
1. Lecture 1

1.1. Overview. The goal of these lectures is to present some foundations of co-
homologiy theories based on algebraic cycles and to provide some insight into the
relationship between these cohomology theories and K-theory. The reader is en-
couraged to consult the freely available manuscript [16] by C. Weibel for many
details of algebraic K-theory; a much less detailed reference on the Web can be
found at my web page [6], the notes of my lectures given recently in Zurich.

In order to motivate our considerations, I shall begin with a brief discussion
of some of the important theorems which relate K-theory to cohomology theory.
Several of these theorems we shall investigate in more detail in subsequent lectures.

The first result is due to A. Grothendieck, established at the same time that
Grothendieck first introduced K-theory. Grothendieck’s K-group of a scheme X
is what we now denote K0(X). I remind you that K0(X) is the “Grothendieck
group” of algebraic vector bundles on X, defined as the abelian group with set of
generators [E ] indexed by the isomorphism classes of algebraic vector bundles E
over X and with a relation [E ] − [E1] − [E2] for each short exact seqquence 0 →
E1 → E → E2 → −0. Although we often think of an algebraic vector bundle E over
X as a scheme over X whose fibres are vector spaces and which is locally in the
Zariski topology a product projection, the simplest precise formulation is that E is
a locally free, coherent OX -module.

Grothendieck’s theorem relates K0(X) to the graded group CH∗(X) of algebraic
cycles on X modulo rational equivalence. Grothendieck assigns to a vector bundle
E Chern classes cq(X) ∈ CHq(X) and formulates a graded ring homomorphism
ch∗(−), the Chern character, using these Chern classes.

Theorem 1.1. (cf. [4], [5]) Let X be a smooth variety over a field. Then there is
a natural ring isomorphism

ch∗ : K0(X)⊗Q ∼→ CH∗(X)⊗Q

where CHq(X) is the Chow group of algebraic cycles of codimension q on X mod-
ulo rational equivalence. The ring structure on K0(X) is that determined by tensor
product of algebraic vector bundles, the ring structure on CH∗(X) is that of inter-
section of cycles.

For example, if L is a line bundle (i.e., a localy free, coherent sheaf of rank 1)
with a non-zero global section s ∈ L(X), then the first Chern class c1([L]) of L is the
equivalence class of the zero locus z = Z(s) ⊂ X and ch∗([L]) = 1+z+ z2

2 + z3

3! +· · · .
Inspired by Grothendieck’s introduction of K-theory into algebraic geometry

M. Atiyah and F. Hirzebruch established a very analogous theory for topological
spaces. This “topological K-theory” of a given space T is a sequence of abelian
groups Ki

top(T ), with K0
top(T ) the Grothendieck group of topological vector bundles

over T (at least if T is a finite dimensional cell complex). Atiyah and Hirzebruch
proved many good properties of their theory, properties which algebraic K-theorists
have been trying ever since to establish for algebraic K-theory.

In particular, they established the “Atiyah-Hirzebruch spectral sequence” which
establishes clearly the relationship of K∗

top(T ) to the singular cohomology H∗
sing(T, Z)

of T .
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Theorem 1.2. (cf. [1]) Let T be a finite dimensional cell complex. Then there is
a spectral sequence

Ep,q
2 = Hp(T,Kq(S0)) ⇒ Kp+q(T )

whose differentials are torsion (so that the spectral sequence degenerates when ten-
sored with Q).

After many years, the analogue of the Atiyah-Hirzebruch spectral sequence has
been finally established for algebraic K-theory. The cohomology theory which plays
the role of singular cohomology in this analogue is motivic cohomology, a theory
based on algebraic cycles and one which is bigraded.

Theorem 1.3. (cf. [3], [7], [8]) Let X be a smooth variety over a field. There
there exists a convergent spectral sequence

Ep,q
2 = Hp−q(X, Z(−q)) ⇒ K−p−q(X).

It was well known from the beginnings of sheaf cohomology that H1
Zar(X,O∗

X)
can be identified with Pic(X), the group (under tensor product) of isomorphism
classes of line bundles. S. Bloch had the insight that there should be a similar
relationship involving higher algebraic K-theory. Namely, from Bloch’s point of
view, O∗

X is the sheaf K1 associated to the presheaf sending a Zariski open U to
K1(U). The following theorem, Bloch’s formula, was proved by Bloch for q = 2
and for general q by D. Quillen.

Theorem 1.4. (cf. [2], [12]) Let X be a smooth scheme over a field and denote
by Kq the sheaf associated to the presheaf sending a Zariski open subset U ⊂ X to
Kq(X). Then there is a natural isomorphism

Hq
Zar(X,Kq) ' CHq(X).

It has been recognized for some time that the algebraic K-theory with mod-
n coefficients is more accessible than algebraic K-theory itself. Indeed, later in
this lecture, we shall investigate Suslin’s determination of the mod-n K-theory of
algebraically closed fields. An important example of this principle is the following
theorem of A. Merkurjev and A. Suslin which relates the mod-n K2 of a field to
Galois cohomology.

Theorem 1.5. (cf. [9]) Let F be a field and n a positive integer invertible in F .
Then

K2(F )⊗ Z/n
∼→ H2

et(SpecF, µ⊗n
n ) = H2

Gal(F, µ⊗2
n ).

The approach used by Merkurjev and Suslin has been exploited by V. Voevodsky
to prove the following celebrated conjecture by J. Milnor. Indeed, Voevodsky in
collaboration with M. Rost has apparently established this result not simply for
mod-2 coefficients but for mod-n coefficients for all n.

Theorem 1.6. (cf. [10], [15]) Let F be a field of characteristic different from 2.
Then

KMilnor
i (F )⊗ Z/2 ∼→ Hi

Gal(F, Z/2).

This theorem and its mod-n analogue essentially establish the following impor-
tant conjecture about the mod-n K-theory of varieties.

Conjecture 1.7. (Quillen-Lichtenbaum Conjecture) Let X be a smooth variety of
dimension d over a field F with 1/n ∈ F . Then for i ≥ d − 1, Ki(X, Z/n) is
determined by the etale cohomology of X
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Since we have moved into the realm of conjectures, I conclude this overview with
the famous Hodge Conjecture formulated in K-theoretic terms.

Conjecture 1.8. Let X be a projective, smooth variety with associated analytic
space Xan and let E be a topological vector bundle. Then the class of E in K0

top(X
an)⊗

Q lies in the image of K0(X)⊗Q if and only if the Chern classes of E are of type
(q, q) with respect to the Hodge decomposition of H∗

sing(X
an, C).

1.2. Mod-n K-theory of algebraically closed fields. The first topic we con-
sider is a theorem of A. Suslin which asserts that the algebraic K-theory modulo
n is invariant under a base change of algebraically closed fields. Not only is this a
beautiful result with a short, elegant proof, it introduces the technique of “Suslin
rigidity” which plays a key role in the development of motivic cohomology.

We remind the reader that the algebraic K-theory of a variety X is given as the
homotopy groups of an infinite loop space K(X), Ki(X) = πi(K(X)), associated
to algebraic vector bundles. For X smooth, this space is homotopy equivalent to
another infinite loop space K′(X) associated to coherent sheaves on X, but for non-
smooth varieties the homotopy groups K ′

i(X) = πi(K′(X)) satisfy better formal
properties. We also remind the reader that if T is a pointed topological space, then
the homotopy group πi(T, Z/n) for i > 1 is the group of pointed homotopy classes
from the mod-n Moore space ei∪Si−1 Si−1, the identification space of the boundary
of the i-cell ei via multiplication by n on Si−1. Then

Ki(X, Z/n) ≡ πi(K(X), Z/n), K ′
i(X, Z/n) ≡ πi(K′(X), Z/n)

where we use the infinite loop space structure to define these groups for i = 0, 1.
One of the first theorems in algebraic K-theory was D. Quillen’s computation of

the K-theory of finite fields [11] and thus of the algebraic closure of finite fields.
Thus, the following theorem of Suslin computes the mod-n algebraic K-theory of any
algebraically closed field of positive characteristic (not dividing n). In subsequent
work, Suslin also established the mod-n K-theory of algebraically closed fields of
characteristic 0.

Theorem 1.9. (cf. [13]) Let F/F0 be an extension of algebraically closed fields,
let n be a positive integer invertible in F0, and let X0 be a quasi-projective variety
over F0. Then

K ′
∗(X0, Z/n) ∼→ K ′

∗(X, Z/n)
where X = SpecF ×Spec F0 X0 and K ′

∗(−, Z/n) is the mod-n Quillen K-theory as-
sociated to coherent sheaves.

In particular,
K∗(F0, Z/n) ∼→ K∗(F, Z/n)

Proof. Write F as the colimit lim−→A of finitely generated smooth F0-algebras A.
Since K∗(X0 ×Spec F0 Spec (−), Z/n) commutes with colimits and since each F0-
algebra A admits an F0-section A → F0 by the Hilbert Nullstellensatz, we conclude
that K ′

∗(X0, Z/n) ⊂ K ′
∗(X, Z/n).

To prove surjectivity, Suslin proves that the map K ′
∗(X0×Spec F0 Spec A, Z/n) →

K ′
∗(X, Z/n) factors as the composition of a retraction K ′

∗(X0×Spec F0Spec A, Z/n) →
K ′
∗(X0) given by such a section followed by the map K ′

∗(X0, Z/n) → K ′
∗(X, Z/n)

induced by F0 → F . To do this, we view these two maps as induced by two F -valued
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points of Spec A, and we observe that any two such points are the image of two
rational points of a smooth, connected curve C over Spec F and a map C → Spec A
over Spec F0.

Thus, we are reduced to proving that if C is a projective, smooth, connected
curve over Spec F and if p1, p2 ∈ C are two rational points, then the induced maps

p∗1, p
∗
2 : K ′

∗(X × C, Z/n) → K ′
∗(X, Z/n)

are equal. Suslin first observes that the maps p∗ extend to an action

K ′
∗(X × C, Z/n)⊗ C0(C) → K ′

∗(X, Z/n)

where C0(C) denotes the group of 0-cycles on C.
Now, the critical insight (“Suslin rigidity”) is Suslin’s proof that this action

factors through the quotient C0(C) → Pic(C) (i.e., rationally equivalent 0-cycles
induce the same pairing). For the special case in which C = P1, the projective
line, this follows from the property of homotopy invariance of K ′

∗(X×−, Z/n) (i.e.,
π∗ : K ′

∗(X, Z/n) ∼→ K ′
∗(X × A1, Z/n)). The critical observation of Suslin is that

the functor K ′
∗(X×−, Z/n) behaves well with respect to “transfer” with respect to

a finite, surjective map from a projective smooth curve C to P1. Since 0-cycles on
C rationally equivalent to 0 are the pre-image via some such finite surjective map
C → P1 of the difference {0} − {∞}, we conclude using formal properties of this
transfer that rationally equivalent points p1, p2 determine equal pairings.

Finally, Suslin uses the well-known fact that Pic(C)⊗Z/n = 0 to conclude that
any two points p1, p2 ∈ C determine the same pairing from K ′

∗(X × C, Z/n) →
K ′
∗(X, Z/n). Note that at this point, we use strongly the fact that we are dealing

with functors with values in n-torsion abelian groups. �
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2. Lecture 2

The primary aim of this lecture is to present many of the foundations used by
Suslin and Voevodsky in their discussion of algebraic singular homology [4]. We
view this as an excellent introduction to the roles played by rigidity and homotopy
invariance. Throughout this lecture, k will be a fixed field and (Sch/k) will denote
the category of schemes of finite type over an algebraically closed field k.

2.1. Presheaves with transfer. The concept of presheaf with transfers is an
abstraction of the technique Suslin introduced in [3] to determine the mod-n K-
theory of algebraically closed fields as discussed in the previous lecture. There are
various slightly different definitions of this concept and the one we present here is
the one introduced by Suslin and Voevodsky in [4].

Definition 2.1. A contravariant functor on (Sch/k),

F : (Sch/k)op → Ab,

is said to be a presheaf with transfers if F is provided with a homomorphism for
every finite surjective p : Y → S with Y irreducible, reduced and S irreducible,
regular

TrY/S : F(Y )→ F(S)

satisfying the following conditions:
• If p is an isomorphism, then TrY/S ◦ p∗ = id.
• If V ⊂ S is a closed, irreducible, regular subscheme and if p−1(V ) =∑

i niWi (where the multiplicity ni is the usual intersection multiplicity
of p−1(Y ) along the component Wi), then the following diagram commutes

pre (2.1.1)

F(Y )

��

TrY/S // F(S)

��
⊕iF(Wi)

∑
niTrWi,V// F(V )

Observe that we do not require Y to be regular. Indeed, the way these transfers
are employed is as follows. We are given a scheme X over S and some closed,
irreducible subscheme Y ⊂ X which is finite and surjective over S. Then the
contravariant functoriality of F together with the transfer TrY/S determines a
transfer map

TrY/S : F(X)→ F(Y )→ F(S).

In other words, if C0(X/S) denotes the free abelian group on the closed irreducible
subschemes Y ⊂ X which are finite and surjective over S, then F is provided with
a pairing

1 (2.1.2) F(X)⊗ C0(X/S)→ F(S).

Let C1(X/S) denote the free abelian group on the closed irreducible subschemes
W ⊂ X×A1 which are finite and surjective over S×A1, and let H0(X/S) denote the
cokernel of the difference of the two maps C1(X/S)→ C0(X/S) given by evaluating
at 0,1.

We now see the role of homotopy invariance. We can view the following propo-
sition as a generalization of the rigidity used in the previous lecture (by using an

1
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awkward notational shift, so that F = K ′
∗(X×−, Z/n), X in the proposition below

is replaced by a smooth projective curve C, and S by Spec k.

Proposition 2.2. Let F be a homotopy invariant presheaf with transfers. Then
the pairing (2.1.2) factors as

2 (2.2.1) F(X)⊗H0(X/S)→ F(S).

We say that X/S is a smooth relative curve with good compactification if X is
a smooth, affine, irreducible scheme of relative dimension 1 over S which embeds
as an open subset of some X/S with X normal, X → S proper, and X −X admits
an affine open neighborhood in X.

We remind the reader that if W ⊂ X is a closed subscheme, then the relative
Picard group Pic(X, W ) is the abelian group of isomorphism classes of pairs 〈L, φ〉,
where L is a line bundle on X and φ : L|W

sim→ OY is a trivialization of L restricted
to W .

pic Proposition 2.3. Assume that S is a normal, affine scheme and that X/S is a
smooth relative curve with good compactification. Then H0(X/S) equals the relative
Picard group Pic(X,W ), where X ⊂ X is a good compactification with complement
W = X −X.

Proposition 2.3 enables us to investigate the behaviour of H0(X/S)⊗Z/n using
etale cohomology. In particular, the proper base change theorem in etale cohomol-
ogy enables us to conclude with the hypotheses of the preceding theorem that

H0(X/S)⊗ Z/n ⊂ H0(X0, S0)

where S0 ⊂ S is a closed regular subscheme and X0 = X ×S S0.
The preceding propositions easily enable Suslin and Voevodsky to prove the

following rigidity theorem.

Theorem 2.4. Let F be a homotopy invariant presheaf with transfers satisfying
the condition that nF = 0 for some positive integer n invertible in k, let X denote
the henselization of a smooth variety over k at some closed point, and let X/S
denote a smooth relative curve with a good compactification.

If g1, g2 : S → X are two sections of X/S which agree on the closed point of S,
then g∗1 = g∗2 : F(X)→ F(S).

This enables Suslin and Voevodsky to prove the following theorem which essen-
tially tells us that a presheaf with transfers as in the preceding theorem is essentially
locally constant for the etale topology.

loc-triv Theorem 2.5. Let F be a homotopy invariant presheaf with transfers satisfying
the condition that nF = 0 for some positive integer n invertible in k, and let S
denote the henselization of a smooth variety at a closed point. Then the restriction
map

F(S)→ F(Spec k)

is an isomorphism.

2.2. Grothendieck topologies. In this section, we shall give a brief introduc-
tion to the etale topology and to two other Grothendieck topologies introduced by
Voevodsky and used by Suslin and Voevodsky.
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Definition 2.6. A site C/X is a subcategory of the category of schemes over a fixed
scheme closed under fiber products and is equipped with a distinguished class of
morphisms which is required to be closed under composition, base change and which
includes all ismorphisms. One selects as coverings of an object Y ∈ C/X families
of distinguished morphism {gi : Vi → Y } with the property that Y = ∪igi(V ); one
requires various closure properties of coverings: all isomorphisms are coverings, the
pull-back of a covering of Y by a morphism Y ′ → Y in C/X should be a covering
of Y ′.

The data of a site together with coverings consisting of distinguished morphisms
is a Grothendieck topology on X.

The most “classical” Grothendieck topology (other than the Zariski topology,
which of course is a topology in the usual sense as well as a Grothendieck topology) is
the etale topology. The reader is refereed to the book by J. Milne [2] for considerable
foundational detail on this important construction. The etale topology plays a
significant role in our understanding of K-theory mod-n, and the Suslin-Voevodsky
theorem provides a more naive means of determining the etale cohomology with
Z/n coefficients of varieties over k.

Definition 2.7. A map U → X is said to be etale if it is flat, unramified, and locally
of finite type. The small etale site Xet is the category of schemes etale over X and
whose distinguished morphisms are etale morphisms and whose coverings are all
collections {gi : Vi → Y } of etale morphisms with the property that Y = ∪igi(Vi).
The big etale site XET is the category all schemes locally of finite type over X with
distinguished morphisms and coverings as in Xet

Example 2.8. The following morphisms are examples of etale morphisms.
• U → X a Zariski open immersion.
• X̃ → X a finite covering space
• Spec R → Spec F , where F is a field and R is a finite separable F -algebra

(i.e., F ⊗F R splits as a product of copies of F , the algebraic closure of F ).
• V → X a morphism of complex algebraic varieties with the property that

V an → Xan is a local homeomorphism.
• If R is a domain, g(t), h(t) ∈ R[t], then the map Spec R[t]/g(t))[h(t)−1]→

Spec R is etale provided that g′(t) is invertible in R[t]/g(t))[h(t)−1] (i.e.,
the zero locus of h(t) contains the common zeros of g(t), g′(t).

One of the many insights of Grothendieck is that one can formulate sheaf theory
and sheaf cohomology on a site with a Grothendieck topology with essentially no
change from the usual sheaf theory for sheaves on a topological space.

Definition 2.9. Let C/X be a site provided with a Grothendieck topology and let
A denote the category of sets, groups, abelian groups, rings, or modules over a given
ring. Then a presheaf on C/X (i.e., a contravariant functor F : (C/X)op → A) is
said to be a sheaf if for all Y ∈ C/X and all coverings {Vi → Y } the following
sequence is exact:

F(Y )→
∏

i

F(Vi)→
∏
i,j

F(Vi ×Y Vj).

If A is an abelian category with enough injectives, then the category (topos) of
sheaves for the Grothendieck topology on C/X with values in A is an abelian cat-
egory with enough injectives, permitting us to apply standard homological algebra
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in defining the sheaf cohomology

H∗(C/X,F) ≡ R∗Γ(X,−)(F).

One important property of etale cohomology is that H∗(Xet, Z/n) ' H∗
sing(X

an, Z/n)
for any quasi-projective complex algebraic variety. We mention another in the fol-
lowing example.

Example 2.10. Let F be a field with separable closure F . A sheaf of sets F on
Fet consists of a set S together with a “continuous” action of Gal(F/F ) on this
set. In other words, an action of the discrete group lim←−{L/F Galois} Gal(L/F ) on
S with the property that for each element t ∈ S there exists some (finite) Galois
Lt/F with the property that the kernel of lim←−L/F

Gal(L/F )→ Gal(Lt/F ) fixes t.
In particular, if F is an abelian sheaf on Fet, then H∗(Fet,F) is the Galois

cohomology H∗
Gal(F,F).

Recall that Theorem 2.5 involved the henslization S of a smooth variety at a
closed point. Although such a henzelization can be defined more algebraically, let
us formulate this in terms of the etale topology.

Definition 2.11. Let X = Spec A be an affine variety and y ∈ Spec A be a closed
point with associated local ring OX,y = R. Then the henselization Rh of R is the
colimit of local etale morphisms R → B, Rh = lim−→R→B

B, where the map of local
rings R → B is required to induce an isomorphism on residue fields. The strict
henselization Rsh of R is the colimit of all local etale morphisms R → B without
the condition that the induced map on residue fields is an isomorphism; thus, the
residue field of Rsh is the separable closure of the residue field of R.l

If X = Spec R is the spectrum of a strict hensel local ring (i.e., R = Rsh), then
the global section functor F 7→ F(X) is an equivalence from the category of sheaves
on Xet with values in A to the category A.

For a variety X over the algebraically closed field k, a sequence of sheaves on
Xet with values in an abelian category 0 → F1 → F2 → F3 → 0 is exact if and
only if its restriction to each of the (strict ) henselizations at closed points of X is
exact.

Two other Grothendieck topologies play a role in the proof of the Suslin-Voevodsky
theorem.

Definition 2.12. An h-covering of a scheme Y is a finite family of morphisms of
finite type gi : Vi → Y with the property that the induced map p :

∐
i Vi → Y

is a universal topological epimorphism (i.e., for any Y ′ → Y , the pull-back p′ :∐
i Vi ×Y Y ′ → Y ′ satisfies the property that Y ′ as a topological space with the

Zariski topology is the quotient of of
∐

i Vi). If each of thee morphisms gi : Vi → Y
is quasi-finite, then the h-covering {gi : Vi → Y } is called a qfh-covering.

The h (respectively, qfh) topology on X is the site of schemes of finite type over
X whose

2.3. Dold-Thom Theorem and the Suslin complex. A well known theorem
of A. Dold and R. Thom enable one to express the singular homology of a cell
complex in terms of the homotopy groups of its symmetric powers.

Theorem 2.13. (cf. [1]) Let T be a C.W. complex and let
∐

d≥0 SdT denote the
free abelian monoid on the points of T , where SdT is the given the quotient topology
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with respect to the natural surjection T×d → Sd. Then

Hsing
i (T ) = πi(Sing.(

∐
d≥0

SdT )+)

where Sing.(
∐

d≥0 SdT )+ is the simplicial abelian group given in degree n as the
group completion of the abelian monoid

∐
d≥0 Singn(SdT ). Alternatively, if Z(T )

denotes the topological abelian group on the points of T (topologized as a quotient
of (

∐
d≥0 SdT )×2), then

Hsing
i (T ) = πi(Z(T )).

Two observations help to make this homotopy theoretic construction applicable
to algebraic geometry. First, if X is an algebraic variety over k, then for each
d > 0 the d-fold symmentric power SdX of X is also an algebraic variety. Second,
the homotopy groups of a simplicial abelian group A• are naturally identified with
the homology groups of the chain complex given in dimension n by An and with
diferential the alternating sum of the face maps di : An → An−1. This chain
complex is easily seen to be quasi-isomorphic to the normalized chain complex
associated to A• which is given in dimension n as the intersection of the kernels of
the face maps di : An → An−1 for i > 0 and whose differential is the restriction of
d0 to this kernel.

Recall the conventional notation of ∆n ≡ Spec k[t0, . . . , tn]/
∑

i ti − 1, the “n-
simplex over k. The natural face and degeneracy maps determine a cosimplicial
object ∆• in (Sch/k). Suslin’s observation is that it is profitable to consider the
alebraic-geometric analogue of the topological construction T 7→ Sing.(

∐
d≥0 SdT )+).

Definition 2.14. Let X ∈ (Sch/k). We define

Sus∗(X) ≡ N ((
∐
d≥0

Hom(Sch/k)(∆•, SdX)+),

the normalized chain complex associated to the simplicial abelian group given in
dimension n by Hom(Sch/k)(∆n,

∐
d≥0 SdX).

2.4. Statement of Suslin-Voevodsky theorem. We conclude this lecture with
the statement of the remarkable theorem of Suslin-Voevodsky.

Theorem 2.15. For X ∈ (Sch/k) and positive integer n invertible in the alge-
braically closed field k,

H∗(Xet, Z/n) = H∗(Sus∗(X), Z/n).

In particular, if k = C, then

H∗
sing(X

an, Z/n) = H∗(Sus∗(X), Z/n).
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3. Lecture 3

3.1. Freely generate qfh-sheaves. We recall that if F is a homotopy invariant
presheaf with transfers in the sense of the last lecture, then we have a well defined
pairing

F(X)⊗H0(X/S)→ F(S)

given by associating to any irreducible i : Y ⊂ X finite, surjective over S the
mapping TrY/S ◦ i∗ : F(X) → F(Y ) → F(S). Moreover, recall that any qfh-sheaf
admits transfers.

Consider the following presheaf, where Z[1/p] denotes localization of the residue
characteristic of k (so that if k is of characteristic 0, then Z[1/p] should be read as
Z):

(Sch/k)op → Ab, Y 7→ Z[1/p]Hom(Sch/k)(Y, X).

We denote by FX the associated qfh-sheaf.
The following result of Suslin-Voevodsky identifies this sheaf when applied to

normal varieties and relates this to the Suslin complex Sus∗(X) of X. One can
interpret this theorem as saying that cycles in X × Y each component of which is
finite and surjective over a normal variety Y are locally in the qfh-topology a sum
of graphs of morphisms from Y to X.

Theorem 3.1. If Y ∈ (Sch/k) is normal, then

FX(Y ) = C0(X × Y/Y )⊗ Z[1/p].

In particular,

FX(∆•) = Sus∗(X)⊗ Z[1/p].

Sheafifying in the qfh-topology gives us transfers. The following proposition
enables us to obtain presheaves which are homotopy invariant.

Proposition 3.2. Assume that F is a presheaf with transfers. Let (F∗)˜ denote
the complex of sheaves given in degree q as the qfh- sheaf associated to the presheaf
Y 7→ F(Y ×∆q). For any q ≥ 0, consider the presheaf

Hq((F∗)˜ ) : (Sch/k)op → Ab

defined as the homology sheaves of the complex (F∗)˜ (or, equivalently, the sheaf
associated to the presheaf Y 7→ Hq(F(Y ×∆•))). Then Hq((F∗)˜ ) is a homotopy
invariant presheaf with transfers.

Proof. One first shows that evaluation at 0, 1 ∈ ∆1 determine chain homotopy maps

F(Y ×∆• ×∆1)→ F(Y ×∆•).

This enables one to show that upon taking qfh-sheaves that Hq((F∗)˜ ) is homotopy
invariant. Moreover, the naturality properties of transfers on F imply that TrY/S

gives us a transfer map on complexes F(X × ∆•) → F(S × ∆•), so that taking
associated qfh-sheaves gives us transfers on Hq((F∗)˜ ). �

1
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3.2. Proof of Suslin-Voevodsky theorem. We shall sketch a proof of the fol-
lowing theorem.

Theorem 3.3. (Suslin Voevodsky [2]) Let FX denote the qfh-sheaf associated to
the prsheaf

(Sch/k)op → Ab, Y 7→ Z[1/p]Hom(Sch/k)(Y,X).
Then for any positive integer n invertible in k, the natural maps of complexes of
qfh-sheaves

FX(∆•)→ (FX∗)˜← FX

induce isomorphisms of Ext-groups

ext (3.3.1) H∗(Sus∗(X), Z/n) ∼→ Ext∗qfh((FX∗)˜, Z/n) ∼← Ext∗qfh(FX , Z/n).

Moreover, Ext∗qfh(FX , Z/n) ' Ext∗(Xet, Z/n).

Proof. The two isomorphisms of (3.3.1) are proved considering the two hypercoho-
mology spectral sequences for Ext∗qfh((FX∗)˜, Z/n). The first isomorphism follows
by comparing the homology at each level of the map of complexes of presheaves
with transfers

FX(∆•)⊗ Z/n→ (FX∗)˜⊗ Z/n,

where the left hand complex is viewed as a complex of constant presheaves. Since
the homology presheaves of these complexes are presheaves with transfer which are
annihilated by multiplication by n, we can apply the Suslin-Voevodsky theorem to
conclude that the induced map on homology sheaves is an isomorphism.

The second isomorphism does not use the fact that FX is a presheaf with trans-
fers, but is a general fact that FX → (FX(− × ∆q))˜ induces an isomorphism in
Ext∗qfh(−, Z/n).

The right had side is almost by definition H∗(Xqfh, Z/n). The comparison with
the etale cohomology of X is achieved by realizing explicitly sufficiently fine qfh
coverings together with “resolution of singularities” (in characteristic p > 0, one
uses de Jong’s modifications rather than resolutions which are not known to exist.

�

3.3. Discussion of Chow groups. Recall that X is said to be integral if OX(U)
is an integral domain for all open subsets U ⊂ X. The field of fractions K of such
an integral variety is the field of fractions of OX(U) for any affine open subset U . If
OX(U) is integrally closed in K for every affine open subset U , then the stalk OX,x

at any (scheme-theoretic point) x ∈ X of codimension 1 is a discrete valuation ring.

Definition 3.4. Let X is an integral variety regular in codimension 1 and let
K be its field of fractions. For any 0 6= f ∈ K, we define the principal divisor
(f) associated to f to be the following formal sum of codimension 1, irreducible
subvarieties

(f) =
∑

x∈X(1)

vx(f)x.

Here, X(1) ⊂ X consists of the scheme-theoretic points of codimension 1, vx : K∗ →
Z is the discrete valuation at x ∈ X(1), and x ⊂ X is the codimension 1 irreducible
subvariety of X given as the closure of x.

A formal sum
D =

∑
x∈X(1)

nxx, nx ∈ Z
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with all but finitely many nx equal to 0 is said to be a locally principal divisor
provided that for every x ∈ X(1) there exists some Zariski open neighborhood
x ∈ Ux ⊂ X and some fx ∈ K such that D|Ux

= (fx)|Ux
.

Definition 3.5. Let X be a quasi-projective algebraic variety. An algebraic r-cycle
on X if a formal sum∑

Y

nY [Y ], Y irreducible of dimension r, nY ∈ Z

with all but finitely many nY equal to 0.
Equivalently, an algebraic r-cycle is a finite integer combination of points of X

of dimension r.
If Y ⊂ X is a subvariety each of whose irreducible components Y1, . . . , Ym is

r-dimensional, then the algebraic r-cycle

Z =
m∑

i=1

[Yi]

is called the cycle associated to Y .
The group of (algebraic) r-cycles on X will be denoted Zr(X).
Two r-cycles Z,Z ′ on a quasi-projective variety X if their difference lies in the

subgroup Zr,rat(X) ⊂ Zr(X) generated by cycles of the form W|X×{p} −W|X×{q},
where U ⊂ P1 is a Zariski open set containing points p, q ∈ U and W ⊂ X ×U is a
cycle each of whose irreducible components maps surjectively onto U .

The Chow group CHr(X) = Zr(X)/Zr,rat(X) is the group of r-cycles modulo
rational equivalence.

Theorem 3.6. (cf. [1]) Assume that X is an integral variety regular in codimension
1. Let D(X) denote the group of locally principal divisors on X modulo principal
divisors. Then there is a natural isomoprhism

Pic(X) ∼→ D(X).

If L ∈ Pic(X) has a non-zero global section s ∈ L(X) = Γ(X,L), then this isomor-
phism sends L to

∑
x∈X(1) vx(s)x.

Moreover, if OX,x is a unique factorization domain for every x ∈ X, then

D(X) ∼→ CH1(X),

the Chow group of codimension 1 cycles on X modulo rational equivalence.

Remark 3.7. Not only is this an example of relating bundles to cycles, but it
is also an example of duality. Namely, Pic(X) is contravariant, whereas CHr(−)
is covariant for proper maps. This suggests that for Pic(X) to be isomorphic to
CH1(X), some smoothness condition on X is required .

Observe that in the above definition we can replace the role of r + 1-cycles on
X × P1 and their geometric fibres over 0,∞ by r + 1-cycles on X ×U for any non-
empty Zaristik open U ⊂ X and geometric fibres over any two k-rational points
p, q ∈ U .

Remark 3.8. Given some r+1 dimensional irreducible subvariety V ⊂ X together
with some f ∈ k(V ), we may define (f) =

∑
S ordS(f)[S] where S runs through

the codimension 1 irreducible subvarieties of V . Here, ordS(−) is the valuation
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centered on S if V is regular at the codimension 1 point corresponding to S; more
generally, ordS(f) is defined to be the length of the OV,S-module OV,S/(f).

We readily check that (f) is rationally equivalent to 0: namely, we associate to
(V, f) the closure W = Γf ⊂ X × P1 of the graph of the rational map V 99K P1

determined by f . Then (f) = W|X×{0} −WX×{∞}.
Conversely, given an r+1-dimensional irreducible subvariety W on X×P1 which

maps onto P1, the composition W ⊂ X × P1 pr2→ P1 determines f ∈ frac(W ) such
that

(f) = W|X×{0} −WX×{∞}.

Thus, the definition of rational equivalence on r-cycles of X can be given in
terms of the equivalence relation generated by

{(f), f ∈ frac(W );W irreducible of dimension r + 1}

In particular, we conclude that the subgroup of principal divisors inside the group
of all locally principal divisors consists precisely of those locally principal divisors
which are rationally equivalent to 0.

Example 3.9. For essentially formal reasons, Pic(X) ' H1(X,O∗X). If k is the
complex field, we can use the exponential sequence of sheaves in the analytic topol-
ogy

0→ Z→ OX
exp→ O∗X → 0

to conclude that the kernel of H1(Xan,O∗X) → H2(Xan, Z) is the complex vector
space H1(Xan,OX) modulo the discrete subgroup H1(Xan, Z). For example, if
X = C is a smooth, projective curve of genus g, then CH1(C) fits in a short exact
sequence

0→ Cg/Z2g = H1(C,O∗C)/H1(Can, Z)→ CH1(C)→ Z = H2(Can, Z)→ 0.

Example 3.10. Let X = AN . Then any N − 1-cycle (i.e., Weil divisor) Z ∈
CHN−1(AN ) is principal, so that CHN−1(AN ) = 0.

More generally, consider the map µ : AN×A1 → PN×A1 which sends (x1, . . . , xn), t
to 〈t · x1, . . . , t · xn, 1〉, t. Consider an ireducible subvariety Z ⊂ AN of dimension
r > N not containing the origin and Z ⊂ PN be its closure. Let W = µ−1(Z×A1).
Then W [0] = ∅ whereas W [1] = Z. Thus, CHr(AN ) = 0 for any r < N .

Example 3.11. Arguing in a similar geometric fashion, we see that the inclusion
of a linear plane PN−1 ⊂ PN induces an isomorphism CHr(PN−1) = CHr(PN )
provided that r < N and thus we conclude by induction that CHr(PN ) = Z
if r ≤ N . Namely, consider µ : PN × A1 → PN × A1 sending 〈x0, . . . , xN 〉, t
to 〈x), . . . , xN−1, t · xN 〉, t and set W = µ−1(Z × A1) for any Z not containing
〈0, . . . , 0, 1〉. Then W [0] = prN∗(Z),W [1] = Z.

Example 3.12. Let C be a smooth curve. Then Pic(C) ' CH0(X).

Definition 3.13. If f : X → Y is a proper map of quasi-projective varieties, then
the proper push-forward of cycles determines a well defined homomorphism

f∗ : CHr(X) → CHr(Y ), r ≥ 0.

Namely, if Z ⊂ X is an irreducible subvariety of X of dimension r, then [Z] is sent
to d · [f(Z)] ∈ CHr(Y ) where [k(Z) : k(f(Z))] = d if dim Z = dim f(Z) and is
sent to 0 otherwise.
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If g : W → X is a flat map of quasi-projective varieties of relative dimension e,
then the flat pull-back of cycles induces a well defined homomorphism

g∗ : CHr(X) → CHr+e(W ), r ≥ 0.

Namely, if Z ⊂ X is an irreducible subvariety of X of dimension r, then [Z] is sent
to the cycle on W associated to Z ×X W ⊂W .

Proposition 3.14. Let Y be a closed subvariety of X and let U = X\Y . Let
i : Y → X, j : U → X be the inclusions. Then the sequence

CHr(Y ) i∗→ CHr(X)
j∗→ CHr(U)→ 0

is exact for any r ≥ 0.

Proof. If V ⊂ U is an irreducible subvariety of U of dimension r, then the closure of
V in X, V ⊂ X, is an irreducible subvariety of X of dimension r with the property
that j∗([V ]) = [V ]. Thus, we have an exact sequence

Zr(Y ) i∗→ Zr(X)
j∗→ Zr(U)→ 0.

If Z =
∑

i ni[Yi] is a cycle on X with j∗(Z) = 0 ∈ CHr(U), then j∗Z =
∑

W,f (f)
where each W ⊂ U is an irreducible subvarieties of U of dimension r + 1 and
f ∈ k(W ). Thus, Z ′ =

∑
i ni[Y i]−

∑
W,f (f) is an r-cycle on Y with the property

that i∗(Z ′) is rationally equivalent to Z. Exactness of the asserted sequence of
Chow groups is now clear.

�

Corollary 3.15. Let H ⊂ PN be a hypersurface of degree d. Then CHN−1(PN\H) =
Z/dZ.

Example 3.16. Mumford shows that if S is a projective smooth surface with a
non-zerol global algebraic 2-form (i.e., H0(S, Λ2(ΩS)) 6= 0), then CH0(S) is not
finite dimensional (i.e., must be very large).

Bloch’s Conjecture predicts that if S is a projective, smooth surface with geomet-
ric genus equal to 0 (i.e., H0(S, Λ2(ΩS)) = 0), then the natural map from CH0(S)
to the (finite dimensional) Albanese variety is injective.

3.4. Intersection product.

Theorem 3.17. Let X be a smooth quasi-projective variety of dimension d. Then
there exists a pairing

CHr(X)⊗ CHs(X) •→ CHd−r−s, d ≥ r + s,

with the property that if Z = [Y ], Z ′ = [W ] are irreducible cycles of dimension r, s
respectively and if Y ∩W has dimension ≤ d− r − s, then Z • Z ′ is a cycle which
is a sum with positive coefficients indexed by the irreducible subvarieties of Y ∩W
of dimension d− r − s.

For notational purposes, we shall often write CHs(X) for CHd−s(X). With this
indexing convention, the intersection pairing has the form

CHs(X)⊗ CHt(X) •→ CHs+t(X).
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Proof. Classically, this was proved by showing the following geometric fact: given
a codimension r cycle Z and a codimension s cycle W =

∑
j mjRj with r + s ≤ d,

then there is another codimension r cycle Z ′ =
∑

i niYi rationally equivalent to Z
(i.e., determining the same element in CHr(X)) such that Z ′ meets W “properly”;
in other words, every component Ci,j,k of each Yi ∩Rj has codimension r + s. One
then defines

Z ′ •W =
∑
i,j,k

nimj · int(Yi ∩Rj , Ci,j,k)Ci,j,k

where int(Yi ∩Rj , Ci,j,k) is a positive integer determined using local commutative
algebra, the intersection multiplicity. Furthermore, one shows that if one chooses
a Z ′′ rationally equivalent to both Z,Z ′ and also intersecting W properly, then
Z ′ •W is rationally equivalent to Z ′′ •W .

To be continued next lecture . . .
�
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4. Lecture 4

4.1. Intersection product. Let us briefly return to the ring structure on CH∗(X)
for a smooth variety X. This ring structure arises from intersection of cycles, as
described in the following theorem.

Theorem 4.1. Let X be a smooth quasi-projective variety of dimension d. Then
there exists a pairing

CHr(X)⊗ CHs(X) •→ CHd−r−s, d ≥ r + s,

with the property that if Z = [Y ], Z ′ = [W ] are irreducible cycles of dimension r, s
respectively and if Y ∩W has dimension ≤ d− r − s, then Z • Z ′ is a cycle which
is a sum with positive coefficients indexed by the irreducible subvarieties of Y ∩W
of dimension d− r − s.

Thus, the intersection product determine an intersection pairing of the form

CHs(X)⊗ CHt(X) •→ CHs+t(X).

Proof. Classically, this was proved by showing the following geometric fact: given
a codimension r cycle Z and a codimension s cycle W =

∑
j mjRj with r + s ≤ d,

then there is another codimension r cycle Z ′ =
∑

i niYi rationally equivalent to Z
(i.e., determining the same element in CHr(X)) such that Z ′ meets W “properly”;
in other words, every component Ci,j,k of each Yi ∩Rj has codimension r + s. One
then defines

Z ′ •W =
∑
i,j,k

nimj · int(Yi ∩Rj , Ci,j,k)Ci,j,k

where int(Yi ∩Rj , Ci,j,k) is a positive integer determined using local commutative
algebra, the intersection multiplicity. Furthermore, one shows that if one chooses
a Z ′′ rationally equivalent to both Z,Z ′ and also intersecting W properly, then
Z ′ •W is rationally equivalent to Z ′′ •W .

In [3], Blaine Lawson and I showed how one could generalize this, considering
any finite dimensional family of codimension r cycles Zα and any finite dimensional
family of codimension s cycles Wβ , moving simultaneously each Zα to a suitable
Z ′

α so that each Z ′
α meets properly each Wβ . This is achieved by showing that

the classical argument admits parametrizations by large dimensional parameter
spaces. This classical argument consists of two steps, in order to move Z into
better position with respect to W . The first step involves a choice of a finite
projection πL : X ⊂ PN onto Pn, n = dim(X), which determines the projectiving
cone CL(Z) = π∗L(πL∗(Z)) ⊂ PN . The first parametrized family is the family of
“linear centers” L parametrizing these projections. The second parametrized family
is the family of moves in PN which enables us to move the resulting projecting
cone CL(Z) in order that CL(Z)•X meets Y properly on X. The variation in the
family of projections πL enables us to arrange that the residual cycle RL(Z) =
CL(Z)•X − Z has improved intersection with W that Z.

A completely different proof is given by William Fulton and Robert MacPherson.
(cf [4]). They use a powerful geometric technique discovered by MacPherson called
deformation to the normal cone. For Y ⊂ X closed, the deformation space MY (X)
is a variety mapping to P1 defined as the complement in the blow-up of X×P1 along
Y ×∞ of the blow-up of X ×∞ along Y ×∞. One readily verifies that Y × P1 ⊂
M(X, Y ) restricts above ∞ 6= p ∈ P1 to the given embedding Y ⊂ X; and above ∞,

1
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restricts to the inclusion of Y into the normal cone CY (X) = Spec(⊕n≥0In
Y /In1

Y ),
where IY ⊂ OX is the ideal sheaf defining Y ⊂ X. When Y ⊂ X is a regular closed
embedding, then this normal cone is a bundle, the normal bundle NY (X).

This enables a regular closed embedding (e.g., the diagonal δ : X → X × X
for X smooth) to be deformed into the embedding of the 0-section of the normal
bundle Nδ(X)(X ×X). One defines the intersection of Z,W as the intersection of
δ(X), Z ×W and thus one reduces the problem of defining intersection product to
the special case of intersection of the 0-section of the normal bundle NX(X ×X)
with the normal cone N(Z×W )∩δ(X)(Z ×W ). �

4.2. Chern classes and the Chern character. Grothendieck introduced many
basic techniques which we now use as a matter of course when working with bundles.
The following splitting principle is one such technique, a technique which enable
one to frequently reduce constructions for arbitrary vector bundles to those which
are a sum of line bundles.

Proposition 4.2. Let E be a rank r +1 vector bundle on a quasi-projective variety
X and define p1 : P(E) = Proj (SymOX

E) → X to be the projective bundle of lines
in E. Then p∗1 : K∗(X) → K∗+r(P(E)) is split injective and p∗1(E) = E1 is a direct
sum of a rank r bundle and a line bundle.

Applying this construction to E1 on P(E), we obtain p2 : P(E1) → P(E); proceeding
inductively, we obtain

p = pr ◦ · · · ◦ p1 : F(E) = P(Er−1) → X

with the property that p∗ : K0(X) → K0(F(E)) is split injective and p∗(E) is a direct
sum of line bundles.

We now introduce Chern classes and the Chern character, once again following
Grothendieck’s point of view.

Construction 4.3. Let E be a rank r vector bundle on a smooth, quasi-projective
variety X of dimension d. Then CH∗(P(E)) is a free module over CH∗(X) with gen-
erators 1, ζ, ζ2, . . . , ζr−1, where ζ ∈ CH1(P(E)) denotes the divisor class associated
to OP(E)(1).

We define the i-th Chern class ci(E) ∈ CHi(X) of E by the formula

CH∗(P(E)) = CH∗(X)[ζ]/
r∑

i=0

(−1)iπ∗(ci(E)) · ζr−i.

We define the total Chern class c(E) by the formula

c(E) =
r∑

i=0

ci(E)

and set ct(E) =
∑r

i=0 ci(E)ti. Then the Whitney sum formula asserts that ct(E ⊕
F) = ct(E) · ct(F).

We define the Chern roots, α1, . . . , αr of E by the formula

ct(E) =
r∏

i=1

(1 + αit)

where the factorization can be viewed either as purely formal or as occurring in
F(E). Observe that ck(E) is the k-th elementary symmetric function of these Chern
roots.
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In other words, the Chern classes of the rank r vector bundle E are given by the
expression for ζr ∈ CHr(P(E)) in terms of the generators 1, ζ, . . . , ζr−1. Thus, the
Chern classes depend critically on the identification of the first Chern class ζ of
OP(E)(1) and the multiplicative structure on CH∗(X). The necessary structure for
such a definition of Chern classes is called an oriented multiplicative cohomology the-
ory. The splitting principle guarantees that Chern classes are uniquely determined
by the assignment of first Chen classes to line bundles.

We refer the interested reader to [4] for the definition of “operational Chern
classes” defined for bundles on a non necessarily smooth variety.

Construction 4.4. Let X be a smooth, quasi-projective variety, let E be a rank
r vector bundle over X, and let π : F(E) → X be the associated bundle of flags
of E . Write π∗(E) = L1 ⊕ · · · ⊕ Lr, where each Li is a line bundle on F(E). Then
ct(π∗(E)) =

∏r
i=1(1⊕ c1(Li))t.

We define the Chern character of E as

ch(E) =
r∑

i=1

{1 + c1(Li) +
1
2
c1(Li)2 +

1
3!

c1(Li)3 + · · · } =
r∑

i=1

exp(ct(Li)),

where this expression is verified to lie in the image of the injective map CH∗(X)⊗
Q → CH∗(F(E)) ⊗ Q. (Namely, one can identify chk(E) as the k-th power sum
of the Chern roots, and therefore expressible in terms of the Chern classes using
Newton polynomials.)

Since π∗ : K0(X) → K0(F(E)), π∗ : CH∗(X) → CH∗(F(E)) are ring homo-
morphisms, the splitting principle enables us to immediately verify that ch is also a
ring homomoprhism (i.e., sends the direct sum of bundles to the sum in CH∗(X) of
Chern characters, sends the tensor product of bundles to the product in CH∗(X)
of Chern characters).

Grothendieck’s formulation of the Riemann-Roch theorem is an assertion of the
behaviour of the Chern character ch with respect to push-forward maps induced
by a proper smooth map f : X → Y of smooth varieties. It is not the case that ch
commutes with the these push-forward maps; one must modify the push forward
map in K-theory by multiplication by the Todd class.

This modification of the Todd class is necessary even when consideration of the
push-forward of a divisor. Indeed, the Todd class

td : K0(X) → A∗(X)

(given explicitly for a vector bundle E in terms of the Charn roots αi of E as∏
i

αi

1−eαi
) is characterized by the properties that

• i. td(L) = c1(L)/(1− exp(−c1(L));
• ii. td(E1 ⊕ E2) = td(E1) · td(E2); and
• iii. td ◦ f∗ = f∗ ◦ td.

The reader is recommended to consult [2] for a very nice overview of Grothendieck’s
Riemann-Roch Theorem.

Theorem 4.5. (Grothendieck’s Riemann-Roch Theorem)
Let f : X → Y be a projective map of smooth varieties. Then for any x ∈ K0(X),

we have the equality

ch(f!(x)) · td(TY ) = f∗(ch(x) · td(TX))
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where TX , TY are the tangent bundles of X, Y and td(TX), td(TY ) are their Todd
classes.

Here, f! : K0(X) → K0(Y ) is defined by identifying K0(X) with K ′
0(X), K0(Y )

with K ′
0(Y ), and defining f! : K ′

0(X) → K ′
0(Y ) by sending a coherent sheaf F on

X to
∑

i(−1)iRif∗(F ). The map f∗ : CH∗(X) → CH∗(Y ) is proper push-forward
of cycles.

Just to make this more concrete and more familiar, let us consider a very special
case in which X is a projective, smooth curve, Y is a point, and x ∈ K0(X) is the
class of a line bundle L. (Hirzebruch had earlier proved a version of Grothendieck’s
theorem in which the target Y was a point.)

Example 4.6. Let C be a projective, smooth curve of genus g and let f : C →
Spec C be the projection to a point. Let L be a line bundle on C with first Chern
class D ∈ CH1(C). Then

f!([L]) = dimH0(C,L)− dimH1(C,L) ∈ Z,

and ch : K0(Spec C) = Z → A∗(Spec C) = Z is an isomorphism. Let K ∈ CH1(C)
denote the “canonical divisor”, the first Chern class of the line bundle ΩC , the dual
of TC . Then

td(TC) =
−K

1− (1 + K + 1
2K2)

= 1− 1
2
K.

Recall that deg(K) = 2g − 2. Since ch([L]) = 1 + D, we conclude that

f∗(ch([L]) · td(TC)) = f∗((1 + D) · (1− 1
2
K)) = deg(D)− 1

2
deg(K).

(Note that 1 ∈ CH0(X) is the fundamental class of X; that f∗ : CH∗(X) →
CH∗(Spec C) simply takes the 0-cycle component.) Thus, in this case, Riemann-
Roch tell us that

dimL(C)− dimH1(C,L) = deg(D) + 1− g.

For our purpose, Riemann-Roch is especially important because of the following
consequence.

Theorem 4.7. Let X be a smooth quasi-projective variety. Then

ch∗ : K0(X)⊗Q → CH∗(X)⊗Q
is a ring isomorphism.

Proof. The essential ingredient is the Riemann-Roch theorem. Namely, we have a
natural map CH∗(X) → K ′

0(X) sending an irreducible subvariety Y to the class
[OY ] of the OX -module OY . We put a filtration on K ′

0(X) using the dimension
of support of a coherent sheaf F ∈ K ′

0(X) and conclude using “localization” and
“devissage” (see Lecture 5) that this natural map induces a surjection from CH∗(X)
to the associated graded group of K ′

0(X).
We show that the composition with the Chern character is an isomorphism on

CH∗(X) ⊗ Q by applying Grothendieck’s Riemann-Roch theorem to each closed
immersion Y ⊂ X, for Y an irreducible smooth subvariety of X. Namely, Riemann
Roch implies that ch∗([OY ]) ∈ CH∗(X) has the form the sum of Y and terms
of lower dimension. Indeed, this argument applies to irreducible subvarieties Y of
X with singularities, by observing that the contribution of singularities is also of
higher codimension using a localization sequence and induction.
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Thus, the associated graded map of ch∗ is an isomorphism, which imples that
ch∗ is also an isomorphism.

�
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5. Lecture 5

5.1. Quillen’s localization theorem and Bloch’s formula. Our next topic is
a sketch of Quillen’s proof of Bloch’s formula, which is also a a brief discussion
of aspects of Quillen’s remarkable paper [4]. For K2, this formula was proved by
Bloch in [2].

We remind the reader that in this paper Quillen introduces the “Quillen Q-
construction” QE of an exact category E and defines the K-groups of E to be the
homotopy groups of the classifying space of QE . Of most importance to us are
the abelian category MX of coherent sheaves on a Noetherian scheme OX and the
exact subcategory PX ⊂MX , yielding

K∗(X) = π∗(BQPX), K ′
∗(X) = π∗(BQMX).

A key ingredient in Quillen’s proof of Bloch’s formula is the localization se-
quence for K ′

∗, extending known localization sequences for low K-groups. Quillen
formulates his results in an abstract, categorical setting.

Theorem 5.1. (Localization Theorem of Quillen, cf. [4]) Let A be an abelian
category and B ⊂ A a Serre subcategory with quotient category A/B. Then there is
a long exact sequence of Quillen K-groups

· · ·K1(A) → K1(A/B) → K0(B) → K0(A) → K0(A/B) → 0.

In conjunction with Quillen’s “devissage theorem”, this localization theorem
implies the following:

loc Theorem 5.2. Consider X ∈ (Sch/k) and let Mr(X) denote the Serre subcate-
gory of the category MX consisting of coherent sheaves whose support has codimen-
sion ≥ r. Then there is a natural long exact sequence

· · · →
∐

x∈Xr

Ki+1k(x) → Ki(Mr+1(X)) → Ki(Mr(X)) →
∐

x∈Xr

Kik(x) → · · ·

Here, Xr denotes the set of points of X of codimension r.
Consequently, there is a spectral sequence

Ep,q
1 (X) =

∐
x∈Xp

K−p−qk(x) ⇒ K ′
−n(X)

relating the K-theory of the residue fields of points of X to the K ′ theory of X.

Proof. Quillen’s devissage theorem tells us that Ki(Mr(X)/Mr+1(X)) is naturally
isomorphic to

∐
Xr

Kik(x). The asserted exact sequences patch together to give an
exact couple, with the indexing of the spectral sequence determined by this exact
couple. �

Definition 5.3. The Gersten complex for K ′
n is the complex

0 → K ′
nX →

∐
x∈X0

Knk(x) →
∐

x∈X1

Kn−1k(x) → · · · →
∐

x∈Xn

K0k(x) → 0

determined by the exact sequences of Theorem 5.2.

Essentially by inspection, we have the following thereom concerning the rela-
tionship of the spectral sequence of Theorem 5.2 and the exactness of the Gersten
complex.

1
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Proposition 5.4. Let X ∈ (Sch/k). Then the following conditions are equivalent:
1.) For every r ≥ 0, the inclusion Mr+1(X) → Mr(X) induces the zero map

on K-groups.
2.) In the spectral sequence of Theorem 5.2, for all q, Ep,q

2 = 0 for p > 0 and the
edge homomorphism K ′

−qX → E0,q
2 X is an isomorphism.

3.) The Gersten complex for X is exact.

Here is Quillen’s theorem establishing the validity of Bloch’s formula.

Theorem 5.5. (Bloch’s formula by Quillen [4]) Let X ∈ Sch(k) be regular. Then
there is a cannoical isomorphism

Hq(X,Kq) ' CHq(X)

where Kq is the sheaf on X (for the Zariski topology) associated to the presheaf
U 7→ Kq(U).

Proof. Granted the above analysis of the Quillen spectral sequence, there are two
additional ingredients in the proof.

The first is Quillen’s theorem that the Gersten resolution is exact for Spec OX,x

whenever X ∈ Sch(k) and x ∈ X is a regular point. This tells us that the Gersten
complex for K ′

n(X) becomes a resolution of resolution of Kn(X) by flasque sheaves

0 → KnX →
∐

x∈X0

ix∗Knk(x) →
∐

x∈X1

ix∗Kn−1k(x) → · · ·

Consequently, the E2-term of the Quillen spectral sequence has the form

Ep,q
2 (X) = Hp(X,K−q) ⇒ K−p−q(X).

The second is Quillen’s determination of the last differential in the Gersten com-
plex ∐

x∈Xq−1

K1k(x) d1→
∐

x∈Xq

K0k(x) = Zq(X).

Quillen concludes that the image of this map is precisely the codimension q cycles
rationally equivalent to 0. �

5.2. Derived categories. In order to formulate motivic cohomology, we need to
introduce the language of derived categories. Let A be an abelian category (e.g., the
category of modules over a fixed ring) and consider the category of chain complexes
CH•(A). We shall index our chain complexes so that the differential has degree +1.
We assume that A has enough injectives and projectives, so that we can construct
the usual derived functors of left exact and right exact functors from A to another
abelian category B. For example, if F : A → B is right exact, then we define
LiF (A) to be the i-th homology of the chain complex F (P•) obtained by applying
F to a projective resolution P• → A of A; similarly, if G : A → B is left exact, then
RjG(A) = Hj(I•) where A → I• is an injective resolution of A.

The usual verification that these derived functors are well defined up to canonical
isomorphism actually proves a bit more. Namely, rather take the homology of the
complexes F (P•), G(I•), we consider these complexes themselves and observe that
they are independent up to quasi-isomorphism of the choice of resolutions. Recall,
that a map C• → D• is a quasi-isomorphism if it induces an isomorphism on
homology; only in special cases is a complex C• quasi-isomorphic to its homology
H•(C•) viewed as a complex with trivial differential.
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We define the derived category D(A) of A as the category obtained from the
category of CH•(A) of chain complexes of A by inverting quasi-isomorphisms. Of
course, some care must be taken to insure that such a localization of CH•(A) is
well defined. Let Hot(CH•(A)) denote the homotopy category of chain complexes
of A: maps from the chain complex C• to the chain complex D• in H(CH•(A))
are chain homotopy equivalence classes of chain maps. Since chain homotopic maps
induce the same map on homology, we see that D(A) can also be defined as the
category obtained from Hot(CH•(A)) by inverting quasi-isomorphisms.

The derived category D(A) of the abelian category CH•(A) is a triangulated
category. Namely, we have a shift operator (−)[n] defined by

(A•[n])j ≡ An+j .

This indexing is very confusing (as would be any other); we can view A•[n] as A•

shifted “down” or “to the left”. We also have distinguished triangles

A• → B• → C• → A•[1]

defined to be those “triangles” quasi-isomorphic to short exact sequences 0 → A• →
B• → C• → 0 of chain complexes.

This notation enables us to express Ext-groups quite neatly as

ExtiA(A,B) = Hi(HomA(P•, B)) = HomD(A)(A[−i], B)

= HomD(A)(A,B[i]) = Hi(HomA(A,P •)).

5.3. Bloch’s Higher Chow Groups. From our point of view, motivic cohomol-
ogy should be a “cohomology theory” which bears a relationship to K∗(X) anal-
ogous to the role Chow groups CH∗(X) bear to K0(X) (and analogous to the
relationship of H∗

sing(T ) to K∗
top(T )). In particular, motivic cohomology will be

doubly indexed.
We now discuss a relatively naive construction by Spencer Bloch of “higher Chow

groups” which satisfies this criterion. We shall then consider a more sophisticated
version of motivic cohomology due to Suslin and Voevodsky.

We work over a field k and define ∆n to be Spec k[x0, . . . , xn]/(
∑

i xi − 1), the
algebraic n-simplex. As in topology, we have face maps ∂i : ∆n−1 → ∆n (sending
the coordinate function xi ∈ k[∆n] to 0) and degeneracy maps σj : ∆n+1 →
∆n (sending the coordinate function xj ∈ k[∆n] to xj + xj+1 ∈ k[∆n+1]). More
generally, a composition of face maps determines a face F ' ∆i → ∆n. Of course,
∆n ' An.

Bloch’s idea is to construct a chain complex for each q which in degree n would
be the codimension q-cycles on X × ∆n. In particular, the 0-th homology of this
chain complex should be the usual Chow group CHq(X) of codimension q cycles
on X modulo rational equivalence. This can not be done in a completely straight-
forward manner, since one has no good way in general to restrict a general cycle on
X ×∆[n] via a face map ∂i to X ×∆n−1. Thus, Bloch only considers codimension
q cycles on X×∆n which restrict properly to all faces (i.e., to codimension q cycles
on X × F ).

Definition 5.6. Let X be a variety over a field k. For each p ≥ 0, we define a
complex zp(X, ∗) which in degree n is the free abelian group on the integral closed
subvarieties Z ⊂ X ×∆n with the property that for every face F ⊂ ∆n

dimk(Z ∩ (X × F )) ≤ dimk(F ) + p.
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The differential of zp(X, ∗) is the alternating sum of the maps induced by restricting
cycles to codimension 1 faces. Define the higher Chow homology groups by

CHp(X, n) = Hn(zp(X, ∗)), n, p ≥ 0.

If X is locally equi-dimensional over k (e.g., X is smooth), let zq(X, n) be the free
abelian group on the integral closed subvarieties Z ⊂ X × ∆n with the property
that for every face F ⊂ ∆n

codimX×F (Z ∩ (X × F )) ≥ q.

Define the higher Chow cohomology groups by

CHq(X, n) = Hn(zq(X, ∗)), n, q ≥ 0,

where the differential of zq(X, ∗) is defined exactly as for zp(X, ∗).

Bloch, with the aid of Marc Levine, has proved many remarkable properties of
these higher Chow groups.

Theorem 5.7. Let X be a quasi-projective variety over a field. Bloch’s higher
Chow groups satisfy the following properties:

• CHp(−, ∗) is covariantly functorial with respect to proper maps.
• CHq(−, ∗) is contravariantly functorial on Smk, the category of smooth

quasi-projective varieties over k.
• CHp(X, 0) = CHp(X), the Chow group of p-cycles modulo rational equiva-

lence.
• (Homotopy invariance) π∗ : CHp(X, ∗) ∼→ CHp+1(X × A1).
• (Localization) Let i : Y → X be a closed subvariety with j : U = X−Y ⊂ X

the complement of Y . Then there is a distinguished triangle

zp(Y, ∗) i∗→ zp(X, ∗) j∗→ zp(U, ∗) → zp(Y, ∗)[1]

• (Projective bundle formula) Let E be a rank n vector bundle over X. Then
CH∗(P(E)∗) is a free CH∗(X, ∗)-module on generators 1, ζ, . . . , ζn−1 ∈
CH1(P(E), 0).

• For X smooth, Ki(X) ⊗ Q ' ⊕qCHq(X, i) ⊗ Q for any i ≥ 0. Moreover,
for any q ≥ 0,

(Ki(X)⊗Q)(q) ' CHq(X, i)⊗Q.

• If F is a field, the KM
n (F ) ' CHn(SpecF, n).

The most difficult of these properties, and perhaps the most important, is local-
ization. The proof requires a very subtle technique of moving cycles. Observe that
zp(X, ∗) → zp(U, ∗) is not surjective because the conditions of proper intersection
on an element of zp(U, n) (i.e, a cycle on U ×∆n) might not continue to hold for
the closure of that cycle in X ×∆n.

5.4. Beilinson’s Conjectures. We give below a list of conjectures due to Beilin-
son which relate motivic cohomology and K-theory. Bloch’s higher Chow groups
go some way toward providing a theory which satisfies these conjectures. Namely,
Beilinson conjectures the existence of complexes of sheaves ΓZar(r) whose cohomol-
ogy (in the Zariski topology) Hp(X, ΓZar(r)) one could call “motivic cohomology”.
If we set

Hp(X, ΓZar(r)) = CHr(X, 2r − p),
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then many of the cohomological conjectures Beilinson makes for his conjectured
complexes are satisfied by Bloch’s higher Chow groups CH•(X, ∗).

Conjecture 5.8. (Beilinson [1]) Let X be a smooth variety over a field k. Then
there should exist complexes of sheaves ΓZar(r) of abelian groups on X with the
Zariski topology, well defined in D(AbSh(XZar)), functorial in X, and equipped
with a graded product, which satisfy the following properties:

(1) ΓZar(1) = Z; ΓZar(1) ' Gm[−1].
(2) H2n(X, Γzar(n)) = CHn(X).
(3) Hi(Spec k,ΓZar(i)) = KM

i k, Milnor K-theory.
(4) (Motivic spectral sequence) There is a spectral sequence of the form

Ep,q
2 = Hp−q(X, ΓZar(q)) ⇒ K−p−q(X)

which degenerates after tensoring with Q. Moreover, for each prime `, there
is a mod-` version of this spectral sequence

Ep,q
2 = Hp−q(X, ΓZar(q)⊗L Z/`) ⇒ K−p−q(X, Z/`)

(5) grr
γ(Kj(X)⊗Q ' H2r−j(XZar,ΓZar(r))Q.

(6) (Beilinson-Lichtenbaum Conjecture) ΓZar ⊗L Z/` ' τ≤rRπ∗(µ⊗r
` ) in the

derived category D(AbSh(XZar)) provided that ` is invertible in OX , where
π : Xet → XZar is the change of topology morphism.

(7) (Vanishing Conjecture) ΓZar(r) is acyclic outside [1, r] for r ≥ 1.

These conjectures require considerable explanation, of course. Essentially, Beilin-
son conjectures that algebraic K-theory can be computed using a spectral sequence
of Atiyah-Hirzebruch type (4) using “motivic complexes” ΓZar(r) whose cohomol-
ogy plays the role of singular cohomology in the Atiyah-Hirzebruch spectral se-
quence for topological K-theory. I have indexed the spectral sequence as Beilinson
suggests, but we could equally index it in the Atiyah-Hirzebruch way and write (by
simply re-indexing)

Ep,q
2 = Hp(X,ΓZar(−q/2)) ⇒ K−p−q(X).

where ΓZar(−q/2) = 0 if −q is not an even non-positive integer and ΓZar(−q/2) =
ΓZar(i) is −q = 2i ≥ 0.

(1) and (2) just “normalize” our complexes, assuring us that they extend usual
Chow groups and what is known in codimensions 0 and 1. Note that (1) and (2)
are compatible in the sense that

H2(X, ΓZar(1)) = H2(X,O∗X [−1]) = H1(X,O∗X) = Pic(X).

(3) asserts that for a field k, the n-th cohomology of ΓZar(n) – the part of highest
weight with respect to the action of Adams operations – should be Milnor K-theory.
This has been verified for Bloch’s higher Chow groups by Suslin-Nesterenko and
Totaro.

The (integral) spectral sequence of (4) has been established thanks to the work
of many authors. This spectral sequence “collapses” at the E2-level when tensored
with Q, so that E2 ⊗Q = E∞ ⊗Q. (5) asserts that this collapsing can be verified
by using Adams operations, interpreted using the γ-filtration.

The vanishing conjecture of (7) is the most problematic, and there is no consensus
on whether it is likely to be valid. However, (6) incorporates the mod-` version of
the vanishing conjecture and has apparently been proved by Rost and Voevodsky.
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(6) asserts that if we consider the complexes ΓZar(r) modulo ` (in the sense
of the derived category), then the result has cohomology closely related to etale
cohomology with µ⊗r

` coefficients, where µ` is the etale sheaf of `-th roots of unity
(isomorphic to Z/` if all `-th roots of unity are in k. If the terms in the mod-
` spectral sequence were simply etale cohomology, then we would get etale K-
theory which would violate the vanishing conjectured in (7) (and which would imply
periodicity in low degrees which we know to be false). So Beilinson conjectures
that the terms modulo ` should be the cohomology of complexes which involve a
truncation.

More precisely, Rπ∗F is a complex of sheaves for the Zariski topology (given by
applying π∗ to an injective resolution F → I• of etale sheaves) with the property
that H∗

Zar(X, Rπ∗F ) = H∗
et(X, F ). Now, the n-th truncation of Rπ∗F , τ≤nRπ∗F ,

is the truncation of this complex of sheaves in such a way that its cohomology
sheaves are the same as those of Rπ∗F in degrees ≤ n and are 0 in degrees greater
than n. (We do this by retaining coboundaries in degree n+1 and setting all higher
degrees equal to 0.)

If X = Speck, then Hp(Speck, τ≤nRπ∗µ
⊗n
` ) equals Hp

et(Speck, µ⊗n
` ) for p ≤

n and is 0 otherwise. For a positive dimensional variety, this truncation has a
somewhat mystifying effect on cohomology.

It is worth emphasizing that one of the most important aspects of Beilinson’s
conjectures is its explicit nature: Beilinson conjectures precise values for algebraic
K-groups, rather than the conjectures which preceded Beilinson which required the
degree to be large or certain torsion to be ignored. Such a precise conjecture should
be much more amenable to proof.
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5. Lecture 5

5.1. Quillen’s localization theorem and Bloch’s formula. Our next topic is
a sketch of Quillen’s proof of Bloch’s formula, which is also a a brief discussion
of aspects of Quillen’s remarkable paper [4]. For K2, this formula was proved by
Bloch in [2].

We remind the reader that in this paper Quillen introduces the “Quillen Q-
construction” QE of an exact category E and defines the K-groups of E to be the
homotopy groups of the classifying space of QE . Of most importance to us are
the abelian category MX of coherent sheaves on a Noetherian scheme OX and the
exact subcategory PX ⊂MX , yielding

K∗(X) = π∗(BQPX), K ′
∗(X) = π∗(BQMX).

A key ingredient in Quillen’s proof of Bloch’s formula is the localization se-
quence for K ′

∗, extending known localization sequences for low K-groups. Quillen
formulates his results in an abstract, categorical setting.

Theorem 5.1. (Localization Theorem of Quillen, cf. [4]) Let A be an abelian
category and B ⊂ A a Serre subcategory with quotient category A/B. Then there is
a long exact sequence of Quillen K-groups

· · ·K1(A) → K1(A/B) → K0(B) → K0(A) → K0(A/B) → 0.

In conjunction with Quillen’s “devissage theorem”, this localization theorem
implies the following:

loc Theorem 5.2. Consider X ∈ (Sch/k) and let Mr(X) denote the Serre subcate-
gory of the category MX consisting of coherent sheaves whose support has codimen-
sion ≥ r. Then there is a natural long exact sequence

· · · →
∐

x∈Xr

Ki+1k(x) → Ki(Mr+1(X)) → Ki(Mr(X)) →
∐

x∈Xr

Kik(x) → · · ·

Here, Xr denotes the set of points of X of codimension r.
Consequently, there is a spectral sequence

Ep,q
1 (X) =

∐
x∈Xp

K−p−qk(x) ⇒ K ′
−n(X)

relating the K-theory of the residue fields of points of X to the K ′ theory of X.

Proof. Quillen’s devissage theorem tells us that Ki(Mr(X)/Mr+1(X)) is naturally
isomorphic to

∐
Xr

Kik(x). The asserted exact sequences patch together to give an
exact couple, with the indexing of the spectral sequence determined by this exact
couple. �

Definition 5.3. The Gersten complex for K ′
n is the complex

0 → K ′
nX →

∐
x∈X0

Knk(x) →
∐

x∈X1

Kn−1k(x) → · · · →
∐

x∈Xn

K0k(x) → 0

determined by the exact sequences of Theorem 5.2.

Essentially by inspection, we have the following thereom concerning the rela-
tionship of the spectral sequence of Theorem 5.2 and the exactness of the Gersten
complex.

1
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Proposition 5.4. Let X ∈ (Sch/k). Then the following conditions are equivalent:
1.) For every r ≥ 0, the inclusion Mr+1(X) → Mr(X) induces the zero map

on K-groups.
2.) In the spectral sequence of Theorem 5.2, for all q, Ep,q

2 = 0 for p > 0 and the
edge homomorphism K ′

−qX → E0,q
2 X is an isomorphism.

3.) The Gersten complex for X is exact.

Here is Quillen’s theorem establishing the validity of Bloch’s formula.

Theorem 5.5. (Bloch’s formula by Quillen [4]) Let X ∈ Sch(k) be regular. Then
there is a cannoical isomorphism

Hq(X,Kq) ' CHq(X)

where Kq is the sheaf on X (for the Zariski topology) associated to the presheaf
U 7→ Kq(U).

Proof. Granted the above analysis of the Quillen spectral sequence, there are two
additional ingredients in the proof.

The first is Quillen’s theorem that the Gersten resolution is exact for Spec OX,x

whenever X ∈ Sch(k) and x ∈ X is a regular point. This tells us that the Gersten
complex for K ′

n(X) becomes a resolution of resolution of Kn(X) by flasque sheaves

0 → KnX →
∐

x∈X0

ix∗Knk(x) →
∐

x∈X1

ix∗Kn−1k(x) → · · ·

Consequently, the E2-term of the Quillen spectral sequence has the form

Ep,q
2 (X) = Hp(X,K−q) ⇒ K−p−q(X).

The second is Quillen’s determination of the last differential in the Gersten com-
plex ∐

x∈Xq−1

K1k(x) d1→
∐

x∈Xq

K0k(x) = Zq(X).

Quillen concludes that the image of this map is precisely the codimension q cycles
rationally equivalent to 0. �

5.2. Derived categories. In order to formulate motivic cohomology, we need to
introduce the language of derived categories. Let A be an abelian category (e.g., the
category of modules over a fixed ring) and consider the category of chain complexes
CH•(A). We shall index our chain complexes so that the differential has degree +1.
We assume that A has enough injectives and projectives, so that we can construct
the usual derived functors of left exact and right exact functors from A to another
abelian category B. For example, if F : A → B is right exact, then we define
LiF (A) to be the i-th homology of the chain complex F (P•) obtained by applying
F to a projective resolution P• → A of A; similarly, if G : A → B is left exact, then
RjG(A) = Hj(I•) where A → I• is an injective resolution of A.

The usual verification that these derived functors are well defined up to canonical
isomorphism actually proves a bit more. Namely, rather take the homology of the
complexes F (P•), G(I•), we consider these complexes themselves and observe that
they are independent up to quasi-isomorphism of the choice of resolutions. Recall,
that a map C• → D• is a quasi-isomorphism if it induces an isomorphism on
homology; only in special cases is a complex C• quasi-isomorphic to its homology
H•(C•) viewed as a complex with trivial differential.
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We define the derived category D(A) of A as the category obtained from the
category of CH•(A) of chain complexes of A by inverting quasi-isomorphisms. Of
course, some care must be taken to insure that such a localization of CH•(A) is
well defined. Let Hot(CH•(A)) denote the homotopy category of chain complexes
of A: maps from the chain complex C• to the chain complex D• in H(CH•(A))
are chain homotopy equivalence classes of chain maps. Since chain homotopic maps
induce the same map on homology, we see that D(A) can also be defined as the
category obtained from Hot(CH•(A)) by inverting quasi-isomorphisms.

The derived category D(A) of the abelian category CH•(A) is a triangulated
category. Namely, we have a shift operator (−)[n] defined by

(A•[n])j ≡ An+j .

This indexing is very confusing (as would be any other); we can view A•[n] as A•

shifted “down” or “to the left”. We also have distinguished triangles

A• → B• → C• → A•[1]

defined to be those “triangles” quasi-isomorphic to short exact sequences 0 → A• →
B• → C• → 0 of chain complexes.

This notation enables us to express Ext-groups quite neatly as

ExtiA(A,B) = Hi(HomA(P•, B)) = HomD(A)(A[−i], B)

= HomD(A)(A,B[i]) = Hi(HomA(A,P •)).

5.3. Bloch’s Higher Chow Groups. From our point of view, motivic cohomol-
ogy should be a “cohomology theory” which bears a relationship to K∗(X) anal-
ogous to the role Chow groups CH∗(X) bear to K0(X) (and analogous to the
relationship of H∗

sing(T ) to K∗
top(T )). In particular, motivic cohomology will be

doubly indexed.
We now discuss a relatively naive construction by Spencer Bloch of “higher Chow

groups” which satisfies this criterion. We shall then consider a more sophisticated
version of motivic cohomology due to Suslin and Voevodsky.

We work over a field k and define ∆n to be Spec k[x0, . . . , xn]/(
∑

i xi − 1), the
algebraic n-simplex. As in topology, we have face maps ∂i : ∆n−1 → ∆n (sending
the coordinate function xi ∈ k[∆n] to 0) and degeneracy maps σj : ∆n+1 →
∆n (sending the coordinate function xj ∈ k[∆n] to xj + xj+1 ∈ k[∆n+1]). More
generally, a composition of face maps determines a face F ' ∆i → ∆n. Of course,
∆n ' An.

Bloch’s idea is to construct a chain complex for each q which in degree n would
be the codimension q-cycles on X × ∆n. In particular, the 0-th homology of this
chain complex should be the usual Chow group CHq(X) of codimension q cycles
on X modulo rational equivalence. This can not be done in a completely straight-
forward manner, since one has no good way in general to restrict a general cycle on
X ×∆[n] via a face map ∂i to X ×∆n−1. Thus, Bloch only considers codimension
q cycles on X×∆n which restrict properly to all faces (i.e., to codimension q cycles
on X × F ).

Definition 5.6. Let X be a variety over a field k. For each p ≥ 0, we define a
complex zp(X, ∗) which in degree n is the free abelian group on the integral closed
subvarieties Z ⊂ X ×∆n with the property that for every face F ⊂ ∆n

dimk(Z ∩ (X × F )) ≤ dimk(F ) + p.
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The differential of zp(X, ∗) is the alternating sum of the maps induced by restricting
cycles to codimension 1 faces. Define the higher Chow homology groups by

CHp(X, n) = Hn(zp(X, ∗)), n, p ≥ 0.

If X is locally equi-dimensional over k (e.g., X is smooth), let zq(X, n) be the free
abelian group on the integral closed subvarieties Z ⊂ X × ∆n with the property
that for every face F ⊂ ∆n

codimX×F (Z ∩ (X × F )) ≥ q.

Define the higher Chow cohomology groups by

CHq(X, n) = Hn(zq(X, ∗)), n, q ≥ 0,

where the differential of zq(X, ∗) is defined exactly as for zp(X, ∗).

Bloch, with the aid of Marc Levine, has proved many remarkable properties of
these higher Chow groups.

Theorem 5.7. Let X be a quasi-projective variety over a field. Bloch’s higher
Chow groups satisfy the following properties:

• CHp(−, ∗) is covariantly functorial with respect to proper maps.
• CHq(−, ∗) is contravariantly functorial on Smk, the category of smooth

quasi-projective varieties over k.
• CHp(X, 0) = CHp(X), the Chow group of p-cycles modulo rational equiva-

lence.
• (Homotopy invariance) π∗ : CHp(X, ∗) ∼→ CHp+1(X × A1).
• (Localization) Let i : Y → X be a closed subvariety with j : U = X−Y ⊂ X

the complement of Y . Then there is a distinguished triangle

zp(Y, ∗) i∗→ zp(X, ∗) j∗→ zp(U, ∗) → zp(Y, ∗)[1]

• (Projective bundle formula) Let E be a rank n vector bundle over X. Then
CH∗(P(E)∗) is a free CH∗(X, ∗)-module on generators 1, ζ, . . . , ζn−1 ∈
CH1(P(E), 0).

• For X smooth, Ki(X) ⊗ Q ' ⊕qCHq(X, i) ⊗ Q for any i ≥ 0. Moreover,
for any q ≥ 0,

(Ki(X)⊗Q)(q) ' CHq(X, i)⊗Q.

• If F is a field, the KM
n (F ) ' CHn(SpecF, n).

The most difficult of these properties, and perhaps the most important, is local-
ization. The proof requires a very subtle technique of moving cycles. Observe that
zp(X, ∗) → zp(U, ∗) is not surjective because the conditions of proper intersection
on an element of zp(U, n) (i.e, a cycle on U ×∆n) might not continue to hold for
the closure of that cycle in X ×∆n.

5.4. Beilinson’s Conjectures. We give below a list of conjectures due to Beilin-
son which relate motivic cohomology and K-theory. Bloch’s higher Chow groups
go some way toward providing a theory which satisfies these conjectures. Namely,
Beilinson conjectures the existence of complexes of sheaves ΓZar(r) whose cohomol-
ogy (in the Zariski topology) Hp(X, ΓZar(r)) one could call “motivic cohomology”.
If we set

Hp(X, ΓZar(r)) = CHr(X, 2r − p),
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then many of the cohomological conjectures Beilinson makes for his conjectured
complexes are satisfied by Bloch’s higher Chow groups CH•(X, ∗).

Conjecture 5.8. (Beilinson [1]) Let X be a smooth variety over a field k. Then
there should exist complexes of sheaves ΓZar(r) of abelian groups on X with the
Zariski topology, well defined in D(AbSh(XZar)), functorial in X, and equipped
with a graded product, which satisfy the following properties:

(1) ΓZar(1) = Z; ΓZar(1) ' Gm[−1].
(2) H2n(X, Γzar(n)) = CHn(X).
(3) Hi(Spec k,ΓZar(i)) = KM

i k, Milnor K-theory.
(4) (Motivic spectral sequence) There is a spectral sequence of the form

Ep,q
2 = Hp−q(X, ΓZar(q)) ⇒ K−p−q(X)

which degenerates after tensoring with Q. Moreover, for each prime `, there
is a mod-` version of this spectral sequence

Ep,q
2 = Hp−q(X, ΓZar(q)⊗L Z/`) ⇒ K−p−q(X, Z/`)

(5) grr
γ(Kj(X)⊗Q ' H2r−j(XZar,ΓZar(r))Q.

(6) (Beilinson-Lichtenbaum Conjecture) ΓZar ⊗L Z/` ' τ≤rRπ∗(µ⊗r
` ) in the

derived category D(AbSh(XZar)) provided that ` is invertible in OX , where
π : Xet → XZar is the change of topology morphism.

(7) (Vanishing Conjecture) ΓZar(r) is acyclic outside [1, r] for r ≥ 1.

These conjectures require considerable explanation, of course. Essentially, Beilin-
son conjectures that algebraic K-theory can be computed using a spectral sequence
of Atiyah-Hirzebruch type (4) using “motivic complexes” ΓZar(r) whose cohomol-
ogy plays the role of singular cohomology in the Atiyah-Hirzebruch spectral se-
quence for topological K-theory. I have indexed the spectral sequence as Beilinson
suggests, but we could equally index it in the Atiyah-Hirzebruch way and write (by
simply re-indexing)

Ep,q
2 = Hp(X,ΓZar(−q/2)) ⇒ K−p−q(X).

where ΓZar(−q/2) = 0 if −q is not an even non-positive integer and ΓZar(−q/2) =
ΓZar(i) is −q = 2i ≥ 0.

(1) and (2) just “normalize” our complexes, assuring us that they extend usual
Chow groups and what is known in codimensions 0 and 1. Note that (1) and (2)
are compatible in the sense that

H2(X, ΓZar(1)) = H2(X,O∗X [−1]) = H1(X,O∗X) = Pic(X).

(3) asserts that for a field k, the n-th cohomology of ΓZar(n) – the part of highest
weight with respect to the action of Adams operations – should be Milnor K-theory.
This has been verified for Bloch’s higher Chow groups by Suslin-Nesterenko and
Totaro.

The (integral) spectral sequence of (4) has been established thanks to the work
of many authors. This spectral sequence “collapses” at the E2-level when tensored
with Q, so that E2 ⊗Q = E∞ ⊗Q. (5) asserts that this collapsing can be verified
by using Adams operations, interpreted using the γ-filtration.

The vanishing conjecture of (7) is the most problematic, and there is no consensus
on whether it is likely to be valid. However, (6) incorporates the mod-` version of
the vanishing conjecture and has apparently been proved by Rost and Voevodsky.
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(6) asserts that if we consider the complexes ΓZar(r) modulo ` (in the sense
of the derived category), then the result has cohomology closely related to etale
cohomology with µ⊗r

` coefficients, where µ` is the etale sheaf of `-th roots of unity
(isomorphic to Z/` if all `-th roots of unity are in k. If the terms in the mod-
` spectral sequence were simply etale cohomology, then we would get etale K-
theory which would violate the vanishing conjectured in (7) (and which would imply
periodicity in low degrees which we know to be false). So Beilinson conjectures
that the terms modulo ` should be the cohomology of complexes which involve a
truncation.

More precisely, Rπ∗F is a complex of sheaves for the Zariski topology (given by
applying π∗ to an injective resolution F → I• of etale sheaves) with the property
that H∗

Zar(X, Rπ∗F ) = H∗
et(X, F ). Now, the n-th truncation of Rπ∗F , τ≤nRπ∗F ,

is the truncation of this complex of sheaves in such a way that its cohomology
sheaves are the same as those of Rπ∗F in degrees ≤ n and are 0 in degrees greater
than n. (We do this by retaining coboundaries in degree n+1 and setting all higher
degrees equal to 0.)

If X = Speck, then Hp(Speck, τ≤nRπ∗µ
⊗n
` ) equals Hp

et(Speck, µ⊗n
` ) for p ≤

n and is 0 otherwise. For a positive dimensional variety, this truncation has a
somewhat mystifying effect on cohomology.

It is worth emphasizing that one of the most important aspects of Beilinson’s
conjectures is its explicit nature: Beilinson conjectures precise values for algebraic
K-groups, rather than the conjectures which preceded Beilinson which required the
degree to be large or certain torsion to be ignored. Such a precise conjecture should
be much more amenable to proof.
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