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Multilevel models are generally estimated using maximum likelihood ML methods.
Confidence intervals are then obtained straightforwardly from the estimates and
the information matrix. Frequently, however, data are not normally distributed
and sample sizes are not large, in which case the ML confidence intervals ma.y not
be adequate. Bootstrap confidence intervals may be useful alternatives in these
cases. In this paper, bootstrap confidence intervals will be developed for multilevel
models and it will be shown in a small simulation study that in some cases the
performance of the bootstrap confidence intervals is better than the performance of

the ML intervals.
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1 INTRODUCTION

In social and behavioral science research, multilevel analysis has by now been established
as a powerful technique for the analysis of hierarchically structured data. In hierarchical
data the assumption of independence is violated because nested membership relations
exist among the units of observation. Appropriate modelling of the resulting intra-class
dependency is a major keystone of multilevel analysis. For an extensive discussion of
theory and application of multilevel analysis we refer to Bryk and Raudenbush (1992),
Longford (1993) and Goldstein (1995).

Multilevel analysis involves fitting hierarchically formulated linear (regression) models,
mostly referred to as multilevel models. Estimation in these models usually relies
on maximum likelihood ML methods. The various computer programs for multilevel
analysis employ versions of full information FIML and restricted maximum likelihood
REML methods. Two vital assumptions underlying ML theory are that (a) the residuals
are independently distributed, usually following a multivariate normal distribution, and
(b) the sample size is (sufficiently) large. More specifically, the attractive properties of
FIML estimators—consistency, (asymptotic) efficiency, (asymptotic) normality, confidence
intervals obtainable from the information matrix—are derived from the supposition
that the sample size goes to infinity and the variables follow the assumed distribution.
In practice, however, these assumptions will frequently be met only approxifnately,
which may lead to biased estimators and incorrect standard errors (Busing, 1993) and,
consequently, incorrect confidence intervals.

The bootstrap is a general approach to obtain confidence intervals . It has proven
to be a method that yields satisfactory results in small sample situations under minimal
assumptions (see, e. g., Efron, 1982; Hinkley, 1988). Thus, it seems useful to consider
bootstrap confidence intervals in multilevel models for cases where the assumptions
necessary for ML methods are violated. In this paper, we will show that under nonnormality
the ML confidence intervals may be incorrect if the assumptions are not met. It will be
shown that bootstrap confidence intervals may be more accurate in those cases.

The application of the bootstrap to multilevel models is not straightforward.

Depending upon the nature of the data and the assumptions one is willing to make, there
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are several possibilities, each with its own associated problems. For bootstrap confidence
intervals, usually two choices have to be made. The first is the resampling method and
the second is the type of confidence interval, given the resampling method.

In section 2, the choice of resampling method will be discussed. Section 3 discusses
the different types of confidence interval. In section 4, a small simulation study will be
discussed, in which the ML confidence intervals will be compared with several types of

bootstrap confidence intervals. Section 5 contains the discussion.

2 BOOTSTRAPPING MULTILEVEL MODELS

The general idea of the bootstrap is to use the empirical distribution of the data to
estimate properties of the estimators. In practice, this usually means that a Monte
Carlo simulation study is performed, in-which new (bootstrap) sampies are drawn with
replacement from the original data. For each of the bootstrap samples, the parameters are
estimated and the properties of the estimates are used as estimators of the properties of the
original estimator. In this section and the next, these statements will be elaborated within
the framework of confidence intervals for two-level models. Extension of the principles to

more levels is straightforward.

The two-level model

We assume data are obtained from N individuals nested within J groups, with group j
containing N; individuals. The Level-1 units are the individuals and the Level-2 units
are the groups. In the context of multilevel analysis it is customary to specify linear
regression models for each level in the data separately. Consequently, at Level-1, for each

group j (j = 1,...,J), the within-group model is given by
yi = Z;jB; +¢j, (1

where y; = (¥15,---,Yn;;) is the vector containing values on an outcome variable, Z; is
an N; x ¢ matrix with explanatory variables (including the constant, i. e. a unit vector
coding the mean), §; is a ¢ x 1 vector of regression coefficients, and ¢; = (£3;,...,en;;)

is a vector with residuals.
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We assume f; to be a vector of random regression coefficients. Suppose group level
variables exist that explain part of the variation in these random coefficients. Then, at

Level-2, the between-group model is given by
ﬁj = W]’)’ + UJ‘, (2)

where W is a ¢ x p matrix with explanatory variables (including the constant) obtained
at the group level, 7 is a p X 1 vector containing fixed coefficients and u; is a ¢ X 1 vector
with residuals. |

Usually, it is assumed that €; ~ N(0,02Iy,) and u; ~ N(0,0), where o2, the variance
of the Level-1 residuals, is an unknown (scalar) parameter, and O, the covariance matrix
of the Level-2 residuals, is a (symmetric) matrix of unknown parameters. The parameters
can then be estimated by ML methods and confidence intervals can be obtained from the
parameter estimates and the estimated standard errors, which are easily derived from the
information matrix (see, e. g., Bryk & Raudenbush, 1992, chapter 10). If the error terms

~are not normally distributed, the same symbols (i. e., 6% and 6) will be used for the

(co)variance parameters of the error terms.

Resampling the two-level model
In order to make the bootstrap succeed, the simulation should reflect the properties of
the stochastic model that is assumed to have generated the data. Therefore, a resampling
scheme for multilevel models must first of all take into account the hierarchical structure of
the data, that is, the fact that observations are subject to intra-class dependency. Another
aspect of the stochastic model is whether the explanatory variables are considered fixed
(design) variables or random variables. Van der Leeden, Busing, and Meijer (1995) discuss
various resampling methods for multilevel models with fixed or random explanatory
variables.

In this paper, we will assume that the explanatory variables are random variables.
The corresponding bootstrap method is called cases bootstrap by Van der Leeden et al.
(1995).

The resampling procedure is as follows:

1. Draw a sample of size J with replacement from the Level-2 units, that is, draw
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a sample j&, k = 1,...,J (with replacement) of Level-2 unit numbers with a

corresponding set of scores on the Level-2 variables Wj..

2. For each k, draw a sample of entire cases, with replacement, from (the original)
Level-2 unit j = j;. Then, for each k, we have a set of data (y}, 2%), i =1,..., Nj;.
Obtain the bootstrap sample (y};, Zj, Wj:) by linking these data to the proper set

of scores Wj..
3. Compute estimates for all parameters of the two-level model.
4. Repeat Steps 1-3 B times.

An alternative formulation is: (1) draw one entire Level-2 unit (y;, Z;, W;), containing
N; Level-1 cases, with replacement; (2) from this Level-2 unit, draw a bootstrap sample
(¥}, 25, W) of size N; with replacement; (3) repeat steps 1 and 2 J times; (4) compute
all parameter estimates for the two-level model; (5) repeat Steps 1-4 B times.

The above procedure shows that for the cases bootstrap each observed response y;;

keeps joined together with the observed scores on the explanatory variables in Z;; and

W;.
3 TYPES OF CONFIDENCE INTERVALS

In this section, we will discuss a number of different types of bootstrap confidence intervals
for a parameter 0 with true value fp. The performance of these intervals will be compared
to the intervals that are derived from the asymptotic covariance matrix of the estimators
under the normality assumption. We will only discuss two-sided intervals. One-sided
intervals are defined analogously. The intended nominal coverage of the confidence interval
will be denoted by 1 — a, so that the probability that the interval contains the true

parameter value should be approximately 1 — a.

Notation
Before we introduce the different bootstrap confidence intervals, we will introduce some

useful notation.
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Let &(z) be the standard normal distribution function. Then z, is the a-th quantile
of the standard normal distribution, z, = ¢™(a).

Let the distribution function of the estimator § be H(6), that is, H(#) = Pr(d < 6).
A consistent estimator of this distribution function is obtained from the B bootstrap

replications 5{;, b=1,...,B,of g:

Ae) =S o | 3)

Bootstrap normal confidence intervél

If the assumptions of the model, including the normality assumptions, hold, then the
estimators are asymptotically normally distributed with a certain covariance matrix,
derived from the likelihood function (Magnus, 1978; Busing, Meijer, & Van der Leeden,
1994, Appendix A). The usual confidence intervals are therefore

_ [ §+ Z%QS:éN(g); §+ Zl-%a@N(a) ] ) (4)

where $ey(0) is the estimator of the asymptotic standard deviation of 8, derived from
| normal theory. '

Under mild regularity conditions, the estimators are asymptotically normally
distributed, e;ven if the random terms in the model are not. In that case, séy may
not be a consistent estimator of the standard deviation of the estimators of the variance
components, although it is still consistent for the fixed parameters. This suggests replacing

gen’in (4) by a bootstrap estimator. This gives the bootstrap normal confidence interval
[0+ 23,%5(0); 0+7_30550) ], (5)

in which §ep is the bootstrap estimator of the standard deviation of §. Alternatively, one

might use
[53 + z%as'ég(a); O + zl_%af‘:éa(g) ] ) (6)

where 85 is the bootstrap bias-corrected estimator of 4.
The bootstrap normal confidence interval relaxes the assumption of normality of the
data, but still heavily relies on the asymptotic normality of the estimators. In finite

samples, however, the estimators may not be approximately normally distributed (Busing,

1993).
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Percentile interval

The idea behind this interval is quite different from the idea behind the bootstrap normal
interval. It was stated above that H(f) is a consistent estimator of the distribution
function of 4. Therefore, an asymptotic 1 — o confidence interval can be obtained by
taking the relevant quantiles from H, which leads to the interval

[ﬁ'l(%a); 71— —21-a)]. (7)

The pércentile interval does not rely on the asymptotic normality of 6. Its coverage
performance in finite samples is, however, frequently not very well, because the end points

of the interval tend to be a little biased.

Bias-corrected percentile (BC)

The BC interval was introduced to correct for some bias in the endpoints of the percentile
interval (7). We will only give the formula here. See Efron (1982, section 10.7) for the
argument leading to this interval. Let
2 =o' [H()].
The BC interval is now
[ 5 (8(220 + 210)); H™ (8220 + 2] (8)

Note that if 8 is equal to the median of the 6*, then H(f) = 0.5, 20 = 0 and the BC

interval (8) coincides with the percentile interval (7).

Percentile-t -

The percentile- interval (or bootstrap-t interval) takes the bootstrap normal interval (5)
as its starting point. That interval is based on the idea that

Pr(0+ 2,850 <6 <8+ 2 1.%5(0)) — 1-aq, (9)

because 0 is asymptotically normally distributed and s’ég(a) is a consistent estimator
of its standard deviation. In finite samples, however, the distribution of 8 may not
be approximately normal (Busing, 1993). Therefore, instead of using quantiles of the

standard normal distribution, using bootstrap quantiles may give more accurate results.
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To derive the necessary bootstrap quantiles, let us rewrite (9) into the following form:

Pr(z%agoo—,.o<z 1 )——+l—a. (10) -

The quantiles of the normal distribution have to be replaced by quantiles of the
distribution of

0o —0

sep(0)

- These are estimated by quantiles of the bootstrap distribution of

Let
A F bl
~ se
G(t)= B,b\"b

and let f%a and £,_ ja be the Lo-th and 1 — ja-th quantile of G, respectively, that is,

A%a = G '(3a) and f,_ la = G-}(1—1la). The percentile-t interval is obtained by

replacing z3, by f%a and z;_14 by t 1, in (5) and is thus
[0+1,%50); 0+%_3.850)] - (11)

It is necessary to have an estimate §e;;,,,(§;) of the standard deviation of 8; for each
bootstrap resample b. This is usually obtained by performing a small bootstrap- within
each bootstrap resample. So, for example, B = 1000 bootstrap samples are drawn with
replacement from the original sample and within each sample b = 1,..., B, By = 25
samples are drawn with replacement from the bootstrap sample. From the B, samples,
s%*B,,,(é;;) is obtained.

This means that B * B, bootstrap samples have to be drawn and B * B, times the
estimator # has to be computed. In the gxample, this amounts to 1000 * 25 = 25000

bootstrap samples and 25000 times computing the estimator.

4 SIMULATION STUDY

In this section we evaluate the performance of the methods for constructing bootstrap

confidence intervals in a Monte Carlo study. The study consists of repeatedly generating
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samples from a known “population” model, performing a multilevel analysis, constructin
g

confidence intervals and, finally, comparing the results with the “population” values.

Design

Data were generated for a two-level model that contains one predictor variable at each

level. This model is given by

Yii = B+ By X + €,
Bii = "+ m2W;+wy,

Boj = o+ y22Wj+ ug;. (12)

Predictor variables were drawn from a standard normal distribution using the polar
Box-Miiller method (Box & Miiller, 1958). Uniform deviates were obtained with the
RANLUX pseudo-random number generator (Liischer, 1994). RANLUX was also used to
obtain random numbers for other distributions. The parameters of the model were set
to the following values: the fixed parameters v were set to 1.0, the Level-2 variance
components 6;;, 613, and Oy, were set to 2.0, 0.5v/2.0 and 1.0, respectively, and the
Level-1 variance component o2 was set t0 8.0. These values correspond to a conditional
intraclass correlation of 0.2 and an intercept-slope correlation of 0.5. To evaluate the
performance of the bootstrap methods adequately it was decided to simulate a realistic
case in which the assumptions are violated to a certain extent. Therefore, we used a
moderately small sample size (especially at Level-2), and a severely skewed distribution
for the residuals. Specifically, the Level-2 sample size (J) was set to 20 and the Level-1
sample size (N;) was drawn from a normal distribution with a mean of 10 and a variance
of 2, and rounded to the nearest integer value. This resulted in a total sample size (V)
of approximately 200. The residuals (uy;, uz; and gij) were generated from a lognormal
distribution with a skewness of 5.0, set in deviation of its mean (expectation equals 0.0)
and unit normalized (variance equals 1.0).

The simulation procedure can be summarized by the following steps:
1. generate a two-level dataset following Equation (12),

2. use ML and the different methods to compute confidence intervals,
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3. save estimates,
4. repeat step 1-3 R times.

R, the number of, what we have called, “macro replications” was set to 1000, which is
expected to be sufficiently large to obtain reliable sampling distributions.

In the second step, parameter estimates, standard errors, and confidence intervals
were computed with the MLA computer program (Busing et al., 1994; Busing, Meijer,
& Van der Leeden, 1995). This program has been developed primarily for research on
resampling methods in two-level models. MLA provides ML estimates of parameters and
standard errors. The bootstrap confidence intervals are based on the FIML estimates. For
the simulation procedure this means that in step 2, that is, within each macro replication,
there are a number of bootstrap or, what we have called, “micro” replications B. B was

set to 1000, which is expected to be sufficiently large to obtain accurate bounds for the
confidence intervals.

Computations

The generated confidence intervals were evaluated by inspection of the coverage
percentage, the proportion of cases where the true value is covered by the estimated
confidence interval. For ML the usual confidence intervals were used, that is, the parameter
estimate plus or minus 1.96 times the standard error estimate. The bootstrap confidence

intervals were directly computed with the MLA program.

Results
Due to improper or non-converged solutions some results were invalid. Before further
computations these results were removed from the analysis.

The true coverage percentage in Table 1 is 95%. The results for the fixed components
indicate acceptable coverage for both conventional FIML and REML confidence intervals and
bootstrap confidence intervals. Underestimated coverage can be seen for the grand mean
411 (FIML= .88, REML= .89 and Normal= .88), and fixed component i3 (Percentile-t=
.90). Overall, the bias-corrected percentile method performs slightly better than the other
methods. '
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Table 1. Coverage percentages confidence intervals

Fixed components

Y11 M2 Y2 Y22

FIML 88 93 93 .94
REML .89 95 94 95
Normal 88 95 95 .97
Percentile 93 .97 .97 .98
'BC-percentile 94 .96 .96 .97
Percentile-t .94 90 94 .95

Variance components

2
O, 911 912 922

FIML 40 49 67 .50
REML 40 56 .71 .56
Normal 62 .80 .90 .79
Percentile 72 87 .89 .79
BC-percentile 86 .54 .89 .77
Percentilet .95 .56 .85 .71

True value = 95 %

In case of the variance components, the conventional FIML and REML confidence
intervals fail as expected, giving raise to conservative hypothesis testing. The bootstrap
methods perform much better than the conventional methods, and for the Level-1 variance
component the Percentile-f method performs-even perfect. However, the BC-percentile
and Percentilé—t method show instable performances, as can be seen from the results for

the Level-2 variance component 6;.

5 DISCUSSION

The bootstrap confidence intervals, as introduced in this paper, may provide additional
tools for hypothesis testing in cases where the sample size is small or the data are
skewed. For the fixed components of the multilevel model, the surplus value of the

bootstrap confidence intervals is small compared to the conventional methods, despite
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the known underestimation of the standard errors. The bootstrap confidence intervals
are particularly useful for the variance components, where a serious improvement may be
expected compared to the conventional methods.

Future research should first concentrate on stabilizing current results, and then search
for other refinements. Restricted maximum likelihood estimation can be used in bootstrap
estimation, other bootstrap resampling methods can be used for confidence interval
estimation and finally, other bootstrap confidence interval types, like the accelerated BC

percentile interval or the variance stabilized bootstrap-t interval, can be used.
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