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0 Introduction: Connections with K-theory

In this report we sketch some of the insights and consequences of recent work by Andrei

Suslin and Vladimir Voevodsky concerning algebraic K-theory and motivic cohomology.

We can trace these developments to a lecture at Luminy by Suslin in 1987 and to Vo-

evodsky’s Harvard thesis in 1992. What results is a powerful general theory of sheaves

with transfers on schemes over a field, a theory developed primarily by Voevodsky with

impressive applications by Suslin and Voevodsky.

Criteria for a good motivic cohomology theory originate in topology. This should be

a theory which plays some of the same role in algebraic geometry as singular cohomology

plays in algebraic topology. One important aspect of singular cohomology is its relation-

ship to (complex, topological) K-theory as formalized by the Atiyah-Hirzebruch spectral

sequence for a topological space T [1]

Ep,q
2 = Hp(X, Kq

top)⇒ Kp+q
top (T )

where Kq
top is the qth coefficient of the generalized cohomology theory given by topo-

logical K-theory (equal to Z if q ≤ 0 is even and 0 otherwise). Indeed, when ten-

sored with the rational numbers, this spectral sequences collapses to give Kn
top(T )⊗Q =⊕

p+q=n,p≥0,q≤0 Hp(T,Kq
top) ⊗ Q. This direct sum decomposition can be defined intrin-

sically in terms of the weight spaces of Adams operations acting upon Ktop
n (T ). This

becomes particularly suggestive when compared to the well known results of Alexander

Grothendieck [17] concerning algebraic K0 of a smooth scheme X:

K0(X)⊗Q =
⊕

CHd(X)⊗Q

where CHd(X) is the Chow group of codimension d cycles on X modulo rational equiv-

alence; moreover, this decomposition is once again given in terms of weight spaces for

Adams operations.
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Working now in the context of schemes (typically of finite type over a field k), William

Dwyer and Friedlander [8] developed a topological K-theory for schemes (called etale K-

theory) which also has such an Atiyah-Hirzebruch spectral sequence with E2-term the

etale cohomology of the scheme. In [5], Spencer Bloch introduced complexes Zd
∗ (X) for

X quasi-projective over a field which consist of certain algebraic cycles of codimension d

on the product of X and affine spaces of varying dimensions. The homology of Zd
∗ (X) is

closely related to the (higher Quillen) algebraic K-theory of X. If CHd(X, n) denotes the

n− th homology group of the Bloch complex Zd
∗ (X) and if X is a smooth scheme, then

Kn(X)⊗Q =
⊕

d

CHd(X, n)⊗Q

(see also [20]); this decomposition is presumably given in terms of weight spaces for

Adams operations on K-theory. Together with Stephen Lichtenbaum, Bloch has moreover

established a spectral sequence [6] converging to algebraic K-theory in the special case

that X is the spectrum of a field F

Ep,q
2 = CH−q(SpecF,−p− q)⇒ K−p−q(SpecF ).

As anticipated many years ago by Alexander Beilinson [2], there should be such a

spectral sequence for a quite general smooth scheme

Ep,q
2 = Hp−q(X, Z(−q))⇒ K−p−q(X)

converging to algebraic K-theory whose E2-term is motivic cohomology. Moreover, Beilin-

son [4] and Lichtenbaum [22] anticipated that this motivic cohomology should be the

cohomology of motivic chain complexes. Although such a spectral sequence still eludes

us (except in the case of the spectrum of a field), the complexes Z(n) of Voevodsky and

Suslin (see §4) satisfy so many of the properties required of motivic complexes that we

feel comfortable in calling their cohomology motivic cohomology. The first sections of this

exposition are dedicated to presenting some of the formalism which leads to such a con-

clusion. As we see in §5, a theorem of Suslin [27] and duality established by Friedlander

and Voevodsky [14] imply that Bloch’s higher Chow groups CHd(X,n) equal motivic co-

homology groups of Suslin-Voevodsky for smooth schemes X over a field k “which admits

resolution of singularities.”

The Beilinson-Lichtenbaum Conjecture (cf [2], [3] [18]) predicts that the conjectural

map of spectral sequences from the conjectured spectral sequence converging to algebraic

K-theory mod-` to the Atiyah-Hirzebruch spectral sequence converging to etale K-theory

mod-` should be an isomorphism on E2-terms (except for a fringe effect whose extent

depends upon the mod-` etale cohomological dimension of X) ) for smooth schemes over
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a field k in which ` is invertible. This would reduce the computation of mod-` K-theory

of many smooth schemes to a question of computing “topological invariants” which in

many cases has a known solution. In §6, we sketch the proof by Suslin and Voevodsky

that the “Bloch-Kato Conjecture” for a field k and a prime ` invertible in k implies this

Beilinson-Lichtenbaum Conjecture for k and `. As discussed in the seminar by Bruno

Kahn, Voevodsky has proved the Bloch-Kato Conjecture for ` = 2 (in which case it was

previously conjectured by John Milnor and thus is called the Milnor Conjecture.) Recent

work by B. Kahn and separately by Charles Weibel and John Rognes establishes that

computations of the 2-primary part of algebraic K-theory for rings of integers in number

fields can be derived using special arguments directly from the Beilinson-Lichtenbaum

Conjecture and the Bloch-Lichtenbaum spectral sequence.

1 Algebraic Singular Complexes

The elementarily defined Suslin complexes Sus∗(X) provide a good introduction to many

of the fundamental structures underlying the general theory developed by Voevodsky.

Moreover, the relationship between the mod-n cohomology of Sus∗(X) and the etale

cohomology mod-n of X stated in Theorem 1.1 suggests the close relationship between

etale motivic cohomology mod-` and etale cohomology mod-`.

As motivation, we recall from algebraic topology the following well known theorem

of A. Dold and R. Thom [7]. If T is a reasonable topological space (e.g., a C.W. com-

plex) and if SP d(T ) denotes the d-fold symmetric product of T , then the homotopy

groups of the group completion (
∐

d Sing.(SP d(T )))+ of the simplicial abelian monoid∐
d Sing.(SP d(T )) are naturally isomorphic to the (singular) homology of T . Here,

Sing.(SP d(T )) is the (topological) singular complex of the space SP d(T ), whose set of

n-simplices is the set of continuous maps from the topological n-simplex ∆[n] to SP d(T ).

Suppose now that X is a scheme of finite type over a field k; each SP d(X) is similarly

a scheme of finite type over k. Let ∆n denote Speck[t0, . . . , tn]/
∑

i ti − 1 and let ∆∗

denote the evident cosimplicial scheme over k which in codimension n is ∆n. We define

the Suslin complex Sus∗(X) of X to be the chain complex associated to the simplicial

abelian group (
∐

d HomSch/k(∆
∗, SP d(X)))+.

Various aspects of Sus∗(X) play an important role in our context. First, Sus∗(X)

equals cequi(X, 0)(∆∗), where cequi(X, 0) is a sheaf in the Nisnevich topology on the category

Sm/k of smooth schemes over the field k. Second, the sheaf cequi(X, 0) is a presheaf with

transfers. Third, if we denote by C∗(cequi(X, 0)) the complex of Nisnevich sheaves with

transfers (sending a smooth scheme U to cequi(X, 0)(U×∆∗)), then this complex of sheaves
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has homology presheaves which are homotopy invariant: the natural pull-back

cequi(X, 0)(U ×∆∗)→ cequi(X, 0)(U × A1 ×∆∗)

induces an isomorphism on homology groups.

Theorem 1.1. ([28]). Let X be a quasi-projective scheme over an algebraically closed

field k and let n be a positive integer relatively prime to the exponential characteris-

tic of k. Then the mod-n cohomology of Sus∗(X) (i.e., the cohomology of the complex

RHom(Sus∗(X), Z/n)) is given by

H∗(Sus∗(X), Z/n) ' H∗
et(X, Z/n),

where the right hand side is the etale cohomology of the scheme X with coefficients in the

constant sheaf Z/n.

Quick sketch of proof. This theorem is proved using the rigidity theorem of Suslin

and Voevodsky stated below as Theorem 2.5. We apply this to the (graded) homotopy

invariant (cf. Lemma 2.4) presheaves with transfers

Φi(−) = Hi(cequi(X, 0)(−×∆∗))⊗ Z[1/p])

where p is the exponential characteristic of k. An auxiliary topology, the “qfh topology” is

introduced which has the property that the free Z[1/p] sheaf in this topology represented

by X equals cequi(X, 0) ⊗ Z[1/p]. Since Sus∗(X) = Φ∗(Speck), Theorem 2.5 and the

comparison of cohomology in the qfh and etale topologies provides the following string of

natural isomorphisms:

Ext∗Ab(Sus∗(X), Z/n) = Ext∗EtShv/X((Φ∗)et, Z/n) = Ext∗qfhShv/X((Φ∗)qfh, Z/n)

Ext∗qfhShv(k)(Z[1/p](X), Z/n) = H∗
qfh(X, Z/n) = H∗

et(X, Z/n).

These concepts of presheaves with transfers, Nisnevich sheaves, and homotopy invari-

ant presheaves will be explained in the next section. Even before we investigate their

definitions, we can appreciate their role from the following theorem of Voevodsky.

Theorem 1.2. [31, 5.12] Assume that k is a perfect field. Let

0→ F1 → F2 → F3 → 0

be a short exact sequence of Nisnevich sheaves on Sm/k with transfers. Then the resulting

triple of chain complexes of abelian groups

F1(∆
∗)→ F2(∆

∗)→ F3(∆
∗)→ F1(∆

∗)[1]

is a distinguished triangle (i.e., determines a long exact sequence in homology groups).
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Quick sketch of proof. Let P denote the presheaf cokernel of F1 → F2. Then the kernel

and cokernel of the natural map P → F3 have vanishing associated Nisnevich sheaves.

The theorem follows from an acyclicity criterion for Q(∆∗) in terms of the vanishing of

Ext∗(QNis,−) for any presheaf with transfers Q on Sm/k (with associated Nisnevich

sheaf QNis). A closely related acyclicity theorem is stated as Theorem 3.5 below.

One consequence of Theorem 1.2 (and Proposition 2.2 below) is the following useful

property. The resulting long exact sequence in Suslin homology is far from evident if one

works directly with the definition of the Suslin complex.

Corollary 1.3. [31, 5.17] Let k be a perfect field and X a scheme of finite type over k.

Then for any open covering X = U ∪ V of X

Sus∗(U ∩ V )→ Sus∗(U)⊕ Sus∗(V )→ Sus∗(X)→ Sus∗(U ∩ V )[1]

is a distinguished triangle.

2 Nisnevich sheaves with Transfers

Let Sm/k denote the category of smooth schemes over a field k. (In particular, such

a scheme is of finite type over k.) Then the Nisnevich topology on Sm/k (cf. [23]) is

the Grothendieck topology (finer than the Zariski topology and less fine than the etale

topology) whose coverings {Ui → U}i∈I are etale coverings with the property that for

each point u ∈ U there exists some i ∈ I and some point ũ ∈ Ui mapping to u such that

the induced map of residue fields k(u)→ k(ũ) is an isomorphism. A key property of this

topology is that its points are Hensel local rings.

In order to consider singular schemes which admit resolutions by smooth schemes, we

shall also consider the stronger cdh topology on the category Sch/k of schemes of finite

type over k. This is defined to be the minimal Grothendieck topology for which Nisnevich

coverings are coverings as are proper, surjective morphisms of the following type:

W
∐

U1
p

∐
i−−→ U

where i : U1 → U is a closed embedding and p−1(U − U1)→ U − U1 is an isomorphism.

We shall often have need to assume that the field “admits resolution of singularities”

as formulated in the following definition. At this time, this hypothesis is only known

to hold for fields of characteristic 0. As one can see, the cdh topology is designed to

permit the study of singular schemes over a field which admits resolution of singularities

by employing coverings by smooth schemes.
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Definition 2.1. A field k is said to admit resolution of singularities provided that

1. For any scheme of finite type X over k there is a proper, birational, surjective

morphism Y → X such that Y is a smooth scheme over k.

2. For any smooth scheme X over k and any proper, birational, surjective map q :

X ′ → X, there exists a sequence of blow-ups p : Xn → · · · → X1 = X with smooth

centers such that p factors through q.

We define the presheaf of abelian groups

cequi(X, 0) : (Sm/k)op → Ab

to be the evident functor whose values on a smooth connected scheme U is the free

abelian group on the set of integral closed subschemes on X×U finite and surjective over

U . This is a sheaf for the etale topology and hence also for the Nisnevich topology; indeed,

as mentioned following the statement of Theorem 1.1, cequi(X, 0) can be constructed as

the sheaf in the qfh-topology (stronger than the etale topology) associated to the presheaf

sending U to the free abelian group on HomSch/k(U,X).

We shall have occasion to consider other Nisnevich sheaves defined as follows:

zequi(X, r) : (Sm/k)op → Ab

sends a connected smooth scheme U to the group of cycles on U × X equidimensional

of relative dimension r over U . In particular, if X is proper over k, then cequi(X, 0) =

zequi(X, 0).

One major advantage of our Nisnevich and cdh topologies when compared to the

Zariski topology is the existence of Mayer-Vietoris, localization, and blow-up exact se-

quences as stated below.

Proposition 2.2. (cf. [29, 4.3.7;4.3.1;4.3.2]) For any smooth scheme X over k and any

Zariski open covering X = U ∪ V , the sequence of sheaves in the Nisnevich topology

0→ cequi(U ∩ V, 0)→ cequi(U, 0)⊕ cequi(V, 0)→ cequi(X, 0)→ 0

of Mayer-Vietoris type is exact.

For any scheme X of finite type over k, any open covering X = U ∪V , and any closed

scheme Y ⊂ X, the sequences of sheaves in the cdh topology

0→ cequi(U ∩ V, 0)cdh → cequi(U, 0)cdh ⊕ cequi(V, 0)cdh → cequi(X, 0)cdh → 0

0→ zequi(Y, r)cdh → zequi(X, r)cdh → zequi(X − Y, r)cdh → 0
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of Mayer-Vietoris and localization type are exact.

For any scheme X of finite type over k, any closed subscheme Z ⊂ X, and any proper

morphism f : X ′ → X whose restriction f−1(X − Z) → X − Z is an isomorphism, the

sequences of sheaves in the cdh topology

0→ cequi(f
−1(Z), 0)cdh → cequi(X

′, 0)cdh ⊕ cequi(Z, 0)cdh → cequi(X, 0)cdh → 0

0→ zequi(f
−1(Z)), r)cdh → zequi(X

′, r)cdh ⊕ zequi(Z, r))cdh → zequi(X, r))cdh → 0

of blow-up type are exact.

Remarks on the proof. The only issue is exactness on the right. We motivate the proof

of the exactness of the localization short exact sequences using Chow varieties, assuming

that X is quasi-projective. Let W be a smooth connected scheme and Z ⊂ (X − Y )×W

a closed integral subscheme of relative dimension r over W . Such a Z is associated to a

rationally defined map from W to the Chow variety of some projective closure of X. The

projection to W of the graph of this rational map determines a cdh-covering W ′ → W

restricted to which the pull-back of Z on (X − Y ) ×W ′ extends to a cycle on X ×W ′

equidimensional of relative dimension r over W ′.

We next introduce the important notion of transfers (i.e., functoriality with respect

to finite correspondences).

Definition 2.3. The category of smooth correspondences over k, SmCor(k), is the cate-

gory whose objects are smooth schemes over k and for which

HomSmCor(k)(U,X) = cequi(X, 0)(U),

the free abelian group of finite correspondences from U to X. A presheaf with transfers is

a contravariant functor

F : (SmCor(k))op → Ab.

The structure of presheaves with transfers on cequi(X, 0) and zequi(X, r) is exhibited

using the observation that if Z is an equidimensional cycle over a smooth scheme X and

if W → X is a morphism of schemes of finite type, then the pull-back of Z to W is well

defined since the embedding of the graph of W → X in W × X is a locally complete

intersection morphism [15]. Consequently, if U ← W → X is a finite correspondence

in SmCor(k), then we obtain transfer maps by first pulling back cycles of X to W and

then pushing them forward to U . The reader should be forewarned that earlier papers of

Voevodsky, Suslin, and Friedlander use the condition on a presheaf that it be a “pretheory
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of homological type” which is shown in [32, 3.1.10] to be implied by the existence of

transfers.

One can easily prove the following lemma which reveals the key property of homotopy

invariance possessed by the algebraic singular complex used to define Suslin homology.

For any presheaf F on Sm/k, we employ the notation C∗(F ) for the complex of presheaves

on Sm/k sending U to the complex F (U ×∆∗).

Lemma 2.4. Let F : (Sm/k)op → Ab be a presheaf on Sm/k and consider h−i(F ) :

(Sm/k)op → Ab sending U to the i-th homology of C∗(F ) (for some non-negative integer

i). Then h−i(F ) is homotopy invariant:

h−i(F )(U) = h−i(F )(U × A1).

As we saw in our sketch of proof of Theorem 1.1, the following rigidity theorem of Suslin

and Voevodsky, extending the original rigidity theorem of Suslin [26] is of considerable

importance.

Theorem 2.5. [28, 4.4] Let Φ be a homotopy invariant presheaf with transfers satisfy-

ing nΦ = 0 for some integer n prime to the residue characteristic of k. Let Sd be the

henselization of Ad (i.e., affine d-space) at the origin. Then

Φ(Sd) = Φ(Speck).

Idea of Proof. In a now familiar manner, the theorem is reduced to an assertion that

any two sections of a smooth relative curve X → S with good compactification which

coincide at the closed point of S induce the same map Φ(X) → Φ(S). The difference Z

of these sections is a finite correspondence from S to X. Since Φ is a homotopy invariant

presheaf with transfers, to show that the map induced by Z is 0 it suffices to show that the

difference is 0 in the relative Picard group Pic(X, Y )/n ⊂ H2
et(X, j!(µn)), where X → S

is a good compactification, Y = X−X, and j : X ⊂ X. The proper base change theorem

implies that it suffices to show that the image of Z is 0 upon base change to the closed

point of S. This is indeed the case since the two sections were assumed to coincide on the

closed point.

The following theorem summarizes many of the results proved by Voevodsky in [31]

and reformulated in [32]. In particular, this theorem enables us to replace consideration of

cohomology in the Nisnevich topology by cohomology in the Zariski topology for smooth

schemes.

Theorem 2.6. [32, 3.1.11] If F : (SmCor(k))op → Ab is a homotopy invariant presheaf

with transfers, then its associated Nisnevich sheaf FNis is also a homotopy invariant
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presheaf with transfers and equals (as a presheaf on Sm/k) the associated Zariski sheaf

FZar.

Moreover, if k is perfect, then

H i
Zar(−, FZar) = H i

Nis(−, FNis)

for any i ≥ 0, and these are homotopy invariant presheaves with transfer.

To complete the picture relating sheaf cohomology for different topologies we mention

the following result which tells us that if we consider the cdh topology on schemes of

finite type over k then the resulting cohomology equals Nisnevich cohomology whenever

the scheme is smooth.

Proposition 2.7. [14, 5.5] Assume that k is a perfect field admitting resolution of singu-

larities. Let F be a homotopy invariant presheaf on Sm/k with transfers. Then for any

smooth scheme of finite type over k

H∗
cdh(X, Fcdh) = H∗

Nis(X,FNis) = H∗
Zar(X, FZar).

Remark on Proof. The proof uses the techniques employed in the proof of Theorem 3.5

below applied to the cone of Z(U) → Z(U), where U is an arbitrarily fine hypercovering

of U for the cdh topology consisting of smooth schemes.

3 Formalism of the Triangulated Category DMk

Voevodsky’s approach [32] to motives for smooth schemes and for schemes of finite type

over a field admitting resolution of singularities entails a triangulated category DM eff
gm (k)

of effective geometric motives. Roughly speaking, DM eff
gm (k) is obtained by adjoining

kernels and cokernels of projectors to the localization (to impose homotopy invariance)

of the homotopy category of bounded complexes on the category of smooth schemes and

finite correspondences. Voevodsky then inverts the “Tate object” Z(1) in this category

to obtain his triangulated category DMgm(k) of geometric motives. (See [21] for another

approach to the triangulated category of mixed motives by Marc Levine.

In this section, we focus our attention upon another triangulated category introduced

by Voevodsky which we denote by DMk for notational convenience. (Voevodsky’s nota-

tion is DM eff
− (k).) Voevodsky proves [32, 3.2.6] that his category DM eff

gm (k) of effective

geometric motives embeds as a full triangulated subcategory of DMk. Furthermore, as

we see in Theorem 5.7 below, under this embedding the Tate motive is quasi-invertible so

that DMgm is also a full triangulated subcategory of DMk.
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Definition 3.1. Let X be a scheme over over a field k. Assume either that X is smooth

or that X is of finite type and k admits resolution of singularities. We define the motive

of X to be

M(X) ≡ C∗(cequi(X, 0)) : (Sm/k)op → C∗(Ab).

Similarly, we define the motive of X with compact supports to be

M c(X) ≡ C∗(zequi(X, 0)) : (Sm/k)op → C∗(Ab).

We shall use the usual (but confusing) conventions when working with complexes.

Our complexes will have cohomological indexing, meaning that the differential increases

degree by 1. We view this differential of degree +1 as shifting 1 position to the right. If K

is a complex, then K[1] is the complex obtained from K by shifting 1 position to the left.

This has the convenience when working with (hyper-) cohomology that H i(X, K[1]) =

H i+1(X,K).

We now introduce the triangulated category DMk designed to capture the Nisnevich

cohomology of smooth schemes over k and the cdh cohomology of schemes of finite type

over k.

Definition 3.2. Denote by ShvNis(SmCor(k)) the category of Nisnevich sheaves with

transfers and let D−(ShvNis(SmCor(k))) denote the derived category of complexes of

ShvNis(SmCor(k)) which are bounded above. We define

DMk ⊂ D−(ShvNis(SmCor(k)))

to be the full subcategory of those complexes with homotopy invariant cohomology sheaves.

By Lemma 2.4 and Theorem 2.6, M(X) and M c(X) are objects of the triangulated

category DMk.

We obtain the following relatively formal consequence of our definitions.

Proposition 3.3. [32, 3.1.8,3.2.6] If X is smooth over k, then for any K ∈ DMk,

Hn
Zar(X, K) = HomDMk

(M(X), K[n]);

in particular, if X is smooth, then

HomDMk
(M(X), M(Y )[i]) = H i

Zar(X, C∗(Y )).

If X is of finite type over k and k admits resolution of singularities, then

Hn
cdh(X, Kcdh) = HomDMk

(M(X), K[n]cdh).
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Taking X = Speck, we obtain an interpretation of Sus∗(Y ) in terms of DMk.

Corollary 3.4. If Y is a scheme of finite type over k, then the homology of Sus∗(Y ) is

given by HomDMk
(Z[∗], M(Y )).

The machinery of presheaves with transfers and the formulation of the cdh topol-

ogy permits the following useful vanishing theorem. This is an extension of an earlier

theorem of Voevodsky asserting the equivalence of the conditions on a homotopy in-

variant presheaf with transfers that the homology sheaves of C∗(F )Zar vanish and that

Ext∗NisShv(FNis,−) = 0 [31, 5.9].

Theorem 3.5. [14, 5.5.2] Assume F is a presheaf with transfers on Sm/k where k is

a perfect field which admits resolution of singularities. If Fcdh = 0, then C∗(F )Zar is

quasi-isomorphic to 0.

Idea of Proof. If C∗(F )Zar is not quasi-isomorphic to 0, let hn(F )Zar be the first non-

vanishing cohomology sheaf. Using Theorem 2.6 and techniques of [31], we conclude that

a non-zero element of this group determines a non-zero element of

HomD(Sm/k)Nis
(C∗(F )Nis, hn(F )Nis[n]) = ExtnNisShv(FNis, hn(F )Nis).

On the other hand, using a resolution of F by Nisnevich sheaves which are the free abelian

sheaves associated to smooth schemes, we verify that the vanishing of Fcdh together with

[31, 5.9] implies that

Ext∗NisShv(FNis, GNis) = 0

for any homotopy invariant presheaf G with transfers.

In conjunction with Proposition 2.2, Theorem 3.5 leads to the following distinguished

triangles for motives and motives with compact support.

Corollary 3.6. Assume that the field k admits resolution of singularities and that X is

a scheme of finite type over k. If X = U ∪V is a Zariski open covering, then we have the

following distinguished triangles of Mayer-Vietoris type

M(U ∩ V )→M(U)⊕M(V )→M(X)→M(U ∩ V )[1]

M c(X)→M c(U)⊕M c(V )→M c(U ∩ V )→M c(X)[1].

If Y ⊂ X is a closed subscheme with Zariski open complement U , then we have the

following distinguished triangle of localization type

M c(Y )→M c(X)→M c(U)→M c(Y )[1].
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Finally, if f : X ′ → X is a proper morphism and Z ⊂ X is a closed subscheme such that

the restriction of f above X − Z, f| : X ′ − f−1(Z)→ X − Z is an isomorphism, then we

have the following distinguished triangles for abstract blow-ups:

M(f−1(Z))→M(X ′)⊕M(Z)→M(X)→M(f−1(Z))[1]

M c(f−1(Z))→M c(X ′)⊕M c(Z)→M c(X)→M c(f−1(Z))[1]

Armed with these distinguished triangles, one can obtain results similar to those of

Henri Gillet and Christophe Soulé in [16].

We next introduce the Tate motive Z(1)[2] in DMk and define the Tate twist of motives.

Definition 3.7. We define the Tate motive Z(1)[2] to be the cone of M(Speck)→M(P1).

We define the Tate twist by

M(X)(1) = cone{M(X)→M(X × P1)[−2]},

M c(X)(1) = cone{M c(X)→M c(X × P1)[−2]}.

Thus, if X is projective and k admits resolution of singularities,

M(X)(1) = M c(X × A1)[−2].

We briefly introduce the analogous triangulated category for the etale site.

Definition 3.8. Denote by Shvet(SmCor(k)) the category of presheaves with transfers

which are sheaves on the etale site of (Sm/k) and let D−(Shvet(SmCor(k))) denote the

derived category of complexes of Shvet(SmCor(k)) which are bounded above. We define

DMk,et ⊂ D−(Shvet(SmCor(k)))

to be the full subcategory of those complexes with homotopy invariant cohomology sheaves.

Observe that the exact functor π∗ : ShvNis(SmCor(k)) → Shvet(SmCor(k)) induces

a natural map

HomDMk
(K, L)→ HomDMk,et

(π∗K, π∗L).

Voevodsky observes that

HomDMk,et
(M(X), K[n]) = Hn

et(X, K)

for any K ∈ DMk,et.
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4 Motivic Cohomology and Homology

Having introduced the triangulated category DMk, we now proceed to consider the motivic

complexes Z(n) ∈ DMk whose cohomology and homology is motivic cohomology and

homology. Other authors (e.g., Lichtenbaum and Friedlander-Gabber) have considered

similar complexes; the importance of the approach of Suslin and Voevodsky is the context

in which these complexes are considered. The many properties established for DMk enable

many good formal properties to be proved.

Definition 4.1. For a given positive integer n, let Fn be the sum of the images of the n

embeddings

cequi((A1 − {0})n−1, 0)→ cequi((A1 − {0})n, 0)

determined by the embeddings (t1, . . . , tn−1) 7→ (t1, . . . , ti−1, 1, ti, . . . , tn−1). We define

Z(n) = C∗(cequi((A1 − {0})n, 0)/Fn))[−n].

For any positive integer m, we define

Z/m(n) = C∗(cequi((A1 − {0})n, 0)/Fn)⊗ Z/m)[−n].

Observe that Mayer-Vietoris implies that Z(1) defined as in Definition 4.1 agrees with

(i.e., is quasi-isomorphic to) Z(1) as given in Definition 3.7; similarly, for any n > 0,

Z(n) = C∗(cequi(Pn, 0)/cequi(Pn−1))[−2n].

Moreover, if k admits resolution of singularities, then localization implies that

Z(n) = C∗(zequi(An, 0))[−2n].

We obtain the following determination of Z(0) and Z(1) which we would require of

any proposed definition of motivic complexes.

Proposition 4.2. [32, 3.4.3]

(a.) Z(0) is the constant sheaf Z.

(b.) Gm ' Z(1)[1], where Gm is viewed as a sheaf of abelian groups.

We now introduce motivic cohomology.
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Definition 4.3. For any scheme of finite type over a field k, we define the motivic coho-

mology of X by

H i(X, Z(j)) = H i
cdh(X, Z(j)cdh).

For any positive integer m, we define the mod-m motivic cohomology of X by

H i(X, Z/m(j)) = H i
cdh(X, Z/m(j)cdh).

Thus, if X is smooth and k is perfect, then Theorem 2.6 and Proposition 3.3 imply that

motivic cohomology is Zariski hypercohomology (where the complex Z(j) of Nisnevich

sheaves is viewed as a complex of Zariski sheaves by restriction):

H i(X, Z(j)) = H i
Zar(X, Z(j)) = HomDMk

(M(X), Z(j)[i]).

Similarly, if k admits resolution of singularities, then for any X of finite type over k

H i(X, Z(j)) = HomDMk
(M(X), Z(j)[i]).

If d denotes the dimension of X, then

H i(X, Z(j)) = 0 whenever i > d + j.

The following theorem relating Milnor K-theory to motivic cohomology appears in

various guises in [5] and [24]. The reader is referred to [30] for a direct proof given in our

present context.

Theorem 4.4. For any field k and any non-negative integer n, there is a natural isomor-

phism

KM
n (k) ' Hn(Speck, Z(n))

where KM
∗ (k) is the Milnor K-theory of k.

So defined, motivic cohomology is cohomology with respect to the Zariski site for

smooth schemes (and with respect to the cdh site for more general schemes of finite type)

as anticipated by Beilinson. One can also consider the analogous cohomology with respect

to the etale site following the lead of Lichtenbaum.

As usual, we let µ` denote the sheaf of `-th roots of unity on (Sm/k)et.

Theorem 4.5. [32, 3.3] Define the etale motivic cohomology H i
et(X, Z(j)) of a scheme

X of finite type over k by

H i
et(X, Z(j)et) = HomDMk,et

(M(X)et, Z(j)et[i]);
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similarly for any positive integer relatively prime to the residue characteristic of k, define

H i
et(X, Z/m(j)) ≡ H i

et(X, Z/m(j)et) = HomDMk,et
(M(X)et, Z/m(j)et[i]).

Then there is a natural quasi-isomorphism

µ⊗j
m → Z/m(j)et

In particular, this gives an isomorphism

H∗
et(X, µ⊗j

m )
'−→ H∗

et(X, Z/m(j)).

Sketch of proof. By Proposition 4.2.b, µm is quasi-isomorphic to Z/m(1). More gener-

ally, we construct an explicit map µ⊗j
m (F (ζm))→ Z/m(j)(F (ζm)) where F is a field exten-

sion of k and ζm is a primitive m-th root of unity and show that this map is Gal(F (ζm)/F )-

invariant. This determines a map of etale sheaves with transfers µ⊗j
m → Z/m(j)et. By

Theorems 1.1 and 2.5, this map is a quasi-isomorphism.

Because the etale cohomology of a Hensel local ring is torsion, we readily conclude the

following proposition using Proposition 2.7.

Proposition 4.6. For any smooth scheme,

H∗(X, Z(j))⊗Q = H∗
et(X, Z(j))⊗Q.

As we shall see in the next section, motivic cohomology is dual to motivic locally

compact homology for smooth schemes over a field admitting resolution of singularities.

This locally compact homology was initially formulated in [14] (essentially following the

definition in [10]) using C∗(zequi(X, r)). To rephrase this in terms of our triangulated

category DMk, we need the following proposition.

Proposition 4.7. [32, 4.2.8] Let X be a scheme of finite type over a field k and let r be

a non-negative integer. Then there is a natural isomorphism in DMk

C∗(zequi(X, r)) ' HomDMk
(Z(r)[2r], M c(X))

where Hom denotes internal Hom in the derived category of unbounded complexes of

Nisnevich sheaves with transfers.

We now define three other theories: motivic cohomology with compact supports, mo-

tivic homology, and motivic homology with locally compact supports. We leave implicit

the formulation of these theories with mod-m coefficients.
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Definition 4.8. Let X be a scheme of finite type over a field k which admits resolution

of singularities. Then we define

H i
c(X, Z(j)) = HomDMk

(M c(X), Z(j)[i])

H lc
i (X, Z(j)) = HomDMk

(Z(j)[i], M c(X))

Hi(X, Z(j)) = HomDMk
(Z(j)[i], M(X)).

Since cequi(−, 0) is covariantly functorial (using push-forward of cycles), we conclude

that H∗(X, Z(j)) is contravariantly functorial and H∗(X, Z(j)) is covariantly functorial

for morphisms of schemes of finite type over k. Similarly, the functoriality of zequi(−, 0)

implies that H∗
c (X, Z(j) (respectively,H lc

∗ (X, Z(j) is contravariant (resp. covariant) for

proper maps and covariant (resp. contravariant) for flat maps.

We recall the bivariant theory introduced in [14], which is closely related to a con-

struction in [10] and which is an algebraic version of the bivariant morphic cohomology

introduced by Friedlander and Lawson in [11]:

Ar,i(Y,X) ≡ H−i
cdh(Y,C∗(zequi(X, r))cdh).

This bivariant theory is used in §5 when considering the duality relationship between

motivic cohomologies and homologies.

We conclude this section with a proposition, proved by Voevodsky, which interprets

this bivariant theory in the context of the triangulated category DMk and the Tate twist

of Definition 3.7.

Proposition 4.9. [32, 4.2.3] Let k be a field admitting resolution of singularities and

X,Y schemes of finite type over k. There is a natural isomorphism

Ar,i(Y, X) = HomDMk
(M(Y )(r)[2r + i], M c(X)).

As special cases of Ar,i(Y,X), we see that

A0,i(Y, Aj) = H2j−i(Y, Z(j))

(since localization implies that Z(j)[2j] is quasi-isomorphic to M c(Aj)) and

Ar,i(Speck, X) = H lc
2r+i(X, Z(r))

(since M(Speck)(r) = Z(r)).
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5 Duality with Applications

In [13], Friedlander and H.B. Lawson prove a moving lemma for families of cycles on a

smooth scheme which enables one to make all effective cycles of degree bounded by some

constant to intersect properly all effective cycles of similarly bounded degree. This was

used to establish duality isomorphisms [12], [9] between Lawson homology (cf. [18]) and

morphic cohomology (cf. [11]), topological analogues of motivic homology with locally

compact supports and motivic cohomology.

Theorem 5.3 presents the result of adapting the moving lemma of [13] to our present

context of DMk. As consequences of this moving lemma, we show that a theorem of Suslin

implies that Bloch’s higher Chow groups of a smooth scheme over a field which admits

resolution of singularites equals motivic cohomology as defined in §4. We also prove that

applying Tate twists is fully faithful in DMk.

We first translate the moving lemma of [13] into a statement concerning the presheaves

zequi(X, ∗). The moving lemma enables us to move cycles on U ×W ×X equidimensional

over a smooth W to become equidimensional over U ×W provided that U is also smooth.

(In other words, cycles are moved to intersect properly each of the fibres of the projection

U ×W ×X → U ×W .)

Theorem 5.1. [14, 7.4] Assume that k admits resolution of singularities, that U is a

smooth, quasi-projective, equidimensional scheme of dimension n over k, and that X is

a scheme of finite type over k. For any r ≥ 0, the natural embedding of presheaves on

Sm/k

D : zequi(X, r)(U ×−)→ zequi(X × U, r + n)

induces a quasi-isomorphism of chain complexes

D : zequi(X, r)(U ×∆∗)→ zequi(X × U, r + n)(∆∗).

As shown in [14, 7.1], the hypothesis that k admits resolution of singularities may be

dropped provided that we assume instead that X and Y are both projective and smooth.

Applying Theorem 5.1 to the map of presheaves

zequi(X, r)(∆∗ × A1 ×−)→ zequi(X × A1, r + 1)(∆∗ ×−)

and using Lemma 2.4, we obtain the following homotopy invariance property.

Corollary 5.2. Assume that k admits resolution of singularites. Then the natural map

of presheaves induced by product with A1

zequi(X, r)→ zequi(X × A1, r + 1)
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induces a quasi-isomorphism

C∗(zequi(X, r))
'−→ C∗(zequi(X × A1, r + 1)).

Massaging Theorem 5.1 into the machinery of the previous sections provides the fol-

lowing duality theorem.

Theorem 5.3. [14, 8.2] Assume that k admits resolution of singularities. Let X, Y be

schemes of finite type over k and let U be a smooth scheme of pure dimension n over k.

Then there are natural isomorphisms

Ar,i(Y × U,X) ≡ H−i
cdh(Y × U,C∗(zequi(X, r))cdh)

'−→

H−i
cdh(Y,C∗(zequi(X × U, r + n))cdh) ≡ Ar+n,i(Y, X × U).

Setting Y = Speck, X = Aj, and r = 0, we obtain the following duality relating

motivic cohomology to motivic homology with locally compact supports.

Corollary 5.4. Assume that k admits resolution of singularities and that U is a smooth

scheme of pure dimension n over k. Then there are natural isomorphisms

Hm(U, Z(j))
'−→ H lc

2n−m(U, Z(n− j))

provided n ≥ j.

Proof. We obtain the following string of equalities provided n ≥ j:

Hm(U, Z(j)) = Hm(U,C∗(zequi(Aj, 0))[−2j])

'−→ Hm(Speck, C∗(zequi(U × Aj, n))[−2j]) = Hm(Speck, C∗(zequi(U, n− j))[−2j])

= HomDMk
(Z(n− j)[2n− 2j], M c(U)[m− 2j]) = H lc

2n−m(X, Z(j)).

The following theorem was proved by Suslin in [27] using a different type of moving

argument which applies to cycles over affine spaces. The content of this theorem is that

Bloch’s complex (consisting of cycles over algebraic simplices which meet the pre-images

of faces properly) is quasi-isomorphic to complex of cycles equidimensional over simplices.

Theorem 5.5. Let X be a scheme of finite type of pure dimension n over a field k

and assume that either X is affine or that k admits resolution of singularities. Let Zj
∗(X)

denote the Bloch complex of codimension j cycles (whose cohomology equals Bloch’s higher

Chow groups CHj(X, ∗). Then whenever 0 ≤ j ≤ n, the natural embedding

C∗(zequi(X, n− j))(Speck)→ Zj
∗(X)

is a quasi-isomorphism.
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Combining Corollary 5.4 and Theorem 5.5, we obtain the following comparison of

motivic cohomology and Bloch’s higher Chow groups.

Corollary 5.6. Let X be a smooth scheme of finite type of pure dimension n over a field k

and assume that k admits resolution of singularities. Then there is a natural isomorphism

H2j−i(X, Z(j)) ' CHj(X, i).

Another important consequence of Theorem 5.3 is the following theorem.

Theorem 5.7. [32, 4.3.1] Let X, Y be schemes of finite type over a field k which admits

resolution of singularities. Then the natural map

HomDMk
(M(X), M(Y ))→ HomDMk

(M(X)(1), M(Y )(1))

is an isomorphism.

Sketch of proof. We use the following identification (cf. [32, 4.23.])

Ar,i(X, Y )) = HomDMk
(C∗(cequi(X, 0))(r)cdh[2r + i], C∗(zequi(Y, 0))cdh).

Using localization, we reduce to the case that X, Y are projective. Then,

HomDMk
(M(X)(1), M(Y )(1)) = HomDMk

(M(X)(1), M c(Y × A1)[−2])

equals A1,0(X, Y×A1) by Proposition 4.9 which is isomorphic to A0,0(X,Y ) = HomDMk
(X,Y )

by Theorem 5.3.

6 Conjecture of Beilinson -Lichtenbaum

In this section, we sketch a theorem of Suslin and Voevodsky which permits K-theoretic

conclusions provided that one can prove the Bloch-Kato Conjecture. Since this conjecture

for the prime 2 is precisely the Milnor Conjecture recently proved by Voevodsky [33], the

connection established by Suslin and Voevodsky has important applications to the 2-

primary part of algebraic K-theory.

Throughout this section ` is a prime invertible in k and k is assumed to admit resolution

of singularities. We recall the Bloch-Kato Conjecture.

Conjecture 6.1. (Bloch-Kato conjecture in weight n over k) For any field F over k, the

natural homomorphism

KM
n (F )/`→ Hn

et(F, µ⊗n
` )

is an isomorphism. In other words,

Hn(SpecF, Z/`(n))
'−→ Hn

et(SpecF, Z/`(n)).
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If K is a complex of sheaves on some site, we define τ≤n(K) to be the natural sub-

complex of sheaves such that

H i(τ≤n(K))) =

{
H i(K) i ≤ n

0 i > n

Definition 6.2. Let π : (Sm/k)et → (Sm/k)Zar be the evident morphism of topologies on

smooth schemes over k. Let Rπ∗(µ
⊗n
` ) denote the total right derived image of the sheaf

µ⊗n
` . We denote by B/`(n) the complex of sheaves on (Sm/k)Zar given by

B/`(n) = τ≤nRπ∗(µ
⊗n
` ).

As shown in [30, 5.1], B/`(n) is a complex of presheaves with transfers with homotopy

invariant cohomology sheaves. By Propositions 2.7 and 3.3, this implies the natural

isomorphism for any smooth scheme X over k

H i
Zar(X, B/`(n))

'−→ HomDMk
(M(X), B/`(n)[i]),

where the cohomology is Zariski hypercohomology.

The following conjecture of Beilinson [2], related to conjectures of Lichtenbaum [22],

is an intriguing generalization of the Bloch-Kato conjecture. We use the natural quasi-

isomorphism µ⊗n
` ' Z/`(n)et of Theorem 4.5 plus the acyclicity of Z/`(n) in degrees

greater than n to conclude that the natural maps

Z/`(n)→ Rπ∗Z/`(n)et ' Rπ∗µ
⊗n
` ← B/`(n)

determine a natural map (in the derived category of complexes of sheaves in the Zariski

topology)

Z/`(n)→ B/`(n).

Conjecture 6.3. (Beilinson-Lichtenbaum Conjecture in weight n over k) The natural

morphism

Z/`(n)→ B/`(n)

is a quasi-isomorphism of complexes of sheaves on (Sm/k)Zar.

Remark A well known conjecture of Beilinson [2], [3] and Christophe Soulé [25] asserts

that H i(X, Z(n)) vanishes for i < 0. Since H i
et(X, µ⊗n

` ) = 0 for i < 0, Conjecture 6.3

incorporates the mod-` analogue of the Beilinson-Soulé Conjecture.

We now state the theorem of Suslin and Voevodsky. M. Levine provided a forerunner

of this theorem in [19].
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Theorem 6.4. [30, 5.9] Let k be a field which admits resolution of singularities and

assume that the Bloch-Kato conjecture holds over k in weight n. Then the Beilinson-

Lichtenbaum conjecture holds over k in weight n.

Sketch of Proof. One readily verifies that the validity of the Bloch-Kato Conjecture

in weight n implies the validity of this conjecture in weights less than n. Consequently,

proceeding by induction, we may assume the validity of the Beilinson-Lichtenbaum Con-

jecture in weights less than n. Moreover, since both Z/`(n) and B/`(n) have cohomology

presheaves which are homotopy invariant presheaves with transfers annihilated by mul-

tiplication by n, we may apply the rigidity theorem (Theorem 2.5) to conclude that to

prove the asserted quasi-isomorphism Z/`(n)→ B/`(n) it suffices to prove for all exten-

sion fields F over k that the induced map

H∗(SpecF, Z/`(n))→ H∗(SpecF, B/`(n))

is an isomorphism. By construction, H i(SpecF, Z/`(n)) = 0 for i > n, so that it suffices

to prove

H i(SpecF, Z/`(n))
'−→ H i

et(SpecF, µ⊗n
` ) i ≤ n.

Suslin and Voevodsky easily conclude that it suffices to prove that

H i(SpecF, Z/`(n))→ H i
et(SpecF, µ⊗n

` ) i < n

is injective (assuming the validity of the Bloch-Kato Conjecture in weight n). This in

turn is implied by the assertion that

Hn(∂∆j
F , Z/`(n)cdh)→ Hn(∂∆j

F , B/`(n)cdh)

is injective for all j, where ∂∆j
F is the (singular) boundary of the j-simplex over F whose

cohomology fits in Mayer-Vietoris exact sequence for a covering by two contractible closed

subschemes whose intersection is ∂∆j−1
F .

We denote by S1 the scheme obtained from A1 by gluing together {0}, {1}. We have

natural embeddings

Hn(∂∆j
F , Z/`(n)cdh)→ Hn+1(∂∆j

F × S1, Z/`(n)cdh)

Hn(∂∆j
F , B/`(n)cdh)→ Hn+1(∂∆j

F × S1, B/`(n)cdh).

Any cohomology class in Hn(∂∆j
F , Z/`(n)) which does not arise from Hn(SpecF, Z/`(n))

vanishes on some open subset U ⊂ ∂∆j
F ×S1 containing all the points of the form pi×∞

where ∞ ∈ S1 is the distinguished point. In other words, all such cohomology lies in
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the image of Hn+1
Z (∂∆j

F ×S1, Z/`(n)cdh), the direct limit of cohomology with supports in

closed subschemes missing each of the points pi ×∞.

The localization distinguished triangle of Corollary 3.6 gives us long exact sequences in

cohomology with coefficients Z/`(n)cdh and B/`(n)cdh and a map between these sequences;

the terms involve the cohomology of S (the semi-local scheme of the set {pi × {∞}}), of

∆j
F×S1 with supports in Z, and of ∆j

F×S1 itself. Although S is not smooth, one can con-

clude that our Bloch-Kato hypothesis implies that Hn(S, Z/`(n)cdh)→ Hn(S, B/`(n)cdh)

is surjective. Another application of the localization distinguished triangle plus induction

(on n) implies that the map on cohomology with supports in Z is an isomorphism. The

required injectivity now follows by an easy diagram chase.

An important consequence of Theorem 6.4 is the following result of Suslin and Vo-

evodsky.

Proposition 6.5. [30, 7.1] The Bloch-Kato conjecture holds over k in weight n if and

only if for any field F of finite type over k the Bockstein homomorphisms

Hn
et(F, µ⊗n

`m )→ Hn+1
et (F, µ⊗n

` )

are zero for all m > 0.

Comment about the Proof. If the Bloch-Kato conjecture holds, then Hn
et(F, µ⊗n

`m ) con-

sists of sums of products of elements of H1
et(F, µ`m). The vanishing of the Bockstein homo-

morphism on classes of cohomology degree 1 follows immediately from Hilbert’s Theorem

90.

The proof of the converse is somewhat less direct.
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