
INTERSECTION PRODUCTS FOR

SPACES OF ALGEBRAIC CYCLES

Eric M. Friedlander∗

This is a slightly expanded version of three lectures given by the author in
Bologna in December 1997. Our purpose is to introduce to algebraic geometers
some constructions developed in recent years for spaces of cycles that relate to
classical intersection theory. The work discussed appears primarily in joint papers
of the author and H. Blaine Lawson as well as a joint paper of the author and Ofer
Gabber. We recommend the reader consult the expository article [L2] which not
only provides further details concerning spaces of algebraic cycles but also provides
a somewhat different point of view.

Unless mention is made to the contrary, all varieties considered will be quasi-
projective varieties over the complex field C. By a closed subvariety of such a variety
X, we shall mean (implicitly) closed in the Zariski topology on X, but otherwise
when we speak of the topology on X we shall mean the analytic topology. As
mentioned in the lectures, certain aspects of what we discuss hold over an arbitrary
field (e.g., moving lemmas as in [F-L3]) or over a field which admits resolution of
singularities (e.g., duality theorems as in [FV]).

§1 Topological abelian groups of algebraic cycles

In this lecture, we survey some of the basic definitions and properties of Lawson
homology, a homology theory defined in terms of homotopy groups of topological
abelian groups of algebraic cycles.

Let X be a (complex, quasi-projective) variety. Then the effective 0-cycles on
X of a given degree d (i.e., formal sums of points of X with non-negative integer
coefficients whose sum equals d) admit the natural structure of an algebraic variety
SP d(X), the d-fold symmetric power of X. The formal sum of 0-cycles determines
a topological monoid structure on

C0(X) ≡
∐
d≥0

SP d(X),

where we set SP 0(X) equal to a point (the set of effective 0-cycles contains only the

empty – or zero – cycle). The näive group completion of this topological monoid is
the topological abelian group

Z0(X) ≡ Z[X] = C0(X)×2/ ∼
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of all 0-cycles on X (or, equivalently, the free abelian group on X), where the
equivalence relation ∼ consists of pairs of pairs (

∑
xi,

∑
yj) ∼ (

∑
zk,

∑
w`) such

that
∑
xi +

∑
w` =

∑
yj +

∑
zk and where Z0(X) is provided with the quotient

topology with respect to C0(X)×2 → Z0(X).

Theorem 1.1 (Dold-Thom [D-T]). The integral singular homology of the com-
plex projective variety X can be computed as

H∗(X) = π∗(Z[X]) = π∗(Ω B C0(X))

where B C0(X) is the classifying space of the abelian topological monoid C0(X) and
Ω B C0(X) is its loop space.

Now, we proceed with a very similar construction for positive dimensional cycles
on algebraic varieties. We begin by assuming that our variety is projective so that
we can use Chow varieties as recalled below.

Theorem 1.2 ([C-W]). Let X be a closed subvariety of some projective space
PN . Then the set of effective, degree d dimension r-cycles on X admits a natural
structure of a projective algebraic variety Cr,d(X).

Moreover, the Chow monoid

Cr(X) ≡
∐
d≥0

Cr,d(X)

is an abelian topological monoid which is independent up to algebraic isomorphism
of the chosen embedding X ⊂ PN .

The independence of projective embedding of Cr(X) is proved in [B].

Definition 1.3. Let X be a projective variety. The topological abelian group of
algebraic r-cycles is defined to be the naïve group completion of the Chow monoid
Cr(X)

Zr(X) ≡ Cr(X)×2/ ∼,

where the equivalence relation ∼ consists of pairs of pairs (Z1, Z2) ∼ (W1,W2) such
that Z1 +W2 = Z2 +W1 and where Zr(X) is provided with the quotient topology.

The (bi-indexed) Lawson homology groups are defined to be the homotopy groups
of these topological abelian groups (pointed at 0)

LrHn(X) ≡ πn−2r(Zr(X)), n ≥ 2r.

(cf. Remark 1.11 for an explanation of this indexing.)

The reader consulting the literature should be forewarned that early papers on
Lawson homology used a somewhat different (less convenient, but essentially equiv-
alent) definition. From the point of view of getting sensible algebraic invariants, it
seemed evident that one wanted to use a homotopy theoretic group completion of
Cr(X). Thus, the first formulations used Ω B Cr(X) or the group completion of the
simplicial monoid Sing.(Cr(X)). However, the underlying discrete group of Zr(X)
is precisely the group of all r-cycles on X, so that this more concrete object has
definite advantages. It was proved by Paulo Lima-Filho [Li2] and by Ofer Gabber
and the author [F-G] that the natural map Cr(X)→ Zr(X) is a homotopy theoretic
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group completion: the induced map in integral homology can be identified with the
following localization

H∗(Cr(X)) → Z[π+
0 ]⊗Z[π0] H∗(Cr(X))

where π0 = π0(Cr(X)) is the discrete abelian monoid of connected components of
Cr(X). Another reassuring property of the topological abelian groups Zr(X) is that
they are “nice” as topological spaces; namely, Zr(X) has the natural structure of
a (countable) C.W. complex (cf. [F4] ).

We shall require constructions on these topological abelian groups which re-
quire working modulo homotopy equivalences which are continuous group homo-
morphisms. We recall that this context is a familiar one in algebraic geometry.

Formalism. The category whose objects are topological abelian groups of the ho-
motopy type of C.W. complexes and whose maps are homotopy equivalence classes
of continuous group homomorphisms is equivalent to the derived category of abelian
groups D+(Ab) defined as the the triangulated category of chain complexes of abelian
groups (with differential of degree +1) which are bounded above localized with respect
to quasi-isomorphisms.

This equivalence can be realized by sending the topological abelian group Z to

the normalized chain complex Z̃ associated to the simplical abelian group Sing.(Z).

Under this correspondence, Hi(Z) is naturally isomorphic to πi(Z̃).

When working with the cycle spaces, we sometimes consider these as topological

abelian groups Zr(X) and sometimes as chain complexes Z̃r(X).
The following theorem of Blaine Lawson is the foundation for all that follows.

We recall that PN+1 can be viewed as the union of all lines from a fixed hyperplane
PN ⊂ PN+1 to a fixed point x∞ ∈ PN+1 not on the hyperplane, PN+1 = PN#x∞.
The algebraic suspension of a closed subvariety X ⊂ PN is defined to be the
subvariety ΣX ⊂ PN+1 given as the union of all lines from X to x∞, where once
again PN+1 = PN#x∞. Stated more algebraically, if the subvariety X ⊂ PN

is given by homogeneous equations Fi(T0, . . . , TN ), then Σ ⊂ PN+1 is given by
the same set of homogeneous equations now viewed as equations in the variables
T0, . . . , TN+1.

Theorem 1.4 Lawson Suspension Theorem [L1]. Let X ⊂ PN be a closed
subvariety. Then sending an irreducible subvariety Y ⊂ X of dimension r to ΣY ⊂
PN+1 determines a continuous group homomorphism

Σ : Zr(X) → Zr+1(ΣX)

which is a homotopy equivalence. In other words,

Σ : Z̃r(X) → Z̃r+1(ΣX)

is a quasi-isomorphism in D+(Ab).

Remarks. The essence of this theorem is a moving lemma. Namely, let

Cr+1,d(ΣX,X) ⊂ Cr+1,d(ΣX)
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denote the submonoid of those effective r+1-cycles on ΣX which intersect X ⊂ ΣX
properly (i.e., in pure dimension r). Then it is not difficult to see that

Σ : Cr,d(X)→ Cr+1,d(ΣX,X)

is a deformation retract. The content of the theorem is the assertion that

Cr+1,d(ΣX,X) ⊂ Cr+1(ΣX)

induces a homotopy equivalence of homtopy theoretic group completions. One can
view this as the assertion that after group completion any “bounded family” of r-
cycles on ΣX can be moved so that each member of the family meets X properly.

As Lawson observed, this theorem plus Theorem 1.1 immediately gives the fol-
lowing computation (since PN = Σr ≡ Σ ◦ · · · ◦ Σ︸ ︷︷ ︸

r times

PN−r).

Corollary 1.5. For any N ≥ r ≥ 0,

LrHn(PN ) = Hn(PN−r)

where Hn(PN−r) denotes the integral singular homology of the analytic space PN−r.

Indeed, the possibility of such a result was a major motivation of Lawson who
sought to find an analogue of Theorem 1.1 for higher dimensional cycles along the
lines of a theorem of F. Almgren which asserted that integral homology of X could
be computed as the homotopy groups of topological abelian groups of “integral
cycles” (i.e., rectifiable currents on X with trivial boundary topologized with the
flat norm topology) [A].

From the outset, we have taken a different point of view: Lawson homology
groups are often algebraic invariants which have no classical algebraic topology
representation. For example, we have the following elementary computation.

Proposition 1.6 [F1]. Let X be a projective algebraic variety. Then LrH2r(X)
equals the group of algebraic r-cycles modulo algebraic equivalence.

We now extend our consideration to quasi-projective varieties, following the lead
of Lima-Filho [Li1].

Definition 1.7. Let X ⊂ PN be a closed subvariety, let X∞ ⊂ X be a closed
embedding, and let U = X −X∞. Then we define

Zr(U) ≡ Zr(X)/Zr(X∞), LrHn(U) = πn−2r(Zr(U)).

Justification of this definition is a result of Lima-Filho that Zr(U) is independent

(i.e., the isomorphism class of S̃ing.(Zr(U))) of the choice of projective closure X
of U and of the embedding X ⊂ PN (cf. [Li1], [F-G;2.2]).

The following localization theorem (due to Lima-Filho and Friedlander-Gabber)
provides a useful computational tool.



INTERSECTION PRODUCTS FOR SPACES OF ALGEBRAIC CYCLES 5

Theorem 1.8 [Li-1], [F-G]. Let X be a projective algebraic variety with closed
subvariety X∞ ⊂ X and Let U = X −X∞. Then

Zr(X∞)→ Zr(X)→ Zr(U)

is a fibration sequence; in other words, we have the following natural distinguished
triangle in D+(Ab)

Z̃r(X∞)→ Z̃r(X)→ Z̃r(U)→ Z̃r(X∞)[1].

We next consider operations on Lawson homology introduced by the author and
Barry Mazur in [F-M1]. These operations are appropriate to discuss in a meeting
on intersection theory, for their definition is essentially intersection-theoretic.

Consider two projective spaces Pm and Pn linearly embedded in Pm+n+1 with
disjont images. Then we may view Pm+n+1 as the union of all lines from points on
Pm to ponts on Pn and we write

Pn+m+1 = Pm#Pn.

For any closed subvarieties X ⊂ Pm, Y ⊂ Pn, we define the algebraic join

X#Y ⊂ Pm#Pn = Pn+m+1

as the union of all lines from points of X to points of Y . Taking n = 0 and
Y = x∞, we obtain the algebraic suspension discussed earlier. If X is given by the
set of homogeneous equations {Fi(S0, . . . , Sm)} and Y by the set of homogeneous
equations {Gj(T0, . . . , Tn)}, then X#Y is given by the union of these two sets
of homogeneous equations viewed as functions in S0, . . . , Sm, T0, . . . , Tn. Observe
that

X#Pn = Σn+1X ⊂ Pm+n+1.

This join construction extends by linearity to a continuous bilinear pairing of topo-
logical groups

# : Zr(X)× Zs(Y ) → Zr+s(X#Y ).

Definition 1.9 [F-M1]. Let X ⊂ PN be a closed subvariety and let r > 0. We
consider the chain of continuous group homomorphisms

Zr(X)× Z0(P1)
#−→ Zr+1(X#P1)

Σ2

←− Zr−1(X), (1.9.1)

where the first is given by join of cycles and the second is two-fold algebraic sus-
pension (or join with x∞ ∈ P1). We define

h : Zr(X)→ Zr−1(X), h : Z̃r(X)→ Z̃r−1(X)

to be the map (i.e., isomorphism class of maps in D+(Ab)) obtained by restricting
the first map of (1.9.1) to Zr(X) × {x∞} and composing this restriction with the
homotopy inverse of Σ2.

Consider the map P1 → Z0(P1) given by sending a point x to x−x∞. We define

s : Zr(X)→ Ω2 Zr−1(X), s : Z̃r(X)→ Z̃r−1(X)[−2]
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as the map induced by adjunction by the composition of

Zr(X)×P1 → Zr(X)× Z0(P1)
#−→ Zr(X ×P1)

and the homotopy inverse of Σ2.

We view the operation h on Zr(X) as taking an r-cycle on X and intersecting
it with a fixed hyperplane. Indeed, this operation does “cover” the operation in
homology given by sending the homology class of a cycle (as defined below) to its
intersection with the class of a hyperplane. Thus, h evidently depends on the choice
of embedding X ⊂ PN .

What is at first disturbing is that the operation h enables us to “continuously
intersect” all r-cycles on X with a fixed hyperplane, whereas if r is less than the
dimension of X then any hyperplane contains some r-cycles of X so that h can not
possibly be represented on such cycles as the intersection with the given hyperplane.
Since the construction of h requires a choice of homotopy inverse for Σ, we see that
h is not canonically defined. Indeed, if one fixes a given hyperplane L, then a
representative for the homotopy class of h can be chosen so that on those effective
r-cycles intersecting L properly this representative takes such an effective cycle Z
to Z • L.

The operation s is more interesting. We view this geometrically as associating
to any r-cycle on X the family of r − 1-cycles on X parametrized by P1 given by
intersecting the cycle with a fixed Lefschetz pencil of hyperplanes. Once again, we
see that this can only be literally correct if we fix the pencil of hyperplanes and
consider effective cycles which intersect properly each member of the pencil.

The following proposition mentions some of the good properties of the s opera-
tion.

Proposition 1.10 [F-G], [F2]. Let X ⊂ PN be a closed subvariety and let X∞ ⊂ X
be a closed subvariety.

(a.) The s operation on Z∗(X) restricts to an operation on Z∗(X∞) and thereby
determines operations

s : Zr(U)→ ΩZr−1(U), Z̃r(U) → Z̃r−1(U)[−2].

(b.) The s operation can be represented as the composition of the map Zr(U) ×
Z0(P1) → Zr(U × P1) sending an r-cycle ζ on U and a 0-cycle τ on P1 to
ζ × τ and the map Zr(U × P1) → Zr−1(U) given by intersection with U × x∞.
In particular, s is independent of the choice of projective closure U ⊂ X and
projective embedding X ⊂ PN .

(c.) The map

sr : Zr(U)→ π0(Zr(U))→ π2r(Z0(U))

sends an algebraic equivalence class of r-cycles to its fundamental homology class
in integral Borel-Moore homology HBM

2r (U) = H2r(X,X∞).

Remark 1.11. Proposition 1.10 enables us to conclude that sr : Zr(U)→ Ωr Z0(U)
determines a natural map (independent of projective closure U ⊂ X and projective
embedding X ⊂ PN )

LrH2r+i(U) → HBM
2r+i(U).
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Using the s operation, Barry Mazur and the author introduced filtrations on
singular homology and on algebraic cycles. The “topological filtration on homology”
is defined by

TiHn(X) ≡ im{si : LiHn(X)→ Hn(X)}
and investigated in [F-M1], [F-M2]. In particular, this topological filtration was
shown to equal the “correspondence filtration” which is formulated in purely algebro-
geometric terms in terms of images of homological correspondences. The S-filtration
on cycles considered in [F4], [F5] is given by

SjZr(X) ≡ ker{sj : Zr(X)→ π0(Zr(X))→ Lr−jH2r(X)}.
This filtration can also be described in purely algebro-geometric terms in terms of
images under correspondences of cycles homologically equivalent to 0 on smaller
dimensional subvarieties. Questions about these filtrations are directly related to
the (generalized) Hodge Conjecture and Grothendieck’s standard conjectures. For
abelian varieties, the topological filtration on homology is investigated in a recent
paper by Salman Abdulali [Ab]. A recent paper of C. Peters [P] investigates the
stability of the S-filtration on cycles in certain cases.

§2 Intersection pairings

In this lecture, we discuss various aspects of the our joint paper with Ofer Gabber
[F-G]. The reader familiar with intersection theory as developed in William Fulton’s
book [Fu] will find that we are presenting some aspects of that theory in a way
that we treat all cycles of a given dimension at the same time. In particular, an
intersection pairing

Zr(U)× Zs(U)→ Zr+s−n(U), n = dim(U)

is constructed for any smooth quasi-projective variety by defining Gysin maps for
regular immersions and considering the Gysin map ∆! : Zr+s(U ×U)→ Zr+−n(U).
We also discuss another approach to intersecting spaces of cycles based on the Mov-
ing Lemma developed by the author and Blaine Lawson [FL-3]. This approach has
the advantage that it applies over an arbitrary field, providing interesting structure
to motivic cohomology (cf. [F-V]).

As usual, all varieties discussed are quasi-projective complex algebraic varieties
unless explicit mention to the contrary.

We begin with the following “homotopy invariance” property.

Proposition 2.1 [F-G;2.3]. Let E be a locally free rank e sheaf on a quasi-projective
variety U and let

π : V(E) = SpecSymOX
E∗ → U

be the associated algebraic vector bundle. Then

π∗ : Zr(U) → Zr+e(V(E))

is a homotopy equivalence, where π∗ denotes flat pull-back of cycles.

The proof of this important property is surprisingly easy. Using the localization
property (Theorem 1.8), we reduce to the case in which the bundle is trivial. We
can similarly localize the context of the Lawson suspension theorem (trivializing
the line bundle OX(1) determining ΣX), thereby obtaining the desired homotopy
equivalence.

Proposition 2.1 enables the following natural definition of the operational first
chern class of a line bundle.
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Definition 2.2. Let L be a line bundle on the quasi-projective variety U . For any
r ≥ 0, we define

c1(L) : Zr+1(U) → Zr(U)

as the composition of Zr+1(U) → Zr+1(V(L)) induced by the 0-section 0 : X →
V(L) followed by a choice of homotopy inverse for π∗ : Zr(U)→ Zr+1(V(L)).

Of course, c1(L) is only well defined up to homotopy; in other words, the iso-
morphism class of

c1(L) : Z̃r+1(X) → Z̃r(X)

is well defined in D+(Ab). Observe that c1(L) is a generalization of the h operation:
take U to be the suspension ΣW of some variety W and take L to be OU (1).

From our perspective of looking at the entire topological group of algebraic cycles
on a variety, it is natural to formulate intersection with the group of all divisors (not
simply one divisor at a time). We state such a formulation in the next theorem.
Only in the case of dvisiors (as in Theorems 2.3 and 2.4) can we successfully define
intersection product on cycle spaces of a variety which is not necessarily smooth.

Theorem 2.3 [F-G;3.1]. Let X be an irreducible projective variety. Let

Div(X) =
∐

α∈NS(X)+

Divα(X)

be the disjoint union of projective varieties whose points are effective Cartier di-
visors on X. Let Div(X)+ denote the homotopy-theoretic group completion of
Div(X), constructed as the infinite mapping telescope of the self-map given by ad-
dition with a chosen very ample divisor. Then there is a natural (in D+(Ab))
pairing

Zr+1(X)×Div(X)+ → Zr(X)

satisfying the following properties:
(a.) For any effective Cartier divisor L, c1(L) is represented by restricting this pairing

to Zr+1(X)×{L}. In particular, the homotopy class of c1(L) depends only upon
the equivalence class of L in π0Div(X)+ = NS(X), the Neron-Severi group of
X.

(b.) There is a fibration sequence

P∞ → Div(X)+ → Pic(X);

in particular, π2Div(X) = Z.
(c.) Restricting this pairing to Zr+1(X) × S2 (where S2 = P1 ⊂ P∞ ⊂ Div(X)+)

determines the s operation

Zr+1(X) ∧ S2 → Zr(X).

We next observe that c1(L) can be refined to take values in spaces of cycles on
the support of the Weil divisor associated to the Cartier divisor L. As one might
expect, we do not need to assume we are working with smooth varieties when
intersecting with (Cartier) divisors.
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Theorem 2.4 [F-G;2.5]. Let D,D′ be effective Cartier divisors on a quasi-projective
variety U with support the closed subvarieties iD : |D| → U, iD′ : |D′| → U . There
exists a Gysin map (well defined up to homotopy, or up to isomorphism in D+(Ab))
of

i!D : Zr+1(U)→ Zr(|D|), i!D : Z̃r+1(U)→ Z̃r(|D|)

satisfying the following properties:
(a.) A representative of i!D can be chosen whose restriction to effective cycles which

meet |D| properly is the usual intersection with a divisor.
(b.) The composition of i!D with the map induced by iD equals c1(O(D)) : Zr+1(U)→

Zr(U).

(c.) iD! + i!D′ = i!D+D′ : Z̃r+1(U)→ Z̃r(|D| ∪ |D′|).
(d.) i!D ◦ i!D′ = i!D′ ◦ i!D : Z̃r+1(U)→ Z̃r−1(|D| ∩ |D′|).
(e.) i!D depends naturally as a map in D+(Ab) upon the pair (U,D).

The proof of Theorem 2.4 utilizes the trivialization of V(O(−D))→ U when re-
stricted to U−|D| plus the localization sequence to construct a lifting of Zr+1(U)→
Zr+1(V(O(−D)) to Zr(|D|) ' Zr+1(V(i∗DO(−D)).

Once one has a good formulation of intersection with a divisor, one can easily
conclude the following projective bundle computation. As shown to us by Grothen-
dieck, this enables us to define Chern classes of vector bundles in this theory.

We denote by pE : P(E) = Proj(SymOU
E∗) → U the projectivization of

V(E) → U ; thus if E has rank e, then the fibres of pE are projective spaces of
dimension e− 1.

Corollary 2.5 [F-G;2.5]. Let E be a rank e vector bundle over a quasi-projective
variety U . Then the map∑

0/leqj<e

c1(OP(E)(1))j ◦ p∗E :
∏

0≤j<e

Zr+j(U)→ Zr+e−1(P(E))

is a homotopy equivalence.

Our next task is to extend the definition of the Gysin maps of Theorem 2.4 to
a regular closed embedding W ⊂ U of codimension greater than 1. As one might
expect, the construction of this Gysin map uses the technique of deformation to
the normal cone of a regular embedding.

Theorem 2.6 [F-G;3.4]. Let U be a quasi-projective variety and let iW : W → U
be a regular closed embedding of codimension c. Then there exists a Gysin map
(well defined up to homotopy)

i!W : Zr+c(U) → Zr(W )

satisfying the following properties:
(a.) A representative of i!W can be chosen whose restriction to effective r + c-cycles

Z on U which meet W properly is given by

i!W (Z) = W • Z

where − • − denotes the intersection product on the smooth variety U .
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(b.) If W is of codimension 1 in U , then i!W equals the Gysin map of Theorem 2.4.
(c.) If iV : V →W is a regular embedding of codimension c′, then

(iW ◦ iV )! = i!V ◦ i!W : Zr+c+c′(U)→ Zr(V ).

(d.) If g : U ′ → U is flat, then

i!W×XX′ ◦ g
∗ = g′∗ ◦ i!W ;

if f : X̃ → X is proper, then

i!W ◦ f∗ = f ′∗ ◦ i!W×XX′ .

If U is smooth, then the diagonal ∆ : U → U ×U is a regular closed embedding.
Thus, Theorem 2.6 immediately provides the following intersection pairing on cycle
spaces of a smooth variety.

Corollary 2.7. Let U be a smooth variety of pure dimension n. We define the
intersection product on cycle spaces (well defined up to homotopy) as the map

∆! ◦ (−×−) : Zr(U)× Zs(U)→ Zr+s(U × U)→ Zr+s−n(U)

sending a pair (ζ1, ζ2) to ∆!(ζ1×ζ2). A representative of this map can be chosen so
that it sends a pair of effective cycles (ζ1, ζ2) of dimensions r, s on U which meet
properly to their intesection product ζ1 • ζ2.

We conclude this lecture with a sketch of a different approach to intersection of
cycle spaces following joint work of the author and Blaine Lawson. Here is a for-
mulation of the Moving Lemma of [F-3]. We remind the reader that a “continuous
algebraic map” from X to Y is a morphism from the weak normalization of X to
Y .

Theorem 2.8. Let X be a projective variety of pure dimension n, let r, s, be non-
negative integers with r + s ≥ n, and let e be a positive integer. Then there exists
a Zariski open neighborhood O ⊂ A1 of 0 ∈ A1 and a continuous algebraic map

Ψ : Cs(X)×O → Cs(X)2

satisfying the following conditions:
(a.) ψ+

0 − ψ
−
0 : Cs(X)→ Zs(X) is the natural inclusion.

(b.) If Z1, Z2 are effective cycles on X of degree ≤ e of dimension r, s respectively,
then for any 0 6= t ∈ O Z1 intersects (ψ+

t − ψ−t )(Z2) properly outside of the
singular locus of X.

Here, we have denoted by ψ+
t × ψ−t the restriction of Ψ to Cs(X) × {t} for any

t ∈ O.

In other words, once one bounds the degree of the effective cycles under consider-
ation, Ψ gives a means of uniformly moving via rational moves all effective s-cycles
of degree ≤ e so that each intersects properly all effective r-cycles of degree ≤ e
outside of the singular locus of X. For X smooth, this implies that given compact
subsets R ⊂ Zr(X), S ⊂ Zs(X), we can find a rational move of all of Zs(X) which
moves each s-cycle in S to a rationally equivalent cycle meeting properly every
r-cycle in R.

In particular, we conclude that for X projective and smooth the intersection
product on homotopy groups induced by the pairing of Corollary 2.7 can be realized
more geometrically as follows.
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Corollary 2.9. Let X be projective and smooth of pure dimension n, and let r, s,
be non-negative integers with r+s ≥ n. Then the bilinear map on homotopy groups

LrHm(X)⊗ LsHp(X) → Lr+s−nHm+p−2n(X)

induced by the pairing ∆!
X ◦ (− × −) of Corollary 2.8 can be realized as follows:

represent a class α ∈ LrHm(X) by a continuous map a : Sm−2r → Zr(X) and a
class β ∈ LsHp(X) by a continuous map b : Sp−2s → Zs(X); using an appropriate
Ψ as in Theorem 2.8, move each s-cycle in the image of b so that it meets properly
each r-cycle in the image of a; then choose some 0 6= t ∈ O and take the homotopy
class of the map sending a point x ∧ y ∈ Sm+p−2r−2s = Sm−2r ∧ Sp−2s to a(x) •
(ψ=
t − ψ−t )(y) ∈ Zr+s−n(X).

The reason that Theorem 2.8 does not provide intersection of cycle spaces on a
smooth variety U which is not projective is that the moving achieved in Theorem
2.8 on a projective closure X of U might move certain effective s-cycles of degree
≤ e supported on X∞ = X − U to cycles with components meeting U . In other
words, what Theorem 2.8 does not permit us to do is move cycles on X with a
specified behaviour on X∞ ⊂ X. A different approach to moving cycles which
does permit such conditions on the moving but whoch applies in a much restricted
situation has been given by Andrei Suslin [S].

§3 Cocycles and Duality

As we saw in the last lecture, we have a suitable intersection product on cycle
spaces when our underlying quasi-projective variety is smooth. We now ask how
one might proceed for singular varieties. Although we have no “magic answers”,
we do see that cocycle spaces admit a cup product pairing without hypotheses of
smoothness. With this in mind, we can speculate how one might be able to refine
intersection products using the stratification of a variety by singular loci.

In this lecture we survey “morphic cohomology” as introduced by the author
and Blaine Lawson. As we shall see, morphic cohomology has a “join product”
which is compatible with cup product in singular cohomology. One interesting
feature of morphic cohomology is that it naturally maps (via a cap product with a
fundamental class) to Lawson homology and this map is an isomorphism for smooth
varieties. Moreover, this duality isomorphism for smooth varieties sends the join
product in morphic cohomology to the intersection product in Lawson homology.
Thus, in some sense, we may view join product in morphic homology as providing
some sort of “intersection theory” on singular varieties.

We briefly mention a possible refinement of this theory which might more fully
reflect the geometry of singular varieties. We conclude by mentioning motivic
analogues of the theory we have discussed.

As mentioned in Remark 3.6, a somewhat more sophisticated theory which we
call “topological cycle cohomology” has been developed (partly in response to a
question of Robert Lateveer following this lecture) which has particularly pleasing
properties [F6].

Definition 3.1. An algebraic s-cocycle on a variety U with values in an equidi-
mensional variety Y is a cycle ζ on U × Y each irreducible component of which
meets each {u} × Y in codimension s.

The following proposition immediately implies that such cocycles are contravari-
ant in U for U normal, covariant in Y for Y projective (with a shift in codimension).
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Proposition 3.2. [FL-1;1.5] If U is normal variety and Y is a projective variety of
pure dimension n, then the abelian monoid of effective s-cocycles on U with values
in Y can be naturally identified with the monoid of morphisms Hom(U, Cn−s(Y )).

To find a suitable topology on Hom(U, Cn−s(Y )) is somewhat subtle, for we want
the topology to be as “algebraic” as possible yet to provide invariants which have
good formal properties (cf. [F4] for a discussion of relative merits of other possible
topologies).

Definition 3.3. Assume that U is a normal variety of pure dimension m and that
Y is a projective variety of pure dimension n. Sending f : U → Cn−s(Y ) to its
graph Γf determines a natural monomorphism

Hom(U, Cn−s(Y )) → Cm+n−s(U × Y ).

We provide Hom(X, Cn−s(Y )) with the subspace topology for this embedding and
define Zs(X,Y ) to be the topological abelian group given as the the naïve group
completion of the topological abelian monoid Hom(U, Cn−s(Y )).

Similarly, if U is a normal variety of pure dimension m, then this graph con-
struction determines a natural monomorphism

Cs(U) ≡ Hom(U, C0(Ps))/Hom(U, C0(Ps−1)) → Cm(U ×Ps)/C(U ×Ps−1).

Once again, we provide Cs(U) with the subspace topology for this embedding and
define Zs(X) to be the topological abelian group given as the the naïve group com-
pletion of the topological abelian monoid Cs(U).

The following proposition assures us that these topological abelian groups are
reasonably well behaved from a topologist’s point of view.

Proposition 3.4. [F-L2,C.3; F4,1.5,1.7] Let U be a normal equidimensional vari-
ety and Y a projective equidimensional variety. The topology on Hom(U, Cn−s(Y ))
is characterizedd by the property that a sequence of maps {fi; i ∈ N} converges if
and only if both a.) the sequence converges in the compact open topology and b.)
for some Zariski locally closed embedding U × Y ⊂ PN , the graphs of the maps fi
have bounded degree. In particular, if X = U is compact, then Hom(X, Cn−s(Y ))
has the compact-open topology.

Furthermore, the topological abelian groups Zs(U, Y ) and Zs(U) admit the struc-
ture of C-W complexes and are homotopy-theoretic group completions of the topo-
logical abelian monoids Cs(U, Y ), Cs(U).

The algebraic join # : Cr,d(Y )× Cr′,d′(Y ′) → Cr+r′+1,dd′(Y#Y ′) considered in
§1 induces an external pairing on cocycles

Hom(U, Cn−s(Y ))×Hom(U ′, Cn′−s′(Y ′))→ Hom(U × U ′, Cn−s+n′−s′+1(Y#Y ′)).

Taking U equal to U ′, Y = Ps, and Y ′ = Ps′ , we obtain pairings

Zs(U)⊗ Zs
′
(U)→ [Hom(U, C1(Ps+s′+1))/Hom(U, C1(Ps+s′))]+ ' Zs+s

′
(U)

where the indicated equivalence is proven using the observation that the equivalence
Z0(Ps+s′) → Z1(Ps+s′+1) in the Lawson suspension theorem (Theorem 1.4) is
determined by retractions which are algebraic.



INTERSECTION PRODUCTS FOR SPACES OF ALGEBRAIC CYCLES 13

Definition 3.5. Let U be a normal equidimensional variety. Then the morphic
cohomology groups of U are the homotopy groups of Zs(U), denoted as follows:

LsH2s−j(U) ≡ πj(Z
s(U)).

As above, the join pairing induces an associative pairing

# : LsH2s−j(U)⊗ Ls
′
H2s′−j′(U)→ Ls+s

′
H2s+2s′−j−j′(U).

Remark 3.6. In [F6], we introduce a more sophisticated formulation of such a
cohomology theory (which we call topological cycle cohomology) which agrees with
morphic cohomology for smooth varieties. Topological cycle cohomology is defined
for all varieties. The important property that it possesses which fails for the mor-
phic cohomology of normal but not smooth varieties is excision. Topological cycle
cohomology in conjunction with Lawson homology constitute a “Poincaré duality
theory with supports” as axiomitized by S. Bloch and A. Ogus [B-O].

In Remark 1.11, we observed that there is a natural map from Lawson homology
to Borel-Moore homology. We have a similarly natural map from morphic coho-
mology to (singular) cohomology. Recall that Z0(As) has the homotopy type of the
Eilenberg-MacLane space K(Z, 2s) and thereby represents singular cohomology.

Proposition 3.7. [F-L1;6.3] Let U be a normal equidimensional variety. The
composition of natural homomorphisms of topological monoids

Hom(U, C0(Ps))→ Homcont(U,Z0(Ps))→ Homcont(U,Z0(As))

induces a continuous group homomorphism

Φ : Zs(U)→ Homcont(U,Z0(As))

whose map on homotopy groups in degree j is denoted

Φs,2s−j : LsH2s−j(U)→ H2s−j(U).

So defined, Φ∗,∗ is a ring homomorphism, where the product on morphic cohomology
is the join pairing of (3.5.) and the product on integral singular cohomology is cup
product.

As to be expected, algebraic vector bundles have chern classes with values in
morphic cohomology. Namely, if E is a rank e algebraic vector bundle on U gener-
ated by N + 1 global sections, then E determines

U → Grasse(PN )→ CN−e(PN ).

If we define the total Segre class (equal to the inverse of the total chern class) of E
to be the class of this map

s(E) ∈ π0Z
e(X,PN ) ' ⊕Ni=0L

iH2i(U).

Mark Walker and the author have recently proved the desired Whitney sum formula
for these Segre classes [F-W], sharpening the original verification of the author and
Blaine Lawson in [F-L1].

We proceed to relate cocycle spaces to cycle spaces.
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Definition 3.8. Let X be a normal variety of pure dimension m and Y a pro-
jective variety of pure dimension n. Then the duality maps are the continuous
homomorphisms

D : Zs(U, Y ) → Zm+n−s(U × Y ),

D : Zs(U) → Zm(X ×As) ' Zm−s(X).

determined by sending f : U → Cn−s(Y ) to its graph Γf

The author and Blaine Lawson prove that in the case U = X this duality map
is compatible with cap product with the fundamental homology class [X] of X in
the sense that the following square commutes

LsH2s−j(X)
D∗−−−−→ Lm−sH2m−2s+j(X)

Φ

y yΦ

H2s−j(X)
∩[X]−−−−→ H2m−2s+j(X)

A proof of this can be found in the original duality paper [F-L2], whereas a more
“geometric” proof is presented in [F-L4].

The following duality theorem was proved by Blaine Lawson and the author for
smooth projective varieties in [F-L2] and for general smooth varieties by the author
in [F-4]. The proof is an application of Theorem 2.8 which shows that a family of
cycles parametrized by a sphere or the product of a sphere and an interval can be
moved to a new family consisting of cocycles (i.e, each member of the new family
intersects properly each fibre of the projection X × Y → X).

Theorem 3.9. Let U be a smooth variety of dimension m and let Y be a smooth
projective variety of dimension n. Then the duality maps

D : Zs(U, Y ) → Zm+n−s(U × Y ),

D : Zs(U) → Zm(X ×As) ' Zm−s(X)

are homotopy equivalences, inducing isomorphisms from morphic cohomology to
Lawson homology groups

LsH2s−j(U, Y ) ' L2m+2n−2s+j(U × Y )

LsH2s−j(U) ' L2m−2s+j(U).

To complete the compatibility picture of join product in morphic cohomology
and intersection product in Lawson homology, we state the following (whose proof
should also ppear in [F-W]).

Proposition 3.10. If U is a smooth connected variety of dimension m, then the
follow square of topological abelian groups commutes up to homotopy for any s, t
with s+ t ≤ m:

Zs(U)× Zt(U)
#−−−−→ Zs+t(U)

D
y yD

Zm−s(U)× Zm−t(U)
•−−−−→ Zm−s−t(U).
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Let us briefly speculate how one might find intermediate theories analogous to
intersection homology groups in our context. A different approach by Pawel Gajer
can be found in [G]. Our idea is to relax the condition on a cocycle on X with
values in Y that it meet each fibre {x} × Y properly. Of course, if we impose no
condition on this intersection, we get arbitrary cycles which determine our (Lawson)
homology theory.

Challenge. Define a “middle perversity Lawson homology theory” for normal va-
rieties X for which there is an intersection pairing.

For example, one might try to proceed as follows. Let X be a normal variety of
dimension m and let

X ⊃ X(1) ⊃ X(2) ⊃ · · ·
be a stratification of X with X(i)−X(i+1) smooth of codimension i in X. Consider
the subgroup

P s(X) ⊂ Z2m−s(X ×Am)

consisting of (2m − s)-cycles ζ on X × Am with the property that |ζ| ∩ (X(i) ×
Am) ⊂ X(i) ×Am has codimension greater or equal to s+ i/2, where |ζ| denotes
the support of the cycle ζ. The challenge is to provide a singular moving lemma
which would enable us to define a pairing from P s(X)× P t(X) to P s+t(X).

We conclude our lectures by mentioning that the constructions we have presented
have “motivic” analogues. For these analogues, the role of algebraic equivalence of
cycles is replaced by rational equivalence. One important feature of these analogues
is that they can be formulated for varieties over an arbitrary field k.

Once one is familiar with Lawson homology and morphic cohomology, then the
“näive” motivic versions are not difficult to formulate. We utilize Chow varieties as
before. Rather than impose the analytic topology and view cycle spaces as topo-
logical abelian groups, we consider the “Suslin complex” of the algebraically de-
fined monoid of effective cycles and group complete the resulting simplicial abelian
monoid. This approach was briefly mentioned by Ofer Gabber and the author in
[F-G], then taken somewhat more seriously in [F2]. For example, a näive formu-
lation of motivic cohomology H∗(U,Z(s)) of a normal variety U over a field k is
given as the cohomology of the chain complexes associated to the simplicial abelian
groups

As(U) = [
Hom(∆• × U, C0(Ps))

Hom(∆• × U, C0(Ps−1))
]+

where ∆• = {n 7→ ∆n} is the cosimplicial variety with ∆n = Spec k[x0, . . . , xn]/Σxi =
1.

The reader interested in such constructions is invited to consult [F-V] where
Vladimir Voevodsky and the author formulate motivic homology and cohomology
using this point of view and prove a duality theorem analogous to Theorem 3.9.
The usefulness of this latter duality theorem can be seen by the proof given in [F-V]
that for smooth varieties motivic cohomology groups are isomorphic to the higher
Chow groups of Spencer Bloch.

To prove various properties of motivic cohomology and homology, one needs to
follow the sophisticated point of view of Andrei Suslin and Vladimir Voevodsky (cf.
[F7]). The reader somewhat familiar with the constructions in these notes might
find that [F6] serves as an introduction to some of the derived category formalism
used by Suslin and Voevodsky.
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