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Preface

This manual describes MLA, Version 1.0b, a computer program developed for multilevel
analysis of data with two levels. The MLA program can be characterized by four major
properties:

• User-friendly interface.

• Extensive options for simulation, in particular, three options for bootstrapping mul-
tilevel models.

• Simple estimation methods, providing an alternative for the complex iterative esti-
mation procedures that are commonly used to estimate the parameters of multilevel
models.

• A fast algorithm, using the Broyden-Fletcher-Goldfarb-Shanno optimization method
to obtain maximum likelihood estimates of all model parameters.

The MLA program runs as a stand-alone batch program on 286-, 386- and 486-based
personal computers under DOS. It uses simple ASCII text files as input and output. The
program is easy to use by means of a number of statements starting with a keyword.
Models are specified by simply formulating the model equations.

This manual provides the necessary information for the new user to fit multilevel
models with two levels to a hierarchical data set. It is expected that the user has basic
knowledge of regression analysis. A brief introduction to multilevel analysis and related
concepts is given in the first chapter. References to three major textbooks on multilevel
analysis can be found in the text.

The MLA program was developed, and is being further developed, by Frank Busing, Erik
Meijer, and Rien van der Leeden. As the version number indicates, this manual describes a
beta version. We are still doing research to polish and improve certain simulation options.
We would very much appreciate hearing about any of your experiences using the program
and this manual. Please contact us by email:
busing@rulfsw.leidenuniv.nl or vanderleeden@rulfsw.leidenuniv.nl.

We would like to thank Jan de Leeuw and Ita Kreft for helpful discussions, comments,
and references.

The Institute for Educational Research in the Netherlands (SVO) is gratefully acknowl-
edged for supporting this project by a grant (SVO, project no. 93713).
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Chapter 1

Introduction

1.1 Introduction to multilevel analysis

Multilevel analysis comprises a set of techniques that explicitly take into account the hier-
archical structure in the data. In this section, a brief introduction to the underlying ideas
of multilevel analysis is given. Several relevant topics, such as hierachical data structures,
intra-class correlation, the formulation of a multilevel model, and the estimation of the
model parameters are discussed. This introduction does not contain formulas. Chap-
ter 2 will discuss the main formulas, and the Technical Appendix will give supplementary
mathematical details.

Hierarchical data

Hierarchically structured data arise in a variety of research areas. Such data are character-
ized by so-called “nested” membership relations among the units of observation. Classical
examples of hierarchically structured data are found in educational research where, for
instance, students are nested within classes and classes are nested within schools. But, in
many other instances in the social and behavioral sciences, as well as in many other fields
of science, data are also hierarchically structured. For instance, in clinical psychology,
clients can be nested within therapy groups, people can be nested within families, and
so forth. A sociological example is given by a study concerning employees nested within
industries.

It should be noted that nested structures naturally arise where explicit hierarchical
sampling schemes are used. This is often the case in large scale educational research
where, for instance, a set of schools is sampled first, followed by the sampling of a set of
students within these schools. However, there are many other cases where data are not
explicitly sampled in that way, but where it appears to be a fruitful approach to treat them
as having a hierarchical structure. For instance, in a medical study one could consider it
to be important that patients can be viewed as nested within general practitioners. Apart
from this, there are several types of data for which it proves to be very useful to apply
the concept of hierarchy, because it makes their analysis more easy and transparent. One
example is the hierarchical treatment of repeated measures data, where measurements at
different points in time are considered nested within individuals. Another example is the
analysis of data from meta analysis, where, say, p-values can be treated as being nested
within studies, providing a (partial) solution for the problem of comparing apples with
oranges.

With hierarchical data, it is common to have information obtained from the different
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levels in the hierarchy. For instance, one has variables describing the individual students,
but also variables describing their schools. When analyzing such data one has to decide
in what way the hierarchical structure of the data is taken into account. Obviously, the
easiest approach is simply ignoring the structure and analyzing the data at the student
level, leaving all school information for what it is. Generally, however, one’s intention
will be to use all information in the data, and use it correctly. Thus, if one is also
interested in school differences and in their possible interaction with effects measured at
the student level, one has to solve the “unit-of-analysis” problem. This means that one has
to decide whether to analyze the data at the student level, incorporating disaggregated
variables from the school level, or to analyze the data at the school level, incorporating
aggregated variables from the student level. Unfortunately, according to De Leeuw in
his introduction to the book of Bryk and Raudenbush (1992), both of these strategies
are subject to serious disadvantages. Hence, traditional “single level” analyses fail in the
presence of nested data.

Intra-class dependency

The basic problem with hierarchical data is that group membership may cause intra-
class dependency : People from the same group are more alike than people from different
groups. The reason for this phenomenon is that people within a group share the same
environment, have the same leader, experiences, and so forth. In other words, people
within the same group have the same score on a number of variables, most of them
never measured and thus omitted from any possible model. Hence, if we fit a (common,
single level) model to such data, intra-class dependency has an effect on the error terms.
It causes the error terms to be correlated. The result is that the usual assumption of
independent observations is violated if the nested structure of the data is ignored. The
degree of intra-class dependency is reflected in the intra-class correlation. Obviously, this
idea of intra-class dependency applies to every hierarchical data set. Their intra-class
correlations, however, may differ substantially.

Multilevel models

For the analysis of hierarchical data, hierarchical models, or “multilevel” models have
been developed. Such models can be conceived as linear regression models, specified
separately for each level of the hierarchy, but statistically connected. Since each level of
the hierarchy has its own regression equation, predictor variables measured at either level
can be included in the appropriate level model.

Because hierarchical data structures frequently arise in social and behavioral science
research, but also in many other scientific areas, the application and development of mul-
tilevel analysis has in the last decade drawn a lot of attention from numerous researchers.
Below, a brief introduction of some relevant topics concerning multilevel models will be
given. A more comprehensive introduction of these topics is given by Kreft and Van
Der Leeden (1994). For extensive discussions on theory and application of multilevel
analysis, we refer to the textbooks by Goldstein (1987), Bryk and Raudenbush (1992),
and Longford (1993).

Small example

A small, imaginary, example from education may clarify what is meant by a multilevel
model. Suppose we have data of students nested within schools, and we want to predict
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the score on a math test from the amount of time spend on doing math homework. Fur-
thermore, we expect smaller schools to be more effective than larger ones, so we collect
the school size as another variable. Clearly, at the student level, ‘math’ is the dependent
variable, and ‘homework’ is the predictor variable. At the school level, ‘size’ is the predic-
tor variable. Now the multilevel model for this example, in this case a two-level model,
is specified as follows. At the student level, Level-1, for each school a regression model is
formulated with ‘math’ as the dependent variable and ‘homework’ as the predictor. This
reflects the intra-class dependency of the observations (the students) within each school:
All models contain the same variables, but we expect them to yield different intercept
and slope estimates within each school. At the school level, Level-2, a regression model
is formulated in which the intercepts and slopes of the first-level models are dependent
variables, predicted by the second-level variable ‘size’. This reflects the possible effect of
school size on school effectiveness: School size may influence the estimated relationship
between ‘math’ and ‘homework’.

At first glance, the model presented above seems to lead to a hierarchically structured
regression procedure, which proceeds in two steps: First, the models for all schools are
estimated, and then the intercept and slope estimates are used as the dependent variables
in the Level-2 model, which is then estimated. Although such procedures have been
proposed in the past, this is not what will be discussed here under the heading of multilevel
models, because there is no statistical connection between the Level-1 and Level-2 models.
In multilevel models, separate regression equations for each level are only formulated
because they facilitate insight and understanding. The statistical linkage of both levels is
created by the Level-2 model which states that Level-1 regression coefficients—intercepts
and slopes—are treated as random variables at the second level. The Level-2 model
models intercept and slope estimates as a mean value over all schools plus a school-
specific deviation or residual. It follows that we are not primarily looking for intercept
and slope estimates for each separate school, but for their means and variances (and their
covariance) over all schools. In this way, just as students are considered a sample from a
population of students, schools are considered a sample from a population of schools.

There are several reasons why it may be useful to consider the school-specific coeffi-
cients as random. First, the schools in the data set are usually a random sample from
the “population” of schools, and scientists are usually interested in the population, rather
than the specific data set. Second, with a model that explains part of the variation in the
random coefficients, the effect of the school-level variables on the student-level relation-
ships can be assessed, and, in particular, the model can give guidance to schools that want
to improve their effectiveness. Third, the relationships between the outcome variable and
the student-level predictors become clearer: Between-school variation that may blur these
relationships is accounted for, and consequently, the estimates of the average coefficients
are more precise.

School-specific estimates of intercept and slope can, however, be obtained. This will
be discussed below under the heading of Random Level-1 coefficients.

Cross-level interaction

If a school-level predictor variable like ‘size’ is added to the Level-2 model in our imaginary
example, means and variances change to conditional means and variances. It means that
part of the variance of intercepts and slopes among schools is explained by ‘size’. The
contribution of this school-level variable introduces a term to the model that specifies a
relationship between both levels: The relationship between ‘size’ at the school level and the
slope coefficient for each separate school, which is part of the model at the student level.
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As was said above, this term refers to the expected influence of ‘size’ on the regression
of ‘math’ on ‘homework’. In the terminology of multilevel analysis this term is called
a cross-level interaction. For some researchers, this interaction term provides the main
attraction to multilevel analysis. It is the cross-level interaction parameter that leads to
the interpretation of “slopes-as-outcomes” (cf. Aitkin & Longford, 1986).

The number of levels

Theoretically, we can model as many levels as we know the hierarchy has, or as we think it
will have. In practice, however, most applications of multilevel analysis concern problems
with two or three levels. Data sets with more than three levels are rare. In fact, a majority
of applications just concerns two-level data and can be viewed as “within-and-between-
analysis” problems. It should be noted that models with more than three levels show a
rapid increase in complexity, especially where interpretation is concerned. If such models
are necessary, they should be limited to rather simple cases, that is, to cases with only a
few predictor variables.

Random Level-1 coefficients

In multilevel modeling, we are usually not looking for estimates of the regression coef-
ficients within each separate group, but for their variances and covariances. However,
there can be circumstances in which we still want to obtain the “best” estimates for
these coefficients, also called random Level-1 coefficients. Such questions may arise, for
example, in education when schools are to be ranked in terms of effectiveness, using their
estimated slope coefficients (Kreft & De Leeuw, 1991). The first thing that comes to mind
is to simply estimate them by a separate (OLS) regression for each school. However, this
procedure has the serious disadvantage that the coefficients will not be estimated with
the same precision for each school. For instance, in one school, we could have, say, 45
students, whereas in another school we only have 7 students. This will definitely influence
the accuracy of results.

Within the framework of multilevel analysis there is a way to obtain best estimates
of these coefficients by a method called shrinkage estimation. The underlying idea of
this estimation is that there are basically two sources of information: the estimates from
each group separately and the estimates that could be obtained from the total sample,
ignoring any grouping. Shrinkage estimation consists of a weigted combination of these
two sources. The more reliable the estimates are within the separate groups, the more
weight is put on them. Vice versa, the less reliable these estimates are, that is, the less
precise, the more weight is put on the estimates obtained from the total sample. The
result is that estimates are “shrunken” towards the mean of the estimates over all groups.
The amount of shrinkage depends on the reliability of the estimates from the separate
groups. The less precise the estimates are, the more they are “shrunken” towards the
mean over all groups.

Technically, the shrunken estimators are the expectations of the (random) coefficients
given the parameter estimates and the data of all groups.

Estimation

Fitting a multilevel model amounts to fitting one combined model, instead of separate
models for each level. It is the translation of the idea that, although separate models
for each level may be formulated, they are statistically connected, as was mentioned in a
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previous subsection. The combined model contains all relevant parameters. In the next
chapter, we will further clarify this subject.

Combined models, or multilevel models, can be viewed as special cases of the general
mixed linear model (cf. Harville, 1977). Such models are characterized by a set of fixed
and a set of random regression coefficients. The parameters that have to be estimated
are the fixed coefficients and the variances and covariances of the random coefficients
and random error terms. The fixed coefficients are informally called fixed parameters
and the variances and covariances of the random coefficients and random error terms
are informally called random parameters, although all these parameters are technically
nonrandom. They are the parameters associated with the fixed and random parts of the
model, respectively.

To obtain estimates for the parameters, several estimation procedures have been pro-
posed. These procedures are all versions, in one way or another, of full information
(FIML) or restricted maximum likelihood (REML). FIML and REML estimators have several
attractive properties, such as consistency and efficiency. A drawback of both approaches,
however, is their relative complexity. Generally, parameter estimates must be obtained
iteratively and serious computational difficulties may arise during such processes.

Software

The flourishing of models and techniques for analyzing hierarchical data has been stimu-
lated by the software widely available for estimating multilevel models. The three major
packages are ML3 (Prosser, Rasbash, & Goldstein, 1991), VARCL (Longford, 1990) and HLM

(Bryk, Raudenbush, Seltzer, & Congdon, 1988), although multilevel models can also be
estimated with BMDP (BMDP-5V procedure, Schluchter, 1988), SAS (MIXED procedure, SAS
Institute, 1992), and GENMOD (a program based on the work of Mason, Wong, & Entwistle,
1983). The three major packages use different methods for maximizing the likelihood. In
ML3 an Iterative Generalized Least Squares (IGLS) procedure is implemented (Goldstein,
1986), and a restricted version of IGLS (RIGLS; Goldstein, 1989). VARCL uses Fisher scor-
ing (Longford, 1987) and HLM uses the EM algorithm (Dempster, Laird, & Rubin, 1977;
Bryk & Raudenbush, 1992). A comparative study of several of these programs is given in
Kreft, De Leeuw, and Van Der Leeden (1994).

Final remark

In the literature multilevel models are referred to under various names. One may find
the terms random coefficient regression models (De Leeuw & Kreft, 1986; Prosser et al.,
1991), contextual effects models (Blalock, 1984), multilevel mixed effects models (Gold-
stein, 1986), random parameter models (Aitkin & Longford, 1986), full contextual models
(Kreft & Van Der Leeden, 1994), variance components models (Aitkin & Longford, 1986),
multilevel linear models (Goldstein, 1987; Mason et al., 1983), and hierarchical linear
models (Bryk & Raudenbush, 1992).

Although there are minor differences, all these models are basically the same. In one
way or another they are versions of the multilevel model discussed here, or straightforward
extensions thereof.

1.2 Why another program for multilevel analysis?

This manual describes the use and capabilities of a new program for multilevel analysis,
called MLA. This program has been developed to analyze data with a two-level hierarchical
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structure. In this section we will explain why we think it is useful to add a new program
for multilevel analysis to the existing ones mentioned above. In other words, we are
concerned with the question: What is special about MLA?

Simulation options

Much research concerning multilevel analysis has been directed to the extension and
refinement of multilevel theory, including the development of multilevel software, and to
applications in other domains than educational research. At the same time, however,
several relevant questions of a statistical nature concerning this development are still
not answered fully satisfactorily. One major problem is that estimates of parameters and
standard errors, as well as hypothesis tests based on them, rely on large sample properties
of the estimates. Unfortunately, little is known about the behavior of the estimates when
sample size is small (Raudenbush, 1988). Goldstein (1987) even suggests optimizing the
design of a multilevel study by the use of pilot or simulation studies. An additional
problem is that it is usually assumed that the error terms are normally distributed. In
practice, this assumption will often be violated, which has other undesirable consequences
for using standard error estimates for hypothesis testing and construction of confidence
intervals.

Fortunately, there is an increasing number of simulation studies available, which give
insight into the quality of estimates of parameters and standard errors under various
conditions (Busing, 1993; Van Der Leeden & Busing, 1994; Kreft, 1994). Concerning
empirical data sets, however, we think that extensive simulation options, in particular
options for bootstrapping, would be a very useful addition to a program for multilevel
analysis.

Therefore, four different simulation methods are implemented in MLA:

1. A bootstrap method that uses the estimated parameters as “true values” of the
parameters of a multivariate normal distribution from which new outcome variables
are drawn. This method is implemented in the ML3 program as well (as far as
we know this is the only multilevel analysis program so far that has some form of
simulation option built in). It is called the parametric bootstrap.

2. A bootstrap method that uses the observed values of outcome and predictor vari-
ables for resampling. Thus, whole cases are resampled. Therefore, we call it cases
bootstrap.

3. A bootstrap method that uses estimates of the error terms at both levels for re-
sampling. In contrast with the cases bootstrap, this method leaves the regression
design unaffected. We call it error bootstrap. Because the error terms at both levels
must be estimated in order to be resampled, we need the estimates for the sepa-
rate Level-1 models (random Level-1 coefficients). As was explained earlier, there
are two choices for these coefficients: OLS estimates for each group separately, or
shrinkage estimates, based on the whole sample. These two choices account for two
additional options that can be used when applying the error bootstrap.

4. The jackknife. With this method, one entire case is deleted for each resample. There
are as many resamples as there are cases.

Depending on the type of simulation used in MLA and depending on the nature of the data,
the user can decide to resample both levels in the data, or only the first or the second
level. This feature may be useful, for instance, in analyzing repeated measures data.
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Alternative simple estimation methods

Usually, complicated iterative estimation procedures are used to estimate the parameters
of multilevel models. From a theoretical and technical point of view, these procedures
provide the best estimates that can be obtained. However, in practice, some of the
algorithms used may be rather slow under certain conditions. In other cases serious com-
putational difficulties may arise that are not easy to overcome. De Leeuw and Kreft
(1993) discuss alternative estimation procedures for both fixed and random parameters
in multilevel models that are non-iterative and relatively easy to implement. Moreover,
in certain cases the quality of the parameter estimates is rather good. Hence, one could
question the real gain of the complicated iterative procedures over these simpler alterna-
tives. Therefore, in MLA, we have implemented a one-step and a two-step OLS procedure.
A simple WLS procedure has still to be implemented.

Simple procedures can always be used as an addition to complex ones, and vice versa.
Their results can always be compared with the results of the iterative methods. It depends
on the data which estimation procedures are to be preferred (De Leeuw & Kreft, 1993;
Kreft, 1994).

Fast Maximum Likelihood algorithm

To maximize the likelihood function, the MLA program uses the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method (Press, Flannery, Teukolsky, & Vetterling, 1986). This is a fast
and stable method to optimize arbitrary functions. It requires that the function and the
gradient (the vector of first derivatives) of the function with respect to the parameters be
programmed. It minimizes the function with respect to both fixed and random parameters
simultaneously. As such, it resembles most the algorithm used by VARCL, although the
BFGS method does not compute the inverse of the information matrix at each iteration.
The algorithms of ML3 and HLM alternately update the fixed and the random parameters.
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Chapter 2

Theory

In this chapter, the theoretical background of the general two-level model will be discussed.
It will give the relevant formulas of the model equations, and it will give the theory
and formulas of the descriptive statistics and estimators that are implemented in the
program. Additionally, it will discuss the theory of the residuals, the estimators of the
group-specific coefficients, and the diagnostic statistics that the MLA program provides,
and the simulation options that can be chosen.

2.1 The general two-level model

In MLA, the following general two-level model is implemented. Suppose data are obtained
from N individuals nested within J groups, with group j containing Nj individuals. Now,
for group j (j = 1, . . . , J), yj is a vector containing values on an outcome variable, Xj

is an Nj × q matrix with fixed, explanatory variables (including the constant), βj is a
vector of regression coefficients, and εj is a vector with random error terms (vectors and
matrices of appropriate dimensions). Then, for each group j, the Level-1 or within-group
model can be written as

yj = Xjβj + εj . (2.1)

The Level-2 or between-group model can be written as

βj = Wjγ + uj, (2.2)

where Wj is a q × p matrix with explanatory variables (including the constant) obtained
at the group level, γ is a vector containing fixed coefficients and uj is a vector with error
terms. Equation (2.2) clearly illustrates the “slopes-as-outcomes” interpretation, because
it gives the illusion that the coefficients in βj are outcome variables in a separate Level-2
model.

However, substition of Equation (2.2) into Equation (2.1) gives the “total” model
equation

yj = XjWjγ + Xjuj + εj . (2.3)

This is a mixed linear model (Harville, 1977) of the form

yj = X∗
j γ + Zjuj + εj , (2.4)

in which X∗
j = XjWj and Zj = Xj . Several authors use different notations for the

models presented in this chapter and in subsequent chapters. We find the separate model
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equations (2.1) and (2.2) for the two levels most useful for interpretation of the model
and its estimates, and the program input is therefore based on them (see chapter 3).
For theoretical purposes, we find the form (2.4) most useful, where usually X ∗

j will be
simply written as Xj. Therefore, in the following both representations will be used where
appropriate, and it will be clear from the context which form is used. For now, we will
proceed with the form (2.4).

Generally, it is assumed that εj ∼ N(0, σ2
εINj

) and uj ∼ N(0, Θ), where σ2
ε , the vari-

ance of the Level-1 error term, is an unknown (scalar) parameter, and Θ, the covariance
matrix of the Level-2 error terms, is a (symmetric) matrix of unknown parameters. The
covariance matrix Vj of yj conditional on Xj and Zj, that is, the matrix containing the
variances and covariances of the random part Zjuj + εj in Equation (2.4) conditional on
Zj , is expressed as

Vj = ZjΘZ ′
j + σ2

εINj
. (2.5)

A model for the complete data follows straightforwardly from stacking the J groups’
models in Equation (2.4). Its equation is




y1
...

yJ


 =




X1
...

XJ


 γ +




Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZJ







u1
...

uJ


+




ε1
...

εJ


 ,

or,

y = Xγ + Zu + ε. (2.6)

The covariance matrix of the complete data, conditional on X and Z, is

V =




Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZJ







Θ 0 · · · 0
0 Θ · · · 0
...

...
. . .

...
0 0 · · · Θ







Z ′
1 0 · · · 0

0 Z ′
2 · · · 0

...
...

. . .
...

0 0 · · · Z ′
J




+ σ2
εIN

=




V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · VJ


 .

The parameters of the model that have to be estimated are the fixed coefficients
(elements of the vector γ), the covariance matrix Θ of the random coefficients, and the
variance σ2

ε of the errors. The elements of γ are called the fixed parameters, and σ2
ε and

the elements of Θ are called the random parameters.
In the following, formulas are presented for the various parts of the output of MLA. The

order of this chapter is similar to the order of the output of MLA, as will become clear later
on. In section 2.2 the computational formulas are presented for the descriptive statistics.
The next section, 2.3, discusses various forms of ordinary least squares estimation, namely
OLS estimates for each group separately (section 2.3.1) and one-step and two-step OLS for
the fixed and random parameters of the total two-level model (sections 2.3.2 and 2.3.3,
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respectively). Maximum likelihood estimation is dealt with in the next section (2.4),
subdivided into subsections about full information maximum likelihood (section 2.4.1) and
restricted maximum likelihood (section 2.4.2). An extensive elaboration on the subjects of
maximum likelihood estimation will follow in Appendix A. In section 2.5 several types of
residuals will be discussed, namely total residuals, raw residuals and shrunken residuals.
Section 2.6 will introduce the posterior means and section 2.7 will discuss diagnostics.
The theory behind the simulation options in MLA is described in section 2.8. Finally, in
section 2.9, some remarks will be made about missing data.

2.2 Descriptive statistics

MLA produces (if asked for) the following descriptive statistics: mean, standard deviation,
variance, skewness, and kurtosis. Any statistical package will produce these statistics as
well. Before looking at the other output, it may be useful to inspect these statistics. Their
formulas are:

mean: µ̂ =
1

N

N∑

i=1

Xi,

standard deviation: σ̂ =

√√√√ 1

N − 1

N∑

i=1

(Xi − µ̂)2,

variance: σ̂2 =
1

N − 1

N∑

i=1

(Xi − µ̂)2,

skewness: µ̂3 =
1

N

N∑

i=1

(
Xi − µ̂

σ̂

)3

,

kurtosis: µ̂4 =

[
1

N

N∑

i=1

(
Xi − µ̂

σ̂

)4
]
− 3,

where Xi is the measurement of individual i on a typical variable X and N is the total
sample size.

Another descriptive statistic that is provided is the Kolmogorov-Smirnov Z statistic.
This is a measure of deviation from the normal distribution. It tests whether the observed
variable has a normal distribution. It is defined as the maximum distance between the
estimated (empirical) cumulative distribution function and the best-fitting cumulative
normal distribution function. It is computed as follows (Stephens, 1974). First, sort the
values of a given variable X, such that X1 is the smallest value and XN is the largest.
Then compute wi = (Xi − µ̂)/σ̂, i = 1, . . . , N , and zi = Φ(wi), where Φ is the cumulative
distribution function of the standard normal distribution. Now, Kolmogorov-Smirnov’s
Z is defined as

Z = max
1≤i≤N

(
max

{
zi −

i − 1

N
,

i

N
− zi

})
.

The (asymptotic) distribution of Z was derived by Durbin (1973), but it is too complicated
to be implemented in MLA (it requires numerical integration and Fourier transformation).
Stephens (1974), however, provides a table of critical values of a transformed statistic,
(
√

N − 0.01 + 0.85/
√

N)Z, which can be used to obtain a range of probability levels
(p-values) indicating the significance of the deviation from normality. In MLA, p-values
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are reported that are based on the assumption that the normal distribution is completely
specified beforehand (not estimated). This is not entirely correct, because µ and σ are
estimated, but it is sufficient for descriptive (exploratory) purposes. The formula used
(cf. Mood, Graybill, & Boes, 1974, p. 509) is

Pr(Z) = 2
∞∑

j=1

(−1)j−1e−2j2NZ2

, (2.7)

where the series is truncated after convergence of the sum.

2.3 Ordinary Least Squares

2.3.1 Within-group models

In this section, we will use the notation (2.1)–(2.2). Consider Equation (2.1). Ordinary
least squares estimates for βj are given by

β̂j = (X ′
jXj)

−1X ′
jyj, (2.8)

and the estimated standard errors of the elements of β̂j are the square roots of the diagonal
elements of the covariance matrix given by

ĉov(β̂j) = σ̂2
j (X

′
jXj)

−1, (2.9)

where

σ̂2
j =

1

Nj − q
(yj − Xj β̂j)

′(yj − Xj β̂j), (2.10)

and q is the dimension of βj .

2.3.2 One-step OLS (total model)

From Equation (2.6) the term Zu+ ε can be considered the random part of the equation.
Taking the total residuals

r = Zu + ε, (2.11)

leaves, after substitution,

y = Xγ + r. (2.12)

Now, γ can be estimated using ordinary least squares. Notice that grouping is ignored.
Estimates for γ are given by

γ̂ = (X ′X)−1X ′y. (2.13)

Using the estimated residuals r̂ = y −Xγ̂, the estimate of the variance of the elements of
r can be obtained by

σ̂2
r =

1

N − p

N∑

i=1

r̂2
i , (2.14)
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where p is the dimension of γ. This estimate σ̂2
r is the one-step OLS estimate of the

variance of the residuals. The usual standard errors for γ̂ and σ̂2
r are, respectively,

ŝe(γ̂l) =
√

[σ̂2
r (X

′X)−1]ll, (2.15)

ŝe(σ̂2
r ) = σ̂2

r

√
2

N − p
. (2.16)

2.3.3 Two-step OLS (total model)

With the two-step OLS, the same estimates γ̂ are used as with the one-step OLS, see (2.13).
The total residuals for every group j can be divided into a Level-2 and a Level-1 part.
This was already done in Equation (2.11). Using ordinary least squares, estimates for the
Level-2 random components, u, can be obtained by

ûj = (Z ′
jZj)

−1Z ′
j r̂j . (2.17)

The estimate for the covariance matrix Θ of u becomes

Θ̂ =
1

J

J∑

j=1

ûj û
′
j. (2.18)

The estimated covariances of the elements of Θ̂ can be obtained by (Anderson, 1958,
p. 161)

ĉov(Θ̂kl, Θ̂mn) = (Θ̂kmΘ̂ln + Θ̂knΘ̂lm)/J. (2.19)

Consequently, the estimated standard errors of the elements of Θ̂ are given by

ŝe(Θ̂kl) =

√
(Θ̂kkΘ̂ll + Θ̂2

kl)/J. (2.20)

By first computing the residuals ε̂,

ε̂ = r̂ − Zû, (2.21)

the estimate for σ2
ε becomes

σ̂2
ε =

1

N

N∑

i=1

ε̂2
i . (2.22)

This estimate σ̂2
ε is the two-step OLS estimate of the variance of the elements of ε. The

estimated standard error for σ̂2
ε becomes, analogous to Equation (2.16),

ŝe(σ̂2
ε) = σ̂2

ε

√
2

N − q
. (2.23)

All the estimators in this section are consistent if J −→ ∞ and Nj −→ ∞ for each j.
Although this may be unrealistic, these estimators may be good initial estimators (start-
ing values) for maximum likelihood estimators. In some cases, the differences between
these estimators and the maximum likelihood estimators is small, and therefore, these
estimators can be used as well (Kreft, 1994; Van Der Leeden & Busing, 1994).
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2.4 Maximum Likelihood methods

2.4.1 Full Information Maximum Likelihood (FIML)

One of the most important parts of the program consists of the maximum likelihood
estimation. This estimation method was chosen for its desirable properties, such as con-
sistency and efficiency. In maximum likelihood estimation, given the observations, pa-
rameters are found that maximize the likelihood function (Mood et al., 1974). This is
the same as minimizing the minus-log-likelihood function. Assuming normally distributed
errors, the density of yj, given Xj and Zj, is

f(yj|Xj , Zj) =
1

(2π)Nj/2(det Vj)1/2
e−

1

2
(yj−Xjγ)′V −1

j (yj−Xjγ),

so that the contribution of Level-2 unit j to the minus-log-likelihood function is

Lj = − log f(yj|Xj , Zj)

=
Nj

2
log(2π) +

1

2
log detVj +

1

2
(yj − Xjγ)′V −1

j (yj − Xjγ)

and the minus-log-likelihood function for the whole sample is simply the sum of all Level-2
units j, L =

∑J
j=1 Lj . This is the function that has to be minimized with respect to the

parameters to obtain maximum likelihood estimators. Specifically, it will produce a set of
fixed parameter estimates, γ̂, and a set of random parameter estimates, Θ̂ for the second
level and σ̂2

ε for the first level. Details can be found in Appendix A.
The asymptotic covariance matrix of the estimators is derived from the matrix of

second derivatives of L (the Hessian matrix). This covariance matrix is used for the
standard errors for both fixed and random parameters.

For a detailed description of the derivations used and an extensive discussion of the
computational formulas used in the program, Appendix A contains all information.

2.4.2 Restricted Maximum Likelihood (REML)

This is an important alternative estimation procedure, which will be implemented in
subsequent versions of the program.

2.5 Residuals

The total residuals are given by Equation (2.12),

r̂ = y − Xγ̂.

In this equation, estimated residuals r̂ are based on the fixed parameter estimates γ̂ from
the maximum likelihood estimation, although other estimates of γ could be used as well.

The raw residuals for the first level are taken from the within-group model (2.1),

ε̂j = yj − Xj β̂j , (2.24)

where the estimates β̂j are the OLS estimates from (2.8). Using the between-group model
from Equation (2.2) and the OLS estimates from Equation (2.8), the Level-2 raw residuals
are

ûj = β̂j − Wjγ̂, (2.25)
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where γ̂ stems from Equation (2.13).
The Level-2 shrunken residuals are given by

ûj = (ZjΘ̂)′[ZjΘ̂Z ′
j + σ̂2

εINj
]−1r̂j . (2.26)

where r̂j contains the total full information maximum likelihood residuals for group j

(i. e., r̂j = yj − Xj γ̂, where γ̂ is the FIML estimator of γ), and Θ̂ and σ̂2
ε are the FIML

estimators of Θ and σ2
ε , respectively. The formula is computationally rather inefficient.

Therefore, the following more efficient formulas will be used. One can write

(ZjΘ̂)′ = Θ̂Z ′
j

and taking

V̂j = ZjΘ̂Zj + σ̂2
εINj

(from (2.5)),

Z ′
j V̂

−1
j = σ̂−2

ε Ĝ−1
j Z ′

j (from (A.12)),

where

Ĝj = Iq + Z ′
jZjΘ̂/σ̂2

ε , (2.27)

then

ûj = Θ̂Z ′
jV̂

−1
j (yj − Xj γ̂j)

= σ̂−2
ε Θ̂Ĝ−1

j (Z ′
jyj − Z ′

jXj γ̂j)

Finally, the shrunken residuals for Level-1 follow from (2.11),

ε̂ = r̂ − Zû. (2.28)

2.6 Posterior means

The posterior means are the shrunken estimators of βj . They are the expected values of
the βj , given the data and the maximum likelihood estimates of γ, Θ, and σ2

ε . They are
derived from the shrunken residuals and their formula is

β̂j = Wj γ̂ + ûj, (2.29)

where γ̂ is the estimate obtained by full information maximum likelihood and ûj is taken
from (2.26). This can easily be shown to be equal to

β̂j = (Iq − Λ̂j)(Wj γ̂) + Λ̂j β̂
OLS
j , (2.30)

where β̂OLS
j is the within-group OLS estimator (2.8) of βj , Λ̂j = Θ̂X ′

j V̂
−1
j Xj , V̂j = σ̂2

εINj
+

XjΘ̂X ′
j , and the notation is of (2.1) and (2.2). Thus, from (2.30), β̂j can be seen as

a matrix-weighted average of the within-group estimator β̂OLS
j and the estimated prior

expectation Wj γ̂ of βj , the former being unbiased and the latter being more efficiently

estimated. The more efficient β̂OLS
j is estimated, the more (matrix) weight it gets, and

the closer the posterior means are to the within-group estimates. Λ̂j can be called an
estimated “reliability” matrix (cf. Bryk & Raudenbush, 1992, p. 43).

17



2.7 Diagnostics

Currently, the only option for diagnostics performed by MLA apart from the descriptive
statistics, is outlier detection. Although the term outlier seems to be unambiguous, this
is not completely true. An outlier is considered to be a deviant observation in the data
and not a deviant residual after model estimation. However, a procedure fitting outliers
in the data as residual outliers is considered to be a robust procedure. Outliers are in
MLA detected using residuals. So, we expect MLA to be robust against data outliers and
therefore look for residual outliers. More research in the field of robustness for multilevel
models would be useful, however.

The detection of outliers differs for Level-1 and Level-2 outliers. For both levels, the
shrunken residuals are considered. For the first level, the quotients

ε̂ij√
σ̂2(ε̂)

(2.31)

are calculated, where

σ̂2(ε̂) =
1

N

∑

i,j

ε̂2
ij

is the variance of the Level-1 residuals. Residuals will be displayed whenever the quo-
tient (2.31), when compared to a standard normal distribution, has a p-value less than
some (possibly) user-specified value. The default value is 0.1.

For the Level-2 outliers, the Mahalanobis distances of the Level-2 residuals to their
theoretical mean of zero are calculated by

Mj = u′
jΘ̂

−1uj.

Now, residuals are displayed for which Mj is larger than the critical value corresponding to
a (possibly) user-specified p-value of a chi-square distribution with q degrees of freedom,
where q is the dimension of u. This p-value is the same as for the Level-1 outliers.

2.8 Simulation

The maximum likelihood theory discussed so far is based on a few assumptions, the most
important of which are:

• The model (i. e., the conditional expectation Xγ and covariance matrix V ) is cor-
rectly specified. The standard errors, t-values, exceedance probabilities, and likeli-
hood ratio tests were derived under the condition that at least the (most general)
model that is being estimated is correct in the population.

• The Level-1 (ε) and Level-2 (u) random errors are normally distributed. The likeli-
hood function was derived under this assumption, and therefore, the FIML estimators
and the estimators of their standard errors depend on it.

• The sample size is large. More specifically, the properties of the maximum likeli-
hood estimators, such as their consistency, their (asymptotic) efficiency, and their
(asymptotic) normal distribution, as well as the formulas for their standard errors
were derived under the assumption that the sample size goes to infinity (N −→ ∞).
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In practice, these assumptions will not be completely satisfied. One can only hope that
they are met approximately. To be able to get an indication of how severe the finite sample
size and possible nonnormality influence the results, the MLA program offers simulation
options. In this section, the theory underlying these simulation options will be described.
This focus will be on the possible bias of the estimates and on the possibly incorrect
standard errors. More subtle information can, however, be extracted from the program
by using a file to write the simulation results to.

The bias of an estimator θ̂ of some parameter θ is defined as the difference between
the expected value of the estimator and the true value of the parameter. A desirable
property of an estimator is unbiasedness, which means that its bias is zero. In the
maximum likelihood theory discussed so far, however, it was only stated that the FIML

estimators are consistent. This means that as the sample size gets larger, the mean of
the estimator converges to the true parameter value and its variance decreases to zero.
Informally speaking, the estimator comes closer to the true parameter value as sample
size gets larger. This is, of course, a highly desirable property, but it does not ensure that
the estimator is unbiased in finite samples. In fact, maximum likelihood estimators are
in many models and situations biased in finite samples. For a general class of regression
models including multilevel models, however, Magnus (1978) proved that the maximum
likelihood estimators of the fixed regression coefficients are unbiased. On the other hand,
Busing (1993) showed in a Monte Carlo simulation study that the maximum likelihood
estimators of the random parameters in multilevel models are biased.

The standard errors of the maximum likelihood estimators that are reported by MLA

are derived from asymptotic theory. This means that they are based on the idea that
as the sample size goes to infinity, the distribution of the estimators will converge to a
(multivariate) normal distribution with a certain covariance matrix (see Appendix A).
The reported standard errors that are the square roots of the diagonal elements of this
matrix. The exceedance probabilities of the according t-values that are reported are based
on the approximation of the distribution of the estimators by the normal distribution. In
finite samples, this approximation may not be very good. The true standard errors may be
quite different from the reported ones based on asymptotic theory, and the distributions of
the estimators may not be normal. In fact, Busing (1993) showed in his simulation study
that the distributions of the random parameters can be severely skewed. As mentioned
above, however, the focus is on the bias and the standard errors and not on the specific
distribution.

2.8.1 The jackknife

The jackknife was introduced by Quenouille (1949, 1956) to estimate the bias of an esti-
mator from one sample, and to correct for it. Tukey (1958) proposed an accompanying
estimator for the variance of the estimator, and hence for the standard error.

The idea of the jackknife is as follows. Consider an independently and identically
distributed sample of size N from some distribution and an estimator θ̂N of a parameter
θ obtained from this sample. Many estimators based on a sample of size N have a bias
that can be written as

biasN = E(θ̂N ) − θ =
b1

N
+

b2

N2
+ . . . , (2.32)

where b1, b2, . . . , are constants that do not depend on N . Now consider removing a group
of m observations from the sample and reestimating θ based on this sample of size N −m.
The resulting estimator may be called θ̂N−m. The estimator θ̂N−m is of the same sort
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as θ̂N . The only difference is that it is based on a sample of size N − m instead of N .
Therefore, the bias formula (2.32) also holds for this estimator, with N − m substituted
for N , that is,

biasN−m = E(θ̂N−m) − θ =
b1

N − m
+

b2

(N − m)2
+ . . . (2.33)

Now, consider the difference between (2.33) and (2.32), given by

E(θ̂N−m − θ̂N ) = b1

[
m

N(N − m)

]
+ b2

[
m(2N − m)

N2(N − m)2

]
+ . . . ,

From this equation, it can be seen that an estimate of the leading term of the bias of θ̂N

can be obtained from

b̂iasN,m =
N − m

m

(
θ̂N−m − θ̂N

)

=

(
N

m
− 1

)(
θ̂N−m − θ̂N

)
. (2.34)

Now, a bias-corrected estimator of the parameter θ̂ is

θ̂J
N,m = θ̂N − b̂iasN,m

=
N

m
θ̂N −

(
N

m
− 1

)
θ̂N−m. (2.35)

From (2.32) and (2.33), it is found that the bias of this estimator is

E(θ̂J
N,m) − θ = − b2

N(N − m)
+ . . . ,

which is of order 1/N 2 if m is relatively small compared to N . This is a much smaller
order than the bias of θ̂N , which is of order 1/N .

The estimator θ̂N−m was obtained by removing one group of size m from the sample.
There are, however, many groups that can be used for this. Consider, for example, the
case that m = 1. Then there are N groups of size 1 that could be removed, namely
all N observations. Now, call the estimator θ̂N−1 obtained by removing observation i

from the sample θ̂(i). The corresponding estimator of the bias is called b̂ias(i), and the

corresponding bias-corrected estimator is called θ̂J
(i). Now, a more precise estimator of the

bias can be obtained by averaging the different estimators of the bias:

b̂iasJ =
1

N

N∑

i=1

b̂ias(i). (2.36)

The corresponding bias-corrected estimator of θ is

θ̂J = θ̂N − b̂iasJ

= Nθ̂N − (N − 1)θ̂(.), (2.37)

where θ̂(.) is the average of the estimators θ̂(i): θ̂(.) =
∑N

i=1 θ̂(i)/N . The estimator θ̂J

is called the (ungrouped) jackknife bias-corrected estimator of θ and b̂iasJ is called the
(ungrouped) jackknife bias estimator.
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Tukey (1958) proposed to use the estimators θ̂(i) to obtain an estimator of the variance

of the estimator θ̂N . Its formula is

σ̂2
J =

N − 1

N

N∑

i=1

(
θ̂(i) − θ̂(.)

)2
. (2.38)

Although it was originally an estimator of the variance of θ̂N , and Efron (1982, p. 13)
states that it is a better estimator of the variance of θ̂N than of the variance of θ̂J , it
can also be used as an estimator of the variance of θ̂J . The standard error of θ̂J is then

estimated by
√

σ̂2
J .

If m > 1, the sample can be divided into g mutually exclusive groups of size m, where
g = N/m. Of course this is only possible when g is an integer. Now, call the estimator
based on the total sample from which group j is removed θ̂(j) and the according bias

estimator (2.34) b̂ias(j). The average of the estimators θ̂(j) (j = 1, . . . , g) is called θ̂(.)

and the grouped-jackknife estimator of the bias (b̂iasJ) is the average of the estimators

b̂ias(j). The grouped-jackknife bias-corrected estimator of θ is θ̂N − b̂iasJ , which is equal
to

θ̂J = gθ̂N − (g − 1)θ̂(.), (2.39)

which is completely analogous to (2.37). The according grouped-jackknife variance esti-
mator is also completely similar to the ungrouped-jackknife case (2.38). It is given by

σ̂2
J =

g − 1

g

g∑

j=1

(
θ̂(j) − θ̂(.)

)2
. (2.40)

It is also possible to have g groups of possibly different sizes. In this case, let mj be

the size of group j and let θ̂(j) be the estimator reestimated from the sample from which

group j was removed, and let b̂ias(j) be the accompanying estimator of the bias of θ̂N

from (2.34). An unweighted bias estimator is now

b̂iasJ =
1

g

g∑

j=1

b̂ias(j).

The according bias-corrected estimator of θ is

θ̂J = θ̂N − b̂iasJ

= gθ̂N


1

g

g∑

j=1

N/mj

g


− (g − 1)


1

g

g∑

j=1

( N
mj

− 1

g − 1

)
θ̂(j)


 , (2.41)

which reduces to the standard grouped-jackknife bias-corrected estimator if the group
sizes are all equal. The unweighted estimator of the variance of θ̂J is

σ̂2
J =

g − 1

g

g∑

j=1

(
θ̂(j) − θ̂(.)

)2
. (2.42)

The formulas for the grouped jackknife estimators in the case that the group sizes are un-
equal are experimental. The bias-corrected estimator (2.41) should be relatively unbiased,
though possibly not optimally efficient. It is unclear whether the variance estimator (2.42)
is approximately correct. More research is needed to shed light on these issues.
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2.8.2 The bootstrap

The bootstrap was introduced by Efron (1979) as an alternative to the jackknife.

The idea of the bootstrap is that the empirical distribution function is a consistent
estimator of the distribution function in the population. Let Z be a random variable with
distribution function F , and let {z1, z2, . . . , zN} be a random sample of size N from F .
Now, the empirical distribution function F̂N in some point z is the proportion of zi that
are smaller than or equal to z:

F̂N (z) =
#{i : 1 ≤ i ≤ N |zi ≤ z}

N
. (2.43)

If Z has a multivariate distribution, this formula has an obvious generalization and all
subsequent formulas will also have obvious generalizations. It is known (e. g., Mood et al.,
1974, p. 507) that, as N −→ ∞, F̂N (z) −→ F (z).

Let θ be a parameter associated with the distribution F , θ = θ(F ), and let θ̂ be an
estimator of θ from a sample, θ̂ = θ(z1, z2, . . . , zN ) = θ(F̂N ). The idea of the bootstrap
is now to simulate the sampling and estimation process, where samples are drawn from
F̂N , which is completely known once the original sample is obtained. In the simulation,
the distribution F̂N plays the role of F and θ̂ plays the role of θ: Simulation samples
{z∗1 , z∗2 , . . . , z∗N} are drawn from F̂N and θ̂ is estimated by θ∗ in the same way θ was

estimated by θ̂.

Because F̂N −→ F , it is assumed that the properties of the estimator θ∗ based on
the distribution F̂N give information about the properties of θ̂ based on the distribution
F . For example, the bias of θ∗ based on the distribution F̂N is taken as an estimator
of the bias of θ̂ based on the distribution F . It has been proved by many authors that
this approach works in many cases, that is, that it leads to consistent estimators of the
properties of θ̂ (e. g., Putter, 1994). The actual implementation of the bootstrap is quite
simple: Drawing samples from F̂N is equivalent to drawing samples with replacement
from {z1, z2, . . . , zN}.

The bootstrap is now implemented as follows: B bootstrap samples {z∗
b1, z

∗
b2, . . . , z

∗
bN},

b = 1, . . . , B, are drawn from F̂N , that is, these samples are drawn with replacement from
{z1, z2, . . . , zN}. From each of the B samples, the parameter θ̂ is estimated, thereby ob-
taining B estimators θ∗b , b = 1, . . . , B. Now the expectation of θ∗ (given F̂N ) is estimated

by the mean of the estimators θ∗b , namely, θ∗(.) =
∑B

b=1 θ∗b/B. The variance of θ∗ (given F̂N )

is estimated by the variance of the estimators θ∗
b , namely, v̂ar(θ∗) =

∑B
b=1(θ

∗
b − θ∗(.))

2/B.

The bias of θ̂ is estimated by the (estimated) bias of θ∗:

b̂iasB = b̂ias(θ∗) = θ∗(.) − θ̂, (2.44)

and the bias-corrected estimator of θ is therefore

θ̂B = θ̂ − b̂iasB

= 2θ̂ − θ∗(.). (2.45)

The variance of θ̂ is simply estimated by the variance of θ∗b :

v̂arB = v̂ar(θ∗) =
1

B

B∑

b=1

(
θ∗b − θ∗(.)

)2
. (2.46)

22



The parametric bootstrap

The bootstrap as described above can also be termed the nonparametric bootstrap, because
the distribution the bootstrap samples are drawn from is the nonparametric empirical dis-
tribution function F̂N . Frequently, however, it is assumed that F is a specific distribution
F (φ), only depending on a parameter (or parameter vector) φ, which may or may not
be the same parameter as θ. Then, if φ is estimated by φ̂, F can also be estimated by
F̃N = F (φ̂), instead of F̂N . If the distributional assumption about F is correct, this para-
metric empirical distribution function will generally be a better (more efficient) estimator
of F .

The parametric bootstrap is defined exactly analogous to the nonparametric bootstrap,
except that bootstrap samples are drawn from F̃N instead of F̂N . This means that no
longer samples are drawn with replacement from the original data, but from a generally
more smooth distribution function. Hence, the values of the z∗

bi in the bootstrap sample
will usually not be values also encountered in the original sample.

For example, if it is assumed that F is a normal distribution function with mean µ
and variance σ2, then bootstrap samples are drawn from a normal distribution with mean
x and variance s2, where x and s2 are the mean and variance of the original sample.

2.8.3 Resampling regression models

Consider a simple linear regression model

y = α + βx + ε,

where ε is a normally distributed error term with mean zero and variance σ2. Suppose
that a sample {(y1, x1), . . . , (yN , xN )} is available. Then parameter estimates α̂, β̂, and
σ̂2 can be obtained. Now, if x is considered a random variable, nonparametric boot-
strap samples can be easily obtained by resampling complete cases: Bootstrap samples
{(y∗1 , x∗

1), . . . , (y
∗
N , x∗

N )} consist of pairs (y∗
i , x

∗
i ) that are also elements of the original sam-

ple, that is, for each i = 1, . . . , N , there exists a j, 1 ≤ j ≤ N , such that (y∗
i , x

∗
i ) = (yj, xj).

Then, the parameters can be estimated from each bootstrap sample and bias-corrected
estimates can be obtained, as well as an estimate of the covariance matrix of the estimator,
using the formulas from section 2.8.2.

The implementation of the parametric bootstrap depends on whether a specific dis-
tribution of x is assumed. If x is regarded as a random variable with an unspecified
distribution, the parametric bootstrap should start with drawing nonparametric boot-
strap samples of x. If, on the other hand, a specific distribution of x is assumed, for
example, a normal distribution with mean µ and variance σ2

x, then the parametric boot-
strap starts with drawing parametric bootstrap samples of x, for example, samples from
a normal distribution with mean x and variance s2

x, which are the estimates of µ and σ2
x

from the original sample.
Given a bootstrap sample {x∗

1, . . . , x
∗
N} of x, the parametric bootstrap draws a sample

{ε∗1, . . . , ε∗N} of ε from a normal distribution with mean zero and variance σ̂2, where σ̂2 is
the estimate of σ2 from the original sample. Then, a bootstrap sample {y∗

1 , . . . , y
∗
N} of y

is computed from the following equation:

y∗i = α̂ + β̂x∗
i + ε∗i , (2.47)

where α̂ and β̂ are the estimates of α and β from the original sample.
The situation is different if x is regarded as a fixed (design) variable, chosen by the

experimentor. This happens, for example, if x is the dose of some drug administered to
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rats by the experimentor. Then each bootstrap sample should have exactly the same x
values, that is, x∗

i = xi for each i in each bootstrap sample. The parametric bootstrap is
in this case simply obtained by (2.47), with x∗

i = xi. The nonparametric bootstrap is in
this case, however, completely different from the nonparametric bootstrap with random
x. In this case, first, the errors are estimated from the original sample by

ε̂i = yi − α̂ − β̂xi. (2.48)

Then, bootstrap samples {ε∗1, . . . , ε∗N} are drawn from {ε̂1, . . . , ε̂N}, and bootstrap samples
of y are obtained analogously to (2.47):

y∗i = α̂ + β̂xi + ε∗i . (2.49)

Then, bootstrap estimates of the parameters and bootstrap estimates of the covariance
matrix of the parameters are obtained in the usual way (e. g., Efron, 1982, pp. 35–36).

The jackknife can also be implemented straightforwardly in regression models: One
complete case is removed from the sample for each θ̂(i) for the ungrouped jackknife, or a

group of complete cases is removed for each θ̂(j) for the grouped jackknife. The jackknife
bias-corrected estimators and the jackknife estimators of the covariance matrix of the
parameters are obtained straightforwardly (e. g., Efron, 1982, pp. 18–19).

The bootstrap and jackknife methods discussed here for regression models are the
standard implementations as, for example, discussed by Efron (1982). These have some
drawbacks, and therefore, alternative resampling methods have been proposed that have
some advantages, for example, that they are robust to heteroskedasticity. A thorough
discussion can be found in Wu (1986).

2.8.4 Resampling multilevel models

Because multilevel analysis is based on regression analysis, resampling methods for mul-
tilevel models can be based on resampling methods for regression models. The methods
of section 2.8.3 can, however, not straightforwardly be applied to multilevel models, be-
cause the usual jackknife and bootstrap theory requires that the different observations
be independently distributed. This is not the case with multilevel analysis, where the
observations within the same Level-2 unit are dependent.

Another difference between regression analysis and multilevel analysis is that in mul-
tilevel analysis, there can be variables measured at all levels. In the two-level case, for
example, there are variables describing the Level-1 units and (possibly) variables describ-
ing the Level-2 units. This implies that resampling can be performed at two levels.

Consider two-level data. A straightforward implementation of the (ungrouped) jack-
knife would be to eliminate one observation from one Level-2 unit at the time to obtain a
jackknife sample. This resampling scheme is exactly equivalent to the resampling scheme
of the standard ungrouped jackknife of section 2.8.1. Another possibility is to implement
the grouped jackknife. With the grouped jackknife, it is most logical to use the Level-2
units as groups. The Level-2 units may have different sizes, and therefore, the grouped
jackknife with unequal group sizes (2.41)–(2.42) should be used. The theoretical proper-
ties of these estimators are currently not known. Moreover, the grouped and ungrouped
jackknife are based on the assumption that the observations are independent, which is not
the case in multilevel analysis. Furthermore, the jackknife estimators for regression anal-
ysis may also be nonoptimal (Wu, 1986). Therefore, the jackknife estimators in multilevel
analysis are experimental and may not be consistent. Further research will be needed to
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obtain information about the properties of these estimators. For that purpose, they are
implemented as options in MLA.

The parametric bootstrap can be easily implemented in multilevel analysis. If the Xj

and Wj variables are considered fixed in (2.1) and (2.2), bootstrap samples {y∗
b1, . . . , y

∗
bJ}

can be obtained in the following way. First, for each j = 1, . . . , J , draw a bootstrap
Level-2 error vector u∗

j from a normal distribution with mean zero and covariance matrix

Θ̂. Then, draw a bootstrap Level-1 error vector ε∗j from a normal distribution with mean

zero and covariance matrix σ̂2
εINj

. Finally, the bootstrap sample of y is obtained from

β∗
j = Wjγ̂ + u∗

j (2.50)

and

y∗j = Xjβ
∗
j + ε∗j . (2.51)

Then, bias-corrected bootstrap estimators and bootstrap estimators of the covariance
matrix of the parameters are obtained in the usual way. This is the parametric bootstrap
that is implemented in MLA. Note that this simulation option is also provided by ML3

(Prosser et al., 1991). It is also possible to derive a parametric bootstrap estimator in
case the X and W variables are considered random. This is analogous to (2.47), but it is
not implemented in MLA.

For the nonparametric bootstrap, several situations can be studied. If the X and W
variables can be considered fixed, then, analogously to regression analysis, the errors have
to be estimated. As explained in section 2.5, the shrunken residuals (2.26) and (2.28) can
be used as estimators of the Level-2 and Level-1 errors, respectively. A drawback of these
errors may be that their variances are less than the variances in the population. When,
however, sample sizes at both levels increase, this difference diminishes. But, alternatively,
the raw residuals (2.24)–(2.25) can be used instead of the shrunken residuals.

Unlike in regression analysis, the estimated residuals in multilevel analysis do not
necessarily have a zero mean. Therefore, the means are subtracted first. Otherwise,
the possibly nonzero mean of the errors would necessarily lead to biased estimators of
the constant. Once (centered) estimates {ûj}, j = 1, . . . , J , and {ε̂ij}, j = 1, . . . , J ,
i = 1, . . . , Nj , of the errors are obtained, nonparametric bootstrap samples {u∗

j}, j =
1, . . . , J , and {ε∗ij}, j = 1, . . . , J , i = 1, . . . , Nj are drawn, and nonparametric bootstrap
samples of y are obtained from (2.50) and (2.51). Then, estimators can be obtained in the
usual way, and bootstrap bias-corrected estimators and standard errors can be obtained
straightforwardly. This bootstrap procedure of resampling from estimated errors is called
the error bootstrap.

Whether the shrunken or raw residuals are to be preferred in bootstrapping multilevel
models is unclear yet. They are both implemented as options in MLA. It is also unclear
whether these bootstrap methods are satisfactory, or other bootstrap methods should be
used instead (Wu, 1986).

If the X and W variables are considered random, nonparametric bootstrap samples
can be drawn by resampling complete cases. This is, however, somewhat more compli-
cated than in regression analysis, because the hierarchical structure of the data should
be respected. The bootstrap samples can be drawn in the following way. First, a sam-
ple of size J is drawn with replacement from the Level-2 units. This gives a sample j ∗k ,
k = 1, . . . , J of Level-2 unit numbers and accompanying Level-2 variables Wj∗

k
. Then

for each k, a nonparametric bootstrap sample of complete cases from the (original) unit
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j = j∗k is drawn, giving {(y∗
ik, X

∗
ik), k = 1, . . . , J , i = 1, . . . , Nj∗

k
}. This is called the cases

bootstrap for both levels.

It is also possible to draw bootstrap samples from the Level-2 units only, keeping all
the y’s, X’s, and W ’s fixed once a Level-2 unit is drawn. This is useful when the data
within the unit can not be considered a simple random sample, for example, with repeated
measures data or families. Then, a complete Level-2 unit is (temporarily) regarded as
a single observation and bootstrap samples are drawn from these observations. With
repeated measures, this implies that for each subject that is drawn in the bootstrap
sample, the data for all the timepoints are exactly the same as in the original sample.
For a family, this means that the complete family is kept together, and that, once the
family is drawn in the bootstrap sample, mother, father, and children are all part of the
bootstrap sample, and, for example, the mother can not be drawn twice within the same
Level-2 unit.

On the other hand, it is also possible to keep the Level-2 units fixed, and draw boot-
strap samples only from the Level-1 units within each Level-2 unit. This can be useful
when the Level-2 units can not be considered a simple random sample, for example, when
several (prespecified) countries are compared and people within each country are drawn
randomly. Then, in the bootstrap samples, all countries are present once, just as in the
original sample. Bootstrap samples are drawn from complete cases within each country.

Once bootstrap samples are drawn, bootstrap bias-corrected estimators and bootstrap
standard errors can be obtained straightforwardly.

The three possible methods for drawing bootstrap samples from complete cases dis-
cussed above are implemented as options in MLA as well. It will depend on the nature of
the data which one is most fit for a particular application.

2.9 Missing data

Missing data are a frequently occurring phenomenon. For instance, in repeated measures
designs, the points in time at which the different subjects are measured may not be the
same, or the number of points in time the subjects are measured may differ. This situation
leads to missing time-points, that is, all time-specific variables of a subject are missing
at some point in time. However, the time-invariant variables (such as sex) are, of course,
known. This situation is easily handled by a multilevel model, in which the subjects are
the Level-2 units, and the time-points are the Level-1 units. As was discussed for a usual
multilevel model, the number of Level-1 units may be different for different Level-2 units,
and so the missing timepoints give no problems. An example of repeated measures is
given in chapter 4.

If, however, in a multilevel model, be it an application in repeated measures or not,
for some Level-1 unit, some Level-1 variables are measured, but others are not (or for
some Level-2 unit, some Level-2 variables are measured, but others are not), there are
missing values that can not be handled by the standard model. If only output variables
are missing, the EM algorithm provides a standard way of dealing with the missing values
in a satisfactory way. If, however, some exogenous (X and/or Z) variables are missing,
the EM algorithm can not be used straightforwardly, because it requires that the joint
distribution of the exogenous and the endogenous (output) variables is known. Standard
multilevel modeling only assumes that the conditional distribution of the output variables
given the exogenous variables is known. This poses severe complications.

If the amount of data that is missing is relatively small, standard ad-hoc solutions to
the missing-data problem can be used, such as listwise deletion (deletion of cases with one
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or more missing values), pairwise deletion (computation of “sufficient” statistics, such as
covariances, on the basis of all available information for the variables in question), mean
substitution (substitution of the mean of the observed values of a variable for a missing
value on that variable), or other substitution methods. All these methods have their
advantages and drawbacks and none is fully satisfactory, especially when the number of
missing values is large.

In the current version of MLA, no specific means of missing-data handling are imple-
mented. Listwise deletion and several forms of substitution can be done by the user before
the data set is processed by MLA. Pairwise deletion can not be done, because the program
requires raw data. In principle, pairwise deletion could be done within the program, but
this is not implemented (yet).
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Chapter 3

Input

In this chapter the input of the MLA program is explained. A simple introduction to
multilevel models is given in Chapter 1. A discussion of estimation and other relevant
theory concerning the multilevel model implemented in MLA can be found in Chapter 2.

MLA Version 1.0b runs as a stand-alone batch program. It uses an input file and an
output file as parameters. This means that, in DOS, the program can be started by the
command

MLA input-file-name output-file-name

where input-file-name is the name of the file that contains the input and output-file-name
is the name of the file in which the output of the program will be saved. Both files are
simple text files (ascii). The output file will be explained in the next chapter. The input
file will be considered here.

The input file consists of statements, which are case insensitive. Every statement
begins with a slash and a keyword (e. g., /TITLE). Every keyword may be abbreviated,
but it must be at least of length three to be recognized (e. g., /TIT). Other text following
the keyword and/or leading spaces will be ignored. The rest of the statements must
follow on lines below the keyword and should precede the next statement. These lines
are called substatements and may also consist of one or more keywords (e. g., file). The
last statement to be read is the /END statement. All other statements, and corresponding
substatements, may appear in any order (but before the /END statement if they are to be
executed). Finally, comments, preceded by a percent sign (%), may appear throughout the
input file. All text on a line, after and including the percent sign, will serve as comment
and is ignored as program input.

In the following, all statements and substatements implemented are discussed and
illustrated with small examples. In Chapter 4, where we focus on the program output,
complete examples are provided.

3.1 /TITLE (optional)

Following the keyword /TITLE, the first non-blank line contains the title for the analysis.
Although the statement is optional, it is highly recommended. Moments after the analysis
all may seem clear, but after a few months you may have no idea what you have done.
The title may be your only clue. You may also enrich your input file with comments. In
contrast to comments, the title is repeated on top of every part of the output.

Example:
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/TITLE

MLA example 1: analysis of variance

3.2 /DATA (required)

The /DATA statement contains information about the data file. This statement has four
substatements, three of which are required. The file substatement gives the name of the
data file, variables the number of variables in the data file, id1 the (optional) variable
number of the Level-1 identifier variable, and id2 the variable number of the Level-2
identifier variable.

Example:

/DATA

file = sesame.dat % data set from Glasnapp and Poggio (1985)

vars = 3 % total of three variables

id2 = 1 % Level-2 identification given by first variable

3.2.1 file (required)

This substatement indicates the name of the data file. The name is given after the equals
sign and must satisfy the usual DOS conventions on filenames. If the file is in the current
directory the complete pathname is not necessary. The file itself is a free-field formatted
numbers-only ascii file. This means that values of variables must be separated by at
least one blank. A case may consist of more than one line. Cases must be sorted by the
Level-2 identifier variable (see below).

3.2.2 variables (required)

The variables substatement specifies the number of variables in the data file. Because
the data file is a free-field formatted file and one case may consist of more than one line,
this is necessary information for the program to determine when to start a new case.

3.2.3 id1 (optional)

With this substatement, a case number variable can be given. This can be useful in those
situations where the output gives specific information about cases at the first level. The
substatement is otherwise equal to the id2 substatement (see below). If omitted, the
order in which the Level-1 units are read from the data file is used as identification.

3.2.4 id2 (required)

One of the variables in the data file must contain a code (number) that identifies the
Level-2 units. This may be a group number or, in case of repeated measurements, a
subject number. The number is essential for a correct discrimination of the Level-2 units.
Level-1 units are interchangeable within a Level-2 unit. A Level-1 identifier variable is
not necessary. The variable number has to follow the keyword id2 and it must indicate
the position of the identifier variable in the data file. The variable number must be at
least 1 and less than or equal to the number of variables, indicated in the variables

substatement.
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3.3 /MODEL (required)

The /MODEL statement is followed by a set of equations that specify the model that has
to be estimated. Every equation must be on a single line. There is only one Level-1
equation, but there may be one or more Level-2 equations. The order in which the
Level-1 and Level-2 equations appear is arbitrary. The terms used in the Level-1 equation
are:

• Vi = variable i, which is the i-th variable in the data file. Vi may be either indicating
the outcome variable or a predictor variable.

• Bi = beta component i (βij , the ith element of a typical βj , cf. equation 2.1). At
Level-1 these are the regression coefficients that seem to be outcome variables at
Level-2 (cf. equation 2.2).

• E = the Level-1 random term (ε). This term is considered to be a residual or error
term. The variance of this term has to be estimated from the data.

The Level-2 equations partly consist of the same terms, but also of specific Level-2 equa-
tion terms:

• Bi = beta component i, corresponding with the Level-1 regression coefficient. At
this level, however, Bi can be viewed as an outcome variable.

• Gi = gamma component i (γi). These are the fixed parameters to be estimated in
the multilevel model.

• Vi = one of the variables from the data file (as explained above). In this case, it is
a Level-2 predictor variable. It means that this variable is considered to have the
same value for all Level-1 units within a particular Level-2 unit. To be certain that
this is the case, for each Level-2 variable the average is computed over all Level-1
units within that particular Level-2 unit.1

• Ui = Level-2 random term i (uij , the ith element of a typical uj). As with the first
level, this component is considered a residual or error term, but now for the second
level. The second level may have more than one error term: one for each Level-2
equation (i. e., for each β element). The variances and the covariances of these
terms have to be estimated from the data.

Example:

/MODEL

B1 = G1 + G2*V6 + U1 % random intercepts, dependent on level-2 predictor

B2 = G3 + G4*V6 + U2 % random slopes, dependent on the same level-2 predictor

V4 = B1 + B2*V5 + E % level-1 equation, dependent on level-1 predictor

In the equations each term is followed by a number (except for the Level-1 random term
E). For the Vi term this number is the variable number, the position of the variable in the
data file (e. g., V4, the fourth variable in the data file). The other terms only use a number
for identification, without any additional meaning (e. g., G3, one of the fixed parameters).
The Bi terms have meaning in the equations of both levels. Every equation consists of
one term before and at least one term after the equals sign. The minimal specification of
a model is:

1Note that this feature may be used to create an aggregated Level-1 variable, serving as a Level-2

predictor variable, simply by specifying a Level-1 variable as a Level-2 variable as well.
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/MODEL

B1 = G1 % fixed intercept

V4 = B1 + E % level-1 variation

or

/MODEL

B1 = U1 % random intercept

V4 = B1 + E % level-1 variation

As shown above, terms on the right hand side of the equations are connected by plus
signs. A variable and a corresponding parameter are connected by an asterisk (*). This is
used to connect a fixed parameter and an observed predictor variable in Level-2 equations
and to connect a Level-1 regression coefficient and an observed predictor variable in the
Level-1 equation. In Chapter 4, several variations of the two-level model will be presented
and discussed in more detail.

3.4 /CONSTRAINTS (optional)

MLA has a limited option for imposing parameter constraints. Parameters to be estimated
may be constrained to a certain value. Constraints are imposed as: “parameter = value”.
This feature is only implemented for the FIML estimation part. It is simply ignored for
the various OLS estimators.

Example:

/CONSTRAINTS

G1 = 1.0 % fix component G1 to 1.0

U1 = 0.5 % fix level-2 variance of U1 to 0.5

Values must be specified as floating-point numbers. Covariances are specified by connect-
ing the appropriate Level-2 residual terms by an asterisk.

Example:

/CONSTRAINTS

U1*U2 = 0.0 % fix level-2 covariance U1*U2 to 0.0

3.5 /SIMULATION (optional)

Several options for simulation are available in MLA. These include the jackknife and three
versions of the bootstrap (Efron, 1982). Theoretical details concerning the implementation
of these resampling methods for the two-level model can be found in Chapter 2.

With the substatements provided with the /SIMULATION statement, one can choose
between the different kinds of simulation (using the keyword kind), and specify special
simulation features (using the keywords method, type and resample). Additional features
are the number of replications and the initial seed for the random number generator
(replications and seed). Finally, one can specify a separate output file for intermediate
results of the simulation (file).

Example:

\SIMULATION

kin = bootstrap % use simulation method bootstrap

met = error % resample from error vectors

typ = raw % use raw residuals as error vectors

res = 1 % only resample level-1 units

rep = 200 % repeat simulation 200 times

see = 1041245 % start with random seed 1041245

fil = boot.out % write simulation results to boot.out
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3.5.1 kind (required)

With this substatement the user can choose from two options, namely bootstrap and
jackknife simulation.

Both types of simulation work as follows.

• obtain a (new) sample

• repeat the analysis

• save the (new) estimates

These three steps, together called a replication, are repeated a number of times. Af-
terwards, bias-corrected estimates of model parameters and nonparametric estimates of
standard errors are computed. These estimates are computed from the set of saved (boot-
strap or jackknife) estimates and the original maximum likelihood estimates.

The bootstrap, introduced by Efron (1979), differs from the jackknife, the nonpara-
metric technique proposed by Quenouille (1949), in the way a new sample is obtained.
The choice between bootstrap or jackknife resampling also determines the way the final
simulation estimates are computed. More details can be found in Chapter 2.

3.5.2 method

This substatement specifies the method of bootstrap to be performed. It is required
whenever kind = bootstrap. One can choose between three different methods: error,
cases, and parametric. The three methods differ in the way the bootstrap sample is
obtained.

error

This method resamples the elements of the Level-1 and Level-2 error vectors. Subsequently
a new outcome or dependent variable is computed using these error vectors, the original
predictor or independent variables and their corresponding FIML parameter estimates.
The way in which the Level-1 and Level-2 error terms are estimated from the “total”
FIML residuals is discussed in Chapter 2.

cases

Using this method a bootstrap sample is created by resampling the original data. Thus,
complete cases are randomly drawn (with replacement) from the original cases. The
procedure follows the nested structure in the data, by a nested resampling of cases: Level-2
units are randomly drawn (with replacement) and cases within a particular drawn unit
are resampled. It is also possible to resample only complete Level-2 units, where the
Level-1 units within a sampled Level-2 units are the same as in the original data set
(which is useful for repeated measures data), or to resample only Level-1 units within
Level-2 units, where the Level-2 units are the same as in the original sample, but the
Level-1 units within each Level-2 units are resampled (useful when there are few Level-2
units and many Level-1 units in each Level-2 unit, such in studies with many subjects
from a few countries).
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parametric

This method computes a new outcome or dependent variable using the original predictor
variables, their corresponding FIML parameter estimates and a set of random Level-1 and
Level-2 error terms. These terms are obtained as follows: New Level-1 errors are drawn
from a normal distribution with mean zero and variance σ̂2, which is the FIML estimate
of the Level-1 variance component. New Level-2 errors are drawn from a (multivariate)
normal distribution with zero mean vector and covariance matrix Θ̂, which contains the
FIML estimates of the Level-2 variance components.

3.5.3 type

The substatement type is only required whenever the substatement kind = bootstrap

is used in combination with method = error. The type substatement specifies the type
of estimation that is used to determine the Level-1 and Level-2 residuals. One can choose
between raw and shrunken. More details can be found in Chapter 2.

3.5.4 resample (optional)

The substatement resample offers the user the choice at which level units will be re-
sampled. The default is 0, which means that at both levels units will be resampled. If
kind = jackknife, or kind = bootstrap and method = cases, the user may choose 1

or 2, which means that only Level-1 units or only Level-2 units will be resampled, respec-
tively. The kind of nested structure in the data will determine which choice is appropriate.
For instance, with repeated measures (Level-1) nested within individuals (Level-2), it is
probably not useful to resample Level-1 units with the cases bootstrap.

3.5.5 replications (optional)

Using the substatement replications the number of bootstrap replications is specified.
It must be an integer value between 1 and 32767 (215 − 1). The default value is 300
and this number is usually considered sufficient, although Markus (1994) suggests 1000
in another context.

3.5.6 seed (optional)

For diagnostic purposes, one can provide an initial number (seed) for the random number
generator. This is specified by the substatement seed. Using the same initial seed, the
simulation samples will be identical. The seed value must be an integer between 1 and
1,073,735,823 (231 − 1). If results from bootstrap analyses are to be reported it is advised
to save the seeds.

3.5.7 file (optional)

Results of the simulation analysis can be written to a file. Using the substatement file,
a filename may be specified. Filenames must satisfy the ususal DOS conventions on file-
names. For each replication, the following results are written to the file (in ascii, space
separated):

1. global information

• replication number
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• seed

• number of iterations until convergence

• the minimum of the −2 log likelihood function

2. estimation results: pairs containing

• estimate

• standard error

of each parameter. The parameters are in the following order: σ2
ε , γ1, . . . , γp, Θ11,

Θ21, Θ22, Θ31, . . . , Θqq, where p is the dimension of γ and q is the dimension of
each βj .

The estimation results are thus repeated “replications” times and displayed with a
maximum of eight values per line (four estimates and their corresponding standard errors).
The results of the simulation analysis are used to compute the final bootstrap and jackknife
estimates. The results of a replication are not taken into account when the algorithm did
not converge or when the estimate or its standard error was fixed to zero because it
reached the edge of its parameter space. Further elaboration concerning this subject can
be found both in the previous and in the next chapter.

3.6 /TECHNICAL (optional)

The /TECHNICAL statement provides useful possibilities to alter the estimation process.
It concerns the estimation method (method), minimization stop criteria, like the maxi-
mum number of iterations (maximum number of iterations) and two convergence cri-
teria (fconvergence and pconvergence), the critical p-value for the display of outliers,
and the possibility of writing intermediate iteration results to disk (file). If this state-
ment and subsequent substatements are not specified, the program will run using default
values.

Example:

/TECHNICAL

met = fiml % estimation method fiml

max = 10 % maximum number of iterations equals 10

fco = 0.00001 % function convergence set to 0.00001

pco = 0.0001 % parameter convergence set to 0.0001

out = 0.01 % critical p-value for outlier display

fil = tech.out % technical results will be written to tech.out

3.6.1 method (optional)

The substatement method provides the opportunity to set the estimation method. One can
choose between FIML and REML2. FIML is the default method and represents full information
maximum likelihood estimation. REML is restricted maximum likelihood estimation. Both
procedures are described in Chapter 2 and in Appendix A.

2not implemented yet

35



3.6.2 maximum number of iterations (optional)

The default value of max is 20. This number should be sufficient for reaching convergence
if the sample size is large enough and/or the number of parameters to be estimated is not
too large. Changing the convergence criteria (see below) can make it necessary to raise
the maximum number of iterations. The value must be an integer between 1 and 32767
(215 − 1).

3.6.3 fconvergence (optional)

The substatement fconvergence refers to function convergence. After each iteration the
new function value is compared to the previous function value. The obtained difference
is compared to a fconvergence related value. If

|Fi−1 − Fi|
(|Fi| + |Fi−1|)/2

≤ fconvergence,

convergence is said to have been reached. In this formula, Fi is the function value after
the ith iteration. The first part of the formula represents the ratio between the difference
of two successive function values and the mean of these values. The default value of
fconvergence is 0.001 and permitted values range from 1.0 to 1.0E-16.

3.6.4 pconvergence (optional)

The substatement pconvergence refers to parameter convergence. After each iteration
the parameter vector is compared with its predecessor by computing a vector of differences.
Using νi as the norm of this vector after the ith iteration, convergence is said to have
been reached when

νi ≤ pconvergence.

The default value of pconvergence is 0.001 and permitted values range from 1.0 to
1.0E-16. The use of this substatement has no influence on the estimation process while
simulating, because the loss of speed resulting from its use.

3.6.5 outliers (optional)

With this substatement, the critical p-value for outlier display can be set. The keyword
is outliers and an example is given below.

/TECHNICAL

outliers = 0.25

On the extremes, outliers = 0.0 will show no outliers at all, while outliers = 1.0

will show all available cases, being both Level-1 and Level-2 units.

3.6.6 file (optional)

The technical output can be written to a separate file. The file is specified after the file

substatement under the /TECHNICAL statement and must satisfy the usual DOS conventions
on filenames. The file will contain the iteration numbers and the parameter estimates (in
the same order as in section 3.5.7) after each iteration. Depending on the number of
parameters, multiple lines of parameter estimates will be displayed.
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3.7 /OUTPUT (optional)

The /OUTPUT statement gives the user control over the output. Not all output is optional.
The default output consists of a title page, an echo of the input, the maximum likelihood
estimates (FIML), and system information. Output for the simulation analysis is generated
whenever the /SIMULATION statement is used. Additional output is controlled by keywords
following the /OUTPUT statement. The keywords must be separated by spaces or commas
and may take up more than one line. The keywords will be shortly explained below. A
more profound elaboration follows in the chapter on output. Most theory underlying the
different parts of the output can be found in Chapter 2.

Example:

\OUTPUT

input, % display digested input statements

des, % display variable descriptive statistics

out,ols,res,pos,dia % display all other output

input

The input information is digested and displayed in two parts. A required and an optional
part. Here, a single equation is displayed (similar to (2.3)) and input can be checked. After
the input information, a short table of contents of the output is displayed. It explains
which part of the output gives which information.

descriptives

All data variables are used to obtain simple summary statistics. The sample sizes of the
different levels are displayed followed by two blocks of information. The first block displays
mean, stddev, variance, skewness, kurtosis, and K-S Z (the latter with its significance
level denoted by ???), respectively. Computational formulas are given in Chapter 2. The
second block contains seven percentiles of the variables. These are the 0th (minimum), 5th
(P5), 25th (Q1), 50th (median), 75th (Q3), 95th (P95), and 100th (maximum) percentiles,
respectively.

outcomes

The Level-2 outcomes consist of ordinary least squares estimates per Level-2 unit. Es-
timates of the regression coefficients and estimates of the error variance, including their
standard errors, t-ratios and exceedance probabilities of the t-ratios per Level-2 unit are
displayed in separate blocks with their Level-2 unit number and Level-2 unit size.

olsquares

This part contains the ordinary least squares estimates for the fixed (Gi) and random
(variances and covariances of Ui and E) parameters. A regression analysis is performed,
ignoring grouping. For the error variance two estimates are displayed, the one-step (E(1))
and two-step (E(2)) estimates, corresponding to (2.14) and (2.22), respectively.

technical

The technical information output consists of four columns. The iteration number is in the
first column. In the second column the −2 log likelihood is displayed. The third column
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shows the norm of the difference of the parameter vector at the current iteration and the
parameter vector at the previous iteration. That is, the differences between the current
and previous values of the parameters are squared and summed, and the square root of
the resulting summation is reported. The last column shows the norm of the gradient
vector. When the technical keyword is not used, only the final information is displayed
as part of the maximum likelihood information part.

residuals

For the first level, three different types of residuals are displayed, namely the total, raw,
and shrunken residuals. The Level-2 residuals are the raw and shrunken residuals for
every random Level-2 component. Computational formulas are given in Chapter 2.

posterior

Displayed are the posterior means (2.29) based on the full information maximum likelihood
estimates.

diagnostics

For diagnostic purposes outliers are reported. There are two kinds of outliers, one for
each level. See chapter 2 for details.

38



Chapter 4

Output

The output of MLA consists of a single text file, the second parameter in the statement
that starts program execution. The file is divided into parts. One part may take more
than one page. Before each new part, a pagebreak is inserted.

This chapter will elaborate on the MLA output file We will illustrate the output using
several example analyses. These will stretch from a simple analysis of variance to a
bootstrap analysis for a complicated two-level model. It is not our intention to give
extensive examples of case studies. The examples will give insight in how to use MLA for
different analyses and glance at specific parts of the output.

4.1 Analysis of variance

To illustrate how to run an ANOVA using MLA, we consider part of the Sesame Street data
set. The original set from Glasnapp and Poggio (1985) is used in Stevens (1990) for an
analysis of covariance. In the first example with this data set, we only use two variables
from the set, which originally included 12 background variables and 8 achievement vari-
ables for 240 subjects. The first 3 sites of the original 5 sites are used on both pretest and
posttest. Only the achievement variable measuring knowledge of numbers is considered
here. The series was viewed in between the pretest and posttest. The series was meant
to teach pre-school skills to 3 to 5 year old children.

An analysis of variance is performed on these data with MLA. Level-2 (j) indicates the
site and Level-1 (i) the children. The model to be estimated is

Yij = γ + uj + εij , (4.1)

where γ is the overall mean on the posttest score, uj is the Level-2 deviation from γ, or
Level-2 error component, and εij is the Level-1 deviation from γ + uj , the average score
of unit j, also called the Level-1 error component. Equation (4.1) can be divided into two
separate equations, one for each level:

Yij = βj + εij ,

βj = γ + uj .

In this way, the deviations or error components for the different levels are easily seen.
These equations are also the equations that are to be used in MLA to specify the model.
Along with the other statements, the input file is as follows:

/TITLE
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MLA example 1: analysis of variance

/DATA

file = sesame.dat

vars = 3

id2 = 1

/MODEL

b1 = g1 + u1

v3 = b1 + e

/OUTPUT

inpu,desc,olsq

/END

All output contains the MLA title page. It is the first part of the output. It only
supplies information about the name and origin of the program. It is not possible to leave
this part out.

MMMM MMMMM LLLL AAAAAAAA

MMMMM MMMMMM LLLL AAAAAAAAAA

MMMM M MMMMMMM LLLL AAAA AAAA

MMMM MM MMM MMMM LLLL AAAA AAAA

MMMM MMMM MMMM LLLL AAAA AAAA

MMMM MM MMMM LLLL AAAAAAAAAAAAAAAAAA

MMMM M MMMM LLLL AAAAAAAAAAAAAAAAAAAA

MMMM MMMM LLLL AAAA AAAA

MMMM MMMM LLLL AAAA AAAA

MMMM MMMM LLLL AAAA

MMMM MMMM LLLLLLLLLLLLLLLLLLLLLLLLLLLL AAAA

MMMM MMMM LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL AAAA

AAAA

MULTILEVEL ANALYSIS FOR TWO LEVEL DATA AAAA

AAAA

VERSION 1.0b AAAA

AAAA

DEVELOPED BY AAAA

FRANK BUSING AAAA

ERIK MEIJER AAAA

RIEN VAN DER LEEDEN AAAA

AAAA

PUBLISHED BY AAAA

LEIDEN UNIVERSITY AAAA

FACULTY OF SOCIAL AND BEHAVIOURAL SCIENCES AAAA

DEPARTMENT OF PSYCHOMETRICS AND RESEARCH METHODOLOGY AAAA

WASSENAARSEWEG 52 AAAA

P.O. BOX 9555 AAAA

2300 RB LEIDEN AAAA

THE NETHERLANDS AAAA

PHONE +31 (0)71-273761 AAAA

FAX +31 (0)71-273619 AAAA

Except for the title page and the optional input part, every part contains a header.
The header is always the same and is made of two lines of standard text and the title of
the analysis, supplied by the user. For this first example, it reads:

MLA (U) MULTILEVEL ANALYSIS FOR TWO LEVEL DATA VERSION 1.0b 09-10-1994

COPYRIGHT 1993-1994 LEIDEN UNIVERSITY ALL RIGHTS RESERVED PART 2

MLA EXAMPLE 1: ANALYSIS OF VARIANCE

The second part of the output contains an echo of the input-file statements. This part
is always included in an output file.

INPUTFILE STATEMENTS

1 /TITLE

2 MLA example 1: analysis of variance

3 /DATA
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4 file = sesame.dat

5 vars = 3

6 id2 = 1

7 /MODEL

8 b1 = g1 + u1

9 v3 = b1 + e

10 /OUTPUT

11 inpu,desc,olsq

12 /END

12 LINES WERE READ FROM INPUTFILE "EXAMPLE1.IN"

The third part is the first optional part of the output. It is triggered by the input

keyword under the /OUTPUT statement. It contains extra information about the input and
the output. Specifically, the input statements are digested and re-displayed and a short
table of contents of the output is given.

INPUT INFORMATION

REQUIRED

NAME OF DATAFILE : SESAME.DAT

NUMBER OF VARIABLES : 3

LEVEL-2 ID. COLUMN : 1

MODEL SPECIFICATION : B1=G1+U1

V3=B1+E

SINGLE EQUATION : V3=E+G1+U1

OPTIONAL

TITLE OF ANALYSIS : MLA EXAMPLE 1: ANALYSIS OF VARIANCE

ESTIMATION METHOD : FULL INFORMATION MAXIMUM LIKELIHOOD

OUTPUT INFORMATION

PART CONTENTS

1 TITLE PAGE

2 INPUTFILE STATEMENTS

3 INPUT INFORMATION

4 DATA DESCRIPTIVES

5 ORDINARY LEAST SQUARES ESTIMATES

6 FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATES

7 SYSTEM INFORMATION

The single equation shows the integration of the Level-2 equations and the Level-1
equation in the same way as in Chapter 2, Equations (2.1), (2.2) and (2.4). It is displayed
directly below the model specification. The output information displays the different parts
in the output. Default as well as optional output parts are mentioned in two columns,
one for the part number and one for the contents.

The fourth part consists of the data descriptives, optionally given by the use of the
keyword descriptives under the /OUTPUT statement.

These statistics are displayed in two major blocks, and are preceded by the number
of Level-1 and Level-2 units.

DATA DESCRIPTIVES

# LEVEL-1 UNITS = 179

# LEVEL-2 UNITS = 3

VAR MEAN STDDEV VARIANCE SKEWNESS KURTOSIS K-S Z PROB(Z)

1 2.02 0.83 0.70 -0.04 -1.57 3.18 0.00

2 21.37 10.92 119.25 0.72 -0.16 1.45 0.03
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3 31.02 12.89 166.19 -0.07 -1.13 1.37 0.05

VAR MINIMUM P5 Q1 MEDIAN Q3 P95 MAXIMUM

1 1.00 1.00 1.00 2.00 3.00 3.00 3.00

2 4.00 7.00 13.50 19.00 28.00 44.00 52.00

3 0.00 10.00 20.00 31.00 42.50 51.00 54.00

The first variable is the Level-2 identifier variable. The second and third variables
are the score on the pretest and the posttest, respectivily. Formulas can be found in
Section 2.2.

Part 5 gives OLS estimates. (This part is also optional. The user must supply the
keyword olsquares in the /OUTPUT statement.) As described in Chapter 2, ordinary
least squares estimation yields two different estimates for the Level-1 variance component,
σ2, one by ignoring the hierarchical data structure and one using this structure. These
are both displayed in Part 5 of the output. The one-step estimate is labeled E(1) and
the two-step estimate is labeled E(2). U1*U1 gives the variance estimate for the Level-2
variance component U1.

ORDINARY LEAST SQUARES ESTIMATES

FIXED PARAMETERS

LABEL ESTIMATE SE

G1 31.016760 0.963540

RANDOM PARAMETERS

LABEL ESTIMATE SE

E(1) 166.185111 17.615587

U1*U1 29.469076 24.061400

E(2) 136.503030 14.469292

E(1) : ONE-STEP ESTIMATE OF SIGMA SQUARED (IGNORING GROUPING)

E(2) : TWO-STEP ESTIMATE OF SIGMA SQUARED

SEE DOCUMENTATION FOR FURTHER ELABORATION ON THESE SUBJECTS

As can be seen, the overall mean (G1) equals the mean of Variable 3, the score on
the posttest (31.02). Ignoring grouping will result in 166.19 for σ2. Using the two-step
procedure lowers the estimate to 136.50 and also gives an estimate of the variance of uj

(29.47).

Part 6 contains the FIML estimates. This part is default and appears in all output.
Compared to the previous ordinary least squares estimates part, T-values and probabilities
for T are given. Here, unlike for the OLS estimates, these are theoretically justified.

FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATES

FIXED PARAMETERS

LABEL ESTIMATE SE T PROB(T)

G1 31.322433 3.123586 10.03 0.0000

RANDOM PARAMETERS

LABEL ESTIMATE SE T PROB(T)
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U1*U1 26.935304 23.900162 1.13 0.2597

E 138.833164 14.799662 9.38 0.0000

INTRA-CLASS CORRELATION = 26.9353 / ( 138.8332 + 26.9353 ) = 0.1625

CONVERGENCE CRITERION REACHED

# ITERATIONS = 5

-2*LOG(L) = 1398.626571

Whenever there are residuals associated with the grand mean, the intra-class correla-
tion is computed and given just below the FIML estimates. The formula for the intra-class
correlation is

ρ =
σ2

τ + σ2
(4.2)

and in MLA notation,

ρ =
E

U1 ∗ U1 + E
(4.3)

If the technical keyword is omitted from the /OUTPUT statement a short description
of the final iteration results is given in the FIML part. Here, convergence is reached in 5
iterations and yields a -2*LOG(L) value of 1398.63.

The final part of the output contains some system information. The format of the
date is DD-MM-YYYY and for the time HH:MM:SS. The elapsed time is in 1

100 seconds
(HH:MM:SS:HH). The program is terminated correctly in about a quarter of a second,
as can be seen in the seventh and final, default, part of the output.

SYSTEM INFORMATION

START FINISH ELAPSED

DATE 19-12-1994 19-12-1994

TIME 12:52:47 12:52:47 00:00:00:16

PROGRAM TERMINATED CORRECTLY

4.2 Analysis of covariance

For the next example the same Sesame Street data set is used. Now, an analysis of
covariance is performed on these data with MLA. The model to be estimated is

Yij = γ1 + γ2Xij + uj + εij , (4.4)

where γ1 is the overall mean, Xij is the covariate, uj is the Level-2 error component and
εij is the Level-1 error component. Equation (4.4) can be divided into separate equations,
one equation for Level-1 and in this case two Level-2 equations:

Yij = β1j + β2jXij + εij ,

β1j = γ1 + uj,

β2j = γ2.

Along with the other statements, the input file is as follows:
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/TITLE

MLA example 2: analysis of covariance

/DATA

file = sesame.dat

vars = 3

id2 = 1

/MODEL

b1 = g1 + u1

b2 = g2

v3 = b1 + b2*v2 + e

/OUTPUT

olsq

/END

Compared to the previous example, a fixed parameter (G2) is added in the OLS-
estimates part. This is the regression coefficient of the Level-1 covariate containing the
pretest score.

ORDINARY LEAST SQUARES ESTIMATES

FIXED PARAMETERS

LABEL ESTIMATE SE

G1 14.672451 1.621040

G2 0.764871 0.067590

RANDOM PARAMETERS

LABEL ESTIMATE SE

E(1) 96.968087 10.307591

U1*U1 7.217027 5.892678

E(2) 88.980063 9.458474

E(1) : ONE-STEP ESTIMATE OF SIGMA SQUARED (IGNORING GROUPING)

E(2) : TWO-STEP ESTIMATE OF SIGMA SQUARED

SEE DOCUMENTATION FOR FURTHER ELABORATION ON THESE SUBJECTS

The parameter estimate for the regression coefficient of the covariate is also added
to the FIML output part. The additional T-value and PROB(T) indicate that the pretest
variable explains a significant part of the variance of the posttest variable (T = 10.18,
PROB(T) = 0.0000).

FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATES

FIXED PARAMETERS

LABEL ESTIMATE SE T PROB(T)

G1 16.196937 2.226470 7.27 0.0000

G2 0.699891 0.068761 10.18 0.0000

RANDOM PARAMETERS

LABEL ESTIMATE SE T PROB(T)

U1*U1 6.766701 6.759616 1.00 0.3168

E 89.831188 9.576026 9.38 0.0000

INTRA-CLASS CORRELATION = 6.7667 / ( 89.8312 + 6.7667 ) = 0.0701
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CONVERGENCE CRITERION REACHED

# ITERATIONS = 7

-2*LOG(L) = 1318.217264

Entering the covariate into the analysis is justified, because it has a statistically signif-
icant non-zero effect. The same justification could be made with the use of the likelihood-
ratio test. This test is based on the fact that the difference between minus two times
the loglikelihood function value (-2*LOG(L)) of two nested models follows a chi-square
distribution with the number of degrees of freedom equal to the difference in the num-
ber of free parameters. The two models (Example 1 and Example 2) are nested and the
likelihood-ratio test can be applied. The difference between the function values is approx-
imately 1399 − 1318 = 81, and the degrees of freedom is equal to 1. The likelihood-ratio
test indicates that the effect is highly significant.

4.3 Repeated measures analysis

The rat data set used for the repeated measures example has been analyzed by a number
of investigators. The first use of these data with multilevel analysis appeared in (Strenio,
Weisberg, & Bryk, 1983). The rat data consist of the weights of ten rats. These rats were
measured five times with four week intervals from birth. Also included in the model is
the weight of each rat’s mother (V2). Divided into two levels, the equations are given by

Yij = β1j + β2jXij + εij ,

β1j = γ1 + γ2 ∗ Wj + u1j ,

β2j = γ3 + γ4 ∗ Wj + u2j ,

where Xij (V5) is the age (in weeks, divided by 4, minus 2, so that it is in deviation of
the mean) of the rat. Wj (V2) represents the weight of the mother. The input file for the
repeated measures example is as follows.

/TITLE

MLA example 3; repeated measures analysis

/DATA

file = rat.dat

vars = 4

id2 = 3

/MODEL

b1 = g1 + g2*v2 + u1

b2 = g3 + g4*v2 + u2

v1 = b1 + b2*v4 + e

/OUTPUT

outc,post

/END

For each rat a multiple regression analysis is performed and displayed in the Level-2
outcomes part. This part is optional and displayed through the use of the outcomes

keyword in the /OUTPUT statement.

LEVEL-2 OUTCOMES: ORDINARY LEAST SQUARES ESTIMATES PER LEVEL-2 UNIT

UNIT SIZE B1 SE(B1) T PROB(T)

1 5 111.4000 4.9044 22.71 0.0000

2 5 120.2000 2.9967 40.11 0.0000

3 5 119.8000 6.7621 17.72 0.0000

4 5 103.4000 3.8018 27.20 0.0000

45



5 5 100.0000 3.2701 30.58 0.0000

6 5 99.0000 4.4505 22.24 0.0000

7 5 93.0000 5.5281 16.82 0.0000

8 5 113.6000 1.6391 69.31 0.0000

9 5 90.4000 4.5284 19.96 0.0000

10 5 121.0000 2.4549 49.29 0.0000

MEAN 107.1800

UNIT SIZE B2 SE(B2) T PROB(T)

1 5 28.8000 3.4679 8.30 0.0000

2 5 28.1000 2.1190 13.26 0.0000

3 5 36.3000 4.7816 7.59 0.0000

4 5 27.2000 2.6882 10.12 0.0000

5 5 23.4000 2.3123 10.12 0.0000

6 5 29.3000 3.1470 9.31 0.0000

7 5 25.6000 3.9090 6.55 0.0000

8 5 19.7000 1.1590 17.00 0.0000

9 5 23.6000 3.2021 7.37 0.0000

10 5 25.6000 1.7359 14.75 0.0000

MEAN 26.7600

UNIT SIZE SIGMA2 SE(SIGMA2) T PROB(T)

1 5 120.2667 98.1973 1.22 0.2207

2 5 44.9000 36.6607 1.22 0.2207

3 5 228.6333 186.6783 1.22 0.2207

4 5 72.2667 59.0055 1.22 0.2207

5 5 53.4667 43.6554 1.22 0.2207

6 5 99.0333 80.8604 1.22 0.2207

7 5 152.8000 124.7607 1.22 0.2207

8 5 13.4333 10.9683 1.22 0.2207

9 5 102.5333 83.7181 1.22 0.2207

10 5 30.1333 24.6038 1.22 0.2207

MEAN 91.7467

In the next part we can see that both G2 and G4 indicate that the mother’s weight has
a positive effect on the rat’s weight. The rat’s weight starts higher and rises faster with
a heavier mother.

FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATES

FIXED PARAMETERS

LABEL ESTIMATE SE T PROB(T)

G1 18.873660 18.784897 1.00 0.3150

G2 0.545101 0.115348 4.73 0.0000

G3 2.967709 10.597305 0.28 0.7794

G4 0.146866 0.065072 2.26 0.0240

RANDOM PARAMETERS

LABEL ESTIMATE SE T PROB(T)

U1*U1 18.585604 17.183843 1.08 0.2794

U2*U1 -6.598562 6.911578 -0.95 0.3397

U2*U2 2.580007 5.765943 0.45 0.6545

E 91.746665 23.688887 3.87 0.0001

INTRA-CLASS CORRELATION = 18.5856 / ( 91.7467 + 18.5856 ) = 0.1685

CONVERGENCE CRITERION REACHED
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# ITERATIONS = 10

-2*LOG(L) = 376.262296

The posterior means may be compared with the Level-2 outcomes. As can be seen,
the posterior means tend to be shrunken towards the grand mean, and therefore have less
variance than the Level-2 outcomes.

POSTERIOR MEANS

UNIT B1

1 111.2096

2 123.6838

3 118.5373

4 103.2717

5 102.5805

6 98.5713

7 92.8730

8 109.4713

9 96.1403

10 115.4610

MEAN 107.1800

UNIT B2

1 28.0714

2 31.7001

3 31.3653

4 26.1328

5 25.9444

6 25.8216

7 23.7186

8 23.1345

9 26.1874

10 25.5239

MEAN 26.7600

4.4 Multilevel analysis

In 1988, the National Center for Education Statistics of the U.S. Department of Education
collected data on amount of homework done and scores on math tests from students of
more than 1000 schools. The subset from this National Education Longitudinal Study
(NELS) of 1988 data used for this example consists of ten manually selected schools,
containing 260 students from Public (coded 1) and Private (coded 0) schools. These data
were also used as an example analysis in Kreft and Van Der Leeden (1994). The model
equations are given by

Yij = β1j + β2jXij + εij ,

β1j = γ1 + γ2 ∗ Wj + u1j ,

β2j = γ3 + γ4 ∗ Wj + u2j ,

where Yij represents the score on the math test (V9), Xij (V5) is the amount of homework
done, and Wj is the variable indicating the type of school (Public or Private) (V17). The
following input file shows the application of the /TECHNICAL statement as well, where the
maximum number of iterations is raised to 100 and both convergence criteria are set to
0.00001.
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/TITLE

MLA example 4: multilevel analysis

/DATA

file = nels.dat

vars = 17

id2 = 1

/MODEL

b1 = g1 + g2*v17 + u1

b2 = g3 + g4*v17 + u2

v9 = b1 + b2*v5 + e

/TECHNICAL

maxiter = 100

fconv = 0.00001

pconv = 0.00001

/OUTPUT

tech

/END

The special output given contains the intermediate iteration results. These are the
results during the full maximum likelihood estimation. Starting with the values from the
two-step OLS estimation, we can see that the first value is already rather good. More
about the difference between first iteration and final estimates in two level models can be
found in Van Der Leeden and Busing (1994). The estimation process stopped after 14
iterations. The difference between the last two -2*LOG(L) values was less than the user
provided fconvergence (0.00001).

TECHNICAL ITERATION INFORMATION

ITER -2*LOG(L) NORM(dP) NORM(G)

1 1749.8685307 1.9340571 11.8087864

2 1749.6327546 0.6335839 1.1931032

3 1749.6156005 0.0572362 0.7851259

4 1749.6110404 0.1167412 0.7776501

5 1749.4998336 0.4502308 0.7366149

6 1749.4862306 0.0849216 0.7000794

7 1749.4491604 0.1256636 0.6790682

8 1749.4462601 0.1138294 0.0593836

9 1749.4441677 0.1133145 0.0583135

10 1749.4439035 0.0301898 0.0290881

11 1749.4439029 0.0014868 0.0020701

12 1749.4439027 0.0046646 0.0002624

13 1749.4439026 0.0005529 0.0002900

14 1749.4439026 0.0000003 0.0000056

CONVERGENCE CRITERION REACHED

NORM(dP) : LENGTH OF DIFFERENCE BETWEEN SUCCESSIVE PARAMETER-VECTORS

NORM(G) : LENGTH OF GRADIENT-VECTOR

SEE DOCUMENTATION FOR FURTHER ELABORATION ON THESE SUBJECTS

The following part gives the FIML estimates.

FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATES

FIXED PARAMETERS

LABEL ESTIMATE SE T PROB(T)

G1 59.098244 6.547975 9.03 0.0000

G2 -15.827270 6.925261 -2.29 0.0223

G3 1.108726 4.648499 0.24 0.8115

G4 0.922201 4.916968 0.19 0.8512

RANDOM PARAMETERS
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LABEL ESTIMATE SE T PROB(T)

U1*U1 39.862888 20.314503 1.96 0.0497

U2*U1 -28.697577 14.153063 -2.03 0.0426

U2*U2 21.390296 10.257549 2.09 0.0370

E 42.782546 3.902927 10.96 0.0000

INTRA-CLASS CORRELATION = 39.8629 / ( 42.7825 + 39.8629 ) = 0.4823

As can be concluded from the output, the interaction term G4 is not significant. A
model without this term might be preferred because it is a more parsimonious model. It
does, however, not alter the significant negative effect of the school type.

4.5 Simulation study

In the Junior School Project (Inner London Education Authority, 1987), the following
variables were collected: Mathematics Achievement in Years 1 through 3, an ability mea-
sure (score on the Ravens test in Year 1), and sex. There are 48 classes present from
36 different schools with a total of 887 children. The input file shown below represents
a bootstrap study with resampling from the shrunken residuals. Resampling from both
levels is used with 200 replications. Together with the other input, the input file is as
follows.

/TITLE

MLA example 5: simulation study

/DATA

file = jsp.dat

vars = 7

id2 = 1

/MODEL

b1 = g1 + u1

b2 = g2

b3 = g3

v5 = b1 + b2*v4 + b3*v3 + e

/SIMULATION

kind = bootstrap

method = cases

resample = 1

replications = 200

seed = 1

/END

The FIML estimates are given below. In fact, this model is an analysis of covariance
with two covariates at the first level (G2 and G3). Thus only one random estimate for the
second level is specified (U1).

FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATES

FIXED PARAMETERS

LABEL ESTIMATE SE T PROB(T)

G1 15.251835 0.896721 17.01 0.0000

G2 0.592560 0.032978 17.97 0.0000

G3 1.272573 0.443152 2.87 0.0041

RANDOM PARAMETERS

LABEL ESTIMATE SE T PROB(T)
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U1*U1 4.049940 1.184081 3.42 0.0006

E 27.852020 1.359013 20.49 0.0000

INTRA-CLASS CORRELATION = 4.0499 / ( 27.8520 + 4.0499 ) = 0.1269

CONVERGENCE CRITERION REACHED

# ITERATIONS = 9

-2*LOG(L) = 5527.578950

After 200 bootstrap replications, there are no replications that are incorrect (i. e.,
with inadmissible parameter values or non-convergence). The final bootstrap estimates
that were computed are given below.

BOOTSTRAP ESTIMATES

# REPLICATIONS = 200

# CORRECT REPLICATIONS = 200

FIXED PARAMETERS

LABEL ESTIMATE SE

G1 15.254733 0.044857

G2 0.592006 0.007469

G3 1.271495 0.028049

RANDOM PARAMETERS

LABEL ESTIMATE SE

U1*U1 4.013912 0.300021

E 27.954714 0.385577

This bootstrap simulation took about half a minute on a 486-DX2 66MHz. This
amounts to 6 replications per second. This means that there do not have to be any
obstacles for using a high number of replications. Literature suggests many different
numbers, ranging from 100 replications to 1000 replications, taking 17 seconds to 3 minutes
computer time.
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Appendix A

Technical Appendix

In this appendix, the theory of maximum likelihood estimation used in the MLA program
will be discussed in detail. Other authors, such as Bryk and Raudenbush (1992) and
(Longford, 1987) give some technical detail as well, but much is left to the reader. We
think, however, that it is useful to explain in much more detail what is actually done
in the program, and this appendix serves this purpose. In this appendix, the (minus-
log-)likelihood function and its gradient function are derived, as well as computationally
more efficient formulas of them. The asymptotic covariance matrix of the maximum
likelihood estimators and computationally efficient formulas for it are derived and the
explicit imposition of implicit constraints in the model is discussed.

A.1 The model and the likelihood function

To find maximum likelihood estimates, we start with the model (2.4):

yj = Xjγ + Zjuj + εj (A.1)

εj ∼ N(0, σ2INj
) (A.2)

uj ∼ N(0, Θ), (A.3)

where yj is a vector with the endogenous variable for the Nj Level-1 units in Level-2 unit
j, Xj is an Nj×p matrix of exogenous variables for the Level-1 units in Level-2 unit j, and
Zj is an Nj × q matrix of exogenous variables for the Level-1 units in Level-2 unit j. The
p-vector γ is a vector of fixed regression coefficients, the q-vector uj is a vector of random
regression coefficients in Level-2 unit j, and the Nj-vector εj is a vector of residuals of
the Level-1 units in Level-2 unit j. It is assumed that εj and uj are independent of each
other and independent of εj′ and uj′, where j′ 6= j.

From the model equations (A.1)–(A.3), it is found that, conditional on Xj and Zj , yj

is normally distributed and the expectation and covariance matrix of yj are

Eyj = Xjγ (A.4)

Vj = E(yj − Xjγ)(yj − Xjγ)′

= σ2INj
+ ZjΘZ ′

j. (A.5)

Consequently, the probability density of yj is

f(yj) =
1

(2π)Nj/2(det Vj)1/2
e−

1

2
(yj−Xjγ)′V −1

j (yj−Xjγ),
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so that the contribution of Level-2 unit j to the minus-log-likelihood function is

Lj = − log f(yj)

=
Nj

2
log(2π) +

1

2
log detVj +

1

2
(yj − Xjγ)′V −1

j (yj − Xjγ)

and the minus-log-likelihood function for the whole sample is

L =

J∑

j=1

Lj

=
N

2
log(2π) +

1

2

J∑

j=1

log detVj +
1

2

J∑

j=1

(yj − Xjγ)′V −1
j (yj − Xjγ), (A.6)

where J is the number of Level-2 units, and N is the total number of Level-1 units,
N =

∑J
j=1 Nj , where Nj is the number of Level-1 units in Level-2 unit j. This is the

function that has to be minimized with respect to the parameters to obtain maximum
likelihood estimators. To minimize this function, the program uses the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) minimization method (see, e.g., Press et al., 1986), which uses
the gradient of the function to be minimized.

In section A.3, computationally efficient formulas for the function and the gradient
will be derived. In section A.4, the asymptotic covariance matrix of the estimators will be
derived. In section A.5, a reparametrization of the model will be discussed, in which the
restriction of positive (semi-)definiteness of covariance matrices is explicitly imposed. But
first, in the next section, some useful notation, matrices, and formulas will be introduced.

A.2 Some useful formulas

First, we define the matrix
Gj = Iq + Z ′

jZjΘ/σ2. (A.7)

This matrix will be used frequently in the following.

The inverse of Vj. Maddala (1977, p. 446), states the following formula:

(A + BDB′)−1 = A−1 − A−1B(D−1 + B′A−1B)−1B′A−1,

where A and D are square nonsingular matrices and B is a matrix of appropriate dimen-
sions. This formula can also be written as

(A + BDB′)−1 = A−1 − A−1B(D−1 + B′A−1B)−1B′A−1

= A−1 − A−1B[(I + B′A−1BD)D−1]−1B′A−1

= A−1 − A−1BD(I + B′A−1BD)−1B′A−1. (A.8)

By defining A = σ2INj
, B = Zj, and D = Θ, it follows that Vj can be written as

A + BDB′. Consequently, the inverse of Vj can be found from equation (A.8):

V −1
j = σ−2INj

−
(
σ−2INj

)
ZjΘ

[
Iq + Z ′

j

(
σ−2INj

)
ZjΘ

]−1
Z ′

j

(
σ−2INj

)

= σ−2INj
− σ−4ZjΘ

(
Iq + Z ′

jZjΘ/σ2
)−1

Z ′
j

= σ−2INj
− σ−4ZjΘG−1

j Z ′
j. (A.9)
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The determinant of Vj. Based on Maddala (1977, pp. 446–447), the following formula
for the determinant of a partitioned matrix can be derived:

det

(
A B
C D

)
= det

(
A B
C D

)(
I −A−1B
0 I

)

= det

(
A 0
C D − CA−1B

)

= det A det(D − CA−1B),

where A and D are square nonsingular matrices, and B and C are matrices of appropriate
orders.

Similarly,

det

(
A B
C D

)
= det

(
A B
C D

)(
I 0

−D−1C I

)

= detD det(A − BD−1C).

Consequently,
detA det(D − CA−1B) = det D det(A − BD−1C). (A.10)

Now, define A = Iq, B = Z ′
j, C = −ZjΘ, and D = σ2INj

. The matrix Vj can now be

written as Vj = D−CA−1B, and the determinant of A is 1. Consequently, using equation
(A.10),

detVj = detAdet(D − CA−1B)

= detD det(A − BD−1C)

= det(σ2INj
) det[Iq − (Z ′

j)(σ
2INj

)−1(−ZjΘ)]

= (σ2)Nj det(Iq + Z ′
jZjΘ/σ2)

= (σ2)Nj det Gj . (A.11)

The factor Z ′
jV

−1
j . In the following, the factor Z ′

jV
−1
j will frequently pop up. This

factor can be written in a computationally more efficient form:

Z ′
jV

−1
j = Z ′

j(σ
−2INj

− σ−4ZjΘG−1
j Z ′

j) (from (A.9))

= σ−2Z ′
j − σ−4Z ′

jZjΘG−1
j Z ′

j

= σ−2Z ′
j − σ−2(Z ′

jZjΘ/σ2)G−1
j Z ′

j

= σ−2Z ′
j − σ−2(Iq + Z ′

jZjΘ/σ2 − Iq)G
−1
j Z ′

j

= σ−2Z ′
j − σ−2(Gj − Iq)G

−1
j Z ′

j (from (A.7))

= σ−2Z ′
j − σ−2Z ′

j + σ−2G−1
j Z ′

j

= σ−2G−1
j Z ′

j . (A.12)

From (A.12) it follows that

Z ′
jV

−1
j Zj = σ−2G−1

j Z ′
jZj (A.13)

and

Z ′
jV

−2
j Zj = σ−2G−1

j Z ′
jV

−1
j Zj

= σ−4G−2
j Z ′

jZj . (A.14)
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The traces of V −1
j and V −2

j . From equation (A.9), we find

trV −1
j = tr

(
σ−2INj

− σ−4ZjΘG−1
j Z ′

j

)

= σ−2Nj − σ−4tr(ZjΘG−1
j Z ′

j)

= σ−2Nj − σ−4tr(Z ′
jZjΘG−1

j )

= σ−2Nj − σ−2tr[(Z ′
jZjΘ/σ2)G−1

j ]

= σ−2Nj − σ−2tr[(Iq + Z ′
jZjΘ/σ2 − Iq)G

−1
j ]

= σ−2Nj − σ−2tr[(Gj − Iq)G
−1
j ]

= σ−2Nj − σ−2tr(Iq − G−1
j )

= σ−2Nj − σ−2q + σ−2trG−1
j . (A.15)

Similarly, using (A.9), (A.15), and (A.12),

trV −2
j = tr

[(
σ−2INj

− σ−4ZjΘG−1
j Z ′

j

)
V −1

j

]

= σ−2trV −1
j − σ−4tr(ZjΘG−1

j Z ′
jV

−1
j )

= σ−4(Nj − q) + σ−4trG−1
j − σ−4tr

[
ZjΘG−1

j (σ−2G−1
j Z ′

j)
]

= σ−4(Nj − q) + σ−4trG−1
j − σ−4tr

{[
(Z ′

jZjΘ/σ2)G−1
j

]
G−1

j

}

= σ−4(Nj − q) + σ−4trG−1
j − σ−4tr

[
(Iq − G−1

j )G−1
j

]

= σ−4(Nj − q) + σ−4trG−1
j − σ−4trG−1

j + σ−4trG−2
j

= σ−4(Nj − q) + σ−4trG−2
j . (A.16)

Differential formulas. As was stated in the previous section, the maximum likelihood
estimates are obtained by minimizing the minus-log-likelihood function by the BFGS
method, which uses the gradient of the function. To find the gradient, the differential
notation of Magnus and Neudecker (1985, 1988) will be used. The key property of dif-
ferentials is their relation with derivatives through the following equivalence: Let f be a
vector or scalar function of a vector or scalar variable x, then

∂f

∂x′
= A(x) ⇔ df = A(x) dx.

The differential of a matrix is defined through the vector that stacks its columns: vec dF =
dvecF . Note that the differential of a scalar, vector, or matrix is a scalar, vector, or matrix
of the same size.

Some useful formulas are (Magnus & Neudecker, 1985, 1988):

d(c) = 0

d(cg) = cdg

d(g + h) = dg + dh

d(gh) = (dg)h + g dh

d(log f) =
1

f
df

d(detF ) = detF tr(F−1 dF )

d(trF ) = tr dF

d(F−1) = −F−1(dF )F−1,
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where c is a scalar, vector, or matrix constant, g and h may be scalars, vectors, or matrices
(provided the expression is a valid expression), f is a scalar, and F is a matrix.

There is also a chain rule: If f is a function of x and g is a function of f , then (cf.
Magnus & Neudecker, 1988, p. 91)

∂g

∂x′
=

∂g

∂f ′

∂f

∂x′
.

This means the following for the differentials: If dg = Adf and df = Bdx, then dg =
ABdx, which illustrates that, informally speaking, the formulas for the differentials can
be filled in sequentially. A similar formula holds for differentials of matrices. In the
following, it will be clear how the chain rule can be applied.

The formulas above can be used to derive some important differentials:

dVj = d(σ2INj
+ ZjΘZ ′

j)

= (dσ2)INj
+ Zj(dΘ)Z ′

j (A.17)

d detVj = detVj tr(V −1
j dVj) (A.18)

dV −1
j = −V −1

j (dVj)V
−1
j (A.19)

d log detVj =
1

detVj
ddetVj

=
1

detVj
detVj tr(V −1

j dVj)

= tr(V −1
j dVj). (A.20)

Combining equation (A.19) with (A.17), we find that

dV −1
j = −V −1

j [(dσ2)INj
+ Zj(dΘ)Z ′

j ]V
−1
j

= −V −2
j dσ2 − V −1

j Zj(dΘ)Z ′
jV

−1
j . (A.21)

Consider a term of the form

dT = trAdΘ,

where Θ is a symmetric q × q matrix. This term can be written as

dT =

q∑

k=1

q∑

l=1

AkldΘlk

=

q∑

k=1

k−1∑

l=1

(Akl + Alk)dΘkl +

q∑

k=1

AkkdΘkk,

so

∂T

∂Θkl
= Akl + Alk (A.22)

= 2Akl, if A is symmetric, (A.23)

and

∂T

∂Θkk
= Akk, (A.24)
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where k 6= l.

Similarly, consider a term of the form

dS = [A(dΘ)B]kl,

where Θ is a symmetric q×q matrix, and A and B are matrices. This term can be written
as

dS =

q∑

u=1

q∑

v=1

Aku(dΘuv)Bvl

=

q∑

u=1

u−1∑

v=1

(AkuBvl + AkvBul)dΘuv +

q∑

u=1

AkuBuldΘuu,

so

∂S

∂Θuv
= AkuBvl + AkvBul (A.25)

and

∂S

∂Θuu
= AkuBul, (A.26)

where u 6= v.

A.3 Computational formulas for the function and gradient

The formula (A.6) of the minus-log-likelihood function is computationally inefficient, be-
cause a matrix of size Nj has to be inverted, and its determinant calculated. Therefore, in
this section a computationally efficient formula will be derived, based on Longford (1987),
and using formulas from the previous section. Along the same lines, computationally effi-
cient formulas for the derivatives of this function with respect to the parameters will also
be derived.

56



Combining (A.6), (A.9), and (A.11), we find the following formula for L:

L =
N

2
log 2π +

1

2

J∑

j=1

log[(σ2)Nj detGj ]

+
1

2

J∑

j=1

(yj − Xjγ)′[σ−2INj
− σ−4ZjΘG−1

j Z ′
j](yj − Xjγ)

=
N

2
log 2π +

N

2
log(σ2) +

1

2

J∑

j=1

log det Gj

+
1

2
σ−2

J∑

j=1

(yj − Xjγ)′(yj − Xjγ)

− 1

2
σ−4

J∑

j=1

(yj − Xjγ)′ZjΘG−1
j Z ′

j(yj − Xjγ)

=
N

2
log 2π +

N

2
log(σ2) +

1

2

J∑

j=1

log det Gj

+
1

2
σ−2






J∑

j=1

y′jyj


− 2γ′




J∑

j=1

X ′
jyj


+ γ′




J∑

j=1

X ′
jXj


 γ




− 1

2
σ−4

J∑

j=1

(Z ′
jyj − Z ′

jXjγ)′ΘG−1
j (Z ′

jyj − Z ′
jXjγ). (A.27)

Formula (A.27) is a computationally efficient formula, and this is the formula that is
implemented in the program.

To find the gradient of L, we start with the differential of L:

dL =
1

2

J∑

j=1

d log det Vj

+
1

2

J∑

j=1

2(yj − Xjγ)′V −1
j (−Xjdγ)

+
1

2

J∑

j=1

(yj − Xjγ)′d(V −1
j )(yj − Xjγ). (A.28)

Combining (A.28) with (A.20), (A.21) and (A.17), we find

dL =
1

2

J∑

j=1

tr(V −1
j dVj) −

J∑

j=1

(yj − Xjγ)′V −1
j Xjdγ

− 1

2

J∑

j=1

(yj − Xjγ)′[V −2
j dσ2 + V −1

j Zj(dΘ)Z ′
jV

−1
j ](yj − Xjγ)
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=
1

2

J∑

j=1

tr{V −1
j [(dσ2)INj

+ Zj(dΘ)Z ′
j ]}

−
J∑

j=1

(yj − Xjγ)′V −1
j Xjdγ

− 1

2

J∑

j=1

(yj − Xjγ)′V −2
j (dσ2)(yj − Xjγ)

− 1

2

J∑

j=1

(yj − Xjγ)′V −1
j Zj(dΘ)Z ′

jV
−1
j (yj − Xjγ)

=


1

2

J∑

j=1

trV −1
j


dσ2 +

1

2
tr[V −1

j Zj(dΘ)Z ′
j ]

−
J∑

j=1

(yj − Xjγ)′V −1
j Xjdγ

− 1

2

J∑

j=1

[
(yj − Xjγ)′V −2

j (yj − Xjγ)
]
dσ2

− 1

2

J∑

j=1

tr
{

[(yj − Xjγ)′V −1
j Zj ](dΘ)[Z ′

jV
−1
j (yj − Xjγ)]

}

=


1

2

J∑

j=1

trV −1
j


dσ2 +

1

2
tr(Z ′

jV
−1
j ZjdΘ)

−




J∑

j=1

(yj − Xjγ)′V −1
j Xj


dγ

−


1

2

J∑

j=1

(yj − Xjγ)′V −2
j (yj − Xjγ)


dσ2

− 1

2

J∑

j=1

tr

({[
Z ′

jV
−1
j (yj − Xjγ)

] [
Z ′

jV
−1
j (yj − Xjγ)

]′}
dΘ

)
.

So

∂L

∂γ′
= −

J∑

j=1

(yj − Xjγ)′V −1
j Xj (A.29)

and

∂L

∂σ2
=

1

2

J∑

j=1

trV −1
j − 1

2

J∑

j=1

(yj − Xjγ)′V −2
j (yj − Xjγ), (A.30)

and, using (A.23) and (A.24),

∂L

∂Θkl
=

J∑

j=1

(Z ′
jV

−1
j Zj)kl

−
J∑

j=1

{[
Z ′

jV
−1
j (yj − Xjγ)

] [
Z ′

jV
−1
j (yj − Xjγ)

]}
kl
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=
J∑

j=1

(Z ′
jV

−1
j Zj)kl

−
J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
l

(A.31)

and

∂L

∂Θkk
=

1

2

J∑

j=1

(Z ′
jV

−1
j Zj)kk − 1

2

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]2
k
. (A.32)

Now, using (A.9), (A.12), (A.13), and (A.15), we find computationally more efficient
formulas for the derivatives:

∂L

∂γ
= −

J∑

j=1

X ′
jV

−1
j (yj − Xjγ)

= −
J∑

j=1

X ′
j(σ

−2INj
− σ−4ZjΘG−1

j Z ′
j)(yj − Xjγ)

= −σ−2






J∑

j=1

X ′
jyj


−




J∑

j=1

X ′
jXj


 γ




+ σ−4
J∑

j=1

X ′
jZjΘG−1

j (Z ′
jyj − Z ′

jXjγ),

∂L

∂σ2
=

1

2

J∑

j=1

trV −1
j − 1

2

J∑

j=1

(yj − Xjγ)′V −2
j (yj − Xjγ)

=
1

2
σ−2(N − Jq) +

1

2
σ−2

J∑

j=1

trG−1
j

− 1

2

J∑

j=1

(yj − Xjγ)′(σ−2INj
− σ−4ZjΘG−1

j Z ′
j)V

−1
j (yj − Xjγ)

=
1

2
σ−2(N − Jq) +

1

2
σ−2

J∑

j=1

trG−1
j

− 1

2
σ−2

J∑

j=1

(yj − Xjγ)′V −1
j (yj − Xjγ)

+
1

2
σ−4

J∑

j=1

(yj − Xjγ)′ZjΘG−1
j Z ′

jV
−1
j (yj − Xjγ)

=
1

2
σ−2(N − Jq) +

1

2
σ−2

J∑

j=1

trG−1
j

− 1

2
σ−2

J∑

j=1

(yj − Xjγ)′(σ−2INj
− σ−4ZjΘG−1

j Z ′
j)(yj − Xjγ)

+
1

2
σ−4

J∑

j=1

(yj − Xjγ)′ZjΘG−1
j (σ−2G−1

j Z ′
j)(yj − Xjγ)
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=
1

2
σ−2(N − nq) +

1

2
σ−2

J∑

j=1

trG−1
j

− 1

2
σ−4






J∑

j=1

y′jyj


− 2γ′




J∑

j=1

X ′
jyj


+ γ′




J∑

j=1

X ′
jXj


 γ




+
1

2
σ−6

J∑

j=1

(Z ′
jyj − Z ′

jXjγ)′ΘG−1
j (Z ′

jyj − Z ′
jXjγ)

+
1

2
σ−6

J∑

j=1

(Z ′
jyj − Z ′

jXjγ)′ΘG−2
j (Z ′

jyj − Z ′
jXjγ)

=
1

2
σ−2(N − nq) +

1

2
σ−2

J∑

j=1

trG−1
j

− 1

2
σ−4






J∑

j=1

y′jyj


− 2γ′




J∑

j=1

X ′
jyj


+ γ′




J∑

j=1

X ′
jXj


 γ




+
1

2
σ−6

J∑

j=1

(Z ′
jyj − Z ′

jXjγ)′Θ(Iq + G−1
j )G−1

j (Z ′
jyj − Z ′

jXjγ),

∂L

∂Θkl
=

J∑

j=1

(Z ′
jV

−1
j Zj)kl

−
J∑

j=1

[Z ′
jV

−1
j (yj − Xjγ)]k[Z ′

jV
−1
j (yj − Xjγ)]l

=

J∑

j=1

(σ−2G−1
j Z ′

jZj)kl

−
J∑

j=1

[σ−2G−1
j (Z ′

jyj − Z ′
jXjγ)]k[σ

−2G−1
j (Z ′

jyj − Z ′
jXjγ)]l,

and

∂L

∂Θkk
=

1

2

J∑

j=1

(σ−2G−1
j Z ′

jZj)kk − 1

2

J∑

j=1

[σ−2G−1
j (Z ′

jyj − Z ′
jXjγ)]2k.

These formulas are implemented in the program. Note (cf. Bryk & Raudenbush,
1992, p. 239) that the function and the derivatives depend on the data only through the
terms

∑J
j=1 y′jyj ,

∑J
j=1 X ′

jyj,
∑J

j=1 X ′
jXj , Z ′

jyj, Z ′
jXj , and Z ′

jZj (through Gj), the first
of which is a scalar, the second a p-vector, and the third a symmetric p × p matrix. The
last three are a q-vector, a q × p matrix, and a symmetric q × q matrix, for each Level-2
unit. The symmetric matrices may be stored linearly, thereby saving additional memory.

A.4 The asymptotic covariance matrix of the estimators

The asymptotic distribution of the maximum likelihood estimators, under appropriate
general conditions is given by (see Magnus, 1978)

√
N
(
θ̂ML − θ

) L−→ N

[
0, lim

N→∞

(
I(θ)

N

)−1
]

, (A.33)

60



where N is the sample size,

I(θ) = E

(
∂2L

∂θ ∂θ′

)
, (A.34)

and L is the minus-log-likelihood function. Therefore, the asymptotic covariance matrix of
the estimators is derived from the matrix of second derivatives of L (the Hessian matrix).

From (A.29) we have

∂L

∂γ
= −

J∑

j=1

X ′
jV

−1
j (yj − Xjγ).

Thus,

d

(
∂L

∂γ

)
= −

J∑

j=1

X ′
j(dV −1

j )(yj − Xjγ) +

J∑

j=1

X ′
jV

−1
j Xj dγ

=
J∑

j=1

X ′
j [V

−2
j dσ2 + V −1

j Zj(dΘ)Z ′
jV

−1
j ](yj − Xjγ)

+

J∑

j=1

X ′
jV

−1
j Xj dγ (using (A.21))

=




J∑

j=1

X ′
jV

−2
j (yj − Xjγ)


 dσ2

+

J∑

j=1

(X ′
jV

−1
j Zj)(dΘ)[Z ′

jV
−1
j (yj − Xjγ)]

+




J∑

j=1

X ′
jV

−1
j Xj


 dγ. (A.35)

Therefore,

∂2L

∂γ ∂γ′
=

J∑

j=1

X ′
jV

−1
j Xj, (A.36)

∂2L

∂γ ∂σ2
=

J∑

j=1

X ′
jV

−2
j (yj − Xjγ), (A.37)

and, using (A.25) and (A.26),

∂2L

∂γk ∂Θuv
=

J∑

j=1

{
(X ′

jV
−1
j Zj)ku[Z ′

jV
−1
j (yj − Xjγ)]v

+ (X ′
jV

−1
j Zj)kv[Z

′
jV

−1
j (yj − Xjγ)]u

}
, (A.38)

∂2L

∂γk ∂Θuu
=

J∑

j=1

(X ′
jV

−1
j Zj)ku[Z ′

jV
−1
j (yj − Xjγ)]u. (A.39)

From (A.30), we have

∂L

∂σ2
=

1

2

J∑

j=1

tr(V −1
j ) − 1

2

J∑

j=1

(yj − Xjγ)′V −2
j (yj − Xjγ).
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Thus,

d

(
∂L

∂σ2

)
=

1

2

J∑

j=1

tr(dV −1
j ) − 1

2

J∑

j=1

(yj − Xjγ)′(dV −2
j )(yj − Xjγ)

+
J∑

j=1

(yj − Xjγ)′V −2
j Xj dγ

= −1

2

J∑

j=1

tr[V −2
j dσ2 + V −1

j Zj(dΘ)Z ′
jV

−1
j ]

− 1

2

J∑

j=1

(yj − Xjγ)′(dV −2
j )(yj − Xjγ)

+

J∑

j=1

(yj − Xjγ)′V −2
j Xj dγ (using (A.21))

=


−1

2

J∑

j=1

trV −2
j


dσ2 − 1

2

J∑

j=1

tr[(V −1
j Zj)(dΘ)(Z ′

jV
−1
j )]

− 1

2

J∑

j=1

(yj − Xjγ)′[(dV −1
j )V −1

j + V −1
j dV −1

j ](yj − Xjγ)

+
J∑

j=1

(yj − Xjγ)′V −2
j Xj dγ

=


−1

2

J∑

j=1

trV −2
j


dσ2 − 1

2

J∑

j=1

tr[(Z ′
jV

−2
j Zj)dΘ]

−
J∑

j=1

(yj − Xjγ)′V −1
j (dV −1

j )(yj − Xjγ)

+

J∑

j=1

(yj − Xjγ)′V −2
j Xj dγ

=


−1

2

J∑

j=1

trV −2
j


dσ2 − 1

2

J∑

j=1

tr[(Z ′
jV

−2
j Zj)dΘ]

+

J∑

j=1

(yj − Xjγ)′V −1
j [V −2

j dσ2 + V −1
j Zj(dΘ)Z ′

jV
−1
j ](yj − Xjγ)

+
J∑

j=1

(yj − Xjγ)′V −2
j Xj dγ
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=


−1

2

J∑

j=1

trV −2
j


dσ2 − 1

2

J∑

j=1

tr[(Z ′
jV

−2
j Zj)dΘ]

+




J∑

j=1

(yj − Xjγ)′V −3
j (yj − Xjγ)


dσ2

+
J∑

j=1

[(yj − Xjγ)′V −2
j Zj ](dΘ)[Z ′

jV
−1
j (yj − Xjγ)]

+

J∑

j=1

(yj − Xjγ)′V −2
j Xj dγ.

=


−1

2

J∑

j=1

trV −2
j


dσ2 − 1

2

J∑

j=1

tr[(Z ′
jV

−2
j Zj)dΘ]

+




J∑

j=1

(yj − Xjγ)′V −3
j (yj − Xjγ)


dσ2

+
J∑

j=1

tr
{[

Z ′
jV

−1
j (yj − Xjγ)(yj − Xjγ)′V −2

j Zj

]
dΘ
}

+

J∑

j=1

(yj − Xjγ)′V −2
j Xj dγ. (A.40)

Therefore,

∂2L

∂σ2 ∂σ2
= −1

2

J∑

j=1

trV −2
j +

J∑

j=1

(yj − Xjγ)′V −3
j (yj − Xjγ), (A.41)

and, using (A.22), (A.23) and (A.24),

∂2L

∂σ2 ∂Θkl
= −

J∑

j=1

(Z ′
jV

−2
j Zj)kl

+

J∑

j=1

{[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −2

j Zj

]
kl

+
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −2

j Zj

]
lk

}
, (A.42)

∂2L

∂σ2 ∂Θkk
= −1

2

J∑

j=1

(Z ′
jV

−2
j Zj)kk

+

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −2

j Zj

]
kk

(A.43)

From (A.31) we have

∂L

∂Θkl
=

J∑

j=1

(Z ′
jV

−1
j Zj)kl −

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
l
.

63



Thus,

d

(
∂L

∂Θkl

)
=

J∑

j=1

[Z ′
j(dV −1

j )Zj]kl

−
J∑

j=1

[
Z ′

j(dV −1
j )(yj − Xjγ)

]
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
l

−
J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

[
Z ′

j(dV −1
j )(yj − Xjγ)

]
l

+
J∑

j=1

(
Z ′

jV
−1
j Xj dγ

)
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
l

+

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

(
Z ′

jV
−1
j Xj dγ

)
l

= −
J∑

j=1

{
Z ′

j[V
−2
j dσ2 + V −1

j Zj(dΘ)Z ′
jV

−1
j ]Zj

}
kl

+

J∑

j=1

{
Z ′

j[V
−2
j dσ2 + V −1

j Zj(dΘ)Z ′
jV

−1
j ](yj − Xjγ)

}
k

×
[
Z ′

jV
−1
j (yj − Xjγ)

]
l

+
J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

×
{

Z ′
j[V

−2
j dσ2 + V −1

j Zj(dΘ)Z ′
jV

−1
j ](yj − Xjγ)

}
l

+

J∑

j=1

(
Z ′

jV
−1
j Xj dγ

)
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
l

+
J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

(
Z ′

jV
−1
j Xj dγ

)
l

(using (A.21))
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=


−

J∑

j=1

(Z ′
jV

−2
j Zj)kl


dσ2 −

J∑

j=1

[
(Z ′

jV
−1
j Zj)(dΘ)(Z ′

jV
−1
j Zj)

]
kl

+





J∑

j=1

[
Z ′

jV
−2
j (yj − Xjγ)

]
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
l



dσ2

+
J∑

j=1

{
(Z ′

jV
−1
j Zj)(dΘ)

×
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]}
kl

+





J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

[
Z ′

jV
−2
j (yj − Xjγ)

]
l



dσ2

+

J∑

j=1

{[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]

× (dΘ)(Z ′
jV

−1
j Zj)

}
kl

+

J∑

j=1

(
Z ′

jV
−1
j Xj dγ

)
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
l

+

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

(
Z ′

jV
−1
j Xj dγ

)
l

(A.44)

Combining (A.44) with (A.25) and (A.26), the partial derivatives are found:

∂2L

∂Θkl ∂Θuv
= −

J∑

j=1

[
(Z ′

jV
−1
j Zj)ku(Z ′

jV
−1
j Zj)vl + (Z ′

jV
−1
j Zj)kv(Z

′
jV

−1
j Zj)ul

]

+
J∑

j=1

{
(Z ′

jV
−1
j Zj)ku

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
vl

+ (Z ′
jV

−1
j Zj)kv

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ul

}

+

J∑

j=1

{[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ku

(Z ′
jV

−1
j Zj)vl

+
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
kv

(Z ′
jV

−1
j Zj)ul

}

= −
J∑

j=1

[
(Z ′

jV
−1
j Zj)ku(Z ′

jV
−1
j Zj)vl + (Z ′

jV
−1
j Zj)kv(Z

′
jV

−1
j Zj)ul

]

+

J∑

j=1

{
(Z ′

jV
−1
j Zj)ku

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
vl

+ (Z ′
jV

−1
j Zj)kv

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ul

+ (Z ′
jV

−1
j Zj)ul

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
kv

+ (Z ′
jV

−1
j Zj)vl

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ku

}
(A.45)
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and

∂2L

∂Θkl ∂Θuu
= −

J∑

j=1

[
(Z ′

jV
−1
j Zj)ku(Z ′

jV
−1
j Zj)ul

]

+
J∑

j=1

{
(Z ′

jV
−1
j Zj)ku

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ul

}

+

J∑

j=1

{[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ku

(Z ′
jV

−1
j Zj)ul

}

= −
J∑

j=1

[
(Z ′

jV
−1
j Zj)ku(Z ′

jV
−1
j Zj)ul

]

+

J∑

j=1

{
(Z ′

jV
−1
j Zj)ku

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ul

+
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ku

(Z ′
jV

−1
j Zj)ul

}
. (A.46)

Analogously, from (A.32) we have

∂L

∂Θkk
=

1

2

J∑

j=1

(Z ′
jV

−1
j Zj)kk − 1

2

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]2
k
,

and

d

(
∂L

∂Θkk

)
=


−1

2

J∑

j=1

(Z ′
jV

−2
j Zj)kk


dσ2

− 1

2

J∑

j=1

[
(Z ′

jV
−1
j Zj)(dΘ)(Z ′

jV
−1
j Zj)

]
kk

+





1

2

J∑

j=1

[
Z ′

jV
−2
j (yj − Xjγ)

]
k

[
Z ′

jV
−1
j (yj − Xjγ)

]
k



dσ2

+
1

2

J∑

j=1

{
(Z ′

jV
−1
j Zj)(dΘ)

×
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]}
kk

+





1

2

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

[
Z ′

jV
−2
j (yj − Xjγ)

]
k



dσ2

+
1

2

J∑

j=1

{[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]

× (dΘ)(Z ′
jV

−1
j Zj)

}
kk

+
1

2

J∑

j=1

(Z ′
jV

−1
j Xj dγ)k

[
Z ′

jV
−1
j (yj − Xjγ)

]
k

+
1

2

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)

]
k
(Z ′

jV
−1
j Xj dγ)k. (A.47)
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Combining (A.47) with (A.26) we have

∂2L

∂Θkk ∂Θuu
= −1

2

J∑

j=1

(Z ′
jV

−1
j Zj)

2
ku

+
1

2

J∑

j=1

(Z ′
jV

−1
j Zj)ku

×
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
uk

+
1

2

J∑

j=1

[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ku

×(Z ′
jV

−1
j Zj)uk

= −1

2

J∑

j=1

(Z ′
jV

−1
j Zj)

2
ku

+

J∑

j=1

(Z ′
jV

−1
j Zj)ku

×
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −1

j Zj

]
ku

, (A.48)

because the matrices between brackets and parentheses in (A.48) are symmetric.

Now, from (A.33) and (A.34), we have to take expectations of the second derivatives.
Therefore, from (A.4) and (A.5), the following expectations will be used:

E(yj − Xjγ) = 0

E(yj − Xjγ)(yj − Xjγ)′ = Vj .

From (A.36), (A.37), (A.38), and (A.39), we have

E

(
∂2L

∂γ ∂γ′

)
=

J∑

j=1

X ′
jV

−1
j Xj , (A.49)

E

(
∂2L

∂γ ∂σ2

)
= 0, (A.50)

E

(
∂2L

∂γ ∂Θuv

)
= 0, (A.51)

and

E

(
∂2L

∂γ ∂Θuu

)
= 0. (A.52)

From (A.41), (A.42), and (A.43), we have

E

(
∂2L

∂σ2 ∂σ2

)
= −1

2

J∑

j=1

trV −2
j +

J∑

j=1

E
[
(yj − Xjγ)′V −3

j (yj − Xjγ)
]

= −1

2

J∑

j=1

trV −2
j +

J∑

j=1

E tr
[
V −3

j (yj − Xjγ)(yj − Xjγ)′
]
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=
1

2

J∑

j=1

trV −2
j ; (A.53)

∂2L

∂σ2 ∂Θkl
= −

J∑

j=1

(Z ′
jV

−2
j Zj)kl

+
J∑

j=1

E
{[

Z ′
jV

−1
j (yj − Xjγ)(yj − Xjγ)′V −2

j Zj

]
kl

+
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −2

j Zj

]
lk

}
,

=

J∑

j=1

(Z ′
jV

−2
j Zj)kl; (A.54)

and

E

(
∂2L

∂σ2 ∂Θkk

)
= −1

2

J∑

j=1

(Z ′
jV

−2
j Zj)kk

+
J∑

j=1

E
[
Z ′

jV
−1
j (yj − Xjγ)(yj − Xjγ)′V −2

j Zj

]
kk

=
1

2

J∑

j=1

(Z ′
jV

−2
j Zj)kk. (A.55)

From (A.45), (A.46), and (A.48), we have

E

(
∂2L

∂Θkl ∂Θuv

)
= −

J∑

j=1

[
(Z ′

jV
−1
j Zj)ku(Z ′

jV
−1
j Zj)vl

+ (Z ′
jV
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′
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j Zj)ul
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+
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′
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j Zj)ul
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′
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′
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=
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[
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jV
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j Zj)vl
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jV
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j Zj)kv(Z

′
jV

−1
j Zj)ul

]
, (A.56)

and, analogously,

E

(
∂2L

∂Θkl ∂Θuu

)
=

J∑

j=1

(Z ′
jV

−1
j Zj)ku(Z ′

jV
−1
j Zj)ul, (A.57)

and

E

(
∂2L

∂Θkk ∂Θuu

)
=

1

2

J∑

j=1

(Z ′
jV

−1
j Zj)

2
ku. (A.58)
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As with the function and the gradient, computationally more efficient formulas will
be derived for the covariance matrix of the estimators.

Combining (A.49), (A.50), (A.51), and (A.52) with (A.9), it is found that

E

(
∂2L

∂γ ∂γ′

)
=

J∑

j=1

X ′
j

(
σ−2INj

− σ−4ZjΘG−1
j Z ′

j

)
Xj

= σ−2




J∑

j=1

X ′
jXj


− σ−4

J∑

j=1

X ′
jZjΘG−1

j Z ′
jXj

E

(
∂2L

∂γ ∂σ2

)
= 0,

E

(
∂2L

∂γ ∂Θuv

)
= 0,

and

E

(
∂2L

∂γ ∂Θuu

)
= 0.

Combining (A.53), (A.54), and (A.55) with (A.16) and (A.14), it is found that

E

(
∂2L

∂σ2 ∂σ2

)
=

1

2
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1
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j ;

E

(
∂2L

∂σ2 ∂Θkl

)
= σ−4
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j=1

(G−2
j Z ′

jZj)kl;

and

E

(
∂2L

∂σ2 ∂Θkk

)
=

1

2
σ−4

J∑

j=1

(G−2
j Z ′

jZj)kk.

Combining (A.56), (A.57), and (A.58) with (A.13), it is found that

E

(
∂2L

∂Θkl ∂Θuv

)
= σ−4

J∑

j=1

[
(G−1

j Z ′
jZj)ku(G−1

j Z ′
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j Z ′
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;

E
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∂2L

∂Θkl ∂Θuu

)
= σ−4
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(G−1
j Z ′

jZj)ku(G−1
j Z ′
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E

(
∂2L
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)
=

1

2
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J∑

j=1

(G−1
j Z ′

jZj)
2
ku.

These formulas are implemented in the program. Note that these expressions depend
on the data only through the terms

∑J
j=1 X ′

jXj , Z ′
jXj , and Z ′

jZj, which are also used for
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the function and gradient (cf. section A.3), so that no additional memory is required for
data storage.

Let H be the matrix defined by these expressions. Then

H

N

p−→ lim
N→∞

(
I(θ)

N

)
,

where I(θ) is given by equation (A.34), and θ is the parameter vector that has to be
estimated. So (H/N)−1 is a consistent estimator of the asymptotic covariance matrix of√

N(θ̂ − θ), or H−1 is the estimator of the covariance matrix of θ̂.

A.5 Reparametrization

In the formulas of the previous sections, all parameters were treated as free parameters.
But, σ2 should obviously be nonnegative, because it is a variance. Similarly, Θ should be
a positive (semi-)definite matrix, because it is a covariance matrix.

To impose these restrictions, the parameters can be written in the following way:

σ2 = (σ)2 (A.59)

Θ = CC ′, (A.60)

where C is a lower triangular matrix (i.e., with zero elements above the diagonal). Equa-
tion (A.59) states that σ should be the parameter used by the program, not σ2. Equation
(A.60) expresses Θ in its Cholesky decomposition, and the elements of C should be the
parameters used by the program. This reparametrization may have some drawbacks (cf.
Gill, Murray, & Wright, 1981, pp. 268–269), but we think that it may generally be useful
for multilevel analysis. See also Longford (1987), who uses a similar reparametrization of
a restricted model. Note that the reparametrization (A.60) cannot be easily used if some
elements of Θ are restricted.

In order to minimize the reparametrized function, the gradient vector should be
reparametrized accordingly. This is done by using the chain rule of partial derivatives: If
the original parameter vector is denoted by θ, and the reparametrized parameter vector
by φ, then

∂L

∂φ′
=

∂L

∂θ′
∂θ

∂φ′
. (A.61)

Therefore, the formulas from section A.3 have to be postmultiplied by

∂θ

∂φ′
.

The relevant formula for σ is

∂σ2

∂σ
= 2σ.

To form the relevant expression for C, consider the (k, l) and (k, k) elements of Θ, where
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k > l:

Θkl =

q∑

u=1

CkuClu

=
l∑

u=1

CkuClu;

Θkk =

q∑

u=1

C2
ku

=

k∑

u=1

C2
ku.

So,

∂Θkl

∂Cku
= Clu, if u ≤ l;

∂Θkl

∂Cku
= 0, if u > l;

∂Θkl

∂Clu
= Cku, if u ≤ l;

∂Θkl

∂Clu
= 0, if u > l;

∂Θkl

∂Cuv
= 0, if u 6= k and u 6= l;

∂Θkk

∂Cku
= 2Cku, if u ≤ k;

∂Θkk

∂Cku
= 0, if u > k;

∂Θkk

∂Cuv
= 0, if u 6= k.

Consequently, if u ≥ v,

∂L

∂Cuv
=

q∑

k=1

k−1∑

l=1

∂L

∂Θkl

∂Θkl

∂Cuv
+

q∑

k=1

∂L

∂Θkk

∂Θkk

∂Cuv

=

u−1∑

l=v

∂L

∂Θul
Clv +

q∑

k=u+1

∂L

∂Θku
Ckv + 2

∂L

∂Θuu
Cuv.

These formulas are implemented in the program.
It is possible to transform the second derivatives in a similar way to obtain an estimator

of the covariance matrix of the estimators. But, in general, the user will be more interested
in the original parameters, and therefore, the estimates of the transformed parameters
are retransformed to estimates of the original parameters, and the covariance matrix of
section A.4 is used. This procedure is correct, because the transformation is a one to
one mapping from the feasible region of the original parameters to the domain of the
transformed parameters (except for some trivial equivalent solutions, such as σ and −σ,
which lead to the same retransformed solution). Only when the estimates are near the
boundary of the feasible region, the asymptotic covariance matrix may not be correct,
but the usual statistical theory only applies to interior points, so boundary solutions are
a problem in any parametrization.
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Appendix B

Read.Me

MMMM MMMMM LLLL AAAAAAAA

MMMMM MMMMMM LLLL AAAAAAAAAA

MMMM M MMMMMMM LLLL AAAA AAAA

MMMM MM MMM MMMM LLLL AAAA AAAA

MMMM MMMM MMMM LLLL AAAA AAAA

MMMM MM MMMM LLLL AAAAAAAAAAAAAAAAAA

MMMM M MMMM LLLL AAAAAAAAAAAAAAAAAAAA

MMMM MMMM LLLL AAAA AAAA

MMMM MMMM LLLL AAAA AAAA

MMMM MMMM LLLL AAAA

MMMM MMMM LLLLLLLLLLLLLLLLLLLLLLLLLLLL AAAA

MMMM MMMM LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL AAAA

AAAA

MULTILEVEL ANALYSIS FOR TWO LEVEL DATA AAAA

AAAA

VERSION 1.0b AAAA

AAAA

DEVELOPED BY AAAA

FRANK BUSING AAAA

ERIK MEIJER AAAA

RIEN VAN DER LEEDEN AAAA

AAAA

PUBLISHED BY AAAA

LEIDEN UNIVERSITY AAAA

FACULTY OF SOCIAL AND BEHAVIOURAL SCIENCES AAAA

DEPARTMENT OF PSYCHOMETRICS AND RESEARCH METHODOLOGY AAAA

WASSENAARSEWEG 52 AAAA

P.O. BOX 9555 AAAA

2300 RB LEIDEN AAAA

THE NETHERLANDS AAAA

PHONE +31 (0)71-273761 AAAA

FAX +31 (0)71-273619 AAAA

THIS FILE CONTAINS INFORMATION ABOUT THE FOLLOWING TOPICS:

- FILES ON THE MLA DISTRIBUTION DISK

- INSTALLATION NOTES

- PROGRAM’S MAIN FEATURES

- OTHER FEATURES

- INPUT AND OUTPUT

- CAPABILITY

- SYSTEM REQUIREMENTS

- CREDITS

- DOCUMENTATION

- FUTURE PLANS

- DISTRIBUTION

FILES ON THE MLA DISTRIBUTION DISK

----------------------------------
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MLA.EXE - multilevel analysis executable

MLAE.EXE - extended memory implementation of MLA.EXE

READ.ME - the file you’re reading now

EXAMPLE?.IN - MLA input examples

EXAMPLE?.OUT - MLA output examples

SESAME.DAT - sesame street data set

RAT.DAT - rat data set

NELS.DAT - nels data set

JSP.DAT - junior school project data set

INSTALLATION NOTES

------------------

To install the program, simply copy all the files to the

destination drive and/or directory and put the drive and/or directory in

your PATH statement. Don’t forget to make the PATH effective.

For example, installing MLA on your C-drive in the directory C:\MLA

md c:\mla --> make the directory on your C-drive

c: --> .. change to the C-drive

cd\mla --> .. and make \MLA the current directory

copy a:*.* --> copy all files from a:

path %path%;c:\mla --> add the directory to your path statement

If you want the path to be effective from computer startup, change the

path statement in your autoexec.bat. To run the program type

MLA <inputfile> <outputfile>

where <inputfile> should be replaced by the name of the input file and

<outputfile> replaced by the name of the output file.

PROGRAM’S MAIN FEATURES

-----------------------

MLA is a batch-driven statistical program that provides several types

of estimates for a multilevel model with two levels including:

o Summary statistics (mean, variance, standard deviation, etc.)

o Ordinary least squares estimates

- one-step OLS

- two-steps OLS

- OLS per level-2 unit

o Full information maximum likelihood estimates including:

- Standard errors

- Test statistics

- Probability values

o Restricted maximum likelihood estimates including: (not implemented yet)

- Standard errors

- Test statistics

- Probability values

OTHER FEATURES

--------------

o Simulation analysis including:

- Two kinds of simulation:

- Bootstrap

- Jackknife

- Three different methods of bootstrap simulation:

- Resampling from cases

- Resampling with multivariate normal distribution

- Resampling with residuals

- Two different types of residual estimation for resampling:

- raw residuals
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- shrunken residuals

- Three different resampling schemes:

- resample only level-1 units

- resample only level-2 units

- resample both level units

o Constraints for estimates of the form: parameter = value

o Technical settings options

o Special output providing:

- Input and output contents

- Technical information

- Raw and shrunken residuals

- Posterior means

- Simple diagnostics

INPUT AND OUTPUT

----------------

The input, data, and output files are all ASCII files. The input file

contains statements about the data, the model and other input requirements.

The data file is a free-field formatted numbers-only ASCII file. The output

file is also an ASCII file. If a file with the same name as the name of the

output file already exists, it will be overwritten.

See documentation for further elaboration on these subjects.

CAPABILITY

----------

The program can handle up to 16 equations with 32 terms each. The

table below gives the maximum values of the different input variables.

input variable maximum

-------------------------------------------------

# equations 16

# parameters 32 (per equation)

# level-1 units 8000 (per level-2 unit)

# level-2 units 16000

# variables 16000

# bootstrap replications 16000

# constrainst 64

These limitations are the absolute maxima and can be somewhat lower

depending on the amount of memory available.

SYSTEM REQUIREMENTS

-------------------

MLA will run on any IBM-PC/AT, PS/2 or compatible under MS-DOS, PC-DOS or

DR-DOS. A minimum of 256K of free RAM is necessary. MLA will also run in a

DOS environment under WINDOWS or OS/2.

The program DOES need a numeric coprocessor. However, non-coprocessor

implementations are available from the authors. A coprocessor is highly

recommended for extensive simulations or computations on large samples.

CREDITS

-------

The development of this program has been supported by a grant from SVO,

project number 93713

IBM-PC/AT and PS/2, PC-DOS and OS/2 are trademarks of International

Business Machines.

MS-DOS and MS-WINDOWS are registered trademarks of Microsoft Corporation.

DR-DOS is a registered trademark of Digital Research.
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DOCUMENTATION

-------------

From the same authors, an extensive manual was written for the MLA program.

The manual contains an introduction to multilevel analysis, information about

estimation procedures used in the program, a description of the input

statements for MLA and many different examples. A technical appendix

describes reparametrization and the minimization of the likelihood function.

FUTURE PLANS

------------

o check on equations

o large sample summary statistics

o implementation of weights

o restricted maximum likelihood estimation

o other resampling methods

DISTRIBUTION

------------

You can contact the authors by writing to the following address:

Leiden University

Faculty of Social and Behavioural Sciences

Department of Psychometrics and Research Methodology

Wassenaarseweg 52

P.O. Box 9555

2300 RB Leiden

The Netherlands

Phone +31 (0)71-273761

Fax +31 (0)71-273619
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