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Abstract. Geometric measure theory enables one to view cohomology as
equivalence classes of graphs of multi-valued Lipschitz maps to spheres. This

geometric point of view gives a new formulation of cohomology, relative co-
homology, and cohomology with supports as homotopy groups of spaces of

Lipschitz cocycles. Using the graphing construction of the first author and

H. Blaine Lawson, this leads to a formulation and proof of weak equivalences
whose associated map on homotopy groups is a form of Alexander duality for

a compact subpolyhedron of a compact, oriented smooth manifold.

0. Introduction

In [6], the first author and H. Blaine Lawson established for a compact oriented
n-dimensional pseudo-manifold A which is smoothable outside a subcomplex of
codimension ≥ 2 and a cohomology class α ∈ Hj(A,Z) that α ∩ [A] ∈ Hn−j(A)
can be represented by the geometric measure-theoretic slice of the graph of a multi-
valued Lipschitz map from A to Sj . The purpose of this paper is to extend the
constructions of [6] to a compactifiable pseudo-manifold A−A∞ and then use this
extension to prove a form of Alexander duality whenever A − A∞ is smooth. In-
deed, we prove a stronger result which is the geometric measure-theoretic analogue
of the Friedlander-Lawson [5] and Friedlander-Voevodsky [7] duality theorems for
smooth complex algebraic varieties. Namely, as seen in Corollary 5.5, the graphing
construction for Lipschitz maps determines a weak equivalence relating the topo-
logical abelian groups of Lipschitz cocycles on A − A∞ and an appropriate group
of rectifiable currents on A with boundary in closed tubular neighborhood of A∞.

Our arguments involve a mixture of elementary simplicial topology and geometric
measure theory. The fundamental construction Γtop involves the graphing of a
compact oriented n-dimensional pseudo-manifold A equipped with a triangulation.
Such a space is a Lipschitz neighborhood retract, admitting a good formulation of
currents. Moreover, the triangulation enables us to work cell-by-cell, enabling local
arguments and consideration of subcomplexes and their complements.

To summarize in more detail, Section 1 introduces the open and closed subsets
of polyhedra which we shall employ, and discusses various spaces of Lipschitz maps
with target a symmetric product of a sphere. In Section 2, we define the Lipschitz
cocyle space Zm(A) of codimensionm cocycles on a finite polyhedron A, the relative
cocyle space Zm(A,C) for a closed subset C ⊂ A, the cocycle space Zm(A−A∞)
of codimension m Lipschitz cocycles on the complement of a closed subpolyhedron
A∞ ⊂ A, and the space ZmA∞(A) of codimension m Lipschitz cocycles on A with
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support in A∞. As seen in Section 3, the homotopy groups of these cycle spaces
satisfy the expected properties of singular cohomology.

The key construction, basically that of [6], is the construction of a rectifiable
current, the geometric graph Γ(f), of a Lipschitz map on A − O∆(A∞), the com-
plement in a compact, oriented pseudo-manifold A of an open neighborhood of a
subpolyhedron A∞ ⊂ A. In Section 4, this is shown to determine a continuous map
from good Lipschitz cocycles of codimension m to integral cycles (i.e., rectifiable
currents with 0 boundary) on A+ ∧Sm modulo integral cycles on D∆(A∞)+ ∧Sm.
With this formalism in place, we formulate and prove in Section 5 a refinement (in
the sense of a map of spaces) of Alexander duality.

In particular, the special case in which A∞ is empty is the following (yielding
Poincaré Duality upon taking homotopy groups).

pd-intro Theorem 0.1. Let A be a smooth compact oriented manifold of dimension n. Then
the graphing map

Γtop : Zm(A) → Zn(A+ ∧ Sm)

is a weak equivalence.

As seen in Corollary 5.5, we prove a similar statement for A − A∞, thereby
obtaining a form of Alexander duality.

In the final section, we show how the Thom class and the Thom isomorphism
admit a natural formulation in terms of Lipschitz cocycles. We conclude by con-
jecturing a space-level compatibility of the Thom isomorphism and the Gysin map
constructed in terms of our duality map.

We thank Blaine Lawson for sharing with us his geometric insight into Poincaré
duality.

1. Polyhedra, rectifiable currents, and Lipschitz Maps
sec:maps

We consider a compact polyhedron A, a cell complex which is the geometric
realization of a finite simplicial complex. We shall typically consider a (piece-wise
linear) triangulation ∆ on A associated to some choice of structure of a finite sim-
plicial complex, and then consider refinements of such a triangulation. By abuse of
notation, we shall refer to a compact polyhedron together with a given (finite, piece-
wise linear) triangulation as a simplicial complex as well. We denote by ∆(k) the
(finite) set of open k-simplices of ∆, each homeomorphic to an open k-disk. Observe
that the d-fold symmetric product SP d(A) of A is again a compact polyhedron.

If A is a compact polyhedron, then a simplicial structure on A determines an
embedding of A in a Euclidean space RN , where N denotes the number of vertices
of the simplicial structure. A tubular neighborhood of A ⊂ RN provides A with the
structure of a Lipschitz neighborhood retract of RN . Such an embedding provides
A with a piecewise smooth Riemannian metric (compatible with the triangulation
on A given by the simplicial structure). The class of Lipschitz functions associated
to such a metric on A is in fact independent of the choice of such a metric.

Definition 1.1. Let A be a compact polyhedron, a Lipschitz neighborhood re-
tract with Lipschitz retraction U → A of some tubular neighborhood U of A in a
Euclidean space. A rectifiable k-current on A is an element in the closure (with
respect to the mass norm) of the space of Lipschitz polyhedral k-chains on A. We
denote by Ik(A) the space of rectifiable k-currents on A with rectifiable boundary



LIPSCHITZ COCYCLES AND POINCARÉ DUALITY 3

(i.e., integral k-currents) equipped with the flat norm topology. We denote by
Zk(A) ⊂ Ik(A) the subspace of rectifiable k-currents with 0-boundary (i.e. inte-
gral k-cycles).

We recall the following theorem of F. Almgren [1] (and restated in [6, 1.2]).

Alm Theorem 1.2. Let C ⊂ A be a closed subspace, with both A,C compact, local
Lipschitz neighborhood retracts in Euclidean spaces. Then there is a natural iso-
morphism

A : πj{Zr(A,B)/Ir(C)} ∼−→ Hr+j(A,C).
Here, Ir(C) denotes the integral r-currents on B with the flat norm topology and
Zr(A,C) denotes the integral r-currents on A whose boundary has support in C,
also provided with the flat norm topology.

Moreover, Zr(A)/Zr(C) is a closed subspace of Zr(A,C)/Ir(C) with discrete
quotient, thereby determining the short exact sequence

0→ Zr(A)/Zr(C) → Zr(A,C)/Ir(C) → ker{Hr−1(C)→ Hr−1(A)} → 0.

We shall work with non-compact spaces of the form A − A∞, where A is a
compact polyhedron and A∞ ⊂ A is a (closed) subcomplex with respect to some
finite triangulation of A. We shall refer to such a space A−A∞ as a compactifiable
polyhedron.

nbhds Definition 1.3. Let A be a finite polyhedron. Equip A with a (finite, piece-wise
linear) triangulation ∆ and let A∞ ⊂ A be a closed subpolyhedron that is a sub-
complex for the triangulation ∆. Embed A in Euclidean space Rs, where s is the
number of vertices of A, so that each vertex is a distance 1 along the corresponding
axis of Rs.

We define
D∆(A∞) ≡ {a ∈ A : dA(a,A∞) ≤ 1

4
}

O∆(A∞) ≡ {a ∈ A : dA(a,A∞) <
1
4
}

S∆(A∞) ≡ {a ∈ A : dA(a,A∞) =
1
4
}

Note that D∆(A∞), S∆(A∞) and A − O∆(A∞) are all closed subcomplexes of
A for some suitable subdivision of the triangulation ∆. It is useful to observe that
if ∆′ refines ∆ then O∆′(A∞) ⊂ O∆(A∞).

The following proposition constructs a flow from A−A∞ to the closed subpoly-
hedron A−O∆(A∞).

flow Proposition 1.4. Let U = A−A∞ be a compactifiable polyhedron.
(1) There is a homotopy H : U×I → U relating the identity of U to a retraction

U → A−O∆(A∞) and restricting to H| : (A−O∆(A∞))×I → A−O∆(A∞).
(2) There is a deformation retraction F : D∆(A∞)× I → D∆(A∞) which is a

deformation retraction to the subpolyhedron A∞.

Proof. Observe that the closure σ of an open simplex of A meets D∆(A∞) if and
only if σ meets A∞. Let Y ⊂ A denote the union of those closed simplices of A
meeting A∞, and triangulate Y using the first barycentric subdivision of the given
triangulation of A. We define the “link” L ⊂ A of A∞ ⊂ A to be the sub-simplicial
complex of Y with vertices the barycenters of simplices of A whose closures do not
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intersect A∞. Let L̃ ⊂ Y consist of those points y ∈ Y ; d(y, L) ≤ 1
4 . Then we

employ a continuous map
F : Y × I → Y

satisfying

• F (y, 0) = y, y ∈ Y
• F (x, t) = x, x ∈ A∞ and t ∈ I
• F (y, t) = y, y ∈ L̃ and t ∈ I
• F (−, t) is a homeomorphism for t 6= 1
• F (D∆(A∞)× {1})) ⊂ A∞
• F (D∆(A∞)× I) ⊂ D∆(A∞).

Any such map F restricted to D∆(A∞) is a deformation retraction to A∞. More-
over, , we obtain a deformation retraction F ′ : (Y −A∞)× I → Y −A∞ of Y −A∞
to Y − D∆(A∞) by setting F ′t equal to the inverse of the restriction to Y − A∞
of F1−t. We define H : U × I → I to be this retraction on (Y − A∞) × I and the
identity flow on (A− Y )× I. �

We shall use the following elementary lemma from homotopy theory.

lem:retract Lemma 1.5. Let Y ⊂ X be an inclusion of a subspace of a topological space X.
Suppose there is a homotopy H : X × I → X such that

• H(−, 0) = idX
• H(X × {1}) ⊂ Y
• H(Y × {t}) ⊂ Y for all t.

Then the inclusion Y → X is a homotopy equivalence with homotopy inverse
H(−, 1).

Applying Lemma 1.5 to the homotopy of Proposition 1.4 (1), we immediately
obtain the following corollary.

Corollary 1.6. Let U = A−A∞ be a compactifiable polyhedron and let ∆ be some
finite piece-wise linear triangulation of A such that A∞ is a subcomplex. Then the
embedding

A′ = (A−O∆(A∞)) ⊂ U

is a weak equivalence and A′ is a compact polyhedron.

We recall that a continuous map f : A → B of metric spaces is said to be
Lipschitz with Lipschitz constant K if for all pairs of points a, a′ in A the following
inequality is satisfied:

dB(f(a), f(a′)) ≤ K · dA(a, a′).

def:lipmaps Definition 1.7. If A, B are metric spaces, then we define

MapLip(A,B)

to be the set of Lipschitz maps from A to B with topology of convergence with
bounded Lipschitz constant. In other words, the sequence {fn} converges to f :
A → B in this topology if it is uniformly convergent and there is a K > 0 that
serves as Lipschitz constant for all the fn.
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rem:lipindependence Remark 1.8. If A and B are compact polyhedra equipped with a piecewise smooth
metric via embeddings as Lipschitz neighborhood retracts, then the subset

MapLip(A,B) ↪→Mapcont(A,B)

together with its topology is independent of the choice of embedding. On the
strength of this observation we will refer to its elements as Lipschitz maps from A
to B without reference to the specific piecewise smooth metric chosen.

Observe that if B is a compact polyhedron, then so is its d-fold symmetric power
SP d(B) for any d > 0.

In [6, 1.5], the embedding MapLip(A,SP d(Sm)) ↪→ Mapcont(A,SP d(Sm)) is
shown to be a weak homotopy equivalence. We extend this result by allowing A to
be a compactifiable polyhedron.

cont Proposition 1.9. Let A, B be compact polyhedra, and d > 0. Retain the hypothe-
ses and notation of Definition 1.3. Then each of the maps of the following chain is
a weak homotopy equivalence

Mapcont(A−A∞, SP d(B)) → Mapcont(A−O∆(A∞), SP d(B))←

MapLip(A−O∆(A∞), SP d(B)).

Proof. The homotopy H : U × I → U of Proposition 1.4 implies that the first map
is a homotopy equivalence by Lemma 1.5; [6, 1.5] verifies that the second map is a
weak equivalence. �

inv Lemma 1.10. If ∆′ is a refinement of the triangulation ∆ of A, then for any d > 0
the natural restriction map

MapLip(A−O∆′(A∞), SP d(B))→MapLip(A−O∆(A∞), SP d(B))

is a Serre fibration and a weak equivalence.

Proof. Let Λj [n] ⊂ ∆[n] denote the inclusion of the union of all faces of the n-
simplex ∆[n] except the j-th face into ∆[n]. For each n ≥ 0 and each j, 0 ≤ j ≤ n,
we use the structure of A−O∆(A∞) ⊂ A−O∆′(A∞) (as a simplicial embedding of
finite complexes) to exhibit a strong deformation retraction of (A−O∆′(A∞))×∆[n]
to

((A−O∆′(A∞))× Λj [n]) ∪((A−O∆(A∞))×Λj [n]) ((A−O∆(A∞))×∆[n])

which is a Lipschitz map with Lipschitz constant 1. This implies the Serre lifting
property for MapLip(A−O∆′(A∞), SP d(Sm))→MapLip(A−O∆(A∞), SP d(Sm)).
The fact that this map is a weak equivalence follows from Proposition 1.9 and the
fact that both A−O∆(A∞), A−O∆′(A∞) are homotopy equivalent to A−A∞. �

Definition 1.11. Let T (A) denote the category of finite,piece-wise linear trian-
gulations of the polyhedron A, with one triangulation ∆′ mapping to another ∆
provided that ∆′ is a refinement of ∆. For any closed subpolyehdron A∞ ⊂ A
which is a subcomplex with respect to a triangulation ∆, any finite polyhedron B
and any d > 0, we define

boundbound (1) MapbLip(A−A∞, SP d(B)) ≡ lim←−
∆′∈T (A)/∆

MapLip(A−O∆′(A∞), SP d(B)).
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rem:funct Remark 1.12. Let A, A′, B be finite polyhedra and let A∞ ⊂ A, A′∞ ⊂ A′

be subpolyhedra. Then a Lipschitz map f : A → A′ with the property that
f−1(A′∞) ⊂ A∞ induces a continuous map

functfunct (2) f∗ : MapbLip(A−A∞, SP d(B)) −→MapbLip(A−A∞, SP d(B)).

In particular, there is a natural restriction map

MapbLip(A−A∞, SP d(B))→MapbLip(A−A′∞, SP d(B))

whenever A∞ ⊂ A′∞ is an inclusion of closed subcomplexes for some finite triangu-
lation. This implies that the assignment

U 7→MapbLip(U, SP
d(B))

is a contravariant functor on the category of open subsets of A whose complement
is a closed subcomplex for some sufficiently fine finite triangulation of A.

proj-inj Corollary 1.13. The natural projection and inclusion maps

MapLip(A−O∆(A∞), SP d(B)) � MapbLip(A−A∞, SP d(B)) ↪→ Mapcont(A−A∞, SP d(B))

are weak equivalences for any finite, piece-wise linear triangulation ∆ of A such
that A∞ inherits the structure of a subcomplex.

Proof. The fact that the projection is a weak equivalence follows from Lemma 1.10
and the standard fact that the inverse limit of a tower of maps each of which
is a Serre fibration and a weak equivalence projects via a Serre fibration and a
weak equivalence to each term in the tower. The fact that the inclusion is a weak
equivalence follows from Proposition 1.9. �

2. Lipschitz cocycle spaces
sec:cocycles

Recall that (
∐
d SP

d(Sm))+ is a model for the generalized Eilenberg-MacLane
space K(Z,m)×K(Z, 0), so that

πi(Mapcont(A, (
∐
d

SP d(Sm))+) =

 Hm(A)⊕H0(A) if i = 0

Hm−i(A) if i > 0.

where Hi(A) = Hi(A,Z) denotes singular cohomology with Z coefficients. Since A
is compact,

(
∐
d

Mapcont(A,SP d(Sm))+ ∼= Mapcont(A, (
∐
d

SP d(Sm))+).

Thus,

πi ker{(
∐
d

Mapcont(A,SP d(Sm))+ → H0(A)} ∼= Hi(A), i ≥ 0.

This motivates the following definition of Lipschitz cocycle spaces. We set

lip-maplip-map (3) MapLip(A,SP∞(Sm)+) = ker{(
∐
d≥0

MapLip(A,SP d(Sm)))+ → H0(A)}.
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def:compcocycle Definition 2.1. Let A be a compact polyhedron and C ⊂ A a closed subset that
is a subcomplex with respect to some triangulation of A. Following [6] we define
the topological abelian group Zm(A) of Lipschitz m-cocycles on A (topological
Abelian group Zm(A,C) of relative Lipschitz cocycles, respectively) as

Zm(A) = MapLip(A,SP∞(Sm)+)

and
Zm(A,C) = ker{Zm(A)→ Zm(C)}

Note that by Remark 1.8, these groups are well-defined independent of the choice
of a realizations of A and C as Lipschitz neighborhood retracts.

cohomology Proposition 2.2. Let A be a compact polyhedron and C ⊂ A a closed subcomplex
with respect to some triangulation. Then there are isomorphisms

πiZm(A) ∼= Hm−i(A)

πiZm(A,C) ∼= Hm−i(A,C)

where H∗(A) denotes the singular cohomology of A with Z coefficients.
These isomorphisms are natural for Lipschitz maps of (pairs of) compact polyhe-

dra. Since every continuous map of compact polyhedra is homotopic to a Lipschitz
map, these isomorphisms are, in fact, natural on the homotopy category of compact
polyhedra.

Proof. The proposition follows from the special case of A∞ = ∅ of Proposition 1.9
(i.e., from [6, 1.5]) and the above representation of cohomology of A in terms of
Mapcont(A,SP d(Sm)). �

A key theorem which enables us to consider Lipschitz cocycles on compactifiable
finite polyhedra (rather than relative groups as we do for geometric cycle spaces)
is the following important theorem of Kirszbraun.

Theorem 2.3. (Kirszbraun’s theorem; cf. [2, 2.10.43]) Let S ⊂ Rm be an arbitraryKirz
subset of Rm and consider f : S → Rn, a Lipschitz map with Lipschitz constant K.
Then there exists an extension f̃ : Rm → Rn which is also a Lipschitz map with
Lipschitz constant K.

In particular, MapLip(A,SP∞(Sm)+)→MapLip(A−O∆(A∞), SP∞(Sm)+) is
surjective by Kirszbraun’s Theorem.

Definition 2.4. Let A be a compact polyhedron equipped with a finite triangu-
lation ∆ and let A∞ ⊂ A be a (closed) subcomplex with respect to some finite,
piece-wise linear triangulation of A. We set

Zm(A−A∞) ≡ MapbLip(A−A∞, SP∞(Sm)+),

where the right-hand side of is defined to be

ker{(
∐
d≥0

lim←−
∆′/∆

MapLip(A−O∆′(A∞), SP d(Sm)))+ → H0(A−A∞)}.

Corollary 1.13 has the following reassuring corollary.

exc1 Corollary 2.5. Let U be provided with open embeddings U ⊂ A, U ⊂ A′. Assume
that A,A′ admit finite triangulations such that A − U ⊂ A, A′ − U ⊂ A′ are
subpolyhedra. Then Zm(U) determined by the compactification U ⊂ A is weakly
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equivalent to the corresponding topological group determined by the compactification
U ⊂ A′.

Moreover, for any finite triangulation ∆ of A such that A∞ ⊂ A is a subcomplex,
there is a natural homomorphism

Zm(U) −→ Zm(A−O∆(A∞))

which is a weak equivalence. In particular,

πZm(A−A∞) ∼= Hm−i(A−A∞).

Remark 2.6. Although Zm(A) → Zm(A − O∆(A∞)) is surjective for a given
triangulation ∆ of A, it would appear that Zm(A)→ Zm(A−A∞) is not surjective.

supp Definition 2.7. Let A be a compact polyhedron equipped with a finite triangu-
lation ∆ and let A∞, C ⊂ A be (closed) subcomplexes. Set C∞ = C ∩ A∞.
Then we define the space of Lipschitz cocycles on A with support in C to be the
topological abelian group

ZmC (A) ≡ lim←−
∆′/∆

ker{Zm(A)→ Zm(A−O∆′(C))}

where the inverse limit is taken over all triangulations ∆′ refining ∆ as above.
More generally, we define

locclocc (4) ZmC−C∞(A−A∞) ≡ lim←−
∆′/∆

ker{Zm(A−A∞)→ Zm(A−O∆(A∞ ∪ C))}.

Because all the transition maps in the inverse system defining ZmC−C∞(A−A∞)
are Serre fibrations and weak equivalences, this inverse limit is weakly equivalent
to ker{Zm(A − A∞) → Zm(A − O∆(A∞ ∪ C))} for any finite, piece-wise linear
triangulation ∆ of A for which A∞, C ⊂ A are subcomplexes. Thus,

πiZmC−C∞(A−A∞) ∼= Hm−i
C−C∞(A−A∞),

the cohomology of A−A∞ with supports in C − C∞.

3. Properties of Cocycle Spaces
sec:properties

In this section, we verify a few of the expected properties of cocycle spaces:
multiplicative structure in Proposition 3.1, localization in Proposition 3.2, Mayer-
Vietoris in Proposition 3.3, excision in Proposition 3.6, and transfer in Proposition
3.7.

mult Proposition 3.1. (Multiplicative structure): Smash product of spheres, Sm×Sm′ −→
Sm+m′ induces a natural multiplicative structure on the (graded) integral cocycle
spaces Z∗(A−A∞), Z∗C(A−A∞) leading to graded commutative, associative prod-
uct structures on their homotopy groups.

Proof. First, observe that the smash product Sm × Sm′ −→ Sm+m′ induces Lips-
chitz maps

pairpair (5) SP d(Sm)× SP e(Sm
′
) −→ SP de(Sm+m′).

Thus, given Lipschitz maps f : A → SP d(Sm), g : A → SP e(Sm
′
), we obtain the

Lipschitz map f ∧ g : A→ SP de(Sm+m′). This determines a pairing of monoids∐
d≥0

MapLip(A,SP d(Sm))×
∐
e≥0

MapLip(A,SP e(Sm
′
)) −→
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−→
∐
f≥0

MapLip(A,SP f (Sm+m′)).

The pairings (5) induce the usual product structure K(Z,m) × K(Z,m′) →
K(Z,m+m′) which in turn induces the cup product in cohomology. Thus, Propo-
sition 2.2 implies that the pairings on homotopy groups of Lipschitz cocycles spaces
is graded commutative and associative. �

Proposition 3.2. (Localization) Let A be a compact polyhedron equipped with alocalization
finite triangulation ∆ and let A∞ ⊂ A be a (closed) subcomplex. Then the natural
triple of topological abelian groups

tripletriple (6) ZmA∞(A) → Zm(A) → Zm(A−A∞)

is a fibration sequence.

Proof. For each ∆ for which A∞ is a subcomplex of A, the short exact sequence

ker(Zm(A) → Zm(A−O∆(A))) → Zm(A) → Zm(A−O∆(A))

is a fibration sequence by [8]. As argued in the proof of Corollary 1.13, this fibration
sequence is weakly homotopy equivalent to (6). �

Proposition 3.3. (Mayer-Vietoris) Let A be a compact polyhedron equipped withMV
a finite triangulation ∆ and let A∞ ⊂ A be a closed subcomplex. Let D ⊂ A be
a compact subpolyhedron containing O∆(A∞). Then there is a natural short exact
sequence of topological abelian groups

Zm(A)→ Zm(A−O∆(A∞))×Zm(D)→ Zm(D −O∆(A∞))

which determines the following homotopy Cartesian square

squaresquare (7)

Zm(A)

��

// Zm(D)

��
Zm(A−A∞) // Zm(D −A∞)

.

Proof. Observe that for each ∆ for which A∞, C are subcomplexes of A, the short
exact sequence

Zm(A) → Zm(A−O∆(A∞))×Zm(D) → Zm(D −O∆(A∞))

is a fibration sequence by [8]. Arguing once again as in the proof of Corollary 1.13
in order to pass to the limit over open tubular neighborhoods of A∞, we conclude
that

Zm(A) → Zm(A−A∞)×Zm(D) → Zm(D −A∞)

is a fibration sequence. This implies that (7) is homotopy Cartesian. �

cor:openMV Corollary 3.4. Let A be a compact polyhedron and let A∞ ⊂ A and B∞ ⊂ A be
closed subcomplexes with respect to some finite triangulation ∆ of A. Assume there
is a finite subdivision ∆′ of ∆ such that O∆′(A∞) ∩ O∆′(B∞) = ∅. Then there is
a natural fibration sequence of topological abelian groups

Zm(A)→ Zm(A−A∞)×Zm(A−B∞)→ Zm(A− (A∞ ∪B∞))
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which determines the following homotopy Cartesian square

Zm(A)

��

// Zm(A−B∞)

��
Zm(A−A∞) // Zm(A− (A∞ ∪B∞)

.

Here the cocycle spaces are taken with respect to the common compactification A,
as indicated by the notation.

Proof. This is an immediate consequence of Theorem 3.3 and Corollary 2.5, once
we know the various restiction maps are well-defined. This necessary functoriality
property is supplied by the discussion in remark 1.12. �

cor:supportsMV Corollary 3.5. Let A be a compact polyhedron and let A∞ ⊂ A and B∞ ⊂ A be
closed subcomplexes with respect to some finite triangulation ∆ of A. Then there is
a fibration sequence of topological abelian groups

ZmA∞∩B∞(A)→ ZmA∞(A)×ZmB∞(A)→ ZmA∞∪B∞(A).

Proof. For any refinement ∆′ of ∆, the sequence

(8) ker{Zm(A)→ Zm(A−O∆′(A∞ ∩B∞))}

��
ker{Zm(A)×Zm(A)→ Zm(A−O∆′(A∞))×Zm(A−O∆′(B∞))}

��
ker{Zm(A)→ Zm(A−O∆′(A∞ ∪B∞))}

is a fibration sequence by the 3 × 3 lemma and Mayer-Vietoris 3.3 for the closed
cover A−O∆′(A∞ ∩B∞) = (A−O∆′(A∞)) ∪ (A−O∆′(B∞)). �

Proposition 3.6. (Excision) Let ∆ be a finite triangulation of A and let A∞, Dexcision
be closed subpolyhedra such that O∆(A∞) ⊂ D. Then the restriction map

excexc (9) ZmA∞(A) −→ ZmA∞(D)

is a weak equivalence.

Proof. This follows immediately from Proposition 3.2 applied to the vertical maps
of the homotopy Cartesian square (7). �

Proposition 3.7. (Transfer) Let A, B be finite polyhedra related by a continuoustransfer
g : A → SP e(B) with associated ramified covering map p : B → A. Assume
that A∞ ⊂ A is a nowhere dense closed subpolyhedron with the property that p :
B−B∞ → A−A∞ is a covering space map, where B∞ = p−1(A∞). Then p induces
a transfer map p! : Zm(B)→ Zm(A).

Moreover, the restriction of p! to Zm(B −B∞) has image in Zm(A−A∞) and
satisfies

p∗ ◦ p! = e(−) : Zm(A−A∞)→ Zm(B −B∞)→ Zm(A−A∞),

where e(−) is the e-th power map of the topological abelian group Zm(A−A∞).
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Proof. The map g induces maps g(d) : SP d(A)→ SP de(B) in the obvious manner,
and each of these is Lipschitz. These maps determine a map of abelian monoids∐

f

MapLip(B,SP f (Sm))→
∐
f

MapLip(A,SP d(Sm)

whose group completion is the asserted map p! : Zm(B)→ Zm(A).
Choose a triangulation ∆̃ of B with the property that p(∆̃) = ∆ is a triangulation

of A such that with respect to ∆̃ (respectively, ∆) B∞ ⊂ B (resp, A∞ ⊂ A) is a
subpolyhedron. Then the restriction of p to B −O∆̃(B∞) is a covering space map
to A−O∆(A∞). We see by inspection that the composition∐

f

MapLip(B −O∆̃(B∞), SP f (Sm))→
∐
f

MapLip(A−O∆(A∞), SP d(Sm)

is mutliplication by e. Thus, the second assertion of the proposition follows from
Corollary 1.13. �

4. The Graphing Construction Γtop
sec:graph

The purpose of this section is to establish a continuous graphing map

Γtop : Zm(A−A∞) −→ ˜Zn(A+ ∧ Sm)/ lim−→
∆

Zn(D∆(A∞)+ ∧ Sm),

where the finite polyhedron A is a compact pseudo-manifold of dimension n. (For
notational convenience, we employ the abbreviation

wtwt (10) Z̃r(A)/Zr(B) ≡ Zr(A,B)/Ir(B),

the extension of ker{Hr−1(B) → Hr−1(A)} by Zr(A)/Zr(B) given in Theorem
1.2.) Our construction extends that of [6] in the case A∞ = ∅, and refines the
construction there by avoiding the use of the not-everywhere-defined Federer slice
construction.

The condition imposed on a compact polyhedron A to be a compact oriented
pseudo-manifold of dimension n implies that A has an orientation given by a fun-
damental class 0 6= [A] ∈ Hn(A).

We repeat the definition of pseudo-manifold given in [6]. Since our definition
requires a “resolution of the singularities, all of which are in codimension ≥ 2”, this
is somewhat stronger than that found elsewhere in the literature.

Definition 4.1. Let A be a compact connected polyhedron. A is said to be a
compact oriented pseudo-manifold of dimension n if A admits a triangulation
∆ satisfying:

• Every simplex of ∆ is contained in the closure of some n-simplex τ ∈ ∆(n).
• For some smooth closed oriented n-manifold M equipped with a smooth

triangulation, there exists a polyhedral map p : M → A restricting to a
homeomorphism M −M ′ → A− skn−2A, where M ′ ⊂M is a subcomplex
of dimension ≤ n− 2.

IfA∞ is a nowhere dense subpolyhedron of the compact oriented pseudo-manifold
A of dimension n, then its complement A − A∞ is said to be a compactifiable
oriented pseudo-manifold of dimension n.
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Example 4.2. The underlying analytic space A = Xan of any connected complex
quasi-projective variety X of complex dimension k is a compactifiable oriented
pseudo-manifold of dimension 2k.

If X is a projective variety of dimension n over R whose underlying analytic
space Xan is compact and connected, then Xan is an compact oriented pseudo
-manifold provided that X is smooth in codimension 1.

We proceed to construct the graph of a Lipschitz cocycle f : A − O∆(A∞) →
SP d(Sm). As constructed in [6, 2.4], the geometric graph of f is the rectifiable
current

geomgeom (11) Γ(f) ≡
∑
σ∈∆′

Γσ ∈ Rn((A−O∆(A∞))× Sm),

where the sum is indexed by (open) simplices of A−O∆(A∞) in a triangulation ∆′

refining ∆ with the property that A−O∆(A∞) is a subcomplex, and Γσ is the push-
forward of the simplex σ (viewed as a rectifiable current on A − O∆(A∞)) to the
graph. Observe that this construction requires A to be provided with an orientation
which is then inherited in a compatible way by each open simplex σ ∈ ∆′.

There are two awkward aspects of this definition: even for A compact, Γ(f)
might not be a cycle and the function f 7→ Γ(f) might not be continuous from
Lipschitz cocycles to Lipschitz cycles. These difficulties are overcome in [6] by
restricting attention to the dense subset of “good” Lipschitz cocycles as we now
recall.

Definition 4.3. [6, 3.2] Let B be a finite polyhedron. Choose a compact neigh-
borhood U of SP d(Sm) ⊂ RN and a Lipschitz retraction π : U → SP d(Sm) such
that π−1(Σ) is a subcomplex of codimension ≥ 1, where Σ ⊂ SP d(Sm) is the sin-
gular set. A Lipschitz map f : B → SP d(Sm) is said to be good if f is of the
form f = π ◦ f̃ where f̃ when restricted to each open simplex of B is smooth and
transverse to every open simplex of π−1(Σ) ⊂ U .

The following lemma is an immediate consequence of [6, 3.4] and Kirszbraun’s
Theorem (Theorem 2.3).

dense Lemma 4.4. Let A be a compact oriented pseudo-manifold of dimension n, ∆ a
triangulation of A, and A∞ ⊂ A a subpolyhedron, and ∆′ a refinement of ∆ such
that A−O∆(A∞) is a subcomplex with respect to ∆′. Then the subspace

MapLip(A−O∆(A∞), SP d(Sm))good ⊂ MapLip(A−O∆(A∞), SP d(Sm))

of maps f : A − O∆(A∞) → SP d(Sm) which admit an extension to a good (with
respect to ∆′) Lipschitz map f̃ : A→ SP d(Sm) is dense.

Arguing as in [6, 3.6], we obtain the following graphing construction. We remind
the reader that the smash product T+ ∧ Sm of a (non-pointed) space T and the
pointed m-sphere (with base point chosen to be∞ when we view Sm as the 1-point
compactification of Rm for m > 0 is given by

T+ ∧ Sm ≡ (T × S)m)/(T × {∞}).
Theorem 4.5. Let A be a compact, oriented pseudo-manifold of dimension n, ∆
a (piece-wise linear) triangulation of A, and A∞, C ⊂ A a subpolyhedron. There
is a uniquely defined continuous extension

gtopgtop (12) Γtop : Zm(A−O∆(A∞)) −→ ˜Zn(A+ ∧ Sm)/Zn(D∆(A∞)+ ∧ Sm),
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of the geometric graph construction (11) sending f ∈MapLip(A−O∆(A∞), SP d(Sm))good

to the projection of Γ(f) ∈ Rn((A−O∆(A∞))× Sm).
As ∆ varies over finer triangulations of A, these maps determine the continuous

graphing map

openopen (13) Γtop : Zm(A−A∞) −→ ˜Zn(A ∧ Sm)/ lim−→
∆

Zn(D∆(A∞)+ ∧ Sm).

Proof. As constructed in (11), Γ(f) is a rectifiable current on A − O∆(A∞) for
any f ∈ MapLip(A − O∆(A∞), SP d(Sm))good. The continuity of this graphing
construction

Γ : MapLip(A−O∆(A∞), SP d(Sm))good −→ Rn((A−O∆(A∞))× Sm)

is given by [6, 3.5].
As verified in [6, 3.6], Γ(f̃) is an integral n-cycle on A×Sm for any good Lipschitz

map f̃ : A→ SP d(Sm). Since the restrictions of Γ(f) and Γ(f̃) agree on any open
insideA−O∆(A∞), we see that the boundary of Γ(f) is supported onD∆(A∞)×Sm.

The push-forward of (rectifiable) currents via the proper Lipschitz map (A −
O∆(A∞))× Sm → (A−O∆(A∞))+ ∧ Sm is that given by Federer in [2, 4.1.7].
Thus, for each d ≥ 0, we obtain continuous graphing maps

MapLip(A−O∆(A∞), SP d(Sm))good → ˜Zn(A+ ∧ Sm)/Zn(D∆(A∞)+ ∧ Sm).

Using Lemma 4.4, we extend this graphing construction to Γtop on MapLip(A−
O∆(A∞), SP d(Sm)) exactly as in the proof of [6, 3.6], and then use the universal
property of group completion to obtain the asserted map (12).

Finally, the graphing map Γtop on Zm(A − A∞) of (13) is the (inverse) limit
indexed by triangulations ∆ of these maps �

Remark 4.6. Observe that the map in homotopy induced by (13) has the form

Hm−j(A−A∞) −→ HBM
n−m+j((A−A∞)+ ∧ Sn),

where HBM
∗ (−) denotes Borel-Moore (singular) homology.

As we see in the following proposition, Γtop is compatible with localization.
Recall the definition of Lipschitz cocycles ZmC−C∞(A−A∞) given in Definition 4.

Proposition 4.7. (compatibility with localization) Choose a finite triangulation ∆loc
of A such that the compact subpolyhedra A∞, C ⊂ A are subcomplexes such that
D∆(A∞) ∩ C = ∅. Then Γtop of (12) restricts to a continuous homomorphism on
relative Lipschitz cocycles

relrel (14) Γtop : ZmC (A−O∆(A∞)) −→ Zn(D∆(C)+ ∧ Sm)

which fits in a map of fibration sequences

rel1rel1 (15) ZmC−C∞(A−O∆(A∞)) Γtop
//

��

Zn(D∆(C)+ ∧ Sm)

��
Zm(A−O∆(A∞)) Γtop

//

��

˜Zn(A+ ∧ Sm)/Zn(D∆(A∞)+ ∧ Sm)

��
Zm(A−O∆(A∞

∐
C)) Γtop

// ˜Zn(A+ ∧ Sm)/Zn(DA(A∞
∐
C)+ ∧ Sm).
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Proof. The fact that Γtop restricts to (14) on relative Lipschitz cocycles follows
from the observation that if f̃ , f̃ ′ ∈MapgoodLip (A,SP d(Sm)) have equal restrictions
to A−O∆(A∞

∐
C), then Γ(f)− Γ(g) has support on D∆(A∞

∐
C)× Sm. Thus,

the upper square commutes by construction. The naturality of (13) implies the
commutativity of the lower square of (14). Both columns are fibration sequence
because they are short exact sequences of topological groups (cf. [8]). �

Similarly, we see that Γtop is compatible with Mayer-Vietoris.

Proposition 4.8. (compatibility with Mayer-Vietoris) Let ∆ be a finite triangu-MV-comp
lation of A, and consider closed subpolyhedra A1, A2 ⊂ A with A1 ∩ A2 = A1,2

and A1+2 = A1 ∪ A2. Then Γtop determines a map of Mayer-Vietoris fibration
sequences

Zm(A−O∆(A1,2))

��

Γtop
// ˜Zn(A+ × Sm)/Zn(D∆(A1,2)+ ∧ Sm)

��
×i=1,2Zm(A−O∆(Ai))

Γtop
//

��

×i=1,2
˜Zn(A+ ∧ Sm)/Zn(D∆(Ai)+ ∧ Sm)

��
Zm(A−O∆(A1+2)) Γtop

// ˜Zn(A+ ∧ Sm)/Zn(D∆(A1+2)+ ∧ Sm)

Proof. The vertical columns are short exact sequences of topological groups. The
squares commute by construction. �

cor:supportsMV-comp Corollary 4.9. Let A be a compact pseudomanifold with finite triangulation ∆,
and consider closed subpolyhedra A1, A2 ⊂ A with A1 ∩ A2 = A1,2 and A1+2 =
A1 ∪A2. Then Γtop determines a map of Mayer-Vietoris fibration sequences

ZmA12
(A)

��

Γtop
// Zn(D∆(A12)+ ∧ Sm)

��
×i=1,2ZmAi

(A) Γtop
//

��

×i=1,2Zn(D∆(Ai)+ ∧ Sm)

��
ZmA1+2

(A) Γtop
// Zn(D∆(A1+2)+ ∧ Sm)

Proof. The left column is a fibration sequence by Corollary 3.5. The right col-
umn is a short exact sequence of topological groups. The diagram commutes by
construction. �

5. Poincaré duality
sec:duality

We will prove a version of Alexander (or, Poincaré-Lefschetz) duality, showing
that the graphing construction of Section 4 provides a weak equivalence

Γtop : ZmC (A) → Zn(D∆(C)+ ∧ Sm)

where A is a (compact, or compactifiable) oriented manifold of dimension n and
C ⊂ A is a closed subpolyhedron that is a subcomplex with respect to some finite
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triangulation of A. As in other proofs of duality, the basic case that needs to be
checked by hand occurs when C is a point, or more generally, a (sufficiently small)
simplex.

duality:point Example 5.1. Let A be a smooth compact oriented manifold of dimension n with
a triangulation ∆ with the property that for every closed simplex B of ∆, D∆(B)
is contained in a Euclidean neighborhood, and let C ⊂ A be a (closed) simplex.
Let m ≥ 0. Then the graphing map

Γtop : ZmC (A) → Zn(D∆(C)+ ∧ Sm)

is a weak equivalence.
Indeed, using Proposition 2.2 to identify πi(ZmC (A)) with Hm−i(A,A− C) and

Theorem 1.2 to identify πi(Zn(D∆(C)+ ∧ Sm)) with Hn+i(D∆(C)× Sm, D∆(C)×
∞)), we conclude that both groups are zero unless m = n and i = 0, when the
homomorphism Γtop# induced by Γtop is of the form Z → Z. The generator of the
source here is the collapsing map

A→ A/(A−O∆(C)) ≡ Sn

defining the orientation, minus the constant map to ∞. This is a difference of
good Lipschitz maps, and the resulting class in homology is the class given by the
difference of the collapsing map and the constant map on the boundary, i.e., it is a
generator. This shows that Γtop# is onto, and hence an isomorphism, as asserted.

Now a bootstrap argument allows to realize Poincaré - Lefschetz duality as the
map in homotopy of a map of topological abelian groups.

duality:lefschetz Theorem 5.2. Let A be a smooth compact oriented manifold which admits a tri-
angulation and let C ⊂ A be a compact subspace that is also a subcomplex for some
finite triangulation of A. Then for a sufficiently fine triangulation ∆ of A such that
C is a subcomplex the graphing map

Γtop : ZmC (A) → Zn(D∆(C)+ ∧ Sm)

is a weak equivalence.

Proof. We proceed by induction of the dimension d of C and the number r of
simplices of C. If d < 0, then there is nothing to prove. If r = 1, then C is a
point, and we are done by Example 5.1. Now suppose d ≥ 0, r > 1, and we have
proved the assertion for all closed subcomplexes C ′ with at most r− 1 simplices or
of dimension less than d. Let K be a subcomplex of C with r− 1 simplices, and let
B be the closed simplex such that C = K ∪B. There are two cases.
First Case: B is disjoint from K. Then the inductive step follows from the obvious
fact that ZmC (A) ≡ ZmK (A)×ZmB (A).
Second Case: B is not disjoint from K. Then B ∩K = ∂B. Since the dimension
of ∂B is less than d, the inductive hypothesis implies that our assertion holds for
the subcomplexes B, K and ∂B. Now the Mayer-Vietoris sequence of Corollary
3.5 and the compatibility of graphing and Mayever-Vietoris given in Corollary 4.9
complete the inductive step. �

Remark 5.3. While it may look as if neither orientability nor smoothness is ever
used in the proof of Theorem 5.2, note that the assumptions are needed for the
graphing construction to work, as discussed in Section 4.
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As a corollary, we obtain Poincaré Duality in the form stated as Theorem 0.1 in
the introduction.

duality:poincare Corollary 5.4. Let A be a smooth compact oriented manifold of dimension n.
Then the graphing map

Γtop : Zm(A) → Zn(A+ ∧ Sm)

is a weak equivalence.

Proof. Choose a sufficiently fine triangulation, and let C = A in Theorem 5.2. �

duality:open Corollary 5.5. Let A be a smooth oriented compact manifold, and let C ⊂ A be
a compact subspace that is a subcomplex with respect to some finite triangulation.
Then the graphing map

Γtop : Zm(A− C) −→ ˜Zn(A+ ∧ Sm)/ lim−→
∆

Zn(D∆(C)+ ∧ Sm)

is a weak equivalence.

Proof. This follows easily from the preceeding results and the compatibility of
graphing with localization proved in Proposition 4.7 (taking A∞ = ∅ in (15) ). �

def:gysin Definition 5.6. Assume A is a compact, oriented n-manifold and i : A∞ ⊂ A is
a closed, compact, oriented submanifold of codimension e. For any m ≥ e, we refer
to the homotopy class of maps

gysingysin (16)
i! = (Γtop)−1◦(i∗∧Σe)◦Γtop : Zm−e(A∞)→ Zn−m((A∞)+∧Sn−e)→ Zn(A+∧Sm)→ Zm(A)

as the Gysin map.

Remark 5.7. The map on homotopy groups induced by the Gysin map,

i! : Hm−j−e(A∞) = πj(Zm−e(A∞)) → πj(Zm(A)) = Hm−j(A)

(isomorphic to Hn+j−m(A∞)→ Hn+j−m(A)), is the Poincaré dual of i∗ : H•(A)→
H•(A∞).

6. Thom Classes and Thom Isomorphism
sec:thom

In this last section we formulate the Thom isomorphism in our context and relate
it to the Gysin map of Definition 5.6.

disk Proposition 6.1. Let A be a compact, oriented pseudo-manifold of dimension n
and let C ⊂ A be a closed submanifold of codimension e, smoothly embedded in the
smooth locus of A. Let ∆ be a triangulation of A such that C is a subpolyhedron.
Then the retraction p : D∆(C)→ C is an oriented disk bundle, called the oriented
normal disk bundle of C ⊂ A. In other words, C admits an open covering {Ui}
such that each restriction p|Ui

: p−1(Ui) → Ui is homeomorphic to the product
projection De × Ui → Ui and such that p|Ui

, p|Uj
are related by a continuous maps

from Ui ∩ Uj to the group of continuous, orientation-preserving, origin-preserving
homeomorphisms of the disk De.

Let B be a compact polyhedron and suppose D→ B is an oriented disk bundle of
rank e over B, given a structure of a compact polyhedron such that B is embedded
as a subpolyhedron via the zero section and such that the associated sphere bundle
S→ B is also a subpolyhedron.
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def:thomclass Definition 6.2. A (geometric) Thom class of D → B of an oriented disk bundle
over a compact polyhedron B is an element t ∈ Ze(D,S) such that the restriction
tx of t to any fiber (Dx,Sx) over a point x ∈ B defines the given orientation of the
disk Dx, that is, tx is in the same connected component of Ze({x}) as the difference
of the collapsing map (Dx,Sx) → (Se,∞) and the constant map to ∞. We write
T (D) for the subspace in Ze(D,S) of all geometric Thom classes.

rem:trivialthom Remark 6.3. Let B be a contractible polyhedron and (D,S) = B × (De, Se−1)
be the trivial disk and sphere bundles over B, with a choice of orientation. Then
there is an obvious geometric Thom class defined as the difference of the projection
to (De, Se−1) followed by the collapsing map to Se and the constant map to ∞ ∈
Se. Since Ze(B ×De, B × Se−1) is homotopy equivalent to Z, the space T (D) is
contractible.

thm:thomclass Theorem 6.4. For any compact polyhedron B and oriented disk bundle (D,S) as
above, the space of geometric Thom classes T (D) is contractible, and in particular,
non-empty.

Proof. By induction of the dimension of B. It follows immediately from Remark
6.3 that the assertion is true if the dimension of B is zero.

Suppose now that dim(B) = n, and the assertion has been proved for all poly-
hedra of dimension less than n. Let B(n−1) be the (n − 1)-skeleton of B, Bn the
disjoint union of the n-simplices of B, and let ∂Bn be the union of the boundaries.
Moreover, let D(n−1), Dn and ∂Dn be the respective restrictions of the oriented
disk bundle D, and similarly for the sphere bundle S. We may choose embeddings
of D, and of the union

∐
n Dn as neighborhood retracts such that all the attaching

maps and characteristic maps are Lipschitz continuous. In this way, we obtain a
commutative square

TsquareTsquare (17) T (D)

��

// T (D(n−1))

��
T (Dn) // T (∂Dn)

and the assertion follows from:
Claim: The square (17) is homotopy cartesian.

Indeed, it is clear that this is a cartesian square; therefore it suffices to show
that one of the maps, say, T (Dn) → T (∂Dn), is a (Serre) fibration. Since T
obviously transforms finite disjoint unions into finite products, we may assume
that there is only one n-simplex. Further, we can choose a Lipschitz continuous
trivialization of the disk bundle Dn → Bn. Hence, we only need to prove that the
map T (∆n ×De)→ T (∂∆n ×De) induced by restriction is a Serre fibration. Take
a commutative diagram

fibsquarefibsquare (18) Dk

��

f // T (∆n ×De)

��
Dk × I

g // T (∂∆n ×De)

Recall that an element φ ∈ T (∆n ×De) is simply a difference of two Lipschitz
continuous maps φ+ and φ− from ∆n ×De to some symmetric powers of Se that
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become equal on the sphere bundle ∆n × Se−1. The maps f and g in the square
(18) have compact source and can therefore be taken to correspond to continuous
families of Lipschitz maps G+ − G− and F+ − F− where the +-maps have target
in some symmetric power SP r(Se) and the −-maps have target in some symmetric
power SP s(Se), and such that the restrictions of G+ and F+ (respectively, G− and
F−) to Dk × ∂∆n ×De coincide.

Now we can glue G+ and F+ (respectively, G− and F−) along Dk × ∂∆n ×De

to obtain a continuous family of Lipschitz maps

Φ+ = G+ ∪ F+ : Dk × I × ∂∆n ×De ∪Dk×∂∆n×De Dk ×∆n ×De → SP r(Se)

and similarly a continuous family of Lipschitz maps

Φ− = G− ∪ F− : Dk × I × ∂∆n ×De ∪Dk×∂∆n×De Dk ×∆n ×De → SP s(Se)

with the property that Φ+−Φ− is everywhere locally on Dk × I × ∂∆n ∪Dk ×∆n

the orientation of the trivial e-disk bundle.
The inclusion (which is the identity on the fibers of the e-disk bundle)

Dk × I × ∂∆n ×De ∪Dk×∂∆n×De Dk ×∆n ×De ↪→ Dk × I ×∆n ×De

is Lipschitz homeomorphic to an inclusion Dn+k × De ↪→ Dn+k × I × De that is
the identity on the fibers of the (trivial) e-disk bundle. Along the latter inclusion,
we can extend Φ+ and Φ− constantly along the I-direction to families of Lipschitz
maps Φ̃+ and Φ̃−. Clearly, on each fiber of the e-disk bundle, Φ̃+ − Φ̃− defines
the orientation of the disk De. That is, we have constructed a lift Φ̃ : Dk × I →
T (∆n ×De) of the diagram (18), as needed. �

Now that we have defined the Thom classes, we can easily prove the Thom
isomorphism theorem.

thomclass Theorem 6.5. Let B be a compact polyhedron, D → B an oriented disk bundle
and t ∈ T (D) a geometric Thom class. Then multiplication by t defines a weak
equivalence, independent up to homotopy of the choice of t.

t : Zi(B)→ Ze+i(D,S)

Proof. In the case that the disk bundle is trivial, multiplication by t is the sus-
pension isomorphism. The general case follows using Mayer-Vietoris and the 5-
Lemma. �

The following Thom Isomorphism theorem follows easily from Theorem 6.5.

Theorem 6.6. (Thom isomorphism) Let A be a compact polyhedron and C ⊂ A atau
closed subpolyhedron of constant codimension e > 0 admitting an oriented normal
disk bundle in A (as in Proposition 6.1, for example). Then any geometric Thom
class t(C ⊂ A,∆) determines a class τC ∈ ZeC(A). Moreover, multiplication by
such a class

τC : Zi(C)→ Ze+iC (A)
is a weak equivalence, independent up to homotopy of the choice of τC .

Proof. The class tC = t(C ⊂ A,∆) lies in the kernel of Ze(D∆(C))→ Ze(S∆(C)).
Hence, we may extend tC by 0 on A − O∆(C), obtaining the class τC in Ze(A)
which vanishes off O∆(C); in other words,

τC ∈ ker{Ze(A)→ Ze(A−O∆(C)} = ZC(A).
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We now apply the excision property of Proposition 3.6 to identify the Thom
isomorphism of Theorem 6.5 with multiplication by τC . �

We conclude with the following theorem relating the Gysin map of Definition
5.6 and multiplication by the Thom class of the normal disk bundle of a closed
embedding of compact smooth manifolds.

Theorem 6.7. Let A be a compact, connected pseudo-manifold of dimension n and
let C ⊂ A be a smooth closed embedding of codimension e ≥ 1 of the smooth man-
ifold C missing the singular locus of A. Then the following square is commutative
in the homotopy category

compatcompat (19) Zm−e(C)

Γtop

��

τC // ZmC (A)

p∗◦Γtop

��
Zn−e(C+ ∧ Sm−e)

Σe
// Zn(C+ ∧ Sm).

Here the right vertical map is the composition p∗ ◦Γtop of the pushforward along the
retraction D∆(C)+ → C+ with the graphing map Γtop : ZmC (A) → Zn(D∆(C)+ ∧
Sm).

Proof. By localization, we may as well assume that A is a manifold. Employing
the tubular neighborhood theorem and using localization once more, we may in
fact assume that A is of the form P(E ⊕ 1) for some oriented vector bundle E
(namely, the normal bundle) and that the emebedding C → A is the inclusion
i : C = P(1) → P(E ⊕ 1). Let π : A → C the projection of the projective space
bundle. Note also that all groups in the diagram are contractible if e > m, so we
may as well assume that m ≥ e.

Our proof will be in two steps. First, we will prove the assertion under the
assumption that the normal bundle E is trivial. This case is essentially obivous,
once we untangle the definition of the various maps involved. Then, we will repeat
the matching argument from the proof of Theorem 6.4 in our context, imposing
the additional condition in each step that diagram (19) commute. Some care is
required to ensure that the graphing map is defined on each piece.
Step 1: Assume that the vector bundle E → C is the trivial rank e bundle,
choose a triangulation ∆ with the property that i and π are simplicial maps and let
D = D∆(C) (resp., S = D∆(C)−O∆(C)) be the associated disk bundle and sphere
bundle, respectively. By Kirszbraun’s theorem, the natural map of topological
abelian groups

Zm(D,S)→ Zm(A,A−O∆(C))
is an isomorphism for all m. Moreover, the argument of the proof of Proposition
4.7 applies to give the graphing map

Γtop : Zm(D,S)→ Zn(D+ ∧ Sm).

Let t be the ”obvious” geometric Thom class of Remark 6.3 for the oriented disk
bundle D. We need to show that the following diagram commutes for all m ≥ e:

compat:trivialcompat:trivial (20) Zm−e(C)

Γtop

��

t // Zm(D,S)

π∗◦Γtop

��
Zn−e(C+ ∧ Sm−e)

Σe
// Zn(C+ ∧ Sm).
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In fact, let f : C → SP r(Sm−e) be a good Lipschitz map. Then the product
f ∪ t ∈ Zm(D,S) is represented by the difference of

F+ : D = C ×De → SP r(Sm)

and
F− : D = C ×De → SP r(Sm)

where F+(c, x) = f(c)∧x with x ∈ Se the image of x under the collapsing map, and
F−(c, x) is simply r times the constant map to the point. Note that F+ is the smash
product of a good Lipschitz map and a simplicial map; hence the graph Γtop(F+)
is obtained as the actual geometric graph of this multi-valued map. Trivially, the
same is true for the constant map.

Now the current c = π∗(Γtop(F+) − Γtop(F−)) acts as follows: let ω be a differ-
ential form on C ×Sm−e×Se (which we view as a ”differential form” on C+ ∧Sm;
note we can use actual differential forms, since C ×Sm−e×Se is, in fact, a smooth
manifold). Use a normalized product measure

µ = µ1 × µ2 × µ3 × µ4

on C ×De × Sm−e × Se. Then ∫
c

ωd(µ1 × µ3 × µ4)(21)

=
∫

Γtop(F+)

π∗ωdµ−
∫

Γtop(F−)

π∗ωdµ(22)

=
∫

Γtop(F+)

π∗ωdµ− r
∫
C×De×{∞}×{∞}

π∗ωdµ.(23)

Observe that the F−-term vanishes, since the corresponding current is supported
in a set of dimension n < n+m−(m−e), which has measure 0. The remaining term
is obtained by first integrating π∗ω over the set of points of the form (c, x, f(c), x)
(where f(c) is any of the multiple values of f at c). This can be realized by
first integrating π∗ω along the fibers Se = {(x, x)|x ∈ De} ⊂ De × Se, and then
integrating the resulting form

∫
Se π

∗ω over the graph of f . In turn, that is equivalent
to integrating ω itself first along the fibers Se, and then over the graph of f .

On the other hand, for any current a on C×Sm−e, the current Σe(a) is obtained
by integrating a form ω on C × Sm−e × Se first along the fibers Se and then
integrating the resulting form

∫
Se ω over the current a.

That is, diagram (20) is in fact a strictly commutative diagram of spaces.
Step 2: To be done.

�
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