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Abstract. We construct two families of refinements of the (projectivized)
support variety of a finite dimensional module M for a finite group scheme G.

For an arbitrary finite group scheme, we associate a family of non maximal
rank varieties Γj(G)M , 1 ≤ j ≤ p−1, to a kG-module M . For G infinitesimal,

we construct a finer family of locally closed subvarieties V a(G)M of the variety
of one parameter subgroups of G for any partition a of dimM . For an arbitrary

finite group scheme G, a kG-module M of constant rank, and a cohomology
class ζ in H1(G, M ) we introduce the zero locus Z(ζ) ⊂ Π(G). We show that

Z(ζ) is a closed subvariety, and relate it to the non-maximal rank varieties.
We also extend the construction of Z(ζ) to an arbitrary extension class ζ ∈

Extn
G(M,N) whenever M and N are kG-modules of constant Jordan type.

0. Introduction

In the remarkable papers [21], D. Quillen identified the spectrum of the (even
dimensional) cohomology of a finite group Spec H•(G, k) where k is some field of
characteristic p dividing the order of the group. The variety Spec H•(G, k) is the
“control space” for certain geometric invariants of finite dimensional kG-modules.
These invariants, cohomological support varieties and rank varieties, were initially
introduced and studied in [1] and [6]. Over the last twenty five years, many authors
have been investigating these varieties inside Spec H•(G, k) in order to provide
insights into the structure, behavior, and properties of kG-modules. The initial
theory for finite groups has been extended to a much more general family of finite
group schemes, starting with the work of [13] for p-restricted Lie algebras. The
resulting theory of support varieties for modules for finite group schemes satisfies
all of the axioms of a “support data” of tensor triangulated categories as defined
in [2]. Thus, for example, this theory provides a classification of tensor–ideal, thick
subcategories of the stable module category of a finite group scheme G.

In this present paper, we embark on a different perspective of geometric invari-
ants for kG-modules for a finite group scheme G. We introduce a new family of
invariants, “generalized support varieties”, which stratify the support variety of a
finite dimensional kG-module M . As finer invariants, they capture more structure
of a module M and can distinguish between modules with the same support vari-
eties. In particular, the generalized support varieties are always proper subvarieties
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of the control space Spec H•(G, k) whereas the support variety often coincides with
the entire control space. On the other hand, they necessarily lack certain good
behavior with respect to tensor products and distinguished triangles in the stable
module category of kG. However, as we shall try to convince the reader, these vari-
eties provide interesting and useful tools in the further study of the representation
theory of finite groups and their generalizations.

Since the module category of a finite group scheme G is wild except for very
special G, our goals are necessarily more modest than the classification of all (finite
dimensional) kG-modules. Two general themes that we follow when introducing our
new varieties associated to representations are the formulation of invariants which
distinguish various known classes of modules and the construction of modules with
specified invariants.

In Section 1, we summarize some of our earlier work, and that of others, con-
cerning support varieties of kG-modules. We emphasize the formulation of sup-
port varieties in terms of π-points, since the fundamental structure underlying our
new invariants is the scheme Π(G) of equivalence classes of π-points. Also in this
section, we recall maximal Jordan types of kG-modules and the non-maximal sub-
variety Γ(G)M ⊂ M refining the support variety Π(G)M for a finite dimensional
kG-module M .

If G is an infinitesimal group scheme, one formulation of support varieties is in
terms of the affine scheme V (G) of infinitesimal subgroups of G. For any Jordan
type a =

∑p
i=1 ai[i] and any finite dimensional kG-module M (with G infinitesi-

mal), we associate in Section 2 subvarieties V ≤a(G)M and V a(G)M of V (G). De-
termination of these refined support varieties is enabled by earlier computations
of the global p-nilpotent operator ΘG : M ⊗ k[V (G)] → M ⊗ k[V (G)] which was
introduced and studied in [17].

We require a refinement of one of the main theorems of [18] recalled as Theorem
1.5. Section 3 outlines the original proof due to A. Suslin and the authors, and
points out the minor modifications required to establish the fact that whether or not
a kG-module has maximal j-type at a π-point depends only upon the equivalence
class of that π-point (Theorem 3.6). This is the key result needed to establish that
the generalized support varieties are well–defined for all finite group schemes.

In Section 4, we consider closed subvarieties Γj(G)M ⊂ Π(G) for any finite group
scheme, finite dimensional kG-module M , and integer j, 1 ≤ j < p, the non maximal
rank varieties. We establish some properties of these varieties and work out a few
examples to suggest how these invariants can distinguish certain non-isomorphic
kG-modules.

In the concluding Section 5, we employ π-points to associate a closed subvariety
Z(ζ) ⊂ Π(G) to a cohomology class ζ ∈ H1(G, M) provided that M is a kG-module
of constant rank. One of the key properties of Z(ζ) is that Z(ζ) = ∅ if and only if
the extension 0 → M → Eζ → k → 0 satisfies the condition that Eζ is also a kG-
module of constant rank. We show that Z(ζ) is often homeomorphic to Γ1(G)Eζ

which allows us to conclude that Z(ζ) is closed. Taking M to be an odd degree
Heller shift of the trivial module k, we recover the familiar zero locus of a class in
H2n(G, k) in the special case M = k. Finally, we generalize this construction to
extension classes ξ ∈ Extn

G(M, N) for kG-modules M and N of constant Jordan
type and any n ≥ 0.
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We abuse terminology in this paper by referring to a (Zariski) closed subset of
an affine or projective variety as a subvariety. Should one wish, one could always
impose the reduced scheme structure on such “subvarieties”.

We would like to thank Jon Carlson for pointing out to us that maximal ranks
do not behave well under tensor product, Rolf Farnsteiner for his insights into
components of the Auslander-Reiten quiver, and the referee for several useful com-
ments. The second author gratefully acknowledges the support of MSRI during her
postdoctoral appointment there.

1. Recollection of Π-point schemes and support varieties

Throughout, k will denote an arbitrary field of characteristic p > 0. Unless
explicit mention is made to the contrary, G will denote a finite group scheme over k
with finite dimensional coordinate algebra k[G]. We denote by kG the Hopf algebra
dual to k[G], and refer to kG as the group algebra of G. Thus, (left) kG-modules are
naturally equivalent to (left) k[G]-comodules, which are equivalent to (left) rational
G-modules (see [20, ch.1]). If M is a kG-module and K/k is a field extension, then
we denote by MK the KG-module obtained by base change.

We shall identify H∗(G, k) with H∗(kG, k).

Definition 1.1. ([16]) The Π-point scheme of a finite group scheme G is the k-
scheme of finite type whose points are equivalence classes of π-points of G and
whose scheme structure is defined in terms of the category of kG-modules.

In more detail,

(1) A π-point of G is a (left) flat map of K-algebras αK : K[t]/tp → KG for
some field extension K/k with the property that there exists a unipotent
abelian subgroup scheme i : CK ⊂ GK defined over K such that αK factors
through i∗ : KCK → KGK = KG.

(2) If αK : K[t]/tp → KG, βL : L[t]/tp → LG are two π-points of G, then αK

is said to be a specialization of βL , provided that for any finite dimensional
kG-module M , α∗

K(MK) being free as K[t]/tp-module implies that β∗
L(ML)

is free as L[t]/tp-module.
(3) Two π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG are said to be

equivalent, written αK ∼ βL, if they satisfy the following condition for all
finite dimensional kG-modules M : α∗

K(MK) is free as K[t]/tp-module if
and only if β∗

L(ML) is free as L[t]/tp-module.
(4) A subset V ⊂ Π(G) is closed if and only if there exists a finite dimensional

kG-module M such that V equals

Π(G)M = {[αK] |α∗
K(MK ) is not free as K[t]/tp − module}

The closed subset Π(G)M ⊂ Π(G) is called the Π-support of M .
(5) The topological space Π(G) of equivalence classes of π-points can be en-

dowed with a scheme structure based on representation theoretic properties
of G (see [16, §7]).

We denote by

H•(G, k) =

{
H∗(G, k), if p = 2,

Hev(G, k) if p > 2.
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The cohomological support variety |G|M of a kG-module M is the closed subspace
of Spec H•(G, k) defined as the variety of the ideal AnnH•(G,k) Ext∗G(M, M) ⊂
H•(G, k).

Theorem 1.2. [16, 7.5] Let G be a finite group scheme, and M be a finite di-
mensional kG-module. Denote by Proj H•(G, k) the projective k-scheme associated
to the commutative, graded k-algebra H•(G, k). Then there is an isomorphism of
k-schemes

ΦG : Proj H•(G, k) ' Π(G)

which restricts to a homeomorphism of closed subspaces

Proj(|G|M) ' Π(G)M

for all finite dimensional kG-modules M .

We (implicitly) identify Proj H•(G, k) with Π(G) via this isomorphism.
We consider the stable module category stmod kG. Recall that the Heller shift

Ω(M) of M is the kernel of the minimal projective cover P (M) � M , and the
inverse Heller shift Ω−1(M) is the cokernel of the embedding of M into its injective
hull, M ↪→ I(M).

The objects of stmod kG are finite dimensional kG-modules. The morphisms are
equivalence classes where two morphisms are equivalent if they differ by a morphism
which factors through a projective module,

Homstmod kG(M, N) = HomkG(M, N)/PHomkG(M, N).

The stable module category has a tensor triangulated structure: the triangles are
induced by exact sequences, the shift operator is given by the inverse Heller operator
Ω−1, and the tensor product is the standard tensor product in the category of kG-
modules. Two kG-modules M , N are stably isomorphic if and only if they are
isomorphic as kG-modules up to a projective direct summand.

The association M 7→ Π(G)M fits the abstractly defined “theory of supports”
for the stable module category of G (as defined in [2]). Some of the basic properties
of this theory are summarized in the next theorem (see [16]).

Theorem 1.3. Let G be a finite group scheme and let M, N be finite dimensional
kG-modules.

(1) Π(G)M = ∅ if and only if M is projective as a kG-module.
(2) Π(G)M⊕N = Π(G)M ∪ Π(G)N .
(3) Π(G)M⊗N = Π(G)M ∩ Π(G)N .
(4) Π(G)M = Π(G)ΩM .
(5) If M → N → Q → Ω−1M is an exact triangle in the stable module category

stmod(kG) then Π(G)N ⊂ Π(G)M ∪ Π(G)Q.
(6) If p does not divide the dimension of M , then Π(G)M = Π(G).

The last property of Theorem 1.3 indicates that M 7→ Π(G)M is a somewhat
crude invariant.

We next recall the use of Jordan types in order to refine this theory. The iso-
morphism type of a finite dimensional k[t]/tp-module M is said to be the Jor-
dan type of M . We denote the Jordan type of M by JType(M), and write
JType(M) =

∑p
i=1 ai[i]; in other words, as a k[t]/tp-module M '

⊕p
i=1([i])

⊕ai

where [i] = k[t]/ti. Thus, we may (and will) view a Jordan type JType(M) as a
partition of m = dimM into subsets each of which has cardinality ≤ p.
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We shall compare Jordan types using the dominance order. Let n = [n1 ≤ n2 ≤
. . . ≤ nk], m = [m1 ≤ m2 ≤ . . . ≤ mk] be two partitions of N . Then n dominates
m, written n ≥ m, iff

(1.3.1)

k∑

i=j

ni ≥
k∑

i=j

mi.

for all j, 1 ≤ j ≤ k. For k[t]/tp-modules M, N , we say that JType(M) ≥ JType(N)
if the partition corresponding to JType(M) dominates the partition corresponding
to JType(N). The dominance order on Jordan types can be reformulated in the
following way.

Lemma 1.4. Let M , N be k[t]/tp-modules of dimension m. Then JType(M) ≥
JType(N) if and only if

rk(tj, M) ≥ rk(tj , N)

for all j, 1 ≤ j < p, where rk(tj, M) denotes the rank of the operator tj on M .

Proof. If JType(M) =
p∑

i=1
ai[i], then

(1.4.1) rk(tj, M) =

p∑

i=j+1

ai(i − j).

The statement now follows from [10, 6.2.2]. �

The following theorem plays a key role in our formulation of geometric invariants
for a kG-module M that are finer than the Π-support Π(G)M . In Section 3, we
outline the proof of this theorem in order to prove the related, but sharper, Theorem
3.6. We say that a π-point αK has maximal Jordan type on a kG-module M if
there does not exist a π-point βL such that JType(α∗

K(MK)) < JType(β∗
L(ML)).

Theorem 1.5. [18, 4.10] Let G be a finite group scheme over k and M a finite
dimensional kG-module. Let αK : K[t]/tp → KG be a π-point of G which has
maximal Jordan type on M . Then for any π-point βL : L[t]/tp → LG which
specializes to αK , the Jordan type of α∗

K(MK) equals the Jordan type of β∗
L(ML);

in particular, if αK ∼ βL, then the Jordan type of α∗
K(MK ) equals the Jordan type

of β∗
L(ML).

The following class of kG-modules was introduced in [8] and further studied in
[7], [9], [4], [5].

Definition 1.6. A finite dimensional kG-module M is said to be of constant Jordan
type if the Jordan type of α∗

K(MK ) is the same for every π-point αK of G. By
Theorem 1.5, M has constant Jordan type a if and only if for each point of Π(G)
there is some representative αK of that point with JType(M) = a.

Theorem 1.5 justifies the following definition (see [18, 5.1]).

Definition 1.7. ([18, 5.1]) Let M be a finite dimensional representation of a finite
group scheme G. We define Γ(G)M ⊂ Π(G) to be the subset of equivalence classes
of π-points αK : K[t]/tp → KG such that JType(α∗

K(MK)) is not maximal among
Jordan types JType(β∗

L(ML)) where βL runs over all π-points of G.
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To conclude this summary, we recall certain properties of the association M 7→
Γ(G)M .

Proposition 1.8. Let G be a finite group scheme and let M, N be finite dimensional
kG-modules. Then Γ(G)M ⊂ Π(G) is a closed subvariety satisfying the following
properties:

(1) If M and N are stably isomorphic, then Γ(G)M = Γ(G)N .
(2) Γ(G)M ⊂ Π(G)M with equality if and only if Π(G)M 6= Π(G).
(3) Γ(G)M is empty if and only if M has constant Jordan type.
(4) If M has constant Jordan type, then Γ(G)M⊕N = Γ(G)N .
(5) If Π(G) is irreducible, then N has constant non-projective Jordan type if

and only if Γ(G)M⊗N = Γ(G)M for any kG-module M .
(6) If Π(G) is irreducible, then

Γ(G)M⊗N = (Γ(G)M ∪ Γ(G)N) ∩ (Π(G)M ∩ Π(G)N ).

Proof. If M and N are stably isomorphic then M = N ⊕ P (or vice versa) with
P projective. Since projective modules have constant Jordan type, (1) becomes a
special case of (4). The fact that Γ(G)M ⊂ Π(G) is closed is proved in [18, 5.2].
Properties (2) and (3) follow essentially from definitions. Property (4) follows from
the additivity of the dominance order. Properties (5) and (6) are the statements of
[8, 4.9] and [8, 4.7] respectively. �

2. Refined support varieties for infinitesimal group schemes

Before considering refinements of Γ(G)M ⊂ Π(G) in Section 3 for a general finite
group scheme G, we specialize in this section to infinitesimal group schemes and
work with the affine variety V (G). First, we recall some definitions and several
fundamental results from [23], [24].

A finite group scheme is called infinitesimal if its coordinate algebra k[G] is
local. Important examples of infinitesimal group schemes are Frobenius kernels of
algebraic groups (see [20]). An infinitesimal group scheme is said to have height
less or equal to r if for any x in Rad(k[G]), xpr

= 0. A one-parameter subgroup of
height r of G over a commutative k-algebra A is a map of group schemes over A of
the form µ : Ga(r),A → GA. Here, Ga(r),A, GA are group schemes over A defined
as the base changes from k to A of Ga(r), G.

Let Ga be the additive group, and Ga(r) be the r-th Frobenius kernel of Ga. Then

k[Ga(r)] = k[T ]/T pr

, and kGa(r) = k[u0, . . . , ur−1]/(up
0, . . . , u

p
r−1), indexed so that

the Frobenius map F : Ga(r) → Ga(r) satisfies F∗(ui) = ui−1, i > 0; F∗(u0) = 0. We
define

(2.0.1) ε : k[u]/up → kGa(r) = k[u0, . . . , ur−1]/(up
0, . . . , u

p
r−1)

to be the map sending u to ur−1 ∈ kGa(r). Thus, ε is a map of group algebras but
not of Hopf algebras in general. In fact, the map ε is induced by a group scheme
homomorphism if and only if r = 1 in which case ε is an isomorphism.

Theorem 2.1. [23] Let G be an infinitesimal group scheme of height ≤ r. Then
there is an affine group scheme V (G) which represents the functor sending a com-
mutative k-algebra A to the set Homgr.sch/A(Ga(r),A, GA).

Thus, a point v ∈ V (G) naturally corresponds to a 1-parameter subgroup

µv : Ga(r),k(v)
// Gk(v)
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where k(v) is the residue field of v.

Theorem 2.2. [24] (1). The closed subspaces of V (G) are the subsets of the form

V (G)M = {v ∈ V (G) | ε∗µ∗
v(Mk(s)) is not free as a module over k(v)[u]/up}

for some finite dimensional kG-module M .

(2). There is a natural p-isogeny V (G) −→ Spec H•(G, k) which restricts to a
homeomorphism V (G)M ' |G|M for any finite dimensional kG-module M .

Theorem 1.2 implies that the spaces Π(G) and Proj k[V (G)] are also homeo-
morphic (see [16] for a natural direct relationship between Π(G) and V (G) for an
infinitesimal group scheme).

Let µv∗ : k(v)Ga(r) → k(v)G be the map on group algebras induced by the
one-parameter subgroup µv : Ga(r) → G. We denote by θv the nilpotent element
of k(v)G which is the image u under the composition

k(v)[u]/up ε
// k(v)[u0, . . . , ur−1]/(up

0, . . . , u
p
r−1)

µv∗
// k(v)G .

So, θv = µv∗(ur−1) ∈ k(v)G. For a given kG-module M we also let

θv : Mk(v) → Mk(v)

denote the associated p-nilpotent endomorphism. Thus, JType(ε∗µ∗
v(Mk(v))) is the

Jordan type of θv on Mk(v).

Definition 2.3. Let M be a kG-module of dimension m. We define the local
Jordan type function

(2.3.1) JTypeM : V (G) → N
×p,

by sending v to (a1, . . . , ap), where (θv)∗(Mk(v)) '
∑p

i=1 ai[i].

Definition 2.4. For a given a = (a1, . . . , ap) ∈ N×p, we define

V a(G)M = {v ∈ V (G) | JTypeM (v) = a},

V ≤a(G)M = {v ∈ V (G) | JTypeM (v) ≤ a}.

As we see in the following example, V a(G)M is a generalization of a nilpotent orbit
of the adjoint representation (and V ≤a(G)M is a generalization of an orbit closure).

Example 2.5. Let G = GLN(1) and let M be the standard N -dimensional rep-
resentation of GLN . Then JTypeM sends a p-nilpotent matrix X to its Jordan
Jordan type as an endomorphism of M . Consequently, JTypeM has image inside
N×p consisting of those p-tuples a = (a1, . . . , ap) such that

∑
i ai · i = N . The

locally closed subvarieties V a(G)M ⊂ Np(glN ) are precisely the adjoint GLN -orbits
inside the p-nilpotent cone Np(glN) of the Lie algebra glN .

Example 2.6. Let ζ ∈ H2i+1(G, k) be a non-zero cohomology class of odd degree.
Let Lζ be the Carlson module defined as the kernel of the map Ω2i+1(k) → k
corresponding to ζ (see [3, II.5.9]). The module Ω2i+1(k) has constant Jordan type
m[p] + [p − 1]. Let a = m[p] + [p − 2] and b = (m − 1)[p] + 2[p − 1]. Then the
image of JTypeLζ

equals {a, b} ⊂ N×p. Moreover, V a(G)Lζ
is open in V (G), with

complement V b(G)Lζ
.
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Remark 2.7. An explicit determination of the global p-nilpotent operator ΘM :
M ⊗ k[V (G)] → M ⊗ k[V (G)] of [17, 2.4] immediately determines the local Jordan
type function JTypeM . Namely, to any v ∈ V (G) we associate a nilpotent linear
operator θv : Mk(v) → Mk(v) defined by θv = ΘM ⊗k(v)[V (G)] k(v). The local Jordan
type of M at the point v is precisely the Jordan type of the linear operator θv .

The reader should consult [17] for many explicit examples of kG-modules M for
each of the four families of examples of infinitesimal group schemes: (i.) G of height
1, so that M is a p-restricted module for Lie(G); (ii.) G = Ga(r); (iii.) GLn(r); and
(iv.) SL2(2).

We provide a few elementary properties of these refined support varieties.

Proposition 2.8. Let M be a kG-module of dimension m and let a = (a1, . . . , ap)
such that

∑p
i=1 ai · i = m.

(1) If m = p ·m′, then V (G)\ V (G)M = V (0,...,0,m′)(G)M ; otherwise, V (G) =
V (G)M .

(2) M has constant Jordan type if and only if V (G)M = V a(G)M for some
a ∈ N×p (in which case a is the Jordan type of M).

(3) V ≤a(G)M = {v ∈ V (G) | JTypeM (v) ≤ a} is a closed subvariety of
V (G).

(4) V a(G)M is a locally closed subvariety of V (G), open in V ≤a(G)M .
(5) V ≤b(G)M ⊆ V ≤a(G)M , if b ≤ a, where “ ≤ ” is the dominance order

on Jordan types.

Proof. Properties (1) and (2) follow immediately from the definitions of V (G)M

in Theorem 2.1 and of constant Jordan type in Definition 1.6. Property (5) is
immediate.

To prove (3), we utilize θv = ΘM ⊗k(v)[V (G)] k(v) : Mk(v) → Mk(v) described in

Remark 2.7. Applying Nakayama’s Lemma as in [17, 4.11] to Ker{Θj
M}, 1 ≤ j < p,

we conclude that rk(θj
v , M), 1 ≤ j ≤ p− 1, is lower semi-continuous. Consequently,

(1.3.1) and Lemma 1.4 imply that V ≤a(G)M is closed.
Property (4) follows from the observation that V a(G)M is the complement inside

V ≤a(G)M of the finite union V <a(G)M = ∪a′<aV ≤a′

, which is closed by (3). �

It is often convenient to consider the stable Jordan type of a k[t]/tp-module M :
if a1[1] + . . . + ap[p] is the Jordan type of M , then the stable Jordan type of M
is a1[1] + . . . + ap−1[p − 1] (equivalently, the isomorphism class of M in the stable
module category stmod k[u]/up). We define the stable local Jordan type function

JType
M

: V (G) → N
×p−1, v 7→ (a1, . . . , ap−1)

by sending v to the stable Jordan type of θ∗v(Mk(v)).

The following proposition relates the Jordan type function for a module M and
its Heller twist.

Proposition 2.9. For a stable Jordan type a =
∑p−1

i=1 ai[i], denote by a⊥ the “flip”
of a,

a⊥ =

p−1∑

i=1

ap−i[i].

Then
JType

Ω(M)
(v) = JType

M
(v)⊥, v ∈ V (G).
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Proof. For any v ∈ V (G), µ∗
v : (k(v)G − mod) → (k(v)Ga(r) − mod) is exact.

Moreover, ε∗ : (kGa(r) − mod) → (k[u]/up − mod) is also exact. Consequently, the
existence of a short exact sequence of the form 0 → ΩM → P → M → 0 with
JTypeP (v) = N [p] for some N implies the assertion. �

Example 2.10. Let g be a restricted Lie algebra with restricted enveloping algebra
u(g) (which is isomorphic to the group algebra of an infinitesimal group scheme of
height 1). Let ζ be an even dimensional cohomology class in H•(u(g), k), and Lζ

be the Carlson module defined by ζ. Then Lζ has two local Jordan types: it is
generically projective (that is, the local Jordan type is m[p] on a dense open set),
and has the type r[p]+ [p−1]+ [1] on the hypersurface 〈ζ = 0〉 in Spec H•(u(g), k).
Let M be a g-module of constant Jordan type a. Then the module Lζ ⊗M has two
local Jordan types: it is generically projective, and has the “stably palindromic”
type a + a⊥ + [proj] on 〈ζ = 0〉.

We conclude this section with the following cautionary example which shows why
the construction of our local Jordan type function does not apply to kG-modules
M for finite groups G.

Example 2.11. ([18, 2.3]) Let E = Z/p × Z/p, and write kE = k[x, y]/(xp, yp).
Let M = kE/(x − y2). Then

α : k[t]/tp → kE, t 7→ x

and
α′ : k[t]/tp → kE, t 7→ x − y2

are equivalent as π-points of E. However, the Jordan type of α∗(M) equals [ p−1
2 ]+

[ p+1
2

], whereas the Jordan type of α′∗(M) is p[1].

3. Maximal j–rank for arbitrary finite group schemes

We begin with the following definition.

Definition 3.1. Let G be a finite group scheme, αK : K[t]/tp → KG be a π-
point of G, and j a positive integer with 1 ≤ j < p. Then αK is said to be of
maximal j-rank for some finite-dimensional kG-module M provided that the rank of
αK(tj) = αK(t)j : MK → MK is greater or equal to the rank of βL(tj) : ML → ML

for any π-point βL : L[t]/tp → LG.

The purpose of this section is to establish in Theorem 3.6 that maximality of
j-rank at αK implies maximal j-rank at βL for any βL ∼ αK. The proof consists
of repeating almost verbatim the proof by A. Suslin and the authors in [18] of
Theorem 1.5, so that we merely indicate here the explicit places at which the proof
of Theorem 1.5 should be modified in order to prove Theorem 3.6.

The following theorem provides the key step.

Theorem 3.2. Let k be an infinite field, M be a finite-dimensional k-vector space,
and α, α1, . . . , αn, β1, . . . , βn be a family of commuting nilpotent k-linear endomor-
phisms of M . Let 1 ≤ j ≤ p − 1, and assume that

rk αj ≥ rk(α + λ1α1 + . . . + λnαn)j

for any field extension K/k and any n-tuple (λ1, . . . , λn) ∈ Kn. Then

rk αj = rk(α + α1β1 + . . . + αnβn)j.
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In particular, if p(x, x1, . . . , xn) is any polynomial without constant or linear term
then

rk αj = rk(α + p(α, α1, . . . , αn))j .

Proof. For j = 1, this is [18, 1.8]. For general j, the statement follows by applying
Corollary 1.11 of [18]. �

For any π-point αK : K[t]/tp → KG, we denote by rk(αK(tj), MK) the rank of
the K-linear endomorphism αK(tj) : MK → MK .

In the next 3 propositions, we consider the special cases in which G is an ele-
mentary abelian p-group, an abelian finite group scheme, and an infinitesimal finite
group scheme. In this manner, we follow the strategy of the proof of Theorem 1.5.

Proposition 3.3. Let E be an elementary abelian p-group of rank r, let M be a
finite dimensional kE-module, and let αK be a π-point of E which is of maximal
j-rank for M . Then for any βL ∼ αK,

rk(αK(tj), MK) = rk(βL(tj), ML).

Proof. The proof of [18, 2.7] applies verbatim provided one replaces references to
[18, 1.12] by references to [18, 1.9]. �

Proposition 3.4. Let C be an abelian finite group scheme over k, let M be a finite
dimensional kC-module, and let αK be a π-point of C which is of maximal j-rank
for M . Then for any βL ∼ αK ,

rk(αK(tj), MK) = rk(βL(tj), ML).

Proof. The proof of [18, 2.9] applies verbatim provided one replaces references to
[18, 2.7] by references to Proposition 3.3 and references to [18, 1.12] by references
to Theorem 3.2. �

Proposition 3.5. Let G be an infinitesimal group scheme over k and let M be
a finite dimensional kG-module. Let βL : L[t]/tp → LG be a π-point of G with
the property that the j-rank of β∗

L(ML) is maximal for M . Then for any π-point
αK : K[t]/tp → KG which specializes to βL,

rk(αK(tj), MK) = rk(βL(tj), ML).

Proof. The proof of [18, 3.5] applies verbatim provided one replaces references to
[18, 2.9] by references to Proposition 3.4. �

We now state and prove the assertion that maximality of j-rank at αK implies
maximality of j-rank at βL for any βL ∼ αK. This statement for all j, 1 ≤ j < p,
implies the maximality of Jordan type as asserted in Theorem 1.5.

Theorem 3.6. Let G be a finite group scheme over k and let M be a finite dimen-
sional kG-module. Let αK : K[t]/tp → KG be a π-point of G which is of maximal
j-rank for M . Then for any π-point βL : L[t]/tp → LG that specializes to αK, we
have

rk(αK(tj), MK) = rk(βL(tj), ML).

Proof. The proof of [18, 4.10] applies verbatim provided one replaces references to
[18, 2.9] by references to Proposition 3.4 and references to [18, 3.5] by references to
Proposition 3.5. �
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We can now generalize the modules of constant j-rank as defined for infinitesimal
group schemes in [17] to all finite group schemes.

Definition 3.7. A finite dimensional kG-module M is said to be of constant j-
rank, 1 ≤ j < p, if for any two π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG,
we have

rk(αK(tj), MK) = rk(βL(tj), ML).

Remark 3.8. By Theorem 3.6, M has constant j-rank n if and only if for each
point of Π(G) there is some π-point representative αK with rk(αK(tj), MK) = n.

Evidently, a kG-module has constant Jordan type if and only if it has constant
j-rank for all j, 1 ≤ j < p (see (1.3.1)).

We shall say that M is a module of constant rank if it has constant 1-rank. Every
module of constant Jordan type has, by definition, constant rank. On the other
hand, there are numerous examples of modules of constant rank which do not have
constant Jordan type. For example, if ζ ∈ H2i+1(G, k) is non-zero and p > 2, then
the Carlson module Lζ is a kG-module of constant rank but not of constant Jordan
type.

We finish this section with a cautionary example that illustrates that not all
properties of maximal or constant Jordan type have natural analogues for maximal
or constant rank. Recall that a generic Jordan type of a kG-module M is the Jordan
type at a π-point which represents a generic point of Π(G). By the main theorem
of [18], it is well-defined. If Π(G) is irreducible, we can therefore refer to the generic
Jordan type of M . We can similarly define a generic j-rank of a kG-module to be
rk(αK(tj), MK) for a π-point α of G representing a generic point of Π(G). By [18,
4.2], generic j-rank is well-defined.

Example 3.9. Throughout this example we are using the formula for the tensor
product of Jordan types (see, for example, [8, Appendix]).

(1). Let a =
∑

ai[i], b =
∑

bi[i] be two Jordan types (or partitions) of the same
cardinality. In [8, 4.1] the authors showed that a ≥ b implies a ⊗ c ≥ b ⊗ c for any
Jordan type c. The analogous statement is not true for ranks.

Indeed, let a = 3[2], b = [3] + 3[1], and c = [2]. Then

rk a = 3 > rk b = 2.

Since a ⊗ c = 3[3] + 3[1] and b ⊗ c = [4] + 4[2], we have

rk a ⊗ c = 6 < rk b ⊗ c = 7.

(2). The first part of this example illustrates a common failure of the upper
semi-continuity property of the ranks of partitions with respect to tensor product.
Since this fails for partitions, it is reasonable to expect the same property to fail for
maximal ranks of modules. The following is an explicit realization by kG-modules
of this failure of upper semi-continuity. This example also shows that M ⊗ N can
fail to have maximal rank at a π-point at which both M and N have maximal rank.
This should be contrasted with the situation for maximal Jordan types ( [8, 4.2]).
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Let G = G
×2
a(1) so that kG ' k[x, y]/(xp, yp). Consider the kG-module M of

Example [8, 2.4], pictured as follows:
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Recall that Π(G) ' Proj H•(G, k) ' P1. A point [λ1 : λ2] on P1 is represented by
a π-point α : k[t]/tp → kG such that α(t) = λ1x + λ2y.

For p > 5, the module M has two Jordan types: the generic type 4[3] + 1[1] and
the singular type 3[3]+ 2[2], which occurs at [1 : 0] and [0 : 1] (see [8, 2.4]). Hence,
M has constant rank. We compute possible local Jordan types of M ⊗M using the
fact that µv∗ : k(v)[t]/(tp) → k(v)G is a map of Hopf algebras for any v ∈ V (G):

(i) (4[3] + 1[1])⊗2 = 16[5] + 24[3] + 17[1],
(ii) (3[3] + 2[2])⊗2 = 9[5] + 16[4] + 13[3] + 12[2] + 9[1].

By [18, 4.4], the first type is the generic Jordan type of M ⊗M . Hence, the generic
(and maximal) rank of M ⊗ M is 112. On the other hand, the rank of the second
type is 110. Hence, the rank of M at the points [1 : 0], [0 : 1] is maximal, but the
rank of M ⊗ M is not.

(3). Yet another result in [8], a direct consequence of the result on the tensor
products of maximal types mentioned in (2), states that a tensor product of modules
of constant Jordan type is a module of constant Jordan type. This distinguishes
the family of modules of constant Jordan type from the modules of constant rank,
for which this property fails. Let M be the same as in (2). The calculation above
shows that M is of constant rank but M ⊗ M is not.

We also give an example of a different nature, avoiding point by point calculations
of Jordan types. This example was pointed out to us by the referee. Let M be a
cyclic kG-module of dimension less than p (e.g., M = k[x, y]/(x2, yp)). We have a
short exact sequence 0 → ΩM → kG → M → 0. This implies that the local Jordan
type of ΩM necessarily has p blocks, and, hence, ΩM has constant rank. Since
ΩM ⊗ Ω−1k ' M ⊕ [proj], we conclude that the tensor product of two modules of
constant rank produces a module which is not of constant rank.

4. Refined support varieties for arbitrary finite group schemes

In this section, we introduce the non-maximal support varieties Γj(G)M for
an arbitrary finite group scheme, finite dimensional kG-module M , and integer
j, 1 ≤ j < p. These are well defined thanks to Theorem 3.6. After verifying a few
simple properties of these refined support varieties, we investigate various explicit
examples.

Definition 4.1. Let G be a finite group scheme, and let M be a finite dimensional
kG-module. Set

Γj(G)M = {[αK] ∈ Π(G) | rk(αK(tj), MK) is not maximal},

the non-maximal j-rank variety of M .
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Our first example demonstrates that {Γj(G)M} is a finer collection of geometric
invariants than Π(G)M .

Example 4.2. Let G = GL(3, Fp) with p > 3. By [21] (see [18, 4.10]), the ir-
reducible components of Π(G) are indexed by the conjugacy classes of maximal
elementary p-subgroups of G which are represented by subgroups of the unipotent
group U(3, Fp) of strictly upper triangular matrices. There are 3 such conjugacy
classes, represented by the following subgroups:








1 a b
0 1 a
0 0 1



 a, b ∈ Fp














1 a b
0 1 0
0 0 1



 a, b ∈ Fp














1 0 b
0 1 a
0 0 1



 a, b ∈ Fp






Let M be the second symmetric power of the standard 3-dimensional (rational)
representation of G. Then the generic Jordan type of M indexed by the first of
these maximal elementary abelian subgroups of G is [3] + 3[1], whereas the Jordan
types indexed by each of the other conjugacy classes of maximal elementary abelian
p–subgroups are [2] + 4[1].

Thus, Π(G)M = Π(G) provides no information about M .
On the other hand, Γ(G)M = Γ1(G)M = Γ2(G)M equals the union of the two

irreducible components of Π(G) corresponding to the second and third maximal
elementary abelian p–subgroups, whereas Γi(G)M = ∅ for i > 2.

Our second example shows that Γi(G)M and Γj(M) can be different, proper
subsets of Π(G).

Example 4.3. In [18, 4.13] A. Suslin and the authors constructed an example of a
finite group G and a finite dimensional G-module M , such that Π(G) = X ∪ Y has
two irreducible components and the generic Jordan types of M at the generic points
of X and Y respectively are incomparable. Let G and M satisfy this property, and
let αK and βL be generic π-points of X and Y respectively. If JType(α∗

K(MK)) and
JType(β∗

L(ML)) are incomparable, then Lemma 1.4 implies that there exist i 6= j
such that rk(αK(ti), MK) > rk(βL(ti), ML) but rk(αK(tj), MK) < rk(βL(tj), ML).
Hence, Γi(G)M is a proper subvariety that contains the irreducible component Y
whereas Γj(G)M is a proper subvariety that contains the irreducible component X.

Our third example is a simple computation for a general finite group scheme. It
provides another possible “pattern” for the varieties Γi(G)M .

Example 4.4. Let ζ1 ∈ Hn1(G, k) be an even dimensional class, and ζ2 ∈ Hn2(G, k)
be an odd dimensional class. Consider Lζ = Lζ1,ζ2

, the kernel of the map

ζ1 + ζ2 : Ωn1k ⊕ Ωn2k → k

The local Jordan type of Lζ at a π-point α is given in the following table:




r[p] + [p − 1], α∗(ζ1) 6= 0
r[p] + [p − 2] + [1], α∗(ζ1) = 0, α∗(ζ2) 6= 0
(r − 1)[p] + 2[p− 1] + [1], α∗(ζ1) = α∗(ζ2) = 0

Hence, Γ1(G)Lζ
= . . . = Γp−2(G)Lζ

= Z(ζ1), whereas Γp−1(G)Lζ
= Z(ζ1) ∩ Z(ζ2),

where Z(ζ1) denotes the zero locus of a class ζ1 ∈ H•(G, k) and Z(ζ2) for ζ2 ∈
Hodd(G, k) is defined in (5.3).
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We next verify a few elementary properties of M 7→ Γj(G)M . Some of them are
analogous to the properties of Γ(G)M stated in Prop 1.8.

Proposition 4.5. Let G be a finite group scheme and M a finite dimensional
kG-module.

(1) Γj(G)M is a proper closed subset of Π(G) for 1 ≤ j < p.
(2) Γj(G)M = ∅ if and only if M has constant j-rank.
(3) If M and N are stably isomorphic, then Γj(G)M = Γj(G)N

(4) If M is a module of constant j-rank, then Γj(G)M⊕N = Γj(G)N .
(5) Γj(G)M = Γj(G)Ω2(M).

(6) Γ(G)M = ∪1≤j<pΓ
j(G)M .

(7) If M has the Jordan type m[p] at some generic π-point, then Γ1(G)M =
. . . = Γp−1(G)M = Π(G)M .

Proof. By definition, Γj(G)M ⊂ Π(G) can never equal Π(G), so it is a proper
subvariety. Moreover, assertions (2) and (6) also immediately follow from definitions
and Lemma 1.4. Assertion (4) follows from the additivity of ranks and of the functor
α∗

K : KG−mod → K[t]/tp−mod induced by a π-point αK . Property (3) is proved
exactly as in the proof of Proposition 1.8(1).

For (5), observe that a π-point αK induces an exact functor and hence commutes
with the Heller operator Ω. The statement now follows from the observation that
for K[t]/tp-modules, applying Ω2 does not change the stable Jordan type.

To prove that Γj(G)M ⊂ Π(G) is closed as asserted in (1), we repeat the proof
of [18, 5.2] establishing that Γ(G)M is closed. Indeed, the reduction in that proof
to the special case in which G is infinitesimal applies without change. The proof in
the special case of G infinitesimal uses the affine scheme of 1-parameter subgroups;
this proof applies with only one minor change: the set of equations on the ranks of
powers of fA : A[t]/tp → EndA(M) (in the notation of that proof) is replaced by
the set of equations on rank of only one, the j-th, power of fA.

If M is generically projective as in (7), then Γ(G)M = Π(G)M . Let αK 6∈ Γ(G)M

so that the Jordan type of α∗
K(M) is m[p], and let βL ∈ Γ(G)M . Let

∑
bi[i] be the

Jordan type of β∗
L(ML). The statement follows easily from the formula (1.4.1): we

have

rk(αK(tj), MK) = m(p − j) >

p∑

i=j+1

bi(i − j) = rk(βL(tj), ML),

where the inequality in the middle follows by downward induction on j from the

assumption mp = dimM =
p∑

i=1

bii. Thus, Γj(G)M = Γ(G)M for each j, 1 ≤ j < p.

�

Example 4.6. We point out that the “natural” analog of 1.8(5) is not true for
modules of constant rank. Namely, Γ1(G)M⊗N does not have to be equal to Γ1(G)N

for M of constant rank. Indeed, let M be as in Example 3.9. Then M has constant
rank and Γ1(E)M = ∅. But Γ1(E)M⊗M 6= ∅ since M ⊗ M is not a module of
constant rank.

Using a recent result of R. Farnsteiner [12, 3.3.2], we verify below that the non-
maximal subvarieties Γi(G)M ⊂ Π(G) of an indecomposable kG-module M do not
change when we replace M by any N in the same component as M of the stable
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Auslander-Reiten quiver of G. This is a refinement of a result of the J. Carlson
and the authors [8, 8.7] which asserts that if M is an indecomposable module of
constant Jordan type than any N in the same component of the stable Auslander-
Reiten quiver of G as M is also of constant Jordan type.

Proposition 4.7. Let k be an algebraically closed field, and G be a finite group
scheme over k. Let Θ ⊂ Γs(G) be a component of the stable Auslander-Reiten
quiver of G. For any two modules M, N in Θ, and any j, 1 ≤ j ≤ p − 1,

Γj(G)M = Γj(G)N

Proof. Recall that Π(G) is connected. If dimΠ(G) = 0, then Π(G) is a single point
so that Γj(G)M is empty for any kG-module M .

Now, assume that Π(G) is positive dimensional. Since k is assumed to be alge-
braically closed, to show that Γj(G)M = Γj(G)N , it’s enough to show that their
k-valued points are the same. For this reason, we shall only consider π-points
defined over k.

Let M be a kG-module in the component Θ, and write the Jordan type of α∗(M)
as

∑p
i=1 αi(M)[i]. By [12, 3.1.1], each component Θ determines non-negative in-

teger valued functions di on the set of π-points (possibly different on equivalent
π-points) and a positive, integer valued function f on the modules occurring in Θ
such that

(4.7.1)

{
αi(M) = di(α)f(M) for 1 ≤ i ≤ p − 1

αp(M) = 1
p (dimM − dp(α)f(M))

Assume [β] ∈ Γj(G)M , so that there exists a π-point α : k[t]/tp → kG such that
rk{αj(t), M} > rk{βj(t), M}. By (1.4.1), this is equivalent to

p∑

j=i+1

αi(M)(i − j) >

p∑

j=i+1

βi(M)(i − j).

Using formula (4.7.1), we rewrite this inequality as

p−1∑

j=i+1

di(α)f(M)(i − j) +
1

p
(dimM − dp(α)f(M))(p − j) >

p−1∑

j=i+1

di(β)f(M)(i − j) +
1

p
(dimM − dp(β)f(M))(p − j).

Simplifying, we obtain
(4.7.2)

(

p−1∑

j=i+1

di(α)(i − j) −
p − j

p
dp(α))f(M) > (

p−1∑

j=i+1

di(β)(i − j) −
p − j

p
dp(β))f(M).

Now, let N be any other indecomposable kG-module in the component Θ. Mul-
tiplying the inequality (4.7.2) by the positive, rational function f(N)/f(M), we
obtain the same inequality as (4.7.2) with M replaced by N . Thus, [β] ∈ Γj(G)N .
Interchanging the roles of M and N , we conclude that Γj(G)M = Γj(G)N . �

For an infinitesimal group scheme G, the closed subvarieties Γj(G)M ⊂ Π(G)
admit an affine version V j(G) ⊂ V (G) defined as follows
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Definition 4.8. Let G be an infinitesimal group scheme, M a finite dimensional
kG-module, and j a positive integer, 1 ≤ j < p. We define

V j(G)M = {v ∈ V (G)| rk(θj
v , Mk(v)) is not maximal} ∪ {0} ⊂ V (G).

(see §2 for notations). So defined, V j(G)M − {0} equals pr−1(Γj(G)M ), where
pr : V (G) − {0} → Π(G) is the natural (closed) projection (see [16]).

Remark 4.9. We can express V j(G)M in terms of the locally closed subvarieties
V a(G)M introduced in §2. Namely, V j(G)M is the union of V a(G)M ⊂ V (G)
indexed by the Jordan types a with

∑p
i=1 ai · i = dim(M) satisfying the condition

that there exists some Jordan type b with V b(G)M 6= {0} and
∑p

i>j bi(i − j) >∑p
i>j ai(i − j).

Our first representative example of V j(G)M is a continuation of (2.5).

Example 4.10. Let G = GLN(1), let M be the standard representation of GLN ,
and assume p does not divide N . Recall that V (GLN(1)) ' Np, where Np is the
p-restricted nullcone of the Lie algebra glN ([24, §6]). The maximal Jordan type of
M is r[p] + [N − rp], where rp is the greatest non-negative multiple of p which is
less or equal to N (see [18, 4.15]). The rank of the jth-power of this matrix equals
r(p − j) + (N − rp − j) if N − rp > j and r(p − j) otherwise.

For simplicity, assume k is algebraically closed so that we need only consider k-
rational points of Np. For any X ∈ Np, θX : M → M is simply the endomorphism
X itself. Consequently, if N − rp ≤ j, V j(G)M ⊂ Np consists of 0 together with
those non-zero p-nilpotent N × N matrices with the property that their Jordan
types have strictly fewer than r blocks of size p; if N − rp > j, then V j(G)M

consists of 0 together with 0 6= X ∈ Np whose Jordan type is strictly less than
r[p] + [N − rp].

Hence, the pattern for varieties V j(M) in this case looks like

∅ 6= V 1(G)M = . . . = V n(G)M ⊂ V n+1(G)M = . . . = V p−1(G)M ⊂ V (G)

where n = N − rp.

Computing examples of V j(G)M is made easier by the presence of other struc-
ture. For example, if G = G(r), the rth-Frobenius kernel of the algebraic group G
and if the kG-module M is the restriction of a rational G-module, then we verify
in the following proposition that V j(G)M is G-stable, and thus a union of G-orbits
inside V (G).

Lemma 4.11. Let G be an algebraic group, and let G be the rth Frobenius kernel
of G for some r ≥ 1. If M is a finite dimensional rational G-module, then each
V j(G)M , 1 ≤ j < p, is a G-stable closed subvariety of V (G).

Proof. Composition with the adjoint action of G on G determines an action

G × V (G) → V (G).

Observe that for any field extension K/k and any x ∈ G(K), the pull-back of MK

via the conjugation action γx : GK → GK is isomorphic to MK as a KG-module.
Thus, the Jordan type of (µ ◦ ε)∗(MK) equals that of (γx ◦ µ ◦ ε)∗(MK) for any
1-parameter subgroup µ : Ga(r),K → GK. �
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Using Lemma 4.11, we carry out our second computation of V j(G)M with G
infinitesimal, this time for G of height 2.

Example 4.12. Let G = SL2(2). For simplicity, assume k is algebraically closed.
Recall that

V (G) = {(α0, α1) |α1, α2 ∈ sl2 , α
p
1 = αp

2 = [α1, α2] = 0},

the variety of pairs of commuting p-nilpotent matrices ([23]). The algebraic group
SL2 acts on V (G) by conjugation (on each entry).

Let e =

[
0 1
0 0

]
. An easy calculation shows that the non-trivial orbits of V (G)

with respect to the conjugation action are parameterized by P1, where [s0 : s1] ∈ P1

corresponds to the orbit represented by the pair (s0e, s1e).
Let Sλ be a simple SL2-module of highest weight λ, 0 ≤ λ ≤ p2 − 1. Since Sλ

is a rational SL2-module, the non-maximal rank varieties V j(G)Sλ
are SL2-stable

by Proposition 4.11. Hence, to compute the non-maximal rank varieties for Sλ it
suffices to compute the Jordan type of Sλ at the orbit representatives (s0e, s1e).
By the explicit formula ([17, 2.6.5]), the Jordan type of Sλ at (s0e, s1e) is given
by the Jordan type of the nilpotent operator s1e + sp

0e
(p) (here, e(p) is the divided

power generator of k SL2(2) as described in [17, 1.4]).

The non-maximal rank varieties V j(G)Sλ
depend upon which of the following

three conditions λ satisfies.

(1) 0 ≤ λ ≤ p − 1 . In this case, the Jordan type of e ∈ k SL2(2) as an operator

on Sλ is [λ + 1]. On the other hand, the action of e(p) is trivial. Hence, if
j ≥ λ+1, then the action (s1e+ sp

0e
(p))j is trivial for any pair (s0, s1). For

1 ≤ j ≤ λ, the j-rank is maximal (and equals λ + 1 − j) whenever s1 6= 0.
We conclude that for j > λ, we have V j(G)Sλ

= 0, and for 1 ≤ j ≤ λ,
V j(G)Sλ

is the orbit of V (G) parametrized by [1 : 0].

(2) p ≤ λ < p2 − 1 . Let λ = λ0 + pλ1. By the Steinberg tensor product

theorem, we have Sλ = Sλ0
⊗ S

(1)
λ1

. Observe that e acts trivially on S
(1)
λ1

and e(p) acts trivially on Sλ0
. Moreover, the Jordan type of e(p) as an

operator on S
(1)
λ1

is the same as the Jordan type of e as an operator on

Sλ1
. Hence, the Jordan type of s1e + sp

0e
(p) as an operator on Sλ0

⊗ S
(1)
λ1

is [λ0 + 1] ⊗ [λ1 + 1] when s0s1 6= 0. If s0 = 0 or s1 = 0 we get the types
[λ0 + 1] ⊗ (triv) or (triv) ⊗ [λ1 + 1] respectively.
(a) For 0 < λ0, λ1 < p − 1, the tensor product formula for Jordan types

(see [8, Appendix]) implies that the j-rank of [λ0 + 1] ⊗ [λ1 + 1] is
strictly greater than that of [λ0 + 1] ⊗ (triv) or (triv) ⊗ [λ1 + 1] for
j ≤ λ1 + λ0. Hence, the non-maximal j-rank variety in the case when
j ≤ λ1+λ0 is a union of two orbits, parameterized by [1 : 0] and [0 : 1].
If j > λ1 +λ0, then the non-maximal j-rank variety is trivial since the
j-rank is 0 at every point.

(b) If λ0 = 0, then Sλ ' S
(1)
λ1

. Hence, the computation for Sλ for λ < p
implies that the non-maximal j-rank variety in this case is the orbit
corresponding to [0 : 1] for j ≤ λ1 and is trivial otherwise.

(c) For λ0 = p − 1 or λ1 = p − 1, the non-maximal j-rank variety is the
same as the support variety for any j, since the support variety is a
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proper subvariety of V (G) in this case. The support varieties for these
modules were computed in [24, §7] (see also [17, 1.17(4)]).

(3) λ = p2 − 1 . In this case, Sλ is the Steinberg module for SL2(2). Hence, it

is projective, so the non-maximal rank varieties are all trivial.

We summarize our calculations in the table below. Let λ = λ0 + pλ1, and
λ = λ0 + λ1. If j > λ, then V j(G)Sλ

= ∅. For j ≤ λ, we have

V j(G)Sλ
=






{(α0, 0)} ∪ {(0, α1)} if 0 < λ0, λ1 < p − 1

{(α0, 0)} if λ0 6= 0, λ1 = 0 or λ0 = p − 1, λ1 6= p − 1

{(0, α1)} if λ0 = 0, λ1 6= 0 or λ0 6= p − 1, λ1 = p − 1

0 if λ0 = λ1 = p − 1.

In particular, for a given λ = λ0 + pλ1 we get the following pattern for M = Sλ:

V (G) ⊃ V 1(G)M = · · · = V λ̄(G)M ⊃ V λ̄+1(G)M = · · · = V p−1(G)M = {0}.

Observe that the only simple modules of constant rank are the trivial module and
the Steinberg module. An interested reader may find it instructive to compare this
calculation to the calculation of support varieties for SL2(2) ([17, 1.17(4)], see also
[24, §7]).

5. Subvarieties of Π(G) associated to individual Ext-classes

For M a kG-module of constant rank, we associate to a cohomology class ζ in
H1(G, M) a closed subvariety Z(ζ) ⊂ Π(G) which generalizes the construction of
the zero locus Z(ζ) ⊂ Spec H•(G, k) of a homogeneous cohomology class. We show
that this construction is intrinsically connected to the non-maximal rank variety,
and establish some “realization” results for non-maximal varieties as an application.
Unless otherwise indicated, throughout this section G will denote an arbitrary finite
group scheme over k.

Lemma 5.1. Let M be a finite dimensional kG-module, and let ζ be a cohomology
class in H1(G, M). Consider the corresponding extension

ζ̃ : 0 → M → Eζ → k → 0.

For any π-point αK : K[t]/tp → KG, the following are equivalent:

(i) the cohomology class α∗
K(ζK) ∈ H1(K[t]/tp, MK) is trivial.

(ii) rk(α∗
K(t), Eζ) = rk(α∗

K(t), M).
(iii) JType(α∗

K(Eζ,K)) = JType(α∗
K(MK)) + 1[1].

Proof. Recall that α∗
K(−) is exact (by definition, αK is flat); moreover, the sequence

α∗
K(ζ̃) splits if and only if α∗

K(ζ) = 0 in H1(K[t]/tp, K). Thus, it suffices to prove
that a short exact sequence 0 → M → E → K → 0 of K[t]/tp-modules splits if
and only if rk(t, M) = rk(t, E) if and only if JType(E) = JType(M) + 1[1]. Let
b =

∑p
i=1 bi[i] be the Jordan type of E and a =

∑p
i=1 ai[i] be the Jordan type of

M . Then this short exact sequence splits if and only if the map E → k factors
through the summand b1[1] of E which occurs if and only if bi = ai, i > 1 which is
equivalent to rk(t, M) = rk(t, E). �

Proposition 5.2. Let M be a kG-module of constant rank, and let ζ be a coho-
mology class in H1(G, M). Consider the corresponding extension

ζ̃ : 0 → M → Eζ → k → 0.
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(1) If Eζ has constant rank equal to that of M , then α∗
K(ζK) ∈ H1(K[t]/tp, M)

is trivial for every π-point αK : K[t]/tp → KG.
(2) If Eζ has constant rank greater than that of M , then α∗

K(ζK ) ∈ H1(K[t]/tp, M)
is non-trivial for every π-point αK : K[t]/tp → KG.

(3) If Eζ does not have constant rank, then α∗
K(ζ) is trivial if and only if

[αK] ∈ Γ1(G)Eζ
⊂ Π(G).

(4) For any two equivalent π-points αK , βL of G, α∗
K(ζK) is trivial if and only

if β∗
L(ζL) is trivial.

Proof. Assertions (1) and (2) follow immediately from Lemma 5.1. Assertion (3)
also follows from Lemma 5.1: if Eζ does not have constant rank, then the com-
plement of Γ1(G)Eζ

in Π(G) consists of those equivalence classes of π-points αK

satisfying Lemma 5.1(ii.).
To prove that the vanishing of α∗

K(ζK) depends only upon the equivalence class of
αK, we examine each of the three cases considered above. In case (1), α∗

K(ζK) = 0
for all π-points αK : on the other hand, in case (2) α∗

K(ζK) 6= 0 for all π-points αK .
Finally, the assertion in case (3) follows immediately from Theorem 3.6. �

Proposition 5.2(4) justifies the following definition.

Definition 5.3. For M a module of constant rank, and ζ ∈ H1(G, M), we define

(5.3.1) Z(ζ) ≡ {[αK] | α∗
K(ζ) = 0} ⊂ Π(G).

For ζ ∈ Hm(G, k), we define

(5.3.2) Z(ζ) ≡ {[αK] | α∗
K(ζ) = 0} ⊂ Π(G).

Since Hm(G, k) ' H1(G, Ω1−mk), the definition of (5.3.2) is a special case of
that of (5.3.1). For m = 2n even, Z(ζ) corresponds under the isomorphism Π(G) '
Proj H•(G, k) with the hypersurface 〈ζ = 0〉 in Spec H•(G, k) as shown below in
Proposition 5.7.

Remark 5.4. We point out that Definition 5.3 is not as straight-forward as it
might appear.

• Let G = Z/p × Z/p with p > 2, write kG = k[x, y]/(xp, yp) and consider
M = kG/(x − y2) as in Example 2.11. Consider the short exact sequence

0 → Rad(M) → M → k → 0,

with associated extension class ζ ∈ H1(G, Rad(M)). Consider the equiva-
lent π-points α, α′ : k[t]/tp → kG of Example 2.11. Then, α∗(ζ) 6= 0, yet
α′∗(ζ) = 0. Thus, the “zero locus” of ζ is not a well defined subset of Π(G).

• Let ζ ∈ H2n(G, k) represented by ζ̂ : Ω2nk → k. By definition of Lζ , we
have an extension

ξ̃ : 0 → Lζ → Ω2nk
ζ̂
→ k → 0,

corresponding to a cohomology class ξ ∈ H1(G, Lζ). Then for any π-point

αK : K[t]/tp → KG, α∗
K(ξ̃) splits if and only if α∗

K(Lζ) is free if and only
if [αK ] 6∈ Π(G)Lζ

if and only of α∗
K(ζ) 6= 0. Thus, the zero locus of ξ equals

the complement of the zero locus of ζ (and thus is open in Π(G)).
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• For ζ ∈ H2n+1(G, k), one could define Z(ζ) as the zero locus of the Bock-
stein of ζ provided one is in a situation in which the Bockstein is defined
and well behaved. See the discussion of the Bockstein following Example
5.6.

We recall from [7] that a short exact sequence of kG modules

ξ̃ : 0 → M → E → Q → 0

is said to be locally split if α∗
K(ξ̃) splits for every π-point αK : K[t]/tp → KG of G.

Proposition 5.5. Let M be a module of constant rank, and let ζ be a cohomology
class in H1(G, M). Consider the corresponding extension

ζ̃ : 0 → M → Eζ → k → 0.

Then

Z(ζ) =

{
Π(G), if ζ̃ is locally split

Γ1(G)Eζ
, if ζ̃ is not locally split.

In particular, Z(ζ) ⊂ Π(G) is closed.

Proof. Observe that ζ̃ is split at [αK] if and only if α∗
K(ζ) = 0. We first consider

ζ such that Eζ has constant rank. Then by Proposition 5.2.1, Z(ζ) equals Π(G)

if ζ̃ is locally split and Z(ζ) = ∅ by Proposition 5.2.2 if ζ̃ is not locally split.
Alternatively, if Eζ does not have constant rank, then Proposition 5.2.3 gives the
asserted description of Z(ζ).

Because Γ1(G)Eζ
⊂ Π(G) is closed by Proposition 4.5 and of course Π(G) is

itself closed in Π(G), we conclude that Z(ζ) is closed inside Π(G). �

We remark that ζ ∈ H1(G, M) can be non-zero and yet Z(ζ) = ∅. To say
Z(ζ) = ∅ is to say that α∗

K(ζ) = 0 for all π-points αK . Consider, for example, an

even dimensional non-trivial cohomology class ζ ∈ H2n(G, k) which is a product of
odd dimensional classes. Since the product of any two odd classes in H∗(k[t]/tp, k)
is zero, α∗

K(ζ) = 0 for all π-points αK of G. On the other hand, ζ can be identified

with a cohomology class in H1(G, Ω1−2n(k)) ' H2n(G, k). Since Ω1−2n(k) is a
module of constant Jordan type (see [8]), the class ζ satisfies the requirements of
Proposition 4.5.

A more interesting example is the following.

Example 5.6. Let G be a finite group scheme with the property that the di-

mension of Π(G) is at least 1. Let ζ′ ∈ Ĥ
−i

(G, k), i > 0, be an element in
the negative Tate cohomology of G. As shown in [8, 6.3], α∗

K(ζ′) = 0 for any

π-point αK . Then ζ′ corresponds to ζ ∈ H1(G, Ωi+1(k)) under the isomorphism

H−i(G, k) ' H1(G, Ωi+1(k)); by the naturality of this isomorphism, α∗
K(ζ) = 0 ∈

Ĥ
−i

(K[t]/tp, K) for any π-point αK .

Thus, ζ 6= 0, ζ̃ is locally split, and Z(ζ) = ∅ for this choice of ζ ∈ H1(G, Ωi+1(k)).

For any field extension K/k, let RK = W2(K) denote the Witt vectors of length
2 for K. Assume that G over k embeds into an Rk-group scheme GRk

so that
G = GRk

×Spec Rk
Spec k ⊂ GRk

, thereby inducing by base change GK ⊂ GRK
.

Then we may define the Bockstein β : Hi(GK , K) → Hi+1(GK, K) for i > 0 as the
connecting homomorphism for the short exact sequence of GRK

-modules

(5.6.1) 0 → K → RK → K → 0.
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(The reader is referred to [11, 3.4] for a discussion of this Bockstein.) Since any
π-point αK : K[t]/tp → KG lifts to a map α̃K : RK [t]/tp → RKGRK

of R-
algebras, α∗ : H∗(G, K) → H∗(K[t]/tp, K) commutes with this Bockstein. Since

β : H2d−1(K[t]/tp, K) → H2d(K[t]/tp, K) is an isomorphism, we conclude that if

x ∈ H2d−1(G, k), then α∗
K(x) vanishes if and only if α∗

K(β(x)) = 0, where β(x) ∈

H2d(G, k). Thus, for such G lifting to GRk
and for p > 2, when considering Z(ζ) for

homogeneous classes in H∗(G, k), it suffices to restrict attention to the subalgebra
H•(G, k) of even dimensional classes.

As we see in the following proposition, Definition 5.3 of Z(ζ) extends the “clas-
sical” definition of the vanishing locus of a (homogeneous) cohomology class in
H•(G, k).

Proposition 5.7. Let n be a positive integer, and set M = Ω1−2n(k). Let ζ ∈
H1(G, M), and let ζ′ ∈ H2n(G, k) be the corresponding element under the natural
isomorphism H1(G, M) ' H2n(G, k). Then the isomorphism Π(G) ' Proj H•(G, k)
of Theorem 1.2 restricts to an isomorphism

Z(ζ) = Proj H•(G, k)/(ζ′).

Proof. Let Lζ′ be the Carlson module associated to the class ζ′. The exact triangle

ζ̃ : Ω1−2n(k) → Eζ → k → Ω−2n(k)

corresponds to the exact triangle

ζ̃′ : Ω1(k) // Lζ′
// Ω2n(k)

ζ′

// k

under the shift Ω2n. Hence, Lζ′ is stably isomorphic to Ω2n(Eζ). By Prop. 4.5,

(5.7.1) Γ1(G)Eζ
= Γ1(G)Lζ′

.

If ζ̃ is locally split, then so is ζ̃′ by the naturality of the isomorphism H1(G, M) '
H2n(G, k). This implies that ζ′ is nilpotent by the “Nilpotence detection theo-
rem” of Suslin ([22]). Hence, in this case Proj H•(G, k)/(ζ′) = Proj H•(G, k) '
Π(G). By Prop. 5.5, Z(ζ) ' Π(G) as well. Hence, in this case Z(ζ) = Π(G) '
Proj H•(G, k)/(ζ′).

If ζ̃ is not locally split, then Z(ζ) = Γ1(G)Eζ
by Proposition 5.5. Since Lζ′ is

generically projective, Proposition 4.5 implies that Γ1(G)Lζ′
= Π(G)Lζ′

. By [16,

2.9] (see [6] for finite groups), Π(G)L′

ζ
' Proj H•(G, k)/(ζ′) under the isomorphism

ΦG of (1.2). The equality (5.7.1) now implies Z(ζ) ' Proj H•(G, k)/(ζ′).
�

Proposition 5.8. Let G be a finite group scheme over k. Let ζi ∈ H2di+1(G, k) '
H1(G, Ω−2dik), 1 ≤ i ≤ r, di ≥ 0. Let M = ⊕r

i=1Ω
−2dik, and set ζ = ⊕iζi ∈

H1(G, M) = ⊕i H1(G, Ω−2dik). Let

0 → M → Eζ → k → 0

be the corresponding extension. Then

Γ1(G)Eζ
= Z(ζ) = Z(ζ1) ∩ . . . ∩ Z(ζr),

and Π(G)Eζ
= Π(G).
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Proof. To prove (1), observe that Lemma 5.1(1) implies that Γ1(G)Eζ
=

{[αK] | α∗
K(ζ) = 0}. Since ζ = ⊕ζi, we further conclude {[αK] | α∗

K(ζ) = 0} =
{[αK] | α∗

K(ζi) = 0 for all i} =
⋂
i

Z(ζi).

To verify that Π(G)Eζ
= Π(G), we observe that the the generic Jordan type of

Eζ is of the form m[p] + [2] + (r − 1)[1] at generic points [αK ] ∈ Π(G) such that
α∗

K(ζ) 6= 0 and of the form m[p] + (r + 1)[1] otherwise. This follows immediately
from the observation that Ω−2di(k) has constant Jordan type of the form mi[p]+[1],
and thus M has constant (and, in particular, generic) Jordan type (

∑
i mi)[p]+r[1].

�

As we see below, the construction of Eζ in Proposition 5.8 above is in fact a

generalized Carlson module Lζ (as defined in [8]) “in disguise”. This phenomenon

has already appeared in the proof of Proposition 5.7 for a single cohomology class
ζ. Since this construction applies to homogeneous cohomology classes ζi which are
either all in even degree or all in odd degree, and since Proposition 5.8 discusses
classes of odd degree, we consider in Example 5.9 classes ζi in even degree.

Example 5.9. Let ζ = (ζ1, . . . , ζr), where ζi ∈ H2di(G, k) ' Hom(Ω2di(k), k), 1 ≤

i ≤ r, di ≥ 0. Let Lζ be the kernel of the map ζ =
∑

ζi :
⊕

Ω2di(k) → k, so that
we have an exact sequence:

0 // Lζ //
⊕

Ω2di(k)
ζ1+···+ζr

// k // 0

This short exact sequence represents an exact triangle in stmod kG. Shifting the
triangle by Ω−1 we obtain a triangle

k // Ω−1(Lζ) //
⊕

Ω2di−1(k) // Ω−1(k)

Hence, ζ corresponds to a short exact sequence

0 // k // Fζ //
⊕

Ω2di−1(k) // 0

with the middle term stably isomorphic to Ω−1(Lζ). Taking the dual of this short

exact sequence, we obtain the analogue with even dimensional cohomology classes
of the short exact sequence which defines Eζ as in Proposition 5.8 (but for odd
classes):

0 //
⊕

Ω1−2dik // Eζ
// k // 0 .

Hence, Eζ is stably isomorphic to Ω−1(L#
ζ ).

Our final result extends the construction of closed zero loci to extension classes
ξ ∈ Extn

G(N, M) with both M, N of constant Jordan type. In other words, Propo-
sition 5.10 introduces the (closed) support variety Z(ξ) of such an extension class.

Proposition 5.10. Let G be a finite group scheme and N, M finite dimensional
kG-modules of constant Jordan type. Let ξ ∈ Extn

G(N, M) ' Ext1(Ωn−1(N), M)
for some n 6= 0, and consider the corresponding extension

ξ̃ : 0 → M → Eξ → Ωn−1(N) → 0.

(1) If αK , βL are equivalent π-points of G, then α∗
K(ξ̃) splits if and only if βL(ξ̃)

splits.
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(2) If

Z(ξ) ≡ {[αK] | α∗
K(ξ̃) splits} ⊂ Π(G),

then

Z(ξ) =

{
Π(G), if ξ̃ is locally split

Γ1(G)Eξ
, if ξ̃ is not locally split.

Proof. There is a natural isomorphism

Ext1G(Ωn−1(N), M) ' H1(G, (Ωn−1(N))# ⊗ M)

sending the extension class ξ to the cohomology class ζ ∈ H1(G, (Ωn−1(N))# ⊗M)

(where (Ωn−1(N))# is the linear dual of Ωn−1(N)). Hence, α∗
K(ξ̃) splits if and only

α∗
K(ζ̃) splits for any π-point αK of G.
By [9, 5.2], (Ωn−1(N))# has constant Jordan type. Thus, by [9, 4.3],

(Ωn−1(N))# ⊗ M also has constant Jordan type. Consequently, the assertion of
the Proposition for ξ follows from Proposition 4.5 for ζ.

�
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