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In Theorem 3.3 below, we compute the homology of the algebraic bivariant cycle
complex Am−1(Speck,X) for a variety X of pure of dimension m ≥ 1 over a perfect field
k. In Theorem 4.4, we compute the mod-n homology of the complex Ar(SpecC, X) for
a complex variety X. The definition of Ar(Y,X) was introduced in a joint paper with
Ofer Gabber in [F-G] to provide a “rational equivalence analogue” of bivariant morphic
cohomology presented in a joint paper with Blaine Lawson in [F-L]. In particular, the
homology of Ar(Speck,X) is the “rational equivalence analogue” of Lawson homology.

In the special case of 0-cycles, the complex A0(Speck,X) is closely related to the
Suslin complex Sus•(X) of algebraic singular chains of the infinite symmetric product of
X. Indeed, our computation in codimension 1 was inspired by S. Lichtenbaum’s recent
computation of the Suslin homology H∗(Sus•(X)) for the case that X is a curve [L].
Our computation of the mod-n homology of Ar(SpecC, X) is merely a rephrasing of the
computation of the mod-n homology of a closely related complex for complex projective
varieties achieved in [S-V] by A. Suslin and V. Voevodsky.

The paper is organized as follows. We begin by recalling the functor ZX,r(−) of
continuous algebraic maps into the cycle space Zr(X). Section 2 then introduces the
functor RX(−) of invertible rational functions with specialization, a functor which may
have independent interest. After completing our computation of H∗(Am−1(Speck,X), we
proceed in section 4 to interpret Zr(−) as terms of sheaves for Voevodsky’s h-topology
on X [V]. This enables us to compute H∗(Ar(SpecC, X),Z/n) by applying the results of
[S-V].

Thoughout this paper, we shall restrict attention to quasi-projective varieties X over
a perfect field k of characteristic p ≥ 0. Such a variety X is a reduced algebraic k-scheme
of finite type which admits a locally closed embedding into some projective space over k.
(As seen in [F-G;4.4], Ar(Y,X) is independent up to natural isomorphism of this choice.)
We shall let X ⊂ X denote some choice of projective closure of X. Moreover, we shall let
k(X) denote the ring of total quotients of X, by which we mean the product of the quotient
fields of the irreducible components of X. An invertible rational function f ∈ k(X)∗ is an
element in this product each of whose factors is non-zero.

We thank Steve Lichtenbaum, Andrei Suslin, and Vladimir Voevodsky for useful con-
versations and for sharing with us preliminary versions of their work. We are expecially
grateful to Ofer Gabber for his many helpful suggestions

∗Partially supported by the N.S.F. and NSA Grant # MDA904-90-H-4006

1



1. Equidimensional cycles.

The complexes Ar(Y,X) are defined in terms of continuous algebraic maps into Zr(X),
algebraic r-cycles on X. We begin by recalling this concept.

Definition 1.1. Let X be a variety and let Cr(X) =
∐
Cr,d(X) denote the Chow monoid

of r-cycles on on the projective closure X of X for some r ≥ 0. For any variety Y , a
continuous algebraic map ψ : Y → Zr(X) is a set-theoretic function

Y (k)→ Zr(X)(k) ' Cr(X)2(k)/R

induced by a correspondence (i.e., a closed subset) Cψ ⊂ Y × Cr(X)2. We denote by
ZX,r(Y ) the set of continuous algebraic maps from Y to Zr(X) with its natural abelian
group structure.

In the above definition, the equivalence relation R on Cr(X)2(k) consists of (Chow
coordinates of) pairs of pairs of cycles (Z1, Z2;W1,W2) on Xk with the property that
Z1 +W2 , Z2 +W1 have equal restrictions to Xk. As verified in [F-G;4.5], our definition
of ZX,r(Y ) is independent (up to natural isomorphism) of a choice of projective closure
X ⊂ X for X. A continuous algebraic map ψ : Y → Zr(X) determines a set-theoretic
function

Y (K)→ Zr(X)(K) ' Cr(X)2(K)/R

for any algebraically closed field extension K of k.
In the following example, we introduce notation which we shall frequently employ in

our discussions below.

Example 1.2. Let X,Y be varieties with X projective and let L be a line bundle on
Y ×X. For any global section F ∈ L(Y ×X), let ZF ⊂ Y ×X denote the codimension 1
cycle (with multiplicities) on Y ×X defined by

ZF =
∑
P
nPVP

where the sum is indexed by the height one primes P of Y × X, where nP is the length
of the OX,P -module OX,P/(f) with (f) a local equation for F , and where VP is the
irreducible subvariety with generic point P.

If F is such that ZF is flat over Y and if X is purely m-dimensional, then F naturally
determines a morphism hF : Y → Cm−1(X) (indeed, hF factors through a morphism to
the Hilbert scheme of codimension 1 ideals on X). Since ZF is flat over Y , hF (y) is the
Chow point of the cycle associated to the scheme-theoretic fibre (ZF )y [F;1.3]. If F,G are
both global sections of L such that ZF , ZG are flat over Y , then hF , hG determine

ψF/G : Y → Zm−1(X).

Whereas morphisms from a normal variety Y to a Chow variety Cr,d(X) of a projective
variety X correspond (bijectively) to effective cycles on Y ×X equidimensional of relative
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dimension r over Y , elements of ZX,r(Y ) are somewhat more subtle even if Y,X are smooth
as the following example reveals.

Example 1.3. Let X denote the result of blowing-up some rational point of P 2, which we
view as the origin of A2 ⊂ P 2. Let Y = A2, and choose a non-constant map Y → PGL(3)
sending the origin to the identity and whose differential at the origin is 0. Then the
graph Γg of the composition g : Y → PGL(3) × P 2 → P 2 agrees with the graph Γi of
the inclusion i : Y ⊂ P 2 to first order at the origin. The difference Γg − Γi is the cycle
associated to a continuous algebraic map ψ : Y → Z0(X) which does not arise from a
morphism Y → C0(X)2. Namely, the restrictions of g, i to Y − {0} determine a morphism
hg/i : Y − {0} → C0,1(X)2. We may take Cψ ⊂ Y × C0,1(X)2 to be the closure of the
graph of hg/i.

In the next proposition, we give a somewhat more explicit description of continuous
algebraic maps ψ : Y → Zr(X). In the proof of this proposition, we show that there is
a natural minimal correspondence Γψ representing ψ, a fact which we shall exploit in our
interpretation of ZX,r(−) as a sheaf in the h-topology. Recall that a dominant morphism
Y ′ → Y is said to be generically radiciel if the associated extension of rings of total
quotients k(Y )→ k(Y ′) is purely inseparable.

Proposition 1.4. Let ψ : Y → Zr(X) be a continuous algebraic map. Then Cψ ⊂
Y ×Cr(X)2 can be chosen to be generically radiciel (as well as proper and surjective) over
Y . Moreover, such a ψ naturally determines a cycle on Y j × X for some j ≥ 0, where
Y j → Y denotes the finite, radiciel (endo-) morphism of Y given by the j-th iterate of the
(geometric) Frobenius map.

Proof. Since Cr(X)2 is projective, Cψ → Y is necessarily proper; since every geometric
point is in the domain of ψ, Cψ → Y is necessarily surjective.

Let Cψ be a correspondence representing ψ. We define the “saturation” C̃ψ =∐
(C̃ψ)d,e of Cψ as follows: if (Cψ)d,e = Cψ ∩ [Y × Cr,d(X) × Cr,e(X)], define (C̃ψ)d,e

to be the union over f < d, e of the projections to Y × Cr,d−f (X) × Cr,e−f (X) of the
preimage of (Cψ)d,e via the addition map

Y × Cr,d−f (X)× Cr,e−f (X)× Cr,f (X)→ Y × Cr,d(X)× Cr,e(X).

So defined, C̃ψ also represents ψ. Namely, a geometric point

(y, z, w) : Speck → Y × Cr(X)2

is a geometric point of C̃ψ if and only if there exists some geometric point u : Speck →
Cr(X) such that (y, z + u,w + u) is a geometric point of Cψ.

Consider a (not necessarily closed) point y ∈ Y , a geometric point y : SpecK → Y

above y, and a representative (z, w) : SpecK → Cr,d(X) × Cr,e(X) of ψ(y). We say that
(z, w) is a minimal representative for ψ(y) if there does not exist some geometric point

(a, b, c) : SpecK → Cr,e−f (X)× Cr,e−f (X)× Cr,f (X)
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which maps to (z, w) via the addition map for any f > 0.
We define Γψ ⊂ C̃ψ to be the closure of the finitely many points (indexed by the

irreducible components of Y ) (η, γ, δ) ∈ C̃ψ with the property that η is a generic point of
Y , η is some geometric point above η, and there exists some minimal representative for
ψ(η), (γ, δ), above (γ, δ). Since Γψ ⊂ C̃ψ and since pr1 : Γψ → Y is surjective, Γψ also
represents ψ. Moreover, if C ′

ψ is another correspondence representing ψ and if Γ′
ψ ⊂ C̃ ′

ψ

is constructed as was Γψ ⊂ C̃ψ, then Γ′′
ψ ⊂ C̃ ′

ψ ×Y C̃ψ maps bijectively onto both Γψ,Γ′
ψ

and therefore identifies the closed subvarieties Γψ,Γ′
ψ of Y × Cr(X)2.

To verify that Γψ → Y is generically radiciel, it suffices to verify that the projection
Γψ → Y is generically 1-1 on geometric points. Consider a geometric point (η, γ, δ) of
Γψ with η a geometric point of Y above a generic point η of Y . Let g be any element of
the Galois group Gal(L,L) of the the function field L of some irreducible component of
Γψ containing (η, γ, δ). By minimality, if g fixes η then g must also fix (γ, δ). Moreover,
there can be no non-trivial specializations of (η, γ, δ) of the form (η, γ′, δ′), for minimality
implies that such a specialization would determine a distinct image of η under ψ. Thus,
(η, γ, δ) is the unique point of Γψ lying above η.

Finally, since Γψ → Y is generically radiciel, we may choose j sufficiently large that
the field of fractions of the generic point of Γψ lying above η is a subfield of k(η)1/p

j

for each
generic point η of Y . Since k is perfect, k(η)1/p

j

is the residue field of a (unique, generic)
point ηj of Y j lying above η ∈ Y . Define Γjψ ⊂ Y j×Cr(X)2 to be the (reduced) subvariety
with support Γψ×Y Y j . Then we readily verify that the projection Y j×X → Y ×X maps
Γjψ bijectively onto Γψ and that pr1 : Γjψ → Y j is generically birational. In particular, Γjψ
is the closure of the graph of a morphism V → Cr(X)2 for some dense open V ⊂ Y j . This
morphism determines a cycle on V × X equidimensional over V whose closure is a cycle
on Y j ×X whose restriction is a cycle on Y j ×X. Clearly, this last cycle does not depend
on the choice of dense open V ⊂ Y j .

2. Invertible rational functions with specialization.

An immediate consequence of Proposition 1.4 is the existence of a map (natural with
respect to X)

ZX,m−1(Y )→ Limj{Am+n−1(Y j ×X)}
for varieties X,Y of pure dimension m,n ≥ 1, where Ak(W ) denotes the group of rational
equivalence classes of cycles of dimension k on a variety W (in the sense of [Fu]) and Limj

denotes the direct limit indexed by j. In order to understand the kernel of this map, we
introduce the following definition. (We adopt the convention that if T is a not necessarily
reduced k-scheme, then k(T )∗ denotes the multiplicative group of elements of the product
of the residue fields at the generic points of T each of whose factors in non-zero.)

Definition 2.1. For varieties Y,X, we define

RX(Y ) ⊂ Limj{k(Y j ×X)∗}
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to consist of invertible rational functions f on some Y j×X which can be realized as follows.
There should exist a blowing-up (i.e., a proper, surjective, and biratonal morphism) p :
Y ′ → Y j , some line bundle L on Y ′ ×X, and non-zero global sections F,G ∈ L(Y ′ ×X)
such that

a.) f = F/G ∈ k(Y j ×X)∗ = k(Y ′ ×X)∗

b.) the zero loci ZF , ZG ⊂ Y ′ ×X of F,G are both equidimensional over Y ′

c.) for every geometric point y of Y , FE/GE ∈ k(E×X)∗ lies in the image of k(Xy)∗,
where E = Y ′

y is the geometric fibre of Y ′ → Y over y, LE is the restriction of L to E×X,
and FE , GE are the restrictions of F,G to LE .

Using [R-G;§5.2], we see that RX(Y ) ⊂ Limj{k(Y j×X)∗} is unchanged if we replace
b.) by

b′.) the zero loci ZF , ZG ⊂ Y ′ ×X of F,G are both flat over Y ′.

Namely, if ZF , ZG ⊂ Y ′ × X are equidimensional over Y ′, there exists a projective
morphism g : Y ′′ → Y ′ together with a dense open subset U ⊂ Y ′ with g−1(U) ⊂ Y ′′

mapping isomorphically to U such that the proper transforms of ZF , ZG under g (i.e., the
closures in Y ′′ × X of the restrictions of ZF , ZG to g−1(U) × X ' U × X) are flat over
Y ′′. Moreover, these proper transforms equal ZF ′ , ZG′ , where F ′, G′ ∈ g∗L(Y ′′ ×X) are
the images of F,G.

The equidimensionality of ZF , ZG over Y ′ is equivalent to the non-vanishing of Fy′ , Gy′

for all points y′ ∈ Y ′. Thus, (2.1.b) implies that FE/GE ∈ k(E × X)∗. An immediate
consequence of the above definition is the fact that RX(Y ) = RU (Y ) for any dense open
subset U ⊂ X.

The preceding definition of RX(Y ) is formulated in geometric language in order to
easily relate it to ZX(Y ). The following proposition provides a more algebraic version of
the condition on a non-zero rational function to lie in RX(Y ).

Proposition 2.2. For varieties Y,X, an invertible rational function f ∈ Limj{k(Y j×X)∗}
lies in RX(Y ) if and only if there exists a blowing-up p : Y ′ → Y j , some affine open covering
{Vi} of Y ′, and some affine open subsets Ui = SpecAi ⊂ Vi × X dense in each fibre of
pr1 : Ui → Vi such that the restriction of f to each k(Ui) is a regular function f ′

i ∈ Ai
with the following property

(*) for every geometric point y of Y and every Vi admitting a lifting of y, the restriction
of f ′

i to Y ′
y ×X is an invertible rational function f ′

y,i ∈ k(Y ′
y ×X)∗ which lies in the image

of k(Xy)∗.

Proof. Suppose f ∈ RX(Y ) is given by the data of Definition 2.1. Pulling back this data
to the normalization of Y ′, we may assume that Y ′ is normal. Furthermore, to obtain {f ′

i}
satisfying (*) we may replace X by a dense affine open subset and thus assume X is affine.
Since ZG is flat over Y ′, its complement Ui in Vi ×X maps surjectively to Vi. We define
f ′
i = F/G ∈ L(Ui) ⊗ L−1(Ui) = OX(Ui). Then the restriction of f ′

i to k(Y ′
y ×X) equals

FE/GE , so that condition (*) follows immediately from (2.1.c).
Conversely, consider f ∈ k(Y j × X), p′ : Y ′′ → Y j , {V ′

i } an affine open covering
of Y ′′, and U ′

i = SpecA′
i ⊂ V ′

i × X such that the restrictions f ′′
i ∈ A′

i of f satisfy (*).
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Choose some line bundle L′ on Y ′′ × X and global sections F ′, G′ ∈ L′(Y ′′ × X) such
that F ′/G′ = f . Let p : Y ′ → Y ′′ be some blowing-up such that the proper transforms of
Zp∗(F ′), Zp∗(G′) are flat over Y ′. These proper transforms are the global sections F,G of a
line bundle L on Y ′×X. Set Vi = V ′

i ×Y ′′ Y ′ ⊂ Y ′, Ui = SpecAi = U ′
i×Y ′′ Y ′, and f ′

i ∈ Ai
equal to the image of f ′′

i ∈ A′
i. Then the restriction of f ′′

i under k(Y ′′
y ×X)→ k(Y ′

y ×X)
equals the restriction of F/G to k(Y ′

y ×X), for both are the restrictions of f to some open
subset of Y ′×X meeting Y ′

y×X in a dense open subset. Thus, (*) for {f ′′
i } implies (2.1.c)

for F,G.

Using either the conditions (a), (b′), (c) of Definition 2.1 or the condition (*) of
Proposition 2.2, we easily verify that RX(−) is functorial: any morphism g : V → Y
induces a homomorphism

g∗ : RX(Y )→ RX(V ).

We view RX(−) as the functor of “invertible rational functions with specialization”
as justified in the following proposition.

Proposition 2.3. Consider f ∈ RX(Y ). Then for any geometric point y ∈ Y , there is
an invertible rational function fy ∈ k(Xy)∗, the specialization of f at y, satisfying the
following properties:

i.) if Y ′ → Y j , L on Y ′ ×X, and F,G ∈ L(Y ′ ×X) are data for f as in (2.1), then
fy = Fy′/Gy′ for any geometric point y′ of Y ′ lifting y.

ii.) if {f ′
i} are as in (*) of (2.2), then fy = (f ′

i)y′ whenever y′ of Vi lifts y.

Proof. By (2.1.c), we may use (i.) for a chosen set of defining data for f ∈ RX(Y ) to
define fy depending only on y and not upon the choice of y′ of Y ′ lifting y. As discussed in
the proof of Proposition 2.2, any data as in (ii.) is refined by data of similar form arising
from data as in (i.). Thus, it suffices to show that fy defined as in (i.) does not depend
upon the choice of defining data Y ′ → Y j , L on Y ′ × X, and F,G ∈ L(Y ′ × X). Given
another choice of defining data Y1 → Y j , L1 on Y1 ×X, and F1, G1 ∈ L1(Y1 ×X) define
Y ′′ to be the fibre product of Y ′ and Y1 over Y , define L′′ to be L ⊗ L1, and observe
that ZF⊗F1 , ZG⊗F1 , ZF⊗G1 are each flat over Y ′′. Then for any geometric point y′′ of Y ′′

mapping to the geometric points y′ of Y ′, y
1

of Y1,

Fy′/Gy′ = (F ⊗ F1)y′′/(G⊗ F1)y′′ = (F ⊗ F1)y′′/(F ⊗G1)y′′ = (F1)y
1
/(G1)y

1
.

The relationship between RX(Y ) and ZX,m−1(Y ) is given by the following theorem.

Theorem 2.4. For varieties Y,X with X of pure dimension m ≥ 1, there exists a natural
cycle map

cyc : RX(Y )→ Zm−1,X(Y )

with the property that if ψ : Y → Zm−1(X) equals cyc(f) for some f ∈ Limj{k(Y j ×X)}
and if y ∈ Y (k), then ψ(y) is the Chow coordinate of the principal divisor (fy) of fy ∈
k(Xy).
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Moreover, if Y is normal of pure dimension n, then

RX(Y )→ ZX,m−1(Y )→ Limj{Am+n−1(Y j ×X)}
is exact.

Proof. To define cyc : RX(Y )→ Zm−1,X(Y ), consider some f ∈ RX(Y ) given as f = F/G
with F,G global sections of L on Y ′ ×X whose zero loci are flat over Y ′, a blowing-up of
Y j . As in Example 1.2, ZF , ZG determine a morphism h = hF/G : Y ′ → Cm−1(X)2 sending
a geometric point y to the Chow points of the cycles (ZF )y = ZFy

, (ZG)y = ZGy
. Denote

by Ch ⊂ Y ′ × Cm−1(X)2 the associated graph of h. Condition c.) of (2.1) implies that
this graph determines a well defined function ψ : Y (k)→ Zm−1(X)(k). Since fy = Fy/Gy
and since (fy) = ZFy

− ZGy
, we conclude that ψ(y) is the Chow coordinate of (fy). In

particular, we conclude that ψ does not depend upon the choice of data for f .
To verify that the composition RX(Y )→ Limj{Am+m−1(Y j ×X)} is trivial for Y of

pure dimension n, we show that this composition sends f to its associated principal divisor
(f) on Y j ×X. Let U ⊂ Y ′ be an open subset mapping isomorphically onto its image in
Y j and let hU : U → Cm−1(X)2 be determined by the restrictions of ZF , ZG to U × X.
Then the composition RX(Y )→ ZX,m−1(Y )→ Limj{A1(Y j×X)} sends f to the closure
of the cycle on U ×X determined by hU . On the other hand, since ZF , ZG dominate Y ′,
each component of (f) dominates Y j and so (f) is the closure of (fU ), the divisor of f
viewed as a rational function on U × X. Since fU equals F/G as a rational function on
U × X, we immediately conclude that the difference of the cycles on U × X determined
by hU is preciesly (fU ).

We now assume that Y is normal and proceed to prove the asserted exactness. Con-
sider some ψ : Y → Zm−1(X) whose associated cycle on Y j ×X is the divisor (f) of some
rational function f ∈ k(Y j ×X). As argued above, there exists some open U ⊂ Y j such
that the restriction (f)U of (f) to U × X is given by a morphism hU : U → Cm−1(X)2;
moreover, (f)U equals (fU ), the divisor associated to f viewed as a rational function on
U ×X.

We define p : Y ′ → Y j to be some blowing-up such that f ∈ k(Y ′ ×X) is of the form
F/G, where F,G are global sections of a line bundle L on Y ′ ×X with the property that
their zero loci are flat over Y ′. Then ZF , ZG determine hF/G : Y ′ → Cm−1(X)2 whose
restriction to U agrees with hU and therefore must necessarily “descend to” ψ in view of
the fact that the projection of the graph of hF/G to Y × Cm−1(X)2 must equal Cψ.

To verify that f ∈ RX(Y ), we consider a geometric point y of Y and let (y) → Y
denote the inclusion of the spectrum of the strict hensel local ring OY,y of Y at y. Let T
denote Y ′ ×Y (y) and let FT , GT ∈ L(T × X) be the restrictions of F,G. Since OY,y is
an algebra over its residue field k(y), we obtain a natural map T → y which determines
T ×X → Xy. Let y′ → T be a geometric point lifting y and let Fy, Gy ∈ L(T ×X) denote
the images of FT , GT under the composition

L(T ×X)→ L(Xy′) ' L(Xy)→ L(T ×X).

Let
gT = FT /GT ·Gy/Fy ∈ k(T ×X)∗.
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Since the restriction of gT to k(Xy′) equals 1, the divisor (gT ) ⊂ T×X of gT does not meet
Xy′ . Our hypothesis that hF/G : Y ′ → Cm−1(X)2 descends to the well defined function
ψ : Y → Zm−1(X) implies that (gT ) does not meet E ×X, where E ⊂ T is the geometric
fibre Y ′

y . Since E ⊂ T is the closed fibre of the proper map T → (y), we conclude that (gT )
is empty. Since T ×X ′ is normal where X ′ ⊂ X is the complement of the singular locus
of X , we conclude as in Lemma 3.2 below that gT is a globally defined regular function
on T ×X ′ with globally defined inverse. Thus, gT restricts to

g = FE/GE ·Gy/Fy ∈ O(E ×X ′)∗.

Since Y j is normal and p is proper and birational, the Zariski Connectedness Theorem
implies that E is connected. Consequently, g lies in the image of the inclusion O(X ′

y)
∗ →

O(E ×X ′)∗ (induced by the projection E ×X ′ → X ′
y). Since g equals 1 when restricted

to X ′
y′ ⊂ E ×X ′, we conclude that g = 1. Therefore, FE/GE equals Fy/Gy, whereas the

latter lies in the image of k(Xy)∗. We conclude that f ∈ k(Y j ×X) satisfies condition (c.)
of (2.1) and thus lies in RX(Y ).

3. Acyclicity and the computation.

The key step in our computation of the homology of the complex Am−1(Speck,X)
is the proof in Proposition 3.1 of the acyclicity of the complex associated to the functor
RX(−). The formulation of such complexes goes back to an early definition of algebraic
K-theory by M. Karoubi and O. Villamajor [K-V], and has subsequently been used by
Bloch, Suslin, and others.

We recall that the algebraic singular n-simplex ∆[n] is defined to be Speck[t1, . . . , tn] =
Speck[T0, . . . , Tn]/

∑
Ti−1. There are natural (linear) face and degeneracy maps between

these algebraic simplices, so that any contravariant, abelian group valued functor Φ on k-
varieties determines a simplicial abelian group Φ(∆[∗]) whose abelian group of n-simplices
is Φ(∆[n]). We naturally associate a normalized chain complex Φ̃(∆[∗]) to such a simplicial
abelian group which has the property

πn(Φ(∆[∗])) = Hn(Φ̃(∆[∗])).

The complex Ar(Y,X) is defined by

Ar(Y,X) = Z̃X,r(Y ×∆[∗]).

We say that the simplicial abelian group Φ(∆[∗]) is acyclic if all of its homotopy groups
vanish (or, equivalently, if the homology of its normalized chain complex is 0).

The following proof of acyclicity is based upon a suggestion of Ofer Gaber.

Proposition 3.1. For any variety X, RX(∆[∗]) is acyclic.
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Proof. It suffices to show that any finite subcomplex of RX(∆[∗]) is contained in a
contractible subcomplex. Consider some finite complex K ⊂ RX(∆[∗]) with simplices
fα ∈ RX(∆[n])∩k(Y j×X)∗ for some sufficiently large j. Choose an affine open U = SpecA

of X such that there exist Pα, Qα ∈ A[t1/p
j

1 , . . . , t
1/pj

n ] with fα = Pα/Qα. Choose data
for fα as in Proposition 2.2: Y ′

α → Y j , affine covering {Vα,i} of Y ′
α, affine open subsets

Uα,i = SpecAα,i ⊂ Vα,i ×X, and {f ′
α,i} ∈ Aα,i. Let V ⊂ k(X) be the finite dimensional

vector space over k spanned by the coefficients of the {f ′
α,i} and choose ρ ∈ A to be some

non-zero rational function on X regular on U which is not the quotient of two non-zero
elements of V ⊗k k.

Associate to fα(t1/p
j

1 , . . . , t
1/pj

n ) ∈ RX(∆[n]) the rational function

gα(t1/p
j

1 , . . . , t
1/pj

n+1 ) = ρ · t1/pj

1 + fα(t1/p
j

2 , . . . , t
1/pj

n+1 ) · (1− t1/pj

1 ).

We claim that gα is an element of RX(∆[n + 1]), with data ∆[1]j × Y ′
α, affine covering

{∆[1]j × Vα,i} of ∆[1]j × Y ′
α, affine open subsets ∆[1]j × Uα,i ⊂ ∆[1]j × Y ′

α ×X, and

{g′
α,i = ρ · t1/pj

1 + f ′
α,i · (1− t1/p

j

1 )}.

Then our choice of ρ guarantees that g′
α,i ∈ k(Xy′)∗ for every geometric point y′ of ∆[1]j×

Vα,i. Hence, condition (*) of (2.2) for {g′
α,i} follows from that condition for {f ′

α} interpreted
using (2.3.ii.).

To conclude the proof, we observe that the subcomplex of RX(∆[∗]) generated by the
simplices gα is the cone with vertex ρ on the complex K and is thereby a contractible
complex containing K.

As pointed out to us by V. Voevodsky, a non-zero, non-invertible rational function
can have empty divisor. (For example, the divisor of y−x

y+x ∈ Spec(k[x, y]/y2 − x3 − x2) is
empty.) The following lemma introduces notation for such rational functions and recalls
that this difficulty does not arise for normal varieties.

Lemma 3.2. We define UX(Y ) for varieties Y,X with X of pure dimension m ≥ 1 by

UX(Y ) = ker{cyc : RX(Y )→ ZX,m−1(Y )}.

i.) UX(Y ) is the subgroup of Limj{k(Y j×X)∗} consisting of those invertible rational
functions whose divisor (f) is empty.

ii.) If X is normal, then U(X) ≡ UX(Speck) is the group O(X)∗ of units of the ring
O(X) of global functions on X.

iii.) UX(∆[n]) = U(X) for any n ≥ 0.

Proof. Since any rational function f ∈ k(Y j ×X)∗ whose divisor is empty is necessarily
an element of RX(Y ), (i.) follows immediately from the definition of cyc : RX(Y ) →
ZX,m−1(Y ). Moreover, (ii.) follows directly from the following well known fact (cf.
[M;Thm3.8]): any noetherian normal domain A is the intersection A = ∩AP of its lo-
calizations at all height one prime ideals P. To verify (iii.), we may argue by induction to
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reduce to the case that n = 1. Replacing t1/j by s, we may assume j = 0. Consider some
non-constant f ∈ k(X)(t) ; we proceed to exhibit some geometric point of X × ∆[1] at
which f is regular and vanishes, thereby verifying that (f) is non-empty. Let U = SpecA
be an affine open of X such that f = p(t)/q(t) with p(t), q(t) ∈ A[t]; let A → A′ ⊂ k(X)
be an algebra of finite type such that there exists some α ∈ A′ with p(α) = 0, q(α) 6= 0.
Then any homomorphism θ : A′ → k sending t, α to the same element of k is a geometric
point at which f is regular and vanishes.

The results of the following compuation agree with E. Nart’s computation [N] of
Bloch’s higher Chow groups [B] in codimension one for an integral variety X normal over
a perfect field k:

Hi(Am−1(Speck,X)) = CH1(X, i).

We remind the reader of our standing hypothesis that our ground field k is perfect.

Theorem 3.3. Let X be a variety of pure dimension m ≥ 1. Then there exists an exact
sequence of simplicial abelian groups

0→ U(X)→ RX(∆[∗])→ ZX,m−1(∆[∗])→ Am−1(X)→ 0.

Consequently,

H0(Am−1(Speck,X)) = π0(ZX,m−1(∆[∗])) = Am−1(X)

H1(Am−1(Speck,X)) = π1(ZX,m−1(∆[∗])) = U(X)

Hi(Am−1(Speck,X)) = πi(ZX,m−1(∆[∗])) = 0 , i > 0.

Proof. Lemma 3.2 identifies UX(∆[∗]) as the kernel of cyc : RXZX,m−1(∆[∗]) and ver-
ifies that UX(∆[∗]) is the constant simplicial group U(X). Since each of the projections
∆[n]j × X → X is isomorphic to ∆[n] × X → X and the latter induces an isomor-
phism on Chow groups Am−1(X) → Am+n−1(∆[n] × X) (cf. [Fu;3.3]), we conclude that
Limj{Am+∗−1(∆[∗] × X)} is the constant simplicial abelian group Am−1(X). Conse-
quently, Theorem 2.4 verifies the exactness of the asserted exact sequence at ZX,m−1(∆[∗]).
To complete the proof of the asserted exactness, we merely observe the surjectivity of

ZX,m−1(∆[0]) = Zm−1(X)→ Am−1(X) = Limj{Am+∗−1(∆[∗]×X)}

The computation now follows by breaking up this exact sequence into two short ex-
act sequences of simplicial abelian groups each of which induces a long exact sequence
in homology groups of associated normalized chain complexes. Namely, the acyclicity
of RX(∆[∗]) proved in Proposition 3.1 and the fact that the constant simplicial abelian
groups Am−1(X), U(X) are equal to their 0-th homology groups immediately imply the
the asserted values of

Hi(Am−1(Speck,X)) = πi(ZX,m−1(∆[∗])).
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4. Sheaves for the h-topology.

In [V], V. Voevodsky introduced a Grothendieck topology for schemes whose coverings
{pi : Xi → X} are finite families of morphisms of finite type such that

∐
pi :

∐
Xi → X

is a universal topological epimorphism for the Zariski topology. In this section, we briefly
investigate the functor ZX,r(−) from the point of view of sheaves for this h-topology on
the category of schemes of finite type over k. (The functors Φ we consider can be viewed
as functors on non-reduced algebraic k-schemes by sending such a scheme Y to Φ(Yred)).

Proposition 4.1. Let X be a projective variety. Then the contravariant functor send-
ing a variety Y to ZX,r(Y ) is the sheafification for the h-topology of the presheaf (i.e.,
contravariant functor)

Y 7→ mor(Y, Cr(X))+

which sends Y to the group completion of the abelian monoid of morphisms from Y to the
Chow monoid Cr(X).

Proof. Let {pi : Vi → Y } be a covering for the h-topology, so that each of the finitely many
pi : Vi → Y is a morphism of finite type and

∐
pi :

∐
Vi → Y is a universal topological

epimorphism. Consider the sequence of abelian groups

ZX,r(Y )→
∏

ZX,r(Vi)→
∏

ZX,r(Vi,j)

where Vi,j denotes the fibre product of Vi and Vj over Y . Clearly, the composite is 0 and
the left arrow is injective (for

∐
Vi → Y is surjective). To verify the sheaf axiom, we may

(and shall) assume that each Vi is irreducible and dominates an irreducible component Yj
of Y ([V;3.1.3]).

Consider a compatible family {ψi} ∈
∏
ZX,r(Vi) and represent each ψi : Vi → Zr(X)

by Γi ≡ Γψi ⊂ Vi × Cr(X)2, the minimal correspondence representing ψi as in proof of
Proposition 1.4. Then Γi is the closure in Vi ×Cr(X)2 of some point (νi, γi, δi). Let ωj be
a generic point of Y and observe that if νi, νi′ are generic points of Vi, Vi′ mapping to ωj
then the compatibility condition on {ψi} together with the minimality condition on {Γi}
imply that (γi, δi) = (γi′ , δi′); let this common value be (γj , δj). We define Γ ⊂ Y ×Cr(X)2

to be the closure of the finite set {(ωj , γj , δj)}.
So defined, Γ → Y is generically one-to-one, proper, and surjective. Since a point of

Vi×Cr(X)2 lies in Γi if and only if this point is a specialization of (νi, γi, δi), Γi = Vi×Y Γ.
The fact that each Γi ⊂ Vi × Cr(X)2 corresponds to the graph of a set-theoretic function
on geometric points together with the compatibility condition on the {ψi} implies that Γ
likewise corresponds to the graph of a set-theoretic function on geometric points. Thus, Γ
represents ψ ∈ ZX,r(Y ) restricting to {ψi}, thereby verifying the sheaf axiom for ZX,r(−).

Observe that the natural transformation

mor(−, Cr(X))+ → ZX,r(−)

is injective, for if f, g : Y → Cr(X) are distinct morphisms then their “difference” hf/g :
Y → Zr(X) is not 0 (in fact, non-zero generically). On the other hand, given any
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ψ ∈ ZX,r(Y ), we consider Γψ ⊂ Y × Cr(X)2 as in the proof of Proposition 1.3. Then,
pr1 : Γψ → Y is proper, surjective, and generically radiciel; in particular, this map is a
universal topological epimorphism. The restriction of ψ to ZX,r(Γψ) lies in the image of
mor(Γψ, Cr(X))+, whereas the injectivity of mor(−, r(X))+ → ZX,r(−) implies that this
restriction has equal images in mor(Γψ ×Y Γψ, Cr(X))+. We conclude that ψ lies in the
image of the Y -sections of the h-sheaf associated to the presheaf mor(−, Cr(X))+.

Proposition 4.2. Let X be a projective variety, W ⊂ X be a closed subvariety, and
U ⊂ X the open complement of W . Then

0→ ZW,r(−)→ ZX,r(−)→ ZU,r(−)→ 0

is a short exact sequence of abelian sheaves in the h-topology.

Proof. The proof of Proposition 4.1 that ZX,r(−) is a sheaf for the h-topology applies
essentially verbatim to show that ZU,r(−) is also a sheaf for the h-topology. The natural
map

ZX,r(Y )/ZW,r(Y )→ ZU,r(Y )

is clearly injective. The argument at the end of the proof of Proposition 4.1 verifies the
surjectivity of this map on the level of sheaves in the h-topology.

Remark 4.3 For the purposes of generalization, one should interpret Theorem 3.3 in
terms of an exact sequence of sheaves for the h-topology. From this point of view, cyc :
RX(−) → ZX,m−1(−) is a homomorphism of h-sheaves whose kernel and cokernel are
“homotopy-invariant.”

We recall that the Lawson homology groups of a complex quasi-projective variety X
with projective closure X ⊂ X can be defined as the homotopy groups of of the topological
abelian group Zr(X)(C),

LrH2r+i(X) = πi(Zr(X)(C)).

(The topological group structure on Zr(X)(C) is that induced as a quotient of Cr(X)2(C)
given the analytic topology).

Observe that any ψ : ∆[n] → Zr(X) naturally determines a continuous map ψC :
∆[n](C) → Zr(X)(C), so that we obtain a natural homomorphism of simplicial abelian
groups

ZX,r(∆[∗])→ Sing.Zr(X)(C).

As in [F-G], let Z̃r(X) denote the normalized chain complex associated to Sing.Zr(X)(C),
so that

LrH2r+i(X) = Hi(Z̃r(X)).

We conclude this paper with the following theorem whose sketched proof is merely a
rephrasing of the main arguments of [S-V].
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Theorem 4.4. If X is a complex quasi-projective variety, then for any n > 0 the above
map of simplicial abelian groups

ZX,r(∆[∗])→ Sing.Zr(X)(C)

induces an isomorphism:

π∗(ZX,r(∆[∗]),Z/n) ≡ H∗(Ar(SpecC, X)⊗ Z/n) ' H∗(Z̃r(X)⊗ Z/n).

Sketch of proof, summarizing the arguments of [S-V]. Since the Chow monoid Cr(X) has
the cancellation property, ZX,r(Y ) is torsion free for any Y ; consequently, Ar(SpecC, X)
is also torsion free. We conclude that the assertion of the theorem is equivalent to the
statement that the natural map ZX,r(∆[∗])→ Sing.Zr(X)(C) induces an isomorphism of
(hyper-) ext-groups

Ext∗(Sing.Zr(X)(C),Z/n) ' Ext∗(ZX,r(∆[∗]),Z/n)

for any n > 0, where we have identified the simplicial abelian groups with their associated
chain complexes.

Let F denote the h-sheaf ZX,r(−) and let F∗ denote the complex of h-sheaves with
Fq(−) = F(− × ∆[q]) = ZX,r(− × ∆[q]). The “homotopy invariance” of ext-groups of
h-sheaves mod-n enables us to conclude that the spectral sequence

Ep,q1 = Extph−sh(Fq,Z/n)⇒ Extp+qh−sh(F∗,Z/n)

degenerates at E2. This implies that

Ext∗h−sh(F ,Z/n) ' Ext∗h−sh(F∗,Z/n)

(where Exth−sh denotes ext in the abelian category of abelian h-sheaves).
The second spectral sequence for these hyper-ext groups has the form

′Ep,q2 = Extph−sh(Hq(F∗)̃ ,Z/n)⇒ Extp+qh−sh(F∗,Z/n)

where Hq(F∗)̃ is the h-sheaf associated to the presheaf sending Y to Hq(F(Y × ∆[∗])).
The key result [S-V;4.1] implies that

Extph−sh(Hq(F∗)̃ ,Z/n) = Extp(Hq(F(∆[∗]),Z/n).

(This is a form of “Suslin rigidity” for the presheaves Hq(F∗) .) Consequently, we conclude

Ext∗h−sh(F ,Z/n) ' Ext∗h−sh(F∗,Z/n) ' Ext∗(F(∆[∗]),Z/n).

As discussed in [S-V], a similar argument applies to abelian sheaves on the category of
topological spaces admitting a triangulation as well as to abelian sheaves on the etale site.
We define F top(T ) to be Homcont(T, Zr(X)(C)), whereas we define Fet to be the sheaf
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on the etale site associated to the preseheaf sending W to mor(W, Cr(X))+. As sketched
in the preceding paragraph, we conclude that

Ext∗top−sh(F top,Z/n) ' Ext∗top−sh(F top∗ ,Z/n) ' Ext∗(F top(∆[∗]),Z/n)

Ext∗et−sh(Fet,Z/n) ' Ext∗et−sh(Fet∗ ,Z/n) ' Ext∗(Fet(∆[∗]),Z/n).

Let j (respectively, j′) denote the morphism from the h-site (resp., topological site)
to the etale site. One verifes that

F = j∗Fet , F top = j′∗Fet.

We thus obtain the following commutative diagram

F(∆[∗]) → j∗F∗ ← j∗F
↑ ↑ ↑

Fet(∆[∗]) → Fet∗ ← Fet
↓ ↓ ↓

F top(∆[∗]) → j′
∗F top∗ ← j′

∗F top
.

As discussed above, the horizontal arrows of this diagram induce an isomorphism of ext-
groups with Z/n- coefficients. The fact that the right vertical arrows induce an isomor-
phism of ext-groups with Z/n-coefficients is a fundamental comparison theorem relating the
h-topology with the etale and analytic topologies for complex varieties (cf. [S-V;10.11],[V]).
We thus conclude that the left-vertical arrows induce the isomorphism

Ext∗(Sing.Zr(X)(C),Z/n) = Ext∗(F top(∆[∗]),Z/n)

' Ext∗(F(∆[∗]),Z/n) = Ext∗(ZX,r(∆[∗])(C),Z/n).

As mentioned by Suslin and Voevodsky, validity of resolution of singularities would
suggest that some analogue of this theorem should be valid for algebraically closed fields
of positive characteristic.
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