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0. Introduction

This paper is a revised version of five lectures given in Nantes in December 2001.
We have revised the lectures themselves so that they might provide an introduction
to some of the techniques and computations of cohomology of finite group schemes
which have been developed since the publication of J. Jantzen’s book [14].

The goal of those Nantes lectures was to provide an introduction to the coho-
mology of finite group schemes over a field k of characteristic p > 0 and to explain
the important role played by the cohomology of (strict polynomial) functors. The
focal point of these lectures was a theorem of E. Friedlander and A. Suslin asserting
that the cohomology of finite group schemes is finitely generated (see Theorem 4.7
below). The somewhat innovative proof of this theorem has led to numerous further
results; in these lectures we have restricted attention to those results bearing on
the qualitative description of the cohomology algebra of a finite group scheme.

The reader can obtain a quick guide to these edited lectures by glancing at the
table of contents. In the first lecture, we introduce the concepts and terminology
which underline our subject. In particular, we recall the definition of the Frobenius
kernels of an algebraic group and the Frobenius twists of a module. The second
lecture summarizes some of the techniques which one can find for example in [14]
which are used to compute cohomology. The relationship of this subject with the
theme of the Nantes meeting, cohomology in categories of functors, is explained in
the third lecture. Strict polynomial functors are introduced and their relationship
with polynomial representations is explained. The fourth lecture is dedicated to an
outline of the proof of finite generation of the cohomology of finite group schemes.
Here, computations of cohomology in the category of strict polynomial functors
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plays a central role in the construction of certain universal classes; these compu-
tations follow closely the computations of V. Franjou, J. Lannes, and L. Schwartz
[9] of ordinary functor cohomology. Finally, in Lecture 5 we describe how the tech-
niques introduced to prove finite generation lead to a qualitative description of the
cohomology algebra H∗(G, k) of a finite group scheme. This follows work of D.
Quillen [15] who determined the maximal ideal spectrum of the cohomology of a
finite group.

We thank the organizers of the Nantes conference for the opportunity to visit
Nantes and participate in that very successful conference. We also take this oppor-
tunity to thank Andrei Suslin for sharing with us many fundamental ideas he has
contributed to the study of the cohomology of finite group schemes. Finally, we are
especially grateful to Julia Pevtsova who corrected many errors in a preliminary
draft of these notes.

1. Affine group schemes

Let k be a field of characteristic p > 0, fixed throughout this paper. We begin
our discussion by defining an affine group scheme (implicitly assumed to be over k)
and considering a few interesting examples.

Definition 1.1. An affine group scheme is a representable functor

G : (fin.gen.comm.k − alg) → (grps)

We denote by k[G] the representing finitely generated commutative k-algebra (the
coordinate algebra) of G. To give such a representable functor is equivalent to giving
a finitely generated commutative Hopf algebra (over k).

Example 1.2. G = Ga, the additive group. This is the functor which takes a
commutative k-algebra A to the underlying abelian group (which we might denote
A+). The coordinate algebra of Ga is k[Ga] = k[t], with coproduct ∇(t) = t⊗ 1 +
1⊗ t.

Example 1.3. G = GLn, the general linear group, sends a commutative k-algebra
A to the group of n × n invertible matrices {ai,j} with coefficients in A. The
coordinate algebra of GLn is given by

k[GLn] = k[xi,j , t]1≤i,j≤n/det(xi,j)t− 1

with coproduct
∇(xi,j) = Σxi,k ⊗ xk,j .

Example 1.4. Let π be a (discrete) group. We view π as an affine group scheme
by letting π also denote “the constant functor with value π.” In other words, this
functor sends a commutative k-algebra A to the group π|π0(A)|, where π0(A) is
the set of indecomposable non-trivial idempotents in A and |π0(A)| denotes the
cardinality of π0(A).

Example 1.5. For any positive integer r, we consider the “r-th Frobenius kernel” of
GLn which is denoted GLn(r). This is the functor which sends a commutative k-
algeba A to the group of n×n invertible matrices (ai,j) with coefficients in A which
satisfy the property that apr

i,j = δi.j (i.e., equal to 1 if i = j and 0 otherwise). The
coordinate algebra k[GLn(r)] is the quotient of k[GLn] by the (Hopf) ideal generated
by xpr

i,j − δi,j . More explicitly, we can write k[GLn(r)] = k[xi,j ]/(x
pr

i.j − δi,j).
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Similarly, the r-th Frobenius kernel of Ga sends A to the group of elements of
A whose pr-th power is 0. The coordinate algebra of Ga(r) is given by k[Ga(r)] =
k[t]/tp

r

, whereas the dual algebra is given by kGa(r) = k[X1, . . . , Xr]/(X
p
i ) where

one can view the dual generator Xi as the operator 1
pi−1!

dpi−1

dtpi−1 on k[t].

Example 1.6. Let g be a finite dimensional p-restricted Lie algebra of k and let V (g)
denote its restricted enveloping algebra, the quotient of the universal enveloping
algebra U(g) of g by the ideal generated by {Xp − X [p], X ∈ g} (where (−)[p] :
g → g is the p-th power operation of g), Then the k-linear dual of V (g), which we
denote by V (g)#, is a finite dimensional commutative Hopf algebra over k and thus
corresponds to an affine group scheme over k.

Remark 1.7. An affine group scheme G is said to be finite if k[G] is finite dimen-
sional. For example, if G corresponds to a finite group π as in Example 1.4 or if
G is a group scheme as in Example 1.5 or G is associated to a finite dimensional
p-restricted Lie algebra as in Example 1.6, then G is a finite group scheme. The
linear dual is called the group algebra of G, denoted kG, consistent with the usual
terminology of the group algebra of a discrete group π. In Example 1.6, the group
algebra kG of the group scheme G associated to the p-restricted Lie algebra g is
V (g), the restricted enveloping algebra of g.

One usually refers to an affine group scheme G whose coordinate algebra is
integral (i.e., reduced and irreducible) as an (affine) algebraic group. For example,
both Ga of Example 1.2 and GLn of Example 1.3 are algebraic groups.

Remark 1.8. A finite group scheme G is said to be infinitesimal if the coordinate
algebra k[G] is local. An infinitesimal group G is said to be of height ≤ r if G
admits a closed embedding G ↪→ GLn(r) (i.e., if apr

= 0 for every element a in the
augmentation ideal of k[G]). For any infinitesimal group scheme G of height 1 we
have an isomorphism of algebras:

kG ' V (LieG).

Conversely, if g is a finite dimensional p-restricted Lie algebra, then V (g)# is the
coordinate algebra of an infinitesimal group scheme G of height 1. This establishes
an equivalence of categories between finite dimensional p-restricted Lie algebras and
infinitesimal group schemes of height 1.

We next introduce the concept of a G-module for an affine group scheme (some-
times called a rational G-module).

Definition 1.9. Let G be an affine group scheme over k. Then a G-module M is
a k-vector space provided with an A-linear group action

(1.10) G(A)× (M ⊗A) →M ⊗A

for all finitely generated commutative k-algebras A, functorial with respect to A.
(Here, and below, the tensor product is over k.)

Equivalently, such a G-module M is a k-vector space provided with the structure
of a comodule for k[G]; namely, a k-linear map

(1.11) ∇M : M →M ⊗ k[G].
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To verify this equivalence, observe that the pairing (1.10) in the special case
A = k[G] is written

Homk−alg(k[G], k[G])× (M ⊗ k[G]) →M ⊗ k[G].

This determines a comodule structure of the form (1.11) by restricting to idk[G] ∈
Homk−alg(k[G], k[G]). Conversely, given a comodule structure∇M , we get a pairing
of the form (1.10) as the following composition

Homk−alg(k[G], A)× (M ⊗A) → Homk−alg(k[G], A)× (M ⊗ k[G]⊗A) →

M ⊗A⊗A→M ⊗A

where the first map is given by ∇M , the second by the natural pairing, and the
third by the ring structure on A.

If the G-module M is finite dimensional (as a k vector space), we may give
another useful formulation of the concept of a G-module. Namely, suppose that
M is n-dimensional and identify the affine group scheme of k-automorphisms of M
with GLn. Then to give M the structure of a G-module is equivalent to giving a
homomorphism ρM : G→ GLn of affine group schemes.

An important example of a G-module is the coordinate algebra itself. We readily
check that the coproduct on k[G], ∇ : k[G] → k[G]⊗ k[G], corresponds to the right
regular representation of G on the functions of G: (g ∈ G, f(−) ∈ k[G]) 7→ f(−·g) ∈
k[G].

Suppose that H ⊂ G is a closed subgroup scheme of the affine group scheme G
(i.e., k[G] → k[H] is surjective). Then for any H-module N , we consider the H-
fixed points of k[G]⊗N , where H acts on k[G] via the right regular representation.
We use the notation

IndG
HN = (k[G]⊗N)H

to denote the G-module with G action given by the left regular representation of
G on k[G].

One very useful aspect of this induction functor is given by the following theorem
which is often called Frobenius reciprocity.

Theorem 1.12. (cf. [14, 3.4]) If H ⊂ G is a closed subgroup of the affine group
scheme G, then IndG

H(−) is right adjoint to the restriction functor. In other words,
for every H-module N and every G-module M , there is a natural isomorphism

HomH(M,N) ' HomG(M, IndG
HN).

In particular, if N is an injective H-module, then IndG
HN is an injective G-

module. For example, k[G] = IndG
e k is an injective G-module.

Observe that sending m ∈M to m⊗ ε ∈M ⊗ k[G] determines a homomorphism
M → M ⊗ k[G] of G-modules, where ε : G → k is evaluation at the identity (i.e.,
the co-unit of the Hopf algebra k[G]). A direct calculation shows that the map
M ⊗ k[G] → Mtr ⊗ k[G] defined by m ⊗ f 7→ (1 ⊗ f)∇M (m) is an isomorphism
of G-modules, where Mtr is a trivial G-module isomorphic to M as a k-vector
space. Since k[G] is an injective G-module, this verifies that any G-module can be
embedded into an injective module.

Consequently, the category of G-modules is an abelian category with enough
injectives, so that we may use standard homological algebra to define

ExtiG(M,N) = RiHomG(M,−)(N)
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for any pair of G-modules M ,N . As usual, we denote Ext∗G(k,M) by H∗(G,M),
so that

Hi(G,M) = RiHomG(k,−)(M) = Ri(−)G(M)

where the G-fixed point functor sends a G-module M to MG ⊂ M , the maximal
subspace of M on which G acts trivially. We readily verify that Theorem 1.12
implies that

H∗(H,N) ' H∗(G, IndG
HN)

whenever H ⊂ G is a closed subgroup scheme and N is a H-module.
Let φ : k → k denote the p-th power map which sends α ∈ k to αp ∈ k. (φ is

often called the arithmetic Frobenius map.) Given a k vector space V , we obtain a
new k-vector space V (1) defined as the base change of V via φ,

V (1) = k ⊗φ V.

If k is perfect (i.e., if φ is an isomorphism), then

V (1) ' V, α⊗ v 7→ α1/pv

identifies V (1) via a semi-linear map with V , so that we may view V (1) as the
vector space V with the modified k-action given by (α, v) 7→ α1/pv. V (1) is called
the (first) Frobenius twist of V .

Definition 1.13. If G is an affine group scheme, we denote by G(r) the affine
group scheme whose coordinate algebra is k[G](r), the rth Frobenius twist of k[G].
Moreover, we denote by G(r) the affine group scheme defined as the kernel of the
natural map

G(r) = ker{Φr : G→ G(r)},
where Φr∗ : k[G(r)] → k[G] is the k-linear map sending f ∈ k[G](r) to fpr ∈ k[G].

If G is defined over the finite field Fpr so that G = GFpr ×Spec Fpr Spec k, then

Φr∗ = F r∗ ◦ φr : k[G](r) ' k[G] → k[G].

Here, F r is the so-called geometric Frobenius of G, defined as the base change from
Fpr to k of the pr-th power map on Fpr [GFpr ]. Thus, for such G we can identify
G(r) with the kernel of F r,

G(r) = ker{F r : G→ G}.

In the special case G = GLn, we readily verify that (GLn)(r) so defined equals
GLn(r) as discussed in Example 1.5.

We conclude that whenever G is defined over Fpr , a G-module M determines
a new G-module M (r), the r-th Frobenius twist of M . If ρM : G → GLn is the
representation associated to the G-module M , then

ρM(r) = F r ◦ ρ : G→ GLn → GLn

is the representation associated to M (r). Observe that M (r) is trivial as a G(r)-
module, so that

H0(G(r),M) 6= H0(G(r),M
(r))

wheneverM is non-trivial as aG(r)-module. Similarly, the cohomologyH∗(GLn,M)
can be quite different from H∗(GLn,M

(1)). Indeed, this difference plays an impor-
tant role in our techniques for computation.
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2. Cohomological techniques

Much of the second lecture of this series was dedicated to explaining weights
associated to the action of a torus with the goal of giving some insight into the
effect that Frobenius twist plays in cohomology. This written version adds to the
original lecture by giving a brief introduction to some of the techniques used in the
computation of cohomology. The reader is referred to the book of J. Jantzen [14]
for a much more complete exposition of these techniques.

The algebraic group GL1 is typically denoted Gm and called the multiplicative
group. The coordinate algebra k[Gm] is given by

k[Gm] = k[t, t−1] = k[u, v]/(uv − 1)

with coproduct t 7→ t⊗ t. A split torus of rank n is an algebraic group isomorphic
to G×n

m . The subgroup Tn ⊂ GLn of diagonal matrices is the usual model for such
a split torus of rank n.

The representation theory of a split torus is particularly easy to describe as the
following proposition recalls.

Proposition 2.1. Every Tn-module splits as a direct sum of 1-dimensional irre-
ducible Tn-mod ules. An irreducible Tn-module is given by its weight λ = (λ1, . . . λn) ∈
Z⊕n, where for a given finitely generated k-algebra A the diagonal matrix x1

. . .
xn

 ∈ (A∗)n

acts on the rank 1 A-module via multiplication by xλ1
1 . . . xλn

n .
Similarly, every Tn(r)-module splits as a direct sum of 1-dimensional Tn(r)-

modules, where Tn(r) is the r-th Frobenius kernel of Tn. The weights λ = (λ1, . . . λn)
of Tn(r) can be viewed as taking values in {0, 1, . . . pr−1}n since any (x1, . . . , xn) ∈
Tn(r)(A) satisfies xpr

i = 1.

Example 2.2. The most basic example is the action of Tn on an n-dimensional
vector space given by multiplication; in this case, the weights of this action are
all of the form (0, . . . , 0, 1, 0, . . . 0). We view this action as given by the pairing
of algebraic groups µ : Tn × G×n

a → G×n
a , which is equivalent to the data of

a compatible collection of pairings µ : (A∗)×n × A⊕n → A⊕n for every finitely
generated k-algebra A.

A second basic example is the action of Tn on the dual vector space, given by

µ : Homgrp sch(G×n
a ,Ga) → Homgrp sch(G×n

a ,Ga).

Since we defineHomgrp sch(G×n
a ,Ga) as a Gm-module so that the evaluation pairing

Homgrp sch(G×n
a ,Ga) × G×n

a → Ga is Gm equivariant with Gm acting trivially on
the right hand side, the resulting weights of Homgrp sch(G×n

a ,Ga) are all of the
form (0, . . . , 0,−1, 0, . . . 0). . Observe that under this action

(α1, . . . , αn), (ψ1(−), . . . ψn(−)) 7→ (ψ1(α−1
1 · −), . . . , ψn(α−1

n · −)),

which is the usual contragredient action.

Rather than discuss maximal tori and weights for general reductive groups, we
describe the situation for the example of primary interest, that of the algebraic
group GLn.
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Proposition 2.3. Let M be a GLn-module.
(1) As a Tn-module, M ' ⊕Mλ. The Tn-submodule Mλ ⊂ M is called the

λ-weight subspace.
(2) The Frobenius twist M (r) of M has weight decomposition M (r) = ⊕Mprλ.
(3) Let Gm ⊂ Tn denote the subgroup of scalar multiples of the identity. As a

GLn-module, M splits as a direct sum M = ⊕Md, where Md ⊂ M is the
weight subspace of weight d with respect to the action of Gm.

Observe that Hi(Tn,M) = 0, i > 0 since Tn is semisimple. On the other hand,
the cohomology of Ga is quite interesting. We recall its computation, including
its weight structure where the action of Gm on H∗(Ga, k) is that induced by the
multiplication action of Gm on Ga.

Theorem 2.4. (cf. [5]).
(1) H∗(Ga, k) = Λ∗(y1, y2, . . . )⊗ k[x1, x2 . . . ], p 6= 2.

H∗(Ga, k) = k[y1, y2, . . .], p = 2

where each yi ∈ H1(Ga, k), xi ∈ H2(Ga, k).
(2) Let F : Ga → Ga be the (geometric) Frobenius endomorphism. Then

F ∗(xi) = xi+1, F ∗(yi) = yi+1.

(3) The weight of xi is −pi and of yi is −pi−1.
(4) If (α · −) : Ga → Ga denotes multiplication by α ∈ k, then

(α · −)∗(xi) = αpi

xi, (α · −)∗(yi) = αpi−1
yi,

(5) H∗(Ga(r), k) = Λ∗(y1, . . . , yr)⊗ k[x1, . . . xr], p 6= 2.

H∗(Ga(r), k) = k[y1, . . . , yr], p = 2.

The reader puzzled about the fact that the generator y1 ∈ H1(Ga(1), k) =
Homgrpsch(Ga(1),Ga) has weight -1 whereas the generator x1 ∈ H2(Ga(1), k) has
weight −p might find it helpful to know that x1 is the Bockstein of y1. Thus, if y1 is
represented by some function f ∈ k[Ga(1)], then x1 is represented by δ(f) ∈ k[G2

a(1)]
defined by

δ(f)(g1, g2) =
f(gp

1) + f(gp
2)− f(gp

1 + gp
2)

p
.

A very useful technique for computations is the Lyndon-Hochschild-Serre (L-H-
S) (first quadrant, cohomological) spectral sequence

(2.5) Ep,q
2 = Hp(G/N,Hq(N,M)) =⇒ Hp+q(G,M)

relating the cohomology of G with coefficients in the G-module M to the cohomol-
ogy of G/N with coefficients in the G/N -module H∗(N,M), the cohomology of the
normal subgroup scheme N with coefficients in the restriction of M to N .

Example 2.6. Let Bn ⊂ GLn denote the subgroup of upper triangular matrices,
and let Un ⊂ Bn denote the subgroup of strictly upper triangular matrices. We
utilize the short exact sequence

1 → Un → Bn → Tn → 1

and the semi-simplicity of Tn to conclude that

H∗(Bn,M) ' (H∗(Un,M))Tn .
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Similarly, for any r ≥ 1, we conclude

H∗(Bn(r),M) ' (H∗(Un(r),M))Tn(r) .

In the special case of trivial coefficients (i.e., M = k), we may make further
progress in the computation of H∗(Bn, k) by using a central series for Un to ex-
press Un as a succession of central extensions of products of root subgroups (i.e.,
subgroups isomorphic to Ga stabilized by Tn). Then the action of Tn stabilizes each
of these extensions and thus induces a Tn-action on their associated L-H-S spectral
sequences.

Indeed, if we pass to the first Frobenius kernel Bn(1) of Bn and assume that
p > n, then this strategy gives a complete calculation of H∗(Bn(1), k) as a Tn(1)-
module. Namely, we consider the height 1 central extensions

1 → Ga(1) → U(1) → U (1) → 1,

associated to this central series for Un. Applying the exact functor (−)Tn(1) to each
of the associated L-H-S spectral sequences, we obtain spectral sequences of the form

(2.7) Ep,q
2 = (Hp(U (1), k)⊗Hq(Ga(1), k))Tn(1) =⇒ Hp+q(U(1), k)Tn(1) .

If p > n, then the computation of Theorem 2.4 together with the multiplicative
structure of (2.5) implies that all of the differentials of (2.7) are 0. Thus, we obtain
an isomorphism of T(n)-modules

H∗(Un(1), k) ' H∗(gr(Un)(1), k), gr(Un) ' G×N
a , N =

n(n− 1)
2

.

Assuming p > n, this enables one to fully computeH∗(Bn(1), k) = (H∗(Un(1), k))Tn(1)

by taking the Tn(1) invariants of

H∗(gr(Un)(1), k) = ⊗N
i=1H

∗(Ga(1), k).

Finally, a weight argument (for p > n) implies that H∗(B(1), k) ' S∗(u(#(1)
n where

u − n = Lie(Un). (See [14, 12.12] for details of this weight argument; the earlier
part of the above argument using the L-H-S spectral sequence is replaced in [14] by
a different spectral sequence argument.)

As we recall in the following corollary of “Kempf’s Vanishing Theorem”, the
cohomology H∗(GLn,M) is isomorphic to H∗(Bn,M). We state this theorem
more generally for an arbitrary affine algebraic group G; we remind the reader
that a Borel subgroup B ⊂ G is a maximal closed, connected, reduced, solvable
subgroup scheme.

Theorem 2.8. (cf. [5],[18, 3.1]) Let G be an affine algebraic group and B ⊂ G be
a Borel subgroup. Then for any G-module M , the natural restriction map

H∗(G,M) → H∗(B,M)

is an isomorphism.

Example 2.9. A construction of G. Hochschild provides a natural map

g#(1) → H2(V (g), k),

where g# is the linear dual of the p-restricted Lie algebra g. Namely, H2(V (g), k)
can be naturally identified with isomorphism classes of extensions of p-restricted
Lie algebras of the form

1 → k → g̃ → g → 1,
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where k is equipped with the trivial p-restriction as well as trivial Lie bracket.
For any linear map ψ : g → k, we define following Hochschild the p-restricted Lie
algebra g̃ with Lie algebra structure the direct sum k ⊕ g and with p-restriction
given by (α,X)[p] = (ψ(X)p, X [p]).

Let G be an affine group scheme and let I denote the augmentation ideal of k[G],
the maximal ideal at the identity e ∈ G. Then we set

gr(k[G]) = ⊕n≥0I
n/In−1,

and readily verify that the commutative Hopf algebra structure on k[G] determines
a commutative Hopf algebra structure on gr(k[G]). We denote the associated affine
group scheme by gr(G). If M is a G-module, then the standard “Hochschild com-
plex” C∗(G,M) admits an associated filtration whose associated graded complex is
the Hochschild complex C∗(gr(G),M) whereM is viewed as a trivial gr(G)-module.
This leads to the following general form of the “May spectral sequence.”

Theorem 2.10. (cf. [14, 9.13] For any affine group scheme G and G-module M ,
there is a natural first quadrant spectral sequence of cohomological type

Es,t
1 (M) = Hs+t(gr(G)(s) ⊗M) =⇒ Hs+t(G,M).

For G = GLn(r), this specializes to

E∗,∗1 (M) =
r⊗

i=1

S∗(gl#(i)
n [2])⊗ Λ∗(gl#(i−1)

n [1])⊗M =⇒ H∗(GLn(r),M),

where S∗(gl#(i)
n [2]) denotes the symmetric algebra generated by the vector space

gl
#(i)
n in degree 2, Λ∗(gl#(i−1)

n [1]) the exterior algebra generated by gl#(i−1)
n in degree

1, and the notation specifies the structure of the spectral sequence with its GLn-
action.

Example 2.11. We apply Example 2.9 and Theorem 2.10 to sketch a computation
of H∗(V (gln), k) = H∗(GLn(1), k) for p ≥ n. Even though this sketch omits sev-
eral somewhat difficult arguments, it can serve to suggest the manner in which
computations can be made.

The May spectral sequence for GLn(1) and M = k has the form

E2s,t
1 (k) = Ss(gl#(1)

n [2])⊗ Λt(gln, k) =⇒ H2s+t(GLn(1), k).

whereHt(gln, k) = Ht(Λ∗(gl#n )) is the Lie algebra cohomology of gln. The Hochschild
construction of Example 2.9 implies that E2,0

1 (k) = S1(gl#(1)
n [2]) consists of perma-

nent cycles; by multiplicativity of the spectral sequence, we conclude that E∗,01 (k) =
S∗(gl#(1)

n [2]) consists of permanent cycles. A direct computation of d0,∗
1 implies that

E0,∗
2 (k) = H∗(gln, k), the cohomology of the universal enveloping algebra of the Lie

algebra gln. Thus, the E2-page of the May spectal sequence has the form

E2s,t
2 (k) = Ss(gl#(1)

n [2])⊗Ht(gln, k) =⇒ H2s+t(GLn(1), k).

As verified in [10, 1.1] if p > n then

H∗(gln, k) = (Λ∗(gl#n ))(GLn)1

is an exterior algebra on generators in degrees 1, 3, . . . , 2n− 1, whereas the latter is
shown in [2] (cf. [14, 12.10]) to be isomorphic to (Λ∗(gl#n ))GLn . We assume induc-
tively that the first i generators of H∗(gln, k) transgress to some non-zero element
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of E∗,02i (k). An argument of Borel enables us to conclude that on the E2i+1-page
we have E∗,j2i+1(k) = 0, 0 < j ≤ i, so that E∗,02i+1(k) is the quotient of S∗(gl#(1)

n [2])
by the ideal generated by the transgressions of elements of ⊕i

j=1H
j(gln, k).

On the other hand, H∗>0(GLn, k) = 0; this is a special case of the usual Kempf
vanishing theorem, but could be rederived using Theorem 2.8 and a weight ar-
gument showing H∗>0(Un, k)Tn = 0. The GLn invariance of H∗(gln, k) implies
that i + 1-st generator of H∗(gln, k) must transgress to some non-zero element of
E2i,0

2i+2(k). We conclude that H∗(GLn(1), k) is isomorphic to S∗(gl(1)#n [2]) modulo
the ideal generated by the transgressions of H∗>0(gln, k) (which necessarily equals
the ideal generated by the GL(1)

n -invariant elements of positive degree). (See [11]
for details.)

We conclude this lecture by examining the fundamental class

(2.12) e1 ∈ H2(GLn, gl
(1)
n ) ' Ext2GLn

(V (1)
n , V (1)

n )

where gln denotes the adjoint module (i.e., n2-dimensional vector space of n × n
matrices with GLn acting via conjugation) and Vn is the natural GLn-module
associated to the identity representation GLn → Autk(Vn). This fundamental
class enables a straight-forward proof of the finite generation of H∗(GLn(1), k) (cf.
Theorem 4.1). The role of strict polynomial functors and their cohomology in
Lecture 4 will be to establish suitable higher order fundamental classes er which
will enable the proof of finite generation of H∗((GLn(r), k) and thus the cohomology
of any finite group scheme.

First, observe that

H2(GLn, gln) = H2(Bn, gln) = 0 = H2(Un, gln)Tn = 0

because no weight of H2(Un, k) is the negative of a weight of gln provided that
p > n. (This can be verified as in Example 2.6 using the computation of Theorem
2.4 or more directly using the May spectral sequence.) This emphasizes the role of
Frobenius twists. The possibility that H2(GLn, gl

(1)
n ) is non-zero can be seen from

our knowledge that the weights of gl(1)n are p times the weights of gln.

Example 2.13. Let W2(k) denote the Witt vectors of length 2 over k, so that W2(k)
is the Artinian k-algebra whose underlying additive structure is as a non-trivial
extension of k by k. (Thus, W2(Fp) = Z/p2Z.) Then we have an extension of affine
group schemes over k,

1 → gl(1)n → GLn,W2(k) → GLn → 1

which corresponds to a class in H2(GLn, gl
(1)
n ); since this extension does not split,

this class is non-trivial and is one representation of our fundamental class e1.
Another representation of the class e1 uses the May spectral sequence of The-

orem 2.10 for G = GLn(1) and M = gl
(1)
n . There is a canonical GL(1)

n -invariant
“identity element” id ∈ gl

(1)
n ⊗ gl

#(1)
n ' (E2,0

2 )(gl(1)n ) which determines a class in
H2(GLn, gl

(1)
n ) using the L-H-S spectral sequence for the short exact sequence

1 → GLn(1) → GLn → GL(1)
n → 1.

As yet another representation of e1, we consider the exact sequence of GLn-
modules

(2.14) 0 → V (1)
n → Sp(Vn) → Γp(Vn) → V (1)

n → 0,
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where Sp(Vn) = (V ⊗p
n )/Σp is the p-th symmetric power of Vn represented concretely

by the vector space of polynomials in n variables homogeneous of degree p, and
Γp(Vn) = (V ⊗p

n )Σp = (Sp(Vn))#. The map V
(1)
n → Sp(Vn) is given by v 7→ vp, the

map Γp(Vn) → V
(1)
n is the dual of this map, and the map Sp(Vn) → Γp(Vn) is the

symmetrization map. The extension (2.14) corresponds to the class

e1 ∈ Ext2GLn
(V (1)

n , V (1)
n ) ' H2(GLn, gl

(1)
n ).

3. Polynomial modules and functors

In this lecture, we restrict our attention to GLn. A GLn-module is frequently
called a rational representation, for the data necessary to provide an N -dimensional
vector space with the structure of a GLn-module consists of N2-matrix coefficients
viewed as regular functions on GLn. Regular functions on GLn can in turn be
viewed as rational functions in the n2 matrix coordinates of GLn. Should these N2

rational functions all be polynomial functions of the matrix coordinates of GLn,
namely lie in

(3.1) k[Mn] = k[xi,j ]1≤i,j≤n ⊂ k[xi,j ; t]1≤i,j≤n/det(xi,j)t− 1 = k[GLn],

then the GLn-module is said to be a polynomial module (or a polynomial represen-
tation of GLn).

In this lecture, we shall see how to interpret such polynomial modules and their
cohomology in terms of “strict polynomial functors” and we shall see how this
functor point of view affords computational advantages. The formulation of strict
polynomial functors is at first somewhat daunting, but the reader should keep in
mind the fact that these functors are so defined in order to play the same role in
connection with polynomial representations of GLn as the role played by more fa-
miliar polynomial functors in connection with representations of the discrete group
GLn(k).

We begin with the definition of the Schur algebra.

Definition 3.2. Let n, d be position integers, consider the Hopf algebra k[Mn] of
(3.1), and let k[Mn]d ⊂ k[Mn] denote the subspace of homogeneous polynomials of
degree d. Then k[Mn]d is closed under the coproduct of k[Mn] and its linear dual
(which is a finite dimensional k-algebra)

S(n, d) = (k[Mn]d)#

is called the Schur algebra (of rank n and degree d).
A module for S(n, d) is called a polynomial module for GLn homogeneous of

degree d.

Thus, a module for S(n, d) is a comodule for k[Mn]d ⊂ k[GLn], a GLn-module
whose matrix coefficients are homogenous polynomial functions of the matrix co-
ordinates of GLn. For future reference, we recall that

S(n, d) = (Sd(Endk(kn))# = Γd(Endk(kn))(3.3)

= ((Endk(kn))⊗d)Σd = EndkΣd
((kn)⊗d)

Let Poln,d ⊂ (ModGLn
) denote the full-subcategory of polynomial modules for

GLn homogeneous of degree d. Then essentially by definition we have an equiva-
lence of categories

(3.4) Poln,d ' (ModS(n,d))
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between this category and the category of modules for the Schur algebra S(n, d).
The following theorem tells us that GLn-cohomology of polynomial modules can

be computed as the cohomology of Schur algebras.

Theorem 3.5. (cf. [6], [13, 3.12.1]) Let

Poln = ⊕d≥0Poln,d ⊂ (ModGLn)

denote the category of polynomial modules for GLn.
(1) A GLn-module is polynomial if and only if all of its Tn-weights are non-

negative.
(2) Any polynomial module M for GLn is canonically a direct sum of polyno-

mial modules for GLn homogeneous of degree d, M = ⊕d≥0Md. Moreover,
the homogenous summand of degree d is the weight space of degree d of the
GLn-module with respect to the scalar matrices Gm ⊂ Tn.

(3) If M,N are polynomial modules for GLn, then

Ext∗GLn
(M,N) ' Ext∗Poln(M,N).

Let Vk denote the category of vector spaces over k and let (Vk)f ⊂ Vk denote the
full subcategory of finite dimensional k-vector spaces. As defined below, a strict
polynomial functor is a collection of polynomial modules Mn for GLn for each n ≥ 1
together with compatibility of actions as n varies.

Definition 3.6. A strict polynomial functor T : (Vk)f → (Vk)f is the data of an
association

T (V ) ∈ (Vk)f , ∀V ∈ (Vk)f

together with maps of affine schemes

TV,W : Homk(V,W ) → Homk(T (V ), T (W )), ∀V,W ∈ (Vk)f

satisfying the following:
• TV,V (idV ) = idT (V ),∀V ∈ (Vk)f .
• ∀U, V,W ∈ (Vk)f ,

Homk(U, V )×Homk(V,W ) −−−−→ Homk(U,W )

TU,V ×TV,W

y yTU,W

Homk(T (U), T (V ))×Homk(T (V ), T (W )) −−−−→ Homk(T (U), T (W ))
commutes, where the horizontal maps are given by composition.

If T is a strict polynomial functor with the property that TV,W has degree
bounded by some integer which can be chosen independent of V,W , then we say
that T has bounded degree; if each TV,W is homogeneous of degree d, then we say
that T is homogeneous of degree d.

We denote by Pd the category of strict polynomial functors homogeneous of
degree d, and P the category of strict polynomial functors of bounded degree.

Remark 3.7. If the field k is infinite, then a strict polynomial functor T can be
described more simply as a functor T : (Vk)f → (Vk)f with the property that
each TV,W : Homk(V,W ) → Homk(T (V ), T (W )) is a polynomial function (i.e.,
a map of sets having the property that with respect to a choice of bases for
Homk(V,W ),Homk(T (V ), T (W )) the coordinates of TV,W (f) are polynomial in
the coordinates of f ∈ Homk(V,W )).



LECTURES ON THE COHOMOLOGY OF FINITE GROUP SCHEMES 13

Observe that a map of affine schemes

F : Homk(V,W ) → Homk(T (V ), T (W ))

is equivalent to a map of coordinate algebras

F ∗ : S∗(Homk(T (V ), T (W ))#) → S∗(Homk(V,W )#)

which is equivalent to a linear map of k-vector spaces

Homk(T (V ), T (W ))# → S∗(Homk(V,W )#).

To say that F is homogeneous of degree d is to say that this last map has image in
Sd(Homk(V,W )#) ⊂ S∗(Homk(V,W )#), so that the data associated to this map
is equivalent to a linear map of the form Γd(Homk(V,W )) → Homk(T (V )), T (W )).

Thus, if T is a strict polynomial functor homogeneous of degree d, we may
replace the structure maps TV,W by equivalent linear maps which we shall continue
to denote by TV,W ,

TV,W : Γd(Homk(V,W )) → Homk(T (V )), T (W )).

Proposition 3.8. Let T be a strict polynomial functor homogenous of degree d.
Then T (kn) has the natural structure of a polynomial module for GLn for each
n ≥ 0,

Proof. If A is any finitely generated commutative k-algebra, then we may define
T (A⊗ V ) to be A⊗ T (V ) and we may consider the base-change of TV,W to obtain

TV,W ⊗A : HomA(A⊗ V,A⊗W ) → HomA(A⊗ T (V ), A⊗ T (W )).

In particular, the composition

GLn(A) ⊂ HomA(A⊗ kn, A⊗ kn) → HomA(A⊗ T (kn), A⊗ T (kn))

for varying A determines a GLn-module structure on T (kn) which by construction
is polynomial. �

Example 3.9. We give some common examples of strict polynomial functors.
(1) The identity I : (Vk)f → (Vk)f is a strict polynomial functor homogeneous

of degree 1.
(2) For any r ≥ 1, I(r) : (Vk)f → (Vk)f given by V 7→ V (r) is a strict polynomial

functor homogeneous of degree pr.
(3) For any d > 0, ⊗d : (Vk)f → (Vk)f given by V 7→ V ⊗

d

is a strict polynomial
functor homogeneous of degree d.

(4) For any d > 0, Λd : (Vk)f → (Vk)f given by V 7→ Λd(V ) is a strict
polynomial functor homogeneous of degree d.

(5) For any d > 0, Sd : (Vk)f → (Vk)f given by V 7→ Sd(V ) is a strict
polynomial functor homogeneous of degree d.

(6) For any d > 0, Γd : (Vk)f → (Vk)f given by V 7→ Γd(V ) is a strict
polynomial functor homogeneous of degree d. More generally, for any n, d >
0, Γd(Homk(kn,−)) is a strict polynomial functor of degree d.

(7) If T : (Vk)f → (Vk)f is a strict polynomial of degree d, then T# given by
V 7→ T (V #)# is also a strict polynomial functor of degree d. Moreover,
T is a projective object of the category P of strict polynomial functors of
bounded degree if and only if T# is an injective object of P.
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The following proposition makes more explicit various homological algebra con-
structions in P, our category of strict polynomial functors of bounded degree. Ob-
serve that if T is a strict polynomial functor homogeneous of degree d then there
is a natural map (i.e., natural transformation of functors)

(3.10) T (kn)⊗ Γd(Homk(kn,−)) → T

given for each V ∈ (Vk)f as the adjoint of Tkn,V : Γd(Homk(kn, V )) → Homk(T (kn), T (V )).

Proposition 3.11. (cf. [13, 2.10] The category P of strict polynomial functors
of bounded degree is isomorphic to the direct sum of categories strict polynomial
functors homogeneous of degree d for d > 0,

P ' ⊕dPd.

Moreover, for any n > 0, the functor Γd(Homk(kn,−)) ∈ Pd is a projective
object.

If T is a strict polynomial functor homogeneous of degree d, then the natural
map (3.10) is surjective provided that n ≥ d. Thus, for n ≥ d, Γd(Homk(kn,−))
is a projective generator of Pd.

We now formulate the theorem that tells us that we can compute Ext-groups of
polynomial GLn-modules in terms of Ext-groups of strict polynomial functors.

Theorem 3.12. [13, 3.2] For positive integers n ≥ d, there are natural equivalences
of abelian categories (with enough injective and projective objects)

Pd ' (ModS(n,d)) ' Poln,d.

Consequently, for any pair of strict polynomial functors S, T homogeneous of
degree d, there are natural isomorphisms of graded groups

Ext∗Pd
(S, T ) ' Ext∗Poln,d

(S(kn), T (kn)) '(3.13)

Ext∗S(n,d)(S(kn), T (kn)) ' Ext∗GLn
(S(kn), T (kn)).

Proof. (Outline of proof.) The map Pd → (ModS(n,d)) is given by T 7→ T (kn). The
action of S(n, d) = Γd(Endk(kn)) (cf. (3.3)) on T (kn) is given by (3.10). The proof
that this is an equivalence of categories is more or less a direct computation using
the explicit inverse sending (ModS(n,d)) → Pd given by M 7→ Γd(Hom(kn,−))⊗M .
The equivalence (ModS(n,d)) ' Poln,d is that of 3.4.

The first three isomorphisms of (3.13) follow from the equivalences of categories.
The last is given by (3.5). �

We conclude this lecture by mentioning a few of the computational advantages
one has when computing ExtP -groups. One is the existence of complexes of functors
(discussed in some detail in other lectures). For example, one has the (exact) Koszul
complex

(3.14) 0 → Λd → Λd−1 ⊗ S1 → · · · → Λ1 ⊗ Sd−1 → Sd → 0

and the not necessarily exact DeRahm complex

(3.15) 0 → Sd → Λ1 ⊗ Sd−1 → · · · → Λd−1 ⊗ S1 → Λd → 0

A second advantage is the very concrete nature of injectives and projectives. For
example, the functors Sd are injective and thus cohomologically acyclic.
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A third useful computational tool, especially in conjunction with the above com-
plexes, is the following acyclicity result. This result appears in much strengthened
form in [8, 1.7].

Theorem 3.16. (cf. [9], [13, 2.13] Let T, T ′ be homogenous strict polynomial
functors of positive degree and let A be an additive functor (e.g., a Frobenius twist
of a strict polynomial functor homogeneous of degree 1). Then

Ext∗P(A, T ⊗ T ′) = 0.

4. Finite generation of cohomology

In this lecture, we outline the proof of the finite generation of the cohomology
of finite group schemes, Theorem 4.7. We first sketch the proof of finite generation
for infinitesimal group schemes of height 1, for this special case introduces the
general method of proving finite generation. We then discuss the existence and
basic properties of the fundamental classes

er ∈ Ext2pr−1

P (I(r), I(r)).

Using these classes, we then sketch the proof of finite generation of H∗(GLn(r), k).
Finally, we discuss the relatively straight-forward manner in which finite genera-
tion of H∗(GLn(r), k) implies the finite generation of H∗(G, k) for any finite group
scheme G.

The following theorem was first formulated and proved in [11] although the result
might well have been known previously.

Theorem 4.1. [11] Let G be an infinitesimal group scheme of height 1 (i.e., k[G]
is a finite connected algebra whose maximal ideal consists of elements whose p-th
power is 0) and let M be a finite dimensional G-module. Then H∗(G, k) is a finitely
generated algebra and H∗(G,M) is a finite module over H∗(G, k).

Proof. (Sketch of proof.) As in Example (2.11), the Hochschild construction of
Example 2.9 implies that the May spectral sequence of Theorem 2.10 has the form

E2s,t
2 (M) = Ss(g(1)#)⊗Ht(g,M) =⇒ H2s+t(G,M).

Here H∗(g,M) is the Lie algebra cohomology of g = Lie(G) (i.e., the cohomology
of the universal enveloping algebra U(g) of g). The “shape” of this spectral se-
quence implies that S∗(g(1)#) = E∗,02 (k) consists of “permanent cycles” (i.e., the
differentials dr vanish on E∗,0r (k)). This implies that E∗,∗r (M) is a module over
S∗(g(1)#) and that dr is a homomorphism of S∗(g(1)#)-modules.

Now assume that M is finite dimensional. Then E∗,∗2 (M) is a finite S∗(g(1)#)-
module. Since E∗,∗r (M) is a subquotient of E∗,∗r−1(M), we conclude that each
E∗,∗r (M) and thus also E∗,∗∞ (M) are finite S∗(g(1)#)-modules. In particular, E∗,∗∞ (k)
is a finite S∗(g(1)#)-modules which implies that E∗,∗∞ (k) is finitely generated which
implies by a result of L. Evens [7, 2.1] that H∗(G, k) is finitely generated. More-
over, the spectral sequence {E∗,∗r (M)} is a module over the spectral sequence (of
algebras) {E∗,∗r (k)}, so that the action of S∗(g(1)#) on E∗,∗r (M) factors through
E∗,∗r (k) and thus the action of S∗(g(1)#) on H∗(G,M) factors through H∗(G, k).
We therefore conclude that H∗(G,M) is a finite H∗(G, k)-module. �

To extend this argument to more general finite group schemes G, we require a
finitely generated subalgebra of E∗,∗2 (k) for the May spectral sequence consisting of
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permanent cycles and with respect to which the E∗,∗r (M) is a finite module. We can
no longer argue that the shape of May spectral sequence guarantees the existence
of such an algebra. Instead, we construct explicit generators of such an algebra,
the fundamental classes {ei}, whose basic properties suffice to guarantee that they
generate such an algebra.

The following complete calculation of Ext∗P(I(r), I(r)) is the heart of the proof
of finite generation. The proof follows closely the arguments of [9].

Theorem 4.2. [13, 4.10] The Ext-algebra Ext∗P(I(r), I(r)) is a commutative k-
algebra generated by elements

e
(r−i)
i ∈ Ext2pi−1

P (I(r), I(r))

subject only to the relations (e(r−i)
i )p = 0.

Proof. (Comments on proof.) We use all of the computational tools mentioned at
the end of Lecture 3. Namely, we proceed by induction first on r and then for a given
r by induction on j to compute Ext∗P(I(r), Spr−j(j)). Inputs to this computation
include the vanishing of Ext∗>0

P (−, Sd) for any d ≥ 0 because of the injectivity
of Sd, the vanishing of Ext∗P(I(r),Λi ⊗ Sj) for i, j > 0 by Theorem 3.16, and the
exactness of the Koszul complex (3.14). One additional input which enables this
computation is a theorem of P. Cartier [4] which determines the cohomology of
the DeRham complex (3.15); namely, the DeRham complex is acyclic if (p, d) = 1
and equals the first Frobenius twist of the DeRham complex relating S

d
p to Λ

d
p if

p|d. �

Further work with Ext-groups in the category P of strict polynomial functors of
bounded degree verifies that er is related i n a natural way to a power of e1.

Theorem 4.3. [13, 5.7] The image of

(ep−1
1 )⊗pr−1

∈ (Ext2(p−1
P )(I(1), I(1)))⊗pr−1

is a scalar multiple of the image of

ep−1
r ∈ Ext2(p−1)pr−1

P (I(r), I(r))

in Ext
2(p−1)pr−1

P (Γpr−1(1), Spr−1(1)).

Theorem 4.3 enables us to conclude the existence of non-zero classes in the
cohomology of GLn which restrict non-trivially to the cohomology of GLn(1).

Theorem 4.4. [13, 6.2] For any n ≥ 2, r ≥ 1, the image of er under the composition

Ext2pr−1

P (I(r), I(r)) → Ext2pr−1

GLn
(V (r)

n , V (r)
n ) =

H2pr−1
(GLn, gl

(r)
n ) → H2pr−1

(GLn(1), k)⊗ gl(r)n

is non-zero.

Theorem 4.4 together with a bit more work implies the following corollary.

Corollary 4.5. The class er ∈ H2pr−1
(GLn, gl

(r))
n ) restricts to a non-trivial class

in H2pr−1
(GLn(r), k)⊗ gl

(r)
n . We view this restriction as a non-zero map

er : gl(r)#n → H2pr−1
(GLn(r), k).
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This map annihilates the 1-dimensional GLn-invariant subspace of gl(r)#n . More-
over, its composition with the restriction map to H2pr−1

(GLn(1), k) is given up to
non-zero scalar multiple as the composition

gl(r)#n → Spr−1
(gl(1)#n [2]) → H2pr−1

(GLn(1), k)

where the first map is the pr−1-st power map and the second is the edge homomor-
phism in the May spectral sequence of Theorem 2.10.

Corollary 4.5 enables us to adapt the proof of Theorem 4.1 to provide a proof of
finite generation of cohomology of GLn(r).

Theorem 4.6. Let n ≥ 2, r ≥ 1 and let M be a finite dimensional GLn(r)-module.
Then H∗(GLn(r), k) is a finitely generated algebra and H∗(GLn(r),M) is a finite
module over H∗(GLn(r), k).

Proof. (Sketch of proof.) As in the proof of Theorem 4.1, we analyze the May
spectral sequences of Theorem 2.10, {E∗.∗r (k)} for H∗(GLn(r), k) and {E∗,∗r (M)}
for H∗(GLn(r),M).

Let
S∗(gl(r)#n [2pr−i]) ⊂ S∗(gl(i)#n [2])

denote the poynomial subalgebra generated by the subspace gl(r)n ⊂ Spr−i

(gl(i)#n [2])
of pr−i-th powers of gl(i)#n [2]. Then Corollary 4.5 together with the evident natu-
rality of our constructions with respect to GLn(r) → GLn(r)/GLn(r−1) ' GLn(1)

implies that
r⊗

i=1

S∗(gl(r)#n [2pr−i])⊗M ⊂ E∗,∗1 (M)

consists of permanent cycles.
Clearly, E∗,∗1 (M) is a finite⊗r

i=1S
∗(gl(r)#n [2pr−i]) module. As argued in the proof

of Theorem 4.1, this implies that E∗,∗∞ (k) is a finitely generated algebra and thus also
H∗(GLn(r), k) is also finitely generated. Since the action of ⊗r

i=1S
∗(gl(r)#n [2pr−i])

onH∗(GLn(r),M) factors throughH∗(GLn(r), k), we conclude thatH∗(GLn(r),M)
is a finite H∗(GLn(r), k) module. �

We are now in a position to outline the remainder of the proof of finite generation
of H∗(G, k) for an arbitrary finite group scheme. This proof relies on earlier work
of L. Evens [7] who, together with B. Venkov [19], proved the finite generation of
the cohomology algebra of a finite group.

Theorem 4.7. [13, 1.1] Let G be a finite group scheme and let M be a finite
dimensional G-module. Then H∗(G, k) is a finitely generated algebra and H∗(G,M)
is a finite module over H∗(G, k).

Proof. (Outline of proof.) If G an an infinitesimal group scheme of height ≤ r, then
G admits an embedding as a closed subgroup scheme of GLn(r). Shapiro’s Lemma,

H∗(G,M) ' H∗(GLn(r), Ind
GLn(r)

G M),

in conjunction with Theorem 4.6 easily implies the assertions of the theorem for
such infinitesimal group schemes G.

For applications considered in the next lecture, we utilize a different proof of
finite generation for G infinitesimal. Namely, a closed embedding G ⊂ GLn(r)

induces a map of spectral sequences
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(4.8)

E∗,∗1 (GLn(r), k) =
r⊗
1
S∗(gl(i)#n [2])⊗

r⊗
1

Λ∗(gl(i−1)#
n [1])

��

E∗,∗1 (G, k) =
r⊗
1
S∗(g(i)#[2])⊗

r⊗
1

Λ∗(g(i−1)#[1])

which is surjective on E∗,∗1 . Thus, the argument given in the proof of Theo-
rem 4.6 applies, since it suffices to show that H∗(G, k) is a finite module over
⊗r

i=1S
∗(gl(r)#n [2pr−i]) and is thus finitely generated. Similarly, H∗(G,M) is finite

as a ⊗r
i=1S

∗(gl(r)#n [2pr−i]) module and thus also as a H∗(G, k) module.
Since H∗(G,M)⊗kK = H∗(GK ,M ⊗kK) for any field extension K/k, to prove

finite generation for an arbitrary finite group scheme we may assume that k is
algebraically closed. In this case, the split extension

1 → Go → G→ π0(G) → 1

is necessarily a semi-direct product of an infinitesimal group scheme and a finite
group. Then, one readily adapts results of [7] to conclude finite generation for G
knowing finite generation for Go and using the Evens-Venkov theorem asserting
finite generation for π0(G). (see [13, 1.9,1.10] for details). �

5. Qualitative description of Hev(G, k)

In [15], D. Quillen described the maximal ideal spectrum |π| of the commutative
algebraHev(π, k) for a finite group π in terms of the elementary abelian p-subgroups
of π. This remains a remarkable work, both for introducing the possibility of
identifying the maximal ideal spectrum as well as for the completeness of the result.
For example, Quillen gives us an explicit description of the maximal ideal spectrum
of Hev(GLn(Fq), k), q = pd, even though we know very little about the individual
cohomology groups Hi(GLn(Fq, k). (For example, we do not even know what is
the smallest positive degree such that Hi(GLn(Fq), k) 6= 0.) It is interesting to
note that Quillen also observed that Hi(GL∞(Fq), k) = 0 for i > 0, a fact which is
closely related to the fact that k = S0 ∈ P is acyclic.

Theorem 5.1. [15] Let π be a finite group, assume that k is algebraically closed,
and let |π| denote the maximal ideal spectrum of Hev(π, k). Then the natural map

lim−→
{E→π}

|E| → |π|.

is a homeomorphism, where the indexing category for the colimit is the category
whose objects are elementary abelian subgroups of π and whose maps are composi-
tions of group inclusions and maps induced by conjugations by elements of π.

Recall that if E is an elementary abelian p-group of rank n, then H∗(E, k) '
k[x1, . . . , xn] ⊗ Λ(y1, . . . , yn) where each xi ∈ H2(E, k), yi ∈ H1(E, k) for p 6= 2
(for p = 2, H∗(E, k) ' k[y1, . . . , yn] with each yi ∈ H1(E, k)). Thus, |E| is an
affine space of dimension n. Theorem 5.1 tells us that the Krull dimension of the
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commutative ring Hev(π, k) equals the maximal rank among elementary abelian p-
subgroups of π. We can restate Theorem 5.1 as asserting that |π| is the identification
space of the following projection

(5.2)
∐

E max

|E|/WE → |π|,

where the coproduct is indexed by conjugacy classes of maximal elementary abelian
p-subgroups of π and where WE denotes the normalizer of E modulo its centralizer
as a subgroup of π. Moreover, points of e ∈ |E|/WE , e

′ ∈ |E′|/WE′ are mapped via
(5.2) to the same point of |π| if and only if there exist conjugates Ẽ, Ẽ′ of E,E′

and a point e′′ ∈ |Ẽ ∩ Ẽ′|/WẼ∩Ẽ′ mapping to e, e′.
To prove Theorem 5.1, Quillen proves i.) that the map from the coproduct is

surjective by showing that any cohomology class ζ ∈ H∗(π, k) which restricts to
0 ∈ H∗(E, k) for every elementary abelian subgroup E ⊂ π is nilpotent; ii.) that
any point of |E|/WE not in the image of |E′|/WE′ with E′ a proper subgroup of
E maps injectively into |π| by showing that any class in a certain localization of
Hev(E, k)WE admits a p-th power in the image of Hev(π, k).

As first observed by Friedlander-Parshall, the maximal ideal spectrum of the
even dimensional cohomology of a finite dimensional restricted Lie algebra also has
an explicit description. Conditions on the prime p required by Friedlander-Parshall
were relaxed by Andersen-Janzten and eliminated altogether by Suslin-Friedlander-
Bendel.

Theorem 5.3. (cf. [11],[2],[18]) Let G be an infinitesimal group scheme of height
1, let g = LieG, and assume that k is algebraically closed. Denote by Np(g) ⊂ g

the p-nilpotent cone of g, the set of elements x ∈ g satisfying x[p] = 0. Then there
is a natural homeomorphism

Ψ : Np(G) ∼−→ |G|

where |G| denotes the maximal ideal spectrum of Hev(G, k).

Theorem 5.3 was generalized to arbitrary infinitesimal group schemes in two pa-
pers by Suslin-Friedlander-Bendel [17], [18] in a form which is more precise even in
the height 1 case. (Namely, these papers deal with schemes rather than maximal
ideal spectra. Among other advantages, this permits them to consider an arbi-
trary field k.) The schemes that generalize the variety Np(g) of Theorem 5.3 are
introduced in the next proposition.

Proposition 5.4. [17, 1.5] Let G be an affine group scheme. Then the functor on
commutative k-algebras

A 7→ HomGrps/A(Ga(r) ⊗A→ G⊗A)

is representable by an affine scheme Vr(G).
For G = GLn,

Vr(GLn)(k) = {(α1, . . . , αr) ∈Mn(k)r
∣∣αp

i = 0 = [αi, αj ]}.

In the case r = 1, V1(G) is the scheme whose underlying variety is the p-nilpotent
cone Np(Lie(G)) considered in Theorem 5.3.

We call a homomorphism α : Ga(r) ⊗ A → G × A a 1-parameter subgroup of
height r defined over A.
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Recall from Example 1.5 that kGa(r) = k[X1, . . . , Xr]/(X
p
i ) where Xi is the

operator 1
pi−1!

dpi−1

dtpi−1 on k[Ga(r)] = k[t]/tp
r

. We consider the map

ε : kGa(1) → Ga(r), u 7→ Xr,

where u ∈ kGa(1) is the dual of t ∈ k[t]/tp = k[Ga(1)]. So defined, ε is not a map of
Hopf algebras (i.e., does not commute with the coproduct), but does induce a map
on cohomology

ε∗ : H∗(Ga(r), k) → H∗(Ga(1)).
Observe that a 1-parameter subgroup α : Ga(r) → G determines a homomor-

phism of graded algebras

ε∗ ◦ α∗ : Hev(G, k) → Hev(Ga(r), k) → Hev(Ga(1), k) ' k[t].

This determines a natural set-theoretic map

Vr(G) → Proj(Hev(G, k)), α 7→ ker{ε∗ ◦ α∗},
where Proj(Hev(G, k)) denotes the maximal non-trival homogeneous prime ideals
of the graded algebra Hev(G, k). The following proposition asserts that this set-
theoretic map admits a natural refinement as a map of schemes.

Proposition 5.5. [17, 1.14] For any affine group scheme G, there is a natural
homomorphism of graded commutative k-algebras

(5.6) ψ : Hev(G, k) → k[Vr(G)]

which multiplies degrees by pr/2.
In the case r = 1 and k algebraically closed, the map on affine varieties induced

by ψ is the homeomorphism Ψ of Theorem 5.3.

Proof. The construction of this map is of sufficient independent interest that we
sketch it here. Let

u : Ga(r) ⊗ k[Vr(G)] → G⊗ k[Vr(G)]
correspond to

idk[Vr(G)] ∈ Vr(G)(k[Vr(G)]) = HomGrps/k[Vr(G)](Ga(r) ⊗ k[Vr(G)], G⊗ k[Vr(G)]).

Consider

u∗ : H∗(G, k) → H∗(G, k)⊗ k[Vr(G)] = H∗(G⊗ k[Vr(G)], k[Vr(G)])

→ H∗(Ga(r) ⊗ k[Vr(G)], k[Vr(G)]) = H∗(Ga(r), k)⊗ k[Vr(G)].

For any ζ ∈ H2j(G, k), we define ψ(ζ) to be the coefficient of xj
r, where xr =

ε∗(x) ∈ H2(Ga(r), k) with x ∈ H2(Ga(1), k) the chosen polynomial generator.
�

We proceed to outline how Suslin-Friedlander-Bendel construct an “inverse mod-
ulo p-nilpotents” of ψ, thereby verifying that ψ determines a homeomorphism
Ψ : Vr(G) → SpecHev(G, k) of prime ideal spectra. The following theorem ex-
plicitly exhibits such an ”inverse” for ψ in the special case of G = GLn(r).

Theorem 5.7. [17, 5.2] The fundamental classes ei ∈ H2pi−1
(GLn, gl

(i)
n ) determine

a map of algebras

⊗r
i=1e

(r−i)
i :

r⊗
i=1

S∗(gl(r)#n [2pi−1]) → Hev(GLn(r), k)
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which factors through the quotient map ⊗r
i=1S

∗(gl(r)#n [2pi−1]) → k[Vr(G)] associ-
ated to the embedding of Vr(GLn) ⊂ (Mn)r. Thus, ⊗r

i=1e
(r−i)
i determines a map

φ : k[Vr(GLn)] → Hev(GLn(r), k).

Moreover, the composition

ψ ◦ φ : k[Vr(GLn)] → H∗(GLn(r), k) → k[Vr(GLn)],

equals F r, the r-th iterate of the (geometric) Frobenius sending generators of the
k-algebra k[Vr(GLn)] to their pr-th power.

As in the proof of finite generation, establishing a qualitative description for
Hev(GLn(r), k) goes a long way toward establishing a similar description of infinites-
imal groups of height ≤ r. In particular, Theorem 5.7 together with the naturality
of the May spectral sequence (see (4.8)) easily implies the following corollary.

Corollary 5.8. For any infinitesimal group scheme G of height ≤ r, ψ : Hev(G, k) →
k[Vr(G)] has image containing F r(k[Vr(G)]) ⊂ k[Vr(G)]. In particular, ψ is sur-
jective modulo p-th powers.

To complete the qualitative description of Hev(G, k) for G infinitesimal we must
show that ψ is “injective modulo nilpotents”. This is verified by showing that a
class ζ ∈ Hev(G, k) which restricts to 0 via every 1-parameter subgroup is nilpotent,
a result analoguous to Quillen’s result asserting the cohomology of H∗(π, k) is
detected modulo nilpotents by restrictions to elementary abelian subgroups of a
finite group π.

Thus, Suslin-Friedlander-Bendel conclude the following.

Theorem 5.9. [18, 5.2] Let G be an infinitesimal group of height ≤ r. Then the
map of affine schemes associated to (5.6),

Ψ : Vr(G) → SpecHev(G, k),

is a homeomorphism.

Quite recently, Friedlander and J. Pevtsova have introduced a qualitative de-
scription of H∗(G, k) for any finite group scheme which encompasses the case of
finite groups presented in Theorem 5.1 and that of infinitesimal group schemes pre-
sented in Theorem 5.9. This generalization loses the scheme-theoretic information
of Theorem 5.9 and requires the assumption that k be algebraically closed.

Definition 5.10. Let G be a finite group scheme over the algebraically closed field
k. An abelian p-point of G is a flat map of algebras α : k[u]/up → kG which factors
through some abelian subgroup scheme of G. Two such abelian p-points α, β are
said to be equivalent provided that they satisfy the following condition: for every
finite dimensional G-module M , α∗(M) is projective (as a k[u]/up-module) if and
only β∗(M) is projective.

The set of equivalence classes of abelian p-points of G is denoted P (G). This set
is given a topology by defining a subset Y ⊂ P (G) to be closed if and only if there
exists a finite dimensional module M such that Y consists of those equivalence
classes of abelian p-points α for which α∗(M) is not projective.

The primary motivation for the above definition is the consideration of “support
varieties” for G-modules, a topic which we do not consider for lack of time but which
is a natural extension to the subject matter of this lecture. However, Definition
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5.10 does enable us to formulate the following qualitative description of Hev(G, k)
for an arbitrary finite group scheme G.

Theorem 5.11. [12, 4.8] Let G be a finite group scheme over an algebraically closed
field k. Then there is a natural homeomorphism

P (G) ∼−→ Proj(|G|),
sending an abelian p-point α : k[u]/up → Hev(G, k) to the homogeneous ideal
ker{α∗}.

To prove Theorem 5.11, Friedlander and Pevtsova use the following theorem
recently proved by A. Suslin extending a result by C. Bendel [3] which itself ex-
tended results of Suslin-Friedlander-Bendel. We say that a finite group scheme is
quasi-elementary if it is isomorphic to a product of the form Ga(r)×Z/ps for some
r, s ≥ 0.

Theorem 5.12. [16] (A. Suslin) Let G be a finite group scheme, Λ be a unital
associative G-algebra, and ζ ∈ Hev(G,Λ) be a homogeneous cohomology class of
even degree. Then ζ is nilpotent if and only if ζK restricts to a nilpotent class in
Hev(EK ,ΛK) for every field extension K/k and every quasi-elementary subgroup
scheme EK of GK .
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