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Abstract. We fix a prime p and consider a connected reductive algebraic

group G over a perfect field k which is defined over Fp. Let M be a finite

dimensional rational G-module M , a comodule for k[G]. We seek to somewhat
unravel the relationship between the restriction of M to the finite Chevalley

subgroup G(Fp) ⊂ G and the family of restrictions of M to Frobenius kernels

G(r) ⊂ G. In particular, we confront the conundrum that if M is the Frobenius

twist of a rational G-module N, M = N(1), then the restrictions of M and N

to G(Fp) are equal whereas the restriction of M to G(1) is trivial. Our analysis

enables us to compare support varieties (and the finer non-maximal support

varieties) for G(Fp) and G(r) of a rational G-module M where the choice of r
depends explicitly on M .

0. Introduction

Our aim is to provide some understanding of the relationship of the restrictions
of a finite dimensional rational G-module M to G(Fp) and G(r). We consider
reductive groups G defined over a field k of characteristic p > 0 and equipped with
the data of an Fp-structure. We require that p be at least as large as the Coxeter
number of G, an assumption which much simplifies arguments and might in fact
be necessary for such a comparison. As we discuss in the final section, our results
apply to provide information about G(Fq) for q an arbitrary pth-power.

Representations of a Lie group are faithfully reflected by their linearizations as
representations of the Lie algebra, but this is far from correct for modular rep-
resentation theory. Instead, rational representations of a smooth, affine group G
correspond to locally finite representations of the hyperalgebra lim−→r

kG(r) of dis-
tributions supported at the identity of G. This motivates our search for a direct
relationship between the action of elements of the finite discrete group G(Fp) ⊂ G
and the action of the distributions of bounded height supported at the identity of G.
Propositions 4.2 establishes an explicit relationship, one which relies on the associ-
ation to an element x ∈ G(Fp) of order p the 1-parameter subgroup φx : Ga → G
whose construction is due to G. Seitz [18] and D. Testerman [23].

The role of 1-parameter subgroups in the theory of support varieties for infini-
tesimal groups schemes was explored in earlier work of C. Bendel, A. Suslin, and
the author in [21], [22], and this is the underlying foundation of our approach. We
employ the point of view developed by the author and J. Pevtsova of π-points and
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π-point spaces Π(G) for finite group schemes G such as G(Fp) and G(r); this per-
spective enables us to establish a natural relationship between invariants of G(Fp)
and G(r). Using the association x 7→ φx, we construct in Theorem 3.5 a natural
embedding

Ψ : Π(G(Fp)) → (Π(G(r)))/G(Fp), r > 0.

In Proposition 3.6, we give an interpretation of the global p-nilpotent operator
defined and studied by J. Pevtsova and the author in [9] which relates this operator
to Ψ.

As seen in Theorem 4.5, the support variety of M as a G(Fp)-module can be
identified with its image under this map Ψ provided that r is sufficiently large. We
associate a new invariant, s(M), which gives an upper bound on how large r must
be. In Proposition 2.7, we bound s(M) in terms of the weights of M . On the other
hand, we should emphasize that weights of a rational G-module M are determined
by the action of semi-simple elements in the endomorphism algebra of M , whereas
our analysis addresses the action of p-nilpotent elements. Indeed, one can view the
consideration of cohomology and support varieties as a study of nilpotent actions,
in sharp contrast to the classification of irreducible modules in terms of weights.

Our methods apply to finer invariants than support varieties. Namely, we com-
pare the maximal Jordan types (as introduced by J. Pevtsova, A. Suslin, and the
author in [11]) of a rational G-module restricted to G(Fp) and G(r). This compari-
son, given in Theorem 4.11, enables us to compare non-maximal support varieties,
subvarieties of π-point spaces which are refinements of support varieties.

This work has been motivated by the challenge of interpreting and extending
work of J. Carlson, Z. Lin, and D. Nakano in [3] which in turn was based on earlier
work of Z. Lin, and D. Nakano in [15]. With the benefit of the technology of π-points
and the use of 1-parameter subgroups, we require neither geometric properties of
nilpotent cones nor knowledge of centralizers of unipotent elements to reprove and
strengthen their results.

Unless stated to the contrary, p will denote an arbitrary prime number, q = pd an
arbitrary pth power, Fq the finite field of order q, k an arbitrary field of characteristic
p, and Fp the algebraic closure of Fp with chosen embeddings Fq ⊂ Fp.

We gratefully acknowledge useful conversations with Skip Garibaldi, Jens Carsten
Jantzen, Julia Pevtsova, Gary Seitz, and Paul Sobaje. We also thank the Newton
Institute for its hospitality during the development of this paper. Finally, we ex-
press our deep gratitude to Andrei Suslin whose collaboration and support have
influenced this and many other of the author’s works.

1. Recollections

An affine group scheme G over k is said to be an affine algebraic group over k if it
is smooth over k; G is said to be a finite group scheme if its coordinate algebra k[G]
is finite dimensional over k; a finite group scheme G is said to be an infinitesimal
group scheme if its coordinate algebra is local.

We denote by φ : k → k the pth-power map, the “arithmetic Frobenius”, and
let φd denote its dth-power. For any scheme X over k, we denote by X(d) the base
change of X along φd, X(1) = X ×φd Spec k. Thus, the coordinate algebra of the
affine group scheme G(d) equals k ⊗φd k[G].
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The Frobenius map F d : G → G(d) is the map of k-group schemes given by
F d∗ : k ⊗φd k[G]→ k[G], a⊗ f 7→ a · fq (where q = pd as usual) (see [12]).

Definition 1.1. Assume that Fq ⊂ k. An Fq-structure on an affine group scheme
G over k is the data of a sub Hopf algebra Fq[G] ⊂ k[G] such that

k[G] ' k ⊗Fq Fq[G].

If the affine group scheme G over k is provided with an Fq-structure, then we say
that G is defined over Fq.

We begin with the following (presumably well known) observation, which gives
an “intrinsic” condition on G for it to be defined over Fq and clarifies what we mean
by the “Frobenius endomorphism” on G.

Proposition 1.2. Let G be an affine group scheme over k with Fq ⊂ k. The data
of an Fq-structure on G is equivalent to the data of an isomomorphism Φ : k[G] →
k ⊗φd k[G] of Hopf algebras over k with the property that k[G] ≡ k ⊗Fq (k[G])Φ,
where (k[G])Φ is defined as the Fq-subalgebra of k[G] consisting of those f such that
Φ(f) = 1⊗φd f .

Such an Fq-structure on G determines an isomorphism G(d) → G of group
schemes over k. Thus, if G is defined over Fq, then we may (and will) view the
Frobenius map F d as an endomorphism of G.

Proof. Identify k[G] with k ⊗Fq Fq[G]. Then we define Φ : k[G] → k ⊗φd k[G]
by sending a ⊗ f ∈ k ⊗Fq Fp[G] to a ⊗ 1 ⊗ f ∈ k ⊗φd k ⊗Fq Fp[G] ≡ k ⊗φd k[G].
The fact that Φ is an isomorphism is readily check using the fact that k-linear map
k → k ⊗φd k, a 7→ a ⊗φd 1 is an isomorphism; for example, 1 ⊗φd b is the image
of bq. Observe that Fq[G] ⊂ k ⊗Fq Fq[G] is the Fq-subalgebra consisting of those f
such that Φ(f) = 1⊗φd f .

Given an Fq-structure on G, then the isomorphism G(d) → G is given by Φ :
k[G]→ k[G(d)]. �

Our objective is to establish relationships between representations of the finite
group schemes G(Fq) of Fq-rational points of G and the infinitesimal group schemes
G(r) which we now recall. The reader is referred to [5, 3.6] for a more detailed
discussion of the finite group G(Fq) of fixed points of F d on G.

Definition 1.3. Let G be an affine group scheme over k. For any r ≥ 0, we denote
by G(r) the infinitesimal group scheme over k of height r given by

G(r) ≡ Ker{F r : G→ G(r)}.

If G is defined over Fq with d dividing r, then G(r) equals the kernel of F r : G→ G.
For G defined over Fq, we denote by G(Fq) the finite group

G(Fq) ≡ {x ∈ G(k)| F d(x) · x−1 = 1}.

We next recall the definition of the distribution algebra of an affine group scheme.

Definition 1.4. Let G be an affine group scheme over k. Then a distribution of G
(with support at the identity 1 ∈ G) is a k-linear map φ : k[G]→ k which vanishes
on some power of the the maximal ideal m1 ⊂ k[G]. The algebra of distributions of
G is denoted Dist(G). The reader is referred to [14, I.7] for a detailed discussion.
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Let M be a (rational) G-module; in other words, M is a comodule for k[G] whose
structure is given by the k-linear map ∇M : M → M ⊗ G. Then Dist(G) acts on
M as follows:

Dist(G)×M →M, (φ,m) 7→
∑
i

φ(fi)mi where ∇(m) =
∑
i

mi ⊗ fi.

If H ⊂ G is a closed subgroup scheme, then Dist(H) ⊂ Dist(G). We readily
identify Dist(G(r)) ⊂ Dist(G) as the group algebra of G(r), the Hopf dual of the
coordinate algebra k[G(r)]; we typically use the notation kG(r) to denoteDist(G(r)).
On the other hand, if G is discrete then Dist(G) ' k since we are considering
distributions supported at the identity.

Example 1.5. Let G = Ga, the additive group with coordinate algebra k[t]. Let
(d/dt)(i) : k[t] → k denote the k-linear map sending tj to 0 for j 6= i and ti to
1. Then Dist(Ga) is the divided power algebra spanned by (d/dt)(i), i ≥ 0, with
algebra generators

(1) uj ≡ (d/dt)(pj), 0 ≤ j
Moreover, Dist(Ga(r)) ⊂ Dist(Ga) is the subalgebra generated by uj , 0 ≤ j < r.

We require the following elementary observation in order to initiate our compar-
ision of actions of G(Fp) and G(r).

Proposition 1.6. Let M be a finite dimensional rational Ga-module. Then the
action of Dist(Ga) on M is the trivial extension of an action of Dist(Ga(r)) =
kGa(r) for r >> 0.

Proof. Let M a rational Ga-module, given by the coaction ∇M : M → M ⊗ k[t].
Then the k-linear action Dist(Ga)×M →M is given by ((d/dt)(i),m) 7→ mi where
∇M =

∑
mi ⊗ ti. If M is finite dimensional, then ∇M (M) ⊂ M ⊗ k[t] is finite

dimensional, so that the action of (d/dt)(i) on M is trivial for i >> 0. �

We remind the reader that the prime 2 is bad for a simple algebraic group G
over k if G is not of type A`, that both p = 2, 3 are bad if G is of E6, E6, F4, G2

and that 2, 3, 5 are bad for G of type E8. If G is semi-simple, the prime p is bad
for G if it is bad for some factor of its simply connected cover. Otherwise, p is said
to be good for G.

As considered in [18], a subgroup A of a semi-simple algebraic group G over k
is a group of type A1 if A is a closed subgroup isomorphic to SL2 or PSL2. Such
a group A of type A1 is said to be good provided the weights of its maximal torus
for the action of A on the Lie algebra of G are all at most 2p− 2. As shown by G.
Seitz in [18, 1.1], if G is simple, p is good for G, and G is not of type An, then the
restriction of the adjoint representation to a good A1 in G is a tilting module; for
G = SLn, the restriction of the action of a good A1 on the Lie algebra of GLn+1 is
also a tilting module.

We shall depend heavily on the following theorem of G. Seitz, which in turn
depends upon work of D. Testerman [23].

Theorem 1.7. (G. Seitz, [18, 1.3]) Let G be a simple algebraic group over a perfect
field k, with p good for G, and let x ∈ G(k) have order p. Then there is a unique
1-dimensional unipotent k-subgroup U ⊂ G containing x such that U is contained
in a good A1 ⊂ Gk, where Gk/k is the base change of G to an algebraic closure k of
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k. Consequently, there is a unique monomorphism φx : Ga → G over k with image
in a good A1 ⊂ Gk and satisfying φx(1) = x.

If x1, . . . , xs ∈ G(k) are elements of order p which pairwise commute, then there
is an abelian unipotent k-subgroup E ⊂ G through which each φxi factors. More-
over, if G is defined over Fp and if x1, . . . , xs ∈ G(Fp) generate an elementary
abelian p-group E ⊂ G(Fp) of rank s, then the associated 1-dimensional unipotent
k-subgroups U1, . . . , Us ⊂ G generate an abelian unipotent subgroup E ⊂ G of
rank s.

Remark 1.8. In [18, 1.3], Seitz proves the existence of a unique 1-dimensional
unipotent subgroup U ⊂ G containing x contained in a good A1 under the hypoth-
esis that k is algebraically closed. If k is perfect, but not algebraically closed, the
Galois group Gal(k, k) acts on G(k) with fixed group k. Since the Galois conjugate
of a 1-dimensional unipotent subgroup U of Gk contained in a good A1 of Gk is
again a 1-dimensional unipotent subgroup of Gk contained in a good A1, the unique-
ness of U ⊂ Gk implies that U is Gal(k, k)-invariant and thus the base change of a
1-dimensional unipotent k-subgroup U ⊂ G contained in a good A1 ⊂ Gk.

If x1, . . . , xs are pairwise commuting, unipotent elements of order p, then each
Ui is contained in the centralizer of each xj ; thus, each Ui commutes with Uj , so
that U1, . . . , Us generate an abelian, unipotent subgroup E ⊂ G.

If G is defined over Fp and if each xi ∈ G(Fp), then we may take k = Fp to con-
clude that each Ui is defined over Fp. Because E ⊂ E(Fp), E must have dimension
≥ s; since E is generated by s 1-dimensional unipotent groups, we conclude that E
has dimension equal to s.

We recall that a prime p is good for a reductive algebraic group if it is good
for every factor of its commutator G′ = [G,G]. We shall frequently impose the
following condition on G.

Definition 1.9. Let G be an affine algebraic group over a field k. Then G is said
to be suitable if k is perfect, if G is a connected, reductive algebraic group over k, if
p is good for G, and if the degree of the simply connected covering group Gsc → G
is prime to p.

Corollary 1.10. Let G be a suitable affine algebraic group. Then the assertions of
Theorem 1.7 (as formulated for simple groups) also apply to G.

Proof. As above, we may assume k is algebraically closed. First, assume that G
is semi-simple, so that π : Gsc → G has degree prime to p and Gsc is a product
of simple groups. Clearly, the assertions of Theorem 1.7 also apply to (G′)sc.
Moreover, any x ∈ G(k) with xp = 1 lifts to x′ ∈ Gsc with (x′)p = 1 and any two
liftings are related by an automorphism of (G′)sc over G. Thus, φx′ : Ga → Gsc
determines π ◦ φx : Ga → G independent of the choice of lifting x′. The properties
of φx′ given in Theorem 1.7 imply the same properties for φx.

Now, consider a general connected, reductive group G covered by τ : R×G′ → G
where R is a central torus of G, G′ = [G,G] is semi-simple, and the degree of this
finite covering is again prime to p. Then the previous lifting argument applies
equally to φx : Ga → G obtained as τ ◦ φx̃ for any x̃ ∈ R×G′ with τ(x̃) = x. �

The following definition appears related to the concepts of saturation as consid-
ered in [19] and of exponential type as considered in [21].
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Definition 1.11. Let G be as a suitable affine algebraic group, let H ⊂ G be a
closed algebraic k-subgroup which is connected and smooth over k, and let k be
an algebraic closure of k. Then we say that H satisfies condition (S) if for every
x ∈ H(k) of order p the map φx : Ga → G of Corollary 1.10 factors through H.

This condition (S) is not satisfied by all H ⊂ G. A simple example (suggested by
G. Seitz) in which condition (S) is not satisfied is given by taking G = SL2 × SL2,
H = SL2, and the embedding H → G given by 1 × F . Then x × x ∈ SL(2,Fp) ×
SL(2,Fp) is an element with pth-power equal to 1, but φx×x : Ga → SL2 × SL2

does not factor through H, where x is the upper triangular unipotent matrix with
a 1 in the (1, 2)-position.

Example 1.12. As observed in [18], if G is of classical type, x ∈ G(k) of order p,
and e = x− 1 as an endomorphism of the natural representation, then

(2) φx(t) = 1 + te+
t(t− 1)

2
e2 + · · ·+ t(t− 1) · · · (t− p+ 1)

(p− 1)!
ep−1 ∈ G(k), t ∈ k.

Thus, for such G, if H is either a parabolic subgroup of G or the unipotent radical
of a parabolic, then H satisfies condition (S).

As observed in [19, §4], if we write

log(x) =
∑

0<i<p

(−1)i+1ei/i, e = x− 1, xp = 1,

then

(3) φx(t) = exp(t · logx) =
∑

0≤i<p

(t · logx)i

i!
.

We recall that the Coxeter number h(G) of a simple algebraic group G over k
is the height of the longest root plus 1 of the root system of Gk. (Equivalently, we
may consider the root system of some form of G split over k.) If Π = {α1, . . . , α`}
is the set of simple roots of Gk and R+ the set of positive roots for this root system,
then h(G) − 1 = maxα∈R+{

∑
ni : α =

∑
niαi ∈ Π}. For a reductive group, we

define h(G) to be the maximum of the Coxeter numbers of some split form of each
simple factor of [G,G]. Observe that the condition p ≥ h(G) implies both that p is
good for G and that the degree of Gsc → G is prime to p.

The multiplicative property established below plays a crucial role in our construc-
tion of a map between support varieties for G(Fp) and for G(r). The hypothesis
that p ≥ h(G) which we require to prove our comparison results appears in the
proof of this proposition.

Proposition 1.13. Let G be a suitable affine algebraic group. For any element
x ∈ G(k) with xp = 1, let φx : Ga → G be as in Corollary 1.10. If x, y ∈ G(k) with
xp = yp = 1 and [x, y] = 1, then

(4) φx · φy = φxy : Ga → G.

and

(5) φx · φy = φy · φx : Ga → G.
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Proof. We may assume k is algebraically closed. Let G ⊂ GLN be an embedding
defined over k, Let B = U · T ⊂ G be a split Borel subgroup, and let BN =
UN · TN ⊂ GLN with B ⊂ BN . Define filtrations on U(k) (respectively, UN (k)) by
setting F iU(k) (resp., F iUN (k)) to be the subgroup generated by root subgroups
Uα with α a positive root of G (resp., GLN ) of height ≥ i. Then U ⊂ UN restricts
to F iU ⊂ F iUN .

Our hypothesis p ≥ h(G) implies that F pU(k) = 0. Assume that [x, y] = 1.
We readily check that if x = 1 + e ∈ F iUN and if y = 1 + f ∈ F jUN , then
1 + ef ∈ F i+jUN . This tells us that if x = 1 + e, y = 1 + f ∈ G(k) satisfy
xp = yp = 1, then eif j = 0 for i+ j ≥ p. The equality φxy = φx · φy now follows
from [19, Prop.9]. Thus,

φx · φy = φx·y = φy·x = φy · φx.

�

Let U and Up (respectively, N and Np) denote the subvarieties of unipotent
elements and p-unipotent elements of G (resp., subvarieties of nilpotent elements
and p-nilpotent elements of Lie(G)). We conclude this section by recalling from [20,
3.1] under the hypotheses of Corollary 1.10 that there are isomorphisms, “Springer
isomorphisms” , exp : N ∼→ U . The condition that p ≥ h(G) for the reductive
group G implies that N = Np and Up = U .

2. 1-parameter subgroups

Theorem 1.7 exhibits 1-parameter subgroups of G associated to elements of or-
der p in G(k). As established C. Bendel, A. Suslin, and the author in [21], [22],
(infinitesimal) 1-parameter subgroups provide an alternate interpretation of coho-
mological invariants of kG(r)-modules. In this section, we investigate further the
role of 1-parameter subgroups in the representation theory of Frobenius kernels.

We use the familiar notation of H•(G, k) to denote the commutative k-algebra
H∗(G, k) = Ext∗G(k, k) if p = 2 and to denote the even dimensional subalgebra
Hev(G, k) ⊂ H∗(G, k) if p > 2.

In the theorem below, the map of k-algebras (but not of Hopf algebras, for r > 1)

(6) ε : k[u]/up → kGa(r) ' k[u0, . . . , ur−1]/(up0, . . . , u
p
r−1), u 7→ ur−1,

(where uj is the distribution (d/dt)(pj)) makes its first appearance. As seen in the
next section, ε provides the link between 1-parameter subgroups and π-points of
G(r).

Theorem 2.1. [22] Let G be an infinitesimal group scheme over k of height ≤
r. Then the functor sending a commutative k-algebra A to the set of maps µA :
Ga(r),A → GA of group schemes over SpecA is represented by an affine k-scheme
V (G). Thus, a scheme-theoretic point of V (G) with residue field K corresponds to
a 1-parameter subgroup of the form µK : Ga(r),K → GK .

The closed subspaces of V (G) are the subsets of the form

V (G)M = {µK ∈ V (G) |µ∗K(MK) is not free as Ga(r),K −module}

= {µK ∈ V (G) | (µK ◦ ε)∗(MK) is not free as K[u]/up −module}
for some finite dimensional kG-module M .
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There is a natural p-isogeny

(7) Φ : V (G) → SpecH•(G, k) ≡ |G|

with the property that ΦG(V (G)M ) = Z(annH•(G,k)Ext
∗
G(M,M)) ≡ |G|M for any

finite dimensional kG-module M .

In Theorem 2.1, the infinitesimal group scheme is assumed to have height ≤ r,
yet the notation V (G) does not refer to r. This is justified by the observation that if
G has height ≤ r then any 1-parameter subgroup Ga(r+1),A → GA factors uniquely
through the projection Ga(r+1),A → Ga(r+1),A/Ga(1),A ' Ga(r),A.

We recall that V (G) admits a natural grading associated to the action of Ga on
the domain Ga(r) of a 1-parameter subgroup µ : Ga(r) → G:

(8) Ga × V (G) → V (G), (s, µ) 7→ µ(s · −)

In the special case G = Ga(r), the result of s acting on µ : Ga(r) → Ga(r) given
by t 7→ a0t + a1t

p + · · · ar−1t
pr−1

is the 1-parameter subgroup given by t 7→ a0t +
a1s

ptp + · · ·+ ar−1s
pr−1

tp
r−1

.
This non-linearity of the action of Ga on the 1-parameter subgroups of Ga(r)

(parameterized by r-tuples (a0, . . . , ar−1)) can be a source of some confusion. As we
see in the following example, k-linearity is retained for the 1-parameter subgroups
of the form φx.

Example 2.2. Let G be a suitable affine algebraic group. Then the uniqueness
property of x 7→ φx implies the following linearity. For any x ∈ G(k) of order p,
the 1-parameter subgroup φx : Ga → G satisfies

(9) φφx(s) = s · φx ≡ φx(s · −)

for any s ∈ k.

Example 2.3. ([21, 1.7,1.8]) Let G = GLN or a semi-simple algebraic group over
k which is a product classical types, and let g = Lie(G). Then a 1-parameter
subgroup φ : Ga → G is (uniquely) of the form

(10) t 7→ exp(tα0) · exp(tpα1) · · · exp(tp
r−1

α(r−1)),

where r is some positive integer, α0, . . . αr−1 are pair-wise commuting p-nilpotent
elements of g with entries in k, and where exp(α) = 1 + α + α2

2 + · · · + αp−1

(p−1)! (cf.
(3)). Let Vr(G) be the k-scheme representing 1-parameter subgroups of G of the
form (10). For a given r, the restriction of such 1-parameter subgroups to Ga(r)

determines an isomorphism

Vr(G) ∼→ V (G(r)),

identified in [21] as the scheme of r-tuples of p-nilpotent, pairwise commuting ele-
ments of g .

Proposition 2.4. Let G be an algebraic group of classical type which is suitable
(in the sense of Definition 1.9). Sending x ∈ Up(G) to the 1-parameter subgroup
φx : Ga → G determines a rational map

Φ : Up(G) → V1(G)
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which is defined and injective on geometric points. In particular, if Up is normal
(for example, if p ≥ h(G)), then Φ is an injective morphism and thus defines the
injective morphism Φ : Up(G)→ V (G(r)) for any r > 0.

More generally, if G is a suitable affine algebraic group equipped with an embed-
ding G ⊂ GLN with p not dividing N , then sending x ∈ Up(G) to the 1-parameter
subgroup φx : Ga → G determines a rational map Φ : Up(G) → V1(GLN ). This
rational map is injective on geometric points, sending a geometric point of Up(G)
to a geometric point of V1(GLN ) whose restriction to any V (GLN(r)) lies in the
image of V (G(r)).

Furthermore, for any closed algebraic subgroup H ⊂ G which satisfies condition
(S) of Definition 1.11, Φ◦ i sends geometric points of Up(H) to K-points of V1(H).

Proof. We first assume that G is a suitable affine algebraic group of classical type.
To define Φ as a rational map on the irreducible variety Up(G), we must give the
image of the generic point of Up(G). If η : SpecK → Up(G) is the generic point
corresponding to some xη ∈ G(K) with xp = 1, we define Φ(η) : SpecK → V1(G)
to be 1-parameter subgroup φxη : Ga,K → GK . We show that Φ is a morphism, by
showing that it is induced by a functor on finitely generated commutative k-algebras
R. Namely, Up(G) applied toR is the subset ofG(R) consisting of elements with pth-
power 1. For any such x ∈ G(R), write e = x−1 as an endomorphism of the natural
module (over R) for the classical group G, and define Φ(u) ∈ Hom(SpecR, V1(G))
to be the 1-parameter subgroup given by formula (2). Since φx(t) = exp(t · logx)
as in (3), Φ is injective when restricted to G(r) for any r > 0.

More generally, let G be an arbitrary suitable affine algebraic group. Choose
some embedding G ⊂ GLN with p not dividing N . Let SpecK → Up(G) be a
geometric point, corresponding to an element x ∈ G(K) with K algebraically closed
(indeed, K perfect would suffice). Then Corollary 1.10 associates to x a uniquely
determined φx : Ga,K → GK . Since the composition of φx with i : GK ⊂ GLN,K
must be the 1-parameter subgroup of GLN,K associated to x ∈ G(K) ⊂ GL(N,K),
the restriction of i ◦ φx to Ga,K must be the image of x under the composition
φx ◦ i : Up(G) → Up(GLN ) → V1(GLN ). In particular, Φ is injective on geometric
points of Up(G).

If a rational map is defined at every geometric point and has normal domain,
then it is a morphism. As established in [1, §9], U is normal provided that G satisfies
the hypotheses of Corollary 1.10, so that Up is normal provided that p ≥ h(G).

This argument applies without change to any closed algebraic subgroup H ⊂ G
satisfying condition (S) of Definition 1.11. �

The following definition is justfied by Proposition 1.6 which tells us that for a
given finite dimensional Ga-module M the distributions (d/dt)(i) vanish on M for
i >> 0.

Definition 2.5. Let G be a suitable affine algebraic group defined over an alge-
braically closed field k. Let η : SpecK → Up(G) denote the generic point of the
p-unipotent variety of G, and let η : SpecK → Up(G) be any geometric point lying
over η. For any finite dimensional rational G-module M , we define s(M) to be the
least integer s such that (d/dt)(i) vanishes on φ∗xη (MK) for all i ≥ s. We call s(M)
the p-nilpotent degree of M .

If G is defined over Fq, then we define sFq (M) to be the the least integer s such
that (d/dt)(i) vanishes on φ∗x(M) for all i ≥ s and all x ∈ G(Fq) with xp = 1.
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We initiate an investigation of this p-nilpotent degree of M .

Proposition 2.6. Let G be as in Definition 2.5; in particular, we assume k is
algebraically closed. For any finite dimension rational G-module M , the integer
s(M) of Definition 2.5 is the least integer s such that for all k-points x ∈ Up(G)
and all i ≥ s the distribution (d/dt)(i) vanishes on φ∗x(M).

In particular, if G is defined over Fq, then sFq (M) ≤ s(M).

Proof. We first assume G is of classical type, and set L equal to an algebraic closure
of the field of fractions of Up(G). Let θx : SpecRx → Up(G) be the strict Hensel
local ring at the point x : Spec k → Up(G), so that L is (isomorphic to) the field of
fractions of Rx. By Proposition 2.4, θx determines φθx : Ga,Rx → GRx . The k[G]-
comodule structure on M determines the coproduct ∇Rx : M ⊗ Rx → M ⊗ Rx[t].
Clearly, if the image of ∇Rx ⊗ L inside M ⊗ L[t] lies in M ⊗ L[t]<s, then the
image of ∇Rx ⊗ k lies in M ⊗ k[t]<s. Applying the identification of the action of
(d/dt)(i) given in Proposition 1.6, we conclude that s(M) is greater or equal to the
least integer s such that for all k-points x ∈ Up(G) and all i ≥ s the distribution
(d/dt)(i) vanishes on φ∗x(M).

On the other hand, let ∇L : ML → ML ⊗L L[t] be the L ⊗ k[G]-comodule
structure on ML = M ⊗ L induced by the k[G]-comodule structure on M and set

∇L(m⊗ 1) =
s(M)−1∑
j=0

aimj ⊗ ti ∈M ⊗ L[t].

Choose some k-rational point x ∈ Up(G) with as(M)−1 a unit of Rx. Applying
once again the identification of the action of (d/dt)(i) given in Proposition 1.6, we
conclude that the action of (d/dt)(s(M)−1) on φ∗x(M) is given by sending m ∈ M
to as(M)−1ms(M)−1, where as(M)−1 is the (necessarily, non-zero) image of as(M)−1)

under Rx → k. Combining this non-vanishing of (d/dt)(s(M)−1) on φ∗x(M) with the
previous paragraph, we conclude that s(M) equals the least integer s such that for
all k-points x ∈ Up(G) and all i ≥ s the distribution (d/dt)(i) vanishes on φ∗x(M).

We now consider any reductive G satisfying the condition of Definition 2.5 and
choose some closed embedding i : G ⊂ GLN . As above, we consider θx : SpecRx →
Up(G) and observe that the composition i ◦ θx : SpecRx → Up(GLN ) determines
φθx : Ga,Rx → GLN,Rx . By Proposition 2.4, φθx ⊗Rx L factors through GL and φθx
factors through G, so that φθx factors through GRx . The proof now proceeds as
above for G classical. �

The following bound on s(M) is suggested by the discussion of [3, 4.6].

Proposition 2.7. Let G be a suitable affine algebraic group over an algebraically
closed field k. Let M be a rational G-module and d be a positive integer chosen
sufficiently large that every high weight λ of M as a G-module satisfies

(11)
∑̀
j=1

〈λ, ω∨j 〉 < d,

where ω1, . . . , ω` are the fundamental dominant weights of G with respect to some
split Borel subgroup. Then

(12) s(M) ≤ 2d.
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Proof. Let x ∈ G(k) satisfy xp = 1, let φx : Ga → G be Seitz’s 1-parameter
subgroup associated to x, and let Ax ⊂ G be a good A1 containing the image of
φx. By Dynkin’s theorem [4, 5.6.6] as observed in [3, 4.6.2], the Tx-weight wtx(vµ)
of a T -eigenvector vµ of a rational G-module M of weight µ satisfies

−2d < −2
∑̀
j=1

〈λ, ω∨j 〉 ≤ wtx(vµ) ≤ 2
∑̀
j=1

〈λ, ω∨j 〉 < 2d.

Let Tx denote the torus of Ax, and choose a split Borel subgroup B = U ·T with
Tx ⊂ T . Thus, Tx-eigenspaces of M are sums of T -eigenspaces of M , so that the
above inequalities apply as well to Tx-weight of any Tx-eigenvector vµ.

The coproduct M → M ⊗ k[G] is Tx-equivariant, (i.e., is a map of Dist(Tx)-
modules) provided k[G] is equipped with the adjoint action, so that

(13) M → M ⊗ k[G] → M ⊗ k[Ax] → M ⊗ k[Ux] ≡M ⊗ k[X]

preserves weights with respect to Tx. Thus if m ∈M is a Tx-eigenvector of weight
` and if the composition of (13) sends m to

∑
imi ⊗ Xi, then mi has Tx-weight

`+ 2i (since X as an element of the Ax-module k[X] has weight −2).
We conclude that if vµ is a Tx-eigenvector of M of weight µ, then (d/dt)(i)vµ is

a Tx-eigenvector with Tx-weight satisfying

−2d < wtx((d/dt)(i)vµ) < 2d, −2d+ 2i < wtx((d/dt)(i)vµ).

We thus conclude that (d/dt)(i)vµ = 0 for any i ≥ 2d, so that s(M) ≤ 2d. �

As expected, s(M) depends only upon conjugacy classes of p-nilpotent elements
as verified in the next proposition.

Proposition 2.8. Let G be a suitable affine algebraic group over an algebraically
closed field k, and let M be a rational G-module. Choose a representative xC of
each conjugacy class C of p-unipotent elements of G(k). Then s(M) is the least
integer s such that the distribution (d/dt)(i) vanishes on φ∗xC (M) for all i ≥ s and
all xC .

Assume, in addition, that G is defined over Fq and choose a representative xC′
of each conjugacy class C ′ of p-unipotent elements of G(Fq). Then sFq (M) is the
least integer s such that the distribution (d/dt)(i) vanishes on φ∗xC′ (M) for all i ≥ s
and all xC′ .

Proof. By Proposition 2.6, it suffices to verify that if x, y : Spec k → Up(G) ⊂ G are
conjugate with y = gxg−1, then (d/dt)(i) vanishes on φ∗x(M) for all i ≥ s if and only
if (d/dt)(i) vanishes on φ∗y(M) = φx(Mg) for all i ≥ s . This follows immediately
from the observation that for any g ∈ G(k) the rational G-module M is isomorphic
to its g-conjugate Mg.

If G is defined over Fq and x ∈ G(Fq), then Seitz shows in [18, 9.1] that φx is
defined over Fq. If g ∈ G(Fq), then the g-conjugateMg ofM is isomorphic toM as a
G(Fq)-module, so that φx∗((d/dt)(i)) vanishes on M if and only if φgxg−1∗((d/dt)(i))
vanishes on M . �

We next consider the behavior of the p-nilpotent degree s(M) with respect to
certain operations on rational G-modules. This enables us to provide further upper
bounds for s(M).
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Proposition 2.9. Let G be a suitable affine algebraic group defined over an alge-
braically closed field k, and let M, N be finite dimensional rational G-modules.

(1) If N is a submodule of M , then s(N) ≤ s(M).
(2) s(M) = s(M#), where M# = Homk(M,k) is the k-linear dual of M .
(3) s(M ⊕N) = max{s(M), s(N)}.
(4) s(M ⊗N) ≤ s(M) + s(N).
(5) For any n > 0, each of s(M⊗n), s(Sn(M)), s(Λn(M)) is less than or equal

to n · s(M).
(6) If G is defined over Fp, then sFp(M (1)) = p · sFp(M), where M (1) is the

Frobenius twist of M .

Proof. Statement (1) is immediate from the observation that the action of (d/dt)(i)

on φ∗x(Nk(x)) is the restriction of the action on φ∗x(Mk(x)). Statements (2) and (3)
follow from the fact that φ∗x(−) from rationalG-modules to rational Ga,k(x)-modules
commutes with taking duals and direct sums.

If M,N are rational Ga-modules, then the action of (d/dt)(`) on M ⊗ N is
given by

∑
i+j=`(d/dt)

(i)⊗ (d/dt)(j). Thus, statements (4) and (5) follow from the
observation that φ∗x(−) also commutes with tensor products, symmetric powers,
and exterior powers.

To prove statement (6), observe that if G is defined over Fp and x ∈ G(Fp), then
φ∗x(−) commutes with the Frobenius twist. �

In the following example, we see that the bound of Proposition 2.7 is far from
sharp.

Example 2.10. Let M = Sλ be the irreducible SL2-module of high weight λ, 0 ≤
λ < p. Then Sλ is the natural representation of SL2 on k[x, y]λ, homogeneous
polynomials in two variables of degree λ. Thus, s(Sλ) ≤ λ by Proposition 2.9(5),
whereas Proposition 2.7 gives the bound s(Sλ) ≤ 2(λ + 1). If M is an arbitrary
irreducible rational SL2-module, then M ' S(λ0) ⊗ S(λ1)(1) ⊗ · · · ⊗ S(λr)(r) so
that Proposition 2.9(4) tells us that s(M) satisfies s(M) ≤

∑r
i=0 p

iλi.

3. π-points and 1-parameter subgroups

Our perspective on support varieties is that developed by the author and J.
Pevtsova in [7], [8]. The advantage of this perspective is that it gives a uniform
treatment of support varieties for finite groups and Frobenius kernels. In Theorem
3.5, we define the natural map

ΨG : Π(G(Fp)) → (Π(G(r)))/G(Fp)

whose restriction to abelian unipotent groups E associated to elementary abelian
p-groups E ⊂ G(Fp) is very explicit. Namely, a π-point of E(Fp) of the form
αx : k[u]/up → kE, u 7→ [x]− 1 is sent to the π-point βx : k[u]/up → kE(r), u 7→
φx(u0 + · · ·+ ur−1) associated to the 1-parameter subgroup φx ◦ σ.

For the reader’s convenience, we recall the definition of π-points of G and the
π-point scheme Π(G) for a finite group scheme G over k.

Definition 3.1. ([8]) Let G be a finite group scheme over k.
(1) A π-point of G is a (left) flat map of K-algebras αK : K[u]/up → KG for

some field extension K/k with the property that there exists a unipotent
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abelian closed subgroup scheme i : CK ⊂ GK defined over K such that αK
factors through i∗ : KCK → KGK = KG.

(2) Two π-points αK : K[u]/up → KG, βL : L[u]/up → LG are said to be
equivalent, written αK ∼ βL, if they satisfy the following condition for all
finite dimensional kG-modules M : α∗K(MK) is free as K[u]/up-module if
and only if β∗L(ML) is free as an L[u]/up-module.

The Π-point scheme Π(G) is a scheme of finite type over k whose points are equiv-
alence classes of π-points of G. A subset Y ⊂ Π(G) is closed if and only if there
exists a finite dimensional kG-module M such that Y equals

Π(G)M = {[αK ] |α∗K(MK) is not free as a K[u]/up-module}.
The scheme structure on Π(G) is given in [8] in terms of the stable module category
of kG-modules.

To relate the scheme of 1-parameter subgroups V (G) and the scheme of 1-
parameter π-points Π(G), we recall the following theorem

Theorem 3.2. [8, 7.5] Let G be a finite group scheme over k. Then there is a
natural isomorphism of schemes over k

ProjH•(G, k) ' Π(G).

Moreover, for any finite dimensional kG-module M , this isomorphism restricts to

ProjH•(G, k)/AnnH•(G,k)(Ext∗(M,M)) ' Π(G)M .

Combining Theorem 3.2 and the p-isogeny (7) of Theorem 2.1, we conclude the
existence of the natural p-isogeny for G an infinitesimal group scheme of height ≤ r
(14) Φ : Proj k[V (G)] → ProjH•(G, k) ∼→ Π(G)

which sends φ : Ga(r) → G to the π-point φ∗ ◦ ε : k[u]/up → kGa(r) → kG, where

(15) ε : k[u]/up → kGa(r), u 7→ ur−1.

In the following proposition, we pre-compose φx with the distinguished 1-parameter
subgroup of Ga(r):

(16) σ : Ga(r) → Ga(r), t 7→ t+ tp + · · ·+ tp
r−1

.

The role of σ is that σ∗(ur−1) =
∑r−1
i=0 ui ∈ kGa(r), so that

((φ ◦ σ)∗ ◦ ε)(u) = φ(u0 + . . .+ ur−1).

Proposition 3.3. Let G be a suitable affine algebraic group. Consider an elemen-
tary abelian p-subgroup E ⊂ G(Fp) of rank s, let {1 = y0, y1, . . . , yps−1} be a listing
of the elements of E, and let G×sa ∼= E ⊂ G be the unipotent abelian subgroup
generated by the φyj : Ga → G.

Define the k-linear map L : Rad(kE) → Rad(kE(r)) by sending [yi] − 1 to
(φyi ◦ σ)∗(ur−1):
(17)

L(
ps−1∑
i=1

ai([yi]− 1)) ≡ (
ps−1∑
i=1

ai(φyi ◦ σ))∗(ur−1) =
ps−1∑
i=1

ai(φyi)∗(u0 + · · ·+ ur−1)

Then (17) determines a k-linear map

(18) L̃ : Rad(kE)/Rad2(kE) → Rad(kE(r)).
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Moreover, the induced map L : Rad(kE)/Rad2(kE) → Rad(kE(r))/Rad2(kE(r))
is injective for all r ≥ 1 and is an isomorphism if r = 1.

Proof. To prove that L of (17) determines L̃ as in (18), we must show that L
vanishes on Rad2(kE). Since elements of the form ([yi]−1)([yj ]−1) span Rad2(kE),
it suffices to prove that L vanishes on elements of this form. Observe that

([yi]− 1)([yj ]− 1) = ([yi + yj ]− 1)− ([yi]− 1)− ([yj ]− 1),

so that L̃(([yi]− 1)([yj ]− 1)) equals

(φyi+yj − φyi − φyj )∗(u0 + · · ·+ ur−1).

Thus, the required vanishing follows from (1.13).
For r = 1, L is a k-linear map between k-vector spaces of the same dimension

carrying a basis on the left to a basis on the right. For r > 1, the the map L has a
section provided by projecting down to V (E(1)). �

Corollary 3.4. Retain the notation and hypotheses of Proposition 3.3. Then

(19) L : Rad(kE)/Rad2(kE) → Rad(kE(r))/Rad2(kE(r))

naturally determines an embedding of (Zariski) spaces of equivalence classes of π-
points

(20) ΨE : Π(E(Fp)) → Π(E(r)).

So defined, ΨE sends the equivalence class of the π-point

αx : K[u]/up → KE(Fp), u 7→ x− 1

to the equivalence class of the π-point

βx = (φx ◦ σ)∗ ◦ ε : K[u]/up → KE(r)

for any 1 6= x ∈ E(Fp) of order p, where ε and σ are given in (6) and (16).
For r = 1, this embedding is an isomorphism.

Proof. For an elementary abelian p-group E, equivalence classes of π-points in Π(E)
are represented by maps of K-algebras K[u]/up → KE sending u to some element
of Rad(KE)\Rad2(KE); the equivalence relation on such maps is generated by
pairs of maps differing by a non-zero scalar multiple, pairs of maps sending u to
elements of Rad(kE) differing by an element of Rad2(KE), and pairs of maps
which become equal after a common base extension (see [8, 7.5]). Since kE(r) is
isomorphic to the group algebra of an elementary abelian group (of rank equal to r
times the rank of E), we have the same description of Π(E(r)) in terms of elements
of Rad(KE(r)))/Rad2(KE(r))).

Thus, L (and its base extensions to fields K/k) naturally induces ΨE : Π(E)→
Π(E(r)). By (17), ΨE sends the equivalence class of the π-point αx corresponding
to [x]− 1 ∈ Rad(kE)/Rad2(kE) to the equivalence class of the π-point k[u]/up →
kE(r) sending u to φx∗(u0 + · · ·ur−1) = ((φx ◦ σ)∗ ◦ ε)(u); thus, ΨE([αx) = [βx]
as asserted.

By Propositions 18 and 3.6, ΨE is an isomorphism for r = 1 and an embedding
for r ≥ 1. �
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The following theorem is an extension/refinement of [3, Thm.4] and [7, 5.8].
Observe that if G is an affine algebraic group defined over Fq, then G(Fq) naturally
acts (by conjugation) on G and thus on H•(G(r), k) for any r ≥ 1 and thus on
Π(G(r)).

Theorem 3.5. Let G be a suitable affine algebraic group, and let H ⊂ G be a
connected, smooth, closed algebraic subgroup satisfying condition (S) (cf. Definition
1.11; for example take H = G). Assume that H ⊂ G is defined over Fp. For any
r > 0, there is a well-defined embedding of (Zariski) spaces of equivalence classes
of π-points

(21) ΨH : Π(H(Fp)) → Π(H(r))/H(Fp),
whose restriction ΨE to any elementary abelian p-group E ⊂ H(Fp) is given by
Corollary 3.4.

Proof. As defined in Corollary 3.4, the restriction to Π(E′) of Ψ|E clearly equals
Ψ|E′ whenever E′ < E.

Quillen’s stratification theorem (see [17], [7, 3.6]) implies that

Π(H(Fp)) ' lim−→
E<H(Fp)

Π(E),

where the colimit is indexed by the category whose objects are elementary abelian
p-subgroups of H(Fp) and whose maps are compositions of inclusions and con-
jugations by elements of H(Fp). (Thus the π-point αx : k[u]/up → kE(Fp) ⊂
kH(Fp), u 7→ x − 1 is equivalent to the π-point αxh : k[u]/up → kEh(Fp) ⊂
kH(Fp), u 7→ xh − 1 for any h ∈ H(Fp).)

Applying the uniqueness of x 7→ φx, we conclude that the action of h ∈ H(Fp)
sends φx : Ga(r) → H to φxh : Ga(r) → H. Thus, the conjugate αxh of αx is
mapped to the conjugate by h of βx. We conclude that the colimit of the maps ΨE

induces the continuous, injective map ΨH : Π(H(Fp))→ Π(H(r))/H(Fp). �

It is natural to ask whether the map Ψ of (21) is a morphism of schemes. To
check this, one would have to investigate more carefully the scheme structure of
Π(G(Fp)) ' ProjH•(G(Fp), k). With this question in mind, we investigate further
the operation of sending a 1-parameter subgroup φ : Ga(r) → G(r) to the π-point
φ∗ ◦ ε : k[u]/up → kG(r), u 7→ φ(ur−1).

We recall from [9, 2.2] the global p-nilpotent operator

(22) ΘG : k[G]→ k[V (G)]

associated to an infinitesimal group scheme G of height ≤ r. This is a k-linear
functional, but not a homomorphism of algebras. We can identify ΘG (as in [9,
2.2.2]) with the image of u under the composition

(23) k[u]/up ε⊗1→ kGa(r) ⊗ k[V (G)]
UG,∗→ kG⊗ k[V (G)]

where UG,∗ has the property that its base change from k[V (G)] to some commutative
k-algebra A is the 1-parameter subgroup φA : G(a(r),A → GA represented by that
k[V (G)]→ A.

Proposition 3.6. Let G be an infinitesimal group scheme of height ≤ r. Consider
the map of commutative k-algebras S∗(k[G]) → k[V (G)] induced by ΘG of (22),
with the corresponding map of affine schemes S : V (G)→ kG. This map sends an
A-valued point of V (G) given by φA : Ga(r),A → GA to φA(ur−1) ∈ A⊗ kG.



16 ERIC M. FRIEDLANDER

Furthermore, S∗(k[G]) → k[V (G)] is a map of graded algebras of degree pr−1,
where k[V (G)] is graded as in [21, 1.23]; thus the associated morphism

S : V (G)→ kG

has homogeneous degree pr−1. In the special case G = Ga(r), if φa0,...,ar−1 : Ga(r) →
Ga(r), then
(24)
S(φ) = (φa0,...,ar−1)(ur−1) = ar−1u0 +apr−2u1 + · · ·+ap

r−1

0 ur−1 +g(u0, . . . , ur−1)

where g is a polynomial in {u0, . . . , ur−1} with vanishing constant and linear terms,
and where ui is given homogeneous degree pi.

More generally, if G = E(r) for some abelian unipotent group E ' Gs
a, then S

induces

(25) S : V (E(r))→ Rad(kE(r))/Rad2(kE(r))

which can be identified with the p-isogeny Φ : V (E(r)) → Spec(H•(E(r), k)red) of
Theorem 2.1 using the natural isomorphism

Rad(kE(r))/Rad2(kE(r)) ' Spec(H•(E(r), k)red).

Proof. To check that the image under S of the A-valued point φA : Ga(r),A → GA of
V (G) equals image of u under the composition φA◦ε : k[u]/up → AGa(r),A → AGA,
we simply specialize (23) along this point.

As proved in [9, 2.10], ΘG as a k-linear functional is homogeneous of degree pr−1.
This is equivalent to the statement that the induced map S∗(k[G]) → k[V (G)] is
a map of graded algebras of degree pr−1. The formula (24) is given in the proof of
[22, 6.5].

Since (φA ◦ ε)(u) ∈ Rad(AG), S factors through Rad(kG) ⊂ kG. The identifi-
cation of S : V (E(r)) → Rad(kE(r))/Rad2(kE(r)) ' H•(E(r), k)red for E ' G×sa
with Φ of Theorem 2.1 is given in [21, 1.14, 1.15]. (In making this comparison
and comparing degrees of the corresponding maps of graded algebras, it is useful
to recall that the Bockstein β : H1(Z/p, k)→ H2(Z/p, k) as a map of schemes is of
degree p). �

4. Comparing actions of G(Fp) and G(r) at π-points

In Theorem 4.5, we compare support varieties of a rational G-module when
restricted to G(Fp) and G(r). After recalling maximal Jordan types and the non-
maximal support varieties, we provide in Theorem 4.11 a stronger result which
involves the comparison of maximal Jordan types.

The following elementary proposition is the key to our comparison of actions of
G(Fp) and G(r) on a rational G-module.

Proposition 4.1. Let G be a connected affine algebraic group over k and M a
rational G-module given by ρ : G→ GLn, where n = dim(M). Let φ : Ga → G be
a 1-parameter subgroup and set x = φ(1) ∈ G(k). Then the action of x on M equals
that of the action of (ρ◦φ)∗(

∑
i≥0(d/dt)(i)) ∈ Endk(M), where (d/dt)(i), i ≥ 0 are

the “standard” distributions on Ga supported at 0.

Proof. The action of x on M is equal to that of 1 ∈ Ga(k) on φ∗(M). Let ∇M,φ :
M →M ⊗ k[t] denote the composition

∇M,φ = (1⊗ φ∗) ◦ (1⊗ ρ∗) ◦ ∇n : M →M ⊗ k[GLn]→M ⊗ k[G]→M ⊗ k[Ga]
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which defines the rational action of Ga on φ∗(M), where ∇n is the standard comod-
ule action on the natural defining representation for GLn. The action of 1 ∈ Ga(k)
on m ∈ φ∗(M) is given by evaluating ∇M,φ(m) =

∑
imi ⊗ ti at t = 1. In other

words, this action is given by applying the distribution
∑
i≥0(d/dt)(i) ∈ Dist(Ga)

to ∇M,φ(m).
By functoriality, this action is given by evaluating (ρ ◦ φ)∗(

∑
i≥0(d/dt)(i)) ∈

Dist(GLn) on ∇n(m) ∈ M ⊗ k[GLn]. By definition, this is the action of (ρ ◦
φ)∗(

∑
i≥0(d/dt)(i)) viewed as an element of Endk(M). �

We now determine a first relationship between the actions of p-nilpotent elements
of G(k) and actions of infinitesimal 1-parameter subgroups of G on rational G-
modules.

Proposition 4.2. Let G be an algebraic group over k and M be a finite dimensional
rational G-module, given by ρ : G → GLn. Consider a 1-parameter subgroup
φ : Ga → G, and set x = φ(1) ∈ G(k) assume xp = 1. Choose some r > 0 such
that the action of (ρ ◦ φ)∗((d/dt)(i)) on M is trivial for all i ≥ pr.

Consider the π-points

αx : k[u]/up → kG(k) u 7→ x− 1,

βx = (φ ◦ σ)∗ ◦ ε : k[u]/up → kGa(r) → kG(r).

Then

ρ∗(αx(u)), ρ∗(βx(u)) ∈ im{(ρ ◦ φ)∗ : Rad(kGa(r))→ Endk(M)},
and

ρ∗(αx(u))− ρ∗(βx(u)) ∈ im{(ρ ◦ φ)∗ : Rad2(kGa(r))→ Endk(M)}.

Proof. Proposition 4.1 asserts that the image of u+ 1 ∈ kG(k) as a distribution on
GLn and thus in Endk(M) equals

∑pr−1
i≥0 (ρ ◦ φ)∗((d/dt)(i))). Hence,

(26) ρ∗(αx(u)) =
pr−1∑
i=1

(ρ ◦ φ)∗((d/dt)(i))) ∈ Endk(M).

Since the image of u under σ∗ ◦ ε is
∑r−1
j=0(d/dt)(pj),

(27) ρ∗(βx((u)) =
r−1∑
j=0

(ρ ◦ φ)∗((d/dt)(pj)).

The assertions now follow from the fact recalled in Example 1.6 that kGa(r) is a
divided power algebra on {(d/dt)(pj), j ≥ 0}. �

With the aid of [3, Prop.8], we can weaken the hypothesis on r in Proposition
4.2 if we are concerned only with the question of whether pull-backs via αx, βx of
M are free.

Proposition 4.3. Let G be an affine algebraic group over k, x ∈ G(k) a non-trivial
element of order p, and φ : Ga → G a 1-parameter subgroup with φx(1) = x. Let
M be a finite dimensional rational G-module, given by ρ : G→ GLn. Choose r > 0
such that the action of (ρ ◦ φ)∗((d/dt)(i)) on M is trivial for all i ≥ (p− 1)pr.

Consider the π-points

αx : k[u]/up → kG(k) u 7→ x− 1,
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βx = (φ ◦ σ)∗ ◦ ε : k[u]/up → kGa(r) → kG(r)

as in Proposition 4.2. Then α∗x(M) is free (as a k[u]/up-module) if and only if
β∗x(M) is free.

Proof. The assertion is the comparison of two k[u]/up-modules, the first given by
the action of u as in (26) and the second by the action of u as in (27). Proposition 8
of [3] asserts that if x, y ∈ End(M) with x 6= 0, xp = 0 = yp−1 and if M is free over
the group algebra k〈1 +x〉, then M is free over the group algebra k〈1 +x+ y〉 (and
hence vice versa). Since (d/dt)s(p

j) for any s > j and (d/dt)p
r

have (p−1)st-power
equal to 0, the assertion that these two k[u[/up-modules are either both free or
both not free follows by repeated applictions of [3, Prop.8]. �

Corollary 4.4. Let E ' G×sa be an abelian unipotent algebraic group over Fp and
consider x1, . . . , xs ∈ E(Fp) which generate E(Fp). Define φxj : Ga → G to be the
embedding with φxj (1) = xj for each j, 1 ≤ j ≤ s. Let M be a finite dimensional
rational E-module, given by ρ : E → GLn. Choose r > 0 such that the action of
(ρ ◦ φxj )∗((d/dt)(i)) on M is trivial for all j and all i ≥ (p− 1)pr.

Then for any 0 6= (a1, . . . , as) ∈ k×s, (
∑s
j=1 ajαxj )

∗(M) is free (as a k[u]/up-
module) if and only if (

∑s
j=1 ajβxj )

∗(M) is free.

Proof. As in the proof of Proposition 4.3, the assertion follows by applying [3,
Prop.8] to the actions of

s∑
j=1

aj

(p−1)pr−1∑
i>0

(ρ ◦ φxj )∗((d/dt)(i))),
s∑
j=1

aj

r−1∑
j=0

(ρ ◦ φxj )∗((d/dt)(pj))

in Endk(M). �

In earlier work [3, 4.6], J. Carlson, Z. Lin, and D. Nakano compared the support
varieties of a rational G-module M when restricted to G(Fp) and G(1) for simple
algebraic groups G (with a restriction on p) and a certain very restricted class of
rational G-modules M which they denote Cp. The following theorem encompasses
all finite dimensional rational G-modules by replacing G(1) by G(r), keeps the same
bound for r = 1 as in [3], and even in that case of r = 1 is somewhat more precise.
The proof proceeds by reducing to the situation in Corollary 4.4.

Theorem 4.5. Let G be a suitable affine algebraic group (see Definition 1.9).
Assume that G is defined over Fp and consider some connected, smooth, closed al-
gebraic subgroup H ⊂ G also defined over Fp satisfying condition (S) (cf. Definition
1.11), for example take H = G. Let M be a finite dimensional rational H-module.
If (p− 1)pr ≥ sFp(M)), then ΨH of Theorem 3.5 induces a homeomorphism

ΨH : (Π(H(Fp)))M
∼→ (Π(H(r))M/H(Fp) ∩Ψ(Π(H(Fp))).

Proof. Let αK : K[u]/up → KH(Fp) be a π-point of H(Fp). Since the projectivity
of α∗K(MK) depends only upon the equivalence class of αK (by definition of the
equivalence relation on π-points) and since any such π-point is equivalent to one
which factors through some elementary abelian p-subgroup E ⊂ H(Fp) (see, for
example, [11, 4.1]), we shall assume that αK factors through some elementary
abelian p-subgroup E ⊂ H(Fp). Moreover, by Theorem 1.7, E = E(Fp) for some
unipotent abelian algebraic subgroup E ⊂ H with embedding defined over Fp.
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Thus, ΨE : Π(E) → Π(E(r)) sends the equivalence class of αK to a point of
Π(E(r)) whose image in Π(H(r)) equals Ψ([αK ]).

The explicit description of ΨE in Theorem 3.5 tells us that we may represent [αK ]
by a K-linear combination of π-points of the form αx : k[u]/up → kE, u 7→ x−1 and
Ψ([αK ]) by the corresponding K-linear combination of π-points βx = (φx ◦ σ)∗ ◦ ε :
k[u]/up → kGa(r) → k(E(r)). Thus, the proof is completed by applying Corollary
4.4. �

The necessity of choosing r sufficiently large as in the statement of Theorem 4.5
is revealed by the following examples.

Example 4.6. In the following two examples, the homeomorphism of Theorem 4.5
fails for r = 1.

(1) Let N be a rational G-module which is projective as a G(Fp)-module and
let M = N (1) be the first Frobenius twist of N . Then Π(G(Fp))M = ∅,
whereas Π(G(1))M = Π(G).

(2) Let G = Ga and let M be the p-dimensional rational G module defined by
ρ∗ : k[GLp] → k[t] : Xi,i 7→ 1, Xi,i+1 7→

∑p−1
s=0 t

ps if for 1 ≤ i < p, and
Xi,j 7→ 0 otherwise. Then the restriction of M to G(1) is projective, but
the restriction of M to G(Fp) is trivial.

The isomorphism type of a k[u]/(up)-module M of dimension n is given by a
partition of n into subsets of size ≤ p. We denote the Jordan type of M (or
isomorphism type of M as a k[u]/up-module) by JType(M), and write JType(M) =∑p
i=1 ai[i]; in other words, as a k[u]/up-module M '

⊕p
i=1([i])⊕ai where [i] =

k[u]/ui. We shall compare Jordan types using the dominance partial order, the
usual partial ordering of partitions. If a =

∑p
i=1 ai[i] and b =

∑p
i=1 bi[i] with∑

i ai · i =
∑
i bi · i = m, then a ≥ b if and only if

(28)
p∑

i=j+1

ai(i− j) ≥
p∑

i=j+1

bi(i− j), ∀j, 1 ≤ j < p.

Let M,N be k[u]/up-modules of the same dimension. Then the Jordan type of M
is greater or equal to the Jordan type of N if and only if for every j, 1 ≤ j < p ,
the rank of u on M (which we call the j-rank of M and denote by j-Rank(M)) is
greater than or equal to j-rank of N .

We recall terminology introduced in [11], [10].

Definition 4.7. Let G be a finite group scheme over k and M a kG-module.

(1) If αK : K[u]/up → KG is a π-point of G with the property that there
does not exist another π-point βL : L[u]/up → LG with JType(β∗L(ML) >
JType(α∗KMK), then α∗K(MK) is said to be of maximal Jordan type for
M .

(2) If j is an integer with 1 ≤ j < p and if αK : K[u]/up → KG is a π-
point of G with the property that there does not exist another π-point
βL : L[u]/up → LG with j-Rank(β∗L(ML)) > j-Rank(α∗K(MK)), then
α∗K(MK) is said to be of maximal j-rank for M .

Clearly, α∗K(MK) is of maximal Jordan type for M if and only if for every
j, 1 ≤ j < p, α∗K(MK) is of maximal j-rank for M .
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We used in the proof of Theorem 4.5 the fact that if αK , βL are equivalent π-
points of a finite group scheme G and if M is a finite dimensional kG-module, then
α∗K(MK) is free if and only if β∗L(ML) is free. This independence of representative
of the equivalence class of π-points is valid as well for maximal Jordan types and
maximal j-ranks as we now recall.

Theorem 4.8. [11, 4.2, 4.10], [10, 3.6] Let G be a finite group scheme, let M be a
finite dimensional rational G-module and let j be a positive integer < p. If α∗K(MK)
has maximal j-rank for M (respectively, maximal Jordan type) and if [αK ] lies in
the closure of some [βL] ∈ Π(G), then

j-Rank(α∗K(MK)) = j-Rank(β∗L(ML)) (resp. JType(α∗K(MK)) = JType(β∗L(ML))).

In particular, if α∗K(MK) has maximal j-rank for M and if βL ∼ αK , then j-Rank(α∗K(MK))
equals j-Rank(β∗L(ML)).

We next recall refinements of the support variety Π(G)M for a finite group scheme
and a finite dimensional kG-module M as introduced in [11], [10] justified by The-
orem 4.8.

Definition 4.9. Let G be a finite group scheme over k and M be a finite di-
mensional kG-module. Then the non-maximal j-rank variety (resp., non-maximal
support variety)

Γj(G)M ⊂ Π(G) (resp. Γ(G)M ⊂ Π(G))

is defined to be the closed subset of those equivalence classes of π-points αK :
K[u]/up → KG such that the j-rank (resp., Jordan type) of α∗K(MK) is strictly less
than the j-rank (resp. Jordan type) of β∗L(ML) for some π-point βL : L[u]/up → LG
of G.

Thus, if Π(G)M 6= Π(G), then Γj(G)M = Γ(G)M = Π(G)M . On the other
hand, if Π(G)M = Π(G) (as is always the case if p does not divide the dimension
of M , for example), then Γj(G)M and Γ(G)M are strictly contained in Π(G)M .

Example 4.10. Let G be a connected reductive algebraic group defined and split
over k and let M = H0(G/B, λ) be the rational G-module obtained by inducing
the 1-dimensional B-module kλ from B to G for some dominant weight λ. Thus,
H0(G/B, λ) is dual to the Weyl module W (λ). If λ is a p-regular weight, then the
dimension of M is not divisible by p, so that Π(G)M = Π(G) whereas Γj(G)M is a
proper closed subset of Π(G) for all j, 1 ≤ j < p.

The following theorem is a considerable strengthening of Theorem 4.5 for it allows
arbitrary Jordan types as maximal Jordan types, not simply those of the form n[p]
and it applies to j-rank which is finer than Jordan type. The role of Proposition
4.3 in the proof of Theorem 4.5 is now replaced by an appeal to Proposition 4.2.

Theorem 4.11. Let G be a suitable affine algebraic group defined over Fp with
p ≥ h(G), and let H ⊂ G be a connected, smooth, closed algebraic subgroup also
defined over Fp satisfying condition (S) (cf. Definition 1.11), for example take
H = G. Let M be a finite dimensional rational H-module. Choose r > 0 so that
pr ≥ sFp(M).

Let αK : K[u]/up → KH(Fp) be a π-point of KH(Fp) and let βL : L[u]/up →
LH(r) represent ΨH([α]) ∈ Π(H(r))/H(Fp). If β∗L(ML) has maximal j-rank for M
as a kH(r)-module for some j, 1 ≤ j < p, then

j-Rank(α∗K(MK)) = j-Rank(β∗L(ML)),
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and α∗K(MK) has maximal j-rank for M as an H(Fp)-module.

Proof. Observe that if βL has maximal j-rank for M as an H(r)-module, then so
does the conjugate of βL by any element h ∈ H(Fp) (since the conjugate Mh is
isomorphic to M as an H(r)-module). Moreover, if βL represents ΨH([αK ]) and if
β∗L(ML) has maximal j-rank for the restriction of M to H(r), then α∗K(MK) must
have maximal j-rank for the restriction of M to H(Fp). (Otherwise, there would
be a π-point α′K′ of H(Fp) such that α′∗K′(MK′) has larger j-rank type so that
a representative of ΨH([αK′ ]) would have larger j-rank than j-Rank(β∗L(ML)).)
Consequently, by appealing to Theorem 4.8, we may replace replace αK , βL by
equivalent π-points.

Thus, exactly as in the proof of Theorem 4.5, we may represent [αK ] by a K-
linear combination of π-points of the form αx : k[u]/up → kE(Fp), u 7→ x− 1 and
ΨH([αK ]) by the corresponding K-linear combination of π-points βx = (φx◦σ)∗◦ε :
k[u]/up → E(r). The proof is completed by applying Proposition 4.2 and [11, 1.13],
the fundamental result underlying the proof of Theorem 4.8. �

Corollary 4.12. With hypotheses and notation as in Theorem 4.11, the map ΨH

of (21) induces injective maps

Γj(H(Fp))M ↪→ Γj(H(r))M/H(Fp), Γ(H(Fp))M ↪→ Γ(H(r))M/H(Fp)
for any j, 1 ≤ j < p.

Moreover, the images of these maps equal

(Γj(H(r))M/H(Fp))∩ΨH(Γj(H(Fp))), (resp. (Γ(H(r))M/H(Fp))∩ΨH(Γ(H(Fp)))

inside Π(H)/H(Fp) if and only if the maximal j-rank (resp., Jordan type) of M as
an H(Fp) module is also maximal for M as an H(r)-module.

Proof. If αK : K[u]/up → KH(Fp) is a π-point of H(Fp) at which M has non-
maximal j-rank, then Theorem 4.11 asserts that at any π-point βL : L[u]/up →
H(r) representing ΨH([αK ]) the j-rank of M is non-maximal for H(r). Thus, ΨH

restricts to Γj(H(Fp))M → Γj(H(r))M/H(Fp), and this restriction is necessarily
an embedding because ΨH is an embedding.

If α∗K(MK) has maximal j-rank for M as an H(Fp)-module but β∗L(ML) does not
have maximal j-rank forM as anH(r)-module for some π-point βL : L[u]/up → H(r)

representing ΨH([αK ]), then

ΨH([αK ]) ∈ (Γj(H(r))M/H(Fp)) ∩Ψ(H(Fp)), ΨH([αK ]) /∈ ΨH(Γj(H(Fp))M ).

If every element of (Γj(H(r))M/H(Fp))∩ΨH(H(Fp)) lies in the image of Γj(H(Fp))M ,
then this necessarily says that each maximal j-rank of M as an H(Fp)-module is a
maximal j-rank for M as an H(r)-module �

Example 4.13. Let G be a connected reductive algebraic group over an alge-
braically closed field k defined and split over Fp, assume that p ≥ h, and assume
that every p-unipotent conjugacy class of G is defined over Fp. For example, G
could be of classical type. Then Lang’s Theorem implies that every p-unipotent
conjugacy class of G meets G(Fp) [13, 8.4]. Thus, for any finite dimensional rational
G-module M with p ≥ sFq (M), the maximal Jordan types of M as a G(Fp) module
are also maximal for M as a G(1)-module.

Moreover, since Np(gk) is irreducible, there is a unique maximal Jordan type for
a given finite dimensional kG(1)-module, namely the generic Jordan type. Thus, if
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p ≥ sFq (M), there is only one maximal Jordan type of the rational G-module M
when restricted to G(Fp), even though the generic Jordan types of the restriction
of M to G(Fp) may be different at different generic points of Π(G(Fp)).

The following example suggest caution in trying to sharpen Theorem 4.11.

Example 4.14. Take G = Ga and consider the 2-dimensional rational G-module
M determined by ρ∗ : k[GL2] → k[Ga] = k[t] sending X1,1 and X2,2 to 1, sending
X2,1 to 0, and X1,2 to

∑p−1
s=0 t

ps . Then M restricted to G(Fp) is trivial, but M
restricted to G(r) is non-trivial for 1 ≤ r < p. Thus, Γ(G(Fp))M = ∅, but Γ(G(r))M
is non-empty and Ψ : Π(G(Fp))→ Π(G(r)) is non-trivial.

A module M for a finite group scheme G is said to have constant j-rank for
some j, 1 ≤ j < p (respectively, constant Jordan type) if the j-rank (resp., Jordan
type) of α∗K(MK) is the same for all π-points of G (see [2]). This condition on M
is equivalent to the condition that Γj(G)M (resp., Γ(G)M ) be empty.

Corollary 4.15. With hypotheses and notation as in Theorem 4.11, assume in
addition that the restriction of M to H(r) has constant j-rank for some j, 1 ≤ j < p.
Then the restriction of M to H(Fp) has constant Jordan type with the same Jordan
type.

We briefly consider the condition of Corollary 4.12 that a maximal j-rank of
M as a G(Fp)-module is also maximal for M as a G(r)-module. We restrict our
attention to groups G of classical type in order to apply Examples 1.12 and 2.3. In
this case, every 1-parameter subgroup φ : Ga(r+1) → G(r+1) admits a lifting to a
1-parameter subgroup of G of the form (10):

(29) φ̃ = (φexp(α0) · (φexp(α1) ◦ F ) · · · (φexp(αr) ◦ F r) : : Ga(r+1) → G,

where α0, . . . αr are pair-wise commuting p-nilpotent elements of g = Lie(G) with
entries in k. We recall that every π-point of G(r+1) is equivalent to one of the
form φ∗ ◦ ε : k[u]/up → Ga(r+1) → G(r+1) associated to φ̃ of the form (29). Thus,
the maximal j-ranks of M as a kG(r+1)-module occur among the j-ranks of φ∗(ur)
acting on M as φ̃ ranges over 1-parameter subgroups of the form (29).

The following proposition shows that increasing r does not introduce new max-
imal Jordan types.

Proposition 4.16. Let G denote be a direct product of general linear groups and
simple algebraic groups of classical types over k, and assume that p ≥ h(G). Let
M be a finite dimensional rational G-module and assume that s(M) ≤ pr for some
r ≥ 1. Then the maximal j-ranks for M as a kG(r+1)-module are the same as those
for M as a kG(r)-module.

Proof. Let φ̃ : Ga(r+1) → G be of the form (29). The condition that s(M) ≤ pr

implies that φexp(α0)(ur) acts trivially on M . Since φexp(αi) ◦ F i commutes with
φexp(αj) ◦ F j whenever αi commutes with αj , the action of φ(ur) on M equals the
action of φ′(ur) on M , where

φ′ = (φexp(α1) ◦ F ) · · · (φexp(αr) ◦ F r) : Ga(r+1) → Gr+1.

Observe that Frobenius F : Ga(r+1) → Ga(r+1) induces
(30)
F∗ : kG(r+1) ' k[u0, . . . , ur] → k[u0, . . . , ur] ' kG(r+1), u0 7→ 0;uj+1 7→ uj .
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Consequently, the action of φ′∗(ur) on M equals the action of φ∗(ur−1) on M , where

φ = (φexp(α1)) · · · (φexp(αr) ◦ F r−1) : Ga(r) → G(r).

�

We conclude this section with the following comparison of maximal Jordan types
for irreducible SL2-modules.

Example 4.17. Let G = SL2. Then any finite dimensional rational G-module
has constant Jordan type as an SL2(1)-module by [2, 2.5]. Let φe : Ga → SL2

be the map sending t to the strictly upper triangular matrix with t in the (1, 2)
position.

The Steinberg tensor product theorem tells us that any irreducible rational G-
module M satisfying s(M) ≤ pr is of the form

(31) M = S(λ0)⊗ S(λ1)(1) ⊗ · · · ⊗ S(λr−1)(r−1)

for integers λi, 0 ≤ λi < p. Using Proposition 4.16, we conclude that the maximal
Jordan type of S(λi)(i) as a kG(r)-module equals [λi + 1] (i.e., a single block of
size λi + 1) and this is the Jordan type of φe∗(ui) acting on M . Since φe∗(uj)
acts trivially on S(λi)(i) for i 6= j, we conclude that this maximal Jordan type for
S(λi)(i) is realized at the π-point (φe ◦ σ)∗ ◦ ε.

Exactly as discussed in [10, 4.11], the tensor product formula for maximal Jordan
types [2, 4.2] implies that the maximal Jordan type of M is the Jordan type of the
tensor product [λ0 + 1]⊗ [λ1 + 1]⊗ · · · ⊗ [λr−1 + 1] of k[u]/up-modules (determned
explicitly in [2, 10.3]). This maximal Jordan type for M also occurs at (φe ◦σ)∗ ◦ ε.

It would be interesting to know under what circumstances the maximal Jordan
type as an SL2(r)-module of an arbitrary (finite dimensional) rational SL2-module
M with s(M) ≤ pr occurs at (φe ◦ σ)∗ ◦ ε.

5. Extension to G(Fq), q = pd

In [6], we show how the Weil restriction functor enables one to extend techniques
suitable for G(Fp) to G(Fq), q = pd, for algebraic groups G defined over Fq. In this
section, we indicate how this method applies to extend results of Section 4 from
G(Fp) to G(Fq). The reader is referred to [16] for a helpful discussion of the Weil
restriction functor applied to affine algebraic groups.

The following proposition is a extension of [6, 1.5].

Proposition 5.1. Let k′/k be a finite field extension and G′ an affine algebraic
group over k′. Let Rk′/kG′ be the Weil restriction of G′, an affine algebraic group
over k.

Then the k-points of Rk′/kG′ can be naturally identified with the k′-points of
G′. Moreover, the r-th Frobenius kernel of Rk′/kG′ can be identified with the Weil
restriction of the r-th Frobenius kernel of G′,

(Rk′/kG′)(r) ' Rk′/k(G′(r)).

Proof. The proof of [6, 1.5] applies with only the minor change of replacing the
(supported at the identity of G) 1-distributions Dist1(G′) by Distrr(G′). �
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Remark 5.2. Let G′ be a connected reductive algebraic group provided with the
data of an Fq-structure and assume that p ≥ h(G′). Denote RFq/FpG

′ by G.
Observe that G is also a connected, reductive algebraic group over Fp which satisfies
p ≥ h(G): namely, the base change from Fp to Fq of G splits as a product of copies
of Gal(Fq/Fp)-conjugates of G′ and thus has trivial unipotent radical. Hence,
Theorems 4.5 and 4.11 apply to rational G-modules M , enabling a comparison of
invariants for M restricted to G(Fp) = G′(Fq) and to G(r).

In particular, one could take G′ be the base change from Fp to Fq of a reductive
algebraic group G defined and split over Fp. Then G = RFq/FpG

′ is a twisted form
associated to G.

We leave elaboration to the interested reader.
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