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In recent years, there has been a renewed interest in obtaining invariants for an al-
gebraic variety X using the Chow monoid Cr(X) of effective r-cycles on X. This began
with the fundamental paper of Blaine Lawson [L] which introduced in the context of
complex projective algebraic varieties the study of the homotopy groups of the group com-
pletion Zr(X) of Cr(X). The resultant Lawson homology has numerous good properties,
most notably that reflected in the “Lawson suspension theorem.” An algebraic version of
Lawson’s analytic approach was developed by the author in [F], permitting a study of pro-
jective varieties over arbitrary algebraically closed fields. Subsequent work has focussed on
complex varieties: the author and Barry Mazur introduced operations in Lawson homol-
ogy which led to interesting filtrations in (singular) homology [F-Mazur]; the author and
Blaine Lawson introduced a bivariant theory with the purpose of constructing a cohomol-
ogy theory associated to cycle spaces [F-Lawson]; Paulo Lima-Filho [Lima-Filho] (see also
[F-Gabber]) extended Lawson homology to quasi-projective varieties; and the author and
Ofer Gabber established an intersection theory in Lawson homology [F-Gabber]. A related
theory, the “algebraic bivariant cycle complex” introduced in [F-Gabber], is applicable to
quasi-projective varieties over an arbitrary field and bears some resemblance to certain
candidates for motivic cohomology.

In this paper, we return to the study of filtrations for complex projective algebraic
varieties begun in [F-Mazur]. We consider the filtration on algebraic cycles given by kernels
of iterates of an operation (the so-called s-operation) in Lawson homology introduced in
[F-Mazur]. Theorem 3.2 gives an alternate description of this “S-filtration” in terms of
correspondences. We also consider the “topological filtration” on homology given by images
of iterates of the s-operation. For example, Proposition 4.2 demonstrates that the equality
of this filtration with a geometric filtration considered by A. Grothendieck is implied by
one of Grothendieck’s “Standard Conjectures”, Grothendieck’s Conjecture B.

In order to pursue our analysis of these filtrations, we begin in section 1 with a detailed
investigation of alternate formulations of the s-operation. This discussion relies heavily on
the foundational work of [F-Gabber]. We continue this analysis in section 2 with the in-
troduction of a “graph mapping” on cycles associated to a “Chow correspondence”. The
application of this mapping in later sections as well as its occurence in [F-Mazur2] sug-
gests that this construction codifies a fundamental aspect of the functoriality of algebraic
cycles. We anticipate that these somewhat foundational sections will prove useful in future
developments of Lawson homology.
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Section 3 compares the S-filtration on cycles to filtrations considered by Madhav Nori
in [Nori] and by Spencer Bloch and Arthur Ogus in [Bloch-Ogus]. The S-filtration is
subordinate to the Bloch-Ogus filtration and dominates Nori’s filtration. In fact, we show
that the S-filtration has a description in terms of correspondences exactly parallel to that
of Nori’s, except that our correspondences are permitted to have singular domain.

In [F-Mazur], the topological filtration associated to images of the s-operation was
introduced, shown to be subordinate to Grothendieck’s geometric filtration (for smooth
projective varieites), and equality of these filtrations was conjectured. In section 4, we
reconsider this conjecture. In particular, we present a proof of an unpublished result of
R. Hain [Hain] asserting the equality of these filtrations for “sufficiently general” abelian
varieties. Our proof, somewhat different from Hain’s original proof, fits in the general
context of a study of the inverse of the Lefschetz operator whose algebraicity is the content
of Grothendieck’s Conjecture B.

We conclude this paper by presenting in section 5 a spectral sequence which codifies
the relationship between algebraic cycles and homology as seen from the point of view of
iterates of the s-operation. In particular, both the S-filtration on cycles and the topological
filtration on homology appear in this spectral sequence.

Thoughout this paper, we restrict our attention to complex, quasi-projective algebraic
varieties.

This work is an outgrowth of numerous discussions. The influence of Ofer Gabber is
evident throughout. The example of abelian varieties is due to Dick Hain. Most impor-
tantly, our understanding of operations and filtrations evolved through many discussions
with Barry Mazur. We gratefully thank the interest and support of each of these friends.

1. The s-operation revisited

In this section, we recall the s-operation in Lawson homology introduced in [F-Mazur]
and further considered in [F-Gabber]. As in the latter paper, we view this operation as
the map in homology associated to the “s-map”, a map in the derived category of chain
complexes of abelian groups. The central result of this section is Theorem 1.3 which
establishes three alternate formulations of this operation. We point out in Proposition 1.6
that the cycle map is factorized by the s-operation not just for projective varieties but also
for quasi-projective varieties. Proposition 1.7 verifies expected naturality properties of our
s-operation.

We begin by recalling the cycle spaces Zr(U) and cycle complexes Z̃r(U) of r-cycles on
a quasi-projective variety U . The independence of Zr(U), Z̃r(U) of the choice of projective
closure U ⊂ X ⊂ PN is verified in [Lima-Filho] and also [F-Gabber].

Definition 1.1. Let X be a complex projective variety and r a non-negative integer. The
Chow monoid Cr(X) is the disjoint union of the Chow varieties Cr,d(X) of effective r-cycles
on X of degree d for some non-negative integer d. The cycle space Zr(X) is defined to be
the topological abelian group given as the group completion of the abelian monoid Cr(X)
provided with the quotient topology associated to the surjective map Cr(X)2 → Zr(X),
where Cr(X)2 is given the analytic topology. If Y ⊂ X is a closed subvariety, we define

Zr(U) ≡ Zr(X)/Zr(Y ) , U = X − Y.
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The normalized chain complex of the simplicial abelian group Sing.(Zr(U)) of singular
chains on the topological group Zr(U) will be denoted by Z̃r(U). Finally, we define the
Lawson homology groups of U to be

LrHn(U) ≡ πn−2r(Zr(U)) ' Hn−2r(Z̃r(U)).

The above definition of Lawson homology groups is that given in [F-Gabber]. In [F],
Lawson homology groups were defined for complex projective varieties as the homotopy
groups of the homotopy theoretic group completion ΩBCr(X) of the Chow monoid Cr(X)
viewed as a topological monoid. This was shown in [Lima-Filho], [F-Gabber] to be naturally
homotopy equivalent to Zr(X). In [F-Mazur], the Lawson homology groups were viewed
(using [F;2.6]) as the homotopy groups of the direct limit LimSing.Cr(X) of copies of the
simplicial abelian monoid Sing.Cr(X) of singular simplices of the Chow monoid, where the
direct limit is indexed by a “base system” associated to πO(Cr(X)). We shall frequently
reference [F], [F-Mazur] for properties of Zr(X), Z̃r(X) which have been proved in [F],
[F-Mazur] for either ΩBCr(X) or LimSing.Cr(X).

The localization theorem of [Lima-Filho], [F-Gabber] asserts that

Z̃r(Y )→ Z̃r(X)→ Z̃r(U)

is a distinguished triangle whenever Y is a closed subvariety of X with complement U =
X − Y . In other words, the short exact sequence of topological abelian groups Zr(Y ) →
Zr(X)→ Zr(X)/Zr(Y ) yields a long exact seqeunce in homotopy groups.

In [F-Mazur], operations were introduced on the Lawson homology groups using the
geometric construction of the “join” of two cycles. Namely, if V ⊂ PM and W ⊂ PN are
closed subvarieties of disjoint projective spaces, then we may view PM+N+1 as consisting
of all points on (projective) lines from points on PM to points on PN and we define the
join V #W ⊂ PM+N+1 to be the subvariety of those points lying on lines between points
of V and points of W . The initial formulation of the operations for a projective variety
X was in terms of the join pairings of effective algebraic cycles Cr,d(X) × Cj,e(Pt) →
Cr+j+1,de(X#Pt) inducing

Zr(X)× Zj(Pt)→ Zr+j+1(X#Pt) ' Zr−t+j(X) , r − t + j ≥ 0

where the right-hand equivalence is that given by the Lawson suspension theorem. In
particular, the s-operation was defined to be the map in homotopy groups obtained from
the induced pairing on homotopy groups

πn−2r(Zr(X))⊗ π2(Z0(P1))→ πn−2r+2(Zr−1(X)) , r > 0

by restricting to the canonical generator of π2(Z0(P1)):

s : LrHn(X)→ Lr−1Hn(X).
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Mapping P1 to Z0(P1) by sending a point p ∈ P1 to p− {∞}, we obtain an “s-map”

Zr(X) ∧P1 → Zr−1(X)

well defined up to homotopy which determines the s-operation.
Observe that Z0(P1)deg0 is quasi-isomorphic to Z[2], the chain complex whose only

non-zero term is a Z in in degree 2. Consequently, the above map P1 → Z0(P1)deg0 ⊂
Z0(P1) determines a map in the derived category Z[2]→ Z0(P1) which depends only upon
the choice of quasi-isomorphism Z[2] ' Z0(P1)deg0. Thus, with somewhat more precision,
we may view the s-map as a map (well defined in the derived category)

s : Z̃r(X)[2] = Z̃r(X)⊗ Z[2]→ Z̃r−1(X)

obtained by restricting the join pairing

Z̃r(X)⊗ Z̃0(P1)→ Z̃r+1(X#P1) ' Z̃r−1(X)

via Z[2]→ Z0(P1).
The naturality of this construction permits one to extend the definition of the s-

operation to the Lawson homology of quasi-projective varieties. Namely, if Y ⊂ X is a
closed subvariety of the projective variety X, then the join operation determines pairings

Zr(X)/Zr(Y )× Zj(Pt)→ Zr+j+1(X#Pt)/Zr+j+1(Y #Pt).

So defined, the s-map determines a map of distinguished triangles

Z̃r(Y )[2] → Z̃r(X)[2] → Z̃r(U)[2]y y y
Z̃r−1(Y ) → Z̃r−1(X) → Z̃r−1(U)

Proposition 1.2 If X is connected and smooth of dimension n > 0, then H2(Z̃n−1(X)) is
naturally isomorphic to Z with canonical generator determined by any pencil of divisors
coming from a 2-dimensional space of sections of a line bundle on some smooth projective
closure of X. Similarly, if X is an irreducible, projective variety of dimension n > 0,
then π2(Div(X)+) is naturally isomorphic to Z, where Div(X)+ denotes the homotopy
theoretic group completion of the abelian topological monoid of effective Cartier divisors.

Consequently, a choice of quasi-isomorphism Z[2] ' Z0(P1)deg0 determines a natural
map Z[2]→ Z̃n−1(X) which induces an isomorphism in H2 in the first case. In the second
case, there is a natural homotopy class of maps P1 → Div(X)+ inducing an isomorphism
in π2 which is independent of the choice of pencil of divisiors.

Proof. Assume X is connected and smooth of dimension n > 0. We choose a projective
closure X ⊂ X ⊂ PN such that X is smooth. Since Zn−1(Y ) is discrete where Y = X−X,
we conclude that Zn−1(X)→ Zn−1(X) induces an isomorphism

H2(Zn−1(X)) ' π2(Zn−1(X))→ π2(Zn−1(X)) ' H2(Zn−1(X)).
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By [F;4.5], if L is any line bundle on X and P1 ⊂ Proj(Γ(L)) is any pencil of divisors,
then

P1 → Proj(Γ(L))→ Zn−1(X)

determines a quasi-isomorphism Z ' π2(Zn−1(X)). We conclude that

Z[2] ' Z̃0(P1)deg0 → Z̃n−1(X)→ Z̃n−1(X)

induces an isomorphism in H2; as a map in the derived category, this map is independent
of the choice of pencil of divisors.

If X projective and irreducible, the proof of [F;4.5] shows that Div(X)+ fits in a
fibration sequence

P∞ → Div(X)+ → Pic(X)

so that π2(Div(X)+) ' Z. Once again, the generator of π2(Div(X)+) ' π2(P∞) is
determined by any pencil of divisors.

In the following theorem, we present other formulations of the s-map involving inter-
section products introduced in [F-Gabber]. As remarked in [F-Gabber], these alternate
formulations establish the non-obvious property that s : Z̃r(X)[2] → Z̃r−1(X) (as a map
in the derived category) is independent of the projective embedding of X. We gratefully
thank O. Gabber for suggesting the proof of 1.3.b) presented below, a simplification of our
original proof.

Theorem 1.3. Let X be a complex, quasi-projective variety and r a postive integer.
a.) The s-map equals (in the derived category) the map defined by restricting the following
pairing

i!X ◦ × : Z̃r(X)⊗ Z̃0(P1)→ Z̃r−1(X)

to Z̃0(P1)deg0 ' Z, where iX : X ⊂ X ×P1 embeds X as the divisor X ×∞, where i!X is
the Gysin map associated to this divisor, and where × : Zr(X) × Z0(P1) → Zr(X × P1)
sends (Z,p) to Z × {p}. In particular, as a map in the derived category, the s-map is
independent of choice of projective closure X ⊂ X and of projective embedding X ⊂ Pn.
b.) If X is connected and smooth of dimension n > 0, then the s-map equals (in the
derived category) the restriction of the intersection pairing

Z̃r(X)⊗ Z̃n−1(X)→ Z̃r−1(X)

via the map Z[2]→ Z̃n−1(X)) of (1.2).
c.) If X is an irreducible, projective variety of dimension n > 0, then the homotopy class
of the s-map is determined by the restriction of the intersection pairing

Zr(X)) ∧Div(X)+ → Zr(X)

via the map P1 → Div(X)+ of (1.2).

Proof. For X projective, the equality of the s-operation with i!X ◦ ω̃ is proved in [F-
Gabber;2.6], which immediately implies for X projective that the s-map is independent
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of projective embedding. The proof given applies equally well to X quasi-projective, once
one replaces cycles spaces Z∗(X) by the appropriate quotient spaces Z∗(X)/Z∗(Y ), where
X ⊂ X is a projective closure with complement Y . Moreover, the proof that Z̃r(X) is
independent of a choice of compactification X ⊂ X (up to natural isomorphism in the
derived category) is achieved by dominating any two compactifications by a third; the
naturality of i!

X
◦ × easily enables one to extend this argument to show that the s-map is

likewise independent of a choice of compactification.
To prove b.), we consider the following diagram

Z̃r(X)⊗ Z̃0(P1) ×→ Z̃r(X ×P1) i!→ Z̃r−1(X)yi∗ × 1
y(i× 1)∗

yi∗

Z̃r(X ×P1)⊗ Z̃0(P1) ×→ Z̃r((X ×P1)×P1)
δ!
P→ Z̃r−1(X ×P1)y1× pr∗

2

y(1× pr2)∗
y=

Z̃r(X ×P1)⊗ Z̃n(X ×P1) ×→ Z̃n+r((X ×P1)× (X ×P1))
∆!

X×P→ Z̃r−1(X ×P1)x1× pr∗
1

x(1× pr1)∗
x=

Z̃r(X ×P1)⊗ Z̃n−1(X) ×→ Z̃n+r−1((X ×P1)×X)
δ!

X→ Z̃r−1(X ×P1)xi∗ × 1
x(i× 1)∗

xi∗

Z̃r(X)⊗ Z̃n−1(X) ×→ Z̃n+r−1(X ×X)
∆!

X→ Z̃r−1(X)

Since i∗ : Zr(X) → Zr(X ×P1) admits a right inverse (namely, pr1∗), we conclude using
the naturality of the isomorphism H2(Z̃n−1(X)) that it suffices to verify the commutativity
of this diagram (in the derived category). The commutativity of the left squares follow
from the naturality of the push-forward (for proper maps) and pull-back (for flat maps)
functoriality of Z̃r(X). The commutativity of the top and bottom right squares follows
from [F-Gabber;3.4.d] applied to the proper maps δP : X × P1 → X × P1 × P1 and
∆X : X → X × X. Finally, the commutativity of the middle right squares follows from
[F-Gabber;3.4.d] applied to the flat maps 1× pr2 : (X ×P1)× (X ×P1)→ X ×P1 ×P1

and 1× pr1 : (X ×P1)× (X ×P1)→ X ×P1 ×X.
Part c.) is proved in [F-Gabber;3.1]

The first part of the following corollary is a consequence of (1.3.b), the second of
[F;3.5]

Corollary 1.4. Let Cr,≤d(X) denote the submonoid of Cr(X) of effective r-cycles on X of
degree ≤ d with respect to some locally closed embedding X ⊂ PN .

a.) Assume X is smooth and connected of dimension n > 0. If P1 ' P ⊂
Proj(Γ(X, O(e)) is a sufficiently general pencil of effective divisors of degree e >> d
with chosen base point E ∈ P , then

Cr,≤d(X) ∧ P → Zr−1(X)
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sending (Z, D) to Z ·D−Z ·E is homotopic to the restriction of the s-map via Cr,≤d(X) ⊂
Zr−1(X).

b.) Assume X is projective of dimension n > 0. Then for any d > 0 and all e >> d,
there exists a continuous algebraic map

Cr,≤d(X)×P1 → Cr−1,≤de(X)

which fits in a homotopy commutative diagram

Cr,≤d(X)×P1 → Cr−1,≤de(X)y y
Zr(X) ∧ Z0(P1) s→ Zr−1(X) e→ Zr−1(X)

whose vertical arrows are induced by the natural inclusions.

Proof. A proof that the generic divisor of degree e >> 0 meets every cycle of Cr,≤d(X)
properly is given in [Lawson;5.11]. Consequently, a.) follows from Theorem 1.3.b and [F-
Gabber;3.5.a] (which asserts that the restriction of the intersection pairing to cycles which
intersect properly is homotopic to the ususal intersection product).

As defined in [F-Mazur] (for X projective), the s-map is induced by the composition
Zr(X) × P1 → Zr+1(X#P1) → Zr−1(X). By its very definition, the first map when re-
stricted to Cr,d(X) is given by a continuous algebraic map Cr,d(X)×P1 → Cr+1,d(X#P1).
As shown in [F;3.5] for any projective variety Y , every sufficiently large multiple M of the
inverse of the Lawson suspension isomorphism π∗(Zs(Y ))→ π∗(Zs+1(ΣY )) when restricted
to Cs+1,d(ΣY ) is represented by a continuous algebraic map Cs+1,d(ΣY ) → Cs,dM (Y ) in
the sense that when composed with the inclusion Cs,dM (Y )→ Zs(Y ) the map is homotopic
to the restriction to Cs+1,d(ΣY ) of M · Σ−1 : Zs+1(X) → Zs(X) → Zs(X). This implies
the second assertion of the corollary.

In each of the maps of Corollary 1.5 below, one obtains sj by additively extending
the domain of the indicated composition from Zr(X) × P to Zr(X) × Z0(P ) and then
restricting to the appropriate factor of the Eilenberg-MacLane space Z0(P ).

Corollary 1.5. Let X be a complex, quasi-projective variety of positive dimension and
let r ≥ j > 0. Then the s-map is induced by each of the following compositions:
i.) Zr(X)× (P1)×j → Zr(X × (P1)×j)→ Zr−j(X).
ii.) Zr(X)×Pj → Zr(X ×Pj)→ Zr−j(X).
iii.) Zr(X)×Pj → Zr+1(X#Pj)→ Zr−j(X) provided that X is projective.
iv.) Zr(X)× (P1)×j → Zr+j(X#(P1)#j)→ Zr−j(X) provided that X is projective.

In i.) and ii.), the left maps are given by product and the right maps are Gysin maps
for the appropriate regular immersion; in iii.) and iv.), the left maps are given by the
algebraic join and the right maps by the Lawson suspension theorem.

Proof. The fact that sj is given by iv.) follows directly from its (original) definition of
the s-map in terms of the join pairing and the inverse of Lawson suspension. That i.) also
determines sj follows from (1.3.a.).
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To prove ii.), we proceed as follows. Let P ⊂ Pj × (P1)×j be the closure of the
graph of the birational map relating Pj to (P1)×j . We employ the following diagram,
commutative in the derived category, to equate the maps given by i.) and ii.):

Z̃r(X)⊗ Z̃0((P1)×j) → Z̃r(X × (P1)×j) → Z̃r−j(X)x x x
Z̃r(X)⊗ Z̃0(P ) → Z̃r(X × P ) → Z̃r−j(X)y y y
Z̃r(X)⊗ Z̃0(Pj) → Z̃r(X ×Pj) → Z̃r−j(X)

Finally, we show that iii.) also determines the s-map. Iterating the argument of
[F-Gabber;2.6] j times, we see that the composition of the maps

Z̃r(X)⊗ Z̃0((P1)×j)→ Z̃r(X × (P1)×j)→ Z̃r−i(X × (P1)×j−i)→ Z̃r−i(X)

is trivial for i < j when restricted to Z̃r(X) ⊗ Z̃0((P1)deg0)⊗j . Using common blow-ups
Pi → (P1)×j−i, Pi → Pj−i as for ii.), we conclude that the composition

Z̃r(X)⊗ Z̃0(Pj)→ Z̃r(X ×Pj)→ Z̃r−i(X ×Pj−i)→ Z̃r−i(X)

is also trivial for i < j when restricted to the summand of Z̃r(X) ⊗ Z̃0(Pj) given by the
natural splitting of the projection Z̃r(X)⊗ Z̃0(Pj)→ Z̃r(X)⊗ Z̃0(Pj)/Z̃0(Pj−1). In other
words, if we abuse notation and denote this summand by Z̃r(X)⊗ Z̃0(Pj)/Z̃0(Pj−1), then
we conclude that Z̃r(X)×Z̃0(Pj)/Z̃0(Pj−1)→ Z̃r(X×Pj) is homotopic to its composition
with pr∗

1 ◦ i! : Z̃r(X×Pj)→ Z̃r−j(X)→ Z̃r(X×Pj). Now consider the following diagram

Zr(X)× Z0(Pj)
#→ Zr+1(X#Pj) Σj+1

← Zr−j(X)

×
y xp∗

Zr(X ×Pj) π∗
→ Zr+1(W )

i!
yxpr∗

1

Zr−j(X)

where X ⊂ PN is a projective embedding and W is the closed subset of X×Pj ×PN+j+1

consisting of triples (x, y, z) with z lying on the line from x to y. The maps π : W → X×Pj

and p : W → X#Pj ⊂ PN+j+1 are the projections; the square is easily seen to commute.
We easily verify that

p∗ ◦ π∗ ◦ pr∗
1 = Σj+1 : Zr−j(X)→ Zr+1(X#Pj).

This, together with the preceding verification, implies the equality of the compositions in
ii.) and iii.) when restricted to Z̃r(X)× Z̃0(Pj)/Z̃0(Pj−1).
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One important property of the s-map is that it factors the cycle map to homology. For
X projective, this is one of the basic properties proved in [F-Mazur]; for X quasi-projective,
this is a conseqeunce of naturality as we make explicit in the following proposition.

Proposition 1.6. Let X be a quasi-projective variety. Then the cycle map

γ : Zr(X)→ HBM
2r (X)

sending an algebraic r-cycle Z to its class γ(Z) in the 2r-th Borel-Moore homology group
of X is given by the following composition

Zr(X)→ π0(Zr(X))→ π2r(Z0(X)) ' HBM
2r (X)

induced by the adjoint Zr(X)→ Ω2rZ0(X) of sr : Zr(X) ∧ (P1)∧r → Z0(X).

Proof. Let X ⊂ X be a projective closure with complement Y . Then X/Y is a one-
point compactification of X and Z0(X)/Z0(Y ) ' Z0(X/Y )/Z0({∞}). Consequently, the
Dold-Thom theorem applied to X/Y implies the natural isomorphisms

π0(Ω2rZ0(X)) ' π2r(Z0(X)) ' π̃2r(Z0(X/Y )) ' H̃2r(X/Y ) ' HBM
2r (X).

Thus, the proposition follows from the commutative square

Zr(X) ∧ (P1)∧r sr

→ Z0(X)y y
Zr(X) ∧ (P1)∧r sr

→ Z0(X)

and the surjectivity of Zr(X)→ Zr(X).

We conclude this section by verifying some basic naturality properties of the s-map.

Proposition 1.7. Let X be a quasi-projective complex variety and r a positive integer.
a.) If f : X → Y is a proper map of varieties, then the following square commutes (in the
derived category):

Z̃r(X) s→ Z̃r−1(X)[−2]

f∗

y yf∗

Z̃r(Y ) s→ Z̃r−1(Y )[−2]

b.) If g : X ′ → X is a flat map of varieties of pure relative dimension c, then the following
square commutes (in the derived category):

Z̃r(X) s→ Z̃r−1(X)[−2]

g∗
y yg∗

Z̃r+c(X ′) s→ Z̃r+c−1(X ′)[−2]
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c.) If X is smooth of pure dimension n and if r′ is a positive integer with r + r′ > n, then
the following square commutes (in the derived category):

Z̃r(X)⊗ Z̃r′(X) 1⊗s→ Z̃r(X)⊗ Z̃r′−1(X)

•
y y•

Z̃r+r′−n(X) s→ Z̃r+r′−n−1(X)

where • denotes the intersection product of [F-Gabber].

Proof. To prove (a.), it suffices to observe that f∗ induces a commutative diagram of
cycle spaces

Zr(X)× Z0(P1) → Zr(X ×P1) ← Zr−1(X)

f∗ × 1
y (f × 1)∗

y yf∗

Zr(Y )× Z0(P1) → Zr(Y ×P1) ← Zr−1(Y )

.

The proof of (b.) is similar. By [F-Gabber;3.5], the diagram

Z̃r(X)⊗ Z̃r′(X)⊗ Z̃n−1(X) 1×•→ Z̃r(X)⊗ Z̃r′−1(X)

• ⊗ 1
y y•

Z̃r+r′−n(X)⊗ Z̃n−1(X) •→ Z̃r+r′−n−1(X)

commutes in the derived category. Thus, (c.) follows by applying Theorem 1.3.b).

2. Graph mappings associated to Chow correspondences

A “Chow correspondence” from Y to X of relative dimension r is a continuous alge-
braic map f : Y → Cr(X). Such a map determines a cycle Zf on Y ×X equidimensional
over Y of relative dimension r (cf. [F-Mazur2] for an extensive discussion). In this section,
we investigate the “graph mapping”

Γf : Zk(Y )→ Zr+k(X)

induced by a Chow correspondencef : Y → Cr(X). The key ingredient in the definition of
Γf is the “trace map”

tr : Ck(Cr(X))→ Cr+k(X)

introduced in [F-Lawson;7.1]. This is defined to send an irreducible subvariety W ⊂ Cr(X)
of dimension k to prX∗(ZW ), where ZW is the cycle on W ×X given as the correspondence
equidimensional over W associated to the inclusion morphism W ⊂ Cr(X). We also
consider composition of Chow correspondences, associating to continuous algebraic maps
f : Y → Cr(X), g : X → Cs(T ) a continuous algebraic map g · f : Y → Cr+s(T ).

In more detail, the section begins with a definition of the graph mapping and presents
an intersection-theoretic interpretation for smooth varieties. This interpretation encom-
passes intersection with correspondences not necessarily equidimensional over their do-
main. The result of most interest in this section is Theorem 2.4, a corollary of which
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exhibits for a given cycle a cycle which is algebraically equivalent to a multiple of the
original cycle and which is equidimensional over a projective space. The section ends with
a verification that the graph mapping construction commutes with compositions.

Definition 2.1. Let Y , X be projective algebraic varieties and let f : Y → Cr(X) be a
Chow correspondence. We define the graph mapping associated to f

Γf : Zk(Y )→ Zr+k(X)

to be the group completion of the composition

tr ◦ f∗ : Ck(Y )→ Ck(Cr(X))→ Cr+k(X)

where f∗ is the map functorially induced by f (cf. [F;2.9]) and where tr is the trace map
of [F-Lawson;7.1] described above.

Let Vf ⊂ X denote prX∗(| Zf |), the projection to X of the support of Zf on Y ×X,
the cycle associated to f . Then tr ◦ f∗ factors through a map

(tr ◦ f∗)̃ : Cr(Y )→ Cr+k(Vf )

whose group completion
Γ̃f : Zk(Y )→ Zr+k(Vf )

we call the refined graph mapping.

An explicit description of Γf (W ) for W irreducible of dimension k on Y is as follows.
Let ω denote the generic point of W . If f(ω) has dimension < k as a scheme-theoretic
point of Cr(X), then Γf (W ) = 0. Otherwise, let

∑
Ai denote the cycle with Chow point

f(ω), where each irreducible Ai is a subvariety of Xk(f(ω)). If the generic point of Ai maps
to a scheme-theoretic point of X of dimension k + r, let Bi denote the closure of this point
in X; otherwise, take Bi to be empty. Then Γf (W ) =

∑
Bi. Using this description, we

immediately conclude that

Γf (W ) = prX∗(Zf◦i) = Γf◦i(W ) (2.1.1)

where i : W → Y is the closed immersion of W in Y .
Our first proposition concerning Γf provides an intersection-theoretic interpretation

in the special case in which both Y and X are smooth.
We are much indebted to Ofer Gabber for pointing out an error in an earlier version

of the second assertion of Proposition 2.2 and guiding us to the following formulation.

Proposition 2.2. Consider a Chow correspondence f : Y → Cr(X) with both X and Y
projective and smooth. The graph mapping

Γf : Zk(Y )→ Zr+k(X)

11



sends an irreducible subvariety W of dimension k on Y to

Γf (W ) = prX∗(pr∗
Y (W ) · Zf ),

where Zf is the cycle on Y ×X associated to f and where pr∗
Y (W ) ·Zf denotes intersection

of cycles (meeting properly) on the smooth variety Y ×X.
Conversely, consider some m + r-cycle Z on Y ×X, where m denotes the dimension

of Y . There exist smooth projective varieties Yi of dimension m − ci, maps gi : Yi → Y ,
and Chow correspondences fi : Yi → Cr+ci(X) such that for any irreducible subvariety W
of Y of dimension k ∑

Γfi(Wi) , prX∗(pr∗
Y (W ) · Z)

are rationally equivalent, where Wi = g!
i(W ) is a (k−ci)-cycle on Yi representing the Gysin

pullback of W .

Proof. Let i : W ⊂ Y be an irreducible subvariety of dimension k and let j : V → Y
be a (Zariski) open immersion with the property that i′ : T ≡ W ∩ V → V is a regular
immersion. Since Γf (W ) = prX∗(Zf◦i), to prove the first assertion it suffices to prove that
Zf◦j◦i′ (which equals the restriction of Zf◦i to T ×X ⊂W ×X) equals pr∗

V (T ) ·Zf◦j . The
Gysin pullback (i′×1)!(Zf◦j) equals (essentially by definition) the intersection pr∗

V (T )·Zf◦j .
Thus, the equality Γf (W ) = prX∗(pr∗

Y (W ) · Zf ) follows from the fact that

Zf◦j◦i′ = (i′ × 1)!(Zf◦j)

(cf. [F-Mazur;3.1]).
To prove the converse, we immediately reduce to the case that Z is irreducible, so

that pr1 : Z → Y has image some subvariety V ⊂ Y of dimension m− c. Then Z → V is
generically of relative dimension r + c, thereby determining a rational map gV : V −− >
Cr+c(X). Let V ′ ⊂ V ×Cr+c(X) be the graph of this rational map; thus, V ′ is the closure
of the graph of a morphism gU : U → Cr+c(X) with domain some dense open subset
of V . Let g : Y ′ → Y denote the composition of some smooth resolution h : Y ′ → V ′

(i.e., a proper, birational map with Y ′ smooth) and the projection pr1 : V ′ → V and let
f ′ : Y ′ → Cr+c(X) denote the composition pr2 ◦ h. If U ′ ⊂ Y ′ is an open subset lying in
V ′, then Zf ′ restricted to U ′ × X maps via g × 1 isomorphically onto some dense open
subset of Z, so that (g × 1)∗(Zf ′) = Z.

By the first half of the proposition,

Γf ′(g!W ) = prX∗(pr∗
Y ′(g!W ) · Zf ′).

On the other hand, since prX : Y ′×X → X equals prX ◦ (g× 1) : Y ′×X → Y ×X → X,

prX∗(pr∗
Y ′(g!W ) · Zf ′) = prX∗ ◦ (g × 1)∗(pr∗

Y (g!W ) · Zf ′).

Applying the projection formula ([Fulton;8.1.1.c]) and the equality pr∗
Y (g!W ) = (g ×

1)!(pr∗
Y W ), we conclude that

(g × 1)∗(pr∗
Y (g!W ) · Zf ′) , pr∗

Y (W ) · (g × 1)∗(Z ′
f )

12



are rationally equivalent. Thus, the proof is completed by applying the equality (g ×
1)∗(Zf ′) = Z verified above.

In the next proposition, we verify that the graph mapping commutes with the s-
operation considered in detail in section 1.

Proposition 2.3. Let Y, X be projective algebraic varieties and consider a continuous
algebraic map f : Y → Cr(X). Let Vf ⊂ X denote prX∗(| Zf |), the projection to X of
the support of the cycle Zf on Y × X associated to f . For any pair of positive integers
r, k, the following diagram commutes (in the derived category)

Z̃k(Y ) s→ Z̃k−1(Y )[−2]

Γ̃f

y yΓ̃f

Z̃r(Vf ) s→ Z̃r−1(Vf )[−2]

where Γ̃f : Z∗(Y )→ Z∗+r(Vf ) is the refined graph mapping.

Proof. Let iX : X → X×P1 , iC : Cr(X)→ Cr(X)×P1 denote the fibre inclusions above
∞ ∈ P1. We consider the following diagram of cycle spaces

Zk(Y )× Z0(P1) ×→ Zk(Y ×P1)
i!Y→ Zk−1(Y )

f∗ × 1
y f∗ × 1

y yf∗

Zk(Cr(X))× Z0(P1) ×→ Zk(Cr(X)×P1)
i!C→ Zk−1(Cr(X))

tr × 1
y (tr × 1) ◦ ×

y tr

y
Zr+k(X)× Z0(P1) ×→ Zr+k(X ×P1)

i!X→ Zr+k−1(X)

where × : Zj(V )×Z0(W )→ Zj(V ×W ) sends (Z, w) to Z ×w. By (1.3.a), the horizontal
rows induce the s-map, whereas the left and right columns induce Γf . Consequently, to
prove the weak form of the proposition with the refined graph mapping Γ̃f replaced by
the graph mapping Γf , it suffices to prove the commutativity (up to homotopies through
group homomorphisms) of the above diagram. The upper and lower left squares commute
as can be seen by inspection; the upper right square commutes by [F-Gabber;3.4.d].

To verify the (homotopy) commutativity of the lower right square, we employ the
projective bundle theorem of [F-Gabber;2.5] which implies that

iC∗ ⊕ pr∗
1 : Z̃k(Cr(X))⊕ Z̃k−1(Cr(X))→ Z̃k(Cr(X)×P1)

is a quasi-isomorphism with quasi-inverse prC∗ × i!C . Observe that i!C vanishes on the
summand iC∗(Z̃k(Cr(X))) and that this summand maps via (tr × 1) ◦ × to the summand
iX∗(Z̃k(X)) of Z̃k(X ×P1) on which i!X vanishes. Since pr∗

C is left inverse to i!C and pr∗
X

is left inverse to i!X in the derived category, we may verify the homotopy commutativity

13



of the lower right square by showing the commutativity of the square obtain by replacing
i!C , i!X by pr∗

C , pr∗
X . The commutativity of this latter square is easily seen by inspection.

We now consider the corresponding diagram for the refined graph mapping (where V
denotes Vf ):

Zk(Y )× Z0(P1) ×→ Zk(Y ×P1)
i!Y→ Zk−1(Y )

Γ̃f × 1
y y yΓ̃f

Zr+k(V )× Z0(P1) ×→ Zr+k(V ×P1)
i!V→ Zr+k−1(V )

whose middle row is induced by the middle column of the preceding diagram. The com-
mutativity of the left square of the above diagram follows from the commutativity of
the left squares of the preceding diagram. To prove the homotopy commutativity of the
right square, we proceed as above using the projective bundle theorem to verify homotopy
commutativity on each summand of Z̃k(Y ×P1), where

iY ∗ ⊕ pr∗
1 : Z̃k(Y )⊕ Z̃k−1(Y )→ Z̃k(Y ×P1)

is a quasi-isomorphism. On the summand iY ∗(Z̃k(Y )), i!Y vanishes as does i!V ◦ Γ̃f . On the
summand pr∗

1(Z̃k−1(Y )), the required commutativity follows by replacing the maps i!Y , i!V
by their left inverses pr∗

Y , pr∗
V (in the derived category) and verifying commutativity by

inspection.

For a given Chow variety Cr+1,d(X#Pj) of some suspension X#Pj of a projective
variety X, there exists some positive integer E (depending upon X, r, j) such that for all
e > E there exists some continuous algebraic map

νe : Cr+1,d(X#Pj)→ Cr−j,de(X)

with the property that νe ◦Σj+1 is algebraically homotopic to multiplication by e. Hence,
(1.5.iii) implies that the following diagram commutes up to homotopy

Cr,d(X)×Pj #→ Cr+1,d(X#Pj) νe→ Cr−j,de(X)y y
Zr(X) ∧ Z0(Pj) sj

→ Zr−j(X) e→ Zr−j(X)

thereby generalizing (1.4.b).

Theorem 2.4. Let X be a projective algebraic variety, f : Y → Cr,d(X) be a Chow
correspondence, and i : W ⊂ Y an irreducible subvariety of Y of dimension k. For any
j with 0 < j ≤ r, let #(f) : Y × Pj → Cr+1,d(X#Pj) denote the Chow correspondence
given by the composition the composition

# ◦ f × 1 : Y ×Pj → Cr,d(X)×Pj → Cr+1,d(X#Pj).
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We consider the graph mappings Γf : Zk(Y ) → Zr+k(X) and Γ#(f) : Zk+j(Y × Pj) →
Zr+k+j+1(X#Pj). These are related as follows.
a.) Γ#(f)(W ×Pj) = Σj+1(Γf (W )).
b.) e · Σj+1Γf (W ) , Σj+1Γνe◦#(f)(W × Pj) are effectively rationally equivalent, where
νe : Cr+1,d(X#Pj)→ Cr−j,de(X) is as discussed above.
c.) e · Γf (W ) = prX∗(e · Zf ) , Γνe◦#(f)(W × Pj) = prX∗(Zνe◦#(f)) are rationally
equivalent.

Proof. Using (2.1.1), we immediately reduce to the case that W = Y . Assertion a.)
follows from the observation that the generic point of W × Pj is mapped via f × 1 to
the Chow point of the cycle on X#Pj whose closure is Σj+1(Γf (W )), since Γf (W ) is the
cycle on X which is the closure of the cycle whose Chow point is the image under f of the
generic point of W .

For any Chow corespondence g : Y → Cs,c(X) the composition of g with Σ :
Cs,c(X)→ Cs+1,c(ΣX) has the effect of sending the cycle Zg on Y ×X equidimensional over
Y to its fibre-wise suspension ΣY (Zg) on Y × Σ(X). These cycles satisfy Σ(prX∗(Zg)) =
prΣX∗(ZΣ◦g). Moreover, an algebraic homotopy F : W ×Pj × C → Cr+1,d(X#Pj) relat-
ing two Chow correspondences f1, f2 : W ×Pj → Cr+1,d(X#Pj) has associated cycle ZF

which provides an effective rational equivalence between the associated cycles Zf1 , Zf2 (as
verified, for example, in [F-Mazur2]). Since Σj+1 ◦ νe : Cr+1,d(X#Pj)→ Cr+1,de(X#Pj)
is algebraically homotopy equivalent to multiplication by e, we conclude that

Σj+1Γνe◦#(f)(W ×Pj) , e · Γ#(f)(W ×Pj) = e · Σj+1(Γf (W ))

are rationally equivalent.
The Lawson suspension theorem remains valid for algebraic bivariant cycle com-

plexes [F-Gabber;4.6.c], so that the rational equivalence classes of r + k-cycles on X (i.e.,
π0(Ar+k(∗, X))) map isomorphically via Σj+1 to rational equivalence classes of r+k+j+1-
cycles on Σj+1(X). Thus, c.) follows from b.).

We specialize Theorem 2.4 to the special case in which W is simply a point. One can
interpret the assertion of Corollary 2.5 as providing a method of moving a cycle Z to a
rationally equivalent cycle which is equidimensional over a projective space.

Corollary 2.5. Let Z be an effective r-cycle of degree d on a projective variety X and let
ζ : Pj → Cr+1,d(X#Pj) send t ∈ Pj to Z#t for some j with 0 < j ≤ r.
a.) Γζ(Pj) = Σj+1(Z).
b.) e · Σj+1(Z) , Σj+1Γνe◦ζ(Pj) are effectively rationally equivalent.
c.) e · Z , Γνe◦ζ(Pj) are rationally equivalent.
d.) The image of (νe ◦ ζ)∗([Pj ]) ∈ H2j(Cr−j,de(X)) in H2j(Zr−j(X)) equals the Hurewicz
image of sj(e · {Z}) ∈ π2j(Zr−j(X)).

Proof. Specializing Theorem 2.4 to the case in which Y = W is a point, we obtain the
first three assertions. To determine the Hurewicz image of sj(e · {Z}), we use (1.5.ii) and
observe that the Hurewicz image of {Z} ∧ S2j ∈ π2j(Zr(X) ∧ Z0(Pj)) is the image of
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{Z} ⊗ [Pj ] ∈ H2j(Cr,d(X) × Pj). Applying H2j to the diagram preceding Theorem 2.4,
we conclude the last assertion.

We now consider the composition of Chow correspondences.

Definition 2.6. Let Y ,X,T be projective varieties and consider continuous algebraic maps

f : Y → Cr(X) , g : X → Cs(T ).

Then the composition product

g · f : Y → Cr+s(T )

is defined as the composition

tr ◦ g∗ ◦ f : Y → Cr(X)→ Cr(Cs(T ))→ Cr+s(T ).

One application of the following proposition is a proof (in [F-Mazur2]) that “corre-
spondence homomorphisms” behave well with respect to the correspondence product.

Proposition 2.7. Let Y ,X,T be projective varieties and consider Chow correspondences

f : Y → Cr(X) , g : X → Cs(T ).

Then the graph mapping associated to the composition product is given as the composition
of graph mappings:

Γg·f = Γg ◦ Γf : Z∗(Y )→ Z∗+r+s(T ).

Proof. We consider an irreducible subvariety W of Y of dimension k and proceed to prove
that Γg·f (W ) = Γg(Γf (W )). We interpret Γf (W ) in terms of generic points as follows.
Let ω ∈ W ⊂ Y be the generic point of W and let χ = f(ω) ∈ Cr(X). Then χ is the
Chow point of an effective cycle

∑
Ai with each Ai an irreducible subvariety of Xk(χ).

(k(χ) denotes the residue field of the scheme-theoretic point χ ∈ Cr(X)). Let χi ∈ X
be the scheme-theoretic point defined as the image of the generic point of Ai under the
composition Ai ⊂ Xk(χ) → X. Then Γf (W ) is the sum of those subvarieties {χi}− ⊂ X
which are of dimension k + r.

Consider now γi = g(χi), a scheme-theoretic point of Cs(T ). Then γi is the Chow
point of a cycle

∑
Ci,j , where each Ci,j is an irreducible subvariety of Tk(γi). Let γi,j ∈ T

be the scheme-theoretic point defined as the image of the generic point of Ci,j under
the composition Ci,j ⊂ Tk(γi) → T . Then Γg(Γf (W )) is the sum of those subvarieties
{γi,j}− ⊂ T which are of dimension k+r+s.

On the other hand, let τ = g∗(χ), a scheme-theoretic point of Cr(Cs(T )). Then τ
is the Chow point of an effective r-cycle

∑
Ri with each Ri an irreducible subvariety of

Cs(T )k(τ). (In fact, Ri = g∗(Ai), Ai ⊂ Xk(χ)). Let ρi ∈ Cs(T ) denote the generic point of
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Ri. Then ρi is the Chow point of a cycle
∑

Di,j with each Di,j an irreducible subvariety
of Tk(ρi). Let δi,j ∈ T (respectively, δ′

i,j ∈ Tk(ω)) be the scheme-theoretic point defined as
the image of the generic point of Di,j under the composition Di,j ⊂ Tk(ρi) → T (resp.,
Di,j ⊂ Tk(ρi) → Tk(ω)). Essentially by definition, g · f(ω) = tr(τ) ∈ Cr+s(T )k(ω) is the
Chow point of the cycle defined as the sum of those subvarieties {δ′

i,j}− ⊂ Tk(ω) which are
of dimension r+s. Thus, Γg·f (W ) is the sum of those subvarieties {δi,j}− ⊂ T which are
of dimension k+r+s.

Finally, we verify by inspection the equality of the set (with possibly repeated ele-
ments) of those γi,j ∈ T of dimension k+r+s and the set of those δi,j ∈ T of dimension
k+r+s.

3. Filtrations on Cycles

As observed in [F-Mazur;1.4], considering kernels of iterates of the s-operation on
π0(Zr(X)) provides an increasing filtration on algebraic r-cycles beginning with the sub-
group of those cycles algebraically equivalent to 0 and ending with those homologically
equivalent to 0. In Theorem 3.2, we identify this “S-filtration” in terms of images under
graph mappings of cycles homologically equivalent to 0. This identification is closely re-
lated to a filtration introduced by Nori [Nori] and is readily verified to dominate Nori’s
filtration whenever the latter is defined. In fact, we show that one can view the S-filtration
as merely the extension of Nori’s filtration to include possible contribution from singu-
lar varieties. We also show that our S-filtration is dominated by a filtration considered
by Bloch and Ogus [Bloch-Ogus], thereby strengthening an observation of Nori’s that his
filtration is dominated by that of Bloch and Ogus.

Definition 3.1. (cf. [F-Mazur;1.4]) Let X be a quasi-projective algebraic variety and r
a non-negative integer. Two r-cycles Z1, Z2 are said to be τk equivalent for some k with
0 ≤ k ≤ r if Z1 − Z2 ∈ Zr(X) lies in the kernel of

Zr(X) π→ π0(Zr(X)) sk

→ π2k(Zr−k(X)).

We call the resulting filtration

{SkZr(X)} = {Z ∈ Zr(X) : Z τk−equivalent to 0}

the S-filtration.

In particular, two algebraic r-cycles are τ0 -equivalent if and only if they are alge-
braically equivalent and are τr-equivalent if and only if they are homologically equivalent
(with respect to singular Borel-Moore homology).

In what follows, we shall often abuse notation by applying the s-operation to elements
of Zr(X) (viewed as a discrete group) rather than to their equivalence classes in π0(Zr(X)).

In the following theorem, we use the properties of the s-operation developed in sec-
tion 1 to provide an interpretation of τk equivalence inspired by an equivalence relation
introduced by Nori in [Nori].
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Theorem 3.2. For any projective algebraic variety X, SkZr(X) ⊂ Zr(X) is the subgroup
generated by cycles Z of the following form: there exists a projective variety Y of dimension
2k + 1, a Chow correspondence f : Y → Cr−k(X), and a k-cycle W on Y homologically
equivalent to 0 such that Z is rationally equivalent to Γf (W ).

Proof. To verify the theorem in the special case k = 0, we recall (cf. [Fulton]) that the
subgroup of r-cycles algebraically equivalent to 0 is generated by cycles Z = Z ′−Z ′′ of the
following form: there exists a smooth connected curve C, an effective cycle V on X × C,
and points w′, w′′ on C such that Z ′, Z ′′ are the fibres of V over w′, w′′. We readily verify
that this is equivalent to the assertion that Z = Γf (W ), where f : C → Cr,d(X) sends
w′, w′′ to the Chow points of Z ′, Z ′′ and W = [w′]− [w′′].

We now assume that k > 0. Consider an algebraic r-cycle Z given as a difference of
two effective r-cycles Z = Z ′ − Z ′′ and assume that sk(Z) = 0 (which is equivalent to
sk(Z ′) = sk(Z ′′)). Consider

ζ ′, ζ ′′ : Pk → Cr+1,d(X#Pk)

sending t ∈ Pk to Z ′#t, Z ′′#t. By (1.5.iii.), the square

Cr,d(X)×Pk #→ Cr+1,d(X#Pk)
↓ ↓

Zr(X) ∧ Z0(Pk) Σk+1◦sk

→ Zr+1(X#Pk)

commutes up to homotopy. Since

{Z} ⊗ [Pk] , {Z ′} ⊗ [Pk] ∈ H2k(Cr,d(X)×Pk)

map to the Hurewicz images of

{Z} ∧ S2k , {Z ′} ∧ S2k ∈ π2k(Zr(X) ∧ Z0(Pk))

we conclude that
ζ ′
∗([P

k]), ζ ′′
∗ ([Pk]) ∈ H2k(Cr+1,d(X#Pk)

have images in H2k(Zr+1(X#Pk)) ' H2k(Zr−k(X)) equal to the Hurewicz images of
sk(Z ′), sk(Z ′′) and thus are equal. Since the homology of Zr+1(X#Pk) is the direct
limit (with respect to translation by elements in π0(Cr+1(X#Pk))) of the homology of
Cr+1(X#Pk), we conclude that

ζ ′
A∗([P

k]) = ζ ′′
A∗([P

k]) ∈ H2k(Cr+1,d+a(X#Pk))

where ζ ′
A, ζ ′′

A denote the compositions of ζ ′, ζ ′′ with translation by some A ∈ Cr+1,a(X#Pk)
of sufficiently high degree a.

Choose E sufficiently large that there exists for all e′ ≥ E some continuous algebraic
map νe′ : Cr+1,d+a(X#Pk)→ Cr−k,(d+a)e′(X) representing e′ times a homotopy inverse to
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Lawson suspension Σk+1 : Zr−k(X)→ Zr+k+1(X) and let ζ ′
e′ , ζ ′′

e′ denote the compositions
νe′ ◦ ζ ′

A, νe′ ◦ ζ ′′
A. Then

ζ ′
e′,∗([P

k]) = ζ ′′
e′,∗([P

k]) ∈ H2k(Cr−k,(d+a)e′(X)).

By taking successive hyperplane sections which contain the images of ζ ′
e′ , ζ ′′

e′ and the sin-
gular locus of the preceding hyperplane section, we may apply the Lefschetz hyperplane
theorem for singular varieties [Andreotti-Frankel] to obtain some closed subvariety Ye′ ⊂
Cr−k,(d+a)e′(X) of dimension 2k + 1 such that ζ ′

e′ , ζ ′′
e′ factor through g′

e′ , g′′
e′ : Pk → Ye′

and
g′

e′∗([P
k]) = g′′

e′∗([P
k]) ∈ H2k(Y ′

e ).

(A similar application of [Andreotti-Frankel] is presented in detail in [F-Mazur2;3.2].) We
define fe′ : Ye′ → Cr−k(X) to be the inclusion and we define the cycle We′ ∈ Zk(Ye′) as

We′ ≡ g′
e′∗([P

k])− g′′
e′∗([P

k])

so that We′ is homologically equivalent to 0 on Ye′ .
We claim that Z is rationally equivalent to Γfe+1(We+1)− Γfe(We). Namely, Σk+1Z ′

is rationally equivalent to Γζ′([Pk]) by (2.5.a), whereas the latter equals Γζ′
A
([Pk]) because

the graph mapping is unaffected by the addition of a constant family. Consequently, (2.5.c)
implies that Γζ′

e′ ([P
k]) is rationally equivalent to e′Z ′. On the other hand, Γζ′

e′ ([P
k]) =

Γfe′ (g′
e′∗([P

k])). Similarly, e′Z ′′ is rationally equivalent to Γfe′ (g′′
e′∗([P

k])), thereby proving
that e′Z is rationally equivalent to Γfe′ (We′).

To prove the converse statement of the theorem, suppose Z is rationally equivalent
to Γf (W ), for some projective variety Y of dimension 2k + 1, continuous algebraic map
f : Y → Cr−k(X), and k-cycle W on Y homologically equivalent to 0. We must show
sk(Z) = 0. Clearly, we may assume Z = Γf (W ). The hypothesis that W is homologically
equivalent to 0 is equivalent to the condition that sk(W ) = 0. Consequently, sk(Z) = 0 by
Proposition 2.3.

In the proof above of the converse statement, we did not require any constraint on the
dimension of Y . Thus, Theorem 3.2 remains valid if the assertion is changed by dropping
the condition that Y be of dimension 2k + 1.

Nori’s filtration {AkCHr(X)} on the (discrete) group of algebraic r-cycles on a pro-
jective, smooth variety X is defined as follows: AkCHr(X) ⊂ Zr(X) is the subgroup
generated by those cycles rationally equivalent to cycles of the form

prX∗((pr∗
Y W · Z), W ∈ Zk(Y ), Z ∈ Zr+c−k(Y ×X)

where Y is a projective smooth variety of some dimension c, W ∈ Zk(Y ) is homologically
equivalent to 0, and prY : Y ×X → Y, prX : Y ×X → X are the projections.

Using Proposition 2.2, we re-interpret Nori’s filtration using our graph mapping in
terms exactly parallel to the condition of Thereom 3.2. We see for X smooth that the
τk-filtration differs from Nori’s only in that one permits not necessarily smooth domains
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Y for the graph mapping Γf associated to a Chow correspondence f : Y → Cr−k(X). One
can view the graph mapping as a useful formalism which permits consideration of singular
varieties (which do not readily fit into a formalism involving intersection pairings).

Corollary 3.3. Let X be a smooth, projective algebraic variety. Then

AkCHr(X) ⊂ SkZr(X).

Moreover, AkCHr(X) is the subgroup of Zr(X) generated by those r-cycles Z rationally
equivalent to Γf (W ) for some smooth projective variety Y , continuous algebraic map
f : Y → Cr−k(X), and k-cycle W on Y homologically equivalent to 0.

Proof. To prove the containment AkCHr(X) ⊂ SkZr(X), we consider an element ξ ≡
π1∗((π∗

2u ·v)) of AkCHr(X), with u ∈ Zk(Y ) homologically equivalent to 0 so that sk(u) =
0. By (1.7.b), sk(π∗

2u) = 0; by (1.7.c), sk((π∗
2u · v)) = 0; by (1.7.a), sk(ξ) = 0. Hence,

ξ ∈ SkZr(X).
By Proposition 2.2, Γf (W ) = prX∗(pr∗

Y W ·Zf ) whenever X, Y are smooth, so that if
the k-cycle W on Y is homologically equivalent to 0 then Γf (W ) lies in AkCHr(X) for any
f : Y → Cr−k(X). (This also follows from Theorem 3.2.) Let A′

kCHr(X) ⊂ AkCHr(X)
denote the subgroup generated by cycles rationally equivalent to such cycles Γf (W ) as f
varies. We proceed to show that this inclusion is the identity.

Consider an arbitrary generator of AkCHr(X)

prX∗(pr∗
Y W · Z), W ∈ Zk(Y ), Z ∈ Zr+c−k(Y ×X)

as in the definition of Nori’s filtration. Applying Proposition 2.2 once again, we conclude
that prX∗(pr∗

Y W · Z) is rationally equivalent to
∑

Γfi(Wi) where gi : Yi → Y is a map
from a smooth projective variety Yi of dimension dim(Y)−ci for some ci ≥ 0, fi : Yi →
Cr−k+ci(X) is a Chow correspondence, and Wi = g!

i(W ) is a k − ci-cycle on Yi. Let
νe : Cr−k+ci+1(X#Pci)→ Cr−k(X) be as in Theorem 2.4 so that νe ◦ Σci is homotopic to
multiplication by e. By part c.) of Theorem 2.4, Γfi(Wi) is rationally equivalent to

Γνe+1◦#(f)(Wi ×Pci)− Γνe◦#(f)(Wi ×Pci).

The fact that W is homologically equivalent to 0 on Y implies that Wi = g!
i(W ) is homo-

logically equivalent to 0 on Yi (cf. [Fulton;19.2]). Thus, each Wi × Pci is homologically
equivalent to 0 on Yi × Pci , so that each Γfi(Wi) and thus also prX∗((pr∗

Y W · Z) is in
A′

kCHr(X).

Nori constructs examples of algebraic r-cycles homologically equivalent to 0 but not
in Ar−1CHr(X). His examples are of the form of the restriction i!(W ) of some W ∈
Zr+h(V ) with clV (W ) 6= 0 ∈ H2r+2h(V ) to a sufficiently general complete intersection
i : X = V ∩ D1 ∩ ... ∩ Dh ⊂ V of a projective, smooth variety V . Nori shows that
these cycles can not be in the (r-1)st stage of his filtration, whereas they can indeed be
homologically equivalent to 0. It seems likely that Nori’s examples are examples of cycles
Z = i!(W ) ∈ Zr(X) with sr(Z) = 0, sr−1(Z) 6= 0.
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We next turn to the filtration of Bloch and Ogus [Bloch-Ogus]. The k-th stage of
their filtration,

BkCHr(X) ⊂ Zr(X)

is the subgroup generated by those algebraic r-cycles Z for which their exists an r + k +1-
dimensional subvariety V of X suppporting Z such that Z is homologically equivalent to 0
on V . B0CHr(X) is the subgroup of r-cycles algebraically equivalent to 0 [B-O;7.3], hence
equal to A0CHr(X) = S0CHr(X).

In the following proposition, we prove that the S-filtration is dominated by that of
Bloch-Ogus. This result was first proved by O. Gabber by different methods.

Proposition 3.4. Let X be a complex projective algebraic variety and r a non-negative
integer. Then for all k ≤ r,

SkZr(X) ⊂ BkCHr(X).

Proof. By Theorem 3.2, it suffices to consider a cycle Z ∈ Zr(X) of the form Γf (W ), for
some projective variety Y of dimension 2k+1, continuous algebraic map f : Y → Cr−k(X),
and k-cycle W on Y homologically equivalent to 0. To prove the proposition, it suffices to
exhibit some g : V → X with V a projective variety of dimension r + k + 1 and a cycle
Z ′ ∈ Zr(V ) with g∗(Z ′) = Z and with γ(Z ′) = 0 ∈ H2r(V ).

We take V equal to Vf , where Γ̃f : Z∗(Y )→ Z∗+r−k(Vf ) is the refined graph mapping,
and take Z ′ equal to Γ̃f (W ). Since W is homologically equivalent to 0,

sk(W ) = 0 ∈ H2k(Z̃0(Y ));

by Proposition 2.3, this implies that

sk(Γ̃f (W )) = 0 ∈ H2k(Z̃r−k(V ))

which implies that

γ(Γ̃f (W )) = sr(Γ̃f (W )) = 0 ∈ H2r(Z̃0(V )) = H2r(V ).

4. Homology filtrations and the Grothendieck’s Conjecture B

If X is a projective, smooth variety of dimension n, then the Strong Lefschetz Theorem
asserts that

hn−i : H2n−i(X,Q)→ Hi(X,Q)

is an isomorphism, where h denotes intersection with the homology class of a hyperplane
section. A. Grothendieck has conjectured (in a conjecture referred to as Grothendieck’s
Conjecture B; cf. [Grothendieck] and [Kleiman]) that the inverse of this isomorphism

Λn−i
X : Hi(X,Q)→ H2n−i(X,Q)
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is an “algebraic correspondence.” In other words, there exists some homology class `n−i
X ∈

H4n−2i(X ×X) in the linear span of the set of fundamental classes of 2n− i-dimensional
subvarieties of X×X such that for any u ∈ Hi(X,Q) with Poincaré dual ũ ∈ H2n−i(X,Q)

Λn−i
X (u) = pr2∗(pr∗

1 ũ ∩ `n−i
X ) = ũ\`n−i

X .

As we see below, this conjecture is closely related to a conjecture of [F-Mazur] that the
“topological filtration” on Hm(X,Q) with r-th term

TrHm(X,Q) = image{sr : πm−2r(Zr(X))⊗Q→ πm(Z0(X))⊗Q}

equals the “geometric” (or “niveau”) filtration on Hm(X,Q) whose r-th term is

GrHm(X,Q) = span{i∗(Hm(Y )); i : Y ⊂ X with dim(Y ) ≤ m− r}.

More specifically, we prove in Proposition 4.2 that if a resolution of singularities Ỹ of
each subvariety Y ⊂ X satisfies Grothendieck’s Conjecture B then we do indeed have the
equality of topological and geometric filtrations on H∗(X,Q). More generally, in Propo-
sition 4.3 we verify that if X satisfies Grothendieck’s Conjecture B then the “primitive
filtration” is subordinate to the topological filtration. As a corollary, we conclude a result
of R. Hain [Hain] that the topological and geometric filtrations are equal for a sufficiently
general abelian variety.

In [F-Mazur2], a Chow correspondence f : Y → Cr(X) with Y ,X projective is shown
to determine a correspondence homomorphism

Φf : H∗(Y )→ H∗+2r(X)

which can be described as the following composition:

H∗(Y ) ' π∗(Z0(Y ))
Γf∗→ π∗(Zr(X))

sr
∗→ π∗+2r(Z0(X)) ' H∗+2r(X).

The following proposition is the homological analogue of the second half of Proposition
2.2.

Proposition 4.1. Let X be a projective, smooth variety of dimension n and let Z be an
n + r-cycle on X ×X for some r ≥ 0. Then there exist projective smooth varieties Xi of
dimension n− ci, maps gi : Xi → X, and Chow correspondences fi : Xi → Cr+ci(X) such
that for any α ∈ Hm(X,Q) with Poincarè dual α̃ ∈ H2n−m(X,Q)∑

Φfi(αi) = pr2∗(pr∗
1α̃ ∩ [Z]) = α̃\[Z]

where Φfi is the correspondence homomorphism associated to the Chow correspondence
fi and αi = f∗

i (α̃)̃, the Gysin pullback of α via fi.

Proof. Clearly, we may assume that Z is irreducible. As argued in the proof of Proposition
2.2, pr1 : Z ⊂ X × X → X has image some irreducible subvariety V of X of dimension
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n − c and thus determines a rational map V − − > Cr+c(X). This in turn determines a
Chow correspondence f ′′ : V ′ → Cr+c(X) where V ′ is the graph of this rational map. We
define g = pr1 ◦ h : X ′ → X, given by a resolution of singularities h : X ′ → V ′; we define
f ′ = f ′′ ◦ h : X ′ → Cr+c(X). As seen in the proof of Proposition 2.2, (g × 1)∗(Zf ′) = Z.

Let α′ = f ′∗(α̃)̃. Applying the projection formula, we conclude that

α̃′\[Zf ′ ] = f ′∗(α̃)\[Zf ′ ] = α̃\(f ′ × 1)∗([Zf ′ ]) = α̃\[Z].

By [F-Mazur2], the left-hand side of the above equality equals the image of α′ under the
correspondence homomorphism Φf ′ associated to the Chow correspondence f ′ : X ′ →
Cr+c(X).

Proposition 4.1 enables us to easily conclude that Grothendieck’s Conjecture B implies
the equality of the topological and geometric filtrations.

Proposition 4.2. Let X be a projective, smooth variety of dimension n. Assume that
Grothendieck’s Conjecture B is valid for a resolution of singularities of each irreducible
subvariety Y ⊂ X of dimension m− r. Then

TrHm(X,Q) = GrHm(X,Q).

Proof. As shown in [F-Mazur], TrHm(X,Q) ⊂ GrHm(X,Q) for any projective, smooth
X. To prove the reverse inclusion, consider a class α ∈ Hm(X,Q) lying in the image of
Hm(Y,Q) with Y ⊂ X of dimension m−r. Let Ỹ → Y be a resolution of singularities (i.e.,
a proper birational map with Ỹ smooth) satisfying Grothendieck’s Conjecture B. We recall
that the theory of weights of Mixed Hodge Structures developed by P. Deligne implies that
there exists some γ ∈ Hm(Ỹ ,Q) mapping to α (cf. [F-Mazur;A.1]). Since the connected
components of Ỹ are resolutions of the irreducible components of Y , we may assume that
Y is irreducible and thus Ỹ is connected.

The Strong Lefschetz Theorem for Ỹ implies that there exists some δ ∈ Hm−2r(Ỹ ,Q)
with Λr

Ỹ
(δ) = γ. By hypothesis, there exists an m + r-cycle Z on Ỹ × Ỹ such that

pr2∗(pr∗
1(δ) • [Z]) = c · γ ∈ Hm(Ỹ ,Q) , c 6= 0 ∈ Q.

By Proposition 4.1, there exist projective smooth varieties Yi of dimension m− r− ci,
maps gi : Yi → Ỹ , and Chow correspondences fi : Yi → Cr+ci(Ỹ ) such that∑

Φfi(δi) = pr2∗(pr∗
1(δ) · [Z])

where δi = g∗
i (δ̃)̃ ∈ Hi−2r(Yi,Q) is the Gysin pullback of δ. Let qi : Yi → Cr+ci(X) be the

composition of fi and the map Cr+ci(Ỹ )→ Cr+ci(X) induced by Ỹ → Y → X. Then∑
Φqi(δi) = c · α ∈ Hm(X,Q)
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thereby showing that α lies in CrHm(X,Q), the r-th stage of the “correspondence filtra-
tion” on Hm(X,Q) (which contains Cr+cHm(X,Q) for any c ≥ 0). Since CrHm(X, Q)
has been shown in [F-Mazur;7.3] to equal TrHm(X,Q), we conclude that

GrHm(X,Q) ⊂ TrHm(X,Q)

as required.

If X is a projective, smooth variety of dimension n, we define the “primitive filtra-
tion” on Hm(X,Q) as follows. For i ≤ n, the primitive subspace Prim(Hi(X,Q)) ⊂
Hi(X,Q) is the kernel of h : Hi(X,Q) → Hi−2(X,Q) whereas Prim(H2n−i(X,Q)) =
Λn−i(Prim(Hi(X,Q)). For i ≤ n, we define

PrH2n−i(X,Q) =
∑
j≥r

hj(Prim(H2n+2j−i(X,Q)))

and
PrHi(X,Q) =

∑
j≥r

hn+j−i ◦ Λn+2j−i(Prim(Hi−2j(X,Q))).

The following proposition provides a useful lower bound for the topological filtration
of a variety satisfying Grothendieck’s Conjecture B.

Proposition 4.3. Let X be a projective, smooth variety of dimension n satisfying
Grothendieck’s Conjecture B. Then

PrHm(X,Q) ⊂ TrHm(X,Q).

Proof. Observe that h : H∗(X,Q) → H∗−2(X,Q) is an algebraic correspondence, for
h(u) = pr2∗(pr∗

1(u) ·γ(∆H)) , where H is a hyperplane section of X and ∆H is its image in
X ×X under the diagonal map. Since composition of algebraic correspondences are again
algebraic [Kleiman], we conclude that if X satisfies Grothendieck’s Conjecture B, then hj

and Λn+j−i are also algebraic correspondences for any j.
Consequently, Proposition 4.1 implies that

PrHm(X,Q) ⊂ CrHm(X,Q)

where CrHm(X,Q) ( = TrHm(X,Q) by [F-Mazur;7.3]) is the r-th stage of the correspon-
dence filtration on Hm(X,Q).

As proved by D. Lieberman [Lieberman], an abelian variety satisfies Grothendieck’s
Conjecture B. Thus, Proposition 4.3 implies the following result, first proved by R. Hain
by more explicit means.
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Proposition 4.4. (cf. [Hain]) If X is a sufficiently general abelian variety, then

TrHm(X,Q) = GrHm(X,Q).

For example, the latter equality is valid whenever the special Mumford-Tate group of X
equals the full symplectic group on H1(X,Q).

Proof. We observe that the primitive filtration is the filtration by irreducible summands
of the symplectic group Sp(H1(X,Q)) acting on H∗(X,Q) = Λ∗(H1(X,Q)). If X is “suf-
ficiently general”, the special Mumford-Tate group (cf. [Mumford]) equals Sp(H1(X,Q)).
Since the filtration of H∗(X, C) by sub-Hodge structures is stabilized by the special
Mumford-Tate group, the filtration by sub-Hodge structures is also a filtration of sym-
plectic modules. Since the associated quotients of this filtration are non-trivial at those
stages for which the associated quotients of the primitive filtration are non-trivial, we
conclude that the primitive filtration (complexified) equals the filtration by sub-Hodge
structures whenever the special Mumford-Tate group equals the symplectic group. On the
other hand, the topological filtration contains the primitive filtration and is subordinate
to this Hodge filtration. Thus, all three filtrations must be equal whenever the special
Mumford-Tate group equals the symplectic group.

5. The spectral sequence

The purpose of this final section is to present a spectral sequence incorporating both
the S-filtration (in the guise of τk-equivalence) and the topological filtration. The reader
inclined towards a motivic point of view could envision the various terms of the spectral
sequence as candidates for new “motives.”

We recall that the join operation determines a pairing of abelian topological groups

Zr(X)× Z0(P1)→ Zr+1(X#P1)

and thus a map of normalized chain complexes

Z̃r(X)[2]→ Z̃r+1(X#P1) ' Z̃r−1(X).

Our spectral sequence arises from consideration of the sequence of chain complexes

Z̃n(X)[2n]→ Z̃n−1(X)[2n− 2]→ ...→ Z̃1(X)[2]→ Z̃0(X).

Proposition 5.1. For any projective variety X, there exists a (strongly convergent) second
quadrant spectral sequence of homological type

E2
s,t = Ht−s(Q−s/2)⇒ Hs+t(X)

whose differentials dk
s,t have bidegree (−k, k−1), where Qs/2 = 0 unless s is an even integer

with 0 ≤ s ≤ 2n.
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Moreover, the abutment
∑

s+t=m E∞
s,t is the associated graded group of Hm(X) with

respect to the topological filtration (as considered in section 4). Furthermore, E2k+2
−2r,0 is

naturally isomorphic to the group of algebraic r-cycles on X modulo τk equivalence.

Proof. For 0 ≤ r ≤ n, we define Qr to be the mapping cone of the following composition

Z̃r+1(X)[2r + 2] ' Z̃r+1(X)[2r]⊗ Z̃0(P1)deg0 → Z̃r+2(X#P1)[2r]

whose first map is induced by the quasi-isomorphism Z[2] ' Z̃0(P1)deg0 and whose second
is induced by the join pairing. Since Z̃r+2(X#P1)[2r] is quasi-isomorphic to Z̃r(X)[2r],
we have a family of distinguished triangles

Z̃r+1(X)[2r + 2]→ Z̃r(X)[2r]→ Qr.

Using the above sequence of chain complexes, we obtain an exact couple in homology

...→
⊕
r,s

H2r+s(Z̃r+1(X)[2r + 2])→
⊕
r,s

H2r+s(Z̃r(X)[2r])→
⊕
r,s

H2r+s(Qr)→ ...

determining our spectral sequence. The convergence follows from the fact that Qr = 0
unless 0 ≤ r ≤ n.

To identify the filtration on the abutment H∗(Z̃0(X)), we observe that a class in
H∗(Qr) is a permanent cycle if it lifts to a class in H∗(Z̃r(X)[2r]); such a permanent cycle
in H∗(Qr) modulo boundaries is the image of H∗(Z̃r(X)[2r]) in H∗(Z̃0(X)) modulo the
image of H∗(Z̃r+1(X)[2r + 2]) in H∗(Z̃0(X)).

Finally, to identify Ek
−2r,0, we observe that all classes in E2

−2r,0 = H2r(Qr) are perma-
nent cycles, thus lifting to classes in H2r(Z̃r(X)[2r]) = π0(Zr(X)). The image in H2r(Qr)
of d2 is the image of

ker{H2r(Z̃r(X)[2r])→ H2r(Z̃r−1(X)[2r − 2])},

which is the group of algebraic r-cycles τ1 -equivalent to 0 modulo algebraic equivalence.
Thus, the quotient E4

−2r,0 is the group of algebraic r-cycles modulo τ1-equivalence. We
argue similarly for any k ≤ r: the image in E2k

−2r,0 of d2k is the image of

ker(H2r(Z̃r(X)[2r])→ H2r(Z̃r−k(X)[2r − 2k])),

which is the group of algebraic r-cycles τk -equivalent to 0 modulo algebraic equivalence.
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