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Abstract. We investigate rational G-modules M for a linear algebraic group

G over an algebraically closed field k of characteristic p > 0 using filtrations by
sub-coalgebras of the coordinate algebra k[G] of G. Even in the special case of

the additive group Ga, interesting structures and examples are revealed. The

“degree” filtration we consider for unipotent algebraic groups leads to a “fil-
tration by exponential degree” applicable to rational G modules for any linear

algebraic group G of exponential type; this filtration is defined in terms of

1-parameter subgroups and is related to support varieties introduced recently
by the author for such rational G-modules. We formulate in terms of this fil-

tration a necessary and sufficient condition for rational injectivity for rational

G-modules. Our investigation leads to the consideration of two new classes of
rational G-modules: those that are “mock injective” and those that are “mock

trivial”.

0. Introduction

Beginning with the very special case of the additive group Ga, we consider the
filtration by degree on rational Ga-modules which enables us to better understand
the intriguing category (Ga-Mod) of rational Ga-modules. This filtration leads to a
similarly defined filtration by degree on rational UN -modules, where UN ⊂ GLN is
the closed subgroup of strictly upper triangular matrices, and determines a filtration
on rational U -modules for a closed linear subgroup U ⊂ UN . We then initiate the
study of a less evident filtration on rational G-modules for G a linear algebraic group
of exponential type. For rational UN -modules for the unipotent algebraic group
UN , this filtration of exponential degree is a comparable to the more elementary
filtration by degree we first consider. Throughout, we fix an algebraic closed field k
of characteristic p > 0 and consider (smooth) linear algebraic groups over k together
with their rational actions on k-vector spaces.

In some sense, this paper is a sequel to the author’s recent paper [4] in which a
theory of support varieties M 7→ V (G)M was constructed for rational G-modules.
The construction of the filtration by exponential degree {M[0] ⊂ M[1] ⊂ · · · ⊂ M}
uses restrictions of M to 1-parameter subgroups Ga → G, and thus is based upon
actions of G on M at p-unipotent elements of G. The role of 1-parameter subgroups
to study rational G-modules was introduced in [3]; the property of p-unipotent
degree introduced in [3, 2.5] is the precursor to our filtration by exponential degree.
The origins of this approach to filtrations lie in considerations of support varieties
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for modules for infinitesimal group schemes, varieties which are defined in terms of
p-nilpotent actions on such modules.

The basic theme of this paper is to investigate rational G-modules through their
restrictions via 1-parameter subgroups Ga → G. Whereas the support variety con-
struction M 7→ V (G)M is defined in terms of restrictions of M to a p-nilpotent
operator associated to each 1-parameter subgroup of G, our present approach in-
volves the full information of the restriction of M to all 1-parameter subgroups by
using filtrations on the category of rational G-modules. We give a necessary and
sufficient condition for rational injectivity of a rational G-module, something we
have not succeeded in doing using support varieties. Moreover, these filtrations en-
able us to formulate and study the classes of mock injective modules (those whose
restrictions to every Frobenius kernel are injective) and of mock trivial modules
(those for which actions at 1-parameter subgroups are trivial). These modules are
somewhat elusive to construct, but can be shown to exist in great numbers and
have interesting properties.

Perhaps the groups of most interest are reductive groups, especially simple groups
of classical type. For such groups G, it is instructive to compare the approach in
this paper and in [4] with traditional considerations of weights for the action of a
maximal torus T ⊂ G on a rational G-module. Whereas consideration of weights
for T are highly suitable in classifying irreducible rational G-modules, the action
at p-unipotent elements has the potential of recognizing extensions of such mod-
ules. Although our filtration by exponential degree involves actions at p-unipotent
elements of G, Example 3.14 shows that a bound on the T -weights for a rational
G-module M determines a bound on the exponential degree of M for G reductive
(where T is a maximal torus for G). We emphasize that the filtration by exponen-
tial degree applies to rational modules for unipotent groups whose rational modules
are not equipped with a torus action.

We sketch the contents of this paper. We begin with the most elementary exam-
ple G = Ga. Indeed, this effort was in part motivated by the prospect of establishing
a “local criterion” for a rational Ga-module M to be rationally injective using the
support variety V (Ga)M , or equivalently using the restrictions of M to all Frobenius
kernels Ga(r) of Ga. Proposition 2.11 provides counter-examples to our (unwritten)
conjecture that rational injectivity of rational Ga-modules is detected in this “local
fashion.” The filtration we consider for rational Ga-modules arises from a filtration
of the coordinate algebra k[Ga] by sub-coalgebras k[Ga]<d. As observed in Propo-
sition 1.12, the category of comodules for the sub-coalgebra k[Ga]<pr is naturally
isomorphic to the category of rational modules for the infinitesimal kernels Ga(r) of
the linear algebraic group Ga. This correspondence is very special, following from
the simple observation that the restriction maps k[Ga]→ k[Ga(r)] are split as maps
of coalgebras.

In Section 2, we extend our consideration of filtrations to rational U -modules
for a unipotent algebraic group U equipped with an embedding in some UN . To
investigate some properties of a rational U -module M , we find it more useful to con-
sider the submodules M<pr ⊂M occurring in the filtration of M than to consider
restrictions of M to Frobenius kernels U(r). For example, Proposition 2.13 gives a
necessary and sufficient condition for a rational U -module M to be injective which
is formulated in terms of the filtration {M<d, d > 0} of M . For non-abelian U , the
sub-coalgebras k[U ]<pr ⊂ k[U ] which we use to define this degree filtration are not
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well related to the coordinate algebras of infinitesimal kernels U(r); nevertheless,
Proposition 2.10 provides some comparison of k[U ]<pr and k[U(r)].

The key construction of this paper is that of the sub-coalgebras (k[G])[d] ⊂ k[G]
in Definition 3.4 for G a linear algebraic group of exponential type. For such G,
we introduce in Definition 3.10 the filtration {M[d] ⊂ M,d ≥ 0} for any rational
G-module M . As shown in Proposition 3.8, this filtration is equivalent to that
provided in Section 2 in the special case G = UN , N ≤ p; in particular, equivalent
to the elementary filtration considered for rational Ga-modules. In a few examples
of finite dimensional rational G-modules M , we find an explicit value for d such that
M = M[d]. Theorem 3.15 provides a list of properties for the filtration {M[d], d ≥ 0}
of a rational G module M with a structure of exponential type. In particular, this is
a filtration by rational G-submodules of M , satisfies various aspects of functoriality,
and is independent of the structure of exponential type on G. The filtration is finite
for finite dimensional rational modules and has expected functoriality properties.
Proposition 3.17 gives a relation of this filtration to the theory of support varieties
for G as formulated in [4].

In Proposition 4.1, we establish basic properties of the functors (−)[d] determin-
ing our filtration of rational G-modules. Using some of these properties, we give
in Proposition 4.2 a necessary and sufficient condition for M to be a rationally
injective G-module in terms of its filtration {M[d], d ≥ 0}. Much of Section 4
is devoted to formulating and then investigating the classes of “mock injective”
modules and “mock trivial” modules, rational G-modules with interesting proper-
ties. Mock injectives are rational G-modules whose restrictions to all Frobenius
kernels G(r) are injective G(r)-modules. Every injective rational G-module is mock
injective, but somewhat surprisingly there are mock injectives which are not in-
jective. Mock trivial modules are rational G-modules whose restriction along any
1-parameter subgroup of G is trivial. Both these classes satisfy familiar closure
properties. [Note: In [14], W. Hardesty, D. Nakano, and P. Sobaje provide further
analysis of mock injectives, establishing necessary and sufficient conditions on G
for the existence of mock injective modules which are not injective G-modules.]

Finally, we conclude in Proposition 4.12 with a Grothendieck spectral sequence
relating the right derived functors Rt(−)[d] of the filtration functor (−)[d] for a
given degree d with the rational cohomology of G for any linear algebraic group G
of exponential type.

We thank Jason Fulman, Julia Pevtsova, Paul Sobaje, and Andrei Suslin for
conversations related to the contents of this paper.

1. Rational modules for the additive group Ga
We recall that Ga (the additive group) has coordinate algebra k[T ] equipped

with the coproduct

∆ : k[T ] → k[T ]⊗ k[T ], T 7→ (T ⊗ 1 + 1⊗ T ).

In particular, this coproduct on k[T ] gives k[T ] the structure of a rational Ga-
module (which is rationally injective). One can view that action as follows: for
every commutative k-algebra R and for every a ∈ Ga(R) = R, the action of a on
f(T ) ∈ R[T ] is given by a ◦ f(T ) = f(a+ T ).

The r-th Frobenius kernel Ga(r) of Ga,

ir : Ga(r) ⊂ Ga,
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is the closed subgroup scheme with coordinate algebra given by i∗r : k[Ga] = k[T ] →
k[T ]/T p

r

= k[Ga(r)] and group algebra (i.e., k-linear dual of k[Ga(r)]) denoted by
kGa(r). Using the notation of [12], we let v0, . . . , vpr−1 be the k-basis of kGa(r)

dual to the standard basis {T j , 0 ≤ j < pr} of k[T ]/T p
r

. Denote vps by us. If

j =
∑r−1
`=0 j`p

`, 0 ≤ j` < p, then

vj =
uj00 · · ·u

jr−1

r−1

j0! · · · jr−1!
.

Notation 1.1. (see [12]) With notation as above,

kGa(r) ' k[u0, . . . , ur−1]/(up0, . . . , u
p
r−1).

For any r, s > 0, the quotient map

qr,s : k[Ga(r+s)] ∼= k[T ]/T p
r+s

→ k[Ga(r)] ∼= k[T ]/T p
r

sending T to T is a Hopf algebra map, whose dual we denote by

ir,s : kGa(r) → kGa(r+s), ui 7→ ui, i < r.

The colimit

kGa ≡ lim−→
r

kGa(r) ' k[u0, . . . , un, . . .]/(u
p
0, . . . , u

p
n, . . .),

is the group algebra (or hyperalgebra or algebra of distributions at the identity) of
Ga.

The following evident lemma makes explicit the action of kGa on a rational
G-module M .

Lemma 1.2. Let M be a rational Ga-module given by the comodule structure ∆M :
M →M ⊗ k[Ga]. For φ ∈ kGa,

(1.2.1) φ(m) = ((1⊗ φ) ◦∆M )(m).

Consequently, the action of vj ∈ kGa on the rational Ga-module M is determined
by the formula

(1.2.2) ∆M (m) =
∑
j

vj(m)⊗ T j .

In particular, the action of vj on f(T ) =
∑
n≥0 anT

n ∈ k[Ga] ' k[T ] is given by

(1.2.3) vj(f(T )) =
∑
n≥j

an

(
n

j

)
Tn−j ,

since

∆k[Ga](T
n) = (T ⊗ 1 + 1⊗ T )n =

∑
j≥0

(
n

j

)
Tn−j ⊗ T j .

Using (1.2.2), we immediately identify those kGa-modules which arise as rational
Ga-modules.

Proposition 1.3. Let M be a kGa-module satisfying the following condition:

(1.3.1) ∀ m ∈M, ∃ only finitely many vj acting non-trivially on m.
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Then the kGa-module structure on M (i.e., the action of each vj ∈ kGa on M)
arises from the rational Ga-module structure

M →M ⊗ k[Ga], m ∈M 7→
∑
j

vj(m)⊗ T j .

Conversely, any rational Ga-module satisfies condition (1.3.1).

We make explicit the following useful consequence of Proposition 1.3.

Corollary 1.4. Let M be a rational Ga-module and S ⊂M be a subset. Then the
rational Ga-submodule generated by S, 〈Ga ·S〉, is spanned by {vj(s); s ∈ S, j ≥ 0}.

In particular, the rational Ga-submodule 〈Ga · f(T )〉 ⊂ k[Ga] ' k[T ] generated
by f(T ) is the subspace of k[T ] spanned by {vj(f(T ))} as given in (1.2.3).

Proof. The span of {vj(s); s ∈ S, j ≥ 0} is clearly a kGa-submodule of M . Thus,
the corollary follows from Proposition 1.3. �

Using a theorem of E. Kummer [9] (see also [7]), we obtain the following explicit
description of the rational Ga-submodule 〈Ga · Tn〉.

Proposition 1.5. The rational Ga-submodule 〈Ga · Tn〉 ⊂ k[T ] has a k-basis
consisting of those Tm such that adding n −m to m involves no carries in base-p
arithmetic. In other words, if we write n in base-p as

∑
i≥0 nip

i with 0 ≤ ni < p

for all i, then 〈Ga · Tn〉 is spanned by those Tm for which m =
∑
i≥0mip

i with
mi ≤ ni.

Proof. By (1.2.3), vj(T
n) is a non-zero multiple of Tn−j if and only if p does not

divide
(
n
j

)
. Kummer’s theorem asserts that the maximal p-th power dividing

(
n
j

)
equals the number of carries in base-p arithmetic arising in adding j to n− j. �

Example 1.6. We can easily construct many non-isomorphic rational Ga-module
structures on the underlying vector space of k[T ]. Namely, for each i ≥ 0, choose
ni ≥ 0 with lim−→i

ni = ∞ and choose gi(u) ∈ kGa ' k[u0, u1, . . .]/(u
p
0, u

p
1, . . .) such

that gi(u) is a polynomial in the uj ’s with j ≥ ni. The kGa-module structure on
k[T ] given by setting the action of ui on k[T ] to be that of gi(u) on k[Ga] ' k[T ]
with its structure arising from the coproduct of Ga is a rational Ga-module by
Proposition 1.3 (since only finite many gi(u)’s act non-trivially on a given Tn by
(1.2.3) ).

Remark 1.7. Different choices of gi(u) in the preceding example can lead to iso-
morphic rational Ga-modules. For example, let θ : N → N be a bijection and set
gi(u) = uθ(i). The resulting module structure on k[T ] is isomorphic to that of k[Ga]

via the k-linear isomorphism ΘΣ : k[T ]→ k[T ] sending the monomial
∏
i>0(T p

i

)di

to
∏
i>0(T p

θ(i))di where 0 ≤ di < p− 1

The following elementary proposition justifies the functor (−)<d of Definition
1.9.

Proposition 1.8. For any rational Ga-module M and any φ ∈ kGa,

Mφ ≡ {m ∈M : φ(m) = 0} ⊂ M

is a rational Ga-submodule of M . Moreover, if f : M → N is a map of rational
Ga-modules, then f restricts to Mφ → Nφ.
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Proof. To show that Mφ ⊂M is a rational Ga-submodule it suffices by Proposition
1.3 to show that ψ ·Mφ ⊂Mφ for any ψ ∈ kGa. This follows immediately from the
commutativity of Ga (implying the commutativity of kGa).

The second assertion concerning a map f : M → N of rational Ga-modules
follows from the fact that f necessarily commutes with the action of φ. �

Proposition 1.8 enables the formulation of many natural filtrations on (Ga −
Mod). The motivation for considering the following is given by Proposition 1.11.

Definition 1.9. For any d ≥ 1, we define the idempotent endo-functor

(−)<d : (G-Mod) → (G-Mod), M 7→ M<d ≡ {m ∈M : vj(m) = 0, j ≥ d}.

In other words, m ∈M<d if and only if ∆(m) ∈M ⊗ k[T ]<d.
For any rational Ga-module M , we consider the degree filtration

M<1 ⊂M<2 ⊂M<3 ⊂ · · · ⊂M

of M by rational Ga-submodules.

The following proposition, established in [4], follows easily from the observation
that the coproduct ∆M : M →M⊗k[Ga] defining the rational Ga-module structure
on M sends a finite dimensional subspace of M to a finite dimensional subspace of
M →M ⊗ k[Ga].

Proposition 1.10. [4, 2.6] Each finite dimensional rational Ga-module lies in the
image of (−)<d for d sufficiently large. Consequently,

(1) For any rational Ga-module M , M = ∪dM<d.
(2) If M is finite dimensional, then M = M<d for d >> 0.

Unlike for other linear groups considered in later sections, the filtration on the
coordinate algebra [Ga] = k[T ] of Ga can be viewed as a coalgebra splitting of
restriction maps k[G(a)] → k[Ga(r)] as observed in the next proposition.

Proposition 1.11. For each d > 0, the rational submodule jd : k[T ]<d ⊂ k[T ] is a
sub-coalgebra.

Moreover,

prpr ◦ jd : k[T ]<pr ⊂ k[T ]→ k[T ]/T p
r

, r > 0

is an isomorphism of coalgebras.

Proof. The fact that jd is an embedding of coalgebras follows from the form of the
coproduct ∆ : k[T ] → K[T ] ⊗ k[T ] which sends Tn to (T ⊗ 1 + 1 ⊗ T )n; thus ∆
applied to a polynomial f(T ) of degree < d is mapped to

∑
i gi⊗hi with the degree

of each gi and each hi < d.
The fact that prd ◦jd is injective (and thus an isomorphism by dimension consid-

erations) is evident by inspection. For d = pr, one easily checks that the coalgebra
structure on k[T ] induces a coalgebra structure on k[T ]/T p

r

. �

We summarize some of the relationships between various functors on rational
Ga-modules. We denote the abelian category of such rational modules either by
(Ga-Mod) or by (k[Ga]-coMod); we denote the category of rational modules for the
infinitesimal group scheme Ga(r) either by (Ga(r)-Mod) or by (k[Ga(r)]-coMod).

We denote by

ρr : (Ga-Mod) → (Ga(r)-Mod)
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the restriction functor sending a rational Ga-module M with coporoduct M →
M ⊗ k[Ga] to the comodule for k[Ga(r)] with coproduct defined by composition
with the projection prpr : k[Ga]→ k[Ga(r)].

Proposition 1.12. Consider the full subcategory ιd : (k[Ga]<d-coMod) ⊂ (k[Ga]-coMod)
of rational Ga-modules M whose coproduct is of the form M →M ⊗ k[Ga]<d.

(1) The image of ιd consists of rational Ga-modules M such that M = M<d.
(2) For any d > 0, ιd is left adjoint to functor (k[Ga]-coMod)→ (k[Ga]<d-coMod)

given by (−)<d.
(3) For any r > 0, the composition

ρr ◦ ιpr : (Ga-Mod)<pr
∼→ Mod(Ga(r))

is an equivalence of categories.

Proof. The first statement is essentially a tautology. The fact that ιd is left adjoint
to (−)<d follows from the observation that if f : M → N is a map of kGa-modules
and if φ ∈ kGa vanishes on M , then f factors (uniquely) through Nφ ⊂ N .

The last statement is a consequence of the isomorphism prpr ◦ jpr : k[T ]<pr
∼→

k[T ]/T p
r

of Proposition 1.11. Namely, viewing ρr and ιpr as functors on categories
of comodules, ιpr is determined on comodules by composing with jpr and ρpr is
determined by composing with prpr . �

2. Rational modules for unipotent groups

Let UN denote the unipotent radical of the standard (upper triangular) Borel
subgroup of the general linear group GLN . Then k[UN ] is a polynomial algebra on
the strictly upper triangular coordinate functions {xi,j ; 1 ≤ i < j ≤ N}. We equip
k[UN ] with the grading determined by setting the degree of each xi,j equal to 1. A
closed embedding U ⊂ UN of linear algebraic groups is said to be linear if the ideal
IU ⊂ k[UN ] defining U ⊂ UN is generated by functions f(xi,j) of degree 1. This
implies that the maximal ideal at the identity of U , mU ⊂ k[U ], is generated by
m elements where m = dim(U), so that k[U ] can be identified with the symmetric
algebra S•(mU/m

2
U ).

For any d > 0, we set k[UN ]<d ⊂ k[UN ] equal to the subspace of polynomials
(functions on UN ) of degree < d.

Proposition 2.1. Let i : U → UN be a closed embedding of linear algebraic groups.
Set k[U ]<d ⊂ k[U ] equal to the image under i∗ of k[UN ]<d ⊂ k[UN ]. The map
of Hopf algebras i∗ : k[UN ]→ k[U ] induces for each d > 0 a map of coalgebras

k[UN ]<d → k[U ]<d.

Proof. The coproduct ∆UN : k[UN ]→ k[UN ]⊗ k[UN ] of the Hopf algebra k[UN ] is
a map of algebras, determined by

∆UN (xi,j) = (xi,j ⊗ 1) + (
∑

t;i<t<j

xi,t ⊗ xt,j) + (1⊗ xi,j).

In particular, if f ∈ k[UN ] has degree < d and if ∆UN (f) =
∑
i f
′
i ⊗ f ′′i , then each

f ′i and each f ′′i also has degree < d.



8 ERIC M. FRIEDLANDER

Because i∗ is a map of Hopf algebras, i∗ determines a commutative square of
algebras

(2.1.1) k[UN ]
∆UN //

i∗

��

k[UN ]⊗ k[UN ]

i∗⊗i∗

��
k[U ]

∆U

// k[U ]⊗ k[U ].

A simple diagram chase implies that (2.1.1) restricts to a commutative square

(2.1.2) k[UN ]<d
∆UN //

i∗

��

k[UN ]<d ⊗ k[UN ]<d

i∗⊗i∗

��
k[U ]<d

∆U

// k[U ]<d ⊗ k[U ]<d.

�

In particular, each subspace k[U ]<d ⊂ k[U ] is a rational U -module with coaction
k[U ]<d → k[U ]<d ⊗ k[U ] given by the coalgebra structure on k[U ]<d.

Definition 2.2. Let U be a linear algebraic group provided with a closed embed-
ding i : U → UN for some N . For any rational U -module M and any d > 0, we
define

(2.2.1) M<d ≡ {m ∈M : ∆M (m) ∈M ⊗ k[U ]<d}.
The degree filtration on M is the filtration

M<1 ⊂ M<2 ⊂M<3 ⊂ · · ·M.

If M = M<d, then we say that M has filtration degree < d.

The following proposition will prove useful at many points; in particular, it
implies that the degree filtration of (2.2.1) is a filtration by rational Ga-modules.

Proposition 2.3. Let C be a coalgebra over k and i : B ⊂ C a right coideal (i.e.,
∆C : C → C ⊗ C restricts to ∆B : B → B ⊗ C). For any right C-comodule M
(i.e., ∆M : M →M ⊗ C), the subspace

M ′ ≡ ∆−1
M (M ⊗B) ⊂ M

is a right C-subcomodule of M . Moreover, if i : B ⊂ C is a sub-coalgebra, then
M ′ is a right B-comodule.

In particular, let G be a linear algebraic group and let B ⊂ k[G] be a right co-
ideal (i.e., a rational G-submodule of k[G]). Then for any rational G-module M ,
the subspace M ′ ≡ ∆−1

M (M ⊗B) ⊂M is a rational G-submodule.

Proof. The comodule structure map ∆M : M → M ⊗ C for M is a map of right
C-comodules provided that the right C-comodule structure on M ⊗ C is given by
sending m⊗c to m⊗∆C(c). Since i : B ⊂ C is a right coideal, 1⊗i : M⊗B ⊂M⊗C
is a right C-comodule. We claim that the pre-image M ′ ≡ ∆−1

M (M ⊗ B) (in the
abelian category of right C-modules) of the right C-subcomodule M ⊗B ⊂M ⊗C
with respect to the map ∆M : M → M ⊗ C of right C-comodules is a right C-
comodule as asserted. Namely, the kernel K ⊂M⊕ (M⊗B) of the map of right C-
modules (∆M , (1⊗i)) : M⊕(M⊗B) → M⊗C maps isomorphically via projection



FILTRATIONS, 1-PARAMETER SUBGROUPS, AND RATIONAL INJECTIVITY 9

onto the first summand of M⊕(M⊗B) to M ′ ⊂M since 1⊗ i : M⊗B →M⊗C is
injective. Furthermore, the right C-coproduct ∆M ′ : M ′ →M ′⊗C (the restriction
of ∆M ) has image in M ⊗B by definition of M ′.

If B ⊂ C is a sub-coalgebra, then the right C-comodule structure on M ⊗ B,
∆M⊗B : M ⊗B → M ⊗B⊗C, is a right B-comodule structure and thus restricts
to a right B-comodule structure on M ′.

Specializing the previous argument to C = k[G], we get the second assertion
concerning rational G-modules. �

Remark 2.4. To understand the statement of Proposition 2.3, it may be useful to
consider the special case in which G is a discrete group acting on a k-vector space
M , and B ⊂ C is taken to be the inclusion of group algebras k[G/H] ⊂ k[G] for
some normal subgroup H ⊂ G. In this case, M ′ ⊂ M is the subspace of elements
m′ ∈ M with the following property: if gm = m′ for some g ∈ G,m ∈ M , then
ghm = m′ for every h ∈ H.

Specializing C to k[U ] and B to k[U ]<d in Propostion 2.3, we conclude the
following.

Proposition 2.5. Let U be a linear algebraic group provided with a closed embed-
ding into some UN and let M be a rational U -module.

(1) For any d > 0, the subspace M<d ⊂ M of a rational U -module M is a ra-
tional U -submodule of M whose structure arises from a comodule structure
for the sub-coalgebra k[U ]<d of k[U ].

(2) Conversely, if N ⊂ M is a rational U -module whose structure arises from
a comodule structure for k[U ]<d, then N = N<d.

(3) In particular, the degree filtration {M<d, d > 0} is a filtration of M by
rational U -submodules.

Example 2.6. Let M be a rational G-module, with G = U2 ⊂ GL2 (isomorphic
to Ga). Then the degree filtration on M as formulated in Definition 2.2 equals that
in Definition 1.9 for M viewed as a Ga-module).

Example 2.7. Let M be a polynomial GLN -module, homogeneous of degree d−1
(i.e., a comodule for k[MN ]d−1 ⊂ k[GLN ]), and consider M via restriction as a
rational UN -module. Then M has filtration degree < d. This follows immediately
by observing that restriction of M to UN has coproduct M → M ⊗ k[UN ] equal
to the composition (1M ⊗ π) ◦ ∆M : M → M ⊗ k[MN ] → M ⊗ k[UN ], where
π : k[MN ]→ k[UN ] sends xi,j with i < j to xi,j ; xi,i to 1; and xi,j with i > j to 0.

The following proposition asserts that (−)<d is an idempotent functor determin-
ing a right adjoint to the embedding (k[U ]<d-coMod) ↪→ (k[U ]-coMod). This is a
generalization of Proposition 1.12.1 and itself is generalized in Proposition 4.1.

Proposition 2.8. Let U be a linear algebraic group provided with a closed em-
bedding U → UN for some N . Then for any d > 0 and any rational U -module
M

(1) M<d = (M<d)<d (where M<d is given in (2.2.1));
(2) the natural embedding given by the inclusion of coalgebras k[U ]<d → k[U ],

ιd : (k[U ]<d-coMod) ↪→ (k[U ]-coMod),

is left adjoint to the functor

(−)<d : (k[U ]-coMod) → (k[U ]<d-coMod), M 7→M<d.
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Proof. By Proposition 2.3, ∆M<d
: M<d →M<d⊗k[U ] has image in M<d⊗k[U ]<d.

Thus,

(M<d)<d = (∆M<d
)−1(M<d ⊗ k[U ]<d) = M<d.

If M = M<d and N are rational U -modules, then any map f : M → N of
rational U -modules fits in a commutative square

(2.8.1) M
∆M //

f

��

M ⊗ k[UN ]<d

f⊗id
��

N
∆N

// N ⊗ k[U ].

Consequently, f factors uniquely through N<d; this means that (−)<d is right
adjoint to ιd. �

The fact that (−)<d admits an exact left adjoint immediately implies that it sends
injectives to injectives as we make explicit in the following corollary of Proposition
2.8.

Corollary 2.9. For any rationally injective U -module L and any d > 0, L<d is an
injective object of (k[U ]<d-coMod).

For any linear algebraic group G with coordinate algebra k[G], we denote by
G(r) the linear algebraic group whose coordinate algebra k[G(r)] is the base change
k⊗k k[G] along the pr-th power map k → k. The r-th Frobenius map is the natural
map F r : k[G(r)]→ k[G] of k-algebras sending 1⊗ f to fp

r

; for G defined over Fp,
we may view this as an endomorphism of k[G]. We define the r-th Frobenius kernel

G(r) ≡ ker{F r : G→ G(r)} ⊂ G,

so that k[G(r)] = k[G]⊗k[G(r)] k, where k[G(r)]→ k is the counit of k[G(r)]. Thus,

we may identify k[G(r)] with k[G]/(fp
r

, f ∈ mG), the quotient of k[G] by the ideal
generated by pr-th powers of elements in the maximal ideal at the identity (i.e.,
generated by fp

r

for all f ∈ k[G] with f(1) = 0). The quotient map k[G] � k[G(r)]
is a map of Hopf algebras.

The following proposition should be compared and contrasted with Proposition
1.11.

Proposition 2.10. Let U be a connected linear algebraic group provided with a
closed embedding i : U → UN for some N . Let m denote the dimension of U . Then
for any r > 0

(1) The composition k[U ]<pr ⊂ k[U ] � k[U(r)] is injective.
(2) The dimension of k[U(r)] equals prm.
(3) The composition

k[U ]
<pr·N(N−1)

2
⊂ k[U ] � k[U(r)]

is surjective.
(4) If the closed embedding i : U ⊂ UN is linear, then the dimension of k[U ]<pr

equals
(
m+pr−1

pr

)
; if m > 1, then this is not divisible by prm.

Proof. Every non-zero element of mU has positive degree in k[U ] (i.e., is not con-

stant), so that k[U ]<pr ∩mp
r

U = 0; this proves (1).
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The computation in (2) of the dimension of k[U(r)] can be verified as follows.
For r = 1, k[U(1)] is dual to the restricted enveloping algebra of u = Lie(U) and
therefore has dimension equal to pm. Furthermore, the quotient U(r)/U(r−1) is
isomorphic to U(1) for r > 1, so the computation is concluded using induction on r.

The commutativity of the following diagram with surjective vertical maps

(2.10.1) k[UN ]<pr+s //

��

k[UN ] //

��

k[UN(r)]

��
k[U ]<pr+s // k[U ] // k[U(r)]

reduces the proof of (3) to the case that U = UN . In this case, m = N(N−1)
2 . We

view k[UN ]<pr·m → k[UN(r)] as the surjective map from the space of polynomials
in m variables spanned by monomials of total degree < pr · m to the space of
polynomials in the same variables spanned by monomials not divisible by the pr-th
power of any variable.

To prove (4), observe that the dimension of those polynomial functions of total
degree < pr in m variables equals the dimension of those homogeneous polynomial
functions of degree pr in m + 1 variables. One checks recursively that the latter

dimension equals
(
m+pr−1
pr−1

)
; this is not a p-th power provided that m ≥ 1. �

For some time, we tried to prove the following injectivity criterion for rational
Ga-modules: if M is a rational Ga-module whose restriction to each Ga(r) is injec-
tive, then M is injective. As the following proposition makes clear, this “support
variety criterion for injectivity” fails miserably not just for Ga but for any connected
unipotent algebraic group.

Proposition 2.11. Let U be a connected unipotent algebraic group of positive di-
mension and let U ⊂ G be a closed embedding of U in a reductive group G. Then
k[G] is not injective as a rational U -module, whereas the restriction of k[G] to each
Frobenius kernel U(r) of U is injective.

Proof. As shown in [2, 2.1,4.5] (see also Proposition 4.4 below), for a closed sub-
group H of a reductive algebraic group G to satisfy the condition that k[G] is
injective as a rational k[H]-module, it is necessary and sufficient that H be reduc-
tive. In particular, k[G] is not injective as a rational U -module.

On the other hand, k[G] is rationally injective as a G-module and thus projective
as an kG(r)-module for any r > 0. Since kG(r) is free as a kU(r)-module (see, for
example, [8]), we conclude that k[G] is projective (in fact, free) when restricted to
each Frobenius kernel U(r). �

In order to provide a necessary and sufficient criterion of for rational injectivity
for rational U -modules, we mention the following structure property for rationally
injective modules for a unipotent algebraic group U . We remind the reader V ⊗k[G]
is rationally injective for any affine algebraic group G and any k-vector space V
(see [8]).

Proposition 2.12. Let U be a connected, unipotent algebraic group. Let L be
a rationally injective U -module and set L0 = H0(U,L). There exists a map f :
L → L0 ⊗ k[U ] of rational U -modules whose restriction to L0 identifies L0 with
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L0 ⊗ 1 ⊂ L0 ⊗ k[U ]; in particular, such a map f is injective when restricted to
L0 ⊂ L.

Moreover, a map f : L → L0 ⊗ k[U ] of rational U -modules is an isomorphism
if and only if the induced map H0(f) : H0(U,L) = L0 → H0(U,L0 ⊗ k[U ]) is an
isomorphism of vector spaces.

Proof. The existence of a map f : L→ L0⊗k[U ] of rational U -modules which “is the
identity on L0” is an immediate consequence of the extension mapping property
of the rationally injective k[U ]-module L0 ⊗ k[U ] applied to the monomorphism
L0 ⊂ L. This map is necessarily injective because it is injective on the socle of L.

Clearly, the condition that H0(f) be an isomorphism is necessary for f to be an
isomorphism. Since U is unipotent, H0(U,L) is the socle of both L and L0 ⊗ k[U ].
Thus, the condition that H0(f) be injective implies that f is itself injective because
a non-trivial kernel of f would have to meet the socle of L non-trivially. If f is
injective, the rational injectivity of L implies the existence of some g : L0⊗k[U ] →
L with g ◦ f = id. On the other hand, if L0 ⊗ k[U ] ' L ⊕ L′ with L′ 6= 0, then
H0(f) is not surjective. �

If U is a unipotent algebraic group, rational injectivity of a rational U -module
L can be detected on submodules L<pr by arguing by induction on the dimension
of the socle of L. This is done in the following proposition, which motivates the
criterion of Proposition 4.2 for an arbitrary linear algebraic group of exponential
type.

Proposition 2.13. Let U be a linear algebraic group provided with a closed embed-
ding i : U → UN for some N . Then a rational U -module L is rationally injective
if and only if L<pr ⊂ L is injective as a k[U ]<pr -comodule for each r > 0.

In particular, if U ' Ga, then a rational Ga-module L is rationally injective if
and only if for all r > 0 the restriction of L<pr ⊂ L to kGa(r) (via ρr ◦ ι<pr of
Proposition 1.12) is free.

Proof. By Corollary 2.9, the restriction of a rationally injective U -module is injec-
tive as a k[U ]<pr -comodule for each r > 0. For U ' Ga, Proposition 1.12(3) tells us
that injective k[Ga]<pr -comodules are injective (equivalently, free) kGa(r)-modules.

To prove the converse, consider some rational U -module L such that L<pr ⊂ L
is injective as a k[U ]<pr -comodule for each r > 0. Let L0 denote the socle of L. As
in Proposition 2.12, let f : L → L0 ⊗ k[U ] be some injective map of rational U -
modules extending L0 ⊂ L0⊗ k[U ]. We proceed to show that f is an isomorphism.
Namely, for each r > 0, we use the injectivity of L<pr as a k[U ]<pr -comodule to
extend the identity map L<pr → L<pr along the monomorphism fr : L<pr →
L0⊗k[U ]<pr to some k[U ]<pr -comodule homomorphism gr : L0⊗k[U ]<pr → L<pr .
The fact that gr extends the identity map implies that gr is surjective. On the
other hand, gr induces an isomorphism on socles, so must be injective. Thus, each
fr is an isomorphism (with inverse gr). Since f = lim−→r

fr, we conclude that f is an

isomorphism. �

Remark 2.14. Proposition 2.13 stands in contrast with Proposition 2.10: k[U ]<pr

is not free as a U(r)-module if the dimension of U is greater than 1.



FILTRATIONS, 1-PARAMETER SUBGROUPS, AND RATIONAL INJECTIVITY 13

3. Filtrations on rational G-modules for G of exponential type

Throughout this section, G denotes a connected linear algebraic group with Lie
algebra g. We denote by Cr(Np(g)) the variety of r-tuples (B0, . . . , Br−1) of pair-

wise commuting, p-nilpotent elements of g; in other words, each Bi satisfies B
[p]
i = 0

and each pair Bi, Bj satisfies [Bi, Bj ] = 0. We denote by Vr(G) the variety of height
r infinitesimal 1-parameter subgroups Ga(r) → G of G.

We begin by recalling from [4, 1.6] the definition of a structure of exponential
type on a linear algebraic group, a definition which extends the formulation in [12]
of an embedding G ⊂ GLn of exponential type. Up to isomorphism (as made
explicit in [4, 1.7]), if such a structure exists then it is unique.

Definition 3.1. [4, 1.6] Let G be a linear algebraic group with Lie algebra g. A
structure of exponential type on G is a morphism of k-schemes

(3.1.1) E : Np(g)×Ga → G, (B, s) 7→ EB(s)

such that

(1) For each B ∈ Np(g)(k), EB : Ga → G is a 1-parameter subgroup.
(2) For any pair of commuting p-nilpotent elements B,B′ ∈ g, the maps
EB , EB′ : Ga → G commute.

(3) For any commutative k-algebraA, any α ∈ A, and any s ∈ Ga(A), Eα·B(s) =
EB(α · s).

(4) Every 1-parameter subgroup ψ : Ga → G is of the form

EB ≡
r−1∏
s=0

(EBs ◦ F s)

for some r > 0, someB ∈ Cr(Np(g)); furthermore, Cr(Np(g))→ Vr(G), B 7→
EB ◦ ir is an isomorphism for each r > 0.

A connected linear algebraic group which admits a structure of exponential type
is said to be a linear algebraic group of exponential type.

Moreover, H ⊂ G is said to be an embedding of exponential type if H is equipped
with the structure of exponential type given by restricting that provided to G; in
particular, we require E : Np(g)×Ga → G to restrict to E : Np(h)×Ga → H.

The following explicit example [12, 1.2] helps to illuminate Definition 3.1.

Example 3.2. Let glN = Lie(GLN ). Then the pairing
(3.2.1)

E : Np(glN )×Ga → GLN , (B, t) 7→ expB(t) ≡ 1 + tB +
(tB)2

2
+ · · ·+ (tB)p−1

(p− 1)!

defines a structure of exponential type on GLN .

Many familiar linear algebraic groups are linear algebraic groups of exponential
type as recalled in the following example.

Example 3.3. The following linear algebraic groups are of exponential type.

• Any simple algebraic group of classical type, any parabolic subgroup of
such a group, any unipotent radical of such a parabolic subgroup is of
exponential type [12, 1.8].
• Any reductive algebraic group G with Coxeter number h(G) ≤ p and PSLp

not a factor of [G,G] is of exponential type [11].
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• Any unipotent radical of a parabolic subgroup of SLN or a product of
commuting root groups in SLn.
• Any unipotent algebraic group U of nilpotent class < p is of exponential

type, with the Campbell-Hausdorff-Baker formula determining the expo-
nential structure.

We introduce a filtration {M[d], d > 0} on a rational G module M for G a linear
algebraic group of exponential type. For G = UN with N ≤ p, this filtration is
comparable to the filtration of Definition 2.2 as seen in Remark 3.12; this filtration
is a natural extension of the condition that a rational G module have exponential
degree < pr as introduced in [4, 4.5].

We first define {k[G][d], d > 0} on the coordinate algebra k[G] of a linear algebraic
group G of exponential type; this is shown in Proposition 3.5 to be a filtration by
sub-coalgebras.

Definition 3.4. Let G be a linear algebraic group of exponential type, E : Np(g)×
Ga → G. For any d ≥ 0, we define (k[G])[d] ⊂ k[G] as follows:

(k[G])[d] ≡ {f ∈ k[G] : (EB∗(vj))(f) = 0, ∀B ∈ Np(g), j > d}.
In other words, (k[G])[d] is the pre-image under E∗ : k[G] → k[Ga] ⊗ k[Np] of
(k[Np])[T ]<d+1.

In what follows, we shall employ the notation

E∗B : k[G]→ k[Ga], EB∗ : kGa → kG

for the maps on coordinate algebras and group algebras induced by EBGa → G.

Proposition 3.5. Let G be a linear algebraic group of exponential type. For any
d ≥ 0, (k[G])[d] ⊂ k[G] is a sub-coalgebra. In particular, (k[G])[d] is a rational
G-submodule of k[G].

Moreover, (k[G])[0] is a sub-Hopf algebra of k[G].

Proof. Let f ∈ k[T ], B ∈ Np(g). Because EB : Ga → G is a morphism of algebraic
groups,

E∗B(∆G(f)) = ∆Ga(E∗B(f)) ∈ k[Ga]⊗ k[Ga].

On the other hand, if p(T ) = E∗B(f) ∈ k[Ga] has degree < d+ 1, then ∆Ga(p(T )) is
of the form

∑
i pi(T )⊗ p′i(T ) with each pi(T ), p′i(T ) having degree < d+ 1. Thus,

the coproduct of k[G] restricts to a coproduct on (k[G])[d].
The multiplicative structure of the commutative k-algebra k[G] restricts to a

multiplicative structure (k[G])[0] ⊗ (k[G])[0] → (k[G])[0] (since the product of two
polynomials in k[T ] of degree < 1 is again of degree < 1), thereby verifying that
(k[G])[0] is a sub-Hopf algebra of k[G]. �

We investigate the relationship between the filtration of Definition 3.4 to that of
Proposition 2.1. We point out the following elementary computation: for B ∈ UN ,
expB(xi,j) ∈ k[T ] equals the (i, j)-th entry of the matrix 1 + BT + B2·T 2/2 +
· · ·Bp−1T p−1/(p− 1)!.

Proposition 3.6. Let U be a linear algebraic group provided with a closed embed-
ding i : U ⊂ UN of exponential type. For any d > 0,

k[U ]<d ⊂ (k[U ])[(p−1)(d−1]).

On the other hand, if k 6= k[U ][0] ⊂ k[U ] (e.g., U = UN with N > p; see Example
3.7), then k[U ][0] is not contained in k[U ]<d for any d.
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Proof. In the special case U = UN , E∗B(xi,j), 1 ≤ i < j ≤ N , is the polynomial in T
whose coefficient of Tn is 1/(n!) times the (i, j)-th entry of Bn for any n, 1 ≤ n < p.
Thus, the ring homomorphism E∗B sends a polynomial in the xi,j of degree ≤ d−1 to
a polynomial in T of degree ≤ (p−1)(d−1). Hence EB∗(vj) applied to f ∈ k[UN ]<d
is 0 for j > (p− 1)(d− 1). For U ⊂ UN of exponential type, this argument restricts
to U . This establishes the inclusion k[U ]<d ⊂ (k[U ])[(p−1)(d−1)].

If there exists a non-constant function f ∈ k[U ][0], then f̃ ∈ k[UN ] mapping to
f must have positive degree. Thus, powers of f (also in the Hopf algebra k[U ][0])
have arbitrarily large degree. �

The following examples point out that even for UN the comparison of the filtra-
tions of Definition 3.4 and 2.1 is not entirely straight-forward.

Example 3.7. Let U = U3 and consider f = 2x1,3− x1,2x2,3 ∈ k[U3]. Then for all
B ∈ U3, the degree of exp∗B(f) ∈ k[T ] is ≤ 1 whereas f /∈ k[U3]<2.

Let U = UN with N > p. Then f =
∏N−1
i=1 xi,i+1 satisfies the property that

exp∗B(f) =
∏N−1
i=1 exp∗B(xi,i+1) = 0 for any B such that Bp = 0. Therefore f ∈

(k[UN ])0].

In the special case U = UN , N ≤ p, we verify that our two filtrations are
equivalent.

Proposition 3.8. Assume that N ≤ p. Then

(k[UN ])[e−1] ⊂ k[UN ]<d ⊂ (k[UN ])[(p−1)(d−1]

provided that e(N − 1) < d.

Proof. To prove the inclusion (k[UN ])[e−1] ⊂ k[UN ]<d for N ≤ p, for each f ∈
k[UN ] of degree D ≥ d in the matrix functions xi,j (with i < j) we must exhibit a
strictly upper triangular matrix B such that exp∗B(f) ∈ k[T ] has degree ≥ e. We
write

f =
∑
d

adxd, xd =
∏
i<j

x
di,j
i,j , deg(d) =

∑
di,j .

We say that a monomial xd′ is a contraction of another monomial xd if xd′ can
be obtained from xd by iterated replacement of a string of factors of the form
xi,s1 , xs1,s2 , . . . , xs`,j by the single factor xi,j . We say that a monomial xe appearing
in f (i.e., such that ae 6= 0) is reduced for f provided that each monomial xd of the
same degree as xe satisfying di,j 6= 0 only if ei,j 6= 0 (but not necessarily appearing
in f) has no contraction of smaller degree appearing in f .

Starting with a monomial xD appearing of f of top degree D, we identify by
following repeated contractions some reduced monomial xe appearing in f of degree
e with e(N − 1) ≥ D ≥ d. We consider matrices B with the property that bi,j 6= 0
only if ei,j 6= 0 for this reduced monomial xe of degree e. We claim that the
coefficient of T e in exp∗B(f) equals the sum

(3.8.1)
∑
d

ad(
∏
i<j

b
di,j
i,j ),

where the sum is taken over all monomials xd of f of degree e with di,j 6= 0
only if ei,j 6= 0. First, observe that for any monomial xd′ , we have exp∗B(xd′) =∏

(exp∗B(xi,j))
d′i,j . This implies that if xd′ has degree > e, then the coefficient of

T e in exp∗B(xd′) is 0. Moreover, if xd has degree = e, then the coefficient of T e in
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exp∗B(xd) equals ad(
∏
i<j b

di,j
i,j ). Finally, if xd′ has degree < e, then the coefficient

of T e in exp∗B(xd′) is non-zero only if some factor xi,j is non-zero on a power Bs of
B with s > 0; this implies that xd′ is a contraction of some monomial xd of degree
e with di,j 6= 0 only if ei,j 6= 0; since xe is assumed to be reduced, this implies that
xd′ does not appear in f .

We view (3.8.1) as a polynomial in the variables bi,j with (i, j) running through
pairs 1 ≤ i < j ≤ N such that ei,j 6= 0 for our chosen xe for the given f of
degree D. Since this polynomial is not constant, we may find values for the bi,j ’s
constituting a matrix B such that exp∗B(f) has non-zero coefficient of T e; in other
words, f /∈ (k[UN ])[e−1].

The second inclusion is a special case of Proposition 3.6. �

One consequence of the following proposition is that (k[G])[d] is never finite
dimensional if G is a non-trivial reductive algebraic group, since for reductive G
the kernel ideal of k[G] → k[Up] is an infinite dimensional vector space. Indeed,
for G reductive, the Krull dimension of k[G] equals the Krull dimension of k[U ]
plus the rank of G, and the Krull dimension of k[U ] is greater or equal to the
Krull dimension of k[Up]. Here, and in the proposition below, U ⊂ G is the closed
subvariety of unipotent elements and Up ⊂ U is the closed subvariety of elements
whose p-th power is the identity.

Proposition 3.9. Let G be a linear algebraic group of exponential type and let
Up(G) ⊂ G denote the closed variety of p-unipotent elements of G. Then E∗ :
k[G] → k[Np(g)]⊗ k[Ga] factors through an embedding

(3.9.1) E∗ : k[Up(G)] ↪→ k[Np(g)]⊗ k[Ga].

Consequently, the augmentation ideal of (k[G])[0] (i.e., the functions f ∈ (k[G])[0] ⊂
k[G] such that f(idG) = 0) equals the ideal in k[G] of those functions on G which
vanish on Up(G) ⊂ G.

Proof. If f ∈ k[G] vanishes on Up(G) (i.e. lies in the ideal defining the closed
subvariety Up(G) ⊂ G), then E∗B(f) = 0 for all B ∈ Np(g) since EB : Ga → G
factors through Up. This implies that E∗ factors through k[Up(G)], for if not then
there exists some f ∈ k[G] vanishing on Up(G) such that E∗(f) =

∑
i fi ⊗ T i ∈

k[Np(g)]⊗ k[T ] is non-zero; for such an f and some i with fi 6= 0, find B ∈ Np(g)
such that fi(B) 6= 0; then E∗B(f) 6= 0, contradicting the assumption that E∗(f) = 0.
On the other hand, this induced map k[Up(G)]→ k[Np(g)]⊗ k[Ga] is injective, for
its composition with id ⊗ eval1 : k[Np(g)] ⊗ k[Ga] → k[Np(g)] is an isomorphism
by condition (4) of Definition 3.1.

In particular, we have shown that the kernel of E∗ : k[G] → k[Ga] ⊗ k[Np(g)]
equals the kernel of the restriction map k[G]→ k[Up] which equals the ideal of those
functions on G which vanish on Up(G) ⊂ G. On the other hand, (k[G])[0] consists
of those f ∈ k[G] such that E∗B(f) is constant (i.e., lies in k for all B). Therefore,
the augmentation ideal of (k[G])[0] equals the ideal of Up(G). �

We introduce the filtration by exponential degree on a rational G-module, an
“extension” of the degree filtration on a rational U -module given in Definition 2.2.

Definition 3.10. Let G be a linear algebraic group of exponential type and let M
be a rational G-module. For any d ≥ 0, we define

(3.10.1) M[d] ≡ {m ∈M : ∆M (m) ∈M ⊗ (k[G])[d]}.
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The filtration by exponential degree on M is the filtration

M[0] ⊂ M[1] ⊂ · · · ⊂ M.

We say that M has exponential degree ≤ d if M = M[d].

Proposition 3.11. With notation as in Definition 3.10, M[d] ⊂ M consists of
those elements m ∈M such that (EB)∗(vj) ∈ kG vanishes on m for all B ∈ Np(g)
and all j > d.

Proof. If ∆M (m) ∈M ⊗ k[G] lies in M ⊗ (k[G])[d], then the composition

(1⊗ evB ⊗ 1) ◦ E∗ ◦∆M : M →M ⊗ k[G]→M ⊗ k[Np(g)]⊗ k[T ]→M ⊗ k[T ]

has image in M ⊗ k[T ]≤d and equals E∗B ◦ ∆M (m); thus, (EB)∗(vj) applied to m
vanishes for all B ∈ Np(g) and all j > d.

Conversely, if ∆M (m) =
∑
αmα ⊗ fα ∈ M ⊗ k[G] with some fα of degree > d,

then
E∗(∆M (m)) =

∑
α

mα ⊗
∑
j

gα,j ⊗ T j ∈M ⊗ k[Np(g)]⊗ k[T ]

with some gα,j 6= 0 for j > d. Then for any B ∈ Np(g) such that gα,j(B) 6= 0,
E∗B(vj)(m) =

∑
α,j gα,j(B)mα ⊗ T j 6= 0. �

Remark 3.12. Let G be a linear algebraic group of exponential type and let M
be a rational G-module. The condition that M has exponential degree ≤ pr − 1 is
equivalent to the condition that M has exponential degree < pr in the sense of [4,
4.5].

Take G to equal UN for some N ≤ p and M be a rational U -module. By
Propositions 2.5 and 3.8, the condition M = M<d in the sense of Definition 2.2
implies that M = M[(p−1)(d−1)] in the sense of Definition 3.10. Similarly, the
condition that M = M[e−1] in the sense of Definition 3.10 implies that M = M<d

in the sense of Definition 2.2 provided that e(N − 1) < d.

The following are natural examples of rational G-modules of (explicitly) bounded
exponential degree.

Example 3.13. Let S(N, d) denote the Schur algebra, so that the linear dual of
S(N, d) is the coalgebra k[MN ]d, the vector space of polynomials homogeneous of
degree d in the variables {xi,j , 1 ≤ i, j ≤ N}. We verify that

(3.13.1) k[MN ]d ↪→ k[GLN ][(p−1)d].

Namely, if B is a p-nilpotent, N ×N matrix, then exp∗B(xi,j) ∈ k[T ] = k[Ga] is the
(i, j)-th entry of the matrix 1 +BT +B2T 2/2 + · · ·+Bp−1T p−1/(p− 1)! which has
degree ≤ p−1 (as a polynomial in T ). Thus, if f ∈ k[GLN ] is homogenous of degree
d in the xi,j (i.e., in the image of k[MN ]d), then exp∗B(f) has degree ≤ (p− 1)d.

Consequently, if M is a polynomial representation of GLN homogeneous of de-
gree d (i.e., a comodule for k[MN ]d), then M = M[(p−1)d].

Example 3.14. Let G be a reductive group with a structure of exponential type
and let M be a rational G-module all of whose high weights µ satisfy the condition

that 2
∑l
j=1〈µ, ω∨j 〉 < pr. Here, {ω1, . . . , ω`} is the set of fundamental dominant

weights of G (with respect to some T ⊂ B ⊂ G) and

ω∨j = 2ωj/〈αj , αj〉.
Then M = M[pr−1] as seen in [3, 2.7] following [1, 4.6.2].
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We provide various properties of our filtration by exponential degree of rational
G-modules.

Theorem 3.15. Let G be a linear algebraic group of exponential type and let M
be a rational G-module.

(1) The abelian category of comodules for the coalgebra (k[G])[d] equals the full
subcategory of (G-Mod) consisting of those rational G-modules of exponen-
tial degree ≤ d (i.e., M such that M = M[d]).

(2) The filtration {M[d], d ≥ 0} of M is independent of the choice of structure
of exponential type for G.

(3) If M is a finite dimensional rational G-module, then M = M[d] for d >> 0.
(4) M = ∪dM[d] for any rational G-module M .
(5) The filtration of k[G] by exponential degree, {(k[G])[d], d ≥ 0}, is finite if

and only if Np(g) = {0}.
(6) If M has exponential degree ≤ d, then its Frobenius twist M (1) has expo-

nential degree ≤ pd.
(7) If M ′ has exponential degree ≤ d and if f : M ′ → M is a map of rational

G-modules, then f(M ′) ⊂ M[d].
(8) If f : M ′ ↪→M is an inclusion of rational G-modules and if m′ ∈M ′\M ′[d],

then f(m′) ∈M\M[d].
(9) If j : H ⊂ G is an embedding of exponential type and if M has exponential

degree ≤ d as a rational G-module, then the restriction to H of M has
exponential degree ≤ d as a rational H-module.

Proof. Property (1) is merely a rephrasing of the condition that a rationalG-module
M satisfies the condition M = M[d].

Property (2) follows from [4, 1.7]; property (3) is established in [4, 2.6]. Since
any rational G-module is a union of its finite dimensional submodules, property (4)
follows from property (3).

If Np(g) = 0, then by condition (4) of Definition 3.1 there are no non-trivial 1-
parameter subgroups Ga → G so that k[G] = k[G][0]. Conversely, If ψ : Ga → G is a
non-trivial 1-parameter subgroup, then ψ∗ : k[G]→ k[Ga] has infinite dimensional
image so that for each d > 0 there exist f ∈ k[G] which do not lie in k[G][d].

The Frobenius twist of a rational G-module M , M (1), has as its coproduct struc-
ture ∆M(1) : M (1) →M (1) ⊗ k[G] the composition

(1M ⊗ F ) ◦ (∆M )(1) : M (1) →M (1) ⊗ k[G](1) →M (1) ⊗ k[G]

where F : k[G](1) → k[G] is the k-linear map sending α ⊗ f ∈ k ⊗φ k[G] to αfp ∈
k[G]. For any 1-parameter subgroup ψ : Ga → G, ψ∗(fp) = (ψ∗(f))p ∈ k[Ga], so
that the image under F : k[G](1) → k[G] of (k[G])[d])

(1) lies in (k[G])[pd], thereby
establishing property (6).

Properties (7) and (8) are easy consequences Definition 3.10 and the fact that a
map f : M ′ →M is a map of k[G]-comodules.
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Finally, the condition that j : H ⊂ G be an embedding of exponential type (see
Definition 3.1) implies the commutativity of the square

(3.15.1) k[G]

j∗

��

E∗ // k[Np(g)]⊗ k[Ga]

j∗⊗1

��
k[H]

E∗
// k[Np(h)]⊗ k[Ga].

The surjectivity of j∗ together with the commutativity of (3.15.1) implies that j∗

restricts to j∗d : (k[G])[d] → (k[H])[d]. Thus, if the coproduct ∆M : M →M ⊗ k[G]
for the rational G-module M factors through M ⊗ (k[G])[d], then the coproduct for
M restricted to H factors through M ⊗ (k[H])[d]. �

A key definition of [4] is that of the (p-nilpotent) action at a 1-parameter
subgroup EB : Ga → G of a linear algebraic group G of exponential type act-
ing on a rational G-module M . In [4, 2.6.1], this is defined to be the action of∑
s≥0(EBs)∗(us) ∈ kG acting on M .

Definition 3.16. [4, 4.4] Let G of a linear algebraic group G of exponential type
and M a rational G-module. Then the support variety of M , V (G)M ⊂ V (G),
is the subvariety of those 1-parameter subgroups EB : Ga → G at which the action
of G on M is not free (in the sense that M is not free k[t]/tp-module with t acting
as
∑
s≥0(EBs)∗(us)).

For anyB ∈ C∞(Np(g)) and any r > 0, we set Λr(B) equal to (Br−1, Br−2, . . . , B0).
Thus, EΛr(B) : Ga → G can be viewed as an infinitesimal 1-parameter subgroup
Ga(r) → G(r). As shown in [4, 4.3], the π-points k[u]/up → kG(r) given by sending

u to
∑r−1
s=0(EBs)∗(us) and to (EΛr(B))∗(ur−1) are equivalent. One consequence of

this equivalence of π-points is the close relationship between support varieties as
defined in Definition 3.16 for a linear algebraic group G and the support varieties for
the Frobenius kernels G(r) as defined for any finite group scheme. This enables the
proof (given in [4, 4.6.1]) of the following proposition giving a consequence involv-
ing support varieties of the hypothesis that a rational G-modules has exponential
degree < pr.

Proposition 3.17. ([4, 4.6.1]) Let G be a linear algebraic group of exponential type
and let M be a rational G-module such that M = M[d]. If pr > d (so that M has
exponential degree < pr), then the support variety V (G)M of M satisfies

V (G)M = Λ−1
r (Vr(G)M ).

Here, Λr : C∞(Np(g))→ Cr(Np(g)) sends B to (Br−1, Br−2, . . . , B0).

Proof. This follows immediately from Remark 3.12 and Proposition 4.6.1 of [4]. �

The following simple example makes clear that the condition that M = M[d]

is not equivalent to some condition on the support variety of M . Conceptually,
the support variety of M is the locus of 1-parameter subgroups ψ at which the
p-nilpotent action at ψ is not free, whereas the condition M = M[d] is the condition
on the triviality of the action of EB∗(vj) on M for all B ∈ Np(g) and all j > d.

Example 3.18. Consider the 2-dimensional rational Ga-module YR with basis
{v, w} whose kGa-module structure is given by us(w) = 0,∀s ≥ 0; us(v) = w, s ≤
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R, us(v) = 0,∀s > R. If p > 2, then V (Ga)YR = V (Ga) = A∞ for each R > 0.
On the other hand, YR has exponential degree ≤ R but does not have exponential
degree ≤ R− 1 for each R > 0.

4. Mock Injectives, mock trivials, and the functor (−)[d]

We begin this final section with a list of properties for the “filtration by expo-
nential degree” functor (−)[d] : (G-Mod)→ ((k[G])[d]-coMod). These enable us to
extend the rational injectivity criterion for rational G-modules with G a unipotent
algebraic group (given in Proposition 2.13) to rational G-modules for G an arbitrary
linear algebraic group of exponential type.

We then briefly consider two new classes of rational G-modules: those that are
“mock injective” (have trivial support varieties) and those that are “mock trivial”
(those with trivial p-unipotent action). It is relatively easy to show the existence of
mock injectives and mock trivials, more difficult to construct specific examples and
study general properties of these classes. We conclude with a brief consideration
of the right derived functors of the filtration functors (−)[d], observing that they
occur on the E2-page of a Grothendieck spectral sequence converging to rational
cohomology.

Proposition 4.1. Let G be a linear algebraic group of exponential type and d ≥ 0
a non-negative integer.

(1) The natural embedding ιd : ((k[G])[d]-coMod) ⊂ (G-Mod) is exact and
fully faithful.

(2) The functor (−)[d] : (G-Mod)→ ((k[G])[d]-coMod), M 7→M[d] is left exact
and idempotent (in the sense that (−)[d] = (−)[d] ◦ ιd ◦ (−)[d]).

(3) The natural embedding ιd : ((k[G])[d]-coMod) ⊂ (G-Mod) is left adjoint
to (−)[d].

(4) The category ((k[G])[d]-coMod) has enough injectives; in other words, for
every rational G-module M of exponential degree ≤ d, there exists an in-
clusion of rational G-modules M ↪→ L of exponential degree ≤ d with L an
injective object of ((k[G])[d]-coMod).

Proof. The fact that ιd is fully faithful follows from Theorem 3.15(7); the exactness
statement of Property (1) is clear. The idempotence of Property (2) follows directly
from the definition of the category ((k[G])[d]-coMod) (see Theorem 3.15(1)). The
left exactness of Property (2) is an immediate consequence of the definition of (−)[d].
Property (3) is proved exactly as the adjoint property is proved in Proposition 2.8.

To prove Property (4), recall that (G-Mod) has enough injectives. If M is a
rational G-module of exponential degree ≤ d and if j : M → I is an embedding
of M into a rationally injective G-module I, then j factors through L ≡ I[d] (by
Theorem 3.15(7)). Since ιd is an exact left adjoint to (−)[d], L is an an injective
object of ((k[G])[d]-coMod). �

The following necessary and sufficient criterion for rational injectivity is an ex-
tension of Proposition 2.13.

Proposition 4.2. Let G be a linear algebraic group of exponential type. Then the
following are equivalent for a rational G-module L.

(1) L is rationally injective.
(2) For each d ≥ 0, L[d] is injective in ((k[G])[d]-coMod).
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(3) For some strictly increasing sequence of non-negative integers {di, i ≥ 0},
L[di] is injective in ((k[G])[di]-coMod) for all i ≥ 0.

Proof. If L is injective, then Proposition 4.1(4) implies that L[d] ⊂ L is an injective
object of ((k[G])[d]-coMod). Namely, this is a formal consequence of the fact that
(−)[d] has an exact left adjoint. Thus, condition (1) implies condition (2) which
clearly implies condition (3).

Assume now that the rational G-module has the property that each L[di] ⊂ L is
an injective object of ((k[G])[di]-coMod) for all i ≥ 0. Let M ′ →M be an inclusion
of rational G-modules and observe that (M ′)[di] = M ′ ∩M[di]; let f ′ : M ′ → L
be a map of rational G-modules. Set Ni = (M ′)[di] + M[di−1] ⊂ M[di] (with
N−1 = 0). We inductively define fi : Ni → L[di] extending f ′[di] + fi−1 using the

injectivity of L[di] as an object of ((k[G])[di]-coMod). Using Theorem 3.15(4), we
define f : M → L extending f ′ to be lim−→i

fi : M = lim−→i
Ni → L. �

Definition 4.3. Let G be a connected, linear algebraic group and M a rational
G-module. Then M is said to be mock injective if the restriction of M to each
Frobenius kernel G(r) is injective.

In particular, if G is a linear algebraic group of exponential type, a rational
G-module M is mock injective if and only if V (G)M = 0 (by [4, 6.1]).

The following proposition contrasts the behavior of injectives and mock injec-
tives. The first statement is merely a restatement of Theorem 4.3 and Corollary
4.5 of [2]. We follow the terminology of [2] by saying that the algebraic group G is
reductive if and only if its connected component G0 is a central product of a torus
and a connected, semi-simple algebraic group.

Proposition 4.4. Let G be a linear algebraic group and H a closed subgroup.

(1) The regular representation k[G] of G when restricted to H is rationally
injective if and only if G/H is an affine variety. In particular, if G is
reductive, then k[G] is rationally injective as a rational H module if and
only if H is reductive.

(2) k[G] is always a mock injective H-module.
(3) If H is unipotent and M is a rationally injective H-module, then indGH(M)

is mock injective.

Proof. As mentioned above, (1) is a restatement of Theorem 4.3 and Corollary
4.5 of [2]. The proof of (2) is given in the proof of Proposition 2.11 (with the
notational change of replacing U by H in that proof. Finally, (3) follows from (2)
and Proposition 2.12 which asserts for H unipotent that any rationally injective
H-module L is isomorphic to H0(H,L)⊗ k[H]. �

Corollary 4.5. Let G be linear algebraic group which is not reductive. Then there
exist mock injective G-modules which are not rationally injective.

Proof. If G is not reductive and G ⊂ GLN is a closed embedding of G into some
GLN , then we may apply Proposition 4.4.1 to conclude that k[GLN ] is mock injec-
tive but not injective as a rational G-module. �

The reader should consult the recent paper [14] for examples of mock injectives
for reductive groups.

We next list a few closure properties of the category of mock injectives.
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Proposition 4.6. Let G be a connected, linear algebraic group of exponential type.

(1) If M1,M2 are rational G-modules which are mock injective, then M1 ⊗M2

is mock injective.
(2) If M1,M2 are rational G-modules which are mock injective and if

0→ M1 → M → M3 → 0

is a short exact sequence of rational G-modules, then M is also mock in-
jective.

(3) An arbitrary direct sum of mock injective rational G-modules {Mi, i ∈ I},⊕
i∈IMi, is mock injective.

Proof. We use the criterion for mock injectivity mentioned in Definition 4.3. With
this criterion, (1) and (2) follow immediately from Theorem 4.6 of [4], as does
property (3) if I is finite. To prove (3) for any arbitrary indexing set I, we use the
observation that for B /∈ V (G)M it suffices to show that the action of

∑
s EBs∗(us)

determines a free action of k[t]/tp on M ; this condition is clearly inherited by
arbitrary direct sums. �

We now introduce the class of mock trivial G-modules.

Definition 4.7. Let G be a linear algebraic group with a structure of exponential
type. Then a rational G-module M is said to be mock trivial if M = M[0];
equivalently, if the coproduct structure ∆ : M → M ⊗ k[G] factors through M →
M ⊗ k[G][0].

Proposition 4.8. Let G be a linear algebraic group with a structure of exponential
type. Then a rational G-module M is mock trivial if and only if the pull-back of
M along any 1-parameter subgroup ψ : Ga → G is trivial.

This implies in particular that the p-nilpotent action of G at every 1-parameter
subgroup ψ ∈ V (G) is trivial which in turn implies that the support variety of M ,
V (G)M , equals all of V (G).

Proof. By Proposition 3.11, M is mock trivial if and only if E∗B(M) is trivial as
Ga-module for all 1-parameter subgroups of the form EB : Ga → G, and this is the
case if and only if (EB ◦F i)∗(M) is trivial as a Ga-module for all EB : Ga → B and
all i ≥ 0. Since any 1-parameter subgroup of G is of the form EB =

∏
s EBs ◦ F s

and since the action of (
∏
s EBs ◦ F s)∗(vj) on M equals the product of the actions

of (EBs)∗(vj−ps) on M , we conclude that ψ∗(M) is a trivial Ga-module whenever
M is mock trivial. The converse is clear from the first equivalence mentioned at
the beginning of this proof.

As recalled prior to Definition 3.16, the p-nilpotent action of G at EB =
∏
s EBs ◦

F s is defined in [4, 2.9.1] to be the action of (
∑
s≥0 EBs)∗(us). By the preceding

paragraph, if M is mock trivial, this action is trivial. This immediately implies
that V (G)M = V (G) for any mock trivial rational G-module. �

We state a few properties of the class of mock trivial G-modules. Of course, even
the class of trivial G-modules need not be closed under extensions.

Proposition 4.9. Let G be a linear algebraic group with a structure of exponential
type.

(1) If G 6= Up(G), then k[G][0] is a non-trivial sub Hopf algebra of k[G] and
thus is an indecomposable mock trivial module, but not trivial.
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(2) If G 6= Up(G), then there exist finite dimensional rational G-modules
which are mock trivial but not trivial.

(3) If H ⊂ G is an embedding of exponential type such that xp = 1, x ∈ H
(i.e., H = Up(H) and if M is a mock trivial rational G-module, then M
restricted to H is trivial.

(4) If M is a rational G-module such that M = M[0] and if M ′ ⊂M is rational

G-submodule, then M ′ = (M ′)[0]; similarly, any quotient M of a rational

G-module such that M = M[0] also satisfies M = (M)[0].
(5) A colimit lim−→α

Lα of mock trivial G-modules Lα is again mock trivial.

Proof. By Proposition 3.9, k[G][0] is G 6= Up(G) and by Proposition 3.5 k[G][0] is
a sub Hopf algebra of k[G]; in particular, k[G][0] is a non-trivial rational G-module
M such that M = M[0]. Since the socle of k[G][0] is 1 dimensional, k[G][0] is
indecomposable. To prove (2), we apply (1) and recall that any rational G-module
is a union of its finite dimensional submodules.

If H ⊂ G is an embedding of exponential type, then E : Np(G) × Ga → G
restricts to EH : Np(H) × Ga → H;. this implies that if the comodule structure
for M has the property that it arises from a coproduct M → M ⊗ k[G][0], then
the restriction to H has the property that the coproduct arises from a coproduct
M →M ⊗k[H][0]. Thus, Property (3) follows from Proposition 3.11 (in the special
case d = 1).

Properties (4) and (5) are evident properties of the abelian category of k[G][0]

comodules. �

Remark 4.10. Explicit examples of non-trivial mock trivial modules can be con-
structed using Proposition 3.9. Namely, for a given G, one considers the ideal
IU ⊂ k[G] of functions vanishing on the closed subvariety Up ⊂ G of p-unipotent
elements. By Proposition 3.9, IU ⊂ (k[G])[0]. For any non-empty subspace V ⊂ IU ,
the G-submodule G · V ⊂ (k[G])[0] generated by V is a non-trivial mock trivial
G-module; if V is finite dimensional, G · V is also finite dimensional.

In the following proposition, we view (closed) points of the support variety of
a finite group scheme as equivalence classes of p-points as in [5] rather than use
1-parameter subgroups which provide distinguished representatives of equivalence
classes of p-points as in [12]. Since we do not consider the scheme structure of
support varieties, we do not use the language and technology of π-points found in
[6]. For a finite group scheme H, P (H) consists of the closed points of the scheme
Π(H) of π-points; the points of P (H) are equivalence classes of p-points of H.

Proposition 4.11. Let G be a linear algebraic group of exponential type. If a ratio-
nal G-module M is mock trivial then the restriction of M to each Frobenius kernel
G(r) satisfies the condition that for every [α] ∈ P (G(r)) there exists a representative
α : k[t]/tp → kG(r) such that α∗(M) is trivial as a k[t]/tp-module.

Proof. There is a natural homeomorphism relating P (G(r)) to Vr(G(r)) ' Cr(Np(g))
given by sending B ∈ Cr(Np(g)) to the p-point αB : k[t]/tp → kG(r), t 7→
E(B0,...,Br−1)(ur−1). As shown in [4, 4.3], the equivalence class of [αB ] ∈ P (G(r)) is

also represented by the π-point k[t]/tp → kG(r), t 7→
∑r−1
i=0 (EBi)∗(ur−1−i) (see the

discussion after Definition 3.16). IfM is mock trivial, then each
∑r−1
i=0 (EBi)∗(ur−1−i)

acts trivially on M . �
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We conclude with Grothendieck spectral sequences relating rational cohomology
to the structures we have considered. We view the t-th right derived functor of the
left exact functor (−)[d],

Rt(−)[d] : (G-Mod) → ((k[G])[d]-coMod),

as “derived filtrations functors”.

Proposition 4.12. Let G be a linear algebraic group of exponential type. Denote
by (k-Mod) the abelian category of k-vector spaces. For any d ≥ 0, there is a
natural identification of functors

H0(G,−) ' Hom(k[G])[d]-coMod)(k,−) ◦ (−)[d] : (G-Mod)→ (k-Mod)

leading to a spectral sequence

RsHom(k[G])[d]-coMod)(k,−) ◦Rt(−)[d](M) ⇒ Hs+t(G,M).

Proof. The asserted identification of the composition Hom(k[G])[d]-coMod)(k,−) ◦
(−)[d] with H0(G,−) is made by observing that both send a rational G-module M

to the subspace MG of invariant elements (which consists of those m ∈ M such
that ∆M (m) = m⊗ 1 ∈M ⊗ k[G]).

Since the functor (−)[d] has an exact left adjoint by Proposition 4.1(3) and
therefore sends injectives to injectives, the Grothendieck spectral sequence for a
composition of left exact functors applies and has the asserted form (see [13]). �
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