective pairwise compression
disc D for it. It is impossible for D to be on the same side of Si as U . For, as F0 is
pairwise incompressible, an innermost disc argument would let us make D disjoint
from F0, which leaves D in a collar neighbourhood N respecting K of Si in U .
This is absurd, as the reader will readily see by, for instance, a fundamental group
argument in N −K. Thus D is contained in M − int(U). In view of Lemma 7.7,
we can now conclude that Si is the boundary of a ball Ei with Si = U ∩Ei, so that
(Ei,K ∩Ei) is a rational tangle pair.

We have now defined Ei in every case i = 1, 2, and (Ei,K ∩ Ei) is isomorphic
either to a product (S2, four points) × [0, 1] or to a rational tangle pair. We form
U ∪ Ei ∪ E2. This has empty frontier in M , so is all of M . Hence (M,K) is an
elementary pair, against hypothesis.

This final contradiction completes the proof of the inductive form 7.4∗ of Propo-
sition 7.4, in the case when F0 is a Conway disc. �

Proof of 7.4∗ when F0 is an annulus. Let U again be a regular neigh-
bourhood, respecting K and F − F0, of the union of F0 and the components of
∂CM that meet ∂F0. The pair (U,K ∩U) is described respectively in Figure 7.6 or
7.7, according to whether the two circles ∂F0 lie in a single component S or in two
components S, S′ of ∂CM .

S S′S1

S2

F0

G

Figure 7.6.

In the case of Figure 7.6, we reach a contradiction in all circumstances by
an argument similar in part to the one above for the case where F0 is a Conway
disc. Indeed, following that line of argument, one shows that the component Ei
of M − int(U) containing Si, either is a pairwise parallelism of Si to a component
of ∂CM , or gives a rational tangle pair (Ei,K ∩ Ei). Also M = U ∪ E1 ∪ E2 as
before. The end of the proof has a new twist. We consider the Conway sphere G
in Figure 7.6 that has S1 and S on one side and S2 and S′ on the other; it splits
(M,K) into two elementary pairs. By Lemma 7.7, this G is pairwise incompressible;
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S

S1

T

F0

Figure 7.7.

the presence of boundary on each side assures this. Thus G is pairwise boundary
parallel. It follows that one of the two elementary pairs is a mere parallelism; hence
(M,K) is itself elementary, a final contradiction proving 7.4∗ in the case when F0

is an annulus, as in Figure 7.6.
The case of Figure 7.7 requires some fresh arguments using the hypothesis that

M ⊂ S3.
By Hypothesis (4), the torus boundary component T of U admits an effective

pairwise compression disc D in (M,K). This disc D can be made disjoint from
the pairwise incompressible surface F . Also, D cannot lie in U near ∂D: If it
did, F ∩D = ∅ would imply that D is trapped in a collar neighbourhood of T in
U . Therefore, as T separates M , the disc D lies entirely outside int(U). Adding a
regular neighbourhood ofD to U and applying the pairwise irreducibility of (M,K),
we conclude that T bounds a solid torus V with V ∩U = T and that K ∩ V either
is empty or is the core of V .

Now, U ∪V is visibly a lens space with two holes. Since M ⊂ S3 by Hypothesis
(1), we must have just a 3–sphere with two holes. Hence U ∪ V is constructed by
plugging the torus boundary component of U in Figure 7.7 in the standard fashion.

In the case when V ∩ K = ∅, we conclude that U ∪ V is a pairwise collar
neighbourhood of S in (M,K). Adding to it a small pairwise collar neighbourhood
of ∂CM − S respecting K and F − F0 we get a collar N0 of ∂CM proving 7.4∗.

To conclude, we need to prove

Assertion 7.9. V ∩K = ∅

Proof of Assertion 7.9. We suppose V ∩K 6= ∅ and seek a contradiction.
We already know that V ∩K 6= ∅ implies V ∩K is a circle at the core of V .

Thus K ∩ (U ∪ V ) is as in Figure 7.8.

S

S1

G

Figure 7.8.



84 7. THE ARBORESCENT PART IS CHARACTERISTIC

In this figure, consider the dotted Conway sphere G (it is the result of “surg-
ering” T with a Conway disc). Note that G bounds a 3–ball B in M such that
(B,K ∩B) is an elementary pair.

The Conway sphere G is not pairwise boundary parallel. Indeed, if it were,
the parallelism would necessarily be to S (as there is no boundary of M on the
other side of G). This would show that (M,K) ∼= (B,K ∩B) which is elementary.
Absurd!

On the other hand, G is pairwise incompressible in (M,K) by Lemma 7.7.
The two properties of G just established violate our hypothesis that (M,K) is

simple for Conway. So we have the final contradiction to complete the proof of the
assertion that V ∩K = ∅, and with it the proof of Proposition 7.4 via 7.4∗. �

This also concludes the proof of Theorem 7.1. �

Remark 7.10. The Hypothesis (1) that M ⊂ S3 can readily be weakened. For
example, it suffices to assume that H1(M ;Z) has no torsion, or more specifically
that M contains no multiply punctured lens space with finite H1 6= 0. See the one
intervention of this hypothesis, in the proof of Proposition 7.4, for the case where F0

is an annulus. We leave the verification as an exercise. (Alternatively, Hypothesis
(1) could be entirely suppressed by broadening the definition of an elementary pair.)

Remark 7.11. It is interesting, and not difficult, to somewhat weaken Hy-
pothesis (2) on the pair (M,K) while slightly modifying Theorem 7.1. Indeed if
we allow 2–spheres in (M,K) that meet K in 3 points provided that they are
pairwise boundary parallel, then Theorem 7.1 still holds provided the definition of
elementary pairs is enlarged as follows. Allow substitution in the 3–holed pair of
Figure 3.2, with pairs of Figure 7.9(a) below in the same way that rational tangle
pairs of Figure 7.9(b) may be substituted.

(a) (b)

Figure 7.9.

In Figure 7.9(a), the pair has three boundary components, all 2–spheres.
This result is general enough to apply to any compact pair (M,K) withM ⊂ S3

after a battery of preliminary reductions involving successive splitting along families
of 2–spheres in (M,K) that meet K in 0, 1, 2, 3 points respectively; and finally a
splitting along 2–tori in M −K (as in Chapter 2). The splitting along 2–spheres
meeting K in 2 points is the well-known pairwise connected sum factorisation; and
the other splittings along 2–spheres are easier.

This last generalisation of Theorem 7.1 permits one to study arbitrary knotted
graphs in S3 (in place of knotted circles); one begins by deleting fattened vertices.



CHAPTER 8

Pairwise incompressible surfaces

in Montesinos pairs

This chapter is devoted to a major technical step towards our classification of
arborescent knots, namely to the classification of pairwise incompressible surfaces
in Montesinos pairs. There are more such surfaces than first meet the eye, and
their classification requires patience.

We have here adopted an elementary viewpoint. The reader interested in more
modern proofs may prefer the arguments of [BonS1] based on minimal surface
theory (and valid in greater generality).

It will be helpful to use part of Conway’s language of tangles [Conw]. A long
preamble is devoted to it.

8.1. The language of tangles

When a knot in S3 is split along a family of Conway 2–spheres, each result-
ing piece (M,K) is a compact pair with M embeddable in S3 and such that each
component of ∂M is a 2–sphere intersecting K in four points. We will use coor-
dinates on such Conway 2–spheres to permit some careful cataloguing of surface
boundaries.

For this purpose, following Conway [Conw], we shall make use of a model 2–
sphere S2 in R3 which is symmetric by reflection in the three coordinate planes
of R3, as in Figure 8.1. On the equatorial circle S1 ⊂ S2 in the xy–plane, are
marked four standard points of the form (±1,±1, 0). Conway thinks of the positive
y–axis as pointing northwards so that the points form the four diagonal points
P 0 = {NE,NW, SW, SE} of the compass in cyclic order.

x

y

z

NE = (1, 1, 0)(−1, 1, 0) = NW

SE = (1,−1, 0)(−1,−1, 0) = SW

Figure 8.1.

We orient the above standard 2–sphere S2 as the boundary of the 3–ball that
it bounds in R3. In particular, the projection from the front hemisphere (consisting
of those (x, y, z) ∈ S2 with z > 0) to the xy–plane preserves orientation.

85
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Following Conway we define a (k–valent) tangle1 to be a knot pair (M,K)
whose boundary consists of k Conway spheres F1, . . . , Fk parametrised by specifying
orientation-preserving isomorphisms θi : (Fi,K ∩ Fi) → (S2, P 0), i = 1, . . . , k, to
the standard pair above. Writing θ =

(
θi
)
i=1,...,k

we denote the tangle by (M,K; θ),

or simply by (M,K) if the choice of θ is evident.
A tangle isomorphism ϕ: (M,K; θ) → (M ′,K ′; θ′) between two tangles is

simply a pair isomorphism ϕ: (M,K)→ (M ′,K ′) such that

M
ϕ
−→ M ′

θi ↓ ↓ θ′i

S2 Id
−→ S2

commutes for all i. In other words, ϕ makes the boundary parametrisations agree.
The sign of isomorphism of tangles will be ≡.
It is very convenient that certain knot pairs (M,K) in S3 = R3 ∪ ∞ can be

given a canonical tangle structure: namely those such that, for each boundary
component S of ∂M , the pair (S,K ∩ S) is related to (S2, P 0) by mere translation
and homothety (scaling). This motion is unique; it gives the parametrisation of S
if it has degree +1; otherwise we compose this motion with reflection ρ across the
xy–plane to parametrise S.

This will let us represent tangles (M,K; θ) by planar diagrams as in Figure 8.2.
Specifically, we arrange that the equators of the boundary components of M be
in the xy–plane z = 0 and that projection to the xy–plane R2 immerse K into
M ∩ R2 (so as not to cross these equators), with simple double points only. Then,
indicating over- and under-crossings, we have specified the tangle by a diagram in
the xy–plane as in Figure 8.2, where we see (∂M) ∩ R2 as four circles.

x

y

(1, 1)(−1, 1)

(1,−1)(−1,−1)

Figure 8.2.

For such diagrammatic representation of tangles we agree that the page is the

xy–plane with the axes directed thus x

y

while the z–axis points upwards from

the paper to the eye.
The reader can verify that every tangle is tangle isomorphic to one presented

diagrammatically as above.
This simple-minded way of denoting tangles is less evolved than Conway’s in

[Conw] but will suffice until our graphical notations appear in Chapter 12.
Here are two pitfalls involving tangles and pairs, of which the reader should

beware.

1(Added 2009) The word “tangle” has taken various meanings in the past 30 years, in partic-
ular in quantum topology. We are here restricting our terminology to Conway’s original definition.
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(1) In Figure 8.3, the tangle (a) is not isomorphic to the tangle (b) but rather
to (c).

(a) (b) (c)

Figure 8.3.

(2) In Figure 8.4, the tangle (a) is tangle isomorphic to (b), but when the
total space of each is naturally identified to S2× [0, 1], the string in (a) is
not isotopic fixing boundary to the string in (b). (This is a consequence
of the fact that, if G3 denotes the space of degree +1 continuous maps
S2 → S2, then π1(G3) = π1(SO(3)) = Z2 6= 0). An auxiliary fact is
that the automorphisms of pair (a) fixing boundary are isotopic to the
identity; see [Wal3] or Theorem 16.8.) On the other hand, the string in
(c) is isotopic fixing boundary to position (a), because 2π1(SO(3)) = 0.
It is a pleasant trick to perform this isotopy physically!

(a) (b) (c)

Figure 8.4.

The example in (2) reveals that isotopy fixing boundary can be a finer equiva-
lence relation than tangle isomorphism. This example is typical. One can show
that for knot pairs (M,K1), (M,K2), etc. . . , where M is a specific 3–sphere with
holes, the equivalence of pair isomorphism fixing ∂M is the same as the equivalence
generated by isotopy fixing ∂M and enough modifications (a) 7→ (b) of Figure 8.4,
made in collars of the boundary components. (Prove this by showing that any
isomorphism of M fixing ∂M is isotopic to the identity moving ∂M .)

It is important that there is a natural way to glue ormatch a tangle (M,K) to
another (M ′,K ′) along a specified boundary sphere S ofM and S′ ofM ′. The result
is a new tangle (M∪ψM

′,K∪ψK
′), where the identification ψ: S → S′ is the unique

orientation-reversing isomorphism that, in terms of the given parametrisations of
S and S′ by S2, is the reflection ρ across the xy–plane.

When (M ′,K ′) is monovalent we describe the above process by saying that we
plug (M ′,K ′) into (M,K) at S ⊂ ∂M .

Figure 8.5 gives an example of matching where ψ is a mere translation. More
generally, for tangles represented diagrammatically, ψ: S → S′ is always just com-
posed of translation, homothety, and (when orientation dictates it) the reflection ρ
across the xy–plane.

In certain tangles (M,K), it will be crucial to specify how surfaces meet the
boundary spheres. Thus we need a good understanding of the curves in the model
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



−→

S

S′

Figure 8.5.

(S2, P 0) that are pairwise essential. We explain these terms. By a curve in
(S2, P 0) we mean a connected compact 1–submanifold of S2 whose boundary (per-
haps empty) is its intersection with P 0. By pairwise essential we mean that no
component bounds a 2–disc meeting P 0 in at most one point.

Choosing our terminology in accord with [HatT], we let R be the group of
isometries of R2 generated by the rotations of angle π around each point of Z2,
and consider the pair (R2/R,Z2/R). It admits a homeomorphism θ to (S2, P 0).
We can require that this homeomorphism preserves orientation, that it sends the
square of Figure 8.6 onto the front hemisphere of S2 delimited by the plane R2× 0,
and that the image of (0, 0) is (−1,−1). Then this homeomorphism is unique up
to pairwise isotopy. Use it to identify (S2, P 0) and (R2/R,Z2/R).

1

10

(−1,+1, 0)

(−1,−1, 0)

(+1,+1, 0)

(+1,−1, 0)

Figure 8.6.

If we are working in the category of piecewise linear manifolds and maps, note
that R2/R is naturally a polyhedron; we can and do insist that θ be a piecewise
linear isomorphism.

In the differentiable category, note that R2/R is not naturally a smooth mani-
fold at Z2/R; it is rather a smooth orbifold shaped like a pillow with four corners
Z2/R. But we can and do insist that θ be smooth away from these corners, and at
each corner locally send emanating linear rays onto smooth arcs. There is in fact

a standard choice for θ, the one making the composition C = R2 → R2/R
θ
→ S2

holomorphic (use for example the Riemann mapping theorem on squares in R2).
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A line with rational or infinite slope in R2 projects to S2 = R2/R onto a
pairwise essential curve, which we call linear or straight . Conversely, any pairwise
essential curve is pairwise isotopic to such a linear curve. We let the reader devise
a proof (compare the proof of Proposition 1.3). The (well-defined) corresponding
slope is called the slope of the curve considered.

Note that disjoint closed curves with the same slope are parallel, separated by
an annulus avoiding P 0.

More generally, the slant of a system C of several disjoint pairwise essential
closed curves in (S2, P 0) is the pair (p, q) in Z2/± (= pairs up to sign), where q

p

in Q∪∞ is the slope of these parallel curves and the greatest common divisor of p
and q is the number of components of C.

For another interpretation of p and q, assume that the intersection of C with
S2 ∩ (R2×{0}) (namely with the boundary of the “square”) cannot be reduced by
any pairwise isotopy; then the intersection of C with a “vertical” or “horizontal”
side of the square consists respectively of |p| and |q| points. Figure 8.7 gives some
examples.

These definitions extend in the obvious way to a system of curves on the bound-
ary of a tangle.

(3, 0) (2, 4) (4,−3)slant =

Figure 8.7.

Note that the reflection ρ through the xy–plane sends slant (p, q) to slant
(p,−q) = (−p, q) ∈ Z2/±.

The simplest tangles are probably those for which the underlying pair consists
of two unknotted and unlinked arcs in a ball, as in Figure 8.8(a). These are rational
tangles, in Conway’s terminology. In such a pair, there exists a disc D which is not
pairwise boundary parallel, shown in Figure 8.8(a), and an easily proved fact is
that D is unique up to pairwise isotopy (see also Theorem 8.3). The slant (α, β) in

Z2/± of ∂D, or equivalently its slope β
α in Q ∪∞, is called the type or slope of

the rational tangle. For example, the type of the rational tangle of Figure 8.8(b)
is (12, 5). (Unknot the strings, or compare §1.2.) Conversely, it follows from the
uniqueness of D that a rational tangle is classified up to equivalence by its type.

Observe that this definition of the slope of a rational tangle is entirely compat-
ible with the definition of the slope of a rational tangle projection given in §1.2.

After this bulky preamble concerning tangles, we are more than ready to study
Montesinos pairs and tangles, the natural building blocks of the arborescent part
of a knot.
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D

(a) (b)
Figure 8.8.

8.2. Surfaces in hollow Montesinos pairs

A hollow Montesinos tangle is one isomorphic to a tangle represented di-
agramatically in Figure 8.9; this figure gives one model or standard tangle for
each number (> 0) of boundary components.

Figure 8.9.

Figure 8.10.

A model Montesinos tangle is one constructed from a model hollow Mon-
tesinos tangle of Figure 8.9 by plugging in some rational tangles, as defined in §8.1,
and some so-called ring tangles shown in Figure 8.10. A Montesinos pair is a
knot pair isomorphic to the underlying pair of a model Montesinos tangle. Simi-
larly, a Montesinos tangle (no epithet) is a tangle that admits an isomorphism
to a model Montesinos tangle; such an isomorphism is said to give a presentation
of the Montesinos tangle (or pair).

Observe that this definition of a Montesinos pair is slightly more general than
the one introduced in Chapter 3, inasmuch as it allows it to have several rings (=
the circles in the ring tangles of a presentation of the Montesinos pair).

Note that a presentation of a Montesinos pair offers, beyond a tangle structure,
some internal parametrised Conway 2–spheres, one for each tangle plugged into the
hollow tangle.

Two presentations of the same Montesinos pair are said to be equivalent if the
resulting inclusions of model hollow Montesinos pairs are the same up to pairwise
isotopy.

Recall that, when the contrary is not specified, we usually require that any
surface F in a knot pair (M,K) is properly embedded (namely F ∩ ∂M = ∂F )
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and meets K transversely. Since we are mainly dealing with the case where M is
the complement of disjoint balls in S3, this will compel F to be orientable by the
following fact.

Fact 8.1. Every properly embedded surface F in a 3–manifold M is orientable
provided H1(M,Z2) = 0.

Proof. To begin with, H1(M ;Z2) = 0 implies M is orientable. If F were
non-orientable, an orientation-reversing path γ in it could be deformed in M to
meet F transversely in one point, contradicting [γ] = 0 ∈ H1(M ;Z2). �

An important object in the model hollow Montesinos pair (M,K) shaded in
Figure 8.9 is the band in Figure 8.11(a) (it is intimately related to the plumbing
bands of Chapter 12). This band B admits an [0, 1]–fibration, compatible with
the boundary, for which K corresponds to the {0, 1}–fibration. We shall see in
Proposition 10.1 that, when ∂M has > 3 components, B is an invariant of the
pair (M,K) in the sense that it is characteristic, namely preserved up to pairwise
isotopy by every automorphism of (M,K).

(a) (b) (c)

B N

Figure 8.11.

In a model Montesinos pair (M,K) derived from a hollow Montesinos pair
(M0,K0), the band B is the union of the band B0 of (M0,K0) and, in any ring
tangle, of the square indicated in Figure 8.11(b). The necklace N is the union of
B with all of ∂M0 except the boundary of any ring tangle. Figure 8.11(c) gives an
example.

In a presented Montesinos pair, the band and necklace come via the given
isomorphism with a model Montesinos pair.

To study the structure of Montesinos pairs, a first step is to find, up to pairwise
isotopy, all the surfaces which cannot be “simplified” in ways we now explain.

In Chapter 3, we defined what it means for a surface F in a knot pair (M,K)
to be pairwise incompressible. Now we define pairwise boundary-incompressibility
(∂–incompressibility).

A ∂–compression disc D for F in a knot pair (M,K) is a 2–disc in M −K
such that ∂D = D ∩ (F ∪ ∂M) and ∂D consists of an arc ∂+D in F and an arc
∂−D in ∂M . This disc D is called futile if there exists a 2–disc D′ in F −K such
that ∂D′ consists of the arc ∂+D and of an arc in∂M .

The same definition applies to a boundary surface F if we replace ∂M above
by ∂M − int(F ).

A connected surface F in a knot pair (M,K) is pairwise boundary parallel
(∂–parallel) if for some closed-up componentM0 ofM−F , there is an isomorphism
F × [0, 1] → M0 sending F × 0 to F and (F ∩K) × [0, 1] onto K ∩M0. In other
words, F is pairwise boundary parallel when it is obtained from a boundary surface
F ′ ⊂ ∂M by “pushing” int(F ′) inside M .

A surface (or boundary surface) F in a knot pair (M,K) is pairwise ∂–
incompressible if



92 8. SURFACES IN MONTESINOS PAIRS

(1) Every pairwise ∂–compression disc for F in (M,K) is futile.
(2) No component of F is a 2–disc meeting K in 6 1 point and pairwise

∂–parallel.

∂–incompressibility is a technical notion that has little independent significance
for us in view of a lemma (Lemma 8.19, proved where first needed, towards the end
of this chapter) which establishes :

Fact 8.2. Let (M,K) be a pairwise irreducible knot pair, each of whose bound-
ary components is a Conway 2–sphere. If F is a pairwise incompressible surface in
(M,K) with no component pairwise ∂–parallel, then F is ∂–incompressible.

A surface (or boundary surface) F in a knot pair (M,K) is pairwise essential
if it is both pairwise incompressible and pairwise ∂–incompressible.

Figure 8.12.

Figure 8.13.

Figure 8.14.
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In a hollow Montesinos pair (M,K), there are two classes of surfaces which
seem to be pairwise essential, called vertical and horizontal. The components of
a vertical surface are annuli, Conway spheres and Conway discs of the type
described respectively in Figures 8.12, 8.13, and 8.14. As a reminder of the termi-
nology, remark that the slants of the boundary of a vertical surface are all of type
(0, q), and that its intersection with the band B is vertical for the [0, 1]–fibration of
B. Note that some vertical Conway spheres are pairwise parallel to the boundary.

The horizontal surfaces are less easy to see. To construct a typical one,
begin with a surface F0 consisting of p parallel disjoint copies of the horizontal
sphere with holes Σ of Figure 8.15.

Σ

K
A

Figure 8.15.

Choose a regular neighbourhood of the band B (respecting F0); its frontier in
M is made up of disjoint vertical annuli. Near each such annulus A we permit a
modification of F0 by a fractional twist as follows.

Let U ∼= S1 × [0, 1] × [0, 1] be a collar neighbourhood of A (with A = S1 ×
1
2 × [0, 1]) in M , respecting F0 and ∂M . Erase F0 ∩U and replace it by α(F0 ∩U)
where α, as indicated in Figure 8.16, is an automorphism of U respecting (not fixing)
U ∩∂M and (δU)∩F0. (Here δ indicates the topological frontier in M). This α can
be a product with the identity on the second [0, 1]–factor of U above; its activity
on the other two (forming an annulus) is a twist as represented in Figure 8.16.

K

F0

U

B

A

F1

α(F0 ∩ U)

Figure 8.16.

We can explain the terminology by indicating that, as we will see in the Ap-

pendix, the double branched covering M̂ of a Montesinos pair (M,K) admits a
Seifert fibration. A vertical surface in (M,K) can be pairwise isotoped so that its

preimage in M̂ is a union of fibres, whereas, after pairwise isotopy, the preimage of
a horizontal surface is everywhere transverse to the fibre. See also [BonS1].
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We can now classify all the essential surfaces in hollow Montesinos pairs.

Theorem 8.3. Consider the model hollow Montesinos tangle (M,K) with k > 1
boundary components. Then:

(1) Every pairwise essential surface F in the pair (M,K) is pairwise isotopic
to a vertical surface, or to a horizontal surface as defined above.

(2) For a horizontal surface, there exist numbers p, q1, . . . , qk ∈ Z with∑k
i=1 qi = 0 such that the slant of ∂F on the i-th boundary component is

(p, qi).
(3) Conversely, every horizontal or vertical surface is pairwise essential and

every set of numbers p, q1, . . . , qk with the above condition defines a
horizontal surface unique up to pairwise isotopy.

Corollary 8.4. A hollow Montesinos pair with non-empty boundary is pair-
wise irreducible, and it is pairwise ∂–irreducible as soon as it has at least two
boundary components. �

Remark 8.5. The hollow Montesinos pair (M,K) with empty boundary, con-
sisting of M = S3 and of two unknotted unlinked circles K, is exceptional in that
it is not pairwise irreducible.

Proof of Theorem 8.3. Let F be a pairwise essential surface in (M,K).
Assume for the while that ∂F is pairwise essential in (∂M, ∂K); we shall show in
the course of the proof that (M,K) is pairwise irreducible, and deduce at the end
that this assumption always holds.

B B B

Figure 8.17.

Consider the band B in (M,K), namely the union of the squares represented
on Figure 8.17. After a pairwise isotopy, we may assume that the intersection of B
and F is transverse and that its number of components cannot be reduced by any
pairwise isotopy of F .

Claim 8.6. In B, the components of B ∩ F are of the types (a) and (b) of
Figure 8.18.

Proof of Claim 8.6. We need to prove that the types (c), (d), (e) and (f)
are excluded by the above assumptions.

If one component of B∩F is of type (c), it bounds in B a disc D whose interior
can be assumed, without loss of generality, disjoint from F . Since F is pairwise
incompressible, ∂D bounds in F a disc D′ which does not meet K. Lemma 8.7
below shows that the sphere D ∪D′ bounds a ball in M −K; so there would then
exist a pairwise isotopy of F which reduces its intersection with B, contradicting
our assumption; see Figure 8.19(c). We interrupt to give:
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(a) (b) (c)

(d) (e) (f)

D

D
D

D

Figure 8.18.

Lemma 8.7. The manifold M −K is irreducible.

Proof of Lemma 8.7. Embed M −K in S3. Each sphere in M −K bounds
a ball on each side in S3. The sphere does not meet the frontier K ∪∂M of M −K
in S3 (which is connected since k > 1). Hence one of the balls contains K ∪ ∂M
and the other lies in M −K. �

If one component of B ∩ F is of type (d), let D be the half disc of the picture.
Again, we can assume F ∩ int(D) empty. From two copies of D, we can now
construct a disc D′ which does not meet K and such that D′∩F = ∂D′. The curve
∂D′ bounds a disc D′′, disjoint from K, in the pairwise incompressible surface
F and the sphere D′ ∪ D′′ bounds a ball in the irreducible manifold M − K.
But this implies that a component of F is a pairwise compressible sphere as in
Figure 8.19(d)), which is excluded.

(c) (d)

(e) (f)

D′

F

D′

Figure 8.19.

If one component of B ∩ F is of type (e), let D be the disc shown on Fig-
ure 8.18(e). Since F is pairwise ∂–incompressible, there exists a disc D′ in F whose
boundary is the union of the arc F ∩∂D and of an arc D′∩∂M in ∂M . The interior
of D′ may intersect B; nevertheless there exists a disc D′′ in D′ such that ∂D′′ is
the union of the two arcs D′′ ∩ ∂M and D′′ ∩ B with disjoint interiors. Then the
arc D′′ ∩ ∂M joins one side of B ∩ ∂M to itself without meeting B anywhere else.
But this implies the existence of a pairwise isotopy of F near ∂M which reduces the
cardinality of B ∩ ∂F ; if this isotopy is followed by another one which eliminates
the closed components of B ∩ F as in Case (c), this process would decrease B ∩ F
and therefore contradict our assumptions.
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If one component of B∩F is of type (f), the same construction as for (d) reveals
a component D′ of F which is a disc meeting K in exactly one point. Since we
assumed ∂F was essential at the beginning of the proof of Theorem 8.3, ∂D′ bounds
a disc D′′ in ∂M which meets K in two points. But then, the sphere D′∪D′′ meets
K in 3 points, which is impossible by a counting argument.

This ends the proof of Claim 8.6. �

Next, consider the behaviour of F on a boundary component S of M . The
band B meets S in two intervals I1, I2 (drawn vertically in Figure 8.20 below).

Claim 8.8. Following along a circle of F ∩ S, one cuts I1 and I2 alternatively
(or one cuts neither).

Proof of Claim 8.8. Supposing this is not so, we will cut the same interval
Ii twice in a row. This could happen only in three ways illustrated in Figure 8.20(a),
(b), (c).

F

(a)

B ∩ ∂M

(b)

F

(c)

F

Figure 8.20.

In view of Claim 8.6, Case (a) would allow a reduction of the number of com-
ponents of F ∩B by a pairwise isotopy of (M,K).

Case (b) is excluded since ∂F was assumed to be pairwise essential in (∂M, ∂K).
Case (c) implies the occurrence of Case (a), indeed for the same arc Ii ⊂

S ∩B. �

Claims 8.6 and 8.8 reveal that, if one square of B contains p horizontal arcs of
F ∩ B (as in Figure 8.18(b)), then so does every other square. Consequently, at
each boundary component of ∂M , the slope of ∂F is of the form (p, qi). Here p = 0
is admissible; in this case the squares of B may have varying numbers of vertical
arcs of B ∩ F .

K

∂F̂ B̂

B̂

B̂ B̂

B̂

Figure 8.21.
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Let M̂ be the manifold obtained by cuttingM open along B−K and let F̂ ⊂ M̂

be the surface corresponding to F . The manifold M̂ is a solid torus, and the band

B lifts to a union B̂ of disjoint longitudinal annuli.

Claim 8.9. The surface F̂ is incompressible in M̂ .

Proof of Claim 8.9. If C is a curve in F̂ which is null-homotopic in M , the
pairwise incompressibility of F implies that C bounds in F a disc D which does
not meet K. The disc D cannot meet B since no component of B ∩F is closed and

∂(B ∩ F ) = (∂B ∩ ∂F ) ∪ (F ∩K). Therefore, D is contained in M̂ . �

By [Wal2, Lemma 2.3], every component of F̂ is therefore a meridian disc, a

boundary parallel disc or a boundary parallel annulus in the solid torus M̂ .

Claim 8.10. Every component of F̂ is, either a meridian disc, or an annulus

whose boundary components are parallel to the circles ∂B̂.

Proof of Claim 8.10. If a component of F̂ was a boundary parallel disc D,

its boundary ∂D could not meet ∂B̂ since, by Claims 8.6 and 8.8, no closed-up

component of ∂F̂ − ∂B̂ joins a component of ∂B̂ to itself.) Nor could ∂D be in B̂

(as every component of B∩F is vertical or horizontal), nor could ∂D be in ∂M̂− B̂
(as ∂F is pairwise essential in (∂M, ∂K)).

If a component of F̂ is a boundary parallel annulus which meets ∂B̂, it admits

a ∂–compression disc D such that J = D ∩ ∂M̂ is an arc in ∂M̂ − B̂ ⊂ ∂M and

joins two different components of ∂F̂ . The disc D cannot be an effective pairwise
∂–compression disc for F in (M,K), as F is pairwise ∂–incompressible; there exists
therefore a disc D′ in F such that ∂D′ is the union of D ∩ F and D′ ∩ ∂M , and
D′ ∩K is empty. Then D′ ∩ B consists of arcs with boundary in ∂D′; and there
consequently exists an arc in D′ ∩ ∂M that joins the two ends of a component

of B ∩ F and whose interior is disjoint from B. But this would give an arc in ∂F̂

joining a component of ∂B̂ to itself and meeting ∂B̂ nowhere else, which is excluded
by Claims 8.6 and 8.8. �

When the components of F̂ are annuli whose boundary does not meet ∂B̂, F
is clearly vertical (after pairwise isotopy).

When the components of F̂ are meridian discs, ∂F̂ can be described in the

following way: Its intersection with each component of ∂B̂ consists of 2p horizontal
arcs, p of them in each half determined by the inverse image of K; without loss of
generality, these 2p arcs may be assumed to be in a standard position which is fixed

in advance. The intersection of ∂F̂ with the inverse image of a component of ∂M
consists of 2p arcs wrapping qi

2p times around the axis of this annulus, where (p, qi)

is the slant of ∂F on the considered component of ∂M . Since ∂F̂ is null-homotopic

in M̂ (∂F̂ is a meridian of the solid torus M̂), it follows that
∑k
i=1 qi = 0. Note

that the slopes characterise F up to pairwise isotopy, and that, conversely, every
set of slopes of the above type defines such a surface. Besides, it is easy to see that
F is horizontal (after pairwise isotopy).

Recall that we assumed, at the beginning of the proof, that ∂F was pairwise
essential in (∂M, ∂K). But the above study implies that (M,K) is pairwise ir-
reducible as soon as ∂M 6= ∅, and a straightforward argument shows that every
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pairwise incompressible surface in a pairwise irreducible knot pair has pairwise
essential boundary. This hypothesis therefore turns out to be unnecessary.

To complete the proof of Theorem 8.3, we need to prove that vertical and
horizontal surfaces in (M,K) are all pairwise essential.

A vertical surface F splits (M,K) into two hollow Montesinos pairs (M1,K1)
and (M2,K2), each with an obvious presentation. Moreover, each (Mi,Ki) has
> 2 boundary components, unless F is an annulus joining two adjacent boundary
components of (M,K). Also, ∂F has only infinite slope(s) in (∂Mi, ∂Ki).

A pairwise (∂–)compression disc D for F is also a properly embedded surface
in one of the (Mi,Ki)’s, say (M1,K1). From what we have just proved, it then
follows that either D is pairwise isotopic in (M1,K1) to a vertical or horizontal
surface, or D is pairwise inessential in (M1,K1); in this last case, D is necessarily
pairwise boundary parallel (it clearly admits no effective (∂–)compression disc).

Every vertical disc in (M1,K1) meets K1 in 2 points. Thus D cannot be
pairwise isotopic to a vertical surface.

If D is pairwise isotopic to a horizontal surface in (M1,K1), then (M1,K1) is
a rational tangle of slope 0, and F was an annulus contained in ∂M1. Also, ∂D
and ∂F have different slopes in (∂M1, ∂K1); indeed one is zero and the other one
infinite. Consequently ∂D meets each of the two components of ∂F in > 2 points,
which is incompatible with D being a (∂–)compression disc.

Therefore, D is pairwise parallel to a disc D′ ⊂ ∂M1 such that ∂D = ∂D′ and
cutting K1 in as many points as D. By considering D′ ∩ F , it follows easily that
D is futile.

This completes the proof that a vertical surface in a hollow Montesinos pair is
pairwise essential.

If F is horizontal, it splits M into a manifold M̃ naturally constructed from
a linear [0, 1]–bundle F ′×̃[0, 1], with orientable total space and base a possibly
non-orientable surface F ′, by taking a 1–submanifold J of ∂F ′ and making the
folding identification on J × [0, 1] ⊂ F ′×̃[0, 1] that glues (x, t) to (x, 1 − t) for

(x, t) ∈ [0, 1]× [0, 1]; the string K corresponds to J× 1
2 . The part F

′′ of ∂M̃ arising

from F is the quotient of the {0, 1}–bundle F ′×̃{0, 1} ⊂ F ′×̃[0, 1]; it clearly consists
of two copies of F (recall F is orientable). The following lemma shows that F is
pairwise essential in (M,K), and therefore completes the proof of Theorem 8.3. �

Lemma 8.11. In the above manifold M̃ , the boundary surface F̃ is pairwise

incompressible and ∂–incompressible in (M̃, J × 1
2 ).

Proof. We resort to a covering trick. The manifold M̃ admits a 2–fold cover-
ing branched along K = J × 1

2 , namely the double D(F ′×̃[0, 1]) of F ′×̃[0, 1] along
J × [0, 1], where the covering translation is the antipodal map on the interval fibres
composed with the reflection in J × [0, 1] exchanging the halves of the double.

Consider a pairwise compression or ∂–compression disc D for F ′′ in (M̃,K) =

(M̃, J × 1
2 ). Its preimage D̂ in D(F ′×̃[0, 1]) ∼= (DF ′)×̃[0, 1] consists of one or

two pairwise compression or ∂–compression discs for (DF ′)×̃[0, 1] (one if D meets
K). But, since the maps π1

(
(DF ′)×̃{0, 1}

)
→ π1

(
(DF ′)×̃[0, 1]

)
and π1

(
(DF ′) ×

{0, 1}, (∂DF ′)×̃{0, 1}
)
→ π1

(
(DF ′)×̃[0, 1], (∂DF ′)×̃[0, 1]

)
are injective for every

choice of base points, all such (∂–)compression discs are futile. In particular, it is

then a homological absurdity for D̂ to meet K = J × 1
2 ⊂ D(F ×̃[0, 1]).
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Thus D̂ consists of two discs disjoint from K, each futile; it follows easily that
D is futile. �

8.3. Surfaces in general Montesinos pairs

Extending Theorem 8.3 we now study pairwise essential surfaces in any Mon-
tesinos tangle.

Consider a model Montesinos tangle (M,K) obtained by plugging rational tan-
gles and ring tangles into a hollow Montesinos tangle (M0,K0). A surface F in
(M,K) is called horizontal if its intersection with M0 is horizontal in the hollow
Montesinos pair (M0,K0), as defined in §8.2, while F meets each rational tangle in
(> 0) parallel discs avoiding K as in Figure 8.22(a), and F meets each ring tangle
in (> 0) parallel discs as in Figure 8.22(b). On the other hand, F is called vertical
if F ∩M0 is vertical in (M0,K0) as defined in §8.2 while F meets each rational
tangle in discs avoiding K and F meets each ring tangle in parallel annuli as in
Figure 8.22(c); we also require for vertical surfaces that no component of F ∩M0

be pairwise parallel in (M0,K0) to the boundary of a rational tangle of (M,K).

(a) (b) (c)

Figure 8.22.

Note that there cannot exist any horizontal surface if (M,K) contains a rational
tangle of slope ∞, and that a vertical surface is necessarily disjoint from every
rational tangle of finite slope.

Similar definitions apply to presented Montesinos pairs using the given isomor-
phism with a model pair.

Clearly vertical surfaces are made up of Conway spheres, Conway discs, annuli
disjoint from K and tori disjoint from K; tori occur precisely if there are > 2 ring
tangles.

Ordering arbitrarily, label the boundary components of (M,K) by i = 1, . . . ,
d, the rational tangles by j = 1, . . . , t and the ring tangles by k = 1, . . . , r.

Write (Mj ,Kj) for the j–th rational tangle and
βj

αj
or (αj , βj) for its type, with the

convention that αj > 0.

Proposition 8.12. Consider any model (or presented) Montesinos pair (M,K),
with the terminology introduced above.

(a) The non-empty horizontal surfaces, viewed up to pairwise isotopy, corre-
spond bijectively to sequences of d + 1 integers p, q1, . . . , qd with p > 0

satisfying the conditions that
∑d

i=1
qi
p =

∑t
j=1

βj

αj
and that αj divides p

for every j = 1, . . . , t (so none exist if some αj = 0). These d + 1 in-
tegers corresponding to a horizontal surface F are determined by the two
following properties:
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(*) On the i–th boundary component of M , the slant of ∂F is (p, qi); the
integer p is thus the number of horizontal segments into which F cuts
any component of the band B of (M,K). This first property suffices
if d > 0.

(**) The slant of F on the boundary of the j–th rational tangle is (p, njβj)
where nj =

p
αj

.

(b) The number of components of a horizontal surface is the greatest common
divisor of the integers p, q1, . . . , qd introduced in (a). The components
of a horizontal surface are related by a series of pairwise parallelisms; in
particular two disjoint connected horizontal surfaces are pairwise parallel.

(c) If d = 0 (namely if ∂M = ∅), there is at most one connected non-empty
horizontal surface, up to pairwise isotopy; the condition for the existence

of one is
∑t
j=1

βj

αj
= 0. If d = 1, there is exactly one such surface. In

these two cases, the integer p is the least common multiple of α1, . . . , αt.
If d > 1, there are infinitely many connected horizontal surfaces.

Proof of Proposition 8.12(a). Given integers p, q1, . . . , qd as described in
(a), our Theorem 8.3 applied to the hollow tangle (M0,K0) assures the existence of
a surface F determining these numbers; recall that the slope of F on the boundary
component ofM0 at the i–th rational tangle is − βi

αi
, and that it is 0 at a ring tangle.

To complete the proof of (a), we must satisfy ourselves that two horizontal
surfaces F and F ′, presented in the standard manner and corresponding to distinct
integer vectors p, q1, . . . , qd and p′, q′1, . . . , q

′
d are not pairwise isotopic in M .

This is obvious when ∂M 6= ∅ (namely when d > 0) because ∂F and ∂F ′ are not
pairwise isotopic in (∂M, ∂K). On the other hand, if ∂M = ∅, something stronger
will be proved by (c), to which we defer. �

Proof of Proposition 8.12(b) and (c). The greater common divisor δ of
the numbers p, q1, . . . , qd is easily seen to be the number of components of the
intersection of the corresponding horizontal surface F with the necklace N . But
π0(F ∩N) ∼= π0(F ) by inclusion, which proves the first part of (b). For the second
assertion in (b), note that the numbers p, q1, . . . , qd are also associated to the
horizontal surface obtained by taking δ parallel copies of the horizontal surface
corresponding to p

δ ,
q1
δ , . . . ,

qd
δ .

Property (c) is an easy consequence of (b). �

Proposition 8.13. With the data of Proposition 8.12(a), the Euler character-
istic χ(F ) of a horizontal surface F in a model Montesinos pair (M,K) is given
by

χ(F ) = 2p− (d+ t)p+

t∑

j=1

nj = p
(
2− d−

t∑

j=1

(
1− 1

αj

))
.

As a consequence,

(i) A horizontal surface is a 2–sphere precisely if d = 0 and either 0 or 2 of
the rational tangles have non-integral slopes.

(ii) A horizontal surface is a 2–disc precisely if d = 1 and at most one slope
is non-integral.

(iii) A horizontal surface is an annulus if and only if, either d = 2 and every
rational tangle has integral slope, or d = 1 and exactly two rational tangles
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have slopes congruent to 1
2 modulo 1, while all other rational tangles have

integral slope.

Proof. Splitting F along the necklace we see that F can be reconstructed from
2p discs by making (d+ t)p pairwise identifications of arcs on the disc boundaries,

then attaching to this the
∑t

j=1 nj discs in the rational tangles. This leads to the
Euler characteristic formula.

If we have a horizontal 2–sphere F then

2 = χ(F ) = p
(
2−

t∑

1

(
1− 1

αj

))

where, by Proposition 8.12(c), the integer p is the least common multiple of α1,
. . . , αt. Clearly no more than three αj can be > 2. Then a case-by-case analysis

using
∑t
j=1

βj

αj
= 0 yields only the solution advertised. Note that the non-integral

slopes must be of the form β
α and − β

α modulo the integers.
If we have a horizontal disc F , the formula yields

1 = χ(F ) = p
(
1−

t∑

j=1

(
1− 1

αj

)]
.

Clearly no more than one αj can be > 2.
For a horizontal annulus F ,

0 = χ(F ) = p
(
2− d−

t∑

j=1

(
1− 1

αj

)]
.

with d > 0. The only possibilities are those indicated. �

We continue to deal with a presented Montesinos pair (M,K) with d boundary
components, constructed by plugging t rational tangles and r ring tangles into the
hollow Montesinos pair (M0,K0). To classify vertical surfaces in (M,K), it is useful
to consider the connected horizontal surface Σ0 in (M0,K0) with slope 0 on each
boundary component. It is a sphere with d+ t+ r punctures, shown in Figure 8.15.
Choose a reflection τ of Σ0 through its 1–submanifold B0 ∩ Σ0, as in Figure 8.23.

This symmetry under τ lets us in effect look at F in just half of Σ0.

τ
k = F ∩ Σ0

Σ0 ∩B0

Σ0

Figure 8.23.

Proposition 8.14.
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(a) For the above data, the rule F 7→ F ∩ Σ0 defines a one-to-one correspon-
dence between, on the one hand, the vertical surfaces in (M,K) consid-
ered up to isotopy respecting M0 and, on the other hand, those essential
1–submanifolds k of Σ0, defined modulo isotopy respecting the segments
Σ0 ∩ B0, that enjoy the following properties: k is preserved by τ up to
isotopy respecting Σ0 ∩ B0; it meets Σ0 ∩ B0 transversely; for each com-
ponent C of ∂Σ0 in a rational tangle of finite slope, k ∩ C = ∅ and no
component of k is parallel to C ; the number of intersection points of ∂k
with any ring tangle is a multiple of 4.

(b) If no rational tangle has infinite or integral slope, then two vertical surfaces
F and F ′ are pairwise isotopic (if and) only if they are pairwise isotopic
respecting M0.

(c) Up to pairwise isotopy respecting M0, there are finitely many connected
vertical surfaces precisely if there is 6 1 ring tangle.

(d) A vertical surface cannot be pairwise isotopic to a horizontal surface.

Note that, in (a), the condition that k is preserved by τ up to isotopy respecting
Σ0 ∩B0 is independent of the choice of τ .

Proof of Proposition 8.14(a). Giving a vertical surface F up to pairwise
isotopy respecting M0 is readily seen to be equivalent to giving F0 = F ∩M0 up to
pairwise isotopy in (M0,K0).

If k is an essential 1–submanifold of Σ0 with the announced properties, its
isotopy class respecting B0 ∩Σ0 is determined by giving the intersection of each of
its components with (B0 ∩Σ0) ∪ ∂Σ0.

In case k is F0 ∩Σ0, this k is therefore characterised by giving the intersection
of each component of F0 with K0 ∪ ∂M0. Consequently, when two vertical surfaces
F , F ′ are pairwise isotopic respecting M0, the associated 1–submanifolds k, k′ are
equivalent as announced in (a).

Conversely, if F ∩ Σ0 are isotopic respecting B0 ∩ Σ0, it is clear from the
definition of vertical surfaces that F0 and F ′

0 are pairwise isotopic in (M0,K0).
Indeed F0 ∩ (B0 ∪ ∂M0) is easily recovered from F0 ∩ Σ0, and each component of
F0 is obtained by making suitable gluings of two discs along F0 ∩ (B0 ∪ Σ0).

Lastly, it is easy to check that every 1–submanifold of Σ0 with the required
properties is the intersection of Σ0 with a vertical surface (use the above recon-
struction of F0 from F ∩ Σ0). �

Proof of Proposition 8.14(b). Our proof of (b) anticipates later results
in this section (namely Theorem 8.15 and Corollary 8.18); in principle, this re-
sult should be delayed. However, here is our proof. (One can alternatively use
fundamental groups.)

It is convenient to consider, in the union Mρ of M0 and of all the ring tangles,
the horizontal surface Σρ that is the union of Σ0 and of the discs of Figure 8.22(b).
The reflection τ of Σ0 extends to a reflection of Σρ across the intersection of Σρ
with the band B of (M,K), which respects the 2s points K ∩ Σρ; we still denote
this reflection by τ .

For any vertical surface F in (M,K) the intersection F ∩Σρ is a 1–submanifold
which is pairwise essential in (Σρ,K ∩ Σρ), since F ∩ Σ0 was essential in Σ0. Also
F ∩ Σρ is preserved by τ up to isotopy respecting B ∩Σρ.
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Given two vertical surfaces F and F ′, an easy argument using blisters and
the 2–dimensional version of Proposition 5.23 shows that, in the surface Σρ, the
1–submanifolds F ∩ Σρ and F ′ ∩ Σρ are pairwise isotopic respecting (B ∪K) ∩ Σρ
precisely if, in Σ0, the 1–submanifolds F ∩ Σ0 and F ′ ∩ Σ0 are isotopic respecting
B ∩ Σ0. By Proposition 8.14(a) the vertical surface F is therefore classified, up to
isotopy respecting M0, by F ∩ Σρ modulo isotopy respecting B ∩ Σρ and K ∩ Σρ.

Consider now two vertical surfaces F and F ′ such that F ∩Σρ and F ′ ∩Σρ are
not pairwise isotopic respecting B ∩Σρ and K ∩Σρ. To prove (b), we need to show
that F and F ′ cannot be isotopic.

After a pairwise isotopy of F respecting Mρ and keeping F vertical, we may
assume that there is no 2–dimensional pairwise blister between F ∩Σρ and F ′ ∩Σρ
in (Σρ,K ∩Σρ), namely no closed-up component of Σρ − F ∪ F

′ that is a pairwise
parallelism between a part of F ∩ Σρ and a part of F ′ ∩ Σρ. This would be false
with Σ0 in place of Σρ.

If F and F ′ were pairwise isotopic in (M,K), a closed-up component ofM−F∪
F ′ would be a pairwise blister; here in order to apply Proposition 5.23, we need the
fact that every vertical surface is pairwise essential which, under the hypotheses of
(b), will be proved in Theorem 8.15. But, reconstructing any closed-up component
P of M −F ∪F ′ from closed-up component(s) of Σρ−F ∪F

′, one readily sees that
one of the following holds:

(1) P is a solid torus and, either it contains a ring in its interior, or P ∩ F
consists of at least two annuli (remember the absence of blisters between
F ∩Σρ and F ′ ∩Σρ).

(2) (P,K ∩ P ) is a Montesinos pair, naturally presented, so that the rational
tangles in (P,K ∩P ) have the same type as in (M,K); moreover ∂F , ∂F ′

and F ∩ F ′ have infinite slope on the boundary.

Assume, in search of a contradiction, that P is a pairwise blister between F
and F ′. Then, (P,K ∩ P ) certainly contains no ring; also F ∩ ∂P and F ∩ ∂P ′ are
connected. This shows that P cannot be of type (1), whence P must be of type
(2).

Now we know that the blister (P,K ∩P ) satisfies (2). Since it is a Montesinos
pair, F ∩ P can only be a Conway sphere or a Conway disc.

If F ∩ P is a Conway sphere, the knot pair (P,K ∩ P ) contains many essential
annuli (namely curves in F ∩ P crossed with [0, 1]) and has two boundary compo-
nents. Then, by Theorem 8.15 and Proposition 8.13, the natural presentation of
(P,K ∩ P ) is hollow with two boundary components. Hence the horizontal surface
P ∩ Σρ would be a 2–dimensional blister (an annulus) in (Σρ,K ∩ Σρ) between
F ∩ Σρ and F ′ ∩ Σρ, a contradiction.

If F ∩ P is a Conway disk, then (P,K ∩ P ) contains a pairwise essential disk
D whose boundary meets ∂(F ∩ P ) in two points, so that the slope of ∂D is an
integer. Again, Theorem 8.15 and Proposition 8.13 imply that there is no rational
tangle in (P,K ∩ P ), and P ∩Σρ provides a 2–dimensional blister between F ∩Σρ
and F ′ ∩Σρ in (Σρ,K ∩ Σρ), which was excluded.

Therefore, no closed-up component P of M − F ∪ F ′ can be a pairwise blister
between F and F ′ in (M,K). By Proposition 5.23, it follows that F and F ′ are
not pairwise isotopic, which ends the proof of Proposition 8.14(b). �
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Proof of Proposition 8.14(c). Note that a vertical surface F is connected
precisely if F ∩Σ∗

ρ is connected, where Σρ is the surface defined in the proof of (b)
and where Σ∗

ρ is either one of the two closed-up components of Σρ−B. Now, (c) is an
easy consequence of the fact that F is classified, modulo isotopy respecting M0, by
F ∩Σ∗

ρ modulo isotopy respecting B ∩Σ∗
ρ; see the proof of Proposition 8.14(b). �

Proof of Proposition 8.14(d). Suppose that the vertical surface F 6= ∅ is
pairwise isotopic to a horizontal surface G. Clearly ∂G = ∅ = ∂F so ∂M = ∅.
Also as G exists there are no rational tangles of slope∞. Thus we are dealing with
a 2–torus disjoint from K or with a Conway sphere. Hence G meets rings and F
does not. This contradicts F and G being pairwise isotopic. �

We are now well advanced in the proof of the following conceptually simple
result, parallel to a celebrated one of Waldhausen for Seifert fibre spaces [Wal2].

Theorem 8.15.

(a) In a pairwise irreducible presented Montesinos (M,K), every pairwise es-
sential surface is pairwise isotopic to a vertical or horizontal one.

(b) Conversely, every horizontal surface is pairwise essential and, provided no
rational tangle has infinite type, so is every vertical surface.

When (M,K) is pairwise reducible, a somewhat similar statement holds for
essential spheres meeting the knot in 6 2 points, namely:

Theorem 8.16. In a presented Montesinos pair (M,K) suppose that there
exists a pairwise essential 2–sphere F meeting K in 6 2 points. Then there exists
a possibly different vertical or horizontal pairwise essential 2–sphere F ′ meeting K
in no more points than F .

Remark 8.17. In general, it is not possible to require in Theorem 8.16 that
F ′ be pairwise isotopic to F . For instance, Figure 8.24 provides an example of a
pairwise essential sphere Σ meeting the knot in 6 2 points which is not pairwise
isotopic to any vertical or horizontal surface.

Σ

Figure 8.24.

Combining Theorems 8.16 and 8.15(a) (which still require proof) with Propo-
sition 8.13 (already proved) and noting that, when every rational tangle has finite
slope, a vertical surface cannot be a sphere meeting K in 6 2 points, nor a disc
meeting K in 6 1 points, we get the following:

Corollary 8.18. Suppose that the presented Montesinos pair (M,K) is re-
stricted in the sense that no rational tangle is of integral or infinite type. Then
(M,K) is pairwise irreducible, unless it is one of the three (reducible) presented
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pairs of Figure 8.25. Also, ∂M is pairwise incompressible in (M,K) unless it is a
rational tangle pair, with the presentation d = 1, r = 0, t 6 1. �

Note that the pair of Figure 8.25(c) is pair isomorphic to that of Figure 8.25(a),
by untangling the strings.

(a) (b) (c)

β
α − β

α

Figure 8.25.

A partial converse for Corollary 8.18 will be provided by Proposition 8.20,
which in particular shows that every pairwise irreducible Montesinos pair admits a
presentation without any rational tangle of infinite slope.

Proof of Theorems 8.15(a) and 8.16. We prove Theorems 8.15(a) and 8.16
simultaneously. Consider a pairwise essential surface F in (M,K) such that one of
the following two conditions hold:

(i) either (M,K) is pairwise irreducible and the number of components of
F ∩ ∂M0 cannot be reduced by any pairwise isotopy of F (here we aim to
prove Theorem 8.15(a));

(i) or F is a sphere meeting K in 6 2 points, and there exists no pairwise
essential sphere F ′ such that #(F ′ ∩ K) 6 #(F ∩ K) and F ′ ∩ (K ∩
∂M0) has fewer components than F ∩ (K ∪ ∂M0) (here we aim to prove
Theorem 8.16).

In either case we propose to show that F can be pairwise isotoped respecting M0

to a vertical or horizontal surface. Clearly, this will prove Theorems 8.15(a) and
8.16.

Consider first the case where the presentation of (M,K) has no ring tangle.
If (Mj ,Kj), 1 6 j 6 t, denotes the j–th rational tangle, let Fj be F ∩ Mj for
0 6 j 6 t.

An easy argument shows that Fj is pairwise incompressible for every j > 0.
Indeed, in Case (i), an effective pairwise compression disk would provide a pairwise
isotopy of F reducing F ∩ ∂M0 (using the pairwise irreducibility of (M,K)). In
Case (ii), surgering F along an effective compression disc for Fj would provide two
spheres cutting K∪∂M0 in fewer components than F ; but, by Condition (ii), these
two spheres must be pairwise compressible and F would also be so, which would
contradict our hypotheses.

To make use of Theorem 8.3, we need the following result.

Lemma 8.19. Let (M,K) be a pairwise irreducible pair whose boundary consists
of Conway spheres and tori disjoint from K. Let F be a pairwise ∂–compressible
surface in (M,K). Then F is pairwise boundary parallel, and is either a Conway
disc or an annulus disjoint from K.

Proof of Lemma 8.19. Waldhausen proves the case where K = ∅ as [Wal2,
Lemma 2.11]. His argument also applies if there is an effective pairwise ∂–compression
disc D for F meeting a torus boundary component of M .
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Otherwise there exists such a D meeting a Conway sphere in ∂M . Then all the
possibilities for D∩∂M are exhausted in Figures 8.26, 8.27 and 8.28. (Observe that
∂F is pairwise essential in (∂M, ∂K), and therefore splits it into Conway spheres,
Conway discs and tori and annuli avoiding ∂K.) A straightforward argument, using
the pairwise incompressibility of F and the pairwise irreducibility of (M,K) then
shows that the cases of Figure 8.26 cannot occur at all, since otherwise the arc
D ∩ F would be pairwise inessential in F . In the cases of Figures 8.27 and 8.28,
F is respectively a pairwise boundary parallel Conway disc or annulus (see the
pictures). �

D

D ∩ F

∂F

∂M D

D ∩ F

∂F

∂M

Figure 8.26.

−→D D

F

Figure 8.27.

−→

D D
F

Figure 8.28.

Let us return to the proofs of Theorems 8.15(a) and 8.16. By Conditions (i)
and (ii), no component of Fj can be pairwise boundary parallel in (Mj ,Kj) and,
by Lemma 8.19, Fj is consequently pairwise essential in the hollow (presented)
Montesinos pair (Mj ,Kj), for 0 6 j 6 t. The isotopy of F to a vertical or horizontal
surface is now obtained by applying Theorem 8.3 to each Fj .

This proves Theorems 8.15(a) and 8.16 when (M,K) contains no ring tangle.
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Now suppose the presentation of (M,K) has a ring tangle. Note that the ring
pair is also the Montesinos pair obtained by plugging two rational tangles of types
(2, 1) and (2,−1) in the hollow Montesinos tangle with three boundary components;
to see this, just rotate the picture by 90◦ as in Figure 8.29. Thus the analysis of the
previous case shows that the ring tangle is pairwise irreducible, and that pairwise
essential surfaces in it are, either pairwise boundary parallel, or vertical or horizon-
tal for the presentation of Figure 8.29(c). For this new presentation, there is exactly
one vertical surface, which is the Conway disk of Figure 8.22(b), and one horizon-
tal surface, which is the annulus of Figure 8.22(c) (compare Propositions 8.12 and
8.13(iii)).

(a) (b) (c)

− 1
2

1
2

Figure 8.29.

The same argument as in the previous case, using Lemma 8.19, the above
result on ring tangles, and Theorems 8.15(a) applied to the complement of the ring
tangles, now provides a pairwise isotopy respecting M0 from F to a vertical or
horizontal surface.

This ends the proof of Theorems 8.15(a) and 8.16. �

Proof of Theorem 8.15(b). Every horizontal surface splits (M,K) into two
pieces, each of them containing an entire component of K in its interior. It follows
that every horizontal surface which is a sphere meeting K in 6 2 points is pairwise
essential.

Now consider a connected horizontal surface F that is not such a sphere. The
above considerations on the closed-up components of M − F show that F is not
pairwise boundary parallel. Therefore, by Lemma 8.19, we just need to prove that
F is pairwise incompressible.

When no ring tangle was plugged into (M,K), the proof that F is pairwise
essential is verbatim the same as for a hollow Montesinos pair in Theorem 8.3.

Otherwise, let (Mi,Ki), t+ 1 6 i 6 t+ r, denote the ring tangles (r > 1), and
consider the union

(M ′,K ′) = (M,K)−

t+r⋃

i=t+1

int(Mi,Ki)

of (M0,K0) and of the rational tangles. We have shown that F ∩M ′ is pairwise
essential in (M ′,K ′). Also by Theorem 8.15(a), the surface F ∩ Mi is pairwise
essential in (Mi,Ki), for t+ 1 6 i 6 t+ r.

If D is a pairwise compression disc for F , it can be pairwise isotoped until
∂D is completely contained in M ′ or in a ring tangle; for this, use the pairwise
∂–incompressibility of F ∩M ′ and of F ∩Mi in (M ′,K ′) and (Mi,Ki). Now, D

meets
⋃t+r
i=t+1 ∂Mi only in its interior (and meets it transversely).
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Let D′ be a disc that is an innermost closed-up component of D−
⋃
i ∂Mi. As-

sume for instance that D′ ⊂M ′. Then ∂D′ is not pairwise essential in (∂M ′, ∂K ′):
Otherwise, since it is disjoint from F ∩ ∂M ′, it would be pairwise isotopic to one
of its components. Then, by pairwise incompressibility of F ∩M ′ in (M ′,K ′), a
component of F ∩M ′ would be a disc avoiding F ′. But F would then be a sphere
meeting K in 2 points, which has been excluded. Since ∂D′ is pairwise inessential
in (∂M ′, ∂K ′), it is now possible to find a new pairwise compression disc D1 for F ,
with ∂D1 = ∂D, that meets

⋃
i ∂Mi in less components that D. A similar argument

holds if D′ ⊂Mi.
By the above argument, we may henceforth assume that D is completely con-

tained in M ′ or in one Mi. By pairwise incompressibility of F ∩M ′ and F ∩Mi in
(M ′,K ′) and (Mi,Ki), it follows that D is futile.

This ends the proof that a horizontal surface in (M,K) is pairwise essential.
Now, we want to show that, when no rational tangle has infinite or integral

slope, every vertical surface is pairwise essential.
Consider for instance a vertical annulus G (avoiding K). By construction,

each closed-up component of M − G is, either a solid torus meeting ∂M along
an annulus and containing at least one ring, or a naturally presented Montesinos
pair meeting ∂M in two Conway discs and such that ∂G has infinite slope on the
boundary. For homological reasons, an effective compression disc D for G could
only be contained in a closed-up component of M − G of the second type, where,
by Theorem 8.15(a), D can be chosen to be horizontal (since no rational tangle has
infinite slope). But this would contradict the fact that ∂D ∩ ∂G = ∅. Hence G is
pairwise incompressible.

As G is not pairwise boundary parallel, Lemma 8.19 proves that it is pairwise
essential.

The proof of essentiality is quite similar for vertical Conway spheres and discs.
For a vertical torus G′, it is slightly different: By construction, G′ bounds a solid
torus V in M , such that V ∩ K consists of > 2 rings. For homological reasons,
a pairwise compression disc D for G′ is contained in the closure of (M − V ) and
meets K in an even number of points (thus 0!). Were D effective, surgering G′

along D would provide a pairwise essential sphere avoiding K, which is excluded.
The vertical torus G′ is therefore pairwise incompressible. This completes the proof
of Theorem 8.15(b). �

In view of Corollary 8.18, it will often be convenient (see the next two sections)
to insist that any presentation used for a Montesinos pair (M,K) be restricted in
the sense that no rational tangle of infinite or integral slope appears.

We know by Corollary 8.18 that if (M,K) has restricted presentation, it is
almost always pairwise irreducible. Conversely,

Proposition 8.20. A pairwise irreducible presented Montesinos pair (M,K)
admits a new presentation that is restricted, unless it is the pair of Figure 8.30
presented with r > 2 rings and a rational tangle of integral slope q 6= 0.

Proof. For the given presentation of (M,K), there is necessarily 6 1 rational
tangle of slope ∞, by pairwise irreducibility.

Suppose there is one rational tangle of slope ∞. Then, there exists no ring

since any ring could slip free . By considering vertical 2–spheres (dotted
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r > 2 rings −q 6= 0 half-twists

Figure 8.30.

in Figure 8.31) cutting the knot in 2 points each, we see that (M,K) is just a
rational knot or a rational tangle pair, and as such, admits a presentation without
any rational tangle of infinite type.

Figure 8.31.

Now, the equivalences of Figures 8.32, 8.33, 8.34 and 8.35 easily show that any
presented Montesinos pair without rational tangle of infinite type admits a new
presentation where no rational tangle of infinite or integral type appear, unless it
is one of the exceptional presented pairs advertised. It may be useful to remember
the rational tangle relations of Proposition 1.3 and Figure 1.4, and the fact that a
rational tangle of integer slope m ∈ Z corresponds to a horizontal band with −m
right-handed half-twists. �

∂Mm

−m

∂M ∂M

Figure 8.32.

β
α

m

−m

β
α m+ β

α

Figure 8.33.

Theorem 8.21 below will play a crucial role in the following sections. In fact,
much of our analysis of pairwise essential surfaces in Montesinos pairs was necessary
(and designed) to prove it.
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m
−m −m

m
m+1

Figure 8.34.

m −m − 1
m − 1

2
1
2

Figure 8.35.

Theorem 8.21 (Verticalisation Theorem). In a pairwise irreducible Montesinos
pair (M,K), let F be a pairwise essential surface which consists of Conway spheres,
Conway discs, and annuli avoiding K. Then (M,K) admits a presentation as a
Montesinos pair for which F is vertical.

Proof. Choose an arbitrary presentation of (M,K). By Theorem 8.15, this
presentation can be modified by pairwise isotopy so that F is vertical or horizontal.

If F is vertical, the property is proved. Otherwise, the presentation of (M,K)
can be chosen to be restricted (since the exceptions of Proposition 8.20 contain no
horizontal surface).

Proposition 8.13 now lists all possibilities.
If F is a horizontal Conway sphere and (M,K) has two rings, then there are no

rational tangles and (M,K) is presented as in Figure 8.36(a). Rotating the picture
then provides another presentation with two rings and no rational tangles for which
F is vertical, as in Figure 8.36(b).

(a) (b)

F
F

Figure 8.36.

If F is a horizontal Conway sphere and there is only one ring, then (M,K) is
presented as in Figure 8.37(a) so that, using the relation of Figure 8.33, F is the
Conway sphere represented in Figure 8.37(b). Rotating the picture, (M,K) admits
a new presentation for which F is vertical, as in Figure 8.37(c).
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(a) (b) (c)

F

Fβ
2 −β2

1
2 − 1

2

Figure 8.37.

If F is a horizontal Conway disk, (M,K) is presented as in Figure 8.38(a).
Rotating the picture as in Figure 8.29 provides a new presentation for which F is
vertical, as in Figure 8.38(a).

(a) (b)

F

F

1
2 − 1

2

Figure 8.38.

If F is a horizontal annulus disjoint fromK, there are two possibilities. The first
one is that the pair (M,K) is presented with two boundary components and no ring
tangles or rational tangles. The second possibility, using the move of Figure 8.32, is
that (M,K) is presented with one boundary component, no ring, and two rational
tangles of slope 1

2 .

In the first case, (M,K) is isomorphic to (S2, 4 points) × [0, 1] in such a way
that F corresponds to C × [0, 1] for some closed curve C. Modifying the presenta-
tion of (M,K) by an automorphism of (S2, 4 points)× [0, 1] that respects the two
factors, we can arrange that the curve C has infinite slope in the Conway sphere
(S2, 4 points), in which case the annulus F is now vertical, as in Figure 8.39.

F

Figure 8.39.

In the second case, after converting one slope 1
2 to − 1

2 by the move of Figure 8.32
and rotating the picture, (M,K) admits a presentation with one ring and no rational
tangle for which the annulus F is vertical. See Figure 8.40. �

In Chapter 3, we met Montesinos pairs as building blocks of the arborescent part
of a knot that is simple for Schubert. The following result tells which Montesinos
pairs actually occur there.
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(a) (b)

F1
2 − 1

2

Figure 8.40.

Proposition 8.22. A pairwise irreducible restricted Montesinos pair (M,K)
with rational tangles of types (αi, βi), i = 1, . . . , t, fails to be simple for Schubert
precisely if it has > 2 rings or all of the three following conditions hold:

(i) (M,K) has no ring and no boundary;
(ii) the set of the αi is one of the following: {2, 3, 6}, {2, 4, 4}, {3, 3, 3},
{2, 2, 2, 2};

(iii)
∑

i
βi

αi
= 0.

Proof. By Theorem 8.15, (M,K) is simple for Schubert if and only if it con-
tains no vertical and no horizontal torus. A vertical torus exists precisely when
(M,K) contains > 2 rings. By the Euler characteristic formula of Proposition 8.13,
one verifies that Conditions (i), (ii) and (iii) together are equivalent to the existence
of a horizontal torus. �

Exercise 8.23 (compare Chapter 12). Show that, up to degree ±1 isomor-
phism, the asserted exceptions to Proposition 8.22 constitute exactly 4 knots (and
links). Find their respective companionship trees, in the sense of §2.2.



CHAPTER 9

Splitting an arborescent pair into Montesinos pairs

A knot pair (M,K) is called arborescent (or algebraic in Conway’s sense) if
it is connected, if it can be split into elementary pairs (as defined in Chapter 3) by
cutting along a finite collection F of disjoint Conway spheres F1, . . . , Fn, and if M
embeds in S3 (or equivalently each Fi separates M).

Consider an arborescent pair (M,K) as above which is also pairwise irreducible.
For example, if we are given a knot (S3, L) that is simple for Schubert, then (M,K)
could be the arborescent part of (S3, L) singled out in Chapters 3 and 7.

By suppressing members from the family F in (M,K), we can derive a family
G of disjoint Conway spheres such that:

(i) Each closed-up componentN ofM−G gives a Montesinos pair (N,K∩N),
as defined in Chapter 8 (possibly with several rings).

(ii) If any component of G is suppressed, Property (i) fails.

This chapter is devoted to proving the following statement.

Theorem 9.1. Up to pairwise isotopy, G is characterised by Properties (i) and
(ii) alone.

Clearly, this theorem and Theorem 7.1 together prove Theorems 3.3 and 3.4,
concerning characteristic Conway spheres in a knot that is simple for Schubert.

Before starting the proof of Theorem 9.1, observe that G is necessarily pairwise
incompressible. Indeed, a closed-up component N ofM −G would otherwise give a
rational tangle pair (N,K∩N), by Corollary 8.18, and G−∂N would consequently
still satisfy Property (i), contradicting the Minimality Property (ii).

The proof of Theorem 9.1 will use the Verticalisation Theorem 8.21 at a crucial
point (see the Barrier Lemma 9.4). We shall also need the following two easy
lemmas on Montesinos pairs.

Lemma 9.2. Consider a knot pair (M,K) that is split by a Conway sphere F
into two Montesinos pairs (M1,K1) and (M2,K2). Suppose that for some presen-
tations of (M1,K1) and of (M2,K2) as Montesinos pairs, their bands B1 and B2

(see Chapter 8) coincide in F , so that B1 ∩ F = two arcs = B2 ∩ F . Then (M,K)
is a Montesinos pair with B1 ∪B2 as band. �

The proof is trivial.
We will say that two closed surfaces F , F ′ in a pairwise irreducible knot pair

(M,K) intersect minimally if their intersection is transverse and if there is no
obvious way of reducing F ∩ F ′ by a pairwise isotopy. That is, if:

(a) Each component of F ∩ F ′ is pairwise essential in F and F ′.
(b) There is no pairwise blister between F and F ′, in the sense of Proposi-

tion 5.23. In other words, when (M,K) and F ′ are split along F giving,

113
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say, (M̂, K̂) and F̂ ′ in it, then no component F̂ ′
1 of F̂

′ is pairwise boundary

parallel and has ∂F̂ ′
1 6= ∅.

Lemma 9.3 (Crossing Lemma). Let (M,K) be a restricted model Montesinos
pair with nonempty boundary, which contains a vertical Conway sphere F that is
not pairwise boundary parallel. Then, there exists another vertical Conway sphere
S in (M,K) that intersects F non-trivially and minimally.

Proof. This is a straightforward exercise using our cataloguing of vertical
surfaces in Proposition 8.14. Figure 9.1 attempts to illustrate an example. �

FF ′

Figure 9.1.

The most crucial step towards Theorem 9.1 is the

Lemma 9.4 (Barrier Lemma). With the data of Theorem 9.1, there does not
exist an incompressible Conway 2–sphere S in (M,K) that intersects G nontrivially
and minimally.

Proof of Lemma 9.4. Suppose such an S exists. By elimination, each closed-
up component of S −G is a Conway disc or an annulus disjoint from K.

Consider two closed-up components S1 and S2 of S − G that are adjacent on
S, namely with S1 ∩ S2 6= ∅. The closed-up components (M1,K1) and (M2,K2)
of (M,K) − G which contain S1 and S2 are distinct, because M embeds in S3.
Also, since S intersects G minimally, each Si is pairwise incompressible and not
pairwise boundary parallel in (Mi,Ki). Therefore, Si is vertical in (Mi,Ki) for
a suitable presentation as a Montesinos pair, by Theorem 8.21 (this is the most
crucial intervention of Chapter 8 in this chapter).

On the component G0 of G that separates M1 and M2, the traces of the bands
B1 for (M1,K1) and B2 for (M2,K2) are disjoint from the circle S1∩G0 = S2∩G0.
As a consequence, these two bands can be isotoped so as to coincide on G0 (see
Figure 9.2). Now, Lemma 9.2 asserts that gluing (M1,K1) and (M2,K2) along G0

yields a Montesinos pair. Since this contradicts the minimality property (ii) of G
(we can suppress G0), S cannot exist. Thus Lemma 9.4 is proved. �

G0 ∩ S1 ∩ S2 = a circle
G0 = the paper

one band
other band

Figure 9.2.
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Proof of Theorem 9.1. Suppose that a family G′ of Conway 2–spheres in
(M,K) has the same properties (i) and (ii) as G. By pairwise isotopy we make
G∩G′ contain as many Conway spheres as possible, say G1 ∪ · · · ∪Gk = G∗. Then
by a further pairwise isotopy fixing G∗, we can make G − G∗ and G′ − G∗ meet
minimally in a certain number of circles.

By Lemma 9.4, one has (G−G∗)∩ (G
′ −G∗) = ∅, which means G∩G′ = G∗.

If G′ 6⊂ G, there must be a closed-up component N of M − G that contains
a component G′

j of G′ −G∗. Use Theorem 8.21 to make N ∩G′ vertical for some

presentation of (N,K ∩N). Then apply Lemma 9.3 to G′
j , in the closed-up com-

ponent of N − (G′ −G′
j) which contains it, to find a Conway sphere S meeting G′

j

non-trivially but not G∪G′−G′
j , and meeting G∪G′ minimally. One readily checks

that the intersection of S and G′ is also minimal as in (M,K). Then Lemma 9.4
yields a contradiction, and we conclude that G′ ⊂ G.

Symmetrically, G ⊂ G′ and thus G = G′, which completes the proof of Theo-
rem 9.1. �

In practice, the characterisation of the surface G by Theorem 9.1 is not very
convenient, as the Minimality Condition (ii) is in general difficult to check. However,
if one scrutinises the proof of Theorem 9.1, one can give a very useful criterion to
decide when a family of Conway spheres, which splits (M,K) into Montesinos pairs,
is actually the characteristic family of Theorem 9.1.

Criterion 9.5. Let G be a family of disjoint Conway spheres splitting the
pairwise irreducible arborescent pair (M,K) into Montesinos pairs. Assume that:

(a) No closed-up component of (M,K)−G is a rational tangle pair.
(b) For any two adjacent closed-up components N1, N2 of M −G, the Mon-

tesinos pairs (N1,K ∩N1) and (N2,K ∩N2) do not admit restricted pre-
sentations whose bands B1 and B2 agree on the Conway sphere N1 ∩N2.

Then, G is the characteristic family characterised by Theorem 9.1.

Proof. First scrutinise the proof of Lemma 9.4 to check that Properties (a)
and (b) are sufficient for G to satisfy the conclusion of this lemma. Also, no closed-
up component N of M −G can be a pairwise collar (N,K ∩N) ∼= (S2, P 0)× [0, 1]
by Condition (b). Then note that this is all we need in the proof of Theorem 9.1
to show that G is pairwise isotopic to any surface G′ satisfying the hypotheses of
Theorem 9.1. �

The interest of this criterion will become clearer in Chapter 10 where we shall
see that it suffices to check Property (b) for just one restricted presentation of
(N1,K ∩N1) and (N2,K ∩N2). Indeed, we shall prove that the trace Bi ∩ ∂Ni of
the band is, up to pairwise isotopy, independent of the restricted presentation of
(Ni,K ∩ Ni), unless this pair is a collar ∼= (S2, P 0) × [0, 1] or a ring pair. When
(Ni,K ∩Ni) is a collar, Property (b) clearly fails. When it is a ring pair, there are
precisely two possibilities for Bi ∩ ∂Ni, up to pairwise isotopy.
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CHAPTER 10

Characteristic bands and necklaces in Montesinos

pairs

These bands and necklaces, defined in Chapter 8, will constitute the backbone
of our classification of arborescent knots in Chapters 11–13, and of our study of their
automorphisms in Chapter 16. The main result of this chapter is Theorem 10.5,
which proves that the necklaces of most Montesinos pairs are characteristic.

We begin with the case of hollow Montesinos pairs, presented without ring or
rational tangles.

10.1. The case of hollow Montesinos pairs

Proposition 10.1. In a model hollow Montesinos pair (M,K) with d > 3
boundary components, the band B is invariant under all automorphisms (up to
pairwise isotopy).

Further, if ϕ: (M,K)→ (M ′,K ′) is a pair isomorphism to any other restricted
Montesinos pair (restricted means presented without rational tangles of integral or
infinite slope), then (M ′,K ′) is necessarily presented as a hollow Montesinos pair
and ϕ(B) is pairwise isotopic to the band B′ for (M ′,K ′).

Remark 10.2. Note that this is hopelessly false for 1 and 2 boundary compo-
nents (Figure 10.1), because enough automorphisms of a given boundary Conway
sphere then extend to automorphisms of (M,K).

Figure 10.1.

Proof of Proposition 10.1. We immediately attack the stronger statement.

Claim 10.3. The presentation of (M ′,K ′) as a Montesinos pair is necessarily
hollow.

Proof of Claim 10.3. Certainly (M ′,K ′) has no ring tangle, since K ∼= K ′

contains no circle component. Thus if (M ′,K ′) is not hollow, it contains a ratio-
nal tangle of non-integral slope. Then by Theorem 8.15(b), the pair can be split
along two essential Conway spheres to give, as one piece, the Montesinos pair of
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β
α

Figure 10.2.

Figure 10.2. This piece has exactly two boundary components and is not homeo-
morphic to (Conway sphere) × [0, 1], since by Theorem 8.15 and Proposition 8.13
it contains just one essential (vertical) annulus disjoint from K.

But, by Theorem 8.15(a) applied to (M,K) ∼= (M ′,K ′), the pair (M ′,K ′) does
not have this property. Thus (M ′,K ′) is presented as a hollow Montesinos pair as
claimed. �

Consider a small regular neighbourhood U in M of the band B. Its topological
frontier δU in M consists of d vertical essential annuli.

By Theorem 8.3, we can make ϕ(δU) vertical in (M ′,K ′) by a pairwise isotopy
(horizontal is out of question since d > 3). Thus ϕ(δU) can be isotoped to coincide
with δU ′ where U ′ is a regular neighbourhood of the band B′ of (M ′,K ′). Then
ϕ(U) = U ′, as one easily checks.

By a pairwise isotopy we can further arrange that the arcs ϕ(B ∩∂M) coincide
with B′ ∩ ∂M ′. The point is that, in any Conway disc, there is, up to pairwise
isotopy, a unique arc joining the two distinguished points (see Figure 10.3).

Figure 10.3.

Now we have ϕ(U) = U ′ and ϕ(∂B) = ∂B′. To conclude we make ϕ(B) = B′

by a pairwise isotopy of (M ′,K ′) moving only points in int(U ′). The argument is
very much like the proof that any two discs in S3 with common boundary S1 ⊂ S3

are pairwise isotopic in (S3, S1); these remaining details can therefore be left to the
reader. Proposition 10.1 now is proved. �

10.2. General Montesinos pairs

We next examine necklaces in general Montesinos pairs. Unfortunately there
is some misbehaviour that we must avoid (or cope with).

Let us review and adjust our terminology. A Montesinos pair (M,K) is a
pair presented in a certain way explained in Chapter 8. For this presentation, a
necklace is defined, which we now call the presented necklace (or the necklace).
We will describe as a necklace for the restricted pair (M,K) what is the presented
necklace for a possible different restricted presentation of (M,K) as Montesinos
pair. Similarly for bands.

Thus Proposition 10.1 says that a hollow Montesinos pair with > 3 boundary
components has only one necklace (up to pairwise isotopy). This is clearly false for
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many Montesinos pairs. For instance, in Figures 10.4–10.7, the presented necklaces
of pairs (e1), (e2) and (e5) are not invariant under pair automorphism. Likewise in
the double-along-boundary D(e3) of (e3), which is also the link of Figure 8.36. Note
that (e5) is the three Borromean rings, which are permutable by automorphisms.
The same misbehaviour obviously occurs for (e2) with one rational substitution,
which is a rational tangle pair. It also occurs for suitable rational substitutions in
(e1) and (e2); the study of symmetry of rational knots tells which (see Chapter 16).

Here is a second pathology. A Montesinos pair (M,K) may admit two necklaces
N1, N2 (each from a presentation of (M,K) as in Chapter 8) which are not related
by a pair automorphism. This happens rather trivially for any rational knot since
it can be obtained by admissible rational substitutions in (e1) and (e2); see §11.2.
The interesting examples of the second pathology arise from the pair isomorphism
(e3)∼=(e4); and from the double of this D(e3)∼= D(e4); and from the pair isomorphism

(e6)∼=(e7) when β′

α′
= − α

β+
β1+β2

2
α
. The reader should check that (e6)∼=(e7) by

rotating (e7) by π
2 (the case β1 = 1, β2 = −1 is sufficiently general). In all these

examples the two necklaces in question are not even homeomorphic.

(e1) (e2) (e3)

∼=

Figure 10.4.

(e4)

∼=β1

2
β2

2

Figure 10.5.

(e5)

∼=β1

2
β2

2

with β1 + β1 = 0

Figure 10.6.

We conjecture that there is no further misbehaviour of either sort. The remain-
der of this section and the symmetry theorem of M. Boileau [Boi1, BoiZ, BurZ]
for closed Montesinos pairs with 3 rational substitutions leave this unproved only
for the cases of closed “elliptic” Montesinos pairs with 3 rational substitutions of
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(e6) (e7)

∼=β1

2
β2

2
β
α

β′

α′

Figure 10.7.

slopes β1

α1
, β2

α2
, β3

α3
where 1

α1
+ 1

α2
+ 1

α3
> 1. To settle them, one needs only extend

Boileau’s symmetry results to these pairs.1

We begin by classifying necklaces of the ring pair.

Proposition 10.4. Up to pairwise isotopy, the ring pair has exactly two neck-
laces, namely those given by (e3) and (e4) of Figures 10.4 and 10.5.

Proof. By Proposition 8.12, Theorem 8.15 and Corollary 8.18, the ring pair
(M,K) has exactly two pairwise essential surfaces (up to pairwise isotopy) that are
connected and not pairwise parallel to boundary, namely a Conway disc D and an
annulus A in M −K.

Let N be a necklace for the ring pair, associated to a presentation of (M,K) as
a restricted Montesinos pair. By Theorem 8.15, we can pairwise isotop the surfaces
D and A so that they each are either vertical or horizontal for the presentation
considered. Since their boundary curves have different slopes in ∂M , these two
surfaces D and A cannot be simultaneously vertical, so that at least one of them is
horizontal.

If D is horizontal then, by Proposition 8.13, the presentation is as in (e3) of
Figure 10.4, the band in the presented necklace N is a square. If A is horizontal
then, by Proposition 8.13, the presentation is as in (e4) of Figure 10.5 and N
consists of two Conway spheres and three squares.

In the first case, the annulus A is vertical. Then the argument proving Propo-
sition 10.1 now shows that, up to pairwise isotopy, (M,K) has only one necklace
whose band is a square as in (e3).

In the second case, the Conway disk D is vertical. The two spheres S1 and S2

in the necklace N are characteristic because, up to isotopy, they are determined by
the property that S1 ∪ S2 is the frontier of a regular neighbourhood of ∂M ∪D in
M . Applying Proposition 10.1 to the complement of the balls bounded by S1 and
S2, we find that, up to pairwise isotopy, this necklace is the only one containing
Conway spheres.

The proof of Proposition 10.4 is now complete. �

Theorem 10.5. Let (M,K) and (M ′,K ′) be two restricted Montesinos pairs
presented with necklaces N and N ′. Assume that the following holds:

(i) (M,K) contains a vertical Conway sphere, and
(ii) (M,K) is not pair isomorphic to the ring pair, nor to the double of the

ring pair, nor to the Borromean rings, nor to the thickened Conway sphere
(S2, P 0)× [0, 1].

Then, every pair isomorphism ρ: (M,K) → (M ′,K ′) can be pairwise isotoped
so that ρ(N) = N ′.

1(Added 2009) This is now a consequence of Thurston’s Geometrisation Theorem for Orb-
ifolds. See [Sak].
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Remark 10.6. If (M,K) has d boundary components, r ring tangles and t
rational tangles, then Condition (i) is equivalent to the inequality t+ 2r + 2d > 4.
Also, by Theorems 8.15(b) and 8.21, it is equivalent to the existence of a pairwise
incompressible Conway sphere in (M,K).

Proof of Theorem 10.5. We begin with:

Assertion 10.7. The theorem holds if (M,K) is presented as an elementary
pair, namely derived by rational tangle substitutions in a hollow Montesinos pair
with 3 holes.

Proof of Assertion 10.7. Our hypothesis (i) then guarantees that M has
at least one boundary component; let ∂0M be one. Then all the possibilities (a),
(b), (c) for (M,K) and N are listed in Figure 10.8.

(a) (b) (c)

β
α

β1

α1

β2

α2

Figure 10.8.

In case (a), the pair is hollow and the result follows from Proposition 10.1.
In all three cases, (M,K) clearly contains a unique vertical Conway disc D

with boundary in ∂0M , as indicated in Figure 10.8. It is pairwise essential by The-
orem 8.15(b) and it is the only pairwise essential Conway disc by Theorem 8.15(a)
and Proposition 8.13.

Hypothesis (ii) and Proposition 8.13 prevent ϕ(D) from being horizontal in
(M ′,K ′). Hence, by Theorem 8.15, the unique pairwise essential Conway disc ϕ(D)
is vertical. This shows that (M ′,K ′) is presented as an elementary Montesinos pair.

We now see that ϕ sends the Conway spheres in N to the Conway spheres
in N ′ (after isotopy), since D and ϕ(D) determine these spheres (see proof of
Proposition 10.4).

Then the application of Proposition 10.1 to the complement of the rational
tangles gives ϕ(N) = N ′ as required. �

Let us now prove Theorem 10.5 in full generality.
Choose a family F of disjoint vertical Conway spheres F1, . . . , Fn in (M,K) so

that each closed-up component Mi of M − F gives an elementary pair (Mi,Ki),
with Ki = K∩Mi, that is not a collar ∼= (S2, P 0)× [0, 1]. (Recall that the ring pair
is an elementary pair.) Note that Ni = (N ∩Mi) ∪ ∂Mi is a necklace for (Mi,Ki).
Denote by B the band of N , and by Bi the band of Ni; clearly Bi = B ∩Mi.

By (ii), Theorem 8.15, and Proposition 8.13, the surface F ′ = ϕ(F ) is vertical
in (M ′,K ′) (with respect to N ′) after pairwise isotopy, and has the properties of
F .

Thus we have elementary Montesinos pairs (M ′
i ,K

′
i) defined for F ′ = ϕ(F ) (so

that M ′
i = ϕ(Mi)), with necklaces N ′

i = (N ′ ∩M ′
i)∪ ∂M

′
i and bands B′

i = B′ ∩M ′
i

where B′ is the band in N ′.
Our aim is to show that there is a pairwise isotopy of (M ′,K ′) respecting F ′,

after which ϕ(N) = N ′. For this, it suffices to show that, for all i, the necklace
ϕ(Ni) is pairwise isotopic in (M ′

i ,K
′
i) to N

′
i .
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We begin by showing this for some i, exploiting the uniqueness and near-
uniqueness of the Ni proved in Assertion 10.7 and Proposition 10.4.

one band

other band

Figure 10.9.

Seeking a contradiction, suppose this is false for all i. Then all (Mi,Ki) are
pair isomorphic to ring pairs. Since a ring pair has, as boundary, just one Conway
sphere, we conclude that, either there is just one block Mi (contradicting (ii)), or
else there are exactly two blocks M1, M2. The presence of two blocks also leads to
a contradiction, as follows. In Mi, the band Bi and the distinct band ϕ−1(B′

i) are
as in Figure 10.9 after a pairwise isotopy of ϕ, by Proposition 10.4. In particular
the intersection ∂Mi ∩

(
Bi ∪ ϕ

−1(B′
i)
)
is a quadrangle made up of 2 vertical and

2 slope zero arcs. Since these quadrangles match up in M1 and M2, we conclude
that either (M,K) is the Borromean rings (namely is (e5) of Figure 10.6), or else
(M,K) is the double of (M1,K1). Either case contradicts Hypothesis (ii).

We have now shown by reductio ad absurdum that for some i, the necklaces Ni
and N ′

i are pairwise isotopic in (M ′
i ,K

′
i).

The same is therefore true for any index j in place of i, such thatMj is adjacent
to Mi, namely such that Mi ∩Mj 6= ∅. Indeed, two necklaces Na, Nb with bands
Ba, Bb in an elementary pair (M∗,K∗) are the same up to pairwise isotopy if one
arc component of ∂M∗ ∩ Ba coincides with an arc component of ∂M∗ ∩ Bb (use
Proposition 10.4 and Assertion 10.7).

By connectivity of M , the same is true for every index. We conclude that
ϕ(N) = N ′ after a pairwise isotopy, as required to prove Theorem 10.5. �

Among the Montesinos pairs which were ruled out by Condition (ii) of The-
orem 10.5, we already considered the case of the ring pair in Proposition 10.4.
We now give the classification of necklaces for the remaining pairs, namely the
Borromean rings, the double of the ring pair and the thickened Conway sphere.

Proposition 10.8. The Borromean rings (see (e5) of Figure 10.6) have exactly
three necklaces; for any one of the three components exactly one of these necklaces
is disjoint from it.

Proof. We begin by showing that any two necklaces of the Borromean rings
are related by a pair automorphism. This follows from:

Assertion 10.9. Every restricted presentation (M,K) of the Borromean rings
as a Montesinos pair is of the form (e5) of Figure 10.6.

Proof of Assertion 10.9. By Proposition 8.13, it suffices to show that (M,K)
contains a horizontal Conway sphere. Applying Theorem 8.15 to the presentation



10.2. GENERAL MONTESINOS PAIRS 125

of (e5), we see that (M,K) contains exactly three (pairwise isotopy classes of)
pairwise essential Conway spheres S1, S2, S3, which can be mutually positioned as
indicated in Figure 10.10.

S1 S2

S3

S1

Figure 10.10.

If S1 is not horizontal, then, by Theorem 8.15, it is vertical (after pairwise
isotopy) and splits (M,K) into two Montesinos pairs (M ′,K ′) and (M ′′,K ′′). Now
the surfaces S2∩M

′ and S3∩M
′ in (M ′,K ′) are, respectively, two Conway discs and

one annulus disjoint form K ′; both are pairwise essential and their boundary slopes
are certainly distinct. Hence one of these two surfaces, say Si ∩M

′ is horizontal in
(M ′,K ′), and so Si is horizontal in (M,K). �

Assertion 10.10. The necklace N for the presentation (e5) of the Borromean
rings (M,K) in Figure 10.6 is invariant (up to pairwise isotopy) under all auto-
morphisms of (M,K) respecting the component K1 of K disjoint from N .

Proof of Assertion 10.10. Let ϕ be such an automorphism. It is no loss
of generality to assume that ϕ respects all three components of K, for we can
compose ϕ with an automorphism respecting K1 and N that permutes the other
two components K2, K3 of K.

Split (M,K) and N along a vertical Conway sphere S into one pair (M ′,K ′)
of type (e3) with necklace N ′ = (M ′ ∩ N) ∪ ∂M ′ and one (M ′′,K ′′) of type (e4)
with necklace N ′′ (see Figure 10.5). The Conway sphere S is respected by ϕ up
to pairwise isotopy, because the three Conway spheres in (M,K) are distinguished
by which component of K they meet. Thus an application of Proposition 10.4 in
(M ′,K ′) and (M ′′,K ′′) proves Assertion 10.10. �

We can now complete the proof of Proposition 10.8. By symmetry of the
Borromean rings (M,K), it suffices to show (keeping the notation of Assertion 10.10
just proved) that any necklace N∗ for (M,K) disjoint from K1 is pairwise isotopic
to the necklaceN of Assertion 10.10. By Assertion 10.9, the necklaceN∗ is ϕ(N) for
some automorphism ϕ of (M,K). Obviously, ϕ(K1) = K1. Thus Assertion 10.10
shows that N∗ = ϕ(N) is pairwise isotopic to N . �

Proposition 10.11. The double of the ring pair, namely the closed Montesinos

pair that can be presented with two rings and no rational tangles, has three
necklaces up to pairwise isotopy. Two of these are annuli, while the third one
consists of 4 squares and 4 Conway spheres.

Proof. We leave this as an exercise (easier than Proposition 10.8); one can
exploit the two pairwise essential Conway spheres in (M,K). �
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Proposition 10.12. Up to pairwise isotopy, every necklace of the thickened
Conway sphere (S2, P 0) × [0, 1] is of the form k × [0, 1] where k consists of two
disjoint arcs in S2 with ∂k.

Proof. By Theorem 8.15 and Proposition 8.14, the hollow Montesinos pair
with two boundary components is the only presented Montesinos pair (M,K) that
contains infinitely pairwise isotopy classes of annuli disjoint from K, and where
no component of K is closed. This observation shows that every presentation of
(S2, P 0)× [0, 1] is hollow.

The result then follows from the classification of essential annuli inM−K, and
from the arguments used in the proof of Proposition 10.1. �

This completes our discussion of necklaces in restricted Montesinos pairs.
If we are interested in pairwise irreducible Montesinos pairs, this leaves only

one case unsettled, by Proposition 8.20, namely the one of a closed Montesinos
pair (M,K) presented with r > 2 ring tangles and one rational tangle (M1,K1)
of integer slope e ∈ Z − 0. In this case, we define the necklace N of (M,K) as
follows: Its intersection with the complement of the rational tangle (M1,K1) is the
band of the necklace of this restricted Montesinos pair; and N ∩M1 is a band of
(M1,K1) meeting the boundary along two arcs of infinite slope. Thus, this necklace
is a twisted band avoiding the rings.

Then, the proof of Theorem 10.5 readily gives:

Proposition 10.13. The conclusion of Theorem 10.5 still holds if one allows
(M,K) or (M ′,K ′) to be presented with r > 2 ring tangles and one rational tangle
of integer slope e ∈ Z− 0, where the necklace is defined as above. �



CHAPTER 11

The classification of Montesinos pairs

The main result of this chapter is Theorem 11.7, which classifies pairwise irre-
ducible Montesinos pairs in terms of certain data vectors1.

11.1. The necklace-preserving classification

First we give a rather trivial but helpful classification theorem which corre-
sponds, via the 2–fold branched covering as in the Appendix, to Seifert’s fibred
classification of Seifert fibre spaces [Sei1] (compare Theorem A.2).

This classification is so trivial because it considers only isomorphisms preserving
necklaces. Thereby it gains some generality, however, since we can treat arbitrary
Montesinos pairs.

Given a presented Montesinos tangle (M,K), we denote by (Mρ,Kρ) the tangle
derived from (M,K) by deleting the rational tangles. It still contains the ring
tangles, so in general it is not the hollow Montesinos tangle (M0,K0) from which
(M,K) was built; but, deleting from Kρ the circles in the ring tangles to define Lρ,
we clearly get a hollow Montesinos tangle (Mρ, Lρ), with ∂Mρ = S1 ∪ · · · ∪ St.

Data. Consider Montesinos tangles (M,K), (M ′,K ′) presented with necklaces
N , N ′ and bands B, B′, respectively. Consider also an isomorphism of pairs ϕ :
(M,K) → (M ′,K ′) such that ϕ(N) = N ′. (By Theorem 10.5, the condition that
ϕ(N) = N ′ is often realisable via a pairwise isotopy of ϕ.) We list the Conway
2–spheres in N as S1, . . . , St and note that the S′

i = ϕ(Si), i = 1, . . . , t, are the
Conway 2–spheres in N ′.

Proposition 11.1 (for the above data).

(a) There is an integer ni such that ϕ sends any slope q
p in Si to slope q

p +ni

in S′
i. Hence, if Si bounds a rational tangle of type βi

αi
(namely if the slope

in Si ⊂ ∂Mρ of its effective compression 2–disc is − βi

αi
), then ϕ(Si) = S′

i

bounds a rational tangle of type
β′

i

α′

i
= βi

αi
− ni.

(b) The sum
∑t

i=1 ni is equal to zero.
(c) If S1, . . . , St are listed going around the necklace in the cyclic order of

the presentation of the Montesinos pair (M,K) (the direction and starting
point of the order being immaterial), then the same is true of S′

i, . . . , S
′
t

up to reversal of the cyclic order.
(d) (M,K) and (M ′,K ′) have the same number of ring tangles plugged in.

The proof will rest on:

1(Added 2009) See [BoiS, Zie, BurZ] for other proofs of the classification of Montesinos
knots.
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Lemma 11.2 (See Remark 11.5 for the differentiable category DIFF). Any
degree ±1 isomorphism ϕ of the standard Conway sphere (S2, P 0) of §8.1 is pairwise
isotopic to an isomorphism ψ which is linear, in the sense that it lifts to an affine-

linear map ψ̃: R2 → R2 with pψ̃ = ψp where p: R2 → R2/R ∼= S2 is the branched
covering map of §8.1.

Proof of Lemma 11.2. In the model Conway sphere consider the equatorial
“square” S1 = S2 ∩ (R2× 0) whose four vertices are the four branch points P0 of p.
Its four sides are linear in the sense that they are covered by lines in R2, namely the
horizontal and vertical lines, respectively, passing through the points of the lattice
Z2.

One can pairwise isotop ϕ to some ϕ′, such that the sides of the square ϕ′(S1)
are in the same sense linear, and ϕ′ : S1 → ϕ(S1) maps each side of the square
linearly. Indeed, one can do this by comparing the wiggly square ϕ(S1) to the
linear square S∗ whose sides have the same slopes: one simplifies the intersection
S∗ ∩ S1 by a classical transversality and blister suppression procedure.

Now ϕ′ is covered by a (wiggly) isomorphism ϕ̃′ : R2 → R2 carrying adjacent
right angled 2–dimensional squares with vertices in Z2 onto adjacent 2–dimensional
linear parallelograms, and ϕ̃′ is already linear on their sides. Isotopy of ϕ̃′ on each
square (fixing boundary) completely linearises ϕ̃′ and induces a further pairwise
isotopy of ϕ′ to the desired linear automorphism ψ. In the topological or piecewise
linear categories, we can then conclude with a standard Alexander isotopy. See
Remark 11.5 for the differentiable category. �

Corollary 11.3. The group π0 Aut±(S
2, P 0) of pairwise isotopy classes of

degree ±1 automorphisms of the Conway sphere (S2, P 0) is naturally isomorphic to
the discrete group of linear automorphisms of R2/R (identified to S2 in §8.1).

Proof of Corollary 11.3. The lemma establishes that the inclusion-induced
map of the linear automorphisms Autlin(R

2/R)→ π0 Aut±(S
2, P 0) is surjective. It

is also injective; indeed if a linear automorphism is pairwise isotopic to the identity,
it fixes all slopes and the 4 points P 0, hence is covered by the identity map of
R2. �

A linear automorphism ψ of (S2, P 0) acts on the slopes m ∈ Q ∪ ∞ by a
linear fractional map of the form m 7→ c+dm

a+bm , when the matrix
(
a b
c d

)
∈ GL2(Z)

is the linear part of ψ̃ : R2 → R2 lifting ψ. Note that this matrix necessarily has

integer entries and determinant ±1 as ψ̃ respects Z2, and that
(
a b
c d

)
is only defined

modulo multiplication by ±1. Thus, Corollary 11.3 immediately gives the following
structure theorem.

Corollary 11.4. Each degree ±1 automorphism of (S2, P 0) acts on the slopes
by linear fractional map, and this defines an exact sequence

1→ V4 → π0 Aut±(S
2, P 0)→ PGL2(Z)→ 1

where V4 ∼= Z2 × Z2 is the subgroup defined by automorphisms of (S2, P 0) that lift
to (integral) translations of R2. �

The subgroup V4 of (pairwise isotopy classes of) automorphisms of (S2, P 0),
respecting each slope, deserves some special attention, since we will encounter it
again and again. It has 4 elements and is known as the Klein 4–group (or
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Viergruppe). For the standard embedding of (S2, P 0) in R3, these four elements
are respectively represented by the identity ι and the π–rotations ξ, η, ζ whose axes
are the x–, y–, z–axes, respectively (see Figure 11.1).

x

z

y

η

ξ

ζ

Figure 11.1.

Remark 11.5. In the smooth category DIFF of differentiable manifolds and
maps, Lemma 11.2 is not quite true as stated. Indeed, there is no homeomor-
phism R2/R → S2 for which the linear homeomorphisms of R2/R correspond
to diffeomorphisms of S2. But, if we delete the four singular points, the lemma
and its proof become valid, although the Alexander isotopy must be replaced by
something more subtle [Sma, Mun]. The corollaries are valid as stated, but
their proof uses the (easily proved) fact that restriction gives an isomorphism
π0 Aut±(S

2, P 0) → π0 Aut±(S
2 − P 0) of groups of degree ±1 diffeomorphisms

up to DIFF isotopy. When linear maps of (S2, P 0) are exploited henceforth, such
refinements of proofs for the DIFF case will be left to the reader.

Proof of Proposition 11.1. The Conway spheres Si and S
′
i are both parametrised,

in the tangles (Mρ,Kρ) and (M ′
ρ,K

′
ρ), by the standard Conway sphere (S2, P 0),

which is branched covered by R2 in a standard way (see §8.1). Thus each restric-
tion ϕ|Si

: Si → S′
i is identified to an automorphism of the standard Conway sphere

ϕi: S
2 → S2 respecting the four points P 0.
The key fact is that, inasmuch as ϕ maps the necklace N to N ′ and hence

the band B to B′, the two vertical segments in S2 joining the branch points are
respected by ϕi (possibly interchanged, though). In particular, ϕi sends slope∞ to
slope ∞ and therefore, by Corollary 11.4, it sends each slope m ∈ Q∪∞ to m+ni
for some ni ∈ Z (independent of m).

This proves the first statement of (a). The second follows; we note that the
minus signs are the consequences of the reflection in the xy–plane of R3 relating
the two parametrisations of Si (or S

′
i), namely the one from the hollow tangle and

the one from the rational tangle (see §8.1).
In the hollow Montesinos tangle (Mρ, Lρ), where Lρ is Kρ minus the rings,

consider a standard horizontal 2–sphere with holes F , whose boundary slopes are
all 0. In view of (a), the image ϕ(F ) is a surface F ′ in (M ′

ρ, L
′
ρ) with boundary

slope ni in S′
i. By Theorem 8.3, the sum of the slopes is zero; recall that this is

just a homological fact seen by splitting open along the band B′. This proves (b).
To show (c), it suffices to observe that the cyclic order as described (modulo

orientation reversal) is an intrinsic topological property of the necklace N . To see
this, consider the nerve of the covering of N by the closed-up components of the
complement of the non-manifold points (these components are squares and spheres).
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As for (d), just note that the number of ring tangles equals the number of string
components that are disjoint from the necklace. �

Next, we convert Proposition 11.1 into an elementary classification theorem, in
several ways. Given a Montesinos tangle (M,K), presented as usual, we enumerate
the Conway spheres S1, . . . , St in N going from left to right in the standard hollow
Montesinos tangle.

To each Si we associate a generalised slope mi as follows: If Si is the boundary
of a rational tangle, let mi be the slope

βi

αi
∈ Q∪∞ of this rational tangle; if Si is a

boundary component of M , let mi be the symbol ∅ (of course recalling the empty
set).

The raw data vector for (M,K) is (r;m1, . . . ,mt) where r is the number of
ring tangles plugged in.

The fractional data vector is (r; e0; m̄1, . . . , m̄t) where:

(1) m̄i ∈ Q/Z is the class of mi if mi ∈ Q is a genuine rational number;
(2) m̄i = mi if mi is one of the symbols ∅ or ∞;

(3) e0 = −
∑t
i=1mi if all mi lie in Q;

(4) e0 is the symbol ∅ otherwise, namely when some mi is equal to ∅ or to
∞.

By convention, e0 is 0 when t = 0, namely when the necklace N has no Conway
spheres. Note that the class ē0 ∈ Q/Z of e0 (when this makes sense) is determined
by m̄1, . . . , m̄t.

The normalised data vector is (r; e; m̂1, . . . , m̂t) where

(1) if mi ∈ Q, then m̂i is the unique number in the interval
]
− 1

2 ,
1
2

]
that is

congruent to mi modulo Z;
(2) m̂i = mi otherwise, namely when mi is ∅ or ∞;

(3) e =
∑t

i=1

(
m̂i −mi

)
∈ Z if all mi ∈ Q are rational numbers, keeping the

convention that e = 0 when k = 0;
(4) e = ∅ otherwise, namely if some mi is ∅ of ∞.

From a given Montesinos presentation with data vectors as above we get by
reflection in the xy–plane another presentation that is degree −1 isomorphic to the
first. The raw and fractional data vectors of the latter are respectively (r;−m1, . . . ,−mr)
and (r;−e0;−m̄1, . . . ,−m̄r), with the convention that−∞ =∞ and−∅ = ∅. Note
that the normalised data vector will misbehave if some m̂i is equal to

1
2 .

The cyclic permutations of Zt = Z/tZ are those of the form x 7→ x + k;
the dihedral permutations are generated by cyclic permutations and x 7→ −x.
Similarly for permutations of any linearly ordered set of t elements in place of Zt,
since it is in natural bijective correspondence with Zt.

Theorem 11.6. Consider two presented Montesinos pairs (M,K) and (M ′,K ′)
with data as above, and with primes distinguishing the data for the second pair.
There exists a degree +1 pair isomorphism ϕ : (M,K)→ (M ′,K ′) sending necklace
N to necklace N ′ precisely if any one of the three (obviously equivalent) conditions
on data vectors holds:

(i) r = r′, t = t′, and the raw data vector (r;m1, . . . ,mt) can be modified to
coincide with (r′;m′

1, . . . ,m
′
t) by changes of the following three sorts:

(a) rearrange m1, . . . , mt by a dihedral permutation;
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(b) if mi and mj are in Q (and i 6= j ) replace them by mi + 1 and
mj − 1;

(c) if mi ∈ Q and mj 6∈ Q replace them by mi ± 1 and mj.
(ii) The fractional data vectors differ only by a dihedral permutation of m̄1,

. . . , m̄t.
(iii) The normalised data vectors differ only by a dihedral permutation of m̂1,

. . . , m̂t.

Furthermore, one can insist in (i), (ii) or (iii) that the permutation σ of indices
1, . . . , t be related to the isomorphism ϕ by the property that ϕ(Si) = S′

σ(i).

Proof. Given a pair isomorphism ϕ : (M,K) → (M ′,K ′) with ϕ(N) = N ′,
there is a unique permutation σ of indices 1, 2, . . . , t so that ϕ(Si) = S′

σ(i). By

Proposition 11.1, the equivalent conditions (i), (ii) and (iii) hold for this σ.
Conversely, suppose that Condition (i) holds for a certain dihedral permutation

σ of indices 1, . . . , t. We must build the isomorphism ϕ satisfying ϕ(Si) = S′
σ(i).

There is visibly an isomorphism of hollow tangles ϕσ : (Mρ,Kρ) → (M ′
ρ,K

′
ρ)

sending N to N ′ and satisfying ϕσ(Si) = S′
σ(i). It extends to ϕ as desired precisely

if mi = m′
σ(i).

Condition (i) assures that there exist integers n1, . . . , nt such that mi + ni =
m′
σ(i) and n1 + · · ·+ nt = 0. (We shall say that, in case mi = ∅ or ∞, the “sum”

mi + ni is mi.) As n1 + · · · + nr = 0, there visibly exists a pair automorphism g
of (Mρ,Kρ), respecting the band B, so that each restriction g|Si

: Si → Si sends
slope x to x + ni; indeed g can be composed of many “twists”, each supported on
a regular neighbourhood ∼= B2 × [0, 1] in Mρ of some component ∼= [0, 1]× [0, 1] of
the band B, where on B2 × [0, 1] the twist is the product of the identity id[0,1] and

of an automorphism of B2 as illustrated in Figure 11.2 (or its inverse).

[0, 1]

B2

B2

Figure 11.2.

Then ϕσg|Si
: Si → S′

σ(i) sends slope mi to mi + ni = m′
σ(i). Hence the pair

isomorphism ϕσg: (Mρ,Kρ)→ (M ′
ρ,K

′
ρ). extends to ϕ as desired. �

11.2. Classification of pairwise irreducible Montesinos pairs

We will now use our analysis in Chapter 10 to pass from the necklace preserving
classification of Theorem 11.6 to the general isomorphism classification of pairwise
irreducible Montesinos pairs.

Recall from Chapter 8 that a presentation of a Montesinos pair is restricted
when all rational tangles have finite non-integral slope. By Corollary 8.18, a
Montesinos pair admitting a restricted presentation is almost always pairwise irre-
ducible, with a few obvious exceptions. Conversely, we proved in Proposition 8.20
that a pairwise irreducible Montesinos pair admits a presentation which either is
restricted, or has > 2 rings and a unique rational tangle, of integral non-zero slope.
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When (M,K) is closed (namely whenM = S3) and admits a presentation with

no ring and two rational tangles of respective slopes β1

α1
and β2

α2
, then untangling

the first of these two tangles gives another presentation with (no ring and) only

one rational tangle, of a slope β
α . To be more precise, an easy computation on the

slopes, using Corollary 11.4, gives

β

α
=
α1β2 + β1α2

α′
1β2 + β′

1α2

where α′
1 and β′

1 are such that α1β
′
1 − α

′
1β1 = 1. The corresponding knots in S3

are the so-called rational knots or two-bridge knots. They were first classified
by H. Schubert [Sch3] in 1956, who identified their 2–fold branched covering as the
lens space L(β, α): Indeed, it turns out that two such Montesinos knots, presented

with no ring and exactly one rational tangle of respective slopes β
α and β′

α′
, are

degree +1 isomorphic precisely when their 2–fold branched coverings L(β, α) and
L(β′, α′) are degree +1 isomorphic, namely when β′ = β and α′ ≡ α±1 mod β.

Similarly, a Montesinos pair presented with one boundary component, no ring
and exactly one rational tangle is a rational tangle pair, and thus admits a presen-
tation with no rational tangle.

We can now state our classification. Start with a pairwise irreducible Mon-
tesinos pair (M,K). Choose some presentation for (M,K), and consider the frac-
tional data vector (r; e0; m̄1, . . . , m̄t) which we have associated to this presentation.
Choosing the presentation restricted when possible (see Proposition 8.20), and sim-
plifying it as above for rational knots and rational tangle pairs, we can make this
data vector satisfy:

(i) r ∈ N (including r = 0);
(ii) all generalised slopes m̄i are in (Q/Z − 0) ∪ ∅, except for data vectors

(r; e0; 0) with r > 2 and e0 ∈ Z− 0 ;
(iii) e0 = ∅ when some m̄i is ∅; otherwise, e0 ∈ Q and its class in Q/Z is

equal to −
∑t
i=1 m̄i; moreover, e0 = 0 when there is no mi;

(iv) the vectors (0; 0; ), (1; 0; ), (0; e0; m̄1, m̄2), with m̄1 6= ∅, are excluded.

Theorem 11.7. The above rule determines a bijective correspondence between
the degree +1 pair isomorphism classes of pairwise irreducible Montesinos pairs
(M,K) and the fractional data vectors (r; e0; m̄1, . . . , m̄t) as above, taken up to
dihedral permutation of the m̄i, together with the exchanges:

(1;∅;∅)↔ (0;∅; 12 ,
1
2 ,∅)

(2; 0; )↔ (0; 0; 12 ,
1
2 ,

1
2 ,

1
2 )

(1;− β
α ;

β
α )↔ (0;−αβ ;

1
2 ,

1
2 ,

α
β )

(0;− β
α ;

β
α )↔ (0;− β

α′
; βα′

) when α′ ≡ α±1 mod β.

Proof. We first check that the above exchanges of fractional data vectors ac-
tually reflect some pair equivalences of presented Montesinos pairs. To see this,
note that the first exchange corresponds to the equivalence between the two pre-
sentations of the ring pair shown as (e3)–(e4) in Figures 10.4 and 10.5. The two
fractional data vectors of the second exchange both give the double of the ring pair,
and the equivalence is obtained by doubling the previous one. The third equivalence
appears as (e6)–(e7) in Figure 10.7, and involves any Montesinos knot obtained by
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plugging the ring tangle with a rational tangle. The last equivalence follows from
the classification of rational knots (see our earlier discussion in this section); it can
easily be described by untangling the first rational tangle of the presented Mon-
tesinos pair with raw data vector (0; βα , 0). This gives a new presentation with raw

data vector (0; 0, βα′
) where αα′ ≡ 1 mod β as an easy slope computation shows.

Conversely, let (M,K) and (M ′,K ′) be two pairwise irreducible Montesinos
pairs, and let N and N ′ be their respective necklaces for the presentations that
were used to associate fractional data vectors to them. Assume that there exists
a degree +1 isomorphism ϕ : (M,K) → (M,K ′). We want to show that their
fractional data vectors differ only by the equivalence started in Theorem 11.7.

In Chapter 10, we showed that ϕ can be modified so that ϕ(N) = N ′ whenever
the presented (M,K) contains a vertical Conway sphere and is not the ring pair
nor its double (see Theorem 10.5 and Propositions 10.8, 10.12 and 10.13). In this
case, it follows from Theorem 11.6 that the two fractional data vectors associated
to (M,K) and (M ′,K ′) differ only by a dihedral permutation of their generalised
slopes.

For the ring pair or its double, we can decide for (M,K) and (M ′,K ′) to
prefer the presentations with rational tangles of slope 1

2 , using the pair equivalence
reflected by the first two exchanges of Theorem 11.7. One then concludes the proof
as in the previous cases, using Propositions 10.4 and 10.11.

It remains to settle the cases when the presented (M,K) and (M ′,K ′) admit
no vertical Conway spheres, namely when their associated fractional data vectors

are of type
(
0;− β

α ;
β
α

)
,
(
1;− β

α ;
β
α

)
or

(
0;−

∑3
i=1

βi

αi
; β1

α1
, β1

α1
, β1

α1

)
. First note that, by

Theorem 8.15, these Montesinos pairs contain no pairwise incompressible Conway
sphere. This class of Montesinos pairs is therefore disjoint from the ones considered
previously in the proof.

On the other hand, their internal classification was completed by Montesinos,
who observed in [Mon1] that their 2–fold branched covering is a Seifert manifold,
and is sufficient to distinguish them. More precisely, the 2–fold branched covering

of the Montesinos knot associated with (0; e0;
β̄
α ), (1; e0;

β̄
α ) or

(
0; e0;

β1

α1
, β1

α1
, β1

α1

)
is

the Seifert manifold with type (Oo0|e0+
β
α ; (α, β)), (On0|e0+

β
α ; (α, β)) or (Oo0|e0+

β1

α1
+ β2

α2
+ β3

α3
; (α1, β1)(α2, β2)(α3, β3)) in Seifert’s terminology (see [Sei1, Orl] and

§A.2). The classification of these Seifert manifolds asserts that they are degree
+1 isomorphic precisely when their data vectors differ only by a permutation of
the Seifert invariants (αi, βi) of the exceptional fibres, together with a possible
application of the last two exchanges of Theorem 11.7 (see [OVZ, Orl]). As these
data vectors have 6 3 slopes, any permutation of their slopes is dihedral, and this
completes the proof of Theorem 11.7. �





Part 5

The classification of arborescent
knots and pairs





CHAPTER 12

The plumbing calculus

We develop in this chapter our plumbing calculus to classify arborescent knots
(and pairs) in terms of certain integrally weighted planar trees. The corresponding
classification theorems are stated; half of their proofs, namely the fact that weighted
trees related by certain moves give rise to isomorphic knots will be manifest, while
the converse, which depends on our analysis of incompressible surfaces in Chapter 8,
will be completed only in Chapter 13.

12.1. Plumbing of surfaces and tangles

This section goes back to first principles; the reader is only supposed to under-
stand the language of tangles from §8.1. The most important result to be proved
here is that any arborescent knot in S3 can be expressed as a connected sum of
knots that are formed by plumbing bands, according to a special sort of integrally
weighted planar tree called canonical.

The plumbing operation takes two surfaces F1 and F2 embedded in S3, with
non-empty boundary and possibly non-orientable, and glues them together to ob-
tain a new embedded surface, well-defined up to isotopy in S3. To specify this
gluing operation, we need to select on each surface Fi, with i = 1, 2, a plumb-
ing patch , namely an embedding pi : [0, 1] × [0, 1] → Fi sending the two sides
[0, 1]× {0, 1} to the boundary of Fi and the rest of the square [0, 1]× [0, 1] in the
interior of the surface.

plumbing patch

F1

F2

∂B1 = ∂B2

Figure 12.1.

Decompose S3 into the union of two balls B1 and B2 meeting along their
boundary. Then isotop each surface Fi in S

3 so that Fi ⊂ Bi and so that Fi ∩ ∂Bi
is equal to the plumbing patch pi([0, 1]× [0, 1]). This can be done so that the map

137
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pi : [0, 1]×[0, 1] −→ Fi ⊂ Bi has degree +1 for the boundary orientation of ∂Bi, and
so that p1(x, y) coincides with p2(y, x) on ∂B1 = ∂B2 for every (x, y) ∈ [0, 1]× [0, 1].
When this is done, the union F1 ∪ F2 forms a new surface F with boundary. One
easily checks that, up to isotopy in S3, this F ⊂ S3 depends only on the embedded
surfaces F1 ⊂ S3 and F2 ⊂ S3 and on the plumbing patches p1 and p2. We will
say that the embedded surface F is obtained by plumbing F1 and F2 along the
plumbing patches p1 and p2.

F1 F2

F

Figure 12.2.

Observe that this construction is also well-defined if the plumbing patches pi :
[0, 1]× [0, 1] −→ Fi are given only up to isotopy of [0, 1] × [0, 1]. In practice, it is
therefore sufficient (and convenient) to simply specify their images pi([0, 1]×[0, 1]) ⊂
Fi together with the induced orientations on a “core” pi([0, 1]× y) and on a “fibre”
pi(x× [0, 1]).

Figure 12.2 offers an example, where ∂B1 = ∂B2 corresponds to the sheet of
paper, and where the ball B1 sits behind this sheet of paper. .

Observe that it is essential that the Fi lie in different balls Bi, so as to prevent
any further knotting.

F ′

Figure 12.3.

Remark 12.1. An alternative rule for plumbing surfaces with patches would
be to require the maps pi : [0, 1]× [0, 1]→ Fi ⊂ Bi to have degree −1 (as opposed to
+1) for the boundary orientation of ∂Bi, as in Figure 12.3. It is a remarkable fact
that, as suggested by Figure 12.3, the surface F ′ obtained by plumbing according



12.1. PLUMBING OF SURFACES AND TANGLES 139

to this second rule has a boundary ∂F ′ which is isotopic in S3 to the boundary
∂F of the surface F obtained by plumbing according to the first rule. (Hint: Push
F1 across the plumbing patch; see also our discussion of the plumbing of tangles
below.) Thus, there are two natural ways to plumb surfaces, although the knots
(S3, ∂F ) ∼= (S3, ∂F ′) produced are the same. On the other hand, the plumbed
surfaces may indeed be distinct up to isotopy in S3. For instance, this is the case in
the example of Figures 12.2 and 12.3, as proved by [HatT]. Indeed, Hatcher and
Thurston classify in [HatT] the Seifert surfaces of the corresponding rational knot
(S3, ∂F ) up to isotopy respecting the knot; considering the action of the symmetry
group of (S3, ∂F ) (as computed in Chapter 15) on the corresponding 8 classes of
Seifert surfaces, we can conclude that F is not isotopic to F ′ in S3.

On the other hand, the different ways of plumbing always yield surfaces that
are isotopic in the 4–ball B4 keeping the surface boundaries in S3 = ∂B4 (exercise).

Remark 12.2. K. Murasugi has considered a more general sort of plumbing
of surfaces where the “square” plumbing patch is replaced by a 2k–gon, k = 1,
2, 3, . . . with alternate sides in the surface boundary. This Murasugi sum
has remarkable properties; for example, it preserves the property that the knot
complement should fibre over S1 with fibre the interior of the surface mentioned;
see [Mur, Gab1, Gab2].

Remark 12.3. The above plumbing construction is defined in the TOP of
PL categories. In the DIFF category, it provides a surface with corners in its
boundaries. These corners can easily (and must) be smoothed by a further step in
the construction to remain in the DIFF category.

We now consider a related operation on tangles. Let two tangles (M1,K1; θ1)
and (M2,K2; θ2), as defined in §8.1, be given as well as a choice of boundary
components S1 ⊂ ∂M1 and S2 ⊂ ∂M2. Recall that the tangle structures θ1 and
θ2 specify parametrisations of each Si by the standard Conway sphere (S2, P 0).
The plumbing construction associates to this data the tangle (M,K; θ) defined
as follows. The knot pair (M,K) is obtained by gluing (M1,K1) to (M2,K2) by
identifying S1

∼= (S2, P 0) to S2
∼= (S2, P 0) through the map corresponding to the

reflection (x, y, z) 7−→ (y, x, z) of the standard Conway sphere in (S2, P 0) ⊂ R3.
The tangle structure θ is defined by restriction of θ1 and θ2 to the remaining
boundary components.

Recall that the matching or gluing construction of §8.1 is similarly defined but
uses reflection in the plane z = 0 rather than the plane x = y.

As the terminology indicates, this plumbing of tangles bears a precise relation
to the plumbing of surfaces described above. This relationship can be described as
follows.

Given a tangle (M,K; θ) with M ⊂ S3, we can always choose a surface F ⊂M
(possibly non-orientable) whose boundary ∂F consists of K and of arcs of slope ∞
in ∂M . Then enlarge K to a knot K+ ⊂ S

3 by adding slope zero arcs in ∂M , and
enlarge the surface F to F+ ⊂ S

3 with ∂F+ = K+ by adding the lower hemisphere
H2

− (the square z 6 0) of each boundary component of M ; Figure 12.4(a) offers an

example. Finally regard each H2
− as a plumbing patch in F+ using the “core” and

“normal” orientations of Figure 12.5(b) (so that the orientation of the plumbing
patch coincides with the boundary orientation of ∂M). The example becomes that
of Figure 12.4(b), a band with a plumbing patch. Thus, from tangle (M,K) and
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F , we get (S3,K+) and F+ with ∂F+ = K+, where F+ is a surface with boundary,
having plumbing patches as in Figure 12.4(b).

Conversely, slitting open S3 along all the plumbing patch interiors and parametris-
ing boundaries as Figure 12.5 suggests, we retrieve the tangle (M,K) (up to iso-
morphism) together with the surface F . It is now a pleasant exercise to verify that
plumbing of surfaces with plumbing patches in S3 corresponds under the above
rules to plumbing of tangles.

F

K+

H2
−

(a) (b)

F+

Figure 12.4.

(a) (b)

Figure 12.5.

Plumbing of tangles is also defined for graphs of tangles. Consider a graph Γ in
which each vertex is associated to a tangle, and the bonds of a vertex correspond
to the boundary components of the tangle while each edge of Γ consists of a pair of
distinct bonds (that may however belong to the same vertex). As always, each bond
lies in 1 or 0 edges; it is called tied or free respectively. One performs one plumbing
identification for each edge (in any order) making boundary identifications in the
disjoint sum of all the vertex tangles. There results a well-defined tangle whose
boundary components are the free bonds in the entire graph Γ.

Henceforth we shall be using the language of plumbing of tangles rather than of
surfaces. Admittedly the reader may find it helpful to think in terms of plumbing
of surfaces, which is easily visualised spatially but less easy to explain with 2–
dimensional diagrams.

To facilitate these diagrammatic explanations we now elaborate some of the
conventions of §8.1 for representing tangles.

Recall that, by conventions in §8.1, certain knot pairs (M,K) with M ⊂ S3 =
R3 ∪ ∞ carry natural tangle structures: namely, any pair such that each compo-
nent of (∂M, ∂K) is a round Conway 2–sphere in R3 related to the standard one
by a (unique) motion composed of translation and homothety (scaling); the tangle
parametrisation is this motion, composed, if orientation dictates, with reflection in
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the xy−plane. This convention for parametrising a component S of ∂M will hence-
forth be generalised in case one arc of the equator of S (parallel to the xy−plane) is
singled out and oriented by an arrow, for instance as in Figure 12.6(a); the degree
+1 parametrisation is then to be further composed with the unique rigid rotation
carrying this oriented arc to the linear arc in the standard Conway sphere (S2, P 0)
which has slope 0 and joins (0, 0, 0) to (1, 0, 0); see Figure 12.6(b), and compare
§1.2.

(a) (b)

(1, 0, 0)

(1, 1, 0)

(0, 0, 0)

(0, 1, 0)

S S2

Figure 12.6.

When there is some ambiguity, e.g. when the Conway sphere S separates two
knot pairs, we shall place the arrows on the side of S occupied by the tangle. Then,
each side of S can be labelled by an arrow to specify tangle structures on the two
knot pairs adjacent to S.

Note that when an arc is thus labelled on each side of S, the two tangles are
plumbed precisely when the arrows label adjacent arcs and emanate from their
common point, as in Figure 12.7 (allowing rotations and reflections of this picture).

Figure 12.7.

Such a tangle has a diagrammatic presentation on paper in case the Conway
spheres making up ∂M are all centred on the xy−plane and perpendicular projec-
tion p to this plane immerses K into N = R2 ∩M with simple double points as
the only singularities. Let us use the term tangle projection in this context for
the planar data consisting of (N, p(K)) together with the overcrossings indicated
at the double points, and in addition an arrow labelling as above an arc of each
of the equators ∂N . A tangle projection with N ⊂ S2 determines its tangle up to
isomorphism.

Similar data, where N is replaced by any isomorphic submanifold of S2 =
R2 ∪∞ possibly with wiggly boundary, will still be called a tangle projection since
it similarly determines a tangle up to isomorphism.
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12.2. Plumbing according to a weighted planar tree

The plumbing operation for graphs of tangles has interesting formal properties
involving a special sort of Montesinos tangle called atomic. We define a Montesinos
tangle to be atomic if all of the tangles plugged in are rational tangles of integral
slope.

Figure 12.8 provides one model n–valent atomic tangle for each sequence

of n integers a1, . . . , an, with n > 1; in it,
a

with a ∈ Z represents a positive
half-twists, for instance if a = 3 and if a = −3. (This notion will be
slightly extended in §12.5, so as to allow the presence of rings.)

band

a1 a2 an

Figure 12.8.

This tangle will be denoted by the weighted graph of Figure 12.9 which is
also called atomic. It has one vertex, n free bonds, and n weights a1, . . . , an
attached to the n sectors between these bonds. The n bonds and the n integral
weights correspond respectively to the n boundary components and the n groups
of twists, the order left to right in Figure 12.8 corresponding to counterclockwise
order in Figure 12.9, starting at a1. It is perhaps helpful to geometrically specify
the correspondence by choosing a standard continuous map of the underlying 3–
manifold onto the graph so that the preimage of the end point of any bond is the
corresponding Conway sphere.

a1a2 an

Figure 12.9.

The surface with boundary containing the knot, indicated in Figure 12.8 is
called the twisted band or simply the band ; note that for n > 3 it is the charac-
teristic band of the underlying hollowMontesinos pair provided by Proposition 10.1.

In terms of surfaces with plumbing patches, the atomic tangle of Figure 12.10
together with its band correspond to the twisted band of Figure 12.10, with the
plumbing patches indicated.

a1 a2 an

Figure 12.10.
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Similarly, we define for each a ∈ Z a model closed atomic tangle of weight
a, which is the knot

a

symbolised by
a
, and define its twisted band as in Figure 12.8.

Note that any isomorphism of two such one-vertex “atomic” graphs, preserving
the order of bonds and weights up to cyclic permutation, is realised by a band-
preserving tangle isomorphism of the corresponding atomic tangles. Thus, viewed
up to isotopy in the plane, a weighted one-vertex graph as in Figure 12.9 determines
an atomic tangle, up to tangle isomorphism respecting twisted bands and also
respecting the correspondence of boundary components to graph bonds.

We now combine this notation for (model) atomic tangles, with the plumbing
operation for tangles.

Let a weighted planar tree Γ consist of:

(i) an abstract tree, with free bonds allowed as in Chapter 2;
(ii) a cyclic ordering of the bonds of each vertex of Γ;
(ii) an integral weight assigned to each angular sector between adjacent bonds

(define these in terms of (ii)!).

An easy way to specify this data is to embed it in the plane, in such a way
that the cyclic order of bonds and integer weights at a vertex correspond to the
counterclockwise order; the embedding is then unique up to isotopy of the plane.
This also explains the terminology.

Convention. An angular sector that is blank is understood to carry weight
0.

The plumbing operation on tangles then associate a tangle (M,K; θ) to each
such weighted planar tree Γ. We begin by considering, for each vertex vi, the atomic
graph consisting of vi and of its adjacent bonds and weights, and then the atomic
tangle (Mi,Ki; θi) associated to this atomic weighted graph. The tangle (M,K; θ)
is then constructed by plumbing the (Mi,Ki; θi) together in such a way that, if an
edge e joins two vertices vi and vj , the corresponding atomic tangles (Mi,Ki; θi) and
(Mj,Kj ; θj) are plumbed along the boundary components Si ⊂ ∂Mi and Sj ⊂ ∂Mj

respectively associated to the two bonds leading to the edge e. The fact that Γ is
a tree (with no loop) guarantees that the resulting tangle (M,K; θ) embeds in S3.

For instance, the tangle associated to the weighted planar tree of Figure 12.11
is the knot represented in Figure 12.12.

−2
0
−3
5

−1

2

3
2

−4

0
2

3
−1

−1

3

Figure 12.11.
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Figure 12.12.

The same construction can equivalently be described in terms of plumbing of
twisted bands with plumbing patches as in Figure 12.10. The case of Figure 12.11
is illustrated in Figure 12.13, which arguably is aesthetically more pleasing.

Figure 12.13.

Define an arborescent tangle as one whose underlying knot pair (M,K) is
arborescent in the sense defined in Chapter 9; namely M is connected, embeds in
S3 and if (M,K) can be split up along a family of disjoint Conway spheres into
pairs that are hollow Montesinos pairs (see §8.2).

Since every atomic tangle gives an arborescent pair, it is clear that every knot
pair that results from plumbing according to a weighted planar tree is arborescent.

The first theorem of this chapter asserts the converse.

Theorem 12.4. Every arborescent tangle is (isomorphic to one) produced by
plumbing according to a weighted planar tree.

Proof. This will follow from well-known facts about projections of braids.
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a1 a′1
a
2

a
′2

a
′
3 a3

a
4

a
′ 4

Figure 12.14. (Note the clockwise rotations of 90◦)

As hollow Montesinos pairs underlie atomic tangles, we see that a weakened
version of the theorem is trivially true, namely: Every arborescent tangle can be
produced from tangles that are either atomic or have underlying pair a thickened
Conway sphere ∼= (S2, P 0)× [0, 1], by plumbing these according to a graph.

Thus it suffices to prove the theorem for arborescent tangles whose underlying
pair is ∼= (S2, P 0)× [0, 1]. Let us call these braid tangles.

Assertion 12.5. Every braid tangle (M,K; θ) is isomorphic to one obtained

by plumbing according to a weighted planar tree of the form
a′1 a′2 a′4k
a1 a2 a4k

,

namely to a tangle of the type represented in Figure 12.14 (for k = 1, ai = 3 = a′i).

Proof of Assertion 12.5. Certainly, we can assume that (M,K) is a stan-
dard thickening (S2, P 0) × [0, 1] ⊂ R3 of the unit sphere, and that the boundary
parametrisation θ is standard on S2 × 1. On S2 × 0 however, θ may be any degree
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−1 automorphism of S2 respecting the four points P 0. Since all degree −1 auto-
morphisms of S2 are isotopic (not respecting P 0), we can use an isotopy to change
θ and K near S2 × 0 so that, afterwards,

(i) on S2× [0, 1], the parametrisation is as indicated in Figure 12.15(a), which
(intentionally) is the same as in Figure 12.14, and

(ii) K has no critical point for the radius function (projection to [0, 1]), which
means that K is a four string braid in S2 × [0, 1].

(a) (b)

Figure 12.15.

By further general position (transversality) arguments, we can successively ar-
range that, in addition,

(iii) the projection of K to R2 has no critical points for the radius function
(projection S1 × [0, 1]→ [0, 1]), and

(iv) this projection has isolated double points only, namely simple crossings
only, as in Figure 12.15(b).

At this point, K has a projection isotopic to one as in Figure 12.14, and we
can give it exactly such a projection. Beware that many of ai, a

′
i may be zero. For

instance, the graph will be 0 0 −1 −1
0 1 1 −1

in the example of Figure 12.15(b).
This completes the proof of the Assertion 12.5, and of Theorem 12.4. �

12.3. Moves on weighted planar trees

Let Γ be an integrally weighted planar tree. We list alterations of Γ that are
intended to leave the resulting pair unchanged (up to pair isomorphism).
Flips. This first set of moves essentially deals with the cyclic order of weights and
bonds around vertices.

(F1) Reverse the cyclic order of bonds at every vertex of the graph.
(F2) Reverse the cyclic order at one vertex, and at each vertex at even distance

from it in the graph.

(F3) Replace
a
a′

by
a∓ 1

a′± 1
, where the cyclic order of bonds

is reversed at all vertices lying to the right of the vertex shown, and at
odd distance from this vertex.

In our description of the flip (F3), only one vertex, one bond and two (adjacent)
weights of the tree are visible. The dashed line indicates any continuation to the
right, namely a (connected, possibly empty) weighted subtree attached to the bond
shown. The other dashed line represents any continuation to the left, namely
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a sequence of consecutive weights, free bonds and weighted subtrees attached to the
vertex shown. We will use similar conventions in our description of further moves.

For example the original tree might be as simple as a
a′

, but a more typical
example of (F3) is

2

−2

a
a′

1

3

−3

4

−4

2

−2

a+1
a′−1

1

3

−3

4

−4

Ring move. This move seldom applies, and involves an unknotted component of
the link moving freely around one of the plumbing bands, whence the name.

(R) Replace

−2 2

by

2 −2

.

Boundary moves. These moves occur near a free bond of the graph, correspond-
ing to a boundary component of the associated tangle pair.

(B1) Replace
a

by .
(B2) Replace a by 0 .

Arithmetic moves. This next set of moves changes the weights of vertices in the
tree, and is closely related to arithmetic properties of continued fractions and of
the group SL2(Z). They are labelled by two integers; the first one refers to the
weight of the main vertex involved, the second one to its valence. Note the precise
location of the weights, which is often critical.

(0.1) Replace
0 a

by .

(0.2) Replace a 0
b

by a+ b , where the cyclic orders of

bonds are preserved in the left hand side subgraph and reversed
anywhere else. In particular, the order of the components of is re-
versed.

(1.0) Exchange +1 and −1.
(1.1) Replace ±1 a by

a∓ 1
.

(1.2) Replace a b
±1

by a∓1 b∓1 .

(2.0) Exchange +2 and −2.
(2.1) Replace±2 a by∓2 a∓1 .
(2.2) Replace a

b
±2 by a∓1

b∓1∓2
.

This list of moves is convenient to work with, but very redundant in the sense
that Flips (F1) and (F2) easily follow from (F3), whereas all arithmetic moves are
simple consequences of the three moves (0.1), (0.2) and (1.2).

There is one more, somewhat troublesome, arithmetic move (0.1∗) that we shall
introduce after the following proposition.

Proposition 12.6. For a weighted planar tree, the above moves do not affect
(up to pair isomorphism) the pairs associated by plumbing.

Complement 12.7. If Γ and Γ′ are weighted planar trees related by one of
the above moves, and (M,K) and (M ′,K ′) are the tangles respectively associated
to Γ and Γ′ by plumbing, our proof of Proposition 12.6 will yield a preferred pair



148 12. THE PLUMBING CALCULUS

isomorphism ϕ : (M,K) → (M ′,K ′). Its effect on boundary will be evident; in
particular, except for the boundary moves (B1) and (B2), the pair isomorphism ϕ
will preserve slopes on all boundary components, namely lie in the Klein 4–group V4
introduced at the beginning of Chapter 11. Thus, we can say that these moves leave
the tangle unchanged modulo boundary mutations, namely mutations along Conway
spheres that are pairwise boundary-parallel.

Proof of Proposition 12.6 and Complement 12.7. We begin by intro-
ducing some notation.

If A is a tangle and α ∈ V4, we let αA be the same tangle with all boundary
parametrisations altered by α. Recall from Chapter 11 that the Viergruppe V4 is
made up of the π–rotations ξ, η, ζ about the three axes of R3, and of the identity
ι.

Also, let −A denote the tangle obtained by reversing ambient orientation and
correspondingly changing the parametrisation of every boundary Conway sphere
by the reflection (x, y, z) 7→ (x, y,−z) in the equatorial “square” of the standard
Conway sphere. Observe that −(αA) = α(−A) for α ∈ V4. Also, if a weighted
planar tree Γ yields the tangle A by plumbing, then plumbing according to the
weighted planar −Γ obtained by reversing the sign of all integer weights gives the
tangle −A.

After these preliminaries, we can now begin the proof of Proposition 12.6 and
Complement 12.7.

If A is atomic, we have a natural tangle isomorphism ξA ≡ A by π−rotation
about a horizontal axis in Figure 12.8.

If A is associated to the weighted planar tree

a1a2 an

and A′ is associated to the same tree turned over
a1an a2

we have a tangle isomorphismA′ ≡ ηA, illustrated in Figure 12.16, that reverses
the cyclic order of boundary components.

Next note that if A is obtained by plumbing the tangles B and C, then the
identity map constitutes a pair isomorphism from A to the tangle A′ obtained by
plumbing ξB to ηC. Of course, the boundary parametrisations differ by ξ on B
and by η on C.

Taken together, these observations prove invariance under Flips (F1) and (F2).
To prove the invariance under (F3), the reader also will have to use the tangle

isomorphism of Figure 12.17 (its pairs are to be viewed as parts of the atomic pairs
appearing in (F3)).

The ring move (R) is a consequence of the tangle isomorphism of Figure 11.
To get this isomorphism we just slide the ring around; the dotted spheres are not
respected. The insides of the left and right hand spheres contain respectively what

and stand for in the ring move.
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a1 a2 an

an an−1 a1

≡

ηA

A′

Figure 12.16.

a a′ a− 1 a′ + 1

≡

Figure 12.17. the flip (F3)

≡

Figure 12.18. the ring move (R)

The boundary moves (B1) and (B2) follow readily from the pair isomorphism
of Figure 12.19, which fixes (say) the left-hand Conway sphere (namely respects its
parametrisation).

Regarding the arithmetic moves, recall that, strictly speaking, we need only
check (0.1), (0.2) and (1.2).

For (0.1) use the tangle isomorphism of Figure 12.20.
For (0.2), use that of Figure 12.21.
For move (1.2), use Figure 12.22.
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a

∼=

Figure 12.19. the boundary moves (B1) and (B2)

a

≡

Figure 12.20. the arithmetic move (0.1)

a b

a+ b

≡

Figure 12.21. the arithmetic move (0.2)

For good measure, we also give figures for the moves (1.0), (1.1), (2.0), (2.1),
(2.2). They show, incidentally, that the pair isomorphisms are tangle isomorphisms
in these cases, as they were for (R), (0.1), (1.1), in contrast to the flips, boundary
moves, and (0.2).

This ends the proof of Proposition 12.6 and Complement 12.7. �

As an illustration of Proposition 12.6, consider the weighted planar tree of
Figure 12.11, which we rewrite as

2
3 −1

2

−3 5

−2 0 −4
3
2

0

−1

−1
3

Applying Flip (F3) to move weights around the vertices, one obtains
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a

b

a+1

b+1−1

≡

Figure 12.22. the arithmetic move (1.2)

≡

Figure 12.23. the arithmetic move (1.0)

≡

Figure 12.24. the arithmetic move (2.0)

≡

a a+ 1

−1

Figure 12.25. the arithmetic move (1.1)

2
3

1

2
−2 0 −4 5

0

−1

−1
3

Then, the arithmetic moves (1.2), (0.2), (1.1) and (0.1) give
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≡

a a+ 1

−2 +2

Figure 12.26. the arithmetic move (2.1)

≡

a a+1b b+1

−2

+2

Figure 12.27. the arithmetic move (2.2)

2 2
−1 −4

0 3

A further application of (0.2) turns this tree into
2 2 −1 −1

, which itself

can be converted to
2 2 0

and finally 2 by (1.1) and (0.2).
What this manipulation proves is that the knot of Figures 12.12 and 12.13 is

the same as the boundary of an unknotted band with 2 half-twists, namely the
Hopf link!

There is one final, somewhat troublesome, sort of arithmetic move in the cal-
culus of arborescent pairs in S3.

Connected sum move.

(0.1∗) Replace the weighted planar tree Γ = 0 , where the central
vertex has valence > 3, by the family of disjoint weighted planar trees
obtained from Γ by erasing the two vertices shown as well as their adjacent
edges, and by adding k copies of if there were k free bonds attached
to the central vertex.

Note that the family associated to Γ by Move (0.1∗) consists of at least two
weighted planar trees.

This move is justified by the following observation.

Lemma 12.8. If the family of weighted planar trees Γ1, Γ2, . . . , Γn is associated
to Γ by Move (0.1∗), the arborescent pair (M,K) defined by the weighted planar tree
Γ is a connected sum of the tangle pairs (Mi,Ki) defined by the Γi.

Proof. See Figure 8.31. �



12.4. CANONICAL TREES FOR ARBORESCENT PAIRS 153

Note that reconstructing the knot pair (M,K) from the (Mi,Ki) requires that
we know some additional information, such as on which knot components the con-
nected sum takes place and in which direction. For this reason, Move (0.1∗) is in
general not reversible.

So far our moves have only been defined for weighted planar trees. However, it
should be clear that they also apply to disjoint union of weighted planar trees, by
operating on one component at a time leaving the others unchanged.

It is a deep fact (to be proved in Chapter 13) that two weighted planar trees
which give isomorphic arborescent pairs are always related by a sequence of moves
and inverse moves from our calculus of arborescent pairs (including Move (0.1∗)).
In the next two sections we present important elementary steps in the proof.

12.4. Canonical trees for arborescent pairs

The above moves show that an arborescent pair can be associated to arbitrarily
large weighted planar trees. If these trees are going to be of any use, it therefore
appears necessary to impose a certain number of restrictions. The weighted planar
trees satisfying these conditions will be called canonical, since we will see that they
classify the arborescent pair up to a limited number of moves.

We list these conditions for canonicity.

Weight Condition.

(W) At each vertex of Γ, at most one weight is non-zero.

This property can clearly be attained by a finite sequence of applications of
Flip (F3). We consequently assume it.

The remaining conditions for canonicity concern only the abstract weighted
tree Γ0 underlying Γ, defined by forgetting the embedding of Γ in the plane. The
weights are now assigned to the vertices of Γ0, by the Weight Condition (W).

Free Bond Condition.

(F) Every free bond of Γ0 belongs to a vertex of weight 0 and with valence

> 3, unless Γ is 0 or 0 .

Clearly this Free Bond Condition can be realised by applications of the Bound-
ary Moves (B1) and (B2).

Form a weighted graph Γ′
0 from Γ0 by deleting all its vertices of valence > 3.

Each component of Γ′
0 is a stick of Γ0. It is topologically an interval, and has 0, 1

or 2 free bonds at its ends. In particular, there are three possible types of sticks:
a1 a2 an,

a1 a2 an or
a1 a2 an with n > 1.

Stick Condition.

(S) On every stick of Γ0, the weights are non-zero and of alternating sign,

unless the whole tree Γ0 is one of 0 , 0 or 0 . The end weights a1

and an of a stick are not ±1, unless Γ0 is ±1.

The last condition for canonicity comes with two options.

Positive Canonicity Condition.

(P) None of the sticks of Γ0 is−1, −2, −2 or −2 .

Negative Canonicity Condition.
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(N) None of the sticks of Γ0 is +1, +2, +2 or +2 .

A weighted planar tree is positively canonical or (+)–canonical if it satisfies
the Weight Condition (W), the Free Bond Condition (F), the Stick Condition (S)
and the Positive Canonicity Condition (P). It is negatively canonical or (−)–
canonical if it satisfies the Weight Condition (W), the Free Bond Condition (F),
the Stick Condition (S) and the Negative Canonicity Condition (N).

The reason to keep these two canonicity conditions is that, if the arborescent
pair (M,K) is associated to the weighted planar tree Γ, the tangle pair (−M,K)
obtained by reversing the orientation ofM is associated to the weighted planar tree
−Γ obtained by reversing the signs of all the weights of Γ. Then Γ is (+)–canonical
if and only if −Γ is (−)–canonical.

Theorem 12.9. There exists an effective algorithm which, for any weighted
planar tree Γ, alters Γ by a sequence of moves of the calculus of arborescent pairs
to produce a collection of positively (or negatively) canonical weighted planar trees.

Corollary 12.10. Every arborescent pair is obtained by pairwise connected
sum operations from arborescent pairs associated to positively (or negatively) canon-
ical weighted planar trees.

Proof. Combine Theorem 12.4, Proposition 12.6, Lemma 12.8 and Theo-
rem 12.9. �

Proof of Theorem 12.9. As far as the Weight Condition (W) and the Free
Bond Condition (F) are concerned the algorithm is obvious, as we have already
observed. Hence we can assume that (W) and (F) hold. All later steps will preserve
these properties.

The Stick Condition (S) is more problematic. The following observation will
simplify our task: The arithmetic moves clearly make sense for abstract integrally
weighted trees such as the tree Γ0, where the integral weights are associated to the
vertices. Let Γ be an integrally weighted planar tree (satisfying (W)) and let Γ0

be its underlying abstract weighted tree. Then, any arithmetic move on Γ0 can
be realised by a sequence of moves applied to Γ which together preserve (W), and
more precisely by a sequence of flips followed by an arithmetic move of the same
type.

It follows that it will suffice to give an algorithm which, for any integrally
weighted abstract tree Γ0 satisfying the Free Bond Condition (F), provides a se-
quence of arithmetic moves making Γ0 canonical in the sense that it satisfies (F),
(S) and (P) (although it is now perhaps not connected). Here is such an algorithm.

Apply the following moves as much as possible: (B1), (B2), (0.1), (0.1
∗), (0.2),

(1.1), and

(i) Move (1.2) a b±1 −→ a∓1 b∓1 when a 6= 0 has
sign ±, or when the vertex at left is of valence > 3;

(ii) the inverse a b −→ a−1 b−1−1 of Move (1.2) if the
two vertices indicated have valence 6 2 and weights a, b > 1;

(iii) the inverse a b −→ a+1 b+1+1 of Move (1.2) if the
two vertices indicated have valence 6 2 and weights a, b < −1.

Claim 12.11. After finitely many steps, we reach a family of weighted planar
trees where none of the moves (B1), (B2), (0.1), (0.1

∗), (0.2), (1.1) and (i), (ii),
(iii) above apply.
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Proof. Each such move reduces the complexity (X, 2Y + Z) ∈ N2 where N2

is endowed with the lexicographic order, where X is the number of sticks of Γ0

excluding whole components , where Y is the sum of the absolute values of
the weights of all vertices of valence 6 2, and where Z is the number of vertices
excluding components . (Actually, most moves reduce the complexity 2Y +Z ∈
N, with the exception of certain cases of (1.1). The components are excluded
because (0.1∗) can create many of these.)

Therefore, the process must be finite. �

When none of these moves is applicable (so that, in particular, Condition (F)
is preserved), it is easily seen that the Stick Condition (S) is now satisfied by all
the components of Γ0 except those of the form 0 a , which we convert to 0 a± 1,
and eventually to 0 −1and 1 , by the inverse of (1.2) and by (1.1).

To complete the algorithm it suffices to apply (1.0), (2.0), (2.1), (2.2) to elimi-

nate all unwanted sticks of the form−1, −2, −2 or −2 . �

Note that the Ring Move (R) does not apply to canonical weighted planar trees,
and that Flip (F3) usually perturbs the Weight Condition (W). This leads us to
modify these moves as follows.

The Flip (F3) is replaced by two distinct moves.

Modified flips.

(F′
3) Replace a by

a
and, if a is odd, reverse the cyclic

order of weights and bonds at all vertices of the subgraph lying at
odd distance from the vertex shown.

(F′′
3 ) If Γ can be split as , reverse the cyclic order of weights and

bonds at all vertices of the subgraph lying at odd distance from the
vertex shown.

The fact that these new Flips (F′
3) and (F′

3) do not modify the associated ar-
borescent pair easily follows from iterating (F3) and combining it with the Boundary
Move (B2).

There are two forms of the modified ring move, one for positively canonical
trees and one for negatively canonical trees.

Modified ring moves.

(R+) Replace

2
1

2

by

2
1

2

.

(R−) Replace

−2
−1

−2

by

−2
−1

−2

.

These two moves (R±) are easy consequences of (R) and (2.1).
Then, our main classification theorem, whose proof will occupy most of Chap-

ter 13, states:

Theorem 12.12 (Classification Theorem for arborescent pairs). Plumbing ac-
cording to two positively (or negatively) canonical weighted planar trees Γ and Γ′
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gives arborescent pairs (M,K) and (M ′,K ′) which are degree +1 isomorphic pre-
cisely when Γ and Γ′ can be deduced from each other by a sequence of flips (F1),
(F2), (F

′
3), (F

′′
3 ) and of modified ring moves (R+) (or (R−)). Moreover, (M,K) is

always pairwise irreducible unless Γ is 0 .

Observe that, up to isomorphism of weighted planar trees, there are only finitely
many (+)–canonical weighted planar trees that are obtained by moves (F1), (F2),
(F′

3), (F
′′
3 ) and (R+) from a given one. Thus, the combination of Theorem 12.4,

Lemma 12.8, Theorem 12.9 and Theorem 12.12 gives an effective algorithm to decide
when an arborescent pair (M,K) is pairwise irreducible and when two pairwise
irreducible arborescent pairs are isomorphic.

In the next two sections §12.5 and §12.6, we will improve Theorem 12.12 by
giving a very efficient method for deciding in practice when two canonical trees are
equivalent by flips and modified ring moves.

We conclude this section with a pleasant exercise. So far, we have not made
much distinction between connected knots and links with several components. How-
ever, one may be interested in the question of quickly computing the number of
components of the knot K of an arborescent pair (M,K) obtained by plumbing
according to a weighted planar tree Γ. Here is a recipe:

(i) Assuming Γ satisfies the weight condition (W) without loss of generality,
consider the weighted tree Γ2 that consists of the combinatorial tree un-
derlying Γ with each vertex weighted by the mod 2 reduction of its weight
in Γ. Thus, Γ2 is the mod 2 reduction of the weighted tree Γ0 which we
considered earlier.

(i) Observe that the arithmetic moves (0.1), (0.1∗), (0.2), (1.1) and (1.2)
make sense for such trees with weights in Z2, and apply them as much as
possible. One eventually obtains a collection Γ′

2 of weighted trees which

either have all vertices of valence > 3, or are among 0 , 1 , 0 or
0 .

Proposition 12.13. With the above data, let nf be the number of free bonds of

Γ (or Γ′
2 ), and let n0 be the number of components 0 in Γ′

2. Then the number of
arc components of K is 2nf ; and the number of circle components is n0 if nf > 0
and n0 + 1 otherwise.

Proof. Observe that the number of components of K is unchanged when one
replaces any weight a of Γ by some a′ with a ≡ a′ mod 2, or when one permutes two
bonds of a given vertex. From this point the proof will be left as an exercise. �

12.5. Abbreviated trees

In view of Theorem 12.12, we are confronted to the following practical problem:
Given two (±)–canonical weighted planar trees Γ and Γ′, decide whether or not it
is possible to pass from one to the other by a sequence of moves (F1), (F2), (F

′
3),

(F′′
3 ), (R

±). Of course, it is always possible to write down the (finite) list of all
weighted planar trees obtained from Γ by a sequence of such moves, up to weighted
planar tree isomorphism, and then to check whether or not Γ′ is isomorphic to one
of the elements of this list. This näıve method is quite sufficient for “small” trees,
but turns out to be rather clumsy as soon as the tree reaches a reasonable size.
The main purpose of this section and of the following one is to describe a more
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efficient method to solve this practical problem. Meanwhile, we will make a first
step towards the proof of Theorem 12.12, by introducing a new kind of weighted
planar tree, which will be better adapted to the proof of this theorem to be given
in Chapter 13.

A first idea to simplify this search of move equivalences between (+)–canonical
weighted planar trees is to try to get rid of the modified ring move (R+). Indeed,

when a subtree
2 21

occurs in a (+)–canonical tree Γ, it can be considered

as attached to the vertex of Γ which is adjacent to it, since its location in the plane
is irrelevant for the plumbing construction by move (R+). The same property

holds for subtrees
2 2

1
and

2 2

1
deduced from the previous one by

application of Flip (F3). We will henceforth refer to any subtree of Γ of such type

2 21
,
2 2

1
or

2 2

1
as a ring subtree of Γ.

By the above considerations, it is natural to simplify Γ in the following way:
Erase each ring subtree that is attached to a vertex of valence > 3 of Γ, together
with the corresponding bond of this vertex. Then, for each vertex v of the resulting
weighted planar tree, keep track of the number r ∈ N of the ring subtrees that
are attached to v in Γ by making this vertex hollow and inscribing the integer r
inside it. Thus we get a weighted planar tree Γ∗ of a new type, consisting of a
combinatorial tree embedded in the plane, of weights a ∈ Z located in some of its
angular sectors, and of a new weight r ∈ N attached to each vertex and called the
ring number of this vertex. This weighted planar tree Γ∗ is the abbreviated
(+)–canonical tree associated to Γ.

Of course, the ring number is in general 0 for most vertices of Γ∗. To avoid
clumsy notation, we shall denote each vertex of Γ∗ with ring number 0 by a solid
“black” dot of the type we have used so far (with nothing inside). Similarly, we
denote a vertex with ring number 1 by a small hollow dot, with no indication of
ring numbers.

Here is a sample example: The weighted planar tree

2

2

1

2 21

2 21

3 3

2

4

2

2

1

is abbreviated as 2

2

1 3
2

3

2

4

The reader may have noticed that the one case where the above construction
does not really make sense is when erasing one ring subtree destroys another one.
This occurs when Γ is 2

2

2

2

1 1



158 12. THE PLUMBING CALCULUS

up to a few flips (F′
3). In this case, we let the abbreviated tree Γ∗ be 2 21

. In all other cases, the ring subtrees of Γ are disjoint and there is no ambiguity in
the definition of Γ∗.

The reader may wonder why, when defining the abbreviated tree Γ∗, we re-
stricted attention to ring subtrees of Γ which were attached to vertices of valence
> 3. There are primarily two reasons for this. The first one is that a move (R+)
applied at a vertex of valence 6 2 can be decomposed as a product of flips (F′

3);
therefore, the consideration of ring subtrees attached to vertices of valence 6 2 is
not useful. The second reason is that this convention facilitates the characterisa-
tion of those weighted planar trees with ring numbers which can occur in this way
(compare Proposition 12.16).

These abbreviated trees are more than an ad hoc trick to simplify the calculus
of weighted planar trees. Indeed, it is possible to develop a whole plumbing calculus
based on these weighted planar trees with a ring number r ∈ N attached to each
of their vertices. The basic idea is to enlarge the notion of atomic tangle. Given
such a weighted planar tree Γ with ring numbers, we associate to each vertex of Γ
of the type shown on Figure 12.28 a model atomic tangle (with rings) as in
Figure 12.29. This fixes a natural correspondence between the bonds of the vertex
and the boundary components of the associated atomic tangle, and Γ therefore
specifies a way to plumb all these atomic tangles together. This associates a knot
pair (M,K), and even a tangle, to Γ.

r

a1a2 an

Figure 12.28.

{ a1 a2 an
r rings

Figure 12.29.

Observe that this plumbing construction coincides with the one we have pre-
viously used when all rings numbers were 0. Also, if Γ∗ is the abbreviated tree
associated to the (+)–canonical tree Γ, it is readily seen from Figure 12.18 that
plumbing according to Γ and Γ∗ gives the same arborescent tangle (or knot pair).

From the moves of §12.3, one readily deduces some moves of weighted planar
trees with ring numbers which do not change the knot pairs obtained by plumbing
construction. For instance, the flips (F1), (F2) and (F3) straightforwardly apply
to any vertex of such a tree Γ, whatever its ring number may be. (But beware
that arithmetic moves require ring numbers to be 0.) If Γ moreover satisfies the
Weight Condition that there is at most one non-zero weight at each vertex, then
one similarly defines flips (F′

3) and (F′′
3 ) to be applied to any vertex of Γ.

One readily checks:
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Lemma 12.14. Let Γ and Γ′ be two (+)–canonical weighted planar trees with
associated abbreviated trees Γ∗ and Γ′

∗, respectively. Then, it is possible to pass
from Γ to Γ′ by a sequence of moves (F1), (F2), (F

′
3), (F

′′
3 ) and (R+) if and only if

one can pass from Γ∗ to Γ′
∗ by a sequence of flips (F1), (F2), (F

′
3) and (F′′

3 ). �

In particular, Theorem 12.12 can be rephrased as:

Theorem 12.15. Let Γ and Γ′ be two (+)–canonical weighted planar trees,
with associated abbreviated trees Γ∗ and Γ′

∗. Then, the two knot pairs (M,K) and
(M ′,K ′) respectively associated to Γ and Γ′ (or, equivalently, to Γ∗ and Γ′

∗ ) by the
plumbing construction are (degree +1) isomorphic if and only if Γ∗ can be made
isomorphic to Γ′

∗ by a sequence of flips (F1), (F2), (F
′
3) and (F′′

3 ).

This is the form under which we will prove Theorem 12.12 in Chapter 13.
Indeed, abbreviated trees turn out to be better adapted to relate the results of
previous chapters (in particular Chapters 9, 10 and 11) to the plumbing description
of an arborescent pair.

Let an abbreviated (+)–canonical tree be a weighted planar tree with ring
numbers that is obtained by abbreviating a (+)–canonical weighted planar tree
(without ring numbers). Theorem 12.15 (together with Corollary 12.10) asserts
that pairwise irreducible arborescent pairs, up to isomorphism, are in one-to-one
correspondence with abbreviated (+)–canonical trees different from 0 , up to flips
(F1), (F2), (F

′
3) and (F′′

3 ). We therefore want to characterise these abbreviated (+)–
canonical trees among all weighted planar trees with ring numbers. This is clearly
an easy exercise using the definition of (+)-canonical trees and of the process of
abbreviation.

An abbreviated (+)-canonical graph Γ must first satisfy the

Weight Condition.

(W) At each vertex of Γ, at most one weight is non-zero.

The remaining conditions concern only the abstract weight tree Γ0 under-
lying Γ obtained by forgetting the embedding in the plane; namely Γ0 consists of
the combinatorial graph underlying Γ together with the ring number and weight
attached to each vertex.

It will be convenient to say that a vertex of Γ0 (or Γ) is essential when it
has valence > 3 or ring number > 1. In particular, a non-essential vertex has ring
number 0 and is drawn solid black, according to our conventions.

Free Bond Condition.

(F) Every free bond of Γ0 belongs to an essential vertex of weight 0, unless

Γ0 is 0 or 0 .

The third condition involves the sticks of Γ0, namely the components of the
weighted graph obtained from Γ0 by removing all essential vertices together with
all bonds (and all their weights and ring numbers).

Stick Condition.

(S) On every stick of Γ0, the weights are non-zero and of alternating sign,

unless Γ0 is one of 0 , 0 or 0 . The end weights a1 and an of a stick

are not ±1, unless Γ0 is ±1.
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Also, we also have a positive canonicity condition coming from the analogous
condition in the definition of (+)-canonical weighted planar trees.

Positive Canonicity Condition.

(P) None of the sticks of Γ0 is−1, −2, −2 or −2 .

So far, all these conditions correspond to conditions which already appeared
in the definition of (+)–canonicity for weighted planar trees. The new condition
comes from the definition of the process of abbreviation, which yields the following:

Abbreviation Condition.

(A) A vertex of Γ0 of ring number 1 has valence > 2, and Γ0 is not
a
2 . Every

ring subtree of Γ is adjacent to a non-essential vertex.

Proposition 12.16. A weighted planar tree with ring numbers is an abbreviated
(+)–canonical tree, namely is obtained by abbreviating a (+)–canonical tree, if and
only if it satisfies the above conditions (W), (F), (S), (P) and (A).

Proof. Clearly, an abbreviated (+)–canonical tree satisfies these conditions.
Conversely, given a weighted planar tree with ring numbers Γ∗, we reconstruct a
weighted planar tree Γ by, at each vertex of Γ∗, erasing the ring number r ∈ N and

attaching to this vertex r subtrees
2 21

. By inspection, one readily checks

that Γ is (+)-canonical if Γ satisfies conditions (W), (F), (S), (P) and (A). �

Note that the above characterisation of abbreviated (+)–canonical trees would
have been more troublesome if, when defining these, we had been allowed to remove
ring subtrees attached to vertices of valences 6 2.

This concludes our discussion of the interplay between (+)–canonical weighted
planar trees and abbreviated (+)–canonical trees.

There is of course an analogous theory for (−)–canonical weighted planar
trees. One similarly defines abbreviated (−)–canonical trees by removing subtrees

−2 −2−1
,
−2 −2

−1
,
−2 −2

−1
and adding ring numbers. Among weighted

planar trees with ring numbers, these abbreviated (−)–canonical trees are char-
acterised by the above properties (W), (F), (S), (A), together with an obvious
Negative Canonicity Condition (N) replacing (P).

12.6. Detecting flip equivalences

In this section we give a rather efficient algorithm to decide whether two ab-
breviated (+)–canonical trees are flip equivalent or not.

The algorithm is based on the following observation: Applying one of the flips
(F1), (F2), (F′

3) or (F′′
3 ) to an abbreviated (+)–canonical tree Γ gives another

abbreviated tree Γ′ together with a preferred isomorphism ϕ : Γc → Γ′
c between

the combinatorial trees Γc and Γ′
c respectively underlying Γ and Γ′. Similarly for

a weighted planar tree isomorphism. Let us call such a ϕ an elementary degree
+1 isogeny from Γ to Γ′.

Now, consider two abbreviated (+)–canonical trees Γ and Γ′, together with
their combinatorial trees Γc and Γ′

c. By the above observation, Γ and Γ′ are flip
equivalent if and only if there exists a combinatorial isomorphism ϕ : Γc → Γ′

c

which can be decomposed as a product of elementary degree +1 isogenies. Namely,
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if there exists a sequence of abbreviated trees Γ = Γ(0), Γ(1),. . . , Γ(n) = Γ′ such
that each Γ(i+1) is obtained by application of a flip to Γ(i) and such that ϕ is
equal to the product ϕn . . . ϕ1 of the corresponding elementary degree +1 isogenies

ϕi : Γ
(i−1)
c → Γ

(i)
c . An isomorphism ϕ : Γc → Γ′

c which can be so decomposed as
a product of elementary degree +1 isogenies will be called a degree +1 isogeny
from Γ to Γ′. Note that a degree +1 isogeny respects weights and ring numbers.
At each vertex, a degree +1 isogeny also respects, up to orientation reversal, the
cyclic ordering of bonds specified by Γ and Γ′; we will henceforth call such a cyclic
ordering defined up to orientation reversal a dihedral ordering .

We will introduce a notion of degree −1 isogeny later in Chapter 16. These
are also combinatorial isomorphism, but usually do not respect the weights. In this
section, we will often say “isogeny” for short instead of “degree +1 isogeny”, since
there is no ambiguity so far.

With the above data, the problem of deciding whether Γ and Γ′ are flip equiv-
alent can now be split into two steps:

(a) List all isomorphisms ϕ : Γc → Γ′
c which respect weights, ring numbers

and dihedral orderings of bonds.
(b) Given such a ϕ : Γc → Γ′

c, decide whether it is a (degree +1) isogeny or
not.

The first step (a) is easily accomplished, at least when the sizes of Γ0 and Γ′
0

are moderate. We consequently emphasise the second problem (b).
An initial remark is that, once we are given the isomorphism ϕ : Γc → Γ′

c,
Problem (b) is independent of ring numbers. We can therefore forget all data
concerning these ring numbers, or equivalently assume that all of them are 0.

Let us state our algorithm to solve Problem (b). We are given two (+)–
canonical trees Γ and Γ′ (without ring numbers, since we have decided to neglect
these), and a combinatorial isomorphism ϕ : Γc → Γ′

c respecting weights and di-
hedral orderings of bonds. We want to decide whether or not ϕ is a (degree +1)
isogeny.

Our strategy will be to progressively modify Γ′ by flips, composing ϕ with
the corresponding isogenies, so that ϕ respects the cyclic order of weights and
bonds at as many angular sectors of Γ as possible. The reason why this strategy
will eventually succeed in deciding whether ϕ is an isogeny or not stems from a
“magical” fact, to be proved as Proposition 12.18 below, which can be paraphrased
as follows: When there is no obvious way to go one step further in this construction,
there is actually a good reason for this in the sense that ϕ is not an isogeny.

If all vertices of Γ have valence 6 2, a succession of flips (F′
3) readily shows

that ϕ is an isogeny. So, assume that there exists a vertex v1 of valence > 3 in Γ.
Then, list the vertices of Γ as v1, v2, . . . , vn, in such a way that each vi is

adjacent to a vj with j < i.
When Γ is of type , we require a further property for this indexing

of the vertices of Γ. Define a cut of Γ as a subgraph of Γ occurring for
some decomposition of Γ as . We then require that vj does not belong

to any cut disjoint from {vj ; j < i} whenever this is possible, namely unless the
complement of {vj; j < i} is precisely a union of cuts.

Algorithm 12.17. Modifying Γ′ by flips (F1) and/or (F
′
3) if necessary, we first

make ϕ respect the cyclic order of weights and bonds at v1.
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Now, let i > 2 and assume as induction hypothesis that we have succeeded in
making ϕ respect the cyclic order of weights and bonds at each vj with j < i.

If i = n + 1, ϕ comes from a weighted planar tree isomorphism and is conse-
quently an isogeny. Otherwise, there are two cases.
Case 1 The isomorphism ϕ respects the cyclic order of bonds at vi. (In particular,
this automatically holds when vi has valence 6 2.)

Then, ϕ induces a unique correspondence between the angular sectors at vi
and those at ϕ(vi) that respects the cyclic order of these. (The order preserving
condition is relevant only when vi has valence 2.) Modifying Γ′ by a flip (F′

3) if
necessary, we can now assume that this correspondence respects the weights of these
angular sectors. Moreover, this flip (F′

3) can be chosen so that all ϕ(vj) with j < i
lie in the subgraph of Γ′ fixed by this move, so that the induction hypothesis is still
satisfied; note that we used here the fact that the vj with j 6 i are the vertices of
a subtree of Γ, which comes from our choice of the indexing of the vertices of Γ.

Now, ϕ respects the cyclic order of weights and bonds at all vj with j 6 i. Go
one step further in the induction.
Case 2 ϕ reverses the cyclic order of bonds at vi.

We are stuck. We then make another attempt, starting from a different Γ′.
If Γ′ can be split as , so that ϕ(v1) is in and ϕ(vi) is in ,

choose such a decomposition of Γ′ so that the cut is minimal for this property.

Then, let Γ̂′ be obtained from Γ′ by a flip (F′′
3 ) reversing cyclic orders at the vertices

of located at odd distance from the vertex shown.
Otherwise, define Γ̂′ by performing on Γ′ a flip (F2) that respects the cyclic

order at ϕ(v1).

In both cases, let ϕ̂ : Γc → Γ̂′
c denote the composition of ϕ with the induced

isogeny.
Again, we try to make ϕ̂ respect the cyclic order of weights and bonds at as

many vertices as possible, by modifying Γ̂′ (and ϕ̂ accordingly) by a sequence of
flips (F′

3) keeping ϕ̂(v1) in the subgraph they fix. So, reapply the algorithm right

from the beginning with Γ̂′ and ϕ̂ in place of Γ′ and ϕ. This leads to two subcases:
Subcase 2a After a certain number of modifications as in Case 1, ϕ̂ eventually
respects the cyclic order of weights and bonds at all vj with j 6 i.

Then, replace Γ′ by Γ̂′ and ϕ by ϕ̂, and go one step further in the induction.

Subcase 2b The algorithm applied to Γ̂′ and ϕ̂ again leads to Case 2 for some vj
with j 6 i.

We are again stuck. However, we will prove in Proposition 12.18 below that ϕ
cannot be an isogeny in this case, and this concludes the algorithm.

Proposition 12.18. The above process is actually an algorithm to solve Prob-
lem (b). Namely, ϕ cannot be an isogeny when Subcase 2b holds at some point.

Proof. First consider the simple case when Γ satisfies the following property:
Any two free bonds of Γ which are attached to the same vertex are adjacent bonds
of this vertex. Then, we do not have to worry about cuts when defining the vi, and
flips (F′′

3 ) are irrelevant (they coincide with flips (F2)). Note that Γ′ also satisfies
this property as ϕ respects dihedral orders.

Assume that we are in the situation of Subcase 2b, which we can summarise

as follows. We have three weighted planar trees Γ, Γ′, Γ̂′ and two combinatorial

isomorphisms ϕ : Γc → Γ′
c and ϕ̂ : Γc → Γ̂′

c such that:
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(a) The composition ϕ̂ϕ−1 : Γ′
c → Γ̂′

c is an isogeny which can be decomposed
as a product of elementary isogenies ψn . . . ψ1ψ0 such that: ψ0 is induced
by a flip (F2) preserving order at the vertex v′1 = ϕ(v1); and each ψk with
k > 0 is induced by a flip (F′

3) (possibly trivial) such that ψk−1 . . . ψ0(v
′
0)

is in the subgraph fixed by this flip.
(b) For some i > 1, ϕ respects the cyclic order of weights and bonds at each

vertex vk with k < i, and reverses the cyclic order of the bonds of vi.
(c) For some j > 1, ϕ̂ respects the cyclic order of weights and bonds at each

vk with k < j, and reverses the order of the bonds of vj .

Suppose now, in search of a contradiction, that ϕ is an isogeny, namely can be
decomposed as a product of elementary isogenies induced by a series of flips. We
will first simplify this series of flips by a suitable reordering.

Indeed, observe the following commutativity property of flips. Let Γ1 be a
weighted planar tree, and w1 and w2 be two of its vertices. Apply a flip (F′

3) at
w1 to get a weighted planar tree Γ2, and let Γ3 be obtained from Γ2 by a flip (F′

3)
applied at the image of w2 by the corresponding elementary isogeny. If w1 6= w2

then, up to weighted planar tree isomorphism, Γ3 is also obtained by applying, first
a flip (F′

3) to Γ1 at w2, then another flip (F′
3) to the tree so obtained at the vertex

image of w1 by the corresponding isogeny. When w1 = w2, note that Γ3 is obtained
from Γ1 by a single flip (F′

3) at w1, or by a flip (F2), or by a weighted planar tree
isomorphism.

One has a similar commutativity property for flips (F′
3) and flips (F2). Observe

also that the composition of two flips (F2) amounts to a flip (F1) or a weighted
planar tree isomorphism.

Using these commutativity properties, ϕ can thus be decomposed as a product
ϕ0ϕ1 . . . ϕn of elementary isogenies ϕk such that: ϕ0 either is a weighted planar
tree isomorphism or is induced by a flip (F1) or (F2); for k > 1, ϕk either is a
weighted planar tree isomorphism or is induced by a flip (F′

3) performed at the ver-
tex ϕk+1 . . . ϕn(vk), image of vk by the previous elementary isogenies. Also, when
ϕk is induced by a flip (F′

3), composing this flip (F′
3) with a suitable flip (F2) and

using the above commutativity properties, we can also require that the subgraph
fixed by this flip contains the vertex ϕk+1 . . . ϕn(v1); by our choice of indexing for
the vertices of Γ, note that this fixed subgraph also contains all ϕk+1 . . . ϕn(vs)
with s < k.

This last condition implies in particular that the isogeny ϕ1 . . . ϕn respects the
cyclic order of bonds at v1. Since ϕ also respects this order, so does ϕ0. Therefore,
either ϕ0 is a weighted planar tree isomorphism or it is induced by a flip (F2)
respecting the bond order at v1. This alternative splits the argument into two
cases.
Case A ϕ0 is a weighted planar tree isomorphism.

We first prove by induction that each ϕk with k < i is a weighted planar tree
isomorphism.

For this, assume as induction hypothesis that ϕs is a weighted planar tree
isomorphism for all s < k. As the image of vk is always in the subgraph fixed by
each flip (F′

3) corresponding to a ϕt with t > k, the isogeny ϕk+1 . . . ϕn respects the
cyclic order of weight and bonds at vk. Since so does ϕ = ϕ0 . . . ϕk−1ϕkϕk+1 . . . ϕn,
it follows that ϕk respects the cyclic order of weight and bonds at ϕk+1 . . . ϕn(vk),
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and therefore is not induced by a flip (F′
3) performed at this vertex. Consequently,

ϕk is a weighted planar tree isomorphism as announced.
Recall that ϕi+1 . . . ϕn respects the cyclic order of bonds at vi, since it is in-

duced by a sequence of flips (F′
3) fixing the successive images of this vertex. The

isomorphism ϕi respects the cyclic order of bonds at ϕi+1 . . . ϕn(vi) as it is either a
weighted planar tree isomorphism or induced by a flip (F′

3) at this vertex. And the
weighted planar tree isomorphism ϕ0 . . . ϕi−1 preserves the cyclic order of bonds at
ϕi . . . ϕn(vi). We now reach a contradiction with the hypothesis that ϕ = ϕ0 . . . ϕn
reverses the cyclic order of bonds at vi.

Thus, Case A cannot hold.
Case B ϕ0 is induced by a flip (F2).

In this case, we consider ϕ̂ to get a contradiction. Indeed, using the form of
the isogeny ϕ̂ϕ−1 and the commutativity of flips, we readily see that ϕ̂ is induced
by a series of flips (F′

3) fixing the successive images of v1. We then reach, as in
Case A, a contradiction with the fact that ϕ̂ reverses the cyclic order of bonds at
vj . Therefore, Case B cannot hold either.

This proves that our assumption that ϕ is an isogeny is contradictory, and
concludes the proof of Proposition 12.18 in the case when no vertex of Γ carries
two non-adjacent free bonds.

It remains to consider the case when Γ can be split as so that the

two cuts and are non-trivial. In this case, let Γ∗ be obtained from Γ by
erasing all cuts which do not contain the vertex vj occurring in Subcase 2.2. Let Γ′

∗

be the similarly defined weighted subtree of Γ′, so that ϕ induces an isomorphism
between the combinatorial trees underlying Γ∗ and Γ′. Also, modifying Γ′ by flips,
we can assume without loss of generality that Γ′′ = Γ′ and ϕ′ is the identity.

Observe that each flip performed on Γ′ induces on Γ′
∗ a flip or a weighted planar

tree isomorphism. For instance, a flip (F′′
3 ) either fixes Γ′

∗ or induces a flip (F2)
on it. So, ϕ∗ is an isogeny if ϕ is an isogeny. On the other hand, by our choice of
vertex indexing, the vertices of Γ∗ are the vs with k 6 s 6 ℓ for some k, ℓ. Note
that vi and vj both belong to Γ∗, and that ϕ respects the cyclic ordering of weights
and bonds at vk. It easily follows that the restriction to Γ∗ of our algorithm to
decide whether ϕ is an isogeny is precisely the algorithm to decide whether ϕ∗ is
an isogeny (starting from vk. Since we reached Subcase 2.2 for both ϕ and ϕ∗, our
analysis of the first case shows that ϕ∗ is not an isogeny. Therefore, ϕ cannot be
an isogeny.

This concludes the proof of Proposition 12.18. �

Let us illustrate this algorithm by an example. Consider the two weighted
planar trees

Γ = 1

2

3

4 -5 a 7

8

9

and

Γ′ = 1

2

3

4 -5 a 7

9

8

We want to know whether the obvious isomorphism ϕ : Γc → Γ′
c respecting

weights is an isogeny.
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Label the vertices of Γ as v1, . . . , v9 so that their weights are respectively 1, 2,
3, 4, −5, a, 7, 8, 9. Clearly, ϕ respects weights and cyclic orders at all vj with
j < 7, and reverses the order of the bonds at v7. Thus, we reach Case 2 of the
algorithm with i = 7.

At this point, following the algorithm, we apply a flip (F2) to get

Γ̂′ = 1

2

3
4

-5
a

7

9

8

and an isomorphism ϕ̂ : Γc → Γ̂′
c respecting weights. Applying the algorithm, we

modify Γ̂′ by a flip (F′
3) fixing ϕ̂(v1) applied first at ϕ̂(v4), then at ϕ̂(v6), to get

Γ̂′′ =





1

2

3

4 -5 a 7

9

8

if a is even

1

2

3

4 -5 a 7

8

9

if a is odd.

and a combinatorial isomorphism ϕ̂′ : Γc → Γ̂′′
c

If a is odd, ϕ̂′ respects cyclic orderings and ϕ: Γc → Γ′
c is an isogeny.

If a is even, we are in Subcase 2B of the algorithm, and ϕ is not an isogeny.

12.7. The plumbing calculus of arborescent tangles

Having stated our classification of pairwise irreducible arborescent pairs in
terms of weighted planar trees (to be proved in Chapter 13), we develop in this
section a similar calculus for arborescent tangles.

Indeed, the plumbing construction associates a tangle to each weighted planar
tree Γ, and we have actually observed in §12.3 how the moves of the calculus of
arborescent pairs affect this tangle. Except for the boundary moves, these moves
modify the boundary parametrisations by no more than composition with four
elements of the Klein Viergruppe V4 of slope preserving automorphisms of the
standard Conway sphere (S2, P 0). Recall that V4 consists of the identity ι and of
the π−rotations ξ, η, ζ around the x–, y– and z–axes, respectively (see Figure 12.4).

To take these boundary parametrisations into account, it is convenient to
slightly augment the data involved in a weighted planar tree. We allow ourselves to
label the tip of any free bond of a weighted planar tree with any element
γ ∈ V4, thus γ ; this, we decide, causes the parametrisation of the corre-
sponding Conway sphere boundary to be altered by γ. Labelling by the identity ι
is equivalent to not labelling at all. We can now operate on a labelled free bond
γ by any α ∈ V4, getting αγ (recall that V4 is abelian).

12.7.1. Moves for arborescent tangles. We can now give a list of moves
which do not alter the associated tangle. Maintaining the nomenclature of the
above calculus for arborescent pairs, we indicate (using italics) only the changes
required in it. A weighted planar tree with free bonds labelled by elements of V4
as explained above is given.
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Flips.

(F1) Reverse the cyclic order of bonds at every vertex of the tree and apply ζ
to every free bond.

(F2) Reverse the cyclic order at one vertex on the tree and at every vertex at
even distance from it; also apply ξ to every free bond of a vertex at even
(or zero) distance, and apply η to every free bond at odd distance.

(F3) Replace
a
a′

by
a± 1
a′ ∓ 1

, where the cyclic order of bonds

and eights is reversed at all vertices lying to the right of the vertex shown,
and at odd distance from this vertex. Also, apply ξ to all free bonds in

that are attached to a vertex at even distance from the vertex shown,
and η to those at odd distance.

Ring move (R). Unchanged, as well as the modified ring moves (R±).
Boundary moves. Omitted!
Arithmetic moves. Unchanged, except for

(0.2) Replace a 0
b

by a+ b , where the cyclic orders of

bonds are reversed in the right hand side subgraph and where ζ is
applied to every free bond there, while nothing is changed in the left hand
side subgraph .

12.7.2. Canonical trees for arborescent tangles. As for the calculus of
arborescent pairs, we now define for weighted planar trees with free bonds labelled
by elements of V4 a notion of canonicity with respect to the calculus of arborescent
tangles. We are content to only point out the differences with the calculus of
arborescent pairs.

Canonicity is defined by three conditions (W), (S), and (P) or (N).
The Weight Condition (W) is unchanged; but the Free Bond Condition (F) is

absent since the present calculus has no boundary moves.
The Stick and Positivity Conditions (S) and (P) change somewhat because

there now may exist sticks having a bond that is free in Γ. They become:

(S) On any stick the weights are non-zero except for end vertices that have a
bond free in Γ0 and for the cases Γ0 = 0 0 , Γ0 = 0 . The non-zero
weights along any stick are of alternating sign. No end vertex of a stick
has weight ±1 unless it has a bond free in Γ0, or Γ0 =±1.

(P) There are no sticks in Γ0 of the form −1, −2, −2 or −2 except ones
having a bond that is free in Γ0.

The negativity condition (N) is similarly defined.
By the same argument as for Theorem 12.9 and Corollary 12.10, one readily

proves:

Theorem 12.19. There exists an effective algorithm which, for any weighted
planar tree Γ with free bonds labelled by elements of V4, alters Γ by a sequence of
moves of the calculus of arborescent tangles to produce a collection of positively (or
negatively) canonical weighted planar trees. �

Corollary 12.20. Every arborescent tangle is obtained by pairwise connected
sum operations from arborescent tangles associated to positively (or negatively)
canonical weighted planar trees (with labels in V4 at free bonds). �
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12.7.3. Modified flips for arborescent tangles. As in the calculus of ar-
borescent pairs, the Weight Condition (W) is not respected by Flip (F3). We
consequently replace it by

(F′
3) Replace a by

a
where, if a is odd, the cyclic order of

bonds and weights is reversed at all vertices of the subtree lying at
odd distance from the marked vertex. Moreover, still when a is odd, the
free bonds in have their label in V4 modified by ξ for those attached
to a vertex at even distance, and by η for those at odd distance.

Since no boundary moves are allowed, flip (F′′
3 ) disappears.

We can now state our main classification theorem of arborescent tangles, which
is exactly the counterpart of Theorem 12.12 and will be proved in §13.4.

Theorem 12.21 (Classification Theorem for arborescent tangles). Consider
two positively (or negatively) canonical weighted planar trees Γ and Γ′, with free
bonds labelled by elements of V4. Plumbing according to Γ and Γ′ gives isomorphic
arborescent tangles if and only if Γ and Γ′ can be deduced from each other by a
sequence of flips (F1), (F2), (F

′
3) and of modified ring moves (R+) (or (R−)).

To make this theorem more practical, we can introduce abbreviated trees in
exactly the same manner as in §12.3, in such a way that two canonical weighted
planar trees (with labels in V4) are equivalent by flips (F1), (F2), (F

′
3) and modified

ring moves (R±) if and only if their abbreviated trees are equivalent by flips (F1),
(F2), (F

′
3).

The algorithm of §12.5 easily extends to this context, and is even somewhat
simpler. To describe it, consider two abbreviated canonical trees Γ and Γ′ (with
labels in V4) and an isomorphism ϕ : Γc → Γ′

c between their underlying combina-
torial trees which respects weights, ring numbers and bond dihedral orderings (but
not necessarily labels in V4). We want to decide whether ϕ is an isogeny.

If Γ has no free bond, the data and flip equivalences are exactly the same as
for the calculus of arborescent pairs. Thus we can use in this case the algorithm of
§12.5.

If Γ has some free bond, label its vertices as v1, v2, . . . , vn so that v1 bears this
free bond f and each vi+1 is adjacent to vi. Modifying Γ′ by suitable flips (F1) or
(F2), we can assume that the label (in V4) of ϕ(f) in Γ′ is the same as the label
of f in Γ. As in §12.5, progressively modify Γ′ by a succession of flips (F′

3) of the
calculus of arborescent tangles, so as to make ϕ respect the cyclic order of weights
and bonds at as many vi as possible. Further, choose each of these flips(F′

3), so
that the free bond ϕ(f) is in the subgraph fixed by this flip; observe in particular
that the label of ϕ(f) is then unchanged by these flips.

After a finite number of such modifications, either we succeed in making ϕ an
isogeny induced by an isomorphism of weighted planar trees (with labels in V4, or
we reach a situation where the hypotheses of Proposition 12.22 below are satisfied,
in which case this statement proves that ϕ is not an isogeny. This clearly completes
the extended algorithm.

Proposition 12.22. With the above data, assume that there is an i > 1 such
that ϕ respects the cyclic orders of weight and bonds at each vertex vj with j < i,
and that the labels of the free bond f in Γ and of ϕ(f) in Γ′ are identical. Assume
moreover that:

(a) either ϕ reverses the cyclic order of bonds at vi;
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(b) or ϕ does not respect the label in V4 of some free bond of a vertex vj with
1 6 j < i.

Then ϕ is not an isogeny.

Proof. Similar to that of Proposition 12.18. Exercise. �

12.8. The calculus of marked arborescent pairs

A marking is something weaker than a tangle structure: Each Conway sphere
parametrisation is replaced by an essential circle (up to isotopy). Why need we
consider them at all?

For a knot (S3,K) which is simple for Schubert, we defined in Chapters 3 and
7 an arborescent part (A,K ∩ A) which is well-defined up to pairwise isotopy, and
is thus a geometric invariant of this knot. Very often, it is possible to sharpen this
invariant by singling out some extra structure on the boundary of this arborescent
part. In most cases, we will have to be content with data weaker than a tan-
gle structure, called boundary markings. We will indicate in Chapter 17 several
standard ways in which one can select such preferred boundary markings for the
arborescent part of a knot.

We add that markings again prove more suitable than tangle structures in the
study of knot automorphisms in Chapters 15–18.

We now formulate the classification of marked arborescent pairs in terms of
weighted planar trees; the proof of the corresponding classification theorem is de-
ferred to §13.3.

Consider a Conway sphere (S, P ); namely, P consists of 4 distinct points of
the 2–sphere S. By definition, a marking of (S, P ) is a pairwise isotopy class of
1–submanifolds k of S made of two disjoint arcs with ∂k = P . Equivalently, a
marking can be defined as a pairwise isotopy class of connected curves in S − P
separating P into twice two points. Indeed one easily goes from one definition to
the other by considering a closed curve separating the two arcs; compare Figure 9.2.

When (S, P ) is identified to the standard Conway sphere (S2, P 0), we saw
in §9A that a marking has a well-defined slope which is an element of Q ∪ ∞.
Moreover, two distinct markings have different slopes, and every element of Q∪∞
is the slope of some marking. Thus, markings of (S, P ) ∼= (S2, P 0) are in one-to-one
correspondence with their slopes in Q ∪∞.

We define a marked knot pair as the data of a knot pair (M,K) together
with a marking Ci on each of its boundary component Si. We usually denote such
a marked arborescent pair by (M,K;C) when C =

⋃
Ci.

A tangle naturally defines a marked knot pair by considering its underlying
knot pair together with, on each boundary component, the marking that has slope
0 for the identification of this boundary component with the standard Conway
sphere (S2, P 0) specified by the tangle structure. In particular, this enables us to
associate a marked arborescent pair to each planar tree with integral weights in its
angular sectors, via plumbing construction as in §12.1.

12.8.1. Moves for marked arborescent pairs. In Complement 12.7, we
observed that most moves of the calculus of arborescent pairs induce pair iso-
morphisms which are slope preserving on the boundary, for the tangle structure
inherited from plumbing construction. In particular, these moves do not affect the
marked arborescent pairs associated to the corresponding weighted planar trees.
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For convenience, we recall here the list of these moves, referring to §12.3 for their
precise description.
Flips (F1), (F2), and (F3).
Ring move (R) (or modified ring moves (R+) and(R−)).
Arithmetic moves (0.1), (0.2), (1.0), (1.1), (1.2), (2.0), (2.1), (2.2), and (0.1∗).

On the other hand, the boundary moves of §12.3 do change the markings of the
corresponding arborescent pairs. In the plumbing calculus of marked arborescent
pairs, they are replaced by the following:
Boundary moves

(B1) Replace
a 0

by .
(B2) Replace

a 0
by

0 0
.

The fact that these two boundary moves do not change the associated marked
arborescent pairs is still a consequence of the pair isomorphism of Figure 12.19.
(Also note that (B1) is a consequence of (B2) and (0.2).)

12.8.2. Canonical trees for marked arborescent pairs. In the calculus
of marked arborescent pairs, canonicity for a weighted planar tree Γ is to be defined
by four conditions (W), (S), (F), and (P) or (N).

The Weight Condition (W) is the same as in the calculus of arborescent pairs,
namely that at most one weight is non-zero at each vertex.

The Stick Condition (S) is slightly different, because of the new form of bound-
ary moves. Recall that Γ0 is obtained from Γ by forgetting its embedding in the
plane.

(S) On any stick of Γ0, the weights are non-zero and of alternating signs,

except for sticks 0 which have one bond free in Γ0, and unless Γ0 is
0 , 0 , 0 0 , or 0 0 . No end vertex of a stick has weight ±1
unless Γ is ±1.

The Free Bond Condition (F) is also modified.

(F) Any vertex which is adjacent to a stick 0 (whose other bond is free in
Γ0 ) has weight 0.

The Positive Canonicity Condition (P) for (+)–canonical trees, or the Negative
Canonicity Condition (N) for (−)–canonical trees, are the same as for the calculus
of unmarked arborescent pairs.

Theorem 12.23. There exists an effective algorithm which, for any weighted
planar tree Γ, alters Γ by a sequence of moves of the calculus of marked arbores-
cent pairs to produce a collection of weighted planar trees that are positively (or
negatively) canonical for this calculus.

Proof. The algorithm is approximately the same as that for the calculus of
unmarked arborescent pairs. One should just add the following modifications:

a ±1
becomes a∓ 1

∓1

0 by the inverse of (1.2), and then

a∓ 1
by the boundary move (B1).
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Replace ±1 by
0

∓1

±1

∓1

0
by the inverse of the boundary move

(B1) applied twice, then by
0 0 0 0

by an application of (1.2), and finally

by
0 0

using (0.2).

Turn ±1 into
±1 ∓1 0

by the inverse of (B1), and then to
0 0

by
(1.1).

Replace
a ±2

by
a ±2 0 0

by the inverse of (B1), then

by
a∓ 1 ∓2 ∓1 0

using (2.2), and eventually by
a∓ 1 ∓2

with (B1).

Finally,
±2

becomes
±2 0 0

using the inverse of (B1), then
∓2 ∓1 0

by (2.1), and
∓2

by (B1). �

Corollary 12.24. Every marked arborescent pair is obtained by pairwise con-
nected sum operations from marked arborescent pairs associated to weighted planar
trees that are positively (or negatively) canonical for the calculus of marked arbores-
cent pairs. �

12.8.3. Modified flips for marked arborescent pairs. Recall that flips
are moves preserving canonicity. The flips for arborescent pairs must be modified
for marked arborescent pairs.

Flip (F3) must be modified to respect the Weight Condition (W), and is re-
placed by two flips (F′

3) and (F′
3). Flip (F′

3) is the same as is the calculus of
(unmarked) arborescent pairs. Flip (F′′

3 ) is different, owing to the new form of
boundary moves.

(F′′
3 ) If Γ can be split as

0

0
, reverse the cyclic order of bonds and

weights at all vertices of the right hand side subgraph lying at odd
distance from the one of the 3 vertices shown that is adjacent to this
subgraph.

We can now state our classification theorem of pairwise irreducible marked
arborescent pairs, which will be proved in §13.3.

Theorem 12.25 (Classification Theorem for marked arborescent pairs). Two
marked arborescent pairs obtained by plumbing according to two positively (or neg-
atively) canonical weighted planar trees Γ and Γ′ are isomorphic if and only if Γ
and Γ′ can be deduced from each other by a sequence of flips (F1), (F2), (F

′
3), (F

′′
3 )

and of modified ring moves (R+) (or (R−)).

For practical applications of this result, it is necessary to have an efficient
method to detect when two canonical weighted planar trees are flip equivalent. The
method we have developed for unmarked arborescent pairs, by the introduction of
abbreviated trees in §12.5 and by the algorithm of §12.6, straightforwardly extends
to the framework of marked pairs. The abbreviated (+)–canonical trees for this
calculus of marked arborescent pairs are weighted planar trees with ring numbers,
which satisfy the above Conditions (W), (S), (F), (P) (defining sticks as in §12.5),
together with the same Abbreviation Condition (A) as for unmarked pairs in §12.5.
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To adapt the algorithm of §12.6, one just needs to replace any diagram

by r

0

0
because of the new form of Flip (F′′

3 ). Beware however that ring

numbers are not completely negligible in this case, as Flip (F′′
3 ) takes them into

account.





CHAPTER 13

Classification of arborescent knots and pairs (the

proofs)

This chapter is devoted to proving the main classification theorems stated in
Chapter 12, which assert that pairwise irreducible pairs (or tangles, or marked pairs)
are classified by certain canonical weighted planar trees, modulo flip equivalences.
After the work accomplished in Chapters 9, 10 and 11, what remains of the proof
is now combinatorial in nature and involves almost no fresh geometry.

The success of the plumbing calculus can be attributed to Lemma 13.1, be-
low, together with elementary facts about continued fractions. Recall that a braid
tangle (M,K; θ) is one such that the knot pair (M,K) is pair isomorphic to the
thickened Conway sphere (S2, P 0) × [0, 1]. This product structure defines, up to
pairwise isotopy, a preferred degree −1 identification (S+, S+∩K)→ (S−, S−∩K)
between the two boundary components S+ and S− of M . Through the parametri-
sation θ by the standard Conway sphere (S2, P 0), it therefore defines a degree −1
element of π0 Aut(S

2, P 0), whose action on slopes is described by a determinant
−1 element of PGL2(Z), according to Corollary 11.4. Presently, Lemma 13.1 will
relate this element of PGL2(Z) to the plumbing construction of Chapter 12.

Before stating this result, we introduce some notation. Let [a1, . . . , an] denote
the continued fraction

[a1, . . . , an] = a1 +
1

a2 +
1

· · ·+
1

an

and let [[a1, . . . , an]] denote the alternating continued fraction

[[a1, . . . , an]] = [a1,−a2, . . . , (−1)
n−1an] = a1 −

1

a2 −
1

· · · −
1

an

.

Lemma 13.1. Let (M,K; θ) be the arborescent braid tangle associated by plumb-

ing construction to the linear weighted planar tree
a′1 a′2 a′n
a′′1 a′′2 a′′n

, and let S−

and S+ be the two components of ∂M respectively corresponding to the left and
right free bonds of the above linear tree. Then the pair (M,K) admits a product
structure inducing an identification (S+, S+ ∩K)→ (S−, S− ∩K) whose action on
the slopes is described by

(
An Bn
Cn Dn

)
∈ PGL2(Z)

173



174 13. CLASSIFYING ARBORESCENT PAIRS (THE PROOFS)

where, if ai = a′i + a′′i denotes the total weight of the i–th vertex,

Dn/Cn = [[an, an−1, . . . , a1]]

An/Cn = −[[a1, a2, . . . , an]]

AnDn −BnCn = −1.

Note that Cn/An is precisely the slope image of the slope 0, and that the above
relations completely determine the element of PGL2(Z) considered.

Proof. One proceeds by induction on n. When n = 1, one readily sees on the
model 2–valent atomic tangle that

(
A1 B1

C1 D1

)
=

(
−1 0
a1 1

)
.

In general, composing plumbing maps and identifications corresponding to each
building block, one gets

(
An Bn
Cn Dn

)
=

(
−1 0
a1 1

)(
0 1
1 0

)(
−1 0
a2 1

)(
0 1
1 0

)
. . .

(
0 1
1 0

)(
−1 0
an 1

)

=

(
An−1 Bn−1

Cn−1 Dn−1

)(
an 1
−1 0

)
.

In particular, by induction,

Dn/Cn = (an −Dn−1/Cn−1)
−1 = [[an, an−1, . . . , a1]].

On the other hand, applying this formula to
(
−Dn Bn
Cn −An

)
=

(
An Bn
Cn Dn

)−1

=

(
−1 0
an 1

)(
0 1
1 0

)(
−1 0
an−1 1

)(
0 1
1 0

)
. . .

(
0 1
1 0

)(
−1 0
a1 1

)

immediately yields An/Cn = −[[a1, a2, . . . , an]] as claimed. �

The second chief ingredient of our proof of Theorems 12.12, 12.23 and 12.25
is the following immediate consequence of the uniqueness of decompositions in
continued fractions (see for instance [HarW]):

Lemma 13.2. Let a1, a2, . . . , an be a sequence of non-zero integers of alternat-
ing signs, such that a1 and an are both distinct from ±1. Then the rational number
[[a1, . . . , an]] is not zero, has absolute value 6 1

2 , and completely determines the
sequence a1, a2, . . . , an.

Conversely, every non-zero rational number in the interval [− 1
2 ,+

1
2 ] is equal

to [[a1, . . . , an]] for some (unique) sequence of non-zero integers a1, . . . , an of
alternating signs, with a1, an 6= ±1 . �

13.1. Rephrasing the classification of Montesinos pairs

As a first step towards our classification of arborescent pairs, we will rephrase in
terms of the plumbing calculus the classification of pairwise irreducible Montesinos
pairs which we gave in Chapter 11, adopting the language of abbreviated trees
developed in §12.5. Thus we will prove the restricted version of Theorem 12.12 for
Montesinos pairs.
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Consider an abbreviated (+)–canonical tree Γ for the calculus of arborescent
pairs, as defined in §12.5. Such a tree is stellar when at most one of its vertices is
essential, namely has valence > 3 or ring number > 1. In other words, Γ is stellar
when it is star-shaped and when only its central vertex can have ring number > 1.

Given such a stellar (abbreviated (+)–canonical) tree Γ, we will associate to Γ
a fractional data vector analogous to the fractional data vectors used in Chapter 11
to classify Montesinos pairs. It will turn out that the pair (M,K) obtained by
plumbing according to Γ is a Montesinos pair, whose associated fractional data
vector in the sense of Theorem 11.7 is precisely the one just defined for Γ (up to
a few details in some special cases, owing to the respective conventions adopted in
Chapters 11 and 12).

Remember that we decided to denote by solid black dots (without any indica-
tion of ring numbers) the vertices of Γ which have ring number 0, and by hollow
small dots those with ring number 1. We will adopt the same convention for the
weighted tree Γ0 obtained from Γ by forgetting the embedding in the plane; this
Γ0 consists of the combinatorial tree underlying Γ together with, attached to each
vertex, the ring number and (total) weight of this vertex.

First consider the case when Γ0 is not a stick
a1 a2 an , so that Γ0

(and Γ) has a well-defined “central” vertex: This central vertex is by definition
the unique one with valence > 3 or ring number > 1, except in the degenerate
cases when Γ is 0 , 0 or 0 , where the central vertex is of course the only
existing vertex. Index the bonds around this central vertex by i = 1, . . . , k in the
cyclic order prescribed by Γ. Then the fractional data vector (r; e0; m̄1, . . . , m̄k)
associated to Γ equipped with this bond indexing is defined as follows:

(1) The number r ∈ N is the ring number of the central vertex.
(2) If the i–th bond of the central vertex is a free bond of Γ, m̄i is the symbol

∅. Otherwise, this i–th bond is adjacent to a stick
a1 a2 an of

Γ0, and m̄i ∈ Q/Z is defined as the mod 1 reduction of the alternating
continued fraction mi = [[a1, a2, . . . , an]]; note that this makes sense as
mi 6=∞ by Lemma 13.2 and by the Stick Condition (S) imposed to Γ (see
§12.5).

(3) The data e0 is the symbol ∅ when Γ has a free bond, namely when some
m̄i is ∅. Otherwise e0 is the rational number e −

∑
imi where e ∈ Z is

the weight of the central vertex.

When Γ is linear, namely when Γ0 is a stick
a1 a2 an with n > 2, one

similarly defines a fractional data vector by making one of the two end vertices play
the role of the central vertex in the previous construction. In other words, when
choosing the left end vertex as central vertex, the associated fractional data vector
is (0; e0;−e0) where e0 = a1− [[a2, . . . , an]] = [[a1, . . . , an]]

−1 and −e0 ∈ Q/Z is the
mod Z class of e0. Of course, this fractional data vector depends on the end vertex
chosen to be “central”.

We claim that this fractional data vector characterises Γ modulo flip equiva-
lences, namely modulo the equivalence relation generated by the Flips (F1), (F2),
(F′

3), (F
′′
3 ) of the calculus described in §12.5.

Lemma 13.3. Given a stellar abbreviated (+)–canonical tree Γ for the calculus
of arborescent pairs, the flip equivalence class of Γ is characterised by the fractional
data (r; e0; m̄1, . . . , m̄k) associated to Γ as above, taken up to dihedral permutation
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of m̄1, . . . , m̄k, together with the exchange:

(0;− β
α ;

β
α )←→ (0;− β

α′
; βα′

) when αα′ ≡ 1 mod β.

Proof. As Γ is stellar, it is immediate that its flip equivalence class is char-
acterised by:

(i) the weighted tree Γ0 obtained by forgetting the embedding in the plane;
(ii) when Γ has a well-defined central vertex, the cyclic ordering of the bonds

of this vertex, taken modulo orientation reversal.

To prove Lemma 13.3, first consider the case when Γ has a well-defined cen-
tral vertex. If mi = [[a1, a2, . . . , an]] is the rational number associated to a stick
a1 a2 anof Γ0, it follows from Lemma 13.2, together with the Stick Condi-

tion (S) and the Positivity Condition (P) of §12.5 that mi is in the interval
]
− 1

2 ,
1
2

]
.

Thus, mi is completely determined by its class m̄i ∈ Q/Z, and the weights a1, a2,
. . . , an can therefore be recovered from −mi ∈ Q/Z by Lemma 13.2 (and the Stick
Condition). Noting that the central weight e ∈ Z is determined by the property
that e = 0 when e0 = ∅, and e = e0 +

∑
imi otherwise, Lemma 13.3 immediately

follows in this case.

When Γ has no well-defined central vertex, namely when Γ0 is a stick
a1 a2 an,

the two choices of end vertices yield two fractional data vectors (0;− β
α ;

β
α ) and

(0;− β
α′
; β

′

α′
) where β

α = −[[a1, a2, . . . , an]]
−1 and β′

α′
= −[[an, an−1, . . . , a1]]

−1.
By Lemma 13.2, the Stick Condition (S) and the Positivity Condition (P),

both α
β and α′

β′
are in the interval

]
− 1

2 ,+
1
2

]
. Also, by elementary properties on

continued fractions (see Lemma 13.1), one has β = β′ and αα′ ≡ 1 mod β. Thus the
exchange appearing in the statement of Lemma 13.3 precisely reflects this ambiguity
of choosing an end vertex of Γ to define its fractional data vector. The proof of
Lemma 13.3 in the case considered now follows immediately from Lemma 13.2,
using the Stick Condition. �

What are the fractional data vectors (r; e0; m̄1, . . . , m̄k) which can actually
occur for a stellar (+)–canonical tree Γ? By inspection, one readily sees that the
precise conditions are:

(i) r ∈ N.
(ii) Each m̄i is in (Q/Z− 0) ∪∅.
(ii) e0 = ∅ when some m̄i is ∅; otherwise, the class of e0 in Q/Z equals
−
∑
m̄i.

(iv) The following fractional data vectors are excluded:
(a) (0; e0; m̄1, m̄2) with m̄1 6= ∅;
(b) (0; e0;−e0) with e0 ∈ Z or e0 ∈ Q ∩ [−2,+2];
(c) (0;−1; ) and (0;−2; );
(d) (1; e0; m̄1), (1; e0; ), (2; e0; ).

Only the exclusions in (iv) deserve some explanation: (a) is excluded because
of the Free Bond Condition (when m̄2 = ∅) and because we decided to choose
an extremity as the central vertex for linear trees. By construction, a data vector
(0; e0,−e0) with e0 ∈ Q can only come from a linear tree with > 2 vertices; the
exclusion of (b) then immediately follows from Lemma 13.2 and the Stick Condition
(S). The exclusions (c) and (d) respectively reflect the Positivity Condition (P) and
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the Abbreviation Condition (A) imposed on abbreviated (+)–canonical trees (see
§12.5).

Proposition 13.4. Let Γ be a stellar abbreviated (+)–canonical tree, with as-
sociated fractional data vector (r; e0; m̄1, . . . , m̄k) as above, and assume that Γ is
different from 0. Then the arborescent pair (M,K) obtained by plumbing according
to Γ, as defined in §12.5, is the pairwise irreducible Montesinos pair classified by
the same fractional data vector in the sense of Theorem 11.7, unless this one is
(0; e0; ) with e0 6= −1, −2, or (r; e0; ) with r > 3 and e0 6= 0. For these two

exceptions, (M,K) is respectively classified by
(
0; e0

1+e0
;− e0

1+e0

)
and (r; e0; 0̄).

Conversely, any pairwise irreducible Montesinos pairs is obtained by plumbing
according to a (+)–canonical stellar tree, except for the ones classified by a fractional
data vector (2; e; ) with e ∈ Z − 0. These last Montesinos pairs are obtained by
plumbing according to the (+)–canonical weighted planar trees:

2

2
1

2

2
1

e
if e 6= 0,±1,−2

2

2

2

2
if e = 1

2

2
2

2

2
2 if e = −1

2

2
2

2

2
2

2
if e = −2.

Proof. By the plumbing construction, a building block or plumbing block
(Mv,Kv) ⊂ (M,K) is naturally associated to each vertex v of Γ; namely, (Mv,Kv)is
the copy of the corresponding model atomic tangle (possibly with rings) of §12.5
used in the construction. Note that the knot pair (Mv,Kv) comes with a preferred
tangle structure inherited from the one of the model atomic tangle. If v has ring
number r > 0 and weight e ∈ Z, this tangle (Mv,Kv) can clearly be presented as
a Montesinos tangle by plugging r ring tangles and one rational tangle of slope −e
to a hollow Montesinos tangle.

First consider the case when Γ has a well-defined central vertex w, and look at
the corresponding building block (Mw,Kw).

Each closed-up component N of M −Mw is the union of the building blocks

associated to the vertices of some stick
a1 a2 an of the weighted tree Γ0

(= Γ minus the embedding in the plane). From this, one readily sees that (N,K∩N)
is a rational tangle pair. Thus the pair (M,K) is obtained by plugging rational
tangles to the Montesinos tangle (Mw,Kw), and is consequently a Montesinos pair.
To determine the fractional data vector associated to this Montesinos pair, we need
to compute the slope on ∂(Mw,Kw) of the pairwise essential discs of these rational
tangles.

For this purpose, consider such a rational tangle (N,L; θ) obtained by plumbing
according to a weighted planar tree which, disregarding the embedding in the plane,

is of type
a1 a2 an . As a matter of fact, the embedding of the tree (and
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weights) in the plane is clearly irrelevant, by application of Flip (F1) of the plumb-
ing calculus. The tangle (N,L; θ) can also be obtained by, first, plumbing according

to
a1 a2 an , and then plugging a rational tangle of slope 0 into the braid

tangle so obtained, along the boundary component corresponding to the right hand
bond. Applying Lemma 13.2, it follows that (N,L; θ) is a rational tangle of slope
−[[a1, a2, . . . , an]]

−1. On the other hand, plumbing the tangle (N,L; θ) corresponds
to plugging the tangle (N,L; τθ) where τ is the automorphism of the standard Con-
way sphere (S2, P 0) in R3 defined by τ(x, y, z) = (y, x,−z) (compare the beginning
of §12.1). As τ sends slope q

p to slope − pq , it follows that plumbing (N,L; θ) to

some tangle amounts to plugging a rational tangle of slope [[a1, a2, . . . , an]] along
the same boundary component.

After this, we are ready to complete the proof. Index the bonds of w by i = 1,
. . . , t, in the cyclic order prescribed by Γ, starting from the angular sector where
the weight e ∈ Z of w sits (arbitrarily if e = 0 is omitted). Define mi to be ∅ if the
i–th bond of w is a free bond of Γ, and mi = [[a1, a2, . . . , an]] when this i–th bond is

adjacent to a stick
a1 a2 an of Γ0. By the above considerations, the pair

(M,K) clearly has a presentation with raw data vector (r;−e,m1,m2, . . . ,mt) as
defined in §11.1.

If some mi is ∅, then e = 0 and (M,K) also has a restricted presentation with
raw data vector (r;m1,m2, . . . ,mt) and fractional data vector (r;∅; m̄1, m̄2, . . . , m̄t)
where m̄i ∈ Q/Z∪∞ is defined as usual, which is precisely the fractional data vector
associated to Γ.

If all mi are in Q but t > 1, then by Theorem 11.6 (M,K) has a presentation
with raw data vector (r; 0,m1 − e,m2, . . . ,mt) and thus one with raw data vector
(r;m1 − e,m2, . . . ,mt). The fractional data vector associated to this presentation
then is (r; e0; m̄1, m̄2, . . . , m̄t) where e0 = e −

∑
imi and m̄i ∈ Q/Z is the mod 1

reduction of mi, which is the fractional data vector associated to Γ, as expected.
Lastly, when Γ consists of a single 0–valent vertex, so that there is no mi, note

that r 6= 1, 2 by the Abbreviation Condition (A) for abbreviated (+)–canonical
trees. When r > 3, the fractional data vector (r; e; 0) associated to the presentation
of (M,K) is of the type required to classify (M,K) in Theorem 11.7. When r = 0,
Γ is classified by (r; e; ) with e 6= 0, −1, −2; the equivalence of Figure 8.34 shows

that (M,K) has a restricted presentation with raw data vector
(
0;− e

1+e

)
and thus

with fractional data vector
(
0; e

1+e ;−
e

1+e

)
.

The only remaining case is now when Γ has no central vertex, namely is a linear
stick with > 2 vertices. But the proof is exactly the same as above.

This completes the proof of the first part of Proposition 13.4.
To prove the second statement of Proposition 13.4, it suffices to compare the

respective domains to which fractional data vectors associated to pairwise irre-
ducible Montesinos pairs or stellar (+)–canonical trees are restricted, using the
exchanges of Theorem 11.7 if necessary. By inspection, one readily sees that the
only pairwise irreducible Montesinos pairs that are not obtained by plumbing ac-
cording to a (+)–canonical stellar tree are those classified by (2; e; ) with e ∈ Z−0.
But these are clearly obtained by plumbing according to the weighted planar trees
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2

−2

−2

2
e

(compare Figure 12.18), and thus according to the (+)–canonical

trees listed in Proposition 13.4 by using Moves (1.2) or (2.2) when possible. �

Combining Proposition 13.4, Lemma 13.3 and Theorem 11.7, we get:

Theorem 13.5. The plumbing construction defines a one-to-one correspon-
dence between the degree +1 isomorphism classes of pairwise irreducible Montesinos
pairs, and the flip equivalence classes of (+)–canonical abbreviated trees which either

are stellar or are flip equivalent to one of
2

2

2

2
,
2

2
2

2

2
2 ,

2

2
2

2

2
2

2

and
2

2
1

2

2
1

e
with e 6= 0, ±1, −2, excluding the weighted tree 0. �

13.2. Proof of the classification of arborescent pairs

Having proved in the previous section the restricted version of Theorems 12.12
and 12.15 for Montesinos pairs, we now pass to the general case.

Consider a (+)–canonical abbreviated tree Γ, and let (M,K) be the arborescent
pair associated to Γ by plumbing construction. By construction a plumbing block
(Mv,Kv) ⊂ (M,K) is associated to each vertex v of Γ, and this pair (Mv,Kv)
comes with a preferred tangle structure inherited from the corresponding model
atomic tangle (with rings). Similarly, a Conway sphere Se ⊂ (M,K) separating
two plumbing blocks is naturally associated to each edge e of Γ, namely Se is the
sphere separating the building blocks corresponding to the two end vertices of e.

In a first step, we will recover the characteristic decomposition defined in Chap-
ter 9 from this plumbing description of (M,K).

As usual, let Γ0 denote the weighted tree obtained from Γ by forgetting all
data concerning the embedding in the plane, and recall that a stick is a component
of the weighted graph defined by removing from Γ0 all essential vertices, namely
those with valence > 3 or ring number > 1, together with their attached bonds and
weights. A stick is open , half-open or closed according as it has 2, 1 or 0 free
bonds, respectively. (Note that a closed stick must be equal to Γ0).

For each essential vertex v of Γ, let M̂v ⊂ M denote the union of the build-
ing block Mv together with the building blocks Mw associated with all vertices w
which are contained in a half-closed stick of Γ0 that is adjacent to v. Then, con-

sider (M̂0
v , K̂

0
v) ⊂ (M,K) obtained from (M̂v,K ∩ M̂v) by removing a small collar

neighbourhood of its boundary, so that all M̂0
v are now pairwise disjoint. Finally

let M̂0 ⊂M denote the union of these M̂0
v , with v ranging over all essential vertices

of Γ.
By construction, and except in the degenerate case where Γ0 is itself a stick,

each closed-up component of (M,K)−(M̂0,K∩M̂0) is a thickened Conway sphere,
namely is isomorphic to (S2, P 0) × [0, 1]. Indeed, such a closed-up component
is obtained by thickening, either the union ∼= (S2, P 0) × [0, 1] of the blocks Mw

corresponding to the vertices w of some open stick of Γ0, or the Conway sphere Se
associated to an edge e of Γ0 that joins two essential vertices of Γ0.

Proposition 13.6. With the above data, assume that Γ0 is not one of the trees
0 ,
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2

2

2

2
,
2

2
2

2

2
2 ,

2

2
2

2

2
2

2
or

2

2
1

2

2
1

a
with a 6= 0, ±1, −2.

Then the arborescent pair (M,K) is pairwise irreducible and, up to pairwise isotopy,

∂M̂0 ⊂ M consists of two parallel copies of the characteristic family of Conway
spheres in (M,K) defined in Chapter 9 (splitting (M,K) into Montesinos pairs)
and of a parallel copy of ∂M .

Proof. When Γ is stellar, then ∂M̂0 = ∅ and (M,K) is itself a pairwise
irreducible Montesinos pair, by Proposition 13.4, so that the characteristic family
of Chapter 9 is also empty. Thus Proposition 13.6 is already proved in this case,

and we will henceforth assume that Γ is not stellar, or equivalently that ∂M̂0 6= ∅.

By construction, each (M̂v, K̂v) is obtained by plumbing according to the
weighted planar tree Γv ⊂ Γ that consists of v, of the vertices contained in half-open
sticks of Γ0 adjacent to v, and of the weights and bonds attached to these vertices

(including v). In particular, (M̂v, K̂v) comes with a preferred tangle structure in-

herited from this plumbing description. As (M̂0
v , K̂

0
v) is obtained from (M̂v, K̂v)

by removing a small collar neighbourhood of its boundary, this induces a tangle

structure on (M̂0
v , K̂

0
v ) which is only defined up to pairwise isotopy.

Let Γ0
v be defined by removing from Γv the weight of v (keeping all other

data). Then the pairs (M̂v, K̂v) and (M̂0
v , K̂

0
v ) can also be obtained by plumbing

according to Γ0
v, by boundary move (B2) of the plumbing calculus (extended to

abbreviated trees). Also, the abbreviated tree Γ0
v is stellar, and is (+)–canonical

for the calculus of arborescent pairs (see Proposition 12.16). By Theorem 13.5,

it follows that (M̂0
v , K̂

0
v ) is a pairwise irreducible Montesinos pair, not a rational

tangle pair since Γ0
v is never by construction.

In particular, each closed-up component of (M,K) − ∂M̂0 is pairwise irre-
ducible, and has pairwise incompressible boundary by Corollary 8.18. By a now
standard innermost circle argument (compare the proof of Theorem 8.16), it im-

mediately follows that (M,K) is pairwise irreducible and that ∂M̂0 is pairwise
incompressible in (M,K).

To prove that the above splitting of (M,K) into Montesinos pairs is actually
the characteristic splitting of Chapter 9, we will use Criterion 9.5. So, consider two

components M̂0
v and M̂0

w of M̂ which are adjacent to each other, namely separated

in (M,K) by a closed-up component (W,W ∩K) ∼= (S2, P 0) × [0, 1] of M − M̂0.

We need to show the following: For any presentation of (M̂0
v , K̂

0
v ) and (M̂0

w, K̂
0
w)

as restricted Montesinos pairs, the traces on ∂W of the corresponding bands do
not project to pairwise isotopic pairs of arcs by the projection (W,W ∩ K) ∼=
(S2, P 0)× [0, 1]→ (S2, P 0).

First of all, note that in the description of (M̂0
v , K̂

0
v ) arising from plumbing

construction, the band of this presentation intersects the boundary in arcs of slope

∞. Since Γ0
v is neither nor , (M̂0

v , K̂
0
v) is not a rational tangle pair nor

a thickened Conway sphere (by Theorem 13.5). Thus, the necklace uniqueness
Theorem 10.5 applies to show that the band of any other restricted presentation of

M̂0
v , K̂

0
v ) has slope ∞ on the boundary unless (M̂0

v , K̂
0
v) is isomorphic to the ring

pair.
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By Theorem 13.5, (M̂0
v , K̂

0
v ) is a ring pair precisely when Γ0

v is
2

2
, and thus

when the part of Γ0 corresponding to Γv is of type a
2

2
. By Proposition 10.4,

(M̂0
v , K̂

0
v) has in this case exactly one other necklace, up to pairwise isotopy, and

the band of this necklace has slope 1− a on the boundary. To check this last slope
computation, observe for instance that this is also the boundary slope of the unique

pairwise essential annulus in (M̂0
v , K̂

0
v ), and apply Proposition 8.12.

The same properties similarly hold for (M̂0
w, K̂

0
w).

When v and w are adjacent vertices of Γ, a curve of slope q
p on W ∩ M̂0

v

corresponds through W to a curve of slope p
q on W ∩ M̂0

w. Also, remember that

neither Γv nor Γw can be flip equivalent to 1
2

2
, by the definition of abbreviated

(+)–canonical trees (compare Proposition 12.16). By inspection, it follows that

(M̂0
v , K̂

0
v) and (M̂0

w, K̂
0
w) cannot have restricted presentations whose bands can fit

through W unless Γ0 is one of
2

2

2

2
or

2

2
2

2

2
2 , which precisely has been

excluded.

The remaining case is when v and w are separated in Γ0 by a stick
a′1 a′2 a′n
a′′1 a′′2 a′′n

,

whose left and right free bonds are respectively adjacent to v and w. Then, by

Lemma 13.1, a curve of slope q
p on W ∩ M̂0

w corresponds through the collar W to

a curve of slope q′

p′ on W ∩ M̂0
v with

(
q′

p′

)
=

(
A B
C D

)(
q
p

)

where D/C = [[an, an−1, . . . , a1]], A/C = −[[a1, a2, . . . , an]] and AD − BC = −1.

Searching when q
p and q′

p′ can both be in Z ∪∞, one readily checks that the only

possibilities allowed by Lemma 13.2, together with the Stick Condition (S) and the
Positivity Condition (P) on Γ, are:

(i) n = 1, qp = q′

p′ = −1, and a1 = +2;

(ii) n = 1, qp = q′

p′ = 0, and a1 6= 0, ±1, −2.

Therefore, the only cases when (M̂0
v , K̂

0
v ) and (M̂0

w, K̂
0
w) could have restricted

presentations whose bands fit through the collar (W,K ∩W ) would be the cases

when Γ0 is one of
2

2
2

2

2
2

2
and

2

2
1

2

2
1

a
with a 6= 0, ±1, −2, but

these two possibilities have been excluded by hypothesis.

This proves that the conditions of Criterion 9.5 are satisfied, and thus that ∂M̂0

actually consists of two parallel copies of the characteristic collection of Conway 2–
spheres studied in Chapter 9, together with a parallel copy of ∂M . �

Corollary 13.7. Let (M,K) be the arborescent pair obtained by plumbing
according to a (+)–canonical abbreviated weighted planar tree Γ. Then (M,K) is
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a Montesinos pair if and only if Γ either is stellar, or is flip equivalent to one of

2

2

2

2
,
2

2
2

2

2
2,

2

2
2

2

2
2

2
or

2

2
1

2

2
1

a
with a 6= 0, ±1, −2.

Proof. The arborescent pair (M,K) is a Montesinos pair if and only if the
characteristic family of Chapter 9 is empty. It therefore suffices to combine Propo-
sition 13.6 and the second part of Proposition 13.4. �

Corollary 13.8. Let (M,K) and (M ′,K ′) be arborescent pairs respectively
obtained by plumbing according to the two abbreviated (+)–canonical trees Γ and

Γ′. Define M̂0 ⊂ M and M̂ ′0 ⊂ M ′ as above. Then any degree ±1 isomorphism

ϕ: (M,K)→ (M ′,K ′) can be pairwise isotoped so that ϕ(M̂0) = M̂ ′0.

Proof. When neither Γ nor Γ′ are one of the exceptional trees of Proposi-
tion 13.6, it suffices to combine this result with Theorem 9.1.

When Γ is 0 , (M,K) is pairwise reducible. By Proposition 13.6 and 13.4, Γ
is also necessarily of this type, which proves the statement.

When Γ is flip equivalent to one of the remaining exceptional trees, (M,K)
is a pairwise irreducible Montesinos pair by Proposition 13.4. By Corollary 13.7
and Theorem 13.5, it follows that Γ′ is flip equivalent to Γ. Moreover, recall that
(M,K) then is the Montesinos pair classified by the fractional data vector (2; e; 0)
with e 6= 0, as defined for Theorem 11.7. In particular, the classification of pairwise
incompressible surfaces in Montesinos pairs we gave in Chapter 8 characterises

∂M̂0 as two parallel copies of the unique pairwise incompressible Conway sphere

in (M,K). Since the same property holds for ∂M̂ ′0 in (M ′,K ′), this completes the
proof. �

The next step of our proof will be to show that the decomposition of (M,K)
into plumbing blocks (Mv,Kv) is, in general, characteristic. This will be proved
in Proposition 13.10 below. For later reference, we first note the following slightly
modified form of Proposition 11.1.

Lemma 13.9. Let (N,L) and (N ′, L′) be two model atomic tangles (possibly
with rings), and let S1, . . . , Sk denote the boundary components of N . For any
(degree +1) pair isomorphism ψ : (N,L) → (N ′, L′) sending band to band, there
exist integers n1, . . . , nk such that

(i) Each restriction ψ|Si
: Si → ψ(Si) sends slope q

p to slope q
p + ni.

(ii)
∑

i ni = e− e′ where e and e′ are the sums of the weights of the weighted
planar trees respectively corresponding to (N,L) and (N ′, L′).

Proof. Same as Proposition 11.1. �

Proposition 13.10. Let (M,K) and (M ′,K ′) be two arborescent pairs respec-
tively obtained by plumbing according to two abbreviated canonical trees Γ and Γ′.
Exclude the cases when Γ is stellar with central vertex of valence 3 and ring number

0 and with no free bond, and when Γ is
2 1 2

.
Then any (degree +1) isomorphism ϕ : (M,K) → (M ′,K ′) can be pairwise

isotoped so that it sends each plumbing block (Mv,Kv) of (M,K) to a plumbing
block (M ′

v′ ,K
′
v′) of (M

′,K ′). Furthermore, when ϕ(Mv) =M ′
v′ , the corresponding

vertices v and v′ have the same weights in Γ and Γ′.
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Proof. We first restrict attention to the case when Γ has > 2 vertices, and
has at least one essential vertex. Then, by Corollary 13.7 and Theorem 13.5, so
does also Γ′.

For every essential vertex v of Γ, let (M0
v ,K

0
v) be obtained from (Mv,Kv) by

removing a small collar neighbourhood of the boundary. Let also (M̂v, K̂v) and

(M̂0
v , K̂

0
v) be defined as above Proposition 13.6, where the collars components of

M̂v −M
0
v are chosen so that ∂M̂0

v ⊂ ∂M
0
v .

Similarly, define M ′
v′
0,M̂ ′

v′ and M̂
′
v′
0 for every essential vertex v′ of Γ.

By Corollary 13.8, ϕ can first be pairwise isotoped so that it sends each M̂0
v to

some M̂ ′
v′
0.

As in the proof of Proposition 13.4, the plumbing construction of (M̂v, K̂v)

gives a presentation of (M̂0
v , K̂

0
v) as a restricted Montesinos pair whose necklace Nv

is the necklace of (M0
v ,K

0
v ). Our hypotheses on Γ, together with Theorem 13.5,

prevent (M̂0
v , K̂

0
v ) from being one of the exceptions of the necklace uniqueness

Theorem 10.5, except for the ring pair or the double of the ring pair. In fact,

(M̂0
v , K̂

0
v) can certainly be a ring pair; in this case, the corresponding part of Γ0 is

a
2

2
by Theorem 13.5 and Nv consequently has two Conway spheres.

If N ′
v′ is the necklace similarly defined in M ′

v′ = ϕ(Mv), it then follows from
Theorem 10.5, together with Proposition 10.4 for the ring pair and Proposition 10.11
for the double of the ring pair, that ϕ can be further pairwise isotoped so that
ϕ(Nv) = N ′

v′ .
In particular, ϕ now sends each M0

v to some M ′
v′
0 for any essential vertex v of

Γ.
On each component S of ∂M0

v , we can now distinguish two preferred pairwise
isotopy classes of essential curves, namely what we called markings in §12.8. The
first of these two markings, which is called the internal marking , is simply defined
by the trace of the band of the necklace Nv. It has slope∞ for the tangle structure
of (M0

v ,K
0
v) inherited from the identification of (Mv,Kv) with the corresponding

model atomic tangle.
The second marking, which is called the external marking , is only defined for

components S of ∂M0
v which are not parallel copies of components of ∂M . Let W

be the closed-up component ofM−
⋃
wM

0
w that is adjacent to S. When (W,K∩W )

is a rational tangle pair, this external marking is defined by the boundary of the
pairwise essential disc in (W,K∩W ) (unique up to pairwise isotopy by the analysis
of Chapter 8). Otherwise, (W,K ∩W ) is a collar ∼= (S2, P 0 × I), separating M0

v

from some M0
w and, by definition, the external marking of S corresponds through

W to the internal marking of the boundary component W ∩ ∂M0
w of M0

w.
We have already encountered these external markings in the proofs of Propo-

sitions 13.4 and 13.6, and computed in terms of Γ their slopes for the tangle struc-
ture on (M0

v ,K
0
v ). Indeed, given a component S of ∂M0

v , a bond of the vertex
v is naturally associated to S. If this bond is free bond of Γ, then the external
marking of S is not defined. If this bond leads to another essential vertex w of
Γ, then the slope of the external marking of S is clearly 0 by definition of the
plumbing construction. Otherwise, it is adjacent to the left hand bond of a stick
a1 a2 an or

a1 a2 an of Γ0. In these last cases, we computed
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the slope of the external marking of S in the proofs of Proposition 13.4 and 13.6,
using Lemma 13.1: This slope is in both cases equal to the alternating continued
fraction m = [[a1, a2, . . . , an]]. In this case, observe that m ∈

]
− 1

2 ,+
1
2

]
− 0 by

Lemma 13.2 and the (+)–canonicity conditions satisfied by Γ.
One similarly defines internal and external markings for components of

⋃
v′ ∂M

′
v′
0.

Then, as ϕ sends necklaces Nv to necklaces N ′
v′ , the restriction ϕ|S : S → ϕ(S) to

each component S of
⋃
v ∂M

0
v sends internal marking to internal marking and, when

defined, external marking to external marking.
Let v be an essential vertex of Γ, namely one with bond > 3 or ring number > 1,

and let S1, . . . , Sk denote the components of ∂M0
v . When defined, letmi be the slope

of the external marking of Si, and let m′
i be the slope in (M ′

v′
0,K ′

v′
0) = ϕ(M0

v ,K
0
v)

of the external marking of ϕ(Si). Then, by Lemma 13.9, m′
i = mi mod 1 and, when

all Si have a well-defined external marking,
∑

i(m
′
i −mi) = e′ − e where e and e′

are the respective weights of v and v′ in Γ and Γ′. Since all mi and m
′
i are in the

interval
]
− 1

2 ,+
1
2

]
, it follows from the first statement that each m′

i is equal to the
corresponding mi, and that e = e′ when v is not adjacent to a free bond of Γ (and
consequently in any case since e = e′ = 0 otherwise, by the Free Bond Condition
on Γ and Γ′).

Also, if Wi is the closed-up component of M −
⋃
wM

0
w adjacent to Si, the

number of plumbing blocks (Ms,Ks) contained in Wi and the weights of the corre-
sponding vertices s can immediately be recovered from the slope mi, by the above
analysis combined with Lemma 13.2 and the Stick Condition (S) on Γ. The same
property holds for the closed-up components of M ′ −

⋃
M ′
w′

0. Therefore, one can
pairwise isotop ϕ so that it sends each building block Mv to a building block M ′

v′ ;
moreover the weight of v in Γ0 then is the same as the weight of v′ in Γ′

0.
This completes the proof of Proposition 13.10 in the case when Γ has at least

2 vertices, and at least one essential vertex.
When Γ consists of a single vertex, the proof is an immediate consequence of

Corollary 13.7 and Theorem 13.5.
It remains to consider the case when Γ0 is a closed stick, namely when K is a

rational knot in M ∼= S3. We rely on the main result of H. Schubert’s 1956 paper
on rational knots [Sch3] which asserts the following: Up to pairwise isotopy, (M,K)
contains a unique Conway sphere splitting it into two rational tangle pairs. If v is
an end vertex of Γ, then the boundary S of the building block (Mv,Kv) clearly has
this property of splitting (M,K) into two rational tangle pairs. Thus, Schubert’s
result implies that ϕ can be pairwise isotoped so that ϕ(Mv) is the building block
M ′
v, associated to one of the two end vertices of Γ′.
Moreover, S has two preferred markings C+ and C−, respectively defined by the

boundaries of the pairwise essential discs in (Mv,Kv) and its complement, and this
defines an invariant m̄ ∈ Q/Z as follows: Choosing a parametrisation of (S,K ∪S)
by the standard Conway sphere (S2, P 0), so that C+ has slope ∞, then m̄ is the
mod 1 reduction of the slope m of C− for this parametrisation; indeed one readily
sees, using Corollary 11.4, that m̄ is independent of the choice of parametrisation.

On the other hand, if Γ0 is
a1 a2 anwith v being the left-most vertex, a

computation similar to the one used in the proof of Proposition 13.4 yields that this
m̄ is precisely the class of m = [[a1, a2, . . . , an]] in Q/Z. Since the same analysis
holds in (M ′,K ′), Lemma 13.2 now proves that Γ and Γ′ have the same number of
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vertices and that the sequences of their weights, starting respectively from v and
v′, are identical. This completes the proof of Proposition 13.10 in the last case. �

Proposition 13.10 establishes a weaker form of Theorem 12.15, namely: If
(M,K) is obtained by plumbing according to the abbreviated (+)–canonical tree Γ,
then the weighted tree (with ring numbers) Γ0 obtained from Γ by disregarding its
embedding in the plane is a topological invariant of the arborescent pair (M,K).
Indeed, let (M ′,K ′) be the arborescent pair obtained by plumbing according to
another abbreviated (+)–canonical tree Γ′, and assume that there is a (degree +1)
isomorphism ϕ: (M,K) → (M ′,K ′). Using Proposition 13.10, and Theorem 13.5
to deal with the exceptions of this statement, ϕ can be chosen so as to send each
building block (Mv,Kv) to a building block (M ′

v′ ,K
′
v′), in such a way that the

weights of v and v′ in Γ and Γ′ are equal. The rule v 7→ v′ establishes a one-to-
one correspondence between the vertices of Γ0 and those of Γ′

0, which immediately
extends to an isomorphism between the combinatorial trees underlying Γ0 and Γ′

0.
As this isomorphism preserves the weights of vertices and their ring numbers (=
number of closed components of Kv or K ′

v′), it defines an isomorphism ϕ̄: Γ0 → Γ′
0

of weighted trees.
Given two abbreviated (+)–canonical trees Γ and Γ′, recall that in §12.6 we

defined a degree+1 isogeny Γ→ Γ′ as an isomorphism Γ0 → Γ′
0 between their un-

derlying weighted trees which can be decomposed as a product of flip isomorphisms
(namely elementary isogenies induced by flips).

Proposition 13.11. Under the hypotheses and conclusions of Proposition 13.10,
the isomorphism ϕ̄: Γ0 → Γ′

0 induced as above by ϕ is a degree +1 isogeny. In par-
ticular, Γ and Γ′ are flip equivalent.

We delay the proof of Proposition 13.11 a bit. First note that this statement
completes the proof of Theorem 12.15. Indeed, let (M,K) and (M ′,K ′) be two
arborescent pairs respectively obtained by plumbing according to (+)–canonical
abbreviated weighted planar trees Γ and Γ′, and suppose they are degree +1 iso-
morphic. If Γ is not one of the exceptions of Proposition 13.10, this statement and
Proposition 13.11 prove that Γ and Γ′ are flip equivalent. Otherwise, Corollary 13.7
shows that Γ and Γ′ are both stellar, and the same result in this case is proved by
Theorem 13.5.

Thus, the proof of Theorem 12.15 will be completed with that of Proposi-
tion 13.11. Before addressing this last step, let us recall a few facts from Chap-
ter 12.

Let Γ and Γ′ be two abbreviated (+)–canonical trees, deduced from each other
by one of the flips (F1), (F2), (F

′
3) or (F

′′
3 ). In this situation, we saw in Chapter 12

that there is a preferred flip isomorphism ψ: (M,K)→ (M ′,K ′) between the cor-
responding arborescent pairs, sending plumbing block (Mv,Kv) to plumbing block
(M ′

v′ ,K
′
v′). In fact, each of these blocks has a natural tangle structure (Mv,Kv; θv)

or (M ′
v′ ,K

′
v′ ; θ

′
v′), inherited from the corresponding model atomic tangles (with

rings). To describe how ψ behaves with respect to these tangle structures, let us
distinguish cases according to the type of flip considered.
Flip (F1). Then, the restriction of ψ induces a tangle isomorphism (Mv,Kv; θv)→
(M ′

v′ ,K
′
v′ ; ζθ

′
v′) for each building block, where ζθ′v′ denotes the composition of the

boundary parametrisations θ′v′ with the automorphism ζ ∈ V4 of the standard
Conway sphere (S2, P 0). Recall here that the automorphism group V4 consists
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of the identity ι and of the π–rotations ξ, η, ζ around the x–, y–, z–axis of the
standard Conway sphere, respectively.
Flip (F2), applied at some vertex w of Γ. Then, ψ sends (Mv,Kv; θv) to the
tangle (M ′

v′ ,K
′
v′ ; ηθ

′
v′) if the vertex v is at even distance from w, and to the tangle

(M ′
v′ ,K

′
v′ ; ξθ

′
v′) otherwise.

Flip (F′
3)

a
r −→

a
r applied at some vertex w of Γ. Then, ψ

induces an isomorphism (Mv,Kv; θv) ∼= (M ′
v′ ,K

′
v′ ; θ

′
v′) for each vertex v contained

in the left hand subgraph of Γ. For v in the right hand subgraph ,
ψ sends (Mv,Kv; θv) to (M ′

v′ ,K
′
v′ ; η

aθ′v′) if v is at odd distance from w, and to

(M ′
v′ ,K

′
v′ ; ξ

aθ′v′) otherwise. Lastly, for v = w, the image (M ′
w,K

′
w; θwψ

−1
|∂Mv

) of

(Mw,Kw; θw) is such that θwψ
−1
|∂Mv

coincides with θ′w′ on the components of ∂M ′
w′

corresponding to bonds adjacent to the left hand side of Γ, and with ηaθ′w′

on the other boundary components.
Flip (F′′

3 ). The automorphism ψ is well-defined only when we have fixed a decom-
position of this flip as

r

(B2)
−1

−→
a
r

(F2)
−→

a
r

(B2)
−→ r

(through weighted planar trees with ring numbers which are not (+)–canonical),
with a odd. Let α denote an automorphism of the standard Conway sphere (S2, P 0)
which fixes the point (0, 0, 0) ∈ P 0 and sends slope p

q to p
q+a; note that this specifies

the pairwise isotopy class of α by Corollary 11.4. Then, for the vertex w where the
flip is performed, the image of (Mw,Kw; θw) by ψ is some (M ′

w′ ,K ′
w′; θwψ

−1
|∂Mv

) so

that the restriction of θwψ
−1
|∂Mv

to a component S of ∂M ′
w′ is pairwise isotopic to

the restriction of:

(i) θ′w′ if the bond of w corresponding to S is adjacent to the left hand
subgraph .

(ii) ηθ′w′ if this bond is adjacent to the right hand subgraph .
(iii) αθ′w′ if this bond is the lower free bond.
(iv) ηα−1θ′w′ if it is the upper free bond.

At other vertices v, ψ sends (Mv,Kv; θv) to some (M ′
v′ ,K

′
v′ ; θvψ

−1
| ) so that

θvψ
−1
| is θ′v′ when v is in , is ηθ′v′ when v is in and at odd distance from

w, and is ξθ′v′ when v is in and at even distance from w.
Another ingredient of the proof of Proposition 13.11 is the following elementary

remark.

Lemma 13.12. Let (M,K; θ) be one of the model atomic tangles (with or with-
out rings) used in the plumbing calculus, and let ϕ be a (degree +1 ) pair auto-
morphism of (M,K) with the following property: For each component S of ∂M , let
θS : (S,K ∩ S) → (S2, P 0) be the parametrisation specified by θ; then ϕ(S) = S
and the automorphism θSϕθ

−1
S of (S2, P 0) is an element of the Viergruppe V4.

Then θSϕθ
−1
S ∈ V4 is independent of the component S. Furthermore, it is

necessarily one of ι or ξ when ∂M has > 3 components.

Proof. An element of V4 is determined by its induced permutation of the 4
points of P 0. The result then immediately follows from connectivity considerations
on the components on K. �

We are now ready to prove Proposition 13.11.
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Proof of Proposition 13.11. We have to find a succession of alterations
of Γ′ by flips, defining a sequence of weighted planar trees Γ(i) and of preferred
flip isomorphisms ϕ(i): (M (i),K(i))→ (M (i+1),K(i+1)) between the corresponding
arborescent pairs (sending plumbing block to plumbing block), such that Γ(1) = Γ
and such that there is an n for which the composition (ϕ̄1ϕ̄2 . . . ϕ̄n)

−1ϕ̄ of the

induced isomorphisms ϕ̄i : Γ
(i)
0 → Γ

(i+1)
0 comes from an isomorphism of weighted

planar trees. Namely, (ϕ̄1ϕ̄2 . . . ϕ̄n)
−1ϕ̄ respects the cyclic orderings of weights and

bonds at each vertex specified by Γ and Γ(n). We will define these Γ(i) stepwise
and, to avoid cumbersome indexings, it will be convenient to continue to denote
each Γ(i) of this sequence by Γ′, and to replace at each step ϕ by (ϕ1, ϕ2 . . . ϕi)

−1ϕ.
If all vertices of Γ (and Γ′) have valence 6 2, the flip equivalence class of

the weighted planar tree Γ is completely determined by the isomorphism class of
the weighted tree Γ0, and the conclusion of Proposition 13.11 immediately follows.
Thus, we can henceforth assume that at least one vertex of Γ has valence > 3.

Then, write Γ0 as an increasing union of subtrees Γ1, . . . ,Γn where: Γ1 consists
of a valence > 3 vertex together with all its bonds; each Γm+1 is the union of Γm, of
another vertex v adjacent to Γm and of all the bonds of v. Our strategy for proving
Proposition 13.11 will be to proceed stepwise. More precisely, we will inductively
modify Γ′ by a sequence of flips so that the following property holds for all m.

(∗)m For each vertex v of Γm, the tree isomorphism ϕ̄ : Γ0 → Γ′
0 respects

the cyclic orders of weights and bonds around v and ϕ̄(v) = v′ respec-
tively specified by Γ and Γ′. Moreover, the restriction of ϕ defines a
tangle isomorphism (Mv,Kv; θv) → (M(v′ ,K

′
v′ ; θ

′
v′) between the corre-

sponding building blocks, equipped with the tangle structure arising from
the plumbing description.

To start the induction, we give
Procedure to assure (∗)1 Consider the (unique) vertex v of Γ1. By connec-
tivity considerations on the knot fragment Kv of the corresponding building block
(Mv,Kv), the tree isomorphism ϕ̄ respects the cyclic ordering of the bonds of v and
v′ = ϕ̄(v) modulo orientation reversal. After a possible application of Flip (F1) to
Γ′, we can thus make ϕ̄ respect these cyclic orders of bonds. Moreover, by use of
Flip (F′

3), we can further arrange that ϕ̄ sends any angular sector at v where the
integral weight (if any) lies to a similarly weighted angular sector at v′.

Let S1, . . . , Sk denote the boundary components of Mv, and let S′
i be the

component ϕ(Si) of ∂M ′
v′ . As v has valence > 3, ϕ sends the necklace of Mv to

that of M ′
v′ , up to pairwise isotopy (Theorem 10.5). By Lemma 13.9 and because

v and v′ have the same weights, there consequently exist integers n1, . . . , nk with∑
i ni = 0 such that the restriction ϕ|Si

: Si → S′
i sends slope

p
q to slope p

q + ni, for

the tangle structures on (Mv,Kv) and (M ′
v′ ,K

′
v′) arising by plumbing construction.

On an Si (resp. S′
i) which is not a boundary component of M (resp. M ′),

we singled out in the proof of Proposition 13.10 a preferred marking, called the
external marking, whose slope is finite and lies in the interval

]
− 1

2 ,+
1
2

]
. As ϕ

sends external marking to external marking, it follows that ni = 0 when Si is not
a component of ∂M .

Assume that there are two distinct Si and Sj with ni, nj 6= 0. By the above,
these are necessarily components of ∂M . Just before starting this proof, we showed
the following: There exists a weighted planar tree Γ′′, and an isomorphism ψ from
(M ′,K ′) to the corresponding arborescent pair (M ′′,K ′′) associated to Γ′′ that
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sends plumbing block to plumbing block, with the following properties: Γ′′ is ob-
tained from Γ′ by isomorphism or Flip (F′

3) according as ni is even or odd; for the
tangle structures on (M ′

v′ ,K
′
v′) and (M ′′

v′′ ,K
′′
v′′) = ψ(M ′

v′ ,K
′
v′) defined by plumbing

construction, the restriction S′
k → ψ(S′

k) of ψ sends slope p
q to slope p

q if k 6= i, j,

to slope p
q − ni if k = i and to slope p

q + ni if k = j. In this case, replacing Γ′ by

Γ′′ and ϕ by ψϕ changes ni to 0, nj to ni + nj and keeps all other nk unchanged.
Thus, after a finite number of such modifications, we reach a state where at

most one ni is 6= 0. Since
∑
i ni = 0, it follows that all ni are then 0. Thus, we

may assume that the restriction of ϕ to each boundary component of Mv respects
the slopes.

As v and v′ have the same bonds, ring numbers and integral weights in Γ0

and Γ′
0, the plumbing blocks (Mv,Kv; θv) and (M ′

v′ ,K
′
v′ ; θ

′
v′) are copies of the same

model atomic tangle (M∗
v ,K

∗
v ; θ

∗
v). Thus the restriction (Mv,Kv) → (M ′

v′ ,K
′
v′) of

ϕ induces an automorphism ϕ∗
v of the pair (M

∗
v ,K

∗
v ). As ϕ̄ respects the cyclic order

of bonds and weights around v and v′, ϕ∗
v respects the natural cyclic order of the

components of ∂M∗
v . Moreover, if the weight of v is 6= 0, ϕ∗

v necessarily respects the
pair of boundary components corresponding to the two bonds of v adjacent to this
weight (as ϕ̄ respects the angular sectors so defined) and ϕ∗

v therefore preserves each
component of ∂M∗

v . When this weight is 0, it suffices to compose the identification
(M∗

v ,K
∗
v )→ (Mv,Kv) with a suitable automorphism of the tangle (M∗

v ,K
∗
v ; θ

∗
v) to

make ϕ∗
v respect each boundary component.

So, ϕ∗
v preserves each boundary component S of (M∗

v ,K
∗
v ). Moreover, its re-

striction to each S acts trivially on the slopes and, by Corollary 11.4, we can
therefore pairwise isotop ϕ so that ϕ∗

v |S corresponds to an element of V4 for the

parametrisation (S,K ∩ S) ∼= (S2, P 0) defined by θ∗v. We now have the hypotheses
of Lemma 13.12 and, since v has valence > 3, either ϕ∗

v fixes each boundary compo-
nent S or each ϕ∗

v |S coincides (up to isotopy) with ξ ∈ V4 on (S,K ∩S) ∼= (S2, P 0).
Going back to ϕ, the above statement means precisely that the restriction

of ϕ induces a tangle isomorphism from (Mv,Kv; θv) to either (M ′
v′ ,K

′
v′ ; θ

′
v′) or

(M ′
v′ ,K

′
v′ ; ξθ

′
v′).

In the second case, namely when θvϕ
−1 = ξθ′v′ , we will again have to perform

a flip (F2) at a vertex of Γ′ adjacent to v′. This gives a new weighted planar tree
Γ′′, with an isomorphism ψ from (M ′,K ′) to the corresponding arborescent pair
(M ′′,K ′′) sending plumbing block to plumbing block, whose restriction in particular
induces a tangle isomorphism (M ′

v′ ,K
′
v′ ; θ

′
v′)→ (M ′′

v′′ ,K
′′
v′′ , ξθ

′′
v′′ ) with the notation

now standard. Moreover, the isomorphism ψ̄: Γ′
0 → Γ′′

0 respects the cyclic order of
bonds and weights around v′ and v′′. Thus, replacing Γ′ by Γ′′ and ϕ by ψϕ in this
case, we can always arrange that ϕ induces a tangle isomorphism from (Mv,Kv; θv)
to (M ′

v′ ,K
′
v′ ; θ

′
v′).

This completes the proof of (∗)1, namely the first step in the induction. �

To complete the induction we give
Procedure to assure (∗)m+1 assuming (∗)m, with m > 1 Consider the vertex
v of Γm+1 that is not in Γm, and let S1, . . . , Sk denote the boundary components
of the corresponding block (Mv,Kv), taken in the order specified by the plumbing
construction, and so that S1 corresponds to the bond of v that is adjacent to Γm.
Similarly, let S′

1, . . . , S
′
k be the boundary components of the blocks (M ′

v′ ,K
′
v′) =

ϕ(Mv,Kv) of (M
′,K ′), taken in the order specified by the plumbing construction

and starting from S′
1 = ϕ(S1).
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By connectivity considerations on Kv and K ′
v′ , one readily sees that ϕ respects

the orderings of the Si and S
′
i up to orientation reversal, namely that either ϕ(Si) =

S′
i for all i, or ϕ(Si) = S′

k+1−i for all i. On the other hand, we already have
some information on the restriction of ϕ to S1. Indeed, S1 is also a boundary
component of some plumbing tangle (Mw,Kw; θw) with w ∈ Γm. If w′ = ϕ̄(w), the
induction hypothesis (∗)m asserts that the restriction S1 → S′

1 of ϕ corresponds
to the identity of (S2, P 0) through the parametrisations θw and θ′w′ . By definition
of the plumbing construction, it follows that this same restriction S1 → S′

1 also
corresponds to the identity through the parametrisations θv and θ′v′ . In particular,
ϕ sends the point x ∈ S1 corresponding to (0, 0, 0) ∈ (S2, P 0) through θv to the
point x′ ∈ S′

1 corresponding to (0,0,0) through θ′v′ . It therefore sends the boundary
sphere Sk connected to x by a component of Kv to the boundary sphere ofM ′

v′ that
is connected to x′ by a component of K ′

v′ , namely to S′
k. Consequently, ϕ(Si) = S′

i

for all i and ϕ̄ respects the cyclic orderings of bonds around v and v′.
We have seen that, when one performs a flip (F′

3) or (F
′′
3 ) on Γ′ at v′, the cor-

responding flip isomorphism induces a tangle isomorphism on the plumbing blocks
associated to the vertices of certain components of Γ′

0 − v
′. Performing a suitable

flip (F′
3) so that Γp is precisely in one such component of Γ′

0 − v
′, one can thus

arrange that ϕ̄ respects the cyclic order of weights and bonds at v and v′ = ϕ̄(v),
without losing any of the properties of ϕ previously asserted.

We now want the restriction (Mv,Kv)→ (M ′
v′ ,K

′
v′) of ϕ to respect the slopes

on the boundary for the natural tangle structures of these plumbing blocks. If v
has valence > 3 or ring number > 1, we proceed as in the starting step (∗)1 of the
induction, using Theorem 10.5 and Lemma 13.9 and modifying Γ′ by a sequence
of flips (F′′

3 ). The only point to take care of is to avoid destroying the properties
previously imposed to ϕ. But this clearly holds if we choose these flips so that the
corresponding flip isomorphisms respect tangle structures on the plumbing blocks
associated to vertices of Γ′

p = ϕ̄(Γp), and this can always be done.
In the remaining cases when v has ring number 0 and valence 6 2, it turns

out that the restriction (Mv,Kv)→ (M ′
v′ ,K

′
v′) of ϕ already respects slopes on the

boundary. Indeed, we already know that this property already holds on S1 by the
induction hypothesis. Thus there is nothing to prove when v has valence 1. When
Mv has one other boundary component S2, Lemma 13.1 shows that a curve C2 of
slope p

q on S2 corresponds to a curve C1 of slope a − p
q on S1 through the collar

(Mv,Kv), where a ∈ Z is the weight of v. The curve C1 is sent to C′
1 = ϕ′(C1) with

the same slope a− p
q on S′

1, and C
′
1 corresponds to a curve C′

2 pairwise homotopic

to ϕ(C2) on S
′
2, whose slope is a− (a− p

q ) =
p
q , again by Lemma 13.1 and because

v′ has the same weight a as v.
Thus, we are assured in all cases that the restriction of ϕ to (Mv,Kv) →

(M ′
v′ ,K

′
v′) respects the slopes on boundary components. Also, ϕ̄ respects the cyclic

orders of bonds and weights at each vertex of Γm+1, and ϕ still satisfies the induction
hypothesis (∗)m.

Let (M∗
v ,K

∗
v ; θ

∗
v) be the common model atomic tangle for (Mv,Kv) and (M ′

v′ ,K
′
v′),

and let ϕ∗
v be the automorphism of the pair (M∗

v ,K
∗
v ) thus induced by the restriction

of ϕ to (Mv,Kv)→ (M ′
v′ ,K

′
v′). As in the proof of the initial step (∗)1 of the induc-

tion, ϕ∗
v respects each boundary component S of M∗

v (after a possible rearrange-
ment by a tangle automorphism when the weight of v is 0). Also, ϕ∗

v|S respects the
slopes, and can therefore be assumed to be conjugate to an element of V4 by the
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parametrisation θ∗v (by Corollary 11.4). On the other hand, we know that ϕ∗
v fixes

the component S1 of ∂M∗
v corresponding to S1 and S′

1, as ϕ satisfies the induction
hypothesis (∗)m. Therefore, by Lemma 14.12, ϕ∗

v fixes the whole boundary of M∗
v

and by restriction ϕ induces a tangle isomorphism (Mv,Kv; θv) → (M ′
v′ ,K

′
v′ ; θ

′
v′).

Thus ϕ now satisfies Condition (∗)m+1. �

By induction, this completes the proof of Proposition 13.11. �

As indicated before, the above proof of Proposition 13.11 completes the proof
of Theorems 12.12 and 12.15, which together establish the classification of pair-
wise irreducible arborescent pairs in terms of canonical weighted planar trees or
abbreviated canonical trees, respectively. �

13.3. Proof of the classification of marked arborescent pairs

The proof of the classification Theorem 12.25 for marked arborescent pairs
closely follows the one that we gave in the previous section for Theorem 12.15. We
only sketch a proof of it, mostly pointing at the differences with §13.2.

Let Γ and Γ′ be two abbreviated (+)–canonical trees for the calculus of marked
arborescent pairs (see §12.8 and §12.5), and consider the two marked arborescent
pairs (M,K;C) and (M ′,K ′;C′) associated to Γ and Γ′ by plumbing construc-
tion, respectively. Assume that there is a (degree +1) isomorphism ϕ : (M,K)→
(M ′,K ′) sending the marking C to C′. We want to show that Γ and Γ′ are equiv-
alent by a sequence of flips (F1), (F2), (F

′
3) and (F′′

3 ) of the calculus of marked
arborescent pairs (see §12.8).

For each essential vertex v of Γ, define (M̂0
v , K̂

0
v) as in §13.2. Namely, first

consider the union M̂v of the building blocks corresponding to v and to all vertices

w contained in half open sticks adjacent to v. Then, (M̂0
v , K̂

0
v) is obtained from

(M̂v,K ∩ M̂v) by removing a small collar neighbourhood of the boundary.

Let (M̂0, K̂0) denote the union of the (M̂0
v , K̂

0
v ) when v ranges over all essential

vertices of Γ.
Each boundary component S of (M̂0

v , K̂
0
v ) now has two preferred markings. The

internal marking is defined as before by the trace of the band of the building
block (Mv,Kv).

Unlike in the case of unmarked pairs, the external marking of S is always

defined. Indeed, consider the closed-up component N of M − M̂0 containing S.
If (N,K ∩ N) is a rational tangle pair or a thickened Conway sphere separating

M̂0
v from some M̂0

w, the external marking is defined as before by the essential disc

in (N,K ∩ N) or by the internal marking of N ∩ ∂M̂0
w, respectively. Otherwise,

(N,K∩N) is a thickened Conway sphere separating S from a boundary component
S′ ofM ; the external marking of S is then defined to correspond through (N,K∩N)
to the restriction to S′ of the marking C.

Lemma 13.1 enables us to compute the slope of this external marking of S

for the tangle structure of (M̂0
v , K̂

0
v ) induced by the one of the plumbing block

(Mv,Kv). The only new feature with respect to the case of §13.2 is when the
bond of v corresponding to S either is a free bond of Γ, or is adjacent to a stick
a1 a2 an whose right hand bond is a free bond. The slope of the external

marking is then clearly 0 in the first case, and the alternating continued fraction
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[[a1, . . . , an]] in the second one, by Lemma 13.1. Note that the slope is infinite when

the stick is 0 .
Thus, by Lemma 13.2 together with the stick condition imposed to Γ, the slope

of the external marking of S determines the type of the corresponding bond of v,
namely whether this bond is adjacent to a stick of Γ or not, and in the later case
what the coefficient of this stick are.

Using these new data, it is now easy to get the following analog of Proposi-
tion 13.10.

Proposition 13.13. Let (M,K;C) and (M ′,K ′;C′) be two marked arborescent
pairs, respectively obtained by plumbing according to two abbreviated trees Γ and Γ′

that are (+)–canonical for the calculus of marked arborescent pairs (see §12.8).
Exclude the cases when Γ is stellar with no free bond and with central vertex of
valence 3 and ring number 0, and when Γ is 2 21 .

Then any degree +1 isomorphism ϕ: (M,K;C)→ (M ′,K ′;C′) can be pairwise
isotoped so that it sends each plumbing block (Mv,Kv) of (M,K) to a plumbing block
(M ′

v′ ,K
′
v′) of (M ′,K ′). Further, when ϕ(Mv) = M ′

v′ , the corresponding vertices v
and v′ have the same weights and ring numbers in Γ and Γ′.

Proof. When Γ admits an essential vertex, namely one with valence > 3 or
ring number > 1, we only need to adapt the proof of Proposition 13.6 and 13.10
to take the boundary markings into account. This is a mere exercise using the
external markings which we just define.

Thus, the only remaining cases are those when the weighted tree Γ′
0 is an open

or half open stick. (The case of a closed stick is provided by Proposition 13.10.)

If Γ0 is a half-open stick
a1 a2 an, the unmarked pair (M,K) is a

rational tangle pair classified by the tree and, by Proposition 13.10, the weighted
tree Γ′

0 underlying Γ′ is also a half-open stick. Observe that the number m =
[[a1, a2, . . . , an]] is determined by the following property: m is in

]
− 1

2 ,+
1
2

]
∪ ∞

and, for any tangle structure on (M,K) giving slope ∞ to the marking C, the
boundary slope of the (unique) essential disc of (M,K) is congruent to m mod 1;
compare the proof of Proposition 13.4, and use Corollary 11.3 to check that changing
one such tangle structure to another one modifies slopes by only an integer. Also,
m characterises the sequence of weights ai of Γ, by Lemma 13.2 and the Stick
Condition. As the same properties hold for (M ′,K ′;C′) and Γ′, it follows that
Γ′
0 = Γ0. Since the Conway spheres separating building blocks are parallel copies

of the boundary, ϕ can now be pairwise isotoped to send building block to building
block, and respect the weights.

The proof is similar when Γ is an open stick
a1 a2 an . On each

boundary component S of (M,K), we have two preferred markings: The first one
is the restriction of C; the second one corresponds to the restriction of C to the
other boundary component ∂M −S through the thickened Conway sphere (M,K).
Arithmetic considerations similar to the ones used in the previous case show that
Γ0 = Γ′

0, and the proof is easily completed. �

At this point, the proof of Proposition 13.11 straightforwardly extends to give
Proposition 13.14 below. One just needs a few local modifications to take into
account the new form of flip (F′′

3 ).
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Proposition 13.14. Under the hypotheses and conclusions of Proposition 13.13,
the isomorphism ϕ̄: Γ0 → Γ′

0 between the weighted trees underlying Γ and Γ′ which
is induced by Γ is a degree +1 isogeny. �

The exceptions to Propositions 13.13 and 13.14 correspond to arborescent pairs
without boundary (and therefore without boundary markings!). They consequently
were already considered in §13.1. Thus, Propositions 13.13 and 13.14 complete the
proof of the classification Theorem 12.25 for pairwise irreducible marked arborescent
pairs.

13.4. The classification of arborescent tangles (proof)

The proof of the classification Theorem 12.21 for arborescent tangles closely
follows the one of the classification of arborescent pairs given in §13.2. Again, we
only sketch it.

Owing to the new form of the Stick Condition for trees that are canonical for the
calculus of arborescent tangle, we need a new version of Lemma 13.2 to deal with
the corresponding arithmetics, namely Lemma 13.15 below. Its proof is elementary
(compare [HarW] ).

Lemma 13.15. Consider the finite integral sequences a1, . . . , an such that:

(i) ai 6= 0 when i < n.
(ii) The signs of the ai are alternating.
(iii) a1 6= ±1 except when n = 1.

Then such sequences are uniquely determined by the two alternating continued
fractions [[a1, . . . , an]] and [[a1, . . . , an, 0]] associated to them. Moreover, these two
alternating continued fractions are in the interval

[
− 1

2 ,+
1
2

]
except when n = 1 and

a1 = 0 or ±1. �

We can now start the proof of Theorem 12.21. Let Γ and Γ′ be two abbreviated
(+)–canonical trees for the calculus of arborescent tangles, and let (M,K; θ) and
(M ′,K ′; θ′) be the two tangles respectively obtained by plumbing according to Γ
and Γ′. Assuming that there is a (degree +1) tangle isomorphism ϕ: (M,K; θ)→
(M ′,K ′; θ′), we want to show that Γ and Γ′ are equivalent by flips (F1), (F2) and
(F′

3).
We can clearly restrict attention to the case when ∂M 6= ∅, as the other case

is established by our analysis of §13.2.

For each essential vertex v of Γ, define (M̂0
v , K̂

0
v) as in §13.2 and §13.3. Namely

M̂0
v is obtained from the building block Mv by, first adding the building blocks

corresponding to all the vertices contained in half-open sticks adjacent to v, and
then removing a small collar neighbourhood of the boundary from the submanifold
so obtained.

Let still (M̂0, K̂0) denote the union of all (M̂0
v , K̂

0
v ) when v ranges over all

essential vertices of Γ.
As in §13.2 and §13.3, each boundary component S of (M̂0

v , K̂
0
v ) carries an in-

ternal marking , defined by the trace of the band of the plumbing block (Mv,Kv).

In contrast to the previous sections, the component S of ∂(M̂0
v , K̂

0
v ) carries

one or two external markings, according to the type of the closed-up component of

M − M̂0 containing S.
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If (N,K ∩N) is a rational tangle pair or a thickened Conway sphere separating

M̂0
v from some M̂0

w, S has only one vertical marking. This vertical marking is
defined as in §13.2 by the essential disc in (N,K ∩ N) or the internal marking of

N ∩ ∂M̂0
w, respectively.

Otherwise, (N,K∩N) is a thickened Conway sphere separating S from a bound-
ary component S′ of M , and S has a vertical external marking and a horizontal
vertical marking. These are respectively defined to correspond through the product
(N,K∩N) to the markings of S′ which have slope∞ and 0, for the tangle structure
θ on (M,K).

The slope of these external markings, for the tangle structure of (M̂0
v , K̂

0
v ) in-

duced by the one of the plumbing blocks, are easily computed by use of Lemma 13.1.
When S has only one external marking, its slope is determined as in §13.2. Other-
wise, S corresponds to a bond of v which either is a free bond of Γ or is adjacent to

a stick
a1 a2 an whose right hand bond is a free bond. In the first case,

the horizontal and vertical external marking have respective slopes 0 and∞. In the
second case, Lemma 13.1, readily shows that the slope of the horizontal external
marking is [[a1, . . . , an]] and that the vertical one has slope [[a1, . . . , an, 0]].

Taking these external markings into account and using Lemma 13.15, it is
now an easy exercise to adapt the proof of Proposition 13.10 to get its following
analog. (The case when Γ0 is a stick requires a special treatment as in the proof of
Proposition 13.13.).

Proposition 13.16. Let (M,K; θ) and (M ′,K ′; θ′) be two arborescent tangles,
respectively obtained by plumbing according to two abbreviated trees Γ and Γ′ that
are (+)–canonical for the calculus of arborescent tangles. Exclude the cases when
Γ is stellar with no free bond and with central vertex of valence 3 and ring number
0, and when Γ is 2 21 .

Then any degree +1 isomorphism ϕ : (M,K; θ)→ (M ′,K ′; θ′) can be pairwise
isotoped so that it sends each plumbing block (Mv,Kv) of (M,K) to a plumbing block
(M ′

v′ ,K
′
v′) of (M ′,K ′). Further, when ϕ(Mv) = M ′

v′ , the corresponding vertices v
and v′ have the same weights and ring numbers in Γ and Γ′. �

At this point, the proof of Proposition 13.11 can easily be adapted to give
Proposition 13.17 below. Actually, the rigidity induced by tangle structures and
the absence of Flip (F′′

3 ) even make the proof simpler.

Proposition 13.17. Under the hypotheses and conclusions of Proposition 13.16,
the isomorphism ϕ̄: Γ0 → Γ′

0 between the weighted trees underlying Γ and Γ′ which
is induced by ϕ is a degree +1 isogeny, namely can be induced by a sequence of flips
(F1), (F2) and (F′

3) of the calculus of arborescent tangles (see §12.8). �

Again, the exceptions to Propositions 13.16 and 13.17 correspond to Montesinos
tangles without boundary, and are consequently settled by §13.1 and 13.2. Thus,
Propositions 13.16 and 13.13 complete the proof of the classification Theorem 12.21
for pairwise irreducible arborescent tangles. �





CHAPTER 14

Arborescent projections

This section classifies the arborescent knot projections (or parts thereof) that
appeared in Chapter 1, using the language of weighted planar trees established
in Chapter 12. Here the reader can learn many of the procedures one needs in
practice to identify an arborescent knot given via a projection. In conclusion, two
simple systems of linear notations for arborescent knot projections are proposed,
and formulae to translate Conway’s original notations [Conw] are given.

14.1. Plumbing tangle projections

At the end of §3.3, we introduced the notion of knot pair projection . Re-
call that this consists of: a compact surface S in the 2–sphere S2; an immersed
1–manifold L ⊂ S, meeting the boundary ∂S transversely, whose only singu-
larities are transverse double points in int(S); and crossing information at each
double point of L, indicating which branch of L lies “over” the other. Thus
L = (S,L; crossing data). As in Chapter 1, each knot projection serves to de-
scribe a knot pair (M,K) where M is a 3–submanifold in S3 ⊃ S2 whose boundary
consists of 2–spheres. Note that S is oriented (by S2) and M is oriented by S3 but
L and K are not supposed oriented.

Remark 14.1. This L ⊂ S ⊂ S2 was usually denoted Γ in Chapters 1 and 6.
In this chapter, however, we prefer to reserve the letter Γ for weighted planar trees.

Such a knot pair projection is a Conway projection if each boundary com-
ponent is a Conway circle, namely if L meets each component of ∂S in 4 points.
As explained in Chapter 1, Conway projections describe knot pairs in S3 whose
boundary consists of Conway spheres. The diagrams in this book provide numer-
ous examples of such Conway projections.

In §12.1, we also introduced some notational devices to specify a so-called tangle
structure on the knot pair described by a Conway projection. If the underlying pair
is (S,L), this was done by labelling, on each component C of ∂S, one of the four
arcs C − L by an arrow running parallel to it. The data consisting of the knot
projection together with these arrow labellings is called a tangle projection .

An isomorphism of knot pair (or tangle) projections is an isomorphism (S,L)→
(S′, L′) of the corresponding underlying pairs, preserving the orientations from S2

and all extra data. A flip-isomorphism is either an isomorphism as above, or
a degree −1 pair isomorphism (S,L) → (S′, L′) reversing the signs of the cross-
ing (and still respecting the arrow labellings for tangle projections). Observe that
flip-isomorphisms induce degree +1 isomorphisms between the corresponding knot
pairs or tangles.

195
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Remark 14.2. We shall often use a pair symbol such as (S,L) to stand for a
knot pair projection or a tangle projection whose underlying pair is (S,L), and rely
on plain words to indicate the extra structure being entertained.

A Conway projection (S,L) is defined to be arborescent if there exists a family
F of disjoint Conway circles in S such that each closed-up component of S−F gives
a Conway projection of one of the two types of Figure 14.1.

k > 0 boundary components

Figure 14.1.

Recall that in §1.1 we have already given an ad hoc definition of the term
arborescent for knot projections (S2, L) that are irreducible. That definition seems
a little more restrictive, but Proposition 14.4 below will show that this is not so and
that our present terminology is consistent, at least when (S2, L) is distinct from

, , .
We call a tangle projection arborescent when the underlying Conway projec-

tion is arborescent in the sense just defined.
The plumbing of tangles described in §12.1 readily extends to tangle projec-

tions in the following way. Consider two tangle projections, with underlying knot
pair projections (S1, L1) and (S2, L2), and select a component C1 of ∂S1 and a
component C2 of ∂S2. Each of C1 and C2 has an orientation induced by the arrow
of the tangle projection, and another orientation as boundary component of S1 or
S2.

If these two orientations agree on both C1 and C2, or disagree on both C1

and C2, choose an isomorphism θ : (C1, L1 ∩ C1) → (C2, L2 ∩ C2) such that the
arrow of C2 and the image by θ of the arrow of C1 emanate from the same point,
but in different directions (compare Figure 12.7). Then the plumbing of the two
tangle projections is the tangle projection that consists of the knot pair projection
(S1, L1)

⋃
θ(S2, L2) (naturally oriented!), together with the arrow labellings coming

from the original tangle projections. Observe that the resulting tangle projection
is well-defined up to tangle projection isomorphism.

If the arrow orientation and boundary orientation agree on one of C1 and C2

and disagree on the other one, the plumbing of the two tangle projections is only
defined up to flip isomorphism: First modify one of the tangle projections by a flip
isomorphism, and then apply the previous construction.

Clearly, this construction is consistent with the tangle plumbing of §12.1, in
the sense that the tangle described by the plumbing of two tangle projections is the
tangle obtained by plumbing the associated tangles, along the boundary Conway
spheres corresponding to the boundary circles selected in the construction.

In particular, this enables us to associate a tangle projection to any weighted
planar tree Γ as in §12.1. Indeed, for each vertex of Γ that is as in Figure 12.9, choose
a copy of the tangle projection of Figure 12.8 of the same section. Then associate
to Γ the tangle projection obtained by plumbing these atomic tangle projections
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(a) (b) (c)

−2 5

−1

−1

−1−2

3

1

−3

Figure 14.2.

together according to Γ. Observe that, for such an atomic tangle projection, the
arrow and boundary orientations disagree on all boundary components. Thus, the
tangle projection so associated to Γ is well-defined up to isomorphism. Figure 14.2
gives an example of such a plumbing construction according to a weighted planar
tree.

This construction readily extends to weighted planar trees Γ whose free bonds
bear labels in V4 as in §12.7, by modifying the arrow labellings accordingly. For
instance, the weighted planar tree of Figure 14.3(a) specifies the tangle projection
of Figure 14.3(b).

3

ι

ξ η

ζ

(a) (b)

Figure 14.3.

Since every atomic tangle projection is arborescent, plumbing as above certainly
yields only tangle projections that are arborescent. The converse is

Proposition 14.3. Every arborescent tangle projection results by plumbing
according to a weighted planar tree (no bond markings are needed).

Proof. Imitate the proof of the parallel 3–dimensional result, namely Theo-
rem 12.4. �

Remember from §1.1 that a knot pair projection (S,L) is irreducible if every

circle in S cutting L in 6 2 points bounds a vignette or . A tangle

projection is irreducible when so is its underlying knot pair projection.
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We shall call a projection is efficient if it contains no vignette .
The reader will perceive that the knot pair projection associated to a weighted

planar tree Γ is left unchanged after alteration of Γ by the moves (1.0), (1.1), (0.1),
(0.2) and (0.1∗) of the calculus for arborescent pairs given in §12.3, provided that
the projection is irreducible and efficient. (Beware this is not so for (1.2), (2.0), (2.1)
and (2.2).) Also, there is a planar analog of Lemma 12.8 for knot pair projections,
revealed clearly by Figure 8.31. This leads immediately to a (partial) analogue of
our canonicity result for arborescent pairs, Corollary 12.10.

Proposition 14.4. Any efficient irreducible arborescent knot pair projection
is isomorphic to one obtained by plumbing atomic tangle projections according to a
weighted planar tree Γ with the following properties:

(a) Γ has no valence 6 2 vertex at which all weights are 0.
(b) Γ has no univalent vertex with weight ±1, unless Γ has just one vertex. �

Remark 14.5. Property (b) easily shows that, for irreducible knot projections

distinct from , , , the definition of arborescent given in §1.1 is equivalent
to our present definition.

A weighted planar tree Γ which satisfies Conditions (a) and (b) of Proposi-
tion 14.4 will be called a tidy tree.

The converse of Proposition 14.4 is true, namely

Proposition 14.6. Every tidy tree Γ yields, by plumbing atomic tangle projec-
tions, an efficient irreducible knot pair projection.

Proof. Exercise. If (S,L) is any one of the atomic projections plumbed,
observe that it is irreducible and that the following property holds by Condition
(a): For any arc k ⊂ S with ∂k ⊂ ∂S which meets L in 6 1 point, transversely, k
is pairwise boundary parallel in (S,L). �

We now have the following 2–dimensional analog of our classification Theo-
rem 12.12 for arborescent pairs.

Theorem 14.7. If two tidy trees Γ and Γ′ yield, by plumbing, the same knot

pair projection (S,L), and Γ is not among ±1, ±1 , 0 , 0 , then after
a possible modification of Γ by the simplest flip (F1) of the calculus of arborescent
pairs (§12.3), there exists an isomorphism of weighted planar trees Γ→ Γ′ respecting
the correspondences of free bonds to the boundary circles of S.

Proof. Let G be the family of the Conway circles in the interior of S cor-
responding to the edges of Γ, namely arising from plumbing. Let G′ be similarly
associated to Γ′.

In S, we momentarily crush each boundary circle to a point, getting from (S,L)

a pair (Ŝ, L̂) consisting of a 2–sphere and a quadrivalent graph in it. Theorem 1.1
applies to this pair, and tells us that G above is pairwise isotopic to G′. Then we
can and do assume that G = G′.

Let X1, . . . , Xn be the closed-up components of S − G. Each Xi gives an
atomic projection (Xi, L∩Xi) that corresponds naturally to a vertex of Γ and one

of Γ′. Since (Xi, L ∩ Xi) is none of , , , , there are exactly

two ways to label boundary circles with arrows so as to produce an atomic tangle
projection. Thus after at most a flip (F1) on Γ as advertised, the arrow labellings
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arising from the plumbing for Γ and the plumbing for Γ′ are the same on X1. The
plumbing rule that, on each plumbing circle, the two arrows emanate from the same
point in opposite directions (compare Figure 12.7 and Figure 14.2) now assures by
connectivity that this agreement of labellings holds on all the blocks X1, . . . , Xn.
Then, Γ and Γ′ are clearly isomorphic. �

Remark 14.8. The above proof of Theorem 14.7 gives a very efficient way to
find the tidy tree thus associated to a knot pair projection. Indeed, starting from
the characteristic family of Conway circles characterised by Theorem 1.1, one just
has to draw arrows in a coherent way so as to present this knot projection as a
plumbing of atomic tangle projections. Figure 14.2 provides an example of the
three steps in this procedure.

A salient conclusion to retain from the above discussion is:

Corollary 14.9. Plumbing gives a natural bijection from the set of tidy trees,
considered up to the equivalence generated by isomorphism and turning over (= Flip
(F1)), and the set of isomorphism classes of irreducible efficient arborescent knot
pair projections.

For tangle projections instead of knot pair projections, there are immediate
analogs of Proposition 14.4, Theorem 14.7 and Corollary 14.9. They are straight-
forwardly obtained from these statements by replacing the notion of tidy tree by
that of tidy tangle tree. By definition, a tidy tangle tree is a weighted planar
tree Γ with free bonds labelled by elements of V4, which satisfies the following two
conditions:

(a) Γ has no valence 6 1 vertex at which all weights are zero, unless this
vertex has a bond free in Γ.

(b) Γ has no univalent vertex with weight ±1, unless Γ has just one vertex.

This establishes a one-to-one correspondence between the set of irreducible
efficient arborescent tangle projections, up to isomorphism, and the set of tidy
tangle trees, up to isomorphism and Flip (F1) of the calculus of arborescent tangles
(§12.7).

14.2. Linear notations for weighted planar trees

In view of the intimate relationship between weighted planar trees and ar-
borescent tangle projections, a linearly ordered digital notation for such trees is
of importance for tabulation, for preparing typescript without diagrams, and for
computer programming. We propose two such notation systems.

14.2.1. First system. There is a very natural cyclic notation for a weighted
planar tree, possibly with free bonds marked by elements of V4, as follows. Position
the tree as a graph in the plane so as to be a smooth 1–submanifold except at the
vertices of valence > 3 where angles are < π; then cut open the plane along the
graph. This is done for an example in Figure 14.4(a-b).

This cutting produces a hole in the plane (shaded in Figure 14.4(b)) whose
boundary is topologically a circle. Going counterclockwise around this circle, one
can record in cyclic order events corresponding to weighted sectors and (marked)
free bonds, namely events of the four sorts in Figure 14.5 (where a ∈ Z and α ∈ V4).

If we denote these four models respectively by a, â, ǎ, α̂, the tree gets a linear
notation. For example, the tree of Figure 14.4(a) is naturally denoted (up to cyclic
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Figure 14.5.

reordering) by 4̂31̌6ξ̂23̌5̂0̌2. Here, a bar under a number is equivalent to a minus
sign. Following the procedure in reverse, we retrieve (up to isomorphism) the
weighted planar tree from this notation.

The simplicity of this system may make it suitable for computers.

14.2.2. Second system. Next we describe an alternative linear notation for
these trees, which depends on the choice of a preferred base vertex. On each edge
(not a free bond), we now put an arrowhead pointing toward this base vertex, as
in Figure 14.4(c).

We cut open along the tree as before. This time, going counterclockwise around
the boundary of the resulting hole in the plane, we record the weights of the angle
sectors, the weights of the free bonds, and the orientations of the edges. The edge
orientation of an edge is denoted by 〉 if it coincides with the counterclockwise
orientation of the boundary of the hole, and by 〈 otherwise. In addition, one
can omit weights 0. For example, the notation for the graph of Figure 14.4(c) is
4〉3〉1〈6ξ2〉3〈5〉〈2〈.

It is usually most convenient to pick the base vertex to be polyvalent and in the
so-called topological centre of the tree Γ (see Fact 18.9), and to begin listing weights
and edge orientations from a point on the boundary of the hole that corresponds
to the base vertex.

This system seems most promising for tabulations intended for the human eye.

14.3. Translating Conway’s notations

Conway’s original system of notation for arborescent knots and tangles [Conw],
although similar to the one just described, differs subtly from it with regard to the
orderings and signs. We try to clarify these differences.

Conway gave in [Conw] certain operations on monovalent tangle projections
that let one derive any monovalent arborescent tangle projection from the tangle
projection of Figure 14.6. He denotes this tangle projection by the integer n.

We recall some of Conway’s operations on tangle projections. Let A and B be
two monovalent tangle projections, as in Figure 14.7.
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n negative half-twists

Figure 14.6.

Minus sign A 7→ −A. The tangle projection −A is obtained by converting
overcrossings into undercrossings and vice versa. Expressed in three dimensions,
this corresponds to the reflection of the knot strings in the projection plane.

Slope −1 reflection A 7→ ¬A. If we use the old “scaling and translation”
convention of §8.1 to define the parametrisation of boundary by the standard Con-
way circle , this rule simply reflects A in a line of slope −1. Note that this

operation changes over- to under-crossings, and conversely.
Addition A,B 7→ A+B. Here the sum tangleA+B is presented in Figure 14.7.

This operation is clearly associative.
Closing-up A 7→ 1∗(A). This operation results in the knot projection (with

no boundary) represented on the right hand side of Figure 14.7.

A B ¬A A+B 1∗(A)

A B
A

A B A

Figure 14.7.

Three more operations, represented in Figure 14.8, are derived from these.
Multiplication AB = (¬A) + B. More generally, the product A1A2 . . . An is

inductively defined by the property that A1A2 . . . An = (A1A2 . . . An−1)An.
Comma operation (A,B, . . . , C) = ¬A+ ¬B + · · ·+ ¬C.
Enclitic sign A+ = ¬(¬A + 1) = ¬(¬A,−1). The operation A− = ¬(¬A −

1) = ¬(¬A,+1) is similarly defined.
We now explain how to go from Conway’s notation to our description of ar-

borescent projections in terms of weighted planar trees.
From the outset, we note that Conway’s integral tangle projection n is isomor-

phic to the ones that we denote by −n ξ or −n η, but not to −n nor to any
tangle plumbed from a weighted planar tree without marked bonds. Indeed, the
arrow in Figure 14.6 agrees with boundary orientation, whereas the reverse holds
for any model atomic tangle projection as in Figure 12.8. To avoid this annoyance
we now operate modulo flip-isomorphisms of tangle projections.
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AB (A,B) A+

¬A B ¬A ¬B

A

Figure 14.8.

Proposition 14.10. Let A, B be monovalent arborescent tangle projections

described by the weighted planar trees a′

a
and b′

b
, respectively. Let an

exclamation mark ! applied to a subgraph indicate that all weights in the
subgraph are multiplied by −1, and that the cyclic order of weights and bonds is
reversed at all vertices of that are at even distance from the vertex to which
the subgraph is attached. Then, up to flip-isomorphism,

(1) Conway’s integer tangle projection n is (flip-isomorphic to the tangle pro-
jection) described by the weighted planar tree −n ;

(2) the tangle projection −A is described by the weighted planar tree obtained

from a′

a
by reversing the sign of all weights;

(3) the knot projection 1∗(A) is described by the weighted planar tree a +
a′ ;

(4) the tangle projection AB is described by the weighted planar tree
−a
−a′b b′

!;

(5) the tangle projection (A,B) is described by the weighted planar tree

−a

−a′

−b

−b′

!

!

;

(6) the tangle projection (A

total m︷ ︸︸ ︷
± · · · ±, B

total n︷ ︸︸ ︷
± · · ·±) is described by the weighted

planar tree ∓m
∓n

−a

−a′

−b

−b′

!

!

.

The proof of Proposition 14.10 is left as an exercise to the reader.
In his tabulations [Conw], Conway specifies arborescent knot projections by

linear notations using his integral tangles n and the above operations. To be sure,
there are a few more abbreviations and conventions to learn; for instance, he uses
the same symbol A to denote the tangle projection A and the knot projection
1∗(A). Proposition 14.10 provides a simple algorithm to mechanically write down
a weighted planar tree specifying the same projection.

Examples

(1) Conway’s (rational) tangle projection n . . . 54321 is described by the weighted

planar tree
−1

2 −3

4 −5
(−1)nn .
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(2) The knot projection 1∗(211, 3, 2−), abbreviated by Conway as 211, 3, 2−,
corresponds to the plumbing tree

2
−1 1 1

3

2.

(3) Similarly, Conway’s (3, 2)(21, 2−) is described by the weighted planar tree

−2
1

2

1

−2

−3.

(4) Conway’s knot projection (3, 2)−(21, 2), which stands for 1∗
(
(3, 2)

(
−(21, 2)

))
,

corresponds to

2
−1

−2 −2

−3.

(5) the tangle projection (3, 2)1(21, 2) is associated to the weighted planar
tree

3

2
1

2

1
−2.

For more information along these lines, see A. Caudron’s extensive notes [Cau].
In fact, we benefited from several conversations with Caudron in the period when
our weighted planar tree notations evolved from their origins in [Sie1].
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Knot symmetries





CHAPTER 15

Knot symmetries and characteristic splittings

So far, we have discussed knots (S3,K) where K carries no specified orien-
tation (although S3 does), and no preferred labelling of its components (strings).
However, it is sometimes important to keep track of such an extra information. For
instance, we have already briefly encountered such situation in Chapter 2, where the
classification of all knots in S3 was reduced to that of (finite collections of) knots
which are simple for Schubert and which are equipped with certain isomorphisms
among their string components.

However, it is immediate that this last problem for knots that are simple for
Schubert would be solved by:

(a) a classification of such simple knots, ignoring string orientations;
(b) for each such knot (S3,K) a determination of the action (up to isotopy)

of its automorphisms on the components of K.

Towards the classification step, we have made significant progress in previous
chapters. This chapter, as well as the following ones, addresses the automorphism
problem.

More generally, we will study the symmetry group Sym(M,K) of a given
knot pair (M,K) defined as the group of pairwise isotopy classes of degree ±1
automorphisms of (M,K). The subgroup of Sym(M,K) that consists of degree +1
automorphisms is denoted by Sym+(M,K).

In the present chapter, we exploit the characteristic splittings defined in Chap-
ters 2 and 3, and show how the symmetry group of (M,K) can be reconstructed
from the symmetry groups of the pieces defined by these splittings. Some of these
results will be improved in Chapter 17 by the extraction of characteristic markings
on the boundary of these pieces.

Our best results will be obtained in Chapter 16, where we calculate the sym-
metries of almost all arborescent knots (S3,K) that are simple for Schubert (see
[Boi1, BoiZ, Sak] for the remaining cases1). The symmetry group of such an
arborescent (S3, L) is there determined as a set, but the exact sequences of Chap-
ter 16 leave some group extension problems. We shall settle these in Chapter 18 by
realising Sym(S3,K) as a finite group of isometries of S3, after isotopy of K. This
also provides a good visualisation of these symmetries, which are more abstractly
studied in Chapter 16.

15.1. Knot symmetries and characteristic companions

Consider a knot pair (M,K) with M connected. If this pair is splittable,
in the sense that M − K contains a 2–sphere S that does not bound a 3–ball in

1(Added 2009) See also [Tur] for another determination of the action of the symmetry group
of a Montesinos knot on its set of orientations.
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M − K, then there exist curious automorphisms of (M,K). First, one splits M

at S into two pieces, and plugs the holes with two balls B1, B2 to get (M̂,K);

next one slides B1, B2 in M̂ isotopically around loops avoiding K to their original
positions; the end of the isotopy provides an automorphism of (M,K) fixing S
and K. These automorphisms are currently being sorted out; see [Bon2, App.
A][Henr, HendL, Wic, HendM]. Henceforth we avoid such automorphisms by
assuming (M,K) to be unsplittable.

Aiming to apply the characteristic companionship factorisation of Chapter 2,
we assume H1(M ;Z) = 0 (an assumption one could relax somewhat). Let Γ be
its characteristic companionship tree as defined in Chapter 2, and denote the com-
panion knots that are its vertices by (Nj ,Kj); here H1(Nj ;Z) = 0. (We are most
interested in the case where M ∼= S3, and hence Nj ∼= S3.) Let G ⊂ M − K be
the characteristic family of non-trivial tori provided by Theorem 2.4 and defining
Γ; recall each component of G is associated to an edge joining two vertices of Γ.

If ϕ is a degree ±1 automorphism of (M,K), it is pairwise isotopic to ϕ′ with
ϕ′(G) = G since G is characteristic. Now, ϕ′ induces an automorphism ϕ̂ of∐
j(Nj ,Kj) that is compatible with Γ in the sense of §2.5. Let SymΓ

∐
j(Nj ,Kj) de-

note the group of pairwise isotopy classes of degree±1 automorphisms of
∐
j(Nj ,Kj)

that are compatible with Γ.
For some automorphisms ϕ with ϕ(G) = G, it may happen that the induced

automorphism ϕ̂ of
∐
j(Nj ,Kj) is pairwise isotopic to the identity. This occurs

for Dehn twists along G, namely for every automorphism ϕ constructed in the
following way: Given a regular neighbourhood U ∼= G × [0, 1] of G (avoiding K)
and an isotopy t 7→ ψt ∈ Aut(G) with ψ0 = ψ1 = Id, let ϕ be the identity outside
of U and let ϕ(x, t) = (ϕt(x), t) on U ∼= G× [0, 1]. Up to pairwise isotopy, the Dehn
twist ϕ depends only on the normal orientation of G defined by the parametrisation
U = G× [0, 1] and on the class of t 7→ ψt in π1(Aut(G); Id).

Let D(M,K) denote the subgroup on the elements of Sym(M,K) that are
represented by Dehn twists along G.

Theorem 15.1. With the above data, the rule ϕ 7→ ϕ̂ gives a well-defined group
homomorphism R lying in an exact sequence

0 −→ D(M,K) −→ Sym(M,K)
R
−→ SymΓ

∐

j

(Nj ,Kj) −→ 0.

Proof. To prove that the “restriction” map R is well-defined, consider another
automorphism ϕ′′ that is pairwise isotopic to ϕ and such that ψ′′(G) = G. By
Proposition 5.20, the automorphisms ϕ′ and ϕ′′ are pairwise isotopic by an isotopy
preserving G, and ϕ′′ therefore induces the same element of SymΓ

∐
j(Nj,Kj) as

ϕ′.
Any element in the kernel of R is represented by an automorphism that is the

identity outside of a regular neighbourhood U ∼= G× [0, 1] of G. By [Wal3, Lemma
3.5], such an automorphism can itself be deformed to a Dehn twist by a (pairwise)
isotopy fixing the complement of U . Thus Ker(R) = D(M,K).

The surjectivity of R is clear. �

Note that a Dehn twist along G can be pairwise isotopic to the identity even
if it is constructed from a non-trivial element of π1(Aut(G); Id). This occurs when
a closed-up component (Mj ,K

′
j) of (M,K)−G is (pairwise) Seifert fibred possibly
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with “infinitely singular” fibres as in §2.2. Indeed, orienting G∩Mj as boundary of
Mj, let ϕ be the Dehn twist associated to the isotopy t 7→ ψt ∈ Aut(G) that fixes
G−Mj and is an isotopic translation once around the non-singular (oriented) fibres
of G ∩Mj . Clearly, ϕ is pairwise isotopic to the identity by an isotopy respecting
the fibres of Mj. (This construction has used a coherent orientation of the Seifert
fibres, whose existence is assured here by the condition H1(M) = 0 = H1(Nj).)

Conversely, an argument very close to that used in the proof of Proposition 5.20,
involving a pairwise essential surface in each closed-up component of (M,K)−G,
shows that an arbitrary Dehn twist along G is pairwise isotopic to the identity
(if and) only if it is a product of Dehn twists of the above type. In particular,
D(M,K) ∼= π1(Aut(G); Id) when no closed-up component of (M,K)−G is Seifert
fibred.

To compute the group D(M,K) more formally, choose a normal orientation for
G. Via the above construction, this orientation determines a group homomorphism
π1(Aut(G); Id) → D(M,K). Note that since G consists of tori, there is also a

canonical isomorphism π1(Aut(G), Id)
∼=
−→ H1(G) which to an isotopy t 7→ ψt

associates the homology class of the loops t 7→ ψt(X
0), where X0 is any finite set

with one point in each component of G.
For every closed-up component (Mj ,K

′
j) of (M,K) − G that is Seifert fibred,

pick out an (oriented) fibre Cji on each component Gji of ∂Mj. Let εji = +1 or
−1 according as the orientations of G and ∂Mj coincide on Gji or not, and let V
be the subspace of H1(G) generated by the elements

∑
i εji[Cji], where (Mj ,K

′
j)

ranges over all Seifert fibred closed-up components of (M,K)−G.
Now, the result italicised above can be rephrased as

Proposition 15.2 (for the data of 15.1). Given a normal orientation of G,
the group of Dehn twists D(M,K) is canonically isomorphic to H1(G)/V . �

Corollary 15.3. D(M,K) is finite precisely if either G = ∅, or G is con-
nected and each of the two characteristic companion knots is Seifert fibred. �

The group SymΓ

∐
j(Nj ,Kj) is completely analysed if we know for which i 6= j

the two pairs (Ni,Ki) and (Nj ,Kj) are isomorphic (which is just a classification
problem), and if the symmetry group of each (Nj ,Kj) is already determined. Recall
that, for each j, the pair (Nj ,Kj) is either simple for Schubert or Seifert fibred (or
both). In the second case, the determination of Sym(Nj ,Kj) is provided by [Wal2]
or [Wal4].

In case (Nj ,Kj) is simple for Schubert, we will be discussing its symmetry in
the rest of this chapter; alternatively, to calculate Sym(Nj ,Kj), one can sometimes
explicitly examine the complete hyperbolic structure on Nj −Kj, as in [Ril1, Ril2].

The reader should be warned that even when the extreme terms of the short
exact sequence of Theorem 15.1 are known, there may be some subtle extension
problems in determining the middle term Sym(M,K); see [Sie2] for examples of
these. Here is an example of a routine calculation with the exact sequence of
Theorem 15.1.
Sample calculation

Consider the 2–component knot (S3,K) whose companionship tree in the sense
of §§2.2–2.4 is , where the companions (N1,K1) and (N2,K2) associated to
the two vertices are each isomorphic to the knot of Figure 15.1, where the splicing
occurs along the componentsK12 ⊂ K1 andK21 ⊂ K2 singled out by the arrow, and
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where the identification K12
∼= K21 used in the splicing respects the orientations

specified by the arrow.

ξ

Figure 15.1.

The two pairs (N1,K1) and (N2,K2) are isomorphic Seifert fibred pairs and,
using [Wal2], one easily checks that

SymΓ((N1,K1)∐ (N2,K2)) ∼= Z2 ⊕ Z2

where one generator exchanges (N1,K1) and (N2,K2) respecting the arrows, and
the other one is, on each factor, the π–rotation illustrated in Figure 15.1.

Let G be the (unique) non-peripheral incompressible torus in S3 − K. The
closed-up component of (S3,K)−G corresponding to (N1,K1) is Seifert fibred; if
C12 ⊂ G is one fibre of this fibration, then ±[C21] = l1−2m1 in H1(G), where l1 and
m1 respectively represent a longitude and a meridian of the knot K12 ⊂ N ∼= S3,
oriented by the arrows. (The meridian has linking +1 with the knot.) Similarly,
with the obvious notations, ±[C21] = l2−2m2 in H1(G). Applying Proposition 15.2
and the fact that one has l2 = m1 and l1 = m2, it follows that

D(S3,K) ∼= H1(G)/〈[C12], [C21]〉 ∼= Z3.

Thus, Theorem 15.1 defines an exact sequence

0 −→ Z3 −→ Sym(S3,K) −→ Z2 ⊕ Z2 −→ 0.

It is easy to see that his extension splits, and is therefore determined by the
conjugacy action of Z2 ⊕ Z2 on Z3. This action of ϕ ∈ SymΓ((N1,K1)

∐
(N2,K2))

on D(M,K) is the identity or x → x−1 according as ϕ preserves or exchanges
(N1,K1) and (N2,K2). Consequently, Sym(S3,K) ∼= D6 ⊕ Z2, where D6 is the
dihedral group of order 6; this completes the calculation.

Observe that this knot is the arborescent knot classified by the weighted planar

tree
3

3

3

1
, which we have already encountered in Figure 2.2 of §2.1 and in

Proposition 8.22. It is one of the four irreducible Montesinos knots presentable
without rings that are not simple for Schubert. We shall see Sym(S3,K) as a
subgroup of the orthogonal group O(4) in Chapter 18.
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Exercise 15.4. Perform similar calculation for
2

4

4

1
,

4
3

6

1
and

2

2

2

2

2

(these are the other three!).

15.2. Knot symmetries and the arborescent part

Theorem 15.1 largely reduces the symmetry problem to the case of a knot
pair (M,K) that is simple for Schubert. To study its symmetries we now use the
analysis of Chapter 7 to extract its arborescent part A; this part is well-defined
up to pairwise isotopy under the hypothesis that M = S3 or more generally that
H1(M ;Z) has no torsion.

Consider a degree ±1 automorphism ψ of (M,K); it can be pairwise isotoped,
by Theorem 7.1, so that it preserves A.

Theorem 15.5. Restriction of ψ to A induces a well-defined homomorphism

r: Sym(M,K)→ Sym(A,K ∩A).

This homomorphism r is injective provided A 6= ∅ and M is connected.

Proof. The proof that the homomorphism is well defined is the same as for
Theorem 15.1, using Proposition 5.20.

To prove the injectivity, choose a maximal family F ′ of disjoint pairwise in-
compressible Conway 2–spheres in (M,K) − int(A), no two pairwise parallel and
none boundary parallel. By Theorem 7.1, the automorphism ψ can be pairwise
isotoped fixing A to respect F ′ ∪ A. Each component of (M,K) − (F ′ ∪ A) has a
complete finite volume π–hyperbolic structure by Theorem 5.9. Then, the Rigid-
ity Theorem 5.11 (inductively applied) shows that ψ is pairwise isotopic to the
identity. �

Exercise 15.6. Consider the knot (S3,K) of Figure 15.2, together with the
Conway sphere F splitting the pair (S3,K) into two pieces (A,A∩K) and (B,B ∩
K).

The pair (A,A∩K) is clearly arborescent, and not a rational tangle pair. The
pair (B,B ∩ K) is π–hyperbolic; indeed, it is just the pair of Figure 4.4, and its
double branched covering is the complement of the figure-eight knot. Consequently,
F is pairwise incompressible and A is the arborescent part of (S3,K).

We shall (easily) prove later that Sym(A,A ∩K) is Z2 ⊕ Z2 generated by the
two π–rotations ξ and η of Figure 15.3.

The rotation η extends to an automorphism of (S3,K) as indicated in Fig-
ure 15.2, but ξ obviously does not (note that exactly one component of B ∩K is a
knotted arc in B). Consequently, it follows from Theorem 15.5 that Sym(S3,K) ∼=
Z2, generated by the rotation η of Figure 15.2.

A few useful results on the symmetries of π–hyperbolic pairs can be found in
Chapters 1, 4, 5 and 6. See also [Ril1, Ril2]. The existing theory is not always
helpful and is surely incomplete. On the other hand, we are going to give a rather
satisfactory analysis of the symmetry group of the (marked) arborescent part of a
knot.
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η

AB
F

Figure 15.2.

η

ξ

Figure 15.3.

Theorem 15.5 states in effect that Sym(A,K ∩ A) is an upper bound for
Sym(M3,K). In the next chapter we proceed to a calculation (occasionally in-
complete) of this upper bound, using the canonical graphs of Chapter 12.

We note from the outset that two improvements will be called for:

(i) When Sym(A,K ∩A) is infinite, a smaller, finite, upper bound is wanted;
one is provided in Chapter 17, which involves boundary markings of
(A,K ∩ A) determined by the rest of the knot.

(ii) Sym(A,K ∩A), when finite, is to be realised geometrically in Chapter 18
as a finite subgroup of the isometry group O(4) of S3.



CHAPTER 16

Symmetries of arborescent knots and pairs

In this chapter, we analyse the symmetry group of a pairwise irreducible ar-
borescent pair (M,K).

To prepare for the improvement (i) mentioned at the end of the previous chap-
ter, sharpening the upper bound provided by Theorem 15.5, we assume (M,K)
equipped with some boundary marking C as in §12.8, and will compute the sym-
metry group Sym(M,K;C) of the marked arborescent pair (M,K;C), namely
the subgroup of Sym(M,K) respecting the marking C.

Lacking a better choice for C, we can certainly choose it to be the vertical
marking C∞ defined as follows: Consider the characteristic splitting of (M,K)
into Montesinos pairs studied in Chapter 9; then C∞ is defined by the trace of the
bands of restricted presentations of these Montesinos pieces.

Fact 16.1. If (M,K) is neither a rational tangle pair nor a thickened Conway
sphere, then Sym(M,K;C∞) = Sym(M,K).

Proof. Combine the uniqueness of the splitting of Chapter 9 together with
the uniqueness of necklaces proved in Chapter 10. �

Our computation of Sym(M,K;C) will be in terms of the abbreviated (+)–
canonical weighted planar tree Γ used to classify the marked pair (M,K;C) in
§12.8 and §13.3. Remember that each vertex of Γ carries a ring number r ∈ N ,
usually inscribed inside of it as r . This notation is often simplified by denoting
each vertex of ring number 0 by a solid black dot , and each vertex of ring number
1 by a small hollow dot .

The planar tree also carries integral weights in the angular sectors of its vertices,
and Γ satisfies the Weight Condition (W), the Stick Condition (S), the Free Valence
Condition (F), the Positivity Condition (P) and the Abbreviation Condition (A) of
§12.8.

We proved in §13.3 that the degree +1 isomorphism class of (M,K;C) is clas-
sified by Γ up to flips (F1), (F2), (F

′
3), (F

′′
3 ) of the calculus of marked arborescent

pairs. But Proposition 13.13 actually proves a much sharper statement concerning
the isomorphisms between such marked arborescent pairs. These properties will be
the backbone of our analysis of Sym(M,K;C).

Indeed, given two marked arborescent pairs (M,K;C) and (M ′,K ′;C′) respec-
tively obtained by plumbing according to two abbreviated (+)–canonical trees, and
a degree ±1 isomorphism ϕ : (M,K;C) → (M ′,K ′;C′) between them, Proposi-
tion 13.13 tells us that it is often possible to pairwise isotop ϕ so that it sends each
plumbing block (Mv,Kv) of (M,K) to a plumbing block (M ′

v′ ,K
′
v′) of (M ′,K ′).

In this situation, the rule v 7→ v′ defines an isomorphism ψ: Γc → Γ′
c between the

combinatorial trees underlying Γ and Γ′, respectively.

213
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We define an isogeny as a combinatorial isomorphism Γc → Γ′
c which can

occur in this way. More formally, an isogeny is a triple (Γ,Γ′;ψ) where Γ and
Γ′ are two abbreviated (+)–canonical trees, and ψ : Γc → Γ′

c is an isomorphism
between their underlying combinatorial trees, such that ψ can be realised by a
degree ±1 isomorphism ϕ: (M,K;C) → (M ′,K ′;C′) in the following sense: The
marked arborescent pairs (M,K;C) and (M ′,K ′;C′) are respectively associated
to Γ and Γ′ by plumbing construction, and ϕ send the building block (Mv,Kv) of
(M,K) to the building block (M ′

ψ(v),K
′
ψ(v)) of (M ′,K ′). An isogeny has degree

+1 (resp. degree −1) if it can be realised by a degree +1 (resp. −1) isomorphism
between the corresponding marked arborescent pairs.

We have already encountered a different definition of degree +1 isogenies in
§12.6. There, we began by defining elementary degree +1 isogenies. These
were the preferred combinatorial isomorphisms ψ : Γc → Γ′

c that arise when Γ′

is deduced from Γ by one of the flips (F1), (F2), (F
′
3) and (F′′

3 ) of the plumbing
calculus, or by a weighted planar tree isomorphisms. Then, a degree +1 isogeny
was defined as a product of such elementary degree +1 isogenies. We will prove in
Lemma 16.2 below that this definition of degree +1 isogenies is equivalent to the
one given above.

But before that, let us introduce the notion of elementary degree −1 isogeny .
If the marked pair (M,K;C) is obtained by plumbing according to the abbrevi-
ated (+)–canonical tree Γ, reversal of the orientation of M gives the knot pair
(−M,K;C), which is obtained by plumbing according to the weighted planar tree
−Γ defined by reversing the sign of all weights of Γ. Let then Γ∗ be the (+)–
canonical tree obtained from −Γ by performing on it as many of the arithmetic
moves (2.1), (2.2), (1.0) and (2.0) as necessary. The three weighted planar trees Γ,
−Γ and Γ∗ have the same underlying combinatorial tree, and (Γ,Γ∗; Id) is clearly a
degree −1 isogeny by construction. An elementary degree −1 isogeny is defined
as any isogeny (Γ,Γ∗; Id) so associated to a (+)–canonical tree Γ.

Lemma 16.2. Any degree +1 isogeny (in the above sense) is a composition
of elementary degree +1 isogenies. A degree −1 isogeny is the product of one
elementary degree −1 isogeny and of several degree +1 isogenies.

Proof. Consider a degree +1 isogeny (Γ; Γ′;ψ) induced by a degree +1 iso-
morphism ϕ : (M,K;C) → (M ′,K ′;C′) between the corresponding arborescent
pairs, sending plumbing block to plumbing block. When Γ is not one of the ex-
ceptions of Proposition 13.13, we showed that ψ respects the weights of Γ and Γ′.
Then, we proved in Proposition 13.14 that ψ is a product of degree +1 isogenies.
But remember that the exceptions to Proposition 13.13 were excluded only to make
ϕ send building block to building block, which we already have at hand. So, the
arguments apply in all generality to show that any degree +1 isogeny is a product
of elementary degree +1 isogenies, namely that our definition of degree +1 isogenies
is the same as the one of §§12.5 and 12.8.

The second statement of Lemma 16.2 is immediate, as the composition of two
degree −1 isogenies is a degree +1 isogeny. �

Note that a degree −1 isogeny in general does not respect the weights of the
corresponding weighted trees, not even up to sign.

An isogeny may exceptionally be both of degree +1 and of degree −1. The

simplest examples consist of (Γ,Γ; Id) when Γ is 1, 2 or
2 21

r . To analyse this
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pathology completely, let us call a weight 1 or 2 vertex of Γ active if an arithmetic
move (1.0), (2.0), (2.1) or (2.2) is applied there in the standard transition from
positively to negatively canonical form.

Proposition 16.3. For a positively canonical graph Γ, the following are equiv-
alent:

(a) Some isogeny (Γ,Γ′;ϕ) has both degrees +1 and −1.
(b) Every isogeny defined on Γ has both degrees ±1.
(c) The identity IdΓc

has both degrees ±1.
(d) Γ is related to −Γ by flips and arithmetic moves of type (1.0), (2.0), (2.1),

(2.2) of Chapter 12.
(e) For every vertex v of Γ, one of the following holds:

(i) v is active;
(ii) v has weight n ∈ N and is adjacent to 2n active vertices;
(iii) v is attached to a stick 0 with a free bond (and consequently carries

no weight).

Proof. The proof is straightforward. �

Given a canonical tree Γ the isogenies (Γ,Γ;ψ), also called symmetries of Γ,
constitute a group denoted by Sym(Γ). Its subgroup consisting of isogenies having
degree +1 will be denoted by Sym+(Γ).

Given Γ, the group Sym(Γ) is rather easy to calculate explicitly. Although
its definition is a bit subtle, it is clearly just a subgroup of the combinatorial
automorphisms of the combinatorial tree Γc; further, in §12.6, we gave a perfectly
practical procedure to decide if a combinatorial isomorphism is an isogeny.

Theorem 16.4. Let (M,K;C) be a connected pairwise irreducible marked ar-
borescent pair with abbreviated positively canonical tree Γ. Suppose that (M,K) is
not the Borromean rings, not the double of the ring pair, nor a closed Montesinos
pair presentable with no ring and (exactly) three non-integral tangles.

Then, there exists a natural surjective group homomorphism γ: Sym(M,K;C)→
Sym(Γ). By restriction, it gives a surjection γ+: Sym+(M,K;C)→ Sym+(Γ).

Remarks 16.5.

(i) In terms of the positively canonical graph Γ, the exclusion of the three

exceptions means that Γ is not
2 21

, nor

2

2

2

2

2
, nor a stellar tree

with three branches and black vertices (and no free bonds).
(ii) For the Borromean rings and the double of the ring pair, Theorem 16.4

fails. The symmetries of the Borromean rings will be analysed in The-
orem 16.18 below. The double of the ring pair has a non-trivial char-
acteristic companionship tree, with Seifert fibred companions, so that its
symmetry group is easily computed by Theorem 15.1 and Proposition 15.2
(using [Wal2]).

(ii) Our method completely fails to calculate the symmetry groups of most
Montesinos knots with three branches. Nevertheless, arguments involving
planar reflection groups, enable M. Boileau and B. Zimmermann to show
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that Theorem 16.4, and also the analysis of Ker γ+ in Theorem 16.8, still
hold for most, and perhaps all, of these knots. See [Boi1, Boi2, BoiZ]1.

The proof of Theorem 16.4 will occupy us for a while.
Here is how γ is defined for Theorem 16.4. Recall that the plumbing construc-

tion of (M,K) according to Γ defines, for each edge e of Γ, a preferred Conway
sphere Se separating two building blocks in (M,K).

Given a degree±1 automorphism ϕ of (M,K;C) we showed in Proposition 13.13
that ϕ can be pairwise isotoped so as to respect the family

⋃
e Se of these preferred

Conway spheres, and therefore to induce an isogeny from Γ to itself, namely a
symmetry of Γ.

The map γ of Theorem 16.4 will associate this isogeny to the pairwise isotopy
class of ϕ. That γ well-defined is proven by the following statement.

Claim 16.6. Under the hypotheses of Theorem 16.4, let ϕ′ and ϕ′′ be two
automorphisms of (M,K;C) respecting the union of the Conway spheres Se. If ϕ′

and ϕ′′ are pairwise isotopic, then they act similarly on the set of components of⋃
e Se and induce the same symmetry of Γ.

Granting the well-definition of γ, the rest of Theorem 16.4 quickly follows.
Indeed, γ is clearly a group homomorphism and its surjectivity is immediate from
Chapter 12 (and our definitions) as is γ

(
Sym+(M,K;C)

)
= Sym+(Γ). Thus, we

need only prove this claim.

Proof of Claim 16.6. Let ψ be ϕ′(ϕ′′)−1. By definition, ψ is pairwise iso-
topic to the identity and we want to show that ψ maps each Conway sphere Se to
itself preserving orientation.

Let G be the characteristic collection, defined in Chapter 9, of pairwise in-
compressible Conway spheres, splitting (M,K) into Montesinos pairs. It can be
constructed by picking out one element in each pairwise parallelism class contain-
ing a pairwise incompressible Se not pairwise boundary parallel.

In fact, this choice can be made so that ψ(G) = G after a pairwise isotopy
of ψ respecting

⋃
e Se. Indeed, if G′ is a component of G, let S1, . . . , Sn be the

components of
⋃
e Se that are pairwise parallel to G′; the indexing can be chosen

so that S1, . . . , Sn occur in this order in (M,K), namely so that Si and Si+1 are
separated by a pairwise parallelism ∼= (S2, 4points) × [0, 1] avoiding the other Se.
Now, G′ can be chosen (after pairwise isotopy), so that it lies in a median position
with respect to the Si, namely so that G′ = Sm if n = 2m − 1 is odd and G′ lies
between Sm and Sm+1 if n = 2m is even. If each component of G is chosen thus,
then ψ clearly can be pairwise isotoped, respecting

⋃
e Se, so that ψ(G) = G.

By Proposition 5.20, the induced map ψG : G→ G of ψ is pairwise isotopic to
the identity. In particular, ψ maps each component G′ of G to itself respecting ori-
entation. It follows that ψ does the same for each Se that is pairwise incompressible
(this is trivial when Se is pairwise parallel to a boundary component).

It remains to prove this even for the Se that are pairwise compressible. The
proof now splits into several cases.

Case 1: (M,K) is not a closed Montesinos pair.
Consider a closed-up component (Mv,Kv) of (M,K)−

⋃
e Se (= a tangle plumb-

ing block) that has > 3 boundary components or contains a ring.

1(Added 2009) See also [Sak] for the remaining cases.
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At least, one boundary component S of (Mv,Kv) is pairwise incompressible in
(M,K) (possibly S ⊂ ∂M); otherwise, (M,K) would be a closed Montesinos pair.
We have already seen that ψ(S) = S and that ψ is pairwise isotopic to the identity
by an isotopy respecting S. In particular, ψ(Mv) = Mv and ψ fixes each point of
S∩K; a connectivity argument on Kv now proves that ψ preserves each component
of ∂Mv.

We have thus shown that the isogeny Γ → Γ induced by ψ fixes each vertex
with valence > 3 or ring number > 1, and each bond attached to it. An easy graph
theoretic argument now shows that this isogeny fixes everything. (Remark: It even
reveals that, if Γ contains at least one vertex of valence > 3, we did not need to
consider vertices of ring number > 1 and valence 6 2 in the previous step.) This
proves Claim 16.6 in this first case.

Case 2: (M,K) is a closed Montesinos pair, but not a rational knot.
Here Γ has a unique vertex v with valence > 3 or ring number r > 1. Consider

the necklace Nv of the plumbing block (Mv,Kv); then ψ(Nv) = Nv after a pairwise
isotopy of ψ respecting

⋃
e Se (by Theorem 10.5, applied to the central block).

Assume, in search of a contradiction, that ψ acts non-trivially on Γ, and thus
permutes the Conway spheres of Nv non-trivially. Then, consider two adjacent
Conway spheres S1 and S2 of Nv and a component B1 of the band of Nv that joins
S1 to S2 (this B1 is in fact unique when N has > 3 Conway spheres). Let F be the
vertical Conway sphere that is a boundary component of a regular neighbourhood
of S1 ∪ S2 ∪B1. Note that F is pairwise incompressible by Theorem 8.15 because
we have excluded closed Montesinos pairs with no ring and 6 3 branches. When
ψ(B1) 6= B1, we know ψ(F ) is not pairwise isotopic to F , by our classification of
vertical surfaces in Theorem 8.15, a contradiction. When ψ respects B1, it must
exchange S1 and S2 and therefore, after pairwise isotopy ψ(F ) = F but ψf : F → F
is not pairwise isotopic to the identity. This would prevent ψ from being pairwise
isotopic to the identity (use Proposition 5.20 if necessary), which again provides
the contradiction sought.

Finally, to conclude the proof of Claim 16.6, we need to examine

Case 3: (M,K) is a rational knot.
Here all the Se are pairwise parallel. Assume, in search of a contradiction, that

the assertion of Claim 16.6 is false. One sees that the isogeny Γ → Γ induced by
ψ must be an involution exchanging the end points of the combinatorial segment
underlying Γ.

Thus after pairwise isotopy of ψ, there exists a Conway sphere S pairwise
parallel to all the Se’s so that ψ maps S to itself with degree −1, exchanging the
closed-up complementary balls B, B′. We shall show this contradicts G being
pairwise isotopic to the identity.

For this, we first want to make ψ periodic by a pairwise isotopy. The arguments
of §5.4 do this (see Assertion 5.15 in particular), but here is an ad hoc argument:
First, choose an arbitrary parametrisation of (S, S ∩K) by the standard Conway
sphere (S2, P 0). By Lemma 11.2, ψ can be pairwise isotoped to be linear on S
(dropping to the PL or TOP category to avoid technicalities; see §11.1). The
restriction ψ|S : S → S exchanges two pairwise isotopy classes of essential closed
curves C and C′, namely those bounding the (unique) pairwise essential discs in
(B,K∩B) and (B′,K ′∩B′) avoidingK. These two curves are not pairwise isotopic;
otherwise, Γ would be

0
. It follows that ψ|S is periodic, and we easily make ψ|S∪K
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periodic too. Note that the complement of S∪K consists of two open handlebodies
U , U ′ of genus 2 that are exchanged by ψ. Finally ψ itself becomes periodic when
we replace ψ|U ′: U ′ → U by the inverse of ψ|U : U → U ′.

Next, we use a simple lemma of Giffen [Gif], which also follows from a stronger
result of A. Borel (compare the proofs of Lemma 4.2 and Assertion 5.16, and
[ConM]).

Lemma 16.7. Let ψ be a finite order automorphism, different from the identity,
of a knot pair (M,K) with K 6= ∅ andM−K irreducible. If ψ is pairwise isotopic to
the identity, there is a non-trivial central element in π1(M−K). As a consequence,
the pair (M,K) is Seifert fibred by [Wal1].

Proof of 16.7 (in brief). If ft is the isotopy, we can chain together the
isotopies ft, f ft, f

2ft, . . . , f
n−1ft, where n is the order of f , to get a pairwise

isotopy gt, 0 6 t 6 n, from g0 = identity to gn = fn = identity. Then, for any
x ∈ M − K, the loop gt(x) traced by x is central in π1(M −K). With x chosen
near K, this loop is clearly non-trivial in π1(U −K), with U an equivariant tubular
neighbourhood of K. Then, the irreducibility of M − U combined with Dehn’s
lemma assures that either this loop is non-trivial in π1(M −K) orM −K is a solid
torus. In both cases, π1(M −K) then has non-trivial centre. �

From this lemma, we conclude that the rational knot (M,K), which we are
looking at in order to prove Claim 16.6 is Seifert fibred. But the only rational
knots that are Seifert fibred are those with canonical graph Γ =

n
with n ∈ Z,

which are the {2, n} torus knots; the 2–fold branched coverings show this (see
[Mon1, Mon2] or the Appendix). This gives the desired contradiction because the
canonical graph Γ of (M,K) was assumed to be topologically an interval. Thus
Claim 16.6 is proved for rational knots.

This completes the proof of Claim 16.6, and thus of Theorem 16.4. �

Our next task is to evaluate the kernel of the epimorphism γ: Sym(M,K;C)→
Sym(Γ) defined by Theorem 16.4.

When no symmetry of Γ has both degree +1 and −1 (compare with Proposi-
tion 16.3), there is a natural group homomorphism ε: Sym(Γ) → Z2 such that the
composition ε ◦ γ: Sym(M,K;C) → Z2 is just the degree map. It follows that, in
this case, Ker γ = Ker γ+. Otherwise, Ker γ+ has index 2 in Ker γ.

By the above, we can now restrict attention to the determination of Ker γ+.
For this, we now define a readily calculable group K(Γ), which will turn out to be
isomorphic to Ker γ+ in most cases of interest.

The group K(Γ) is defined as follows for an arbitrary abbreviated weighted
planar tree Γ of atomic tangles. By plumbing according to Γ, we obtain a marked
pair (M,K;C) made up of plumbing blocks (Mv,Kv) corresponding to the vertices
of Γ, each equipped with a preferred necklace Nv coming from the necklace of the
corresponding model atomic tangle. Let N = N(Γ) be the union in M of all the
necklaces Nv; it is called the conglomerate necklace. By definition, K(Γ) is the
group of isotopy classes of automorphisms of N that preserve each sphere and on
each Conway sphere induce an element of the Viergruppe V4 (or, equivalently, map
each Conway sphere to itself with degree 1, preserving every marking).

Observe that K(Γ) is realised by a group of involutions of N . When Γ is
connected, restriction to any parametrised Conway sphere injects K(Γ) into V4. If
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Γ has just one vertex of valence d, then K(Γ) is clearly V4 for d = 2 and Z2 for
d > 3. The general calculation of K(Γ) is given by Algorithm 16.10 below.

Theorem 16.8. Under the hypotheses of Theorem 16.4, so that γ+: Sym+(M,K;C)→
Sym+Γ is defined, assume moreover that all ring numbers of Γ are 6 1 and that Γ
does not contain any branch r

0
(corresponding to a vertical marking).

Exclude the graphs
0

,
0
and

n
.

Then, there is a natural isomorphism Ker γ+ ∼= K(Γ).

Proof of 16.8 when Γ has a single vertex. Consider a degree +1 auto-
morphism ϕ of the marked atomic pair (M,K;C). There exists a pairwise isotopy
of ϕ to an automorphism ϕ′ respecting the necklace N : If the ring number is 6= 0,
or if the valence is > 3, this was proved in Chapter 10 (without using the marking).
Otherwise, the argument of Proposition 13.13 gives the proof (using the marking

and the exclusion of
0

,
0
and

n
).

If ϕ represents an element of Ker γ+, then the restriction ψ′ : N → N of ϕ′

respects each Conway sphere and gives an element [ψ′] of K(Γ). Restriction to any
one boundary Conway sphere shows that the rule ϕ → [ψ′] gives a well-defined
homomorphism θ : Kerγ+ → K(Γ).

Given [ψ] in K(Γ), the automorphism ψ of N extends to one of (M,K;C) by
Proposition 11.1. Thus θ is surjective.

To show that θ is injective, suppose ψ′ in the definition of θ is isotopic to the
identity. Then, we can clearly pairwise isotop ϕ′ to be the identity on N and also
on a regular neighbourhood V of N (possibly with a ring as core), the following
lemma completes the proof of Theorem 16.8 when Γ has one vertex. �

Lemma 16.9. Any automorphism of B2×S1 or of (B2, 0)×S1 fixing boundary
is pairwise isotopic to the identity by an isotopy fixing the boundary.

Proof of Lemma 16.9. Hint: For the first case, first make the automorphism
respect a meridian disk of the solid torus B2×S1 (see Figure 16.1). For the second
case, start by making the automorphism respect an annulus A stretching from the
core 0× S1 to the boundary, split B2 × S1 along this annulus, and then apply the
first case to the resulting solid torus. �

D

A

Figure 16.1.

Proof of Theorem 16.8 in the general case. There is a well-defined ho-
momorphism θ∗ : K(Γ) → Ker γ+ as follows: For any automorphism ψ of the con-
glomerate necklace N representing an element of K(Γ), choose a (degree +1) auto-
morphism ϕ of (M,K;C) extending ψ. By the case just proved, ϕ is well-defined
by [ψ] ∈ K(Γ), up to pairwise isotopy respecting each plumbing block (Mv,Kv).
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To prove the surjectivity of θ∗, consider a (degree +1) automorphism ϕ of
(M,K;C) representing an element [ϕ] of Kerγ+, namely respecting each plumbing
block (Mv,Kv). In the proof of Proposition 13.10 and 13.13, we showed that in
this situation the restriction of ϕ to each boundary component of (Mv,Kv) is slope
preserving. By the proved case of Theorem 16.8 with one vertex, the restriction
of ϕ to Mv respects its necklace Nv after pairwise isotopy. Then [ϕ] ∈ Ker γ+ is
clearly in the image of θ∗.

We now have to prove that θ∗ is injective.
If ∂M 6= ∅, this is clear by restriction to ∂M . If ∂M = ∅, argue as follows:

In the construction of θ∗[ψ] = [ϕ], note that ϕ can be an involution, and not the
identity if ψ 6= Id. Indeed one can readily see this on the model atomic tangles
of §12.5. Also one can verify it abstractly by extending ψ to an involution of a
regular neighbourhood of N , then by hand over the remaining solid tori to an
involution of (M,K). Then, Lemma 16.7 assures that either [ϕ] 6= 0, or else (N,K)
is Seifert fibred, which, as proved by Theorem A.8 in the Appendix, is excluded by
our hypotheses.

The proof of Theorem 16.8 is now complete. �

We now determine the group K(Γ) for an arbitrary abbreviated weighted pla-
nar tree Γ (not necessarily canonical). We know that K(Γ) is realised as a finite
group of involutions ψ of the conglomerate necklace N =

⋃
v Nv so that, on each

parametrised Conway sphere in Nv, the restriction of ψ is an element of V4. In
particular, K(Γ) is independent of ring numbers.

The determination of K(Γ) amounts to knowing which involutions of the Nv can
be fitted together to give an involution of N in K(Γ). This is just a combinatorial
problem involving some compatibility conditions which we analyse now.

Consider ψ ∈ K(Γ) and its restrictions ψv to Nv.
If the plumbing block Mv has > 3 boundary components and if ψ 6= Id, then

the restriction ψ|S : S → S of ψ to each component S of ∂Mv ⊂ Nv coincides

with ξ ∈ V4 ⊂ Sym(S2, P 0), where the tangle structure of (Mv,Kv) specifies the
identification of (S,K ∩ S) with the standard Conway sphere (S2, P 0).

IfMv corresponds to a 2–valent vertex of Γ with total weight a, and if ψ ∈ K(Γ)
coincides with α ∈ V4 on one component of ∂Mv, it acts as θ

e(α) ∈ V4 on the other
boundary component, where θ : V4 → V4 is the involution exchanging η and ζ; note
that θa depends only on a mod 2.

Lastly, let S be a common boundary component of two adjacent blocks Mv

and Mw. Then, by the atomic tangle structures for Mv and Mw, the restriction
ψS : S → S gives two elements of V4, and these are related by the involution σ of
V4 exchanging ξ and η.

The above observations lead to the following: If Γ and Γ′ are two abbreviated
weighted planar trees, a natural group isomorphism K(Γ) → K(Γ′) is induced by
any combinatorial isomorphism Γ0 → Γ′

0 between the underlying combinatorial
graphs sending a vertex of Γ with total weight e always to a vertex of Γ′ whose
total weights e′ is congruent to e modulo 2. In other words, only the weights
mod 2 count for K(Γ), while the ring numbers and the cyclic orderings are entirely
irrelevant. Thus K(Γ) is K(Γ2) where Γ2 is the underlying combinatorial graph
Γ0 together with, for each vertex, the value mod 2 of the integral weight of the
corresponding vertex of Γ.
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Also, if Γ and Γ′ are related by an arithmetic move (0.2) or (1.2), one readily
checks that there exists a natural isomorphism between the corresponding groups
K(Γ) and K(Γ′). Beware that this is sometimes false for the arithmetic moves (0.1)
and (1.1).

Observe that the arithmetic moves (0.2) or (1.2) are well-defined on the weighted
tree Γ2. Our algorithm reduces Γ2 by these moves to a form where the value of
K(Γ2) is obvious.

Algorithm 16.10. Let Γ2 and K(Γ) be associated to any abbreviated weighted
planar tree Γ as above. Performing moves (0.2) and (1.2) on Γ2 sufficiently often,
one necessarily reaches a graph Γ′

2 (with weights in Z2) for which one of the following
holds:

(a) Some edge of Γ′
2 joins two vertices of valence > 3.

(b) Exactly one vertex of Γ′
2 has valence > 3.

(c) Γ′
2 is a line, namely is homeomorphic to a segment.

Then K(Γ) = 0 in Case (a), Z2 in Case (b) and Z2 ⊕ Z2 in Case (c).

Proof. The first statement is an easy combinatorial fact. The second follows
from K(Γ) ∼= K(Γ′

2) and a direct calculation of the latter, using our preliminary
observations. �

It is also helpful to notice thatK(Γ) is unchanged if any arm
a1 an

or
a1 an

of Γ2 that is just a stick (with weights in Z2) is lopped
off at its attaching bond leaving .

We now propose to generalise the calculation of Ker γ+ in Theorem 16.8 to the
more general situation of Theorem 16.4 in which γ+ is defined. This is done in two
steps; here is one:

Theorem 16.11. Let the hypotheses of Theorem 16.8 be slightly relaxed so as to
allow δv > 0 branches

0
r (corresponding to vertical markings) attached

at each vertex v of Γ (while the ring numbers are still 6 1 ).
Then, when Γ is not

0 0
, there is a splitting Ker γ+ ∼= K(Γ) ⊕ Zδ

where K(Γ) is determined by Algorithm 16.10 and where δ =
∑
v max(0, δv − 1); in

general, the splitting is not natural.
When Γ is

0 0
, Ker γ+ is only K(Γ)×Zδ as a set; algebraically, it is

the semi-direct product of K(Γ) ∼= V4 and Z defined by the relations aξa−1 = ξ and
aηa−1 = ξ where a is the generator of Z.

In particular, Ker γ+ ∼= K(Γ) when at most one branch is attached at each
vertex.

Proof. It is convenient to consider the graph Γ′ obtained from Γ by erasing
each branch

0
r , keeping however the bond r where it was at-

tached. The pair (M,K) is still obtained by plumbing atomic tangles (Mv,Kv)
according to Γ′. Note that, for the new tangle structure on (M,K), the marking C
has slope ∞ on the components of ∂M corresponding to branches

0
r of

Γ, but still has slope 0 on the other boundary components. Let ∂∞M denote the
union of the components of ∂M where the original marking C is vertical (slope∞).

After pairwise isotopy, any automorphism of (M,K;C) representing an element
of Ker γ+ preserves each block (Mv,Kv) for Γ

′ and each component of ∂Mv; let ϕ
be such an automorphism. The now standard argument based on necklaces (see
the proof of Propositions 13.10 and 13.13) shows that ϕ is slope-preserving on each
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component of ∂Mv − ∂∞M . It then follows from Proposition 11.1 that, for every
component Svi of Mv ∩ ∂∞M , there exists a number nvi ∈ Z so that ϕ sends slope
p
q to slope p

q + nvi for the tangle structure of (Mv,Kv); moreover
∑

i nvi = 0 for
every vertex v.

The rule sending ϕ to the nvi’s defines a group homomorphism α: Kerγ+ → Zσ

where σ =
∑

v δv, with image contained in the subspace A ∼= Zδ determined by the
relations

∑
i nvi = 0 (one for each vertex v).

The kernel of α consists of the elements of Kerγ+ that respect each slope on
the boundary. Then, the arguments proving Theorem 15.1 apply to show that
Kerα ∼= K(Γ).

The precise determination of the image of α in A is a bit subtle. However, we
can already note that Imα contains 2A ∼= Zδ ⊂ A. Indeed, each collection of even
numbers nvi satisfying the conditions

∑
i nvi = 0 for every v is realised by Dehn

twists along suitably chosen vertical annuli in each (Mv,Kv). This proves that Imα
is itself isomorphic to Zδ, and thus assures an exact sequence

0→ K(Γ)→ Ker γ+
α
→ Imα ∼= Zδ → 0.

We want to prove that this exact sequence splits. Without loss of generality,
we can restrict attention to the case where δ 6= 0 and K(Γ) 6= 0. Then fix a base
point ∗ ∈ K ∩ ∂∞M , lying in a block (Mv,Kv) containing at least two components
of ∂∞M .

Assuming moreover that Γ is not
0 0

, the block (Mv,Kv) contain-
ing ∗ has at least three boundary components. Therefore K(Γ) ∼= Z2, and every
automorphism ϕ of (M,K;C) representing an element of Kerγ+ sends ∗ either to
itself, or to the point of ∂K that is connected to ∗ by an arc of the marking C (by a
connectivity argument on the necklace). It then follows that, for each ψ ∈ Ker γ+,

there exists a unique ψ̂ ∈ Ker γ+ having the same image by α and fixing the point

∗. The elements ψ̂ now define the splitting Im(α)→ Ker γ+ required.

Also, it is immediate that each such ψ̂ commutes with the normal subgroup
K(Γ) ∼= Z2. Therefore the split exact sequence

0→ K(Γ)→ Ker γ+
α
→ Zδ → 0

is trivial and Kerγ+ ∼= K(Γ)⊕ Zδ.
When Γ is

0 0
, the argument is quite similar, and we let the reader

check that it leads to the claimed result. This concludes the proof of Theorem 16.11.
�

The reader has been cheated in Theorem 16.11. He does not possess a map
Kerγ+ → Zδ (nor the other way around), and he does not know the effect of Ker γ+

on (∂M, ∂K). The following series of exercises give redress.

Exercises 16.12 (for data of Theorem 16.11, excluding Γ =
0 0

).

(a) Let N = N(Γ′) ⊂M be the conglomerate necklace for the pruned tree Γ′

introduced in the proof of Theorem 16.11. Show that there is a natural
injective homomorphism ν : Sym(M,K;C) → Sym(N). Our aim is to
calculate its image Im ν effectively.

(b) Let C′ be the marking of (M,K) associated to Γ′, and let ν′ be the
restriction of ν to the finite subgroup Sym(M,K;C) of Sym(M,K;C)
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respecting C′. By Theorem 16.8, we have an exact sequence

0→ K(Γ)→ Im ν′ → Sym(Γ)→ 0.

Using it, give an effective procedure to determine Im ν′.
(c) Show that Im ν ⊂ Sym(N) is generated by Im ν′ and ν(Ker γ+). We have

yet to determine ν(Ker γ+).
(d) There is a restriction mapping ρ : Sym0(N) → Sym(N − ∂∞M) where

Sym0(N) ⊂ Sym(N) is the subgroup respecting each Conway sphere.
Clearly ν(Kerγ+) ⊂ Sym0(N). Show that ρν(Ker γ+) ∼= K(Γ∗) where Γ∗

is obtained from Γ by the following cutting procedure: At each vertex
of Γ with at least two branches

0
r attached, cut Γ like a pie

along each such branch adding a free bond at the tip of each piece of pie
(one can suppress all rings). Figure 16.2 illustrates and clarifies this, for
a vertex with three such branches.

r

Γ Γ∗

Figure 16.2.

Clearly, Γ∗ depends strongly on the dihedral ordering of bonds at
the vertices of Γ. Observe that for each component Γ∗∗ of Γ∗, the group
K(Γ∗∗) is 0 or Z2 calculated by Algorithm 16.10, ifK(Γ∗) is a known sum of
Z2’s. If N∗ = N(Γ∗) is the conglomerate necklace for Γ∗, there is a natural
inclusion N − ∂∞M → N∗. By restriction, the group K(Γ∗) ⊂ Sym0(N∗)
injects into Sym(N−∂∞M); show that this identifies K(Γ∗) to ρν(Ker γ+).

(e) Show that ν(Ker γ+) is the subgroup of Sym0N consisting of those auto-
morphisms ψ: N → N (up to isotopy) satisfying two conditions:
(*) the restriction to N − ∂∞M lies in K(Γ∗) ⊂ Sym(N − ∂∞M);

(**) for each plumbing block (Mv,Kv) ⊂ (M,K) for Γ′, the restriction
ψv : Nv → Nv of ψ to the necklace Nv = N ∩Mv satisfies the arith-
metic condition of Proposition 11.1 for extension to an automorphism
of (Mv,Kv;C

′).
(f) For M = S3, devise algorithms to determine from Γ the image of the

natural homomorphism Sym(S3,K)→ Sym(S3)× Sym(K).

Theorem 16.13. Let the hypotheses of Theorem 16.8 be relaxed once more,
allowing ring numbers > 2 as well as branches

0
r ; exclude however the

graphs r
a0 a1 an

with r > 2 and n > 0. Consider, for every vertex v of Γ with
ring number rv > 0, the braid group Bv = π0 Aut(D

2, rv interior points; rel ∂D2).
(Note that Bv = 0 if rv 6 1.) Let Γ∗ be the weighted graph that is obtained from
Γ by replacing all ring numbers > 2 by 1; and let (M∗,K∗;C∗) be the associated
marked pair.

Then, there is an exact sequence

0→
∏

v

Bv → Kerγ+ → Ker γ+∗ → 0
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where γ+∗ : Sym(M∗,K∗;C∗)→ Sym+(Γ∗) is the map defined by Theorem 16.4.

Note that our hypotheses (and notably the exclusions) assure that Γ∗ is canon-
ical and satisfies the hypotheses of Theorem 16.4. Moreover, Ker γ+∗ is already
determined by Theorem 16.4 and 16.11.

As for Γ = r
a0 a1 an

, note that Γ∗ would have a canonical form of type
2

2

b0 b1 bn
(see §12.5) so that (M∗,K∗;C∗) is excluded by Theorem 16.4

(and γ+∗ is undefined). Nevertheless, Theorem 16.13 will in effect be extended to
this case in Proposition 16.15.

Proof of Theorem 16.13. For every vertex v of Γ with ring number rv > 2,
consider in the corresponding plumbing block (Mv,Kv) the closed-up complement
Vv of a regular neighbourhood of the necklace Nv. The pair (Vv, Vv ∩K) is isomor-
phic to (D2, rv points)× S1, and ∂Vv is pairwise incompressible in (M,K).

Every automorphism ϕ of (M,K;C) representing an element of Ker γ+ re-
spects

⋃
∂Vv after pairwise isotopy, by uniqueness of necklaces (Chapter 10). Using

Proposition 5.20, one sees that the “restriction” map to M −
⋃
v Vv then induces

a well-defined homomorphism Ker γ+ → Kerγ+∗ which associates to an automor-
phism ψv of (D2, rv points) fixing ∂D, the automorphism that is ψv× Id on Vv and
is the identity outside of Vv. By uniqueness of Seifert fibrings up to isotopy [Wal2],
every automorphism of (M,K;C) fixing the complement of

⋃
v Vv is obtained in

this way, up to pairwise isotopy. We therefore have an exact sequence:
∏

v

Bv → Ker γ+ → Ker γ+∗ → 0.

The fact that
∏
v Bv injects into Ker γ+ follows (using Proposition 8.14) from

its effect on pairwise essential surfaces in (M,K). Consider, for example, a family
of Conway spheres ∂R where R is chosen so that (Mv ∩ R,Kv ∩ R) consists of rv
disjoint ring pairs in int(Mv). �

Exercises 16.14 (for data of Theorem 16.13).

(a) Show that Ker γ+ splits naturally as a product
∏
v Bv × Ker γ+∗ , if and

only if every element of Ker γ+∗ respects the orientation of each ring of
(M∗,K∗) that corresponds to > 2 rings of (M,K). In particular, this
happens when every vertex of Γ with ring number > 2 has valence > 3.

(b) Show that the exact sequence of Theorem 16.13 is always split exact (but
not naturally). Similarly for Proposition 16.15 below.

(c) In the sense of Chapter 2, (M,K) does have a tree of characteristic com-
panions, one of which is (M∗,K∗). Thus the results of Chapter 15 apply;
compare what they give with Theorem 16.13.

(d) Johannson [Joh3] showed, using general principles, that Sym+(M,K;C)
divided by the normal subgroup generated by Dehn twists along pairwise
essential tori and annuli, is a finite group. Prove that its order is the
product

|K(Γ∗)| × |Sym
+Γ| ×

∏

v

(rv!)

where Γ∗ was defined in Exercise 16.12(d).
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Equipped with Theorems 16.4, 16.8, 16.11 and 16.13, we now consider the
symmetries of most marked arborescent cases that were left aside hitherto.

Proposition 16.15. Let (S3,K) be a closed (presented) Montesinos pair with
r > 1 rings and exactly one rational tangle of finite non-integral slope. Then there
is an exact sequence

0→ Br → Sym+(S3,K)→ V4 → 0

where Br is the braid group π0 Aut(D
2, r interior points; rel ∂D2).

Proof. When r > 2, we have proved in Theorem 10.5 that the necklace of
(S3,K) is characteristic. Then, the arguments used to prove Theorems 16.4 and
16.13 apply straightforwardly to establish the desired sequence.

When r = 1, these arguments also give an exact sequence

0→ B1 = 0→ Sym+
0 (S

3,K)→ V4 → 0,

where Sym+
0 is the subgroup of Sym+ respecting the ring. This follows from

Claim 16.16. All automorphisms ϕ respecting the ring, also respect the necklace
up to pairwise isotopy.

Proof of Claim 16.16. Put in an extra ring R′ near the first and isotop ϕ
respecting K to make ϕ respect the second ring R′. Then, by Theorem 10.5, isotop
ϕ respecting K ∪R′ to make ϕ respect the necklace. �

The next claim completes the proof of Proposition 16.15.

Claim 16.17. Every automorphism of (S3,K) respects the ring.

Proof of Claim 16.17. The complement of the ring in K is a non-integral
rational knot in S3. Thus, the ring is characterised by the property that it is the
unique component of K whose complement is not the trivial knot nor the Hopf link

. In particular, the ring is characteristic. �

This completes the proof of Proposition 16.15. �

Theorem 16.18. For the Borromean rings (S3,K), Sym(S3,K) has order 48
and Sym+(S3,K) has order 24.

Proof. Form (S3,K) by plumbing atomic tangles according to the graph Γ =

2 21
. This yields a preferred presentation of (S3,K) as a Montesinos pair,

and thus a preferred necklace N .
The subgroup Sym0(S

3,K) of Sym(S3,K) respecting the ring is also the sub-
group respecting the necklace N by Proposition 10.8. Thus, the proofs of Theo-
rems 16.4 and 16.8 show that Sym0(S

3,K) lies in an exact sequence

0→ V4 = K(Γ)→ Sym+
0 (S

3,K)→ Sym(Γ) = Z2 → 0.

Hence Sym+
0 (S

3,K) has order 8 and Sym+(S3,K), being transitive on the three
components of K, has order 24. As (S3,K) is amphicheiral, Sym(S3,K) has order
48. �
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For Montesinos pairs that are Seifert fibred, the symmetry groups are deter-
mined by [Wal2] (Seifert fibring uniqueness). This includes in particular those
classified by the point graphs

n
and n (namely Montesinos knots with just one

integral rational tangle and 6 1 ring). In these two cases, with however the re-
striction that n 6= ±2 in the second case, the degree +1 symmetry group is V4 or
Z2 according as n is even or odd. For ±2 the degree +1 symmetry group is, as
expected, an extension of the dihedral group D6 by Z/2.

The case of the graph r
n
, with r > 2, is also a straightforward application of

Theorem 15.1 and [Wal2], but beware that the answer comes in three versions: for
n odd, n = 0, and n even 6= 0.

Our calculations for pairwise irreducible arborescent pairs have succeeded ex-
cept for those whose canonical graph is a 3–branched star with black vertices (black
means ring number 0). In fact, we have even succeeded for three clans of these:
2

2

b0 b1 bn
, with n > 1, by Proposition 16.15;

2
3

5

1
and

2
3

4

1
,

which are the torus knots {3, 5}, {3, 4} (see the Appendix); and
3

3

3

1
,

2
4

4

1
,

and
2

3

6

1
whose characteristic companions are Seifert fibred (see Chapter 2).

Beyond this, M. Boileau [Boi1, Boi2] has succeeded with a fourth and most pop-
ulous clan: those whose classifying fractional data vector of §11.2 is of the form
(0; e0;

β1

α1
, β2

α2
, β3

α3
) with irreducible fractions 6= 0, ∞ such that 1

α1
+ 1

α2
+ 1

α3
6 1.

For the remainder, see further comments in [Boi1, Boi2, BoiZ, BurZ].2

We conclude with a few examples illustrating the results of this chapter. We
will revisit these examples at the end of Chapter 18, to show how to realise the
corresponding symmetries as rigid motions of S3.

Example 16.19. First consider the weighted planar tree
3

−3

3

−3
It has two obvious symmetries of degrees +1 and −1, gotten by reflection

through a vertical or horizontal line. They generate Sym(Γ) ∼= Z2 ⊕ Z2. No sym-
metry of Γ has both degree +1 and −1 (compare with Proposition 16.3) and the
group K(Γ) found by Algorithm 16.10 is 0. Thus the symmetry group of the knot
K associated to Γ is isomorphic to Z2 ⊕ Z2.

Example 16.20. The knot (S3,K) associated to the (+)–canonical tree

2(Added (2009) The remaining cases now follow from a combination of [Sak] and of the
proof [CooHK, BoiP, BoiMP, BoiLP] of the Orbifold Geometrisation Conjecture discussed in
Chapter 5.
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3

2

−3

2

1

is the knot labelled as 817 in [AleB, Rol]. This tree has a degree −1 isogeny,
factoring through the weighted planar tree

3

2

−3

−2
One easy checks that this is the only non-trivial symmetry of Γ, so that

Sym(Γ) ∼= Z2. No graph symmetry has both degree +1 and −1, and Algo-
rithm 16.10 shows that the kernel K(Γ) is trivial. Therefore, by Theorem 16.8,
the symmetry group Sym(S3,K) has exactly two elements, the identity and a sym-
metry reversing the orientation of S3.

The fact that (S3,K) has a degree −1 isomorphism means that the knot 817 is
amphicheiral . By inspection, this symmetry reverses the orientation of the knot
K, so that 817 is negative amphicheiral .

On the other hand, our computation shows that 817 admits no degree +1 sym-
metry that reverses the orientation of the knot, namely that 817 is not invertible.
This is the first knot in the tables to have this property. This was independently
proved by A. Kawauchi [Kaw], using more algebraic techniques.

Example 16.21. Let Γ be the weighted planar tree

3

3

3

3

3

3

4

The group Sym(Γ) of graph symmetries has 12 elements, and is generated by
the dihedral group D6 of rigid motions of R2 respecting the embedding of Γ in the
plane, and by the involution ρ that moves precisely the vertices of weight 3. Also
no symmetry has degree −1, and K(Γ) = 0.

We conclude that the symmetry group Sym(S3,K) = Sym+(S3,K) has exactly
12 elements, and is actually isomorphic to D6×Z2 since the involution ρ commutes
with the dihedral group D6.

Example 16.22. Lastly, let Γ be the graph

2 2

2

2

2

2

22 2

Its symmetry group Sym(Γ) is easily seen to be the dihedral group D4, while
K(Γ) ∼= Z2. Moreover, the identity has both degree +1 and −1. Thus, Sym(S3,K)
consists of 16 different symmetries, half of them of degree +1.





CHAPTER 17

Natural markings of the arborescent part of a knot

The previous section gave a complete analysis of the symmetry groups of
marked arborescent pairs that are pairwise irreducible. In the present section,
we enquire more closely how this contributes to solving the more natural problem
of finding the symmetry group of an arbitrary knot pair (M,K) that is simple for
Schubert. We have shown in Theorem 15.5 that the symmetry group of the ar-
borescent part A of (M,K) provides an upper bound for Sym(M,K), provided A
is defined by Chapter 7 and is non-empty. Unfortunately, as Theorem 16.11 shows,
Sym(A,K∩A) is often infinite, while Sym(M,K) is necessarily finite when ∂M = ∅

by [Joh3] (or by a combination of Thurston’s Hyperbolisation Theorem [Thu2] and
Mostow’s Rigidity Theorem [Mos1]; see also [Wal4]). To cope with this annoyance,
we will give various devices to equip A with a boundary marking C respected by
each symmetry of (M,K) such that Sym(A,K ∩ A;C) be finite (by Theorem 16.4
and 16.8). This will provide a finite upper bound for Sym(M,K).

17.1. Markings from cusps

This device involves hyperbolic geometry. As such, it is not well adapted to the
piecewise linear category PL, and is more suitable for the differentiable category
DIFF or to the topological category TOP. It applies when we have in hand a
π–hyperbolic metric on each of the pieces of the splitting of Chapter 7 that are
abstractly known to admit such a structure, namely the components of (M,K) −
A ∪ F with the notation of that chapter.

In this situation, each Conway sphere component (S,K∩S) of ∂(A,K∩A) gets
a π–euclidean structure from the cusp of M − (A ∪F ) approaching S, well-defined
up to scalar multiplication of the metric and pairwise isotopy (see §5.2). By our
Rigidity Theorem 5.11, this π–euclidean structure is an invariant of (M,K)−A∪F ,
and we are going to exploit this fact to define a natural boundary marking for the
arborescent pair (A,K ∩A).

Let us examine the geometry of any Conway sphere S equipped with a π–
euclidean structure. It is isometric to R2/R, where R is the group of euclidean
isometries of R2 generated by the π–rotations around the points of a certain lattice
L in R2. Any marking C0 for S can be uniquely represented by a pair of geodesic
arcs; these arcs are covered in R2 by a collection R0 of straight arcs whose end points
(only) lie in the lattice L and which we call rods. This assigns to the marking C0

a length and a direction in RP1, namely those of the rods in R0.

Lemma 17.1 (Triangle Lemma). For the above data, three distinct markings
of shortest lengths have rods that always fit together to form acute (6 90◦) angled
triangles tessellating the plane. If all angles are < 90◦ all other markings have
strictly greater length. If one angle is equal to 90◦, the two shortest markings are

229
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uniquely defined and their rods cut up the plane into rectangles; also, there are
two different third shortest markings and their rods are the two diagonals of these
rectangles. �

A pleasant corollary of Lemma 17.1 is that the π–euclidean Conway sphere
S = R2/R is isometric either to a tetrahedron in R3, not necessarily regular but
with all four faces degree 1 isometric to the acute angled triangle met in the lemma,
or else to the double of a rectangle of R2 (namely a flat pillow).

We now derive a marking C for (A,K ∩ A) from this natural π–euclidean
structure on ∂A. On each component S of ∂A, it will be contrived to be distinct
from the vertical marking C∞ coming from necklaces for the natural splitting into
Montesinos pairs (see the beginning of Chapter 16).

Consider the shortest markings distinct from C∞∩S and among these pick one
whose direction is farthest from that of C∞ ∩ S (for the angle metric of RP1). If
this marking is unique, define it to be C ∩ S.

If there is more than one such marking, then we make the

Assertion 17.2. C ∩ S can be defined to be perpendicular to C∞ ∩ S, namely
there are lines in R2 perpendicular to the lines over C∞ ∩ S and containing many
points of the lattice L.

Proof. Supposing there are two such markings, we are necessarily in a situ-
ation where the three shortest markings of S yield a tessellation of the plane R2

by congruent isosceles triangles with vertices the points of L. Also C∞ ∩ S has
direction in RP

1 that is either the internal or the external bisector of the angle
between two equal sides of the triangle. Then the perpendicular to the direction of
C∞ ∩ S is the other of these two bisectors; in particular it clearly corresponds to a
marking. �

Application of this recipe to each component of ∂A defines a marking C of
(A,K ∩ A) that is everywhere distinct from C∞. Thus Sym(A,K ∩ A;C) is finite
by Theorems 16.4 and 16.8.

Proposition 17.3. With the above data, there is a well-defined “restriction”
homomorphism Sym(M,K)→ Sym(A,K ∩A;C) which is injective if A 6= ∅.

Proof. By Theorem 15.5, we just have to show that every degree ±1 auto-
morphism of (M,K) that preserves A∪F respects the marking C. But this follows
easily from our Rigidity Theorem 5.11 together with the naturality of the definition
of C. �

17.2. Markings of homological type

So far, π–hyperbolic structures remain difficult and/or expensive to find (see
however [Ril1, Ril2, Thu1] and our examples in Chapters 4, 5, 6). The above pro-
cedures consequently need to be supplemented by others that are simple and cheap.
We now present two related procedures, with variants. Regrettably, although they
are widely applicable, the markings produced do sometimes become vertical; for
recalcitrant examples (S3,K) with A 6= ∅, none will offer a finite upper bound
for the finite group Sym(S3,K). On the other hand, in favourable examples we
will get several distinct upper bounds Sym(A,K ∩ A;Ci), i = 1, 2, . . . , n, say, for
Sym(S3,K) in Sym(A,K), and the intersection of all these will again be an upper
bound, perhaps better than any one.
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Lemma 17.4. Let (B,K) be a knot pair consisting of two arcs K in a 3–ball
B. There exists a unique marking on the Conway sphere (∂B, ∂K), represented by
two disjoint arcs C in ∂B with ends in ∂k, such that K ∪C consists of two circles
with linking number 0 in B.

Proof. Let K1 and K2 be two components of K. Using the fact that B −K2

has the homology of a solid torus, one shows that there exists a surface F1 in B
which avoids K2 and whose boundary is the union of K1 and of an arc in ∂B.
Similarly, there exists a surface F2 avoiding K1 and bounded by K2 and an arc in
∂B.

We claim that F1 ∩ ∂B and F2 ∩ ∂B are disjoint after pairwise isotopy, and
thus define the same marking C. Indeed, F1 and F2 can be pairwise isotoped so
that their intersection is transverse and all intersection points of F1 ∩ ∂B with
F2 ∩ ∂B have the same sign in ∂B. Then the 0-manifold F1 ∩ F2 ∩ ∂B, bounding
the 1–manifold F1 ∩ F2, has to be empty.

This establishes the existence of the marking desired. Conversely, given any
other marking C′ satisfying the conclusions of the lemma, there exists a surface
F ′
1 bounded by the component of K ∪ C′ containing K1 and avoiding K2. Now

the above argument applies to show that F ′
1 ∪ ∂B represents the same marking as

F2 ∩ ∂B, which proves the uniqueness of C. �

Here is now a recipe to define, using Lemma 17.4, a marking C of the arbores-
cent part A of a knot (S3,K) that is simple for Schubert. For a component S of
∂A, consider the 3–ball B that it bounds in S3 on the side opposite to A (namely
so that leaving A at S we enter B). Then C is defined on S by Lemma 17.4 applied
to (B,K ∩B) or rather to (B,K ′) where K ′ is the two arcs of K ∩B meeting ∂B.

An alternative recipe uses in place of B the complementary 3–ball B′ = S3−B.
A second alternative exploits the vertical marking C∞ of A (see beginning of

Chapter 16). At a component S of ∂A, we consider the ball B that it bounds in S3

on the side opposite to A, and we apply Lemma 17.4 to the knot (B ∩ (K −A)) ∪
(C∞ ∩ int(B)) in B.

Further variants are obtained by replacing Lemma 17.4 by the following lemma,
which can be viewed as a generalisation:

Lemma 17.5. Let (M,K) be a compact knot pair with boundary a Conway

sphere, that admits a unique 2–fold branched covering W̃ → W . Then there is a
unique marking C of (∂W, ∂K) such that each arc representing C has, as preimage

in ∂W̃ , a loop bounding an integral cycle (or orientable surface) in H1(W̃ ).

Proof. There is a natural correspondence between the markings of the Con-
way sphere (∂W, ∂K) and the isotopy classes of connected essential curves in the

torus ∂W̃ , which can themselves be interpreted as elements of the projective space

of H1(∂B̃) ∼= Z2. Since the kernel of H1(∂B̃)→ H1(B̃) is ∼= Z by Poincaré duality,
the result immediately follows. �

Remarks 17.6.

(a) The knot pair (W,K) admits a 2–fold branched covering precisely if K
is zero in H1(W,∂W ;Z2). It is unique precisely if H1(W ;Z2) = 0. Thus
our unique branched covering condition amounts to assuming that W is
a Z2–homology ball.
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(b) Lemma 17.4 and its proof can be generalised to Z2–homology 3–balls in
place of B. Then, Lemma 17.5 gives the same marking of 17.4 in case K
consists of two arcs. The proofs are left as an exercise.

(c) Applied to the ring tangle , Lemmas 17.4 and 17.5 give distinct

markings, respectively of slope 0 and ∞.



CHAPTER 18

Knot symmetries as rigid motions of the 3–sphere

In this chapter, we return to symmetry groups of arborescent pairs. We have
here a double aim.

The first one is to provide evidence for the Generalised Smith Conjecture1.
This conjecture, which is actually included in the more general Orbifold Geometri-
sation Conjecture discussed in Chapter 6, asserts that any finite group of smooth
automorphism of the 3–sphere S3 is conjugate to the action of a subgroup of the
group O(4) of isometries of S3. A knot (S3,K) that is simple for Schubert and
is not Seifert fibred gives a good example to test this conjecture; indeed, it fol-
lows from Thurston’s Hyperbolisation Theorem and Mostow’s Rigidity Theorem
that Sym(S3,K) is realised by a finite group of automorphisms of S3 respecting K
(compare Chapter 6). The Generalised Smith Conjecture will then imply that, after
an isotopy of K in S3, there is a subgroup G of O(4) respecting K such that the
canonical map G → Sym(S3,K) is a group isomorphism. This section will provide
a proof of this for arborescent knots, and even for marked arborescent pairs whose
symmetry group has been determined to be finite in Chapter 16.

The second purpose of this section is more practical, and perhaps more impor-
tant. The proof of the result stated above will provide an explicit pictorial method
to realise symmetry groups in O(4). A fortiori, the reader will be able to determine
for each arborescent knot (S3,K) the algebraic structure of its symmetry group,
together with the action of Sym(S3,K) on the oriented components of K. Note
that this last property solves the problem of deciding whether the knot is invertible,
±–amphicheiral, etc.

In this section, we work in the differentiable or topological category DIFF or
TOP; we avoid the piecewise linear category PL because we use a good deal of
spherical (Möbius) geometry.

Theorem 18.1. Let (M,K;C) be a marked arborescent pair classified by the
abbreviated (+)-canonical tree Γ. Assume that all ring numbers of Γ are 6 1, and
that at most one branch 0r (corresponding to a vertical marking) is at-
tached at each vertex. Assume moreover that Γ is not stellar with exactly 3 branches
and with all ring numbers 0, namely that (M,K) is not a closed Montesinos pair
with no ring and 3 non-integral rational tangle, and that Γ is not one of 0 and
0 .
Then M can be embedded in S3 with ∂M a collection of round spheres, so

that there exists a finite group G of isometries of S3, respecting M , K and the
marking C, for which the homomorphism G → Sym(M,K;C) so induced is a group
isomorphism.

1(Added 2009) Now proved as part of the Orbifold Geometrisation Conjecture [BoiLP,

BoiP, CooHK, BoiMP].
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Remarks 18.2.

(a) By Borel’s theorem (see Lemma 16.7), G is maximal among finite order
homeomorphism groups of the pair (M,K), provided that (M,K) is not
Seifert fibred.

(b) The hypothesis that (M,K) is not a closed Montesinos pair with no ring
and exactly three branches is for the most part unnecessary. Indeed,
[Boi1, Boi2, BoiZ] prove that the results of Chapter 16 extend to most of
these knots, and our proof of Theorem 18.1 will apply straightforwardly
to them; more precisely, most means here all except those with fractional
data vector (see §11.1) of the form

(
0; e0;

α1

β1
, α2

β2
, α3

β3

)
where all αi are > 1

and 1
α1

+ 1
α2

+ 1
α3

> 1.

The proof of Theorem 18.1 that we present below constructs a subgroup G ⊂
O(4) that is well-defined up to conjugacy. However we will not show that the
properties ascribed to G in the statement of Theorem 18.1 suffices to determine G
up to conjugacy in O(4). To clarify this uncertainty, we make the

Conjecture 18.3 (Symmetry Representation Conjecture). For a knot (S3,K)
that is simple for Schubert, there is precisely one conjugacy class of finite subgroups
G ⊂ O(4) isomorphic to Sym(S3,K) and respecting a knot K ′ ⊂ S3 isotopic to K.

There is a stronger conjecture for knots in S3 that would account for this
conjecture and much more. Given a knot K in S3 that is simple for Schubert,
consider the space E(K) of unparametrised circles in S3 isotopic to K, and endow
E(K) with the C∞ topology.

Conjecture 18.4 (Best Position Conjecture). There exists a “best” knot K∗ in
E(K) and a homotopy rt, 0 6 t 6 1, from Id|E(K) to a retraction E(K)→ O(4)K∗

that has (at least) these naturality properties:

(i) rt is O(4)-equivariant;
(ii) rt fixes O(4)K∗.

Namely, E(K) deformation retracts to O(4)K∗ through an O(4)–equivariant defor-
mation.

From this statement, the reader can deduce the Symmetry Representation Con-
jecture and also Theorem 18.1. Note that, in the Seifert fibred case, the isometry
group of (S3,K∗) is a 1–dimensional Lie subgroup of O(4).

When K is the trivial knot, this Best Position Conjecture is known to imply
the Smale Conjecture; see [Hat]. Thus it is incredibly ambitious (if true). But as
new methods mature it should be kept in mind.

18.1. The Borromean rings

The proof of Theorem 18.1 for the Borromean rings is exceptionally simple,
and provides an attractive introduction to the more difficult cases.

Proof of Theorem 18.1 for the Borromean rings. In the xy–plane, choose
a simple closed curve Kz which is respected by the reflections through the x– and
y–axes and by the composition of the reflection (x, y) 7→ (y, x) with the inversion
through the unit circle S1. Also, we require that Kz meet the circle S1 only at the
four points (±1,±1). For instance, take Kz to be the curve of Figure 18.1(a), a
union of four circle arcs orthogonal to the unit circle (or a C∞ smoothing of this);
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then the sphere (xy − plane) ∪ ∞ equipped with Kz looks like a tennis ball with
Kz as its seam.

By cyclic permutation of the axes, we obtain two more curves Kx and Ky.
The union K = Kx ∪Ky ∪Kz is the Borromean link (up to isotopy) illustrated in
Figure 18.1(b).

The isometry group H of (R3,K) has order 24; it clearly is an index 2 subgroup
of the 48 element isometry group of the cube [−1, 1]3.

(a) (b)

x

y

ζ

ξ

η

Figure 18.1.

Interestingly, there is a larger group G of conformal (Möbius) automorphisms
of (R3 ∪∞,K); namely the group G generated by H and by the composition of a
90◦ rotation about an axis with an inversion (reflection) in the unit sphere. The
group G has order 48, since H is the index 2 subgroup that does not exchange 0
and ∞.

We stereographically identity R3 ∪∞ to the unit sphere S3 in R4 , taking care
to send the unit sphere in R3 onto an equatorial sphere of S3. Then, G becomes an
isometry group of (S3,K).

We assert that the natural group homomorphism G → Sym(S3,K) is an iso-
morphism. By Theorem 16.18, the group Sym(S3,K) is also of order 48 so we only
have to convince ourselves that G is injected. Borel’s theorem (see Lemma 16.7)
assured this; but it is an obvious fact since G acts faithfully on H3(S

3)⊕H1(K). �

18.2. Degree +1 symmetries

In the general case, the proof of Theorem 18.1 heavily relies on the plumbing
construction of (M,K) according to Γ. It gains some considerable complexity when
(M,K;C) admits degree−1 symmetries, at least when the associated positively and
negatively canonical graphs are distinct. It is therefore convenient to initially limit
attention to degree +1 symmetries, and thus prove the following weaker statement.
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Theorem 18.5. With the data and hypotheses of Theorem 18.1, there exists
an embedding of M in S3 and a finite subgroup G+ of SO(4) for which restriction
induces an isomorphism G+ → Sym+(M,K;C).

The case where Γ consists of a single vertex that is black or white (namely has
ring number 0 or 1) and has d free bonds and a weight a ∈ Z, will be the starting
point of the proof in the general case. For a while, we leave aside the degenerate
case where d = 0.

Viewing S3 as the unit sphere in C2, choose a small arc in S3 ∩R2, centred at
(1, 0) and preserved by the involution (z, z′) 7→ (z,−z′) of C2. Let then B be the
orbit of this arc by the action of the subgroup of SU(2) ⊂ SO(4) consisting of the
automorphisms Rt: (z, z

′) 7→ (z exp(2πit), z′exp(πiat)) of C2 with t ∈ R.
The set B is a ribbon in S3 with unknotted central thread, and with a regularly

distributed positive half-twists (see Figure 18.2, where a = −3). By construction,
it is preserved by each Rt, by the π–rotation ξ : (z, z′) 7→ (z,−z′) around S1 × 0
(with S1 the unit circle in C) and by the π–rotation T : (z, z′) 7→ (z, z′) around
S3 ∩ R2.

D1

D2

D3

D4

T

ξ

0× S1

S3 ∩ R2

Figure 18.2.

Next, choose d disjoint round balls D1, D2, . . . , Dd, respectively centred (for
the metric of S3) at the points (ω, 0), (ω2, 0), . . . , (ωd, 0) where ω = exp(2πid ),
with equal radii, so that each sphere ∂Di meets ∂B in exactly 4 points as in
Figure 18.2 (this is possible if the ribbon B has been chosen narrow enough). Note
that the boundaries ∂Di correspond to round spheres in R3, under the stereographic
identification S3 ∼= R3 ∪ ∞; however their centres in R3 differ from the points
corresponding to the points (ωi, 0).
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Each pair (Di, ∂B ∩Di) is a rational tangle pair. Equip each sphere ∂Di with
the marking C∗

i that has the same slope as the (unique) pairwise essential disc in
(Di, ∂B ∩Di).

The construction has been designed so that the marked pair (M,K;C) clas-
sified by Γ is now isomorphic to the marked pair (M∗,K∗;C∗), where M∗ is the

complement of
⋃d
i=1 int(Di) in S

3, where K∗ is ∂B ∩M∗ or (∂B ∩M∗) ∪ (0× S1)
according as the ring number of the vertex of Γ is 0 or 1, and where C∗ is defined
by the d markings C∗

i .
By construction, the marked pair (M∗,K∗;C∗) is respected by the isometries

R k
d
with k ∈ Z, by the π–rotation ξ around S1 × 0 and by d distinct π–rotations

R k
2d
T R−1

k
2d

around R k
2d
(S3 ∩R2) with k ∈ Z. Let G+ denote the order 4d subgroup

of SO(4) generated by these isometries.
Fix an isomorphism (M,K;C) ∼= (M∗,K∗;C∗). Then, evaluation on the

set of components of ∂M∗ defines a morphism from G+ onto the group Sym+Γ
(namely the dihedral group of order 2d; see Chapter 16). Noting that the iden-
tity is the unique element of G ⊂ O(4) that fixes one point of ∂K∗, one readily
checks that the kernel of this morphism is isomorphic to Z2, generated by ξ when
d > 3 and is isomorphic to V4 ∼= Z2 ⊕ Z2, generated by ξ and T , when d = 1
or 2. Using Theorems 16.4 and 16.8, we deduce that the natural homomorphism
G+ → Sym+(M∗,K∗;C∗) is a group isomorphism. This proves Theorem 18.5 in
the case where Γ consists of a single vertex with d > 1 free bonds.

When d = 0, the pair (M,K) is a {2, a} torus knot, and Sym(M,K) is de-
termined by the uniqueness of Seifert fibrations proved in [Wal2] (see also our
discussion of this case at the end of Chapter 16). Here are some details. When the
ribbon B is constructed as in the previous case, (M,K) is isomorphic to (S3, ∂B).
Define G+ to be generated by ξ and T if a is even, and by T alone if a is odd. Then,
it follows from [Wal2] that G

+ ∼= Sym+(M,K) by the natural mappings. Note that
ξ is pairwise isotopic to the identity when a is odd. �

Proof of Theorem 18.5 in the general case. Although we aim at con-
structing a finite group G of isometries of S3, our construction will make use of
degree ±1 conformal automorphisms of S3. Remember that the Möbius
group , consisting of these degree ±1 conformal automorphisms, is the group gen-
erated by inversions through round spheres of S3 = R3 ∪ ∞. This includes all
isometries of S3, but many more diffeomorphisms. For instance, if we identify S3

to R3 ∪∞ by stereographic projection, the stabiliser of ∞ in the Möbius group is
the group of similarities or R3, obtained by composition of an euclidean isometry
with a homothety.

We exclude the cases already dealt with, namely the cases where (M,K) is
the Borromean rings or where Γ consists of a single 0-valent vertex. Then, Theo-
rems 16.4 and 16.8 describe Sym+(M,K;C) by an exact sequence

0→ K(Γ)→ Sym+(M,K;C)→ Sym+Γ→ 0,

where K(Γ) is determined by Algorithm 16.10.

Assertion 18.6. We can assume without loss of generality that Γ contains no
branch 0 .

Proof of Assertion 18.6. Let Γ′ be obtained from Γ by erasing each such
branch 0 , keeping however the bond where it was attached; the pair obtained by
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plumbing according to Γ′ is naturally identified with (M,K), but comes equipped
with a different markingC′. Now, Theorem 16.11, together with the hypothesis that
there is at most one branch 0 at each vertex of Γ, shows that Sym(M,K;C) =
Sym(M,K;C′). �

By definition, the pair (M,K) is obtained by plumbing atomic tangles (Mi,Ki)
(with possibly one ring) according to Γ. Let each pair (Mi,Ki) be equipped with
the slope 0 marking Ci.

For each i, we have already constructed a marked pair (M∗
i ,K

∗
i ;C

∗
i ), embedded

in S3 and isomorphic to (Mi,Ki;Ci), which is respected by a finite subgroup G+i
of SO(4) such that the natural map G+i → Sym+(M∗

i ,K
∗
i ;C

∗
i ) is an isomorphism.

(Here we use the fact that no vertex of Γ is of type 0 or 0 .) This construction
makes use of a twisted ribbon B∗

i as in Figure 18.2. It will be convenient to slightly
modify B∗

i and K∗
i so that, for each (round sphere) component Σ of ∂M∗

i , the two
arcs B∗

i ∩Σ form a square contained in an equator of Σ, with sides of equal length
(for the metric of Σ induced by that of S3 ⊂ R4). This can clearly be accomplished
by a slight G+i –equivariant modification of the picture near ∂M∗

i .
For the differentiable category DIFF, we impose an extra condition on K∗

i near
∂M∗

i in M∗
i , namely that K∗

i there be on geodesics (= great circles) normal to
∂M∗

i . This will allow us to fit together conformal copies of the M∗
i to get a smooth

pair θ(M,K).
We shall also require a further hypothesis which will be crucial for our proof,

namely that, if (Mi,Ki;Ci) is isomorphic to (Mj ,Kj;Cj), then the corresponding
models (M∗

i ,K
∗
i ;C

∗
i ) and (M∗

j ,K
∗
j ;C

∗
j ) are the same.

To construct the required embedding θ of (M,K) in S3 first choose, for each i,
a degree +1 isomorphism σi: (Mi,Ki;Ci) → (M∗

i ,K
∗
i ;C

∗
i ). The embedding θ will

have the property that, each θσ−1
i :M∗

i → θ(Mi) will be conformal, namely will be
the restriction of a degree +1 conformal automorphism S3 → S3.

Next we impose a compatibility condition among the isomorphisms σi. For each
Conway sphere Σ that separates a block (Mi,Ki) from a block (Mj ,Kj), we make

an adjustment of σi (or of σj) near Σ so that αij = σjσ
−1
i |σi(Σ): σi(Σ)→ σj(Σ) is a

degree −1 metric similarity , namely such that the ratio d
(
αij(x), αij(y)

)
/d(x, y)

is independent of the points x, y ∈ σi(Σ). This is possible because the equatorial
square in σi(Σ) ⊂ S

3 formed by the slope ∞ and 0 markings in (M∗
i ,K

∗
i ) maps up

to pairwise isotopy to the similarly defined square in σj(Σ), since a tangle plumbing
was performed at Σ.

Let α̂ij: S
3 → S3 be the unique degree +1 conformal automorphism of S3 that

extends the metric similarity αij : σi(Σ) → σj(Σ). Note that it sends M∗
i to the

complement of M∗
j .

For the DIFF category, the above condition on αij must be reinforced by insist-
ing that α̂ijσi and σj together define a smooth embedding into S3 of a neighbourhood
of Σ in M . We can arrange this using DIFF collaring theorems.

We will construct θ stepwise. For this, it will be convenient to assume, without
any loss of generality, that the indexing of the Mi is chosen so that each Mi with
i > 1 be adjacent to some Mj with j < 1.

To start the induction, we define θ to be θ∗1σ1 on M1, where θ
∗
1 is an arbitrary

degree +1 conformal automorphism of S3. It will be convenient to further specify
M1 and θ∗1 later on.
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Assuming θ defined on
⋃
j<iMj , with all compositions θσ−1

j degree +1 con-

formal, consider the (unique) Conway sphere Σ that is the intersection of Mi with
some Mk such that k < i. Let θ∗k be the unique extension of θσ−1

k to a conformal
degree +1 automorphism of S3. Then, define θ on Mi to be θ∗kα̂ikσi, noting that

this rule agrees with θ|Mk
on Σ, and that θσ−1

i is degree +1 conformal.
Continuing thus, inductively define θ on all of M . Clearly, θ is the unique

extension of θ∗1σ1 to a degree +1 embedding M → S3 so that θσ−1
i is conformal for

all i. Its image is the closed-up complement of finitely many round balls in S3.
If we are working in the DIFF category, note that θ sends K to a smooth 1–

dimensional submanifold of θ(M). This comes from our hypothesis that, in each
model pair (M∗

i ,K
∗
i ) and near each boundary component Σ∗ ⊂ ∂M∗

i , the knot
K∗
i locally coincides with geodesics that are orthogonal to the round sphere Σ∗.

Indeed, the conformal extensions α̂ij : S
3 → S3 of the metric similarities αij :

σi(Σ)→ σj(Σ) have the property that they send geodesics orthogonal to σi(Σ) to
geodesics orthogonal to σj(Σ).

Then θ sends (M,K;C) to a marked knot pair θ(M,K;C) contained in S3.

Claim 18.7. Every degree +1 symmetry of θ(M,K;C) is realised by restriction
of a degree +1 conformal automorphism of S3.

Proof of Claim 18.7. Let ψ be a degree +1 automorphism of θ(M,K;C).
After pairwise isotopy, it can be assumed to respect the decomposition into blocks
θ(Mi,Ki) by Proposition 13.13.

Consider a restriction ψi: θ(Mi,Ki)→ θ(Mj ,Kj). We claim that it is pairwise
isotopic to a conformal map ψ′

i. Indeed, we have proved in the proof of Propo-
sitions 13.10 and 13.13 that ψi sends the marking θ(Ci) to the marking θ(Cj).
In particular, θ−1ψiθ realises an isomorphism (Mi,Ki;Ci) ∼= (Mj ,Kj;Cj) and,
by hypothesis, the model pairs (M∗

i ,K
∗
i ;C

∗
i ) and (M∗

j ,K
∗
j ;C

∗
j ) coincide. Thus,

σjθ
−1ψjθσ

−1
i is a degree +1 automorphism of (M∗

i ,K
∗
i ;C

∗
i ) = (M∗

j ,K
∗
j ;C

∗
j ) and,

as such, is pairwise isotopic to an element ψ′′
i of G+i = G+j ⊂ SO(4). Therefore, ψi is

pairwise isotopic to ψ′
i = (σ1θ

−1)ψ′′
i (θσ

−1
j ), which, as a product of three conformal

maps, is conformal.
WhenMi∩Mj 6= ∅, the restriction of ψ′

i and ψ
′
j to θ(Mi∩Mj)→ ψθ(Mi∩Mj)

coincide on the four points θ(K ∩ (Mi ∩Mj)). Since both maps are conformal, it
follows that ψ′

i and ψ
′
j coincide on θ(Mi ∩Mj). This proves that all the ψ

′
i and ψ

′
j

are restrictions of a certain conformal map ψ′ of S3.
To conclude the proof of Claim 18.7, we now just need to check that ψ and

ψ′ are pairwise isotopic. But this follows from Theorems 16.4 and 16.8 since they
induce the same element of Sym(Γ), and since ψ′ψ−1 fixes each point of K ∩ ∂Mi

and thus is trivial in K(Γ). �

Actually, we have proved a little more than stated in Claim 18.7. Let G+ be
the group of degree +1 conformal automorphisms ψ′ of S3 such that:

(a) ψ′ sends each block θ(Mi,Ki) to a block θ(Mj ,Kj);

(b) when ψ′ sends θ(Mi,Ki) to θ(Mj ,Kj), then σjθ
−1ψ′θσ−1

i is an element of
the finite group G+i = G+j ⊂ SO(4) of automoprhisms of (M∗

i ,K
∗
i ;C

∗
i ) =

(M∗
j ,K

∗
j ;C

∗
j ).

We just proved that the natural map G+ → Sym+θ(M,K;C) is surjective. An
application of Theorem 16.8 shows that it is also injective.



240 18. KNOT SYMMETRIES AS RIGID MOTIONS OF S3

To conclude our proof of Theorem 18.5, we need to arrange for G+ to consist
of isometries of S3 and not just of conformal automorphisms. This is provided by
the following classical fact.

Fact 18.8. Any compact group G of Möbius automorphisms of Sn is conjugate
to a subgroup of the orthogonal group O(n+1) by a degree +1 Möbius automorphism.

Proof of Fact 18.8. Taking the unit ball model Bn+1 for the hyperbolic n-
space Hn+1 (see §5.1), the action of the Möbius group on Sn = ∂Bn extends to an
isometric action on Hn. For instance, the inversion through a (round) hypersurface
Σ of Sn extend by the inversion of Rn+1 ∪∞ through the unique n-sphere cutting
Sn orthogonally along Σ.

Any orbit of G in Hn+1 has a well-defined barycentre, minimising the quadratic
average of the distances to the points of this orbit. Conjugating G so that this
barycentre is the centre 0 of the ball Bn+1 = Hn+1 ∪ Sn, the group G then is in
the stabiliser of 0 in the isometry group of Hn+1, which is the orthogonal group
O(n+ 1). �

Fact 18.8 provides a degree +1 Möbius automorphism ψ conjugating G+ to a
subgroup of SO(4).

Our inductive construction of θ made use of an arbitrary conformal automor-
phism θ∗1 of S3, for which θ|M1

was defined as θ∗1α1. If we replace θ∗1 by ψθ∗1 , this

replaces θ by ψθ and G+ by ψG+ψ−1 ⊂ SO(4).
This concludes our proof of Theorem 18.5. �

For practical applications, however, we want to proceed more explicitly instead
of relying on Fact 18.8. For this, we use the following:

Fact 18.9. There exists a vertex or an edge of Γ that is characteristic, namely
preserved by any symmetry of Γ.

Proof. Inductively define a sequence of subtrees Γk of the combinatorial tree
Γc underlying Γ as follows: Γ1 is obtained from Γc by erasing all free bonds; each
Γk+1 is obtained from Γk by removing all valence 6 1 vertices together with their
adjacent edges. The last non-empty Γk clearly consists of a single vertex or of two
vertices joined by an edge. This singles out a vertex or edge which, by naturality
of the construction, is respected by each combinatorial isomorphism of Γc and in
particular by each symmetry of Γ. �

When Γ admits a characteristic vertex, one can assume that it corresponds to
the first block (M1,K1). If, in the inductive construction of θ, we take θ∗1 to be the
identity, so that θ coincides with σ1 on M1, then our group G+ is a subgroup of
G+1 ⊂ SO(4).

When Γ admits a characteristic edge, a Conway sphere Σ in (M,K;C) is nat-
urally associated to this edge by the plumbing construction, and we can choose
subscripts so that Σ ⊂ ∂M1. In this situation, select θ∗1 so that θ∗1α1(Σ) is an
equatorial sphere of S3, and θ1(Σ ∩K) forms an equatorial square in θ1Σ. Then,
every element of G+ respects θ1(Σ) and θ1(Σ ∩K) and so is an isometry of S3.
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18.3. Degree ±1 symmetries

Proof of Theorem 18.1 in the presence of degree −1 symmetries. In
this more general situation, our proof of Theorem 18.5 would encounter difficul-
ties related to the active vertices of the positively canonical graph Γ classifying
(M,K;C). Recall that a vertex of Γ is called active when it is of type 2 or
2 , and each of its bonds leads to a vertex of ring number > 1 or of valence

> 3. In other words, a vertex is active when an arithmetic move (2.1) or (2.2) of
Chapter 12 is applied there to go from the positively canonical graph Γ classifying
(M,K;C) to its negatively canonical graph Γ−. Now, it follows from the definition
of symmetries of Γ that, under a degree −1 symmetry,

(a) Any active vertex is sent to another; in particular, its weight does not
change sign.

(b) A non-active vertex of weight e is sent to another such of weight −e+ k
where k is the number of adjacent active vertices.

Recall that the pair (M,K;C) is obtained by plumbing atomic tangles (Mi,Ki)
according to Γ. This construction provides, in each such (Mi,Ki) ⊂ (M,K), a
preferred band B+

i , and a preferred slope 0 boundary marking C+
i . This C

+
i is also

defined by C and the bands of the atomic tangles (Mj ,Kj) adjacent to (Mi,Ki).
On the other hand, consider the negatively canonical graph Γ− obtained by

performing on each active vertex of Γ a move (2.1) or (2.2) of Chapter 12. Plumbing
atomic tangles according to Γ− yields a marked atomic pair which is naturally
identified with (M,K;C). Moreover, the plumbing blocks are naturally identified
to the (Mi,Ki) as knot pairs, although not necessarily as tangles. These building
blocks come equipped with a preferred band B−

i and a preferred marking C−
i , which

may differ from B+
i and C+

i .
In fact, the bands B+

i and B−
i differ exactly at the active (Mi,Ki), namely

at the blocks corresponding to active vertices of Γ. Figure 18.3 indicates their
boundaries at such an active block; note that B−

i has slope −1 in each boundary
component parametrised for the atomic tangle (Mi,Ki) arising from Γ.

Since the markings C+
j and C−

j are determined by C and the bands B+
k and

B−
k of the blocks adjacent to (Mj ,Kj), this also reveals that: C+

j and C−
j differ

only when Mj is non-active and only at the components of ∂Mj which separate
Mj from an active block (Mi,Ki); at such a boundary component of (Mj ,Kj), the

markings C+
j and C−

j coincide respectively with the traces of B+
i and B−

i indicated
in Figure 18.3.

B+
i

B−
i

C+
i =C−

i

B+
i

B−
i

C+
i =C−

i

B+
i

B−
i

C+
i =C−

i

Figure 18.3.

It is convenient to introduce the following definition. Given two connected
atomic pairs (Nk, Lk), with k = 1, 2, each equipped with two bands B+

k and B−
k and
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two boundary markings C+
k and C−

k , a degree ±1 isomorphism (N1, L1)→ (N2, L2)
is admissible if

(a) either it has degree +1 and sends B+
1 , B

−
1 , C+

1 , C−
1 respectively to B+

2 ,
B−

2 , C+
2 , C−

2 ,
(b) or it has degree −1 and sends B+

1 , B−
1 , C+

1 , C−
1 respectively to B−

2 , B+
2 ,

C−
2 , C+

2 .

Then, we have shown in §13.3 and Chapter 16 that, under the hypotheses of
Theorem 18.1, every degree ±1 automorphism of (M,K;C) is pairwise isotopic to
an automorphism ψ of (M,K) mapping each (Mi,Ki) to another (Mj ,Kj), by an
isomorphism (Mi,Ki) → (Mj ,Kj) that is admissible for the bands and markings
defined above.

We now propose to choose for each block (Mi,Ki) a model (M∗
i ,K

∗
i ) embedded

in S3, equipped with two bands B+∗
i and B−∗

i and two boundary markings C+∗
i

and C−∗
i , so that there exists an admissible degree +1 isomorphism σi: (Mi,Ki)→

(M∗
i ,K

∗
i ). These models will satisfy the following two conditions.

Naturality Condition. Every admissible degree ±1 isomorphism (M∗
i ,K

∗
i ) →

(M∗
j ,K

∗
j ) is pairwise isotopic to the restriction of a (degree ±1 ) conformal auto-

morphism S3 → S3.

Gluing Condition. If S is a common boundary component of Mi and Mj , then

the map σjσ
−1
i : σi(S, S∩K)→ σj(S, S ∩K) of Conway spheres is pairwise isotopic

to the restriction of a (necessarily unique) conformal degree +1 automorphism ψ
of S3.

If such models are given, then the arguments used for the proof of Theorem 18.5
(including of course the smoothing tricks for DIFF ) straightforwardly apply to
conclude the proof of Theorem 18.1 in full generality.

If the block (Mi,Ki) is active, the three markings induced by B+
i , B

−
i and

Ci = C+
i = C−

i on a boundary component S of Mi form a tetrahedral graph in
that sense that each of these markings is represented by a pair of arcs such that the
union of these three pairs of arcs is a tetrahedral graph on S (see Figure 18.3). For
the corresponding model (M∗

i ,K
∗
i ), the naturality condition requires the existence

of a degree −1 conformal automorphism of σi(S) respecting C
∗
i = C+∗

i = C−∗
i and

exchanging the two markings induced by B+∗
i and B−∗

i .

C∗
i

C∗
i

B+∗
i B−∗

i

B−∗
i

Figure 18.4.

This leads us to use the model shown in Figure 18.4 for an active block (Mi,Ki)
with connected boundary. Here, the boundary ∂M∗

i is a round sphere where the
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markings defined by C∗
i , B

+∗
i and B−∗

i form a regular tetrahedral graph. Moreover,
K∗
i is chosen to be respected by the order 8 subgroup Gi of O(3) ⊂ O(4) generated

by the π–rotations respecting this graph (one for each pair of opposite edges) and
by the reflection through a plane containing a component of C∗

i (and orthogonal to
the other one).

We note that here (and coherently throughout this chapter) one could replace
the regular tetrahedral graph by a slightly less regular type; what is essential here
is that the two edges in Ci are perpendicular and that the other four edges are
equal.

B−∗
i

B+∗
i

C∗
i

x

y

B−∗
i

B+∗
i

C∗
i

Figure 18.5.

For an active block (Mi,Ki) with two boundary components, we use a confor-
mal model (M∗

i ,K
∗
i ) as in Figure 18.5. The degree +1 conformal automorphisms

of (M∗
i ,K

∗
i ) form the group of order 8 consisting of the π–rotations about the three

coordinate axes, of the (conformal) π–rotations about the three circles of intersec-
tion of the unit sphere with the coordinate planes, and finally of the identity and
the free “antipodal” involution respecting all the spheres and planes mentioned.
(The subgroup of this group respecting a boundary sphere is a Klein 4–group V4.)
The full group G∗i of conformal automorphisms of (M∗

i ,K
∗
i ) is the larger group of

order 16 further generated by reflection in either of the two planes Σ+, Σ− derived
by rotation of the xy-plane through angle ±π4 about the x-axis (note that this re-
flection symmetry dictates that the two boundary spheres of M∗

i be centred on the
x-axis and that K∗

i and C∗
i lie in Σ+ ∪ Σ−).

The two boundary spheres ofM∗
i are round and B+∗

i , B−∗
i , C∗

i together describe
conformally regular tetrahedral graphs on them (but these are not metrically regular
in R3 as G∗i would not allow it !).

Given that each string connects the two boundaries of the model, the features
described above dictate all essential properties of the model. However it is helpful
to observe that:
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(a) If the boundary spheres are chosen very small, the tetrahedral graphs
therein are (nearly) metrically regular and related by translation along
the x–axis.

(b) By a conformal transformation of the model, one can arrange that: the
boundary spheres are concentric about the origin; the tetrahedral graphs
therein are metrically regular and dual to each other by radial projection;
the string K∗

i (transformed) lies in two perpendicular planes through the
origin and projects from the origin monotonically to four geodesic seg-
ments of either boundary sphere. This description clarifies the relationship
with the model for one boundary component (Figure 18.4).

For any active block (Mi,Ki), the conformal model (M∗
i ,K

∗
i ) proposed above

(with 1 or 2 boundary components) is such that the group Gi of conformal automor-
phisms is visibly admissible with respect to the bands B+∗

i , B−∗
i and the marking

C∗
i = C±∗

i .
Conversely, Theorems 16.4 and 16.8 show that any admissible automorphism

of (M∗
i ,K

∗
i ) is pairwise isotopic to an element of Gi.

Thus the Naturality Condition holds for the conformal models of active blocks.
Now consider a non-active block (Mi,Ki). Here the two bands B+

i and B−
i

coincide, and will henceforth be denoted by Bi. The two markings C+
i and C−

i

differ only at the components of ∂Mi that are adjacent to active blocks.
For the corresponding model (M∗

i ,K
∗
i ), the Gluing Condition and our previous

construction of models for active blocks require the following: On each component
S of ∂Mi that is adjacent to an active block, the component σi(S) of ∂M∗

i is a
round sphere in S3 where the band B∗

i = B+∗
i = B−∗

i and the markings C+∗
i and

C−∗
i describe a tetrahedral graph in σ(S), which is conformally equivalent to the

regular tetrahedral graph.
On each boundary component S′ of (Mi,Ki) that is not adjacent to an active

block, the two markings C+
i and C−

i coincide and describe with Bi a topological
square. In the modelM∗

i , the boundary sphere σi(S
′) shall be a round sphere where

C+∗
i (coinciding here with C−∗

i ) and B∗
i shall describe a conformal square.

Let us now begin the construction of the model (M∗
i ,K

∗
i ). Let e ∈ Z be

the weight of the (non-active) vertex vi of Γ corresponding to the plumbing block
(Mi,Ki), and let k ∈ N denote the number of active vertices of Γ that are adjacent
to vi. Also, let S1, S2, . . . , Sd be the boundary components of Mi, occurring in
this order on a necklace of (Mi,Ki).

Considering S3 as the unit sphere in C2, choose d disjoint balls D1, . . . , Dd in
S3, with equal radii and centred respectively at (ω, 0), (ω2, 0), . . . , (ωd, 0) where

ω = exp
(
2π
d i

)
, as in Figure 18.6. The model M∗

i will be S3 −
⋃d
n=1 int(Dn).

To define the band B∗
i , we first construct an object B which, topologically, is

a disjoint union of d squares B(1), . . . , B(d). For this, we introduce the number
a = e−k

2 and, for t ∈ R, the glide rotation

Rt: (z, z
′) 7→ (z exp(2πit), z′ exp(aπit))

on S3 ⊂ C2.
The squares are defined inductively. In the circle S3 ∩R2, choose a small arc λ

centred at (1, 0) and symmetric with respect to the π–rotation ξ: (z, z′) 7→ (z,−z′).
Then the square B(1) is the union of the arcs Rt(λ), with 0 6 t 6 1

d .
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D1

D2

D3

D4

D5

D6

S3 ∩ (C× 0)

S3 ∩ (0× C)

S3 × R2

Figure 18.6.

When B(n) is already defined, B(n+1) depends on the type of the component Sn
of ∂Mi. If Sn is not adjacent to an active plumbing block, then B(n+1) = R 1

d
(B(n)),

so that B(n) and B(n+1) fit together to form a smooth ribbon in Dn. Otherwise

B(n+1) = ξ
1
2R 1

d
(B(n)), where ξ

1
2 is the π

2 –rotation (z, z′) 7→ (z, z′exp(iπ2 )) around

S3 ∩ (C × 0), so that B(n) and B(n+1) abut orthogonally at the point (ωn, 0).
Figure 18.6 presents an example where e = 2, d = 6 and k = 3.

As a first approximation to the definitive mode, the band B∗
1 will then be taken

to be B ∩M∗
i . The knot K∗

i (first approximation) will of course be the closure of
∂B∗

i − ∂M
∗
i plus, in case the ring number is 1, the circle S3 ∩ (0×C) = (thering).

We next want to define the markings C+∗
i and C−∗

i (first approximations). If,

at the points where B(n) and B(n+1) do not fit, we add to B two quarter of discs as
indicated in Figure 18.7(a), we get a piecewise smooth ribbon. There are two ways
to do so, inducing respectively a right-handed or left-handed quarter twist on the
ribbon. Let B+ (resp.B−) denote the ribbon obtained by this process, using the
right-handed (resp. left-handed) choice everywhere; by construction, the ribbon
B+ (resp. B−) has unknotted central thread and has e (resp. e− k) right-handed
half-twists.

B+ B−

Figure 18.7.

For each ball Dn, the pair (Dn, ∂B
− ∩Dn) is a rational tangle pair. Then, the

marking C+∗
i is defined on the component ∂Dn of ∂M∗

i by the slope of this rational
tangle, which is the slope gotten by isotoping the arcs ∂B+ ∩Dn into ∂Dn fixing
their end points. The marking C−∗

i is defined similarly, using the rational tangle
pairs (Dn, ∂B

− ∩Dn).
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B∗
i B∗

i

C+∗
i

C−∗
i

Figure 18.8.

Note that, when the squares B(n) and B(n+1) fit together, the two markings
C+∗
i and C−∗

i coincide on ∂Dn and form a square with the trace of the band

B∗
i . On the other hand, when B(n) and B(n+1) do not fit, the three markings

induced by C+∗, C+∗
i , C−∗

i and B∗
i describe a tetrahedral graph on ∂Dn, as shown

on Figure 18.7(b). This completes our construction of the model (M∗
i ,K

∗
i ) in its

approximate form.
The above construction has been designed so that there exists a degree +1

isomorphism σi : (Mi,Ki) → (M∗
i ,K

∗
i ) mapping Bi, C

+
i , C

−
i respectively to B∗

i ,
C+∗
i , C−∗

i .
The model (M∗

i ,K
∗
i ) clearly enjoys a group Gi of conformal symmetries which

is a subgroup of the group Hi ⊂ O(4) generated by the glide rotation T 1
d
, the

π
2 –rotation ξ

1
2 around S3 ∩ (C × 0), the π–rotation T and R 1

2d
TR−1

1
2d

around, re-

spectively, S3∩R2 and R 1
2d
(S3∩R2) and, when e = k

2 (namely a = 0), the reflection

ρ through the plane S3 ∩ (C × R). More precisely, one gets generators for Gi by
replacing, in the definition of Hi above, the integer d by a certain divisor d

δ of d
determined as follows: δ is the least integer > 0 such that, for all n, the boundary
component Sn+δ leads to an active block precisely if Sn does, where subscripts are
read modulo d.

Using Theorems 16.4 and 16.8, one readily checks that every admissible auto-
morphism of (M∗

i ,K
∗
i ) is pairwise isotopic to a unique element of Gi.

Thus, our preliminary model (M∗
i ,K

∗
i ) almost satisfies the properties required.

The only failure is that the markings induced by B∗
i , C

+∗
i and C−∗

i on each (round
sphere) component of ∂M∗

i do not describe a regular square or regular tetrahedral
graph (up to conformal equivalence); thus our Gluing Condition is not satisfied. We
consequently modifyK∗

i , the band, and the markings, by an ambient Gi–equivariant
isotopy supported on a small neighbourhood of ∂M∗

i , so that, for each component
S of ∂M∗

i , the square or tetrahedron drawn on S by B∗
i , C

+∗
i , C−∗

i is regular for
the standard metric of S3. This Gi–equivariant isotopy is easily constructed by
consideration of the quotient U/Gi, with U a small ±–cyclic Gi–invariant collar
neighbourhood of ∂M∗

i . This change preserves the properties previously enjoyed
by our model; it produces the final model (M∗

i ,K
∗
i ).

Note that, when (Mi,Ki) is adjacent to no active block, this final conformal
model is essentially the one we used in the proof of Theorem 18.5.

Thus, we have now defined for absolutely every block (Mi,Ki) a model (M∗
i ,K

∗
i ),

equipped with two bands B+∗
i and B−∗

i (possibly equal) and two boundary mark-
ings C+∗

i and C−∗
i (possibly equal). We can ensure inductively that whenever

the pairs (Mi,Ki) and (Mj ,Kj) (equipped with preferred bands and markings)
are admissibly isomorphic, the corresponding models M∗

i and M∗
j are admissibly
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isomorphic by a conformal (degree ±1) automorphism of S3. Then, these mod-
els clearly satisfy the Naturality Condition and Gluing Condition. The models
(M∗

i ,K
∗
i ) consequently fit together to give (as for Theorem 18.5) the embedding of

(M,K) asserted by Theorem 18.1.
This completes the proof of Theorem 18.1 in its full generality. �

We now indicate how Theorem 18.1 and its proof lead in practice to a calcula-
tion of Sym(M,K;C) as a group; this calculation was left incomplete in Chapter 16
because of unresolved group extension questions. Here the marked arborescent pair
(M,K;C) is as for Theorem 18.1 and we exclude the cases already studied ade-

quately, namely Γ = r
e
(where the knot is Seifert fibred) or Γ =

2 1 2
(where

the knot is the Borromean rings).
By Fact 18.9, some vertex v or edge e of Γ is fixed by Sym(M,K;C).

(a) If a vertex v is fixed, the geometrised symmetry group G ⊂ O(4) respects
the corresponding block (Mv,Kv) of (M,K), where Mv has been embed-
ded in S3 by the proof of Theorem 18.1. Then G is a subgroup, readily
determined using Chapter 16, of the isometry group G∗v of the model
(M∗

v ,K
∗
v ). Note that, algebraically, G∗v is described as an extension of a

cyclic or dihedral group by Z2 or Z2 ⊕ Z2, and that the extension may
or may not be split according to the parity of the weight of the central
vertex v.

(b) If no vertex of Γ is fixed, let e be an edge that is fixed. Then the ge-
ometrised symmetry group G (from the proof of Theorem 18.1) respects
the round 2–sphere S in M ⊂ S3 corresponding to e. Further S is equa-
torial (geodesic) in S3, the intersection K ∩ S is the four vertices of an
equatorial square in S, and some element of G exchanges the two sides of
S. Thus G is a subgroup of the order 32 isometry group H of S3 respect-
ing S and the “square” K ∩ S. Better, G lies in the order 16 subgroup
H′ of H consisting of these elements that exchange the two complemen-
tary components of S in S3 precisely if they exchange the two pairs of
opposite edges of the equatorial square of S containing K ∩ S (indeed
G ⊂ H′ because G respects the bands of the plumbing blocks adjacent to
S in (M3,K)). Again Chapter 16 lets us determine which subgroup of H′

corresponds to the group G.

For drawing pictures, the models that we have used in the proof of Theorem 18.1
may become unnecessarily cumbersome. In practice, it is often convenient to relax
somewhat the Naturality Condition imposed on these models, restricting it to those
admissible isomorphisms M∗

i ,K
∗
i )→ (M∗

j ,K
∗
j ) that are realised (via σi and σj) by

degree ±1 automorphisms of (M,K;C) which respect the plumbing blocks.
This often enables us to use more primitive models, (as in the proof of Theo-

rem 18.5 for example), enjoying less symmetries than the ones we have just given,
but easier to draw (see examples below).

In particular, the use of spheres with regular tetrahedral graphs can sometimes
be eliminated. For instance, assume that no degree −1 symmetry of Γ fixes an
active vertex. Then, performing suitable moves (2.1) and (2.2) along one half of
the active vertices gives a new graph Γ′ whose symmetry group Sym(Γ′), defined in
the obvious way, is naturally isomorphic to Sym(Γ) and every degree ±1 symmetry
of Γ′ sends a vertex of weight e to a vertex of weight ±e. Plumbing atomic tangles
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according to Γ′ again yields (M,K;C), but the preferred bands and markings of
the plumbing blocks are now characteristic. Then, the models for these blocks
constructed in the proof of Theorem 18.5 (with just conformal squares on boundary
spheres) suffice to realise Sym(M,K;C) as a finite subgroup of O(4).

We now give a few examples illustrating Theorem 18.1, taken from the Exam-
ples 16.19–16.22 that we had considered at the end of Chapter 16.

A1 Σ

+3
−3

+3

−3

Figure 18.9.

Example 18.10. In Example 16.19, we observed that for the graph
3

−3

3

−3
Sym(S3,K) ∼= Sym(Γ) ∼= Z2 ⊕ Z2, with half of the symmetries of degree −1.
Noting that the centre of Γ (Fact 18.9) is an edge corresponding to a Conway

sphere Σ in (S3,K), the symmetry group of (S3,K) is then realised as in Figure 18.9
by the group generated the π–rotation around the axis A1 ⊂ Σ and by reflection in
the two points of K ∩Σ not in A1. This group of conformal automorphisms lies in
O(4) when Σ is an equatorial in S3 and K ∩ Σ is equatorial square in Σ.

Example 18.11. The knot 817 of Example 16.20 is an example where our full
machinery with tetrahedral spheres is unnecessarily complicated. Indeed, the knot
is also described by the weighted planar tree

3

2

−3

−2
where the non-trivial (degree −1) is much more apparent. We can then realise

Sym(S3,K) ∼= Z2 by a configuration very similar to that of Figure 18.9. This is
represented in Figure 18.10, where the non-trivial element of Sym(S3,K) is the
reflection in the two antipodal points P1 and P2 indicated.

Example 18.12. Next, consider the graph
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P2

P1

−2
−3

+3

+2

Figure 18.10.

3

3

3

3

3

3

4

The group SymΓ of graph symmetries has 12 elements, and is generated by
the dihedral group D3 of rigid motions of R2 respecting the embedding of Γ in the
plane, and by the involution moving precisely the vertices of weight 3. Also no
symmetry has degree −1 and K(Γ) = 0.

Then, after isotopy in S3 ⊂ C2, the knot classified by Γ is, as in Figure 18.11,
respected by the π–rotations ξ : (z, z′) 7→ (z,−z′) and T : (z, z′) 7→ (z, z′) and by
the glide-rotation R: (z, z′) 7→ (zω2, z′ω) with ω = exp(2iπ6 ); and every symmetry
of the knot is realised by a product of these isometries.

Example 18.13. Lastly, let Γ be the graph

2 2

2

2

2

2

22 2

Sym(Γ) is easily seen to be the order 4 dihedral group D2, while K(Γ) ∼= Z2.
Moreover, note that the identity has both degree +1 and −1, and therefore that
the corresponding knots admits 16 distinct symmetries. Thus when Sym(S3,K)
is geometrically realised by Theorem 18.1, the full group of 16 symmetries of the
central active block will be induced.

The knot (S3,K) associated toK is represented by Figure 18.12, where Sym(M,K;C)
is realised by the subgroup of O(4) generated by the π–rotations around the three
axes A1, A2 and A3 and by the reflection through a plane (containing components of
K) obtained by π–rotation of the plane of the paper, around the axis A1 (compare
Figure 18.11).
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R

T

ξ

Figure 18.11.

A1

A2

A3

Figure 18.12.



APPENDIX A

Branched covers of arborescent pairs

A.1. Branched covers of knot pairs

Consider a knot pair. A branched cover of (M,K) consists of a 3–manifold
N and of a map p : N →M such that:

(a) The restriction p|p−1(M−K): p
−1(M −K)→M −K is a covering map.

(b) Near p−1(K), the map p is locally modelled by a map qn : C×R→ C×R

defined by q(z, t) = (zn, t), for some integer n > 1. Namely, for every

x ∈ p−1(K), there are charts ϕ̃ : Ũ → C × R and ϕ : U → C × R,

respectively identifying a neighbourhood Ũ of x and a neighbourhood U
of p(x) with open subsets of C×R, such that qϕ̃ = ϕp and ϕ̃(x) ∈ 0×R.
(Observe that ϕ−1(0× R) = U ∩K whenever n > 1.)

Sometimes, a branched cover of (M,K) is also called a cover of M branched
along K.

In this Appendix, we are mostly concerned with 2−fold branched covers or
double branched covers, namely with those for which p−1(y) consists of 2 points
for every y ∈M −K and of one point for every y ∈ K. For such a 2–fold branched
cover, observe that necessarily n = 2 in Condition (b) above.

For a cover p: N →M branched along K, the restriction p|p−1(M−K): p
−1(M −

K)→M −K is a nontrivial covering map above each neighbourhood of a point of
K. From the classification of coverings, it follows that, up to the obvious notion
of isomorphism, the 2–fold branched covers of (M,K) are in one-to-one correspon-
dence with the homomorphisms H1(M − K) → Z2 which are non-trivial on each
meridian of K. It follows that (M,K) admits a unique 2–fold branched cover when
H1(M ;Z2) = 0 and each component of ∂M meets K in an even number of points.

In the cases we are interested in, M is embedded in S3 and bounded by spheres
each meeting K in an even number of points (with possibly M = S3), so that the
above property always holds. We can therefore talk of the 2–fold branched cover of
(M,K).

For an arborescent knot, it turns out that its 2–fold branched cover belongs
to a special class of 3–manifolds, called graph manifolds. By definition, a graph
manifold is a 3–manifold N containing a family T of disjoint 2–tori such that each
closed-up component of N − T admits a (locally trivial) S1–bundle structure over
a surface. These graph manifolds were studied and classified by F. Waldhausen in
[Wal2].

Proposition A.1. The 2–fold branched cover N of an arborescent pair is a
graph manifold.

Proof. Recall from Chapters 3 and 7 that an arborescent pair is one which
can be split along disjoint Conway spheres to get a family of rational tangle pairs

251
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(see Figure A.1(a)) and of hollow elementary pairs (see Figure A.1(b)). Thus, it
suffices to prove that the 2–fold branched covers of a rational tangle pair and of a
hollow elementary pair is an S1–bundle.

(a) (b)

Figure A.1.

On the solid torus V = S1×B2, consider the involution τ defined by τ(u, v) =
(u, v), where S1 and B2 are viewed as the unit circle and disk in the complex plane
C. Then τ can be seen geometrically as the π–rotation shown on Figure A.2(a).
By consideration of a fundamental domain for the action of τ , observe that the
quotient M = V/τ is a 3–ball and that, if K ⊂ M is the image of the fixed point
set of τ , the pair (M,K) is the standard rational tangle pair of see Figure A.2(b).
The quotient map V →M exhibits V as the 2–fold branched cover of the rational
tangle pair (M,K).

(a) (b) (c)

=

τ

Figure A.2.

In V = S1 ×B2, consider two fibres f1, f2 = S1 × ∗ which are invariant under
τ . If we remove from V two τ–invariant tubular neighbourhoods U1, U2 of f1, f2,
observe that the knot pair made of the quotient space V − int(U1 ∪ U2)/τ and of
the image of the fixed point set of τ is isomorphic to the hollow elementary pair
of Figure A.1(b); see Figure A.2(b–c). This shows that the 2–fold branched cover
of the hollow elementary pair is isomorphic to the S1–bundle V − int(U1 ∪ U2) ∼=
S1 × (B2 − two discs).

This concludes the proof of Proposition A.1. �

A.2. Seifert manifolds

A Seifert fibration of a compact 3–manifold M is a foliation of M by leaves
that are circles, and which is locally of the following type: Near the boundary ∂M ,
the foliation is a locally trivial S1–bundle; and any leaf in the interior of M has a
foliated neighbourhood U ∼= S1 × B2 where the leaves of the foliation are, for two
coprime integers p, q, the images of z ∈ S1 7→ (zp, z0z

q) where z0 ranges over B2,
considering S1 and B2 as the unit circle and disk in the complex plane C. Viewing
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the solid torus U ∼= S1×B2 standardly positioned in S3, the fibres are {p, q} torus
knots wrapping around the core of U . Observe that a Seifert fibration is locally
trivial outside of finitely many singular leaves where p = ±1. A leaf which is
not singular is regular or generic. The leaves of a Seifert fibration are usually
called its fibres. (In this context, the word foliation is an anachronism, and can
be replaced by partition or decomposition which is what Seifert had to do in [Sei1],
before the introduction of foliations.)

Sometimes, the notion of Seifert fibration is extended so as to include a third
local type for a decomposition of M into circles. A fibre of this third type admits
a neighbourhood U ∼= S1 × B2 where the fibres of the fibration consist of the core
S1 × 0 and of the images of the maps z ∈ S1 7→ (z1, z2z), namely meridian circles
linking the core. Observe that these fibres do not form a foliation near the core
of U . We have encountered such fibres in Chapter 2, when extending the Seifert
fibration of a knot complement to all of S2. We will for this appendix call such a
decomposition ofM into circles a generalised Seifert fibration . In a generalised
Seifert fibration, the fibres that are not of foliation type (namely where the fibration
is not a Seifert fibration in the original sense) are said to be infinitely singular .

A Seifert manifold is a 3–manifold which admits a Seifert fibration. Simi-
larly a generalised Seifert manifold is one which admits a generalised Seifert
fibration.

In his seminal paper [Sei1], H. Seifert classified Seifert fibrations of closed man-
ifolds, up to fibred isomorphism, namely up to isomorphism of fibred manifolds
that maps fibres to fibres. We now present his results, extended to generalised
Seifert fibrations of manifolds with boundary, but restricting to oriented manifolds
and with a slightly different terminology.

The idea is to extract certain invariants from a generalised Seifert fibration of
an oriented 3–manifold M . A first invariant is the space B of the fibres of the
fibration, also called its base. In view of the local models of the fibration, this
base B is a surface. Although we will not make use of this fact, we should mention
that B actually has a richer structure, as a 2–dimensional orbifold structure(see
[Thu1, BonS1, BonS2, Bon3]).

When M is connected, the surface B is connected and is characterised by its
number d of boundary components and by its genus defined as follows (following
[Wal2]): g = 1 − (χ + d)/2 > 0 when B is orientable and g = χ + d − 1 6 0
otherwise, where χ is the Euler characteristic of B. This genus g puts isomorphism
types of closed connected 2–manifolds into one-to-one correspondence with the
integers Z; for instance g = 1, 0, −1, −2 respectively for the torus, the sphere, the
projective plane and the Klein bottle, respectively. (It should be emphasised that
the orientability of M does not entail orientability of B.)

Another invariant is associated to each fibred tubular neighbourhood U of a
fibre of M , provided we choose a section Q of the fibration on ∂U , namely Q is a
circle meeting each fibre of ∂U in exactly one point. In H1(∂U) ∼= Z2, complete
the class of Q to a basis {Q,H} where H is represented by a fibre of the fibration,
oriented so that Q ·H = +1 for the boundary orientation on ∂U . Then, the kernel
of H1(∂U) → H1(U) is generated by αQ + βH for certain α, β ∈ Z. The number
β
α ∈ Q ∪ ∞ is the Seifert invariant of U with respect to the section Q.

Observe that β
α ∈ Z when the fibration of U has no singular fibre, and that β

α =∞



254 A. BRANCHED COVERS OF ARBORESCENT PAIRS

if and only if U is not of foliation type (namely the fibration of U is not a Seifert
fibration, but a generalised Seifert fibration).

Now consider a generalised Seifert fibration of a connected manifoldM . Choose
a union U of disjoint fibred tubular neighbourhoods of fibres of M , such that the
induced fibration on the closure M0 of M − U is a locally trivial S1–bundle. In
particular, U must contain all singular fibres and we also require that ∂M0 6= ∅, so
that this S1–bundle admits a global section (since its base has the homotopy type
of a bouquet of circles). Fix such a section Q. The data consisting of U and Q will
be called a presentation of the generalised Seifert fibration.

Imitating the terminology and notation of Chapter 11, we define the raw data
vector associated to M , U and Q to be (g;m1,m2, . . . ,mk) where these data are
the following.

(1) The number g ∈ Z is the genus of the base B of the fibration.
(2) The invariants m1, . . . , mk ∈ Q ∪ {∞,∅} are respectively associated to

the components T1, . . . , Tk of ∂M0; mi is the symbol ∅ when Tk is also
a boundary component of M , and otherwise mi ∈ Q ∪ ∞ is the Seifert
invariant of the component Ui of U that is adjacent to Ti, with respect to
the restriction of the section Q to ∂Ui.

This raw data vector clearly depends on the choices of U and Q. To neutralise
the effect of these choices, consider the fractional data vector (g; e0;m1, . . . ,mp)
defined as follows.

(1) g ∈ Z is the genus of the base of the fibration.
(2) Each mj is in Q/Z∪{∞,∅}, and the collection {m1, . . . ,mp} is obtained

from the collection {m1, . . . ,mk} of elements of Q ∪ {∞,∅} by removing
all mi ∈ Z and by replacing each mj ∈ Q− Z by its reduction in Q/Z.

(3) The invariant e0 is the symbol ∅ if some mi is ∅ or ∞, and e0 =
−
∑p
i=1mi when all mi are in Q.

To stay closer to Seifert’s original approach, we can also consider the Seifert
data vector (g; b; m̃1, . . . , m̃p) where:

(1) g ∈ Z is the genus of the base of the fibration.
(2) m̃i = mi if mi =∞ or ∅, and otherwise m̃i is the unique number in ]0, 1[

representing the class mi ∈ Q/Z.
(3) b = ∅ if e0 = ∅, and b = −e0−

∑p
i=1 m̃i ∈ Z if e0 ∈ Q (so that all m̃i are

in Q).

Clearly, the fractional data vector is completely determined by the Seifert data
vector, and conversely.

In his paper [Sei1], Seifert used a slightly different form for this list of invariants.
First of all, he considered only Seifert fibrations (without any singular fibre of
Seifert invariant ∞) of closed manifolds. In this case, each m̃i is in Q ∩ (0, 1),

and can be written as m̃i =
βi

αi
for a unique pair of coprime integers αi, βi with

0 < βi < αi. Then, Seifert’s form of our Seifert data vector (g; b; m̃i, . . . , m̃i) is
(O, o; g; b; (α1β1), . . . , (αp, βp)) if g > 0, and (O, n;−g; b; (α1, β1), . . . , (αp, βp)) if
g < 0. Here, the symbol O recalls that the 3–manifold is oriented (Seifert also
considered non-orientable manifolds), and the symbols o and n indicate whether
the base B of the Seifert fibration is orientable or non-orientable.

As in Chapter 11, we can also consider an alternate normalisation, by defining
the normalised data vector (g; e; m̂1, . . . , m̂p). Here:



A.2. SEIFERT MANIFOLDS 255

(1) g ∈ Z is the genus of the base of the fibration.
(2) m̂i = mi if mi = ∞ or ∅, and otherwise m̂i is the unique number in the

interval
(
− 1

2 ,
1
2

]
representing the class mi ∈ Q/Z.

(3) e = ∅ if e0 = ∅, and otherwise e = e0 +
∑
m̂i ∈ Z (when all m̂i are in

Q ∩
(
− 1

2 ,
1
2

]
).

The fundamental result of Seifert in [Sei1] is that these invariants completely
determine the 3–manifold and its Seifert fibration. The extension to generalised
Seifert fibrations of 3–manifolds with boundary is straightforward; see also [Orl].
Thus:

Theorem A.2. Consider two connected oriented 3–manifolds M and M ′, each
equipped with a generalised Seifert fibration. There exists a degree +1 isomorphism
ϕ: M → M ′ sending fibration to fibration if and only if any one of the following
three (obviously equivalent) conditions holds:

(i) The fractional data vectors (g; e0;m1, . . . ,mp) associated to M and M ′

coincide modulo permutation of the mi.
(ii) Their Seifert data vectors (g; b; m̃1, . . . , m̃p) coincide modulo permutation

of the m̃i.
(iii) Their normalised data vectors (g; e; m̂1, . . . , m̂p) coincide modulo permu-

tation of the m̂i. �

It turns out that the topological classification of Seifert manifolds “almost” co-
incides with the fibred classification of Theorem A.2. Indeed, this topological classi-
fication was completed by F. Waldhausen [Wal2], P. Orlik, E. Vogt and H. Zieschang
[OVZ]. Rephrased in the terminology of fractional data vectors, this classification
reads:

Theorem A.3. Two connected Seifert fibred oriented 3–manifolds are (degree
+1) isomorphic if and only if, modulo permutation of the mi ∈ Q/Z ∪ {∅}, their
fractional data vectors (g; e0;m1, . . . ,mp) differ only by a composition of the fol-
lowing exchanges:

(0;∅;m,∅)↔ (0;∅; )

(−1;∅;∅)↔
(
0;∅; 1

2 ,
1
2 ,∅

)

(−2; 0; )↔
(
0; 0; 1

2 ,
1
2 ,

1
2 ,

1
2

)
(
−1;− β

α ;
β
α

)
↔

(
0; αβ ;

1
2 ,

1
2 ,−

α
β

)

(−1; e; )↔
(
0;− 1

e ;
1
2 ,

1
2 ,

1
e

)
if e 6= 0

(−1; 0; )↔
(
0; 0; 1

2 ,
1
2

)
(
0;− β

α ;
β
α

)
↔

(
0;− β

α′
;− β

α′

)
when α′ = α±1 mod β(

0;− β1

α1
− β2

α2
; β1

α1
, β2

α2

)
↔

(
0;− β

α ;
β
α

)
when β

α = α1β2+β1α2

α′

1
β2+β′

1
α2

and when α′
1

and β′
1 are such that α1β

′
1 − α

′
1β1 = 1. �

Here, as in Chapter 11, βα denotes the class of βα in Q/Z.
The non-fibred isomorphisms corresponding to the above exchanges are proba-

bly best described by the corresponding isomorphisms between Montesinos knots,
which we encountered in Chapter 10 and §11.2. Indeed, we will show in §A.3 (see
Theorem A.6) that the 2–fold branched cover of a Montesinos pair admits a Seifert
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fibration whose fractional data vector is obtained from the one of the pair by revers-
ing the sign of the first entry. And any isomorphism between knot pairs certainly
lifts to an isomorphism between their 2–fold branched covers.

We will not give in detail the topological classification of generalised Seifert
manifold. However, we should probably mention that it is easily deducted from
Theorem A.3. Indeed, if a generalised Seifert fibration ofM is not a Seifert fibration,
namely if it has a singular fibre of Seifert invariant ∞, consider a simple closed
curve in the base B running through the point corresponding to this singular fibre.
The preimage of this curve under the projection M → B is a 2–sphere, which
decomposes M into a connected sum of two 3–manifolds or into a self-connected
sum of one manifold; however, the one or two manifolds of this decomposition admit
a generalised Seifert fibration with one fibre of type ∞. (Compare Figure 8.31.)

Starting from this observation, one easily decomposes M into a connected sum
of lens spaces, including copies of S1 × S2. Since on the other hand, a Seifert
manifold is prime (see [Wal2] for instance), the classification of generalised Seifert
manifolds easily follows from Theorem A.3 and from the unique factorisation of
3–manifolds into prime summands that we have encountered in Chapter 2 [Kne,
Hak2, Mil].

A.3. Double branched covers of Montesinos pairs

The main achievement of this section is to show that the double branched
cover of a Montesinos pair is a generalised Seifert manifold, and to identify the
data vectors of this Seifert manifold from those of the Montesinos pair, as defined
in Chapter 11.

First, consider the hollow Montesinos tangle (M,K) of Figure A.3. The same
argument as in the proof of Proposition A.1 shows that the double branched cover of
(M,K) is isomorphic to S1× (S2−n discs) where n > 0 is the number of boundary
components of (M,K). Also, each fibre S1 × ∗ projects to an arc or a circle in
(M,K), according to whether it is invariant under the covering involution or not.

Figure A.3.

Observe that the images of the fibres have slope∞ on the boundary of (M,K),
whose boundary curves have slope 0, which lifts to a section of the S1–bundle in
the double branched cover.

We next consider the knot pair underlying the ring tangle.

Lemma A.4. The double branched cover of the ring pair is the (unique) S1–
bundle N over the Möbius strip that has orientable total space.

Proof. Consider the Möbius strip Σ as the quotient of the square [0, 1]× [0, 1]
by the equivalence relation that glues each point [0, y] of the left hand side to
the point [1, 1 − y] on the right hand side. Then, the bundle N is obtained from
[0, 1]× [0, 1]×S1 by gluing each point (0, y, u) to (1, 1− y, ū), considering S1 as the
unit circle in C and letting ū denote the complex conjugate of u ∈ S1.
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τ

fold

fold

fold

(a) (b) (c)

Figure A.4.

Consider the involution τ of N that comes from the involution τ ′ of [0, 1] ×
[0, 1]× S1 defined by τ ′(x, y, u) = (1− x, y, ū). See Figure A.4(a).

The fixed point set of τ : N → N consists of the images of all the fixed points
(12 , y,±1) of τ

′, but also of the images of the points (0, 12 , u) and (1, 12 , u).
To analyse the quotient space N/τ , consider the fundamental domain Q =

[0, 1] × [0, 1] × J where J ⊂ S1 is the upper semi-circle consisting of all u ∈ S1

with nonnegative imaginary part, as in Figure A.4(b). The quotient space N/τ is
then obtained from Q by gluing each point (0, y, u) to (0, 1− y, u), each (1, y, u) to
(1, 1− y, u), each (x, y, 1) to (1− x, y, 1), and each (x, y,−1) to (1− x, y,−1). See
Figure A.4(b).

Folding faces of Q according to these gluing instructions, one readily sees that
the quotient space N/τ is isomorphic to a ball, in such a way that the image of the
fixed point set of τ is as indicated in Figure A.4(c). As a consequence, the quotient
pair (N,Fix (τ))/τ is isomorphic to the ring pair (M,K).

In other words, N is the double branched cover of the ring pair (M,K). �

Observe the following consequence of our proof of Lemma A.4: On the bound-
ary of the double branched cover N of the ring tangle (M,K), the fibres project to
arcs and curves of slope ∞. Also, the S1–bundle N admits a section Q, image of
the square [0, 1]× [0, 1]×∗, such that ∂Q projects to an arc of slope 0 on ∂(M,K).

Combining our analysis of the case of the hollow Montesinos pair and of the
ring tangle, we get:

Lemma A.5. Let (M,K) be a presented Montesinos pair with r ring tangles, d
boundary components, and no rational tangles. Then, the double branched cover N
of (M,K) admits an S1–bundle structure, with base the d times punctured surface
of genus −r. Moreover, the fibres project to arcs and curves of slope ∞ on the
boundary ∂(M,K), and the boundary of a certain section Q of the bundle projects
to curves of slope 0.

Proof. The pair (M,K) can be decomposed into a hollow Montesinos pair
(M0,K0) and ring tangles (M1,K1), . . . , (Mr,Kr). We already saw that the preim-
age Ni ⊂ N of Mi ⊂M admits an S1–bundle structure. By our observation on the
slopes, these fibrations can be modified so as to fit along each ∂Ni, i > 1, to give
an S1–bundle on N . The base of this fibration is obtained by capping off with a
Möbius strip r boundary components of the base of N0, which is a (d + r) times
punctured sphere. Therefore, the base of the fibration of N is a d times punctured
surface of genus −r. Similarly, the sections considered on the Ni can be modified
to give a section Q of N as desired. �
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Theorem A.6. Let (M,K) be a presented Montesinos pair, with raw data vec-
tor (r;m1, . . . ,mk) as defined in Chapter 11. Then, the double branched cover N of
(M,K) admits a generalised Seifert fibration which has raw data vector (−r;m1, . . . ,mk),
for some presentation of this fibration.

Proof. Let (M1,K1), . . . , (Mn,Kn) be the rational tangles of the presentation
of (M,K), and let (M0,K0) be the closure of their complement. Let Ni ⊂ N denote
the preimage of Mi ⊂M .

By Lemma A.5, N0 admits an S1–bundle structure with base a punctured
surface of genus −r. For each i > 1, Ni is a solid torus. It is then easy to extend
the fibration of ∂Ni induced by the fibration of N0 to a generalised Seifert fibration
of Ni. (Hint: On the boundary of the solid torus S1×B2, any S1–bundle structure
is isotopic to a “linear” one, and therefore extends to a generalised Seifert fibration.)
Thus, the fibration of N0 extends to a generalised Seifert fibration of N .

Consider the presentation of this fibration of N which consists of the union U
of the Ni with i > 1 and of the section Q of N0 provided by Lemma A.5. In view
of the definition of the slope of rational tangles in §1.2 and of the Seifert invariants
in §A.2, it is immediate that the Seifert invariant of each Ni, i > 1, with respect to
Q is equal to the slope of the rational tangle (Mi,Ki). It follows that the Seifert
fibration of N has raw data vector (−r;m1, . . . ,mk) for the presentation defined
by U and Q. �

If we apply a non-dihedral permutation to the rational tangle slopes of the
fractional data vector of a Montesinos pair (M,K), the results of Chapter 11 show
we usually obtains a Montesinos pair (M ′,K ′) which is not isomorphic to (M,K).
However, Theorems A.3 and A.6 show that (M,K) and M ′,K ′) have isomorphic
double branched covers. This provides many examples of different knots that have
isomorphic double branched cover.

A.4. Montesinos knots that are Seifert fibred

In Chapter 16, we needed to know for which pairwise irreducible Montesinos
knots (S3,K) it is possible to put a Seifert fibration on the complement S3−U(K)
of a tubular neighbourhood U(K) of K. Observe that such a fibration of S3−U(K)
extends to a generalised Seifert fibration of S3 for which K consists of fibres. Thus,
the question is equivalent to asking which Montesinos knots consist of fibres of a
generalised Seifert fibration of S3.

First of all, an easy argument (based for instance on a computation of the first
homology group) shows that there is only one generalised Seifert fibration of S3

with a singular fibre of infinite slope. The fractional data vector of this fibration is
(0,∅;∅). In particular, a link made up of fibres of this fibration is either a trivial

link or a keyring link . If, in addition, the link is pairwise irreducible,

it must be either the trivial knot or the Hopf link ; observe that these are
Montesinos knots.

Having solved the problem for generalised Seifert fibrations of S3 with a singular
fibre of infinite slope, we can now restrict attention to Seifert fibrations (with all
slopes finite).

The main idea for our analysis is the observation that, if K consists of fibres
of a Seifert fibration of S3, this fibration lifts to a Seifert fibration of the double
branched cover N of (S3,K). A local analysis easily proves this property. Each
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fibre of S3 lifts to 1 or 2 fibres in N . It easily follows that the base of the fibration
of N either is equal to the base B of the fibration of S3 (when a generic fibre of S3

lifts to a single fibre in N), or is a 2–fold branched cover of B, branched at points
of B corresponding to some singular fibres or to components of K. See the proof
of Theorem A.8 below for more details.

Lemma A.7. Let K be a union of fibres of a Seifert fibration of S3. If (S3,K)
is a Montesinos knot, then the Seifert fibration of S3 lifts to a Seifert fibration
of the double branched cover N of (S3,K) whose fractional data vector is of type(
0; e0;

β1

α1
, β2

α2
, . . . , βn

αn

)
, where n 6 3 and where, in addition, 1

α1
+ 1

α2
+ 1

α3
> 1 if

n = 3.

Proof. By the classification Theorem A.3, the base B of the Seifert fibration
of S3 is necessarily a 2–sphere.

The Seifert fibration of N lifts to a Seifert fibration of N whose base either is
the base B of S3 or is a double branched cover of B. In particular, the base of the
fibration of N is orientable. Therefore, the fractional data vector of this fibration

is of type
(
g; e0;

β1

α1
, β2

α2
, . . . , βn

αn

)
with g > 0.

First consider the case where g = 0. Assume, in search for a contradiction, that
the list of the αi is not one of those occurring in the statement of the lemma. Under
these conditions, it is proved in [OVZ, Orl] that the centre of the fundamental
group of N is infinite cyclic, generated by the image of a generic fibre.

The covering involution τ of N sends fibre to fibre. Also, if we coherently
orient these fibres, it respects this orientation. It therefore follows that τ induces
the identity on the centre of π1(N).

On the other hand, if (S3,K) is a Montesinos knot, we constructed in §A.3
another Seifert fibration of N , for which τ reverses the orientation of a generic
fibre. By [OVZ, Orl], the square of this generic fibre is a non-trivial element of
the centre of π1(N) (we need to take the square in case the base of the fibration is
non-orientable). We then have an element of the centre of π1(N) which is not fixed
by τ , contradicting our first conclusion.

This proves that, if g = 0, the Seifert invariants must be of the type given in
the statement of the lemma.

To conclude the proof, we need to exclude the case where g > 1. This easily
follows from the classification of Seifert manifolds. Indeed, if g > 1, Theorem A.3
shows that N cannot admit a Seifert fibration whose base has non-positive genus.
On the other hand, if (S3,K) is a Montesinos knot, §A.3 proves that N does have
such a fibration, giving the contradiction required. Therefore, g = 0.

This concludes the proof of Lemma A.7. �

Theorem A.8. The pairwise irreducible Montesinos knot (S3,K) is Seifert
fibred if and only if its fractional data vector, as defined in Chapter 11, is one of

(0; e; ) with e 6= 0

(1; e; ) ∼=
(
0;− 1

e ;
1
e ,

1
2 ,

1
2

)
with e 6= 0

±
(
0;− 1

6 ;
1
2 ,

1
3 ,

1
3

)

±
(
0;− 1

12 ;
1
2 ,

1
3 ,

1
4

)

±
(
0;− 1

30 ;
1
2 ,

1
3 ,

1
5

)
.

The corresponding Seifert knots are, in this order, the torus knot (or link) {2, e},
the union of the torus knot {2, e} and of the axis linking this torus knot twice, the
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torus knot {3, 4}, the union of the torus knot {2, 3} and of the axis linking this torus
knot 3 times, and the torus knot {3, 5}.

In terms of our plumbing calculus, observe that these Montesinos knots are

those associated to the weighted trees
e
,

e
2

2

1
,

3
2

3

1
,

4
2

3

1
, and

5
2

3

1
,

modulo reversal of the signs of all weights.

Proof. Assume that K consists of fibres of a Seifert fibration of S3. By

Theorem A.3, the fractional data vector of this fibration is (0;±1; ), or
(
0;− 1

α ;
1
α

)
,

or
(
0;− β1

α1
− β2

α2
; β1

α1
, β2

α2

)
with α1β2 + α2β1 = ±1.

Consider the double branched cover N of (S3,K). The fibration of S3 lifts
to a Seifert fibration of N . To analyse this fibration, whose invariants are easily
computed (following [Mon1]). We have to consider two cases.

Case 1 The preimage in N of a generic fibre of S3 is disconnected
In other words, the restriction of the branched cover above a generic fibre of

S3 is a trivial 2–fold cover.
Let us analyse what the local behavior of this branched cover can be near a

fibre f of S. Choose a fibred tubular neighbourhood U of f , as well as a section Q

of the fibration on ∂U . In the case we are considering, the preimage Q̃ of Q gives

a section of the fibration on the boundary of the preimage Ũ of U in N . An easy
computation shows that, if β

α ∈ Q is the Seifert invariant of U with respect to Q,

then either Ũ consists of two solid tori each of Seifert invariant β
α with respect to

Q̃, or Ũ is a single solid torus of Seifert invariant 2β
α with respect to Q̃. In the

second case, the projection from the (disc) base of Ũ to the (disc) base of U is a

2–fold cover branched at the image of f , and the covering map Ũ → U is branched
along f if and only if α is odd.

In particular, the base B̃ of the fibration of N is a 2–fold branched cover of the

base B of S3. Because (S3,K) is a Montesinos knot, Lemma A.7 implies that B̃ is

a sphere. It follows that the covering map B̃ → B is branched at exactly 2 points,
and therefore that K consists of only 1 or 2 fibres of S3.

If the Seifert fibration of S3 has no singular fibre, namely is the Hopf fibration
up to degree ±1 isomorphism, thenK consists of 2 fibres of this fibration. (If K was
connected, a generic fibre would have linking number ±1 with it and would have
connected preimage in N .) Therefore, K is the Hopf link, which is a Montesinos
knot of fractional data vector (0;±2; ).

If the Seifert fibration of S3 has exactly one singular fibre, its fractional data

vector is
(
0;− 1

α ;
1
α

)
. Since K consists of one or two fibres of this fibration, (S3,K)

is one of the trivial knot, the {2, 2α} torus link, or the {2, 4α} torus link. These
are Montesinos knots, with fractional data vectors (0; 1; ), (0; 2α; ), (0; 4α; ), and
certainly are on the list of Theorem A.8.

Having analysed these two easy special cases, we now turn to the more general
case, where the fibration of S3 has two singular fibres. Choose two fibred tubular
neighbourhoods U1 and U2 of these fibres, and a section Q of the fibration on
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S3 − U1 ∪ U2. This gives a presentation of the Seifert fibration of S3, whose raw
data vector is

(
0; β1

α1
, β2

α2

)
with α1β2 + α2β1 = ±1 and α1, α2 > 2.

In N , the preimage Q̃ of Q is a section of the fibration on the preimage of
S3−U1 ∪U2. (This requires a little verification when a component of K is in S3−
U1∪U2.) By our local analysis of the branched cover, the corresponding presentation

of the Seifert fibration of N has raw data vector
(
0; 2β1

α1
, 2β2

α2

)
,
(
0; β1

α1
, β1

α1
, 2β2

α2

)
or(

0; β1

α1
, β1

α1
, β2

α2
, β2

α2

)
.

If the fibration of N has raw data vector
(
0; 2β1

α1
, 2β2

α2

)
, then K consists of one

or two of the singular fibres of S3, and therefore is the unknot or the Hopf link.
The case where the fibration of N has raw data vector

(
0; β1

α1
, β1

α1
, β2

α2
, β2

α2

)
is

excluded by Lemma A.7, since (S3,K) is also a Montesinos knot.

When the fibration has raw data vector
(
0; β1

α1
, β1

α1
, 2β2

α2

)
with α2 = 2, then K

consists of a non-singular fibre of the fibration of S3. This non singular fibre is a
{2, α1} torus knot in S3, and therefore is the Montesinos knot of fractional data
vector (0;α1; ).

The last case is when the fibration of N has raw data vector
(
0; β1

α1
, β1

α1
, 2β2

α2

)

with α2 6= 2. Combining Lemma A.7 with the condition that α1β2 + α2β1 = ±1, a
straightforward computation shows that the fractional data vector of the fibration of

N must be one of
(
0;− 1

α2
; 1
2 ,

1
2 ,

1
α2

)
with α2 odd, or

(
0;− 1

6 ;
1
2 ,

1
3 ,

1
3 ) modulo reversal

of all signs. Combining Theorem A.6 with the topological classification of Seifert
manifolds given in Theorem A.3, it follows that, as a Montesinos knot, (S3,K) has

fractional data vector ±
(
0;− 1

α2
; 1
2 ,

1
2 ,

1
α2

)
with α2 odd, or ±

(
0;− 1

6 ;
1
2 ,

1
3 ,

1
3 ).

Case 2 The preimage in N of each fibre of S3 is connected
In this case, the fibrations of N and S3 have the same base B.
To analyse the fibration locally, consider a fibred tubular neighbourhood U of

a fibre f of S3, and its preimage Ũ in N . In this case, not every section on ∂U

lifts to a section on ∂̃U . However, considering the homomorphism H1(∂U)→ Z/2

classifying the covering map ∂Ũ → ∂U , it is always possible to find a section Q

on ∂U whose preimage on ∂Ũ is disconnected; any component Q̃ of the preimage

of Q then is a section on ∂Ũ . If U has Seifert invariant β
α with respect to Q, an

easy computation then shows that Ũ has Seifert invariant β
2α with respect to Q̃.

Moreover, the covering map is branched along the fibre f if and only if β is odd.
Let us start with the case where the Seifert fibration of S3 has two singular

fibres. Let U1, U2 be fibred tubular neighbourhoods of these singular fibres, and
let U3, . . . , Un be fibred tubular neighbourhoods of the components of K which are
distinct from these fibres (if any). For i = 1, . . . , n− 1, choose on ∂Ui a section Qi
whose preimage in N is disconnected. Standard obstruction theory enable us to
extend the Qi to a sectionQ of the closure of S3−

⋃n
i=1 Ui. Because the fundamental

group of the planar surface Q is generated by Q1, . . . , Qn−1, the preimage of Q is

disconnected, and a component Q̃ of this preimage gives a section of the fibration
of the preimage of S3−

⋃n
i=1 Ui. The section Q gives a presentation of the fibration

of S3 whose raw data vector is
(
0; β1

α1
, β2

α2
, β3, β4, . . . , βn

)
.

By our local analysis, the section Q̃ gives a presentation of N whose raw data
vector is

(
0; β1

2α1
, β2

2α2
, β3

2 ,
β4

2 , . . . ,
βn

2 ).
If n = 2, K must be the unknot on the Hopf link.
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If n > 3, Lemma A.7 puts some restrictions on what the fractional data vector
of N can be. Combining them with the above formulas, a straightforward compu-
tation shows that this fractional data vector is, up to reversal of all signs, one of(
0;− 1

12 ;
1
2 ,

1
3 ,

1
4

)
or

(
0;− 1

30 ;
1
2 ,

1
3 ,

1
5

)
.

By Theorems A.6 and A.3, it follows that the Montesinos knot (S3,K) must

have fractional data vectors
(
0;− 1

12 ;
1
2 ,

1
3 ,

1
4

)
or

(
0;− 1

30 ;
1
2 ,

1
3 ,

1
5

)
.

It remains to consider the case where the fibration of S3 has 0 or 1 singular
fibres. The same arguments then shows that the Montesinos knot (S3,K) must be

the unknot, the unlink, or have fractional data vector (0;− 1
2α ;

1
2α ,

1
2 ,

1
2 ).

This concludes our proof that, if the Montesinos knot (S3,K) is Seifert fibred,
its fractional data vector must be one of those listed in Theorem A.8.

= −→

−
→

−→=

1

2

3

5

{3, 5}

Figure A.5.

Conversely, we have to show that, if the fractional data vector of (S3,K) is one
of those listed, then (S3,K) is Seifert fibred. This is (relatively) easily done by a
string manipulation identifying this knot to the corresponding Seifert fibred knot
given in the statement of Theorem A.8. For instance, Figure A.5 gives an example,
corresponding to the last exception.

This concludes the proof of Theorem A.8. �
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[Boi1] M. Boileau, Inversibilité des nœuds de Montesinos, Dissertation, Publica-
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[Hak1] W. Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375.
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Math. 98 (1976), 739–749.

[Kap] M. Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math-
ematics 183, Birkhäuser, 2001.
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[Lac4] J. Lacan, Le séminaire XXIV, 1976–77: L’insu que sait de l’une bévue
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arborescent tangle, 144
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atomic Montesinos tangle, 142, 143
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blister

pairwise blister, 65

rel ∂ blister, 63
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Boundary Moves, 147, 166, 169

boundary surface, 27
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branched cover, 251
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negatively canonical tree, 154, 160
positively canonical tree, 154, 159
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characteristic companionship tree, 19

characteristic torus family, 17
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compressible, 16

compression disk

∂–compression disk, 91
futile compression disk, 27

effective compression disk, 16, 27

ineffective compression disk, 27

conformal automorphism, 237
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Conway
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Conway circle, 4

Conway disk, 78

Conway graph, 6, 39

Conway projection, 195
Conway sphere, 4, 28, 33

crossing, 3

curve, 88
cut in a tree, 161

cyclic permutation, 130
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Dehn filling, 70

Dehn surgery, 42, 70
Dehn surgery coefficients, 42

Dehn twist, 208

DIFF, the category of differentiable
manifolds, 9, 50, 129, 139

dihedral ordering, 161

dihedral permutation, 130
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isogeny, 160, 161, 214

elementary isogeny, 214
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knot pair projection, 34, 70, 195
knot projection, 3
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Möbius group, 49, 237
marked knot pair, 168
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normal Conway sphere, 33
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pairwise compression disk, 27
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positively canonical tree, 154, 159, 160
presentation of a Seifert fibration, 254
presented Montesinos tangle or pair, 90
presented necklace, 120

proper submanifold, 27
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rational knot, 132
rational tangle pair, 28
rational tangle projection, 7, 9

rational tangle substitution, 13, 71
raw data vector, 130, 254
regular fibre, 253
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pair, 108

ring, 90
Ring Moves, 147, 155, 166, 169
ring number, 157
ring subtree, 157
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Seifert data vector, 254
Seifert fibration, 252

generalised Seifert fibration, 253

presentation of a Seifert fibration, 254
Seifert invariant, 253
Seifert manifold, 253

generalised Seifert manifold, 253
similarity, 238
simple for Conway, 30, 77

simple for Schubert, 25
singular fibre, 253

singular hyperbolic structure, 50, 56
slant of a curve system, 89
slope, 9

slope of a curve, 89
slope of a rational tangle, 89
sphere at infinity, 49

splicing, 22
splittable knot pair, 207

standard Montesinos tangle, 90
stick, 153, 159
Stick Condition, 153, 159, 166, 169

straight curve, 89
subknot, 25
substitution of a rational tangle, 13

sufficiently complicated rational tangle
substitution, 13

surface in a knot pair, 27
symmetry group of a knot pair, 207, 213

symmetry of a weighted planar tree, 215

tangle, 86

tangle isomorphism, 86
tangle projection, 8, 141, 195
thick part, 54

thin part, 54
tidy tangle tree, 199
tidy tree, 198

tied bond, 19, 140
TOP, the category of topological

manifolds, 9, 50

topologically euclidean surface, 51
topologically spherical surface, 51
trivial knot, 6, 25

trivial torus, 16
twisted band, 142
two-bridge knot, 132

type, 9
type of a Dehn surgery, 70

type of a rational tangle, 89

unsplittable knot pair, 208
unsplittable link, 15

valence, 19
vertical marking, 213

vertical surface, 93, 99

Viergruppe, 128
volume of a singular hyperbolic pair, 53

Weight Condition, 153, 159, 166, 169
weighted planar tree, 143
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