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Abstract. We introduce the class of modules of constant Jordan type for a finite
group scheme G over a field k of characteristic p > 0. This class is closed under
taking direct sums, tensor products, duals, Heller shifts and direct summands,
and includes endotrivial modules. It contains all modules in an Auslander-Reiten
component which has at least one module in the class. Highly non-trivial examples
are constructed using cohomological techniques. We offer conjectures suggesting
that there are strong conditions on a partition to be the Jordan type associated
to a module of constant Jordan type.
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0. Introduction

In [17] and [19], the second and third authors have introduced a seemingly naive
approach to the study of representations of finite groups and related structures on
vector spaces over a field k of characteristic p > 0. The basic idea is to restrict
representations to certain subalgebras (“π-points”) isomorphic to the group algebra
of Z/pZ, for we completely understand the representation theory of the algebra
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kZ/pZ in terms of partitions (or “Jordan types”). The simplicity of this approach
enables the authors to consider representation theory in a very general context (of
a finite group scheme G over an arbitrary field of characteristic p > 0) and prove
both global results about the stable module category and explicit results for specific
examples. The naivety of the approach is somewhat misleading for underlying many
theorems are somewhat difficult cohomological results, especially results giving finite
generation and detection modulo nilpotence on subalgebras of special form.

In a recent paper [20], the second and third authors in collaboration with Andrei
Suslin have adopted this naive point of view to formulate and investigate new in-
variants for such representations. The authors introduce “maximal” and “generic”
Jordan types for a given representation whose existence even in the very special case
of the finite group Z/pZ × Z/pZ is highly non-trivial.

Indeed, this special example G = Z/pZ × Z/pZ (for p > 2) is challenging from a
representation-theoretic point of view for its group algebra has wild representation
type. With such “wildness” in mind, it is natural to investigate classes of represen-
tations of G with special properties. That is the purpose of this present paper, in
which we investigate modules of constant Jordan type. Although the formulation of
this concept requires the approach of “π-points” and our study utilizes many of the
techniques of the papers mentioned above, the resulting class of modules appears
to be a most natural one to study for those considering the modular representation
theory of finite groups, p-restricted Lie algebras, and other finite group schemes.
We remark here on two aspects of this class of modules of constant Jordan type: it
includes the much-studied class of endotrivial modules and also includes many other
modules even in the special case of an elementary abelian p-group; the classification
of such modules of constant Jordan type appears to be very difficult, sufficiently
difficult that even in the special case G = Z/pZ × Z/pZ we can only speculate on
what Jordan types are realized.

In Definition 1.5, we introduce the concept of a kG-module M of constant Jordan
type, a finite dimensional module with the property that α∗

K(MK) has Jordan type

independent of the π-point αK : K[t]/tp // KG with K/k an arbitrary field ex-

tension. As verified in Theorem 5.6, a kG-module is an endotrivial module if and
only if it has constant Jordan type of a very special form. For certain explicit finite
group schemes, various examples of modules of constant Jordan type can be con-
structed directly as we show in §2. Much of our effort in the first half of this paper
is dedicated to showing that the class of modules of constant Jordan type is closed
under various natural operations: Heller shifts (cf. Proposition 1.8), direct sums (cf.
Proposition 1.8), direct summands (cf. Theorem 3.7), linear duals (cf. Proposition
5.2), and tensor products (cf. Corollary 4.3).

To establish these results, we continue the study initiated in [20] of the condition
that a π-point αK be maximal for a given kG-module M . This development is a sec-
ond aim of the paper of some independent interest. In §3, we formulate the natural
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relationship of strict specialization of π-points (closely related to the relationship of
specialization of equivalence classes of π-points considered in [20]). In §4, we investi-
gate the surprisingly subtle behavior of the condition of maximality of π-points with
respect to the tensor product of two given kG-modules. The relevance of maximality
of π-points for a kG-module M is emphasized by Proposition 3.6 which asserts that
the kG-module M has constant Jordan type if and only if the non-maximal support
variety of M , Γ(G)M , is empty.

In the second half of this paper, we give several methods of constructing modules
of constant Jordan type. One is provided in Proposition 6.1 and a second in Theorem
6.6 (as well as Proposition 6.7). Much preliminary effort is required for us to establish
in Theorem 6.13 that our second method provides examples which can not be realized
by the first. Indeed, the example provided by this theorem shows how subtle is the
behavior of the class of modules of constant Jordan type with respect to extensions.
A third method of construction using the Auslander-Reiten theory of almost split
sequences is detailed in §8: Theorem 8.5 establishes that any module in the same
Auslander-Reiten component as a module of constant Jordan type is also of constant
Jordan type, whereas Theorem 8.6 constructs kG-modules of constant Jordan type
n[1] + (proj) provided that G satisfies a mild cohomological property.

As one indication of the combinatorics involved in the existence of modules of
constant Jordan type, we show in Theorem 7.1 that our techniques give a new proof
of a special case of Macaulay’s Generalized Principal Ideal Theorem.

We have made little progress in classifying those partitions which are realizable
as the Jordan type of modules of constant Jordan type. For example, for a rank 2
elementary abelian p-group E, we conjecture but can not prove that no partition of
type n[p] + 1[2] is the Jordan type of kE-module of constant Jordan type. In §9,
we mention numerous questions and conjectures on the constraints of a Jordan type
associated to a module of constant Jordan type.

Throughout this paper, k will denote an arbitrary field of finite characteristic and
p > 0 will denote the characteristic of k. Without explicit mention to the contrary,
kG-modules are assumed to be finitely generated. We let Mn(k) denote the algebra
of n × n matrices over k.

We thank Valery Alexeev for enabling us to extend Theorem 7.1 to the case of
characteristic 0 and Victor Ostrik for his suggestion of using tilting modules to
establish the formulas of the appendix. We are grateful to David Eisenbud for
the reference to Theorem 7.1 and to Karin Erdmann for drawing our attention to
possible connections with the Auslander-Reiten theory.

1. Constant Jordan Type

In this first section, we introduce modules of constant Jordan type and investigate
some of the basic properties of this class of modules.
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Recall that a finite group scheme G (over k) is a group scheme over k whose
coordinate algebra k[G] is finite dimensional over k. We denote the linear dual
of k[G] by kG and call this the group algebra of G. A (rational) G-module is a
comodule for k[G] or equivalently a kG-module.

We remind the reader that the isomorphism class of a finite dimensional k[t]/tp-
module M of dimension n (over k) is given by a partition of n into blocks of size

≤ p. Equivalently, if we let ρM : k[t]/tp // Mn(k) be the representation associated

to M , then the isomorphism type of M is specified by the conjugacy class of the
element ρM(t) ∈ Mn(k) with p-th power 0. We shall often denote the isomorphism
type of M by ap[p] + · · · + a1[1], where ai denotes the number of blocks of size i in
the partition of n associated to M .

We call the isomorphism type of a finite dimensional k[t]/tp-module M the Jordan
type of M . For any finite dimensional k[t]/tp-module M , the stable Jordan type
of M is the “stable equivalence” class of Jordan types, where two Jordan types
ap[p] + · · ·+ a1[1] and bp[p] + · · ·+ b1[1] are stably equivalent if ai = bi, for all i < p.

We may view a Jordan type ap[p] + · · · + a1[1] as a partition of n =
∑p

i=1 iai. If∑
iai =

∑
ibi, then we say that the Jordan type of a = ap[p] + · · ·+ a1[1] is greater

or equal to the Jordan type of b = bp[p] + · · ·+ b1[1] (denoted a ≥ b) provided that

(1)

p∑

i=j

iai ≥

p∑

i=j

ibi, 1 ≤ j ≤ p.

If a ≥ b and if
∑p

i=j iai >
∑p

i=j ibi for some j, then we write a > b. Note that
this is the usual dominance ordering on partitions.

Remark 1.1. Let M, N be k[t]/tp-modules of dimension n given by

ρM , ρN : k[t]/tp // Mn(k).

Then the Jordan type a of M is greater or equal to (respectively, greater than) the

Jordan type of b of N if and only if for every j, 1 ≤ j < p, the rank of ρj
M is greater

or equal to the the rank of ρj
N (resp., and strictly greater for some j).

Definition 1.2. A π-point for a finite group scheme G is a left flat map of K-algebras

αK : K[t]/tp // KG , for some field extension K/k, which factors through the

group algebra KCK ⊂ KGK of some unipotent abelian subgroup scheme CK ⊂ GK.
If M is a finite dimensional kG-module, the Jordan type of the π-point αK on M
is the isomorphism class of the K[t]/tp-module α∗

K(MK) (where MK = K ⊗k M).
We emphasize here that α∗

K(MK) denotes the restriction of MK to a K[t]/tp-module
along the map αK . We say that the Jordan type of α∗

K(MK) is the Jordan type of
αK on M .

Definition 1.3. Let αK : K[t]/tp // KG , βL : L[t]/tp // LG be π-points of G.

Then αK is said to be a specialization of βL (written βL ↓ αK) if for every finite
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dimensional kG-module M the K[t]/tp-module α∗
K(MK) is projective whenever the

L[t]/tp-module β∗
L(ML) is projective. We say that αK, βL are equivalent and write

αK ∼ βL provided that αK ↓ βL and βL ↓ αK.

The following theorem summarizes the close relationship between the set of equiv-
alence classes of π-points of G and the cohomology H•(G, k). Here, H•(G, k) =
H∗(G, k), the cohomology algebra of G provided that p = 2; for p > 2, H•(G, k) ⊂
H∗(G, k) denotes the commutative subalgebra of even dimensional classes.

Theorem 1.4. (cf. [19, 3.6]) The set of equivalence classes of π-points of a finite
group scheme G, written Π(G), admits a scheme structure determined by the stable
module category, stmod(kG). With this structure, Π(G) is isomorphic to the scheme
Proj H•(G, k).

In particular, the closed subsets of Π(G) are of the form Π(G)M where M is a
finite dimensional kG-module and Π(G)M is the subset of those equivalence classes

of π-points αK : K[t]/tp // KG such that α∗
K(MK) is not projective.

We now introduce modules of constant Jordan type, whose study is the primary
object of interest in this paper.

Definition 1.5. The finite dimensional kG-module M is said to be of constant
Jordan type if the Jordan type of α∗

K(MK) is independent of the choice of π-point

αK : K[t]/tp // KG .

Remark 1.6. The Jordan type of α∗
K(MK) for a finite dimensional kG-module M

at a π-point αK : K[t]/tp // KG typically depends not only upon the equivalence

class [αK ] ∈ Π(G) but also upon the representative of this equivalence class. How-
ever, there are some exceptions. The central conclusion of [20] is that in either of the
following two situations, the Jordan type of α∗

K(MK) does not change if we replace
αK by some βL with αK ∼ βL:

(1) If [αK ] ∈ Π(G) is a generic point; otherwise said, if αK is a generic π-point.
(2) If for the given finite dimensional kG-module M , there does not exist any

π-point βL such that the Jordan type of β∗
L(ML) is strictly greater than the

Jordan type of α∗
K(MK). In this situation we say that αK has maximal

Jordan type on M .

We recall that the non-maximal support variety, Γ(G)M ⊂ Π(G) associated to
a finite dimensional kG-module M is defined to be the (closed) subspace of those
points x ∈ Π(G) with the property that for some (and thus any) representative αK

of x the Jordan type of α∗
K(MK) is not maximal for M , or equivalently, αK does not

have maximal Jordan type on M [20, 5.1].

Remark 1.6(2) immediately leads us to the following equivalent formulation of the
property of constant Jordan type.



6 JON F. CARLSON, ERIC M. FRIEDLANDER AND JULIA PEVTSOVA

Proposition 1.7. A finite dimensional kG-module is of constant Jordan type ap[p]+
· · · + a1[1] if and only if for each equivalence class [αK ] ∈ Π(G) there exists some

representative αK : K[t]/tp // KG with the property α∗
K(MK) has type ap[p] +

· · ·+ a1[1].

Since any π-point αK : K[t]/tp // KG has the property that α∗
K commutes with

direct sums and (modulo projectives) Heller shifts, we conclude the following.

Proposition 1.8. Let G be an arbitrary finite group scheme.

• The trivial kG-module k has constant Jordan type.
• A finite dimensional projective kG-module has constant Jordan type. If kG

is not semi-simple, then the Jordan type of a kG-projective module P is equal
to Dimk P

p
[p].

• If Ωi(k) denotes the i-th Heller shift of k for some i ∈ Z, then Ωi(k) has
constant Jordan type equal to n[p] + 1[1] for some n ≥ 0 if i is even and
equal to m[p] + 1[p − 1] for some m ≥ 0 if i is odd.

• If M has constant Jordan type, then Ωi(M) also has constant Jordan type
for any i ∈ Z

• If M, M ′ are kG-modules of constant Jordan type, then M ⊕ M ′ also has
constant Jordan type.

The preceding proposition will be supplemented in subsequent sections by propo-
sitions asserting that other familiar operations on modules of constant Jordan type
yield modules of constant Jordan type: taking a direct summand (by Theorem 3.7),
taking the tensor product (by Corollary 4.3), and taking Homk(−,−) (by 5.4).

We make explicit the following elementary functoriality property.

Proposition 1.9. If f : H // G is a flat map of finite group schemes and if M

is a kG-module of constant Jordan type, then f ∗(M) is a kH-module of the same
constant Jordan type.

Proof. If αK : K[t]/tp // KH is a π-point of H, then f ◦αK is a π-point of G and

the Jordan type of α∗
K((f ∗M))K) equals that of (f ◦ αK)∗(MK). �

Remark 1.10. To verify whether or not a given finite dimensional kG-module M
has constant Jordan type it suffices to check that the Jordan type of α∗

K(MK) does
not vary as [αK ] ∈ Π(G) ranges over closed points of Π(G). Thus, it suffices to
consider αK with K/k finite. In particular, if k is algebraically closed, it suffices
to consider k-rational points of Π(G). The collection of these points is denoted by
P (G), and was investigated extensively in [17].

Because a kG-module M has constant Jordan type if and only if its base change
MK has constant Jordan type as a KG-module for any field extension K/k, one
could replace k by its algebraic closure and consider only k-rational points for the
algebraically closed field k.
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2. Examples of modules of constant Jordan type

We give examples of modules of constant Jordan type in special situations. Per-
haps it is worth remarking that these examples are quite different from endotrivial
modules considered in §5.

Proposition 2.1. Let E be an elementary abelian p-group and let I ⊂ kE be the
augmentation ideal of the group algebra kE. Then, for any n ≥ m, Im/In is a
kE-module of constant Jordan type.

Proof. Let β : k[t]/tp // kE ' k[t1, . . . , tr](t
p
1, . . . , t

p
r) be the π-point defined by

β(t) = t1 and let αK : K[t]/tp // KE be an arbitrary π-point. Since αK is flat

and αK(t) has p-th power 0, αK(t) is a polynomial in t1, . . . , tr with constant term
0 and non-vanishing linear term. Consequently, we may choose an automorphism

θα : KE // KE which sends t1 to αK(t), so that αK = θα ◦β. The automorphism
θα necessarily sends any power Im of the augmentation ideal isomorphically onto
itself, so that

θ−1
α : α∗

K(Im/In) = (θα ◦ β)∗((Im/In)K) ' (β∗(Im/In))K.

In other words, the Jordan type of α∗
K(Im/In) does not depend upon the choice of

π-point αK . �

Example 2.2. As an elementary, specific case of Proposition 2.1, we consider kE/I 2

where E is an elementary abelian p-group of rank r. This is a kE-module of dimen-
sion r + 1 and can be represented explicitly as follows. Give the kE-module struc-
ture on kr+1 by defining the generators {t1, t2, . . . , tr} to act by multiplication by
{e1,2, e1,3, . . . , e1,r+1}, pairwise commuting elementary matrices of size (r+1)×(r+1)
with p-th power 0. The constant Jordan type of the module kE/I2 is 1[2]+(r−1)[1].

Remark 2.3. By Proposition 5.2, the dual (kE/I2)# of kE/I2 is also a module of
constant Jordan type of the same Jordan type as kE/I2. In the special case of r = 2,
(kE/I2, (kE/I2)#) constitute the example produced years ago by Jens Jantzen of
two non-isomorphic modules with the same “local Jordan type.”

Example 2.4. We give a somewhat more interesting example to show how the
residue characteristic p plays a role. Consider the elementary abelian p-group of
rank 2, kE = k[x, y]/(xp, yp). Define the kE-module W of dimension 13 generated
by v1, v2, v3, v4 and spanned as a k-vector space by

{v1, v2, v3, v4, x(v1), x(v2), x(v3), x(v4), x
2(v1), x

2(v2), x
2(v3), y(v1), yx(v1)}

with

x(vi) = y(vi+1), y2(v1) = x2(v4) = x3(vi) = 0.
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We represent this module with the following diagram

(2)

〈v1〉
•

y��
�

����
��

x
??

?

��
??

??

〈v2〉
•

y��
�

����
��

x
??

?

��
??

??

〈v3〉
•

y��
�

����
��

x
??

?

��
??

??

〈v4〉
•

y��
�

����
��

x
??

?

��
??

??

•

x
CC

CC

!!C
CC

C

•

y{{
{{

}}{{
{{

x
CC

CC

!!C
CC

C

•

y{{
{{

}}{{
{{

x
CC

CC

!!C
CC

C

•

y{{
{{

}}{{
{{

x
CC

CC

!!C
CC

C

•

y{{
{{

}}{{
{{

• • • •

The vertices correspond to k-linear space generators, and the arrows indicate the
action of the generators x and y of the group algebra. A vertex with no out-coming
arrows corresponds to a trivial 1-dimensional submodule.

If p = 5, then W ' I3/I6, and W has constant Jordan type 3[3] + 2[2]. More
generally, the Jordan type of the kE-module Ip−2/Ip+1 is (p − 2)[3] + 2[2].

If p > 5, then W does not have constant Jordan type. Namely, the Jordan type
for both x and y on W is 3[3] + 2[2], whereas the Jordan type of x + y is 4[3] + 1[1].
The Jordan blocks of size 3 for the action of x + y are generated by v1, v2, v3 and v4

and the trivial block is generated by x(v1 − v2 + v3 − v4) + y(v4).

Proposition 2.5. Let sl2 denote the p-restricted Lie algebra of 2×2 matrices of trace
0 and let u(sl2) denote the restricted enveloping algebra of sl2, the group algebra of
the height 1 infinitesimal group scheme G = SL2(1). If the finite dimensional u(sl2)-
module M is the restriction of a rational SL2-module, then M has constant Jordan
type. On the other hand, other u(sl2)-modules typically do not have constant Jordan
type.

Proof. Let ρ : SL2
// GLm determine a rational SL2-module M of dimension m.

Then the induced map of p-restricted Lie algebras dρ : sl2 // glm defines the

associated u(sl2)-module structure on M . For any field extension K/k and any

x ∈ SL2(K), the rational SL2,K-module M
ρ(x)
K given by Ad(ρ(x)) ◦ ρ is isomorphic

to MK and thus the associated u(sl2,K)-module M
ρ(x)
K given by d(Ad(ρ(x) ◦ ρ) is

isomorphic to MK .
Recall that the space of k-rational points of Π(G) can be identified with the space

of k-rational lines of the nilpotent variety N (sl2). Indeed, each equivalence class of

π-points is represented by some αK : K[t]/tp // u(sl2,K) sending t to a nilpotent

matrix of sl2(K). Moreover, the Jordan type of a given finite dimensional u(sl2)-
module does not depend upon the choice of such a representative of a given point of
Π(G) by [20, 3.1]. The action of SL2(K) on Π(G)K sending αK to dρ(Ad(x))◦αK =
Ad(ρ(x)) ◦ αK corresponds to the natural action of SL2 on N (sl2). Consequently,
the transitivity of this action together with Proposition 1.7 implies that the rational
SL2-module M has constant Jordan type as a u(sl2)-module.
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On the other hand, any u(sl2)-module M whose Π-support space Π(G)M is a
non-empty proper subset of the 1-dimensional variety Π(G) has Jordan type of M
at a generic π-point of Π(G) equal to m

p
[p] (where m = DimM) and strictly smaller

Jordan type at any π-point representing a point in Π(G)M . Such M abound, since
every finite subset of Π(G) is of the form Π(G)M for some finite dimensional kG-
module M . For example, let b ⊂ sl2 be the Lie subalgebra of lower triangular
matrices and consider the u(sl2)-module M = u(sl2) ⊗u(b) k, the module obtained
from the trivial u(b)-module by coinduction. Then M is free when restricted to
the 1-dimensional subalgebra of strictly upper triangular matrices and trivial when
restricted to the 1-dimensional subalgebra of strictly lower triangular matrices. �

We conclude this section of explicit examples with a family of modules Vn, n > 0
which are modules of constant Jordan type n[2]+1[1] regardless of the prime p. The
module Vn can be represented by the following diagram:

〈v1〉
•

y��
�

����
��

x
??

?

��
??

??

〈v2〉
•

y��
�

����
��

x
??

?

��
??

??

. . . 〈vn〉
•

y��
�

����
��

x
??

?

��
??

??

• • • . . . • •

The verification of the assertion that Vn does indeed have constant Jordan type is a
simple computation.

In the following proposition we describe the modules Vn explicitly in terms of
generators and relations.

Proposition 2.6. Consider a rank 2 elementary abelian p-group, so that kE =
k[x, y]/(xp, yp). Consider the kE-module Vn of dimension 2n + 1 generated by
v1, . . . , vn spanned as a k-vector space by {v1, . . . , vn, x(v1), . . . , x(vn), y(v1)} with
x(vi) = y(vi+1), x2(vi) = xy(vi) = y2(vi) = 0. Then Vn has constant Jordan type
n[2] + 1[1].

3. Specialization, Γ(G)M , and constant Jordan type

In this section, we introduce a strict form of specialization of π-points which was
considered briefly in [20, 3.2] for infinitesimal group schemes. We also recall the
non-maximal support variety Γ(G)M of a finite dimensional kG-module M . We use
both strict specialization and the non-maximal support variety to further explore
the class of modules of constant Jordan type.

The condition recalled in Definition 1.2 that the π-point αK specializes to the π-
point βL is equivalent to the algebro-geometric condition that the point [αK] ∈ Π(G)
specializes to [βL] (cf. [19]). For some purposes, this notion of specialization is not
sufficiently strong. Namely, if Π(G) is reducible, then there exist finite dimensional
kG-modules M and π-points αK , βL such that αK specializes to βL but the Jordan
type of α∗

K(MK) is smaller than the Jordan type of β∗
L(ML) (see [19, 4.14]).
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The following definition introduces a stricter definition of specialization which is
a natural extension of [20, 3.2] from infinitesimal group schemes to arbitrary finite
group schemes.

Definition 3.1. Let G be a finite group scheme and αK , βL be π-points of G. We say
that αK strictly specializes to βL (and write αK � βL), if there exists a commutative
local domain R over k with field of fractions K and residue field L, together with a

map of R-algebras νR : R[t]/tp // RG such that νR ⊗R K = αK , νR ⊗R L = βL.

Theorem 3.2. Let R be a commutative local domain with field of fractions K and
residue field L. Let A ∈ MN (R) be an N × N matrix which has p-th power 0 and
coefficients in R. Then the Jordan type of A ⊗R K ∈ MN (K) is greater or equal to
the Jordan type of A ⊗R L ∈ MN(L).

Consequently, if αK, βL are π-points of a finite group scheme G with αK � βL

and if M is a finite dimensional kG-module, then α∗
K(MK) has Jordan type greater

or equal to that of β∗
L(ML). In particular, αK � βL implies αK ↓ βL.

Proof. Let M [i] denote the cokernel of Ai : RN // RN for some i < p. Let

m1, . . . , ms ∈ M [i] be chosen so that m1, . . . , ms ∈ M [i] ⊗R L is a basis, where
mi = mi ⊗ 1L. By Nakayama’s Lemma, m1, . . . , ms generate M [i] as an R-module
and thus their images in M [i]⊗R K span. Observe that M [i]⊗R K is the cokernel of

(A ⊗R K)i : KN // KN and that M [i]⊗R L is the cokernel of the homomorphism

(A ⊗R L)i : LN // LN . This implies that the rank of (A⊗R K)i is greater or equal

to the rank of (A⊗R L)i for any i < p so that the Jordan type of A⊗R K ∈ MN(K)
is greater or equal to the Jordan type of A ⊗R L ∈ MN (L).

The second statement is a special case of the first. The last statement follows from
the observation that if β∗

L(ML) is projective then its Jordan type is the maximal
possible Jordan type on M and hence α∗

K(MK) must also be projective assuming
that αK � βL. �

The next theorem verifies that specialization of points in Π(G) can be represented
by strict specialization.

Theorem 3.3. Let G be a finite group scheme and let αK, βL be π-points of G with
αK ↓ βL be π-points of G. Then there exist π-points α′

K′ ∼ αK and β ′
L′ ∼ βL such

that α′
K′ � β ′

L′ .

Proof. Using [19, 4.13], we can choose an elementary abelian p-group E ⊂ π0(G)

such that [αK ], [βL] are in the image of the closed map Π((G0)E × E) // Π(G) .

Observe that the group algebra of (G0)E × E is isomorphic to the group algebra of
some infinitesimal group scheme H. Because the relationship of strict specialization
given in Definition 3.1 and the definition of specialization given in Definition 1.2
involve only the group algebra of the given finite group scheme, we may replace G
by H. Thus, we assume G is an infinitesimal group scheme.
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Let Spec A ⊂ Π(G) be an irreducible affine open subset containing both [αK ] and
[βL]. By replacing A by Ared, we may assume that A is a domain. Let R denote the
local A-algebra defined as the localization at the prime corresponding to [αK ] of the
quotient of A by the prime corresponding to [βL]. Set K ′ to be the field of fractions
of R and L′ to be the residue field of R.

Let r denote the height of the infinitesimal group scheme G and let Vr(G) be
the scheme of 1-parameter subgroups of G. Recall that the natural morphism

ΘG : Vr(G)\{0} // Π(G) , which is determined by sending a 1-parameter sub-

group µ : Ga(r)K
// GK to the π-point µ∗ ◦ ε : K[t]/tp // KGa(r) // KG , where

ε has the property that its composition with the map on group algebras induced
by the projection Ga(r) → Ga(r)/Ga(r−1), is an isomorphism. Because ΘG to-
gether with the isogeny H•(G, k) → k[Vr(G)] of [23, 5.2] induces the isomorphism

Proj (Vr(G))red
// Π(G)red of Theorem 1.4, we conclude that the given morphism

Spec R // Π(G)red lifts to a morphism

Spec R // (Vr(G))red ⊂ Vr(G),

which corresponds to a morphism of R-group schemes ν : Ga(r),R
// GR .

We define νR to be the map of R-algebras given as the composition

R[t]/tp
ε

// R(Ga(r),R)
ν∗

// RG.

By construction, νR ⊗R K ′ is a π-point of G in the equivalence class [αK] (the image
of Spec K ′) and νR ⊗R L′ is a π-point of G in the equivalence class [βL]. �

The proof of the theorem in the title of [7] applies with only minor notational
change to prove the same assertion, given below, for an arbitrary finite group scheme.

Theorem 3.4. (cf. [7]) Let G be a finite group scheme and M a finite dimen-
sional indecomposable kG-module. Then Π(G)M is connected. In particular, Π(G) =
Π(G)k is connected.

Theorems 3.3 and 3.4 enable the following equivalent formulation of the condition
that a module has constant Jordan type.

Proposition 3.5. Let G be a finite group scheme and let M be a kG-module. Then
M has constant Jordan type if and only if αK and βL have the same Jordan type on
M whenever αK , βL are π-points of G satisfying αK � βL.

Proof. If M has constant Jordan type and αK , βL are π-points of G, then the Jordan
types of αK and and βL on M are necessarily equal.

To prove the converse, we recall that if x ∈ Π(G) is a point such that M has
maximal Jordan type at some representative of x, then the Jordan type on M is
the same for every representative of x (see Remark 1.6). Let x ∈ Π(G) be a point
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which has maximal Jordan type on M and let y ∈ Π(G) be an arbitrary point.
Using the fact that Π(G) is connected (by Theorem 3.4) and Noetherian, choose
a chain of points x = x0, x1, . . . , xn = y ∈ Π(G) such that there exist morphisms

Spec Ri
// Π(G)red sending {Spec Ki, Spec Li} to the (unordered) pair {xi−1, xi}

where Ri a commutative local domain with field of fractions Ki and residue field Li.
Our hypothesis in conjunction with Theorem 3.3 implies that there are repre-

senting π-points αKi
, αLi

of xi and xi−1 at which M has the same Jordan type.
Consequently, M has the same maximal Jordan type at each representative of each
xi. Thus, the Jordan type of M at any representative of xn = y equals this same
maximal Jordan type; in other words, M has constant Jordan type. �

We give a useful characterization of modules M of constant Jordan type in terms
of their non-maximal support varieties Γ(G)M recalled in Remark 1.6.

Proposition 3.6. Let M be a finite dimensional kG-module. Then M has constant
Jordan type if and only if Γ(G)M = ∅.

Proof. If M has constant Jordan type, then clearly Γ(G)M = ∅. Conversely, let
Γ(G)M = ∅, and let αK, βL be any two π-points of G satisfying αK � βL. By
Theorem 3.2, α∗

K(MK) has Jordan type greater or equal to that of β∗
L(ML). Since

Γ(G)M = ∅, we must have that the Jordan types of α∗
K(MK) and β∗

L(ML) are the
same. Hence, Proposition 3.5 implies that M has constant Jordan type. �

The following “closure property” of modules of constant Jordan type is somewhat
striking.

Theorem 3.7. Let M be a kG-module of constant Jordan type. Then any direct
summand of M also has constant Jordan type.

Proof. Write M = M ′ ⊕ M ′′. Let αK, βL be two π-points such that αK � βL. By
Theorem 3.2, we have

(3) JType(α∗
K(M ′

K)) ≥ JType(β∗
L(M ′

L)) and JType(α∗
K(M ′′

K)) ≥ JType(β∗
L(M ′′

L)).

Hence,

JType(α∗
K(M ′

K)) ⊕ JType(α∗
K(M ′′

K)) = JType(α∗
K(M)) = JType(β∗

L(ML)) =

= JType(β∗
L(M ′

L)) ⊕ JType(β∗
L(M ′′

L)),

where JType is the Jordan type of the K[t]/tp-module. Therefore, both inequalities
in (3) must be equalities. Since this holds for any pair αK � βL, the statement now
follows immediately from Proposition 3.5. �
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4. Behavior with respect to tensor products

We begin with the following “order preserving” property of Jordan types. The
proof given below uses an explicit description of the tensor product of indecompos-
able k[t]/tp-modules which is presented in the Appendix.

Proposition 4.1. Let M , N and L be k[t]/tp-modules with Jordan types a = ap[p]+
· · · + a1[1], b = bp[p] + · · · + b1[1] and c = cp[p] + · · · + c1[1] respectively such that
DimM = DimN . Let a ⊗ c, b ⊗ c denote the Jordan types of M ⊗ L, N ⊗ L
respectively.

If a ≥ b, then a ⊗ c ≥ b ⊗ c.
If a > b and if ci 6= 0 for some i < p, then a ⊗ c > b ⊗ c.

Proof. For a k[t]/tp-module M of dimension m, we denote the representation afforded

by M by ρM : k[t]/tp // Endk(A) ' Mm(k) . The dominance condition (1) on

Jordan types a ≥ b of M and N both of dimension m can be formulated as the
condition that

Rk ρM (t)i ≥ Rk ρN(t)i, 1 ≤ i < p

or equivalently that

(4) DimKer {ρM(t)i} ≤ Dim Ker {ρN (t)i}, 1 ≤ i < p.

For a > b, the additional condition is that Rk ρM (t)i > Rk ρN (t)i for some i.
If L ' L1 ⊕ L2, so that c = c1 + c2, then we immediately conclude that

a ⊗ c = a ⊗ c1 + a ⊗ c2.

Thus, we may assume that L is indecomposable, say L = [`].
Denote by Js ∈ Ms(k) the Jordan block of size s. Then Js = ρ[s](t) once we choose

an appropriate basis. Since t acts on M ⊗ [`] as t ⊗ 1 + 1 ⊗ t, we get the formula

ρM⊗[`](t) = ρM(t) ⊗ Id[s] + IdM ⊗ Js

Lemma 1.10 of [20] implies

(5) Ker {ρM⊗[`](t)} = Ker {ρM(t)`}

Applying the same argument to M ⊗ [`], we obtain

(6) Ker {ρM⊗[`](t)
s} = Ker {ρM⊗[`]⊗[s](t)}

Using notation introduced in the appendix, we write [`]⊗ [s] =
⊕

j Cj
`s[j]. With this

notation,

DimKer {ρM⊗[`](t)
s} = DimKer {ρM⊗(

L

Cj
`s

[j])(t)} = Dim Ker {ρLCj
`s

(M⊗[j])(t)}

=
∑

Cj
`s DimKer {ρM⊗[j](t)} =

∑
Cj

`s DimKer {ρM(t)j}.

Consequently,

Dim Ker {ρM⊗[`](t)
s} =

∑
Cj

`s Dim Ker {ρM(t)j}
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and

Dim Ker {ρN⊗[`](t)
s} =

∑
Cj

`s Dim Ker {ρN (t)j}

Hence, (4) implies that

DimKer {ρM⊗[`](t)
s} ≤ Dim Ker {ρN⊗[`](t)

s}

for all s. Therefore, a ⊗ c ≥ b ⊗ c.
Now assume a > b and that some ci 6= 0, i < p. Then, we may assume that

L = [`] with ` < p. Choose j such that Dim Ker {ρM(t)j} < Dim Ker {ρN (t)j}.
The formula 10.1 for the coefficients Cj

`s implies that there exists some s such that

Cj
`s = 1. That is, if j ≥ `, then take s = j − ` + 1, and if j < `, take s = ` − j + 1.

For such s we get the strict inequality

Dim Ker {ρM⊗[`](t)
s} < DimKer {ρN⊗[`](t)

s}

Therefore, a ⊗ c > b ⊗ c.
�

Proposition 4.1 enables us to establish various tensor product properties of max-
imal Jordan type. We should point out that there are some subtleties which must
be carefully considered. For example if M and N are kG-modules and αK is a
π-point whose image is not a sub-Hopf algebra of KG, then it is not always true
that α∗

K(MK ⊗ NK) ' α∗
K(MK) ⊗ α∗

K(NK). Hence, Proposition 4.1 can not be
applied directly. The somewhat surprising Examples 4.5 and 4.6 indicate the subtle
relationship between tensor products and maximal Jordan types. In view of these
examples, we take some care in the proofs of the following properties.

Theorem 4.2. Let G be a finite group scheme, and consider two finite dimensional
kG-modules M, N and a π-point αK of G.

(1) If αK has maximal Jordan type on both M and N , then

α∗
K(MK ⊗ NK) ' α∗

K(MK) ⊗ α∗
K(NK).

(2) If αK has maximal Jordan type on M ⊗ N , then

α∗
K(MK ⊗ NK) ' α∗

K(MK) ⊗ α∗
K(NK),

(3) If Π(G) is irreducible and if αK has maximal Jordan type on both M and N ,
then αK has maximal Jordan type on M ⊗ N and that Jordan type is equal
to the Jordan type of α∗

K(MK) ⊗ α∗
K(NK).

Proof. Let i : CK ⊂ GK be a unipotent abelian subgroup scheme through which
αK factors. Since i : KCK

// KGK is a map of Hopf algebras, i∗ commutes with
tensor products. Observe that the maximality of αK on M, N or M ⊗ N as kG-
modules implies the maximality of αK on MK , NK and MK⊗K NK as KCK-modules.
Thus, statement (1) follows from [20, 4.4] applied to CK.
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To prove (2), we choose a generic π-point ηΩ of CK, ηΩ : Ω[t]/tp // ΩCK . We

have
η∗

Ω(MΩ) ⊗Ω η∗
Ω(NΩ) ' η∗

Ω(MΩ ⊗Ω NΩ)

where the isomorphism follows from [20, 4.4] since ηΩ is generic. Because of the maxi-
mality of αK , this module has the same Jordan type as α∗

K(MK⊗KNK). Since Π(CK)
is irreducible, the module MK has absolute maximal Jordan type at the generic
π-point ηΩ ([20, 4.11]). Hence, the Jordan types of α∗

K(MK) and α∗
K(NK) are com-

parable to those of η∗
Ω(MΩ) and η∗

Ω(NΩ). In the special case that either α∗
K(MK) or

α∗
K(NK) is projective, then either η∗

Ω(MΩ) or η∗
Ω(NΩ) is projective. Hence, the mod-

ules η∗
Ω(MΩ)⊗Ω η∗

Ω(NΩ) and α∗
K(MK)⊗K α∗

K(NK) have the same Jordan type, both
tensor products being projective. If neither α∗

K(MK) nor α∗
K(NK) is projective, and

if either JType(η∗
Ω(MΩ)) 	 JType(α∗

K(MK)) or JType(η∗
Ω(NΩ)) 	 JType(α∗

K(NK)),
then Proposition 4.1 implies that JType(η∗

Ω(MΩ ⊗Ω NΩ)) 	 JType(α∗
K(MK ⊗ NK))

contradicting the maximality of the Jordan type of α∗
K(MK ⊗ NK). Thus, we have

that α∗
K(MK ⊗K NK) has the same Jordan type as η∗

Ω(MΩ) ⊗Ω η∗
Ω(NΩ) which has

the same Jordan type as α∗
K(MK) ⊗K α∗

K(NK).

To prove (3) we assume that Π(G) is irreducible. Let ηΩ : Ω[t]/tp // ΩG be a

generic π-point of G. Applying [20, 4.7] to ηΩ, we get

η∗
Ω(MΩ) ⊗Ω η∗

Ω(NΩ) ' η∗
Ω(MΩ ⊗Ω NΩ)

Since Π(G) is irreducible, the absolute maximal Jordan type of any finite dimensional
kG-module is realized at ηΩ. Hence, the maximality assumption on αK on M and
N implies that α∗

K(MK) has the same Jordan type as η∗
Ω(MΩ) and α∗

K(NK) has the
same Jordan type as η∗

Ω(NΩ). We conclude that

α∗
K(MK ⊗ NK) ' α∗

K(MK) ⊗ α∗
K(NK)

has the same Jordan type as

η∗
Ω(MΩ) ⊗Ω η∗

Ω(NΩ) ' η∗
Ω(MΩ ⊗Ω NΩ)

where the first isomorphism follows from statement (1). Hence, the Jordan type of
αK on M ⊗ N is maximal. �

An easy corollary of Theorem 4.2 is the following assertion that the tensor product
of modules of constant Jordan type is again of constant Jordan type.

Corollary 4.3. Let G be a finite group scheme and let M, N be finite dimensional
kG-modules. If M and N have constant Jordan type, then M ⊗N also has constant
Jordan type.

Proof. We merely observe that αK has maximal Jordan type on both M and N for

any π-point αK : K[t]/tp // KG whenever M, N are of constant Jordan type.

Thus, the corollary follows from the first statement of Theorem 4.2. �

The following consequence of Theorem 4.2 will be used to prove Proposition 4.7 .
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Corollary 4.4. Let G be a finite group scheme such that Π(G) is irreducible and

let αK : K[t]/tp // KG be a π-point of G. Let M be a kG-module such that

α∗
K(MK) is not projective and let N be another kG-module such that αK does not

have maximal Jordan type on N . Then αK does not have maximal Jordan type on
M ⊗ N .

Proof. If the Jordan type of α∗
K(MK ⊗K NK) were maximal, then the second state-

ment of Theorem 4.2 would imply that this maximal type is the same as that of
α∗

K(MK)⊗K α∗
K(NK). However, the hypotheses on α∗

K(MK), α∗
K(NK) together with

Proposition 4.1 would then lead to an immediate contradiction. �

We give two examples to illustrate that naturally formulated improvements of
Theorem 4.2 are not valid. Our first example illustrates that the maximality of
both M and N at a given π-point is not sufficient to imply the maximality of
M ⊗ N at that π-point. Namely, we construct a module W and a π-point βL such
that βL has maximal Jordan type on W but not on W ⊗ W (even though we have
β∗

L(WL⊗WL) ' β∗
L(WL)⊗L β∗

L(WL) by Theorem 4.2). As usual, this anomaly comes
from the fact that the ordering on Jordan types is not total.

Example 4.5. Let G be a finite p-group which has two conjugacy classes of maximal
elementary abelian subgroups, represented by E and E ′ respectively. Furthermore,

we require E to be normal. Let e = |E|, f = |G|
|E|

. Assume that p > 3.

For example, take G to be the p-Sylow subgroup of the wreath product Z/p o Sp,
so that G is isomorphic to (Z/p)p o Z/p. Then G has two non-conjugate maximal
elementary abelian p-subgroups: E = (Z/p)p which is normal and

F = (Z/p × Z/p × · · · × Z/p)Z/p × Z/p ∼= (Z/p)2.

By Quillen stratification, Π(G) = X ∪Y where X = Π(E)/G, Y = Π(F )/NG(F ).
Let [αK] ∈ X, [βL] ∈ Y be generic points.

Choose a homogeneous cohomology class ξ ∈ H•(G, k) with the property that ξ
vanishes on [βL] but does not vanish on [αK], and let Lξ be Carlson module which has

the property that the support of Lξ is the zero locus of ξ. Set M = IndG
E(Ω1

E(k)),
set N = L⊕n

ξ for some positive integer n which is to be determined, and set
W = M ⊕ N . It was shown in Example [20, 4.13], that if we pick n to satisfy the
inequality

(7)
f

p
< n < (p − 1)

f

p

then the Jordan types α∗
K(WK) and β∗

L(WL) are maximal, incomparable generic
Jordan types of W .

Let d = Dim W . We proceed to deduce a condition on n which would ensure the
inequality

JType(α∗
K(W⊗2

K )) > JType(β∗
L(W⊗2

L ))
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By the Appendix, [p−1]⊗ [p−1] = (p−2)[p]+1[1]. Since α∗
K(WK) = f [p−1]+m[p]

for some m (see [20, 4.13]), and has dimension d, we get

α∗
K(W⊗2

K ) ' (α∗
K(WK))⊗2 ' (

d2 − f 2

p
)[p] + f 2[1].

Similarly, applying the decomposition of β∗
L(WL) obtained in [20, 4.13], we get

β∗
L(W⊗2

L ) ' (β∗
L(WL))⊗2 ' (

d2 − 2n2p

p
)[p] + 2n2[p − 1] + 2n2[1].

In order for the Jordan type of α∗
K(W⊗2

K ) to dominate that of β∗
L(W⊗2

L ) we need to
choose n such that α∗

K(W⊗2
K ) has more blocks of size p than β∗

L(W⊗2
L ) and fewer

blocks altogether. In other words, we need for the following inequalities to hold:

d2 − f 2

p
>

d2 − 2n2p

p

comparing the number of blocks of size p, and

d2 − f 2

p
+ f 2 <

d2 − 2n2p

p
+ 4n2

comparing the overall number of blocks. Simplifying, we get

f 2 < 2n2p,

(p − 1)f 2 < 2n2p.

Observe that the second inequality implies the first and simplifies to
√

p − 1

2p
f < n.

Since p is greater than 3 and divides f , it is possible to choose n to satisfy
√

p − 1

2p
f < n <

p − 1

p
f.

Since such n automatically satisfies the inequality (7), we conclude that W has
maximal non-comparable types at [αK ], [βL] but that the Jordan type of α∗

K(WK ⊗K

WK) is strictly greater than that of β∗
L(WL ⊗L WL). Thus, βL has maximal Jordan

type on W but not on W ⊗ W .

Our second example shows that the maximal Jordan type of M ⊗ N can occur
at a π-point at which one of M, N does not have maximal Jordan type and neither
has projective type. This phenomenon can only occur if Π(G) is reducible.

Example 4.6. Let G be a finite group with exactly two conjugacy classes of maximal
elementary abelian p-groups (e.g., the p-Sylow subgroup of the wreath product Z/p o
Sp as in Example 4.5) and write Π(G) = X∪Y with X, Y irreducible closed subsets.
Let [αK ], [βL], Lξ be as in Example 4.5. Choose another homogeneous cohomology
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class ζ ∈ H•(G, k) with the property that ζ vanishes on [αK] but does not vanish
on [βL]. Let Lζ be the corresponding Carlson module so that the support of Lζ

is the zero locus of ζ. Let M = Lζ ⊕ L⊕2
ξ , so that M has maximal Jordan type

[proj]+1[p−1]+1[1] at αK , and Jordan type [proj]+2[p−1]+2[1] at βL. Similarly,
let N = L⊕2

ζ ⊕ Lξ, so that N has Jordan type [proj] + 2[p − 1] + 2[1] at αK and
maximal Jordan type [proj]+1[p−1]+1[1] at βL. Then M ⊗N has maximal Jordan
type at both αK and βL.

Corollary 4.4 enables us to prove the following property of the non-maximal sup-
port variety.

Proposition 4.7. Assume Π(G) is irreducible and let M, N be kG-modules. Then

Γ(G)M⊗N = (Γ(G)M ∪ Γ(G)N) ∩ (Π(G)M ∩ Π(G)N).

Proof. If αK : K[t]/tp // KG is a π-point such that either α∗
K(MK) or α∗

K(NK)

is projective, then α∗
K(MK) ⊗K α∗

K(NK) is projective and thus of maximum type.
Consequently, statement (1) of Theorem 4.2 implies that α∗

K(MK ⊗K NK) is also
projective and thus also maximum. For such αK , [αK ] /∈ Γ(G)M⊗N . In other words,
Γ(G)M⊗N ⊂ Π(G)M ∩ Π(G)N .

Now suppose that αK has maximal Jordan type on both M and N . The statement
(3) of Theorem 4.2 implies that αK has maximal Jordan type on M ⊗ N . Hence,
Γ(G)M⊗N ⊂ Γ(G)M ∩ Γ(G)N . We have established the inclusion

Γ(G)M⊗N ⊂ (Γ(G)M ∪ Γ(G)N) ∩ (Π(G)M ∩ Π(G)N).

On the other hand, assume that neither α∗
K(MK) nor α∗

K(NK) is projective, and
that the Jordan type of either α∗

K(MK) or α∗
K(NK) is not maximal. In other words,

we assume that [αK ] ∈ (Γ(G)M ∪Γ(G)N)∩ (Π(G)M ∩Π(G)N ). Corollary 4.4 implies
that αK does not have maximal Jordan type on M⊗N . Hence, [αK ] ∈ Γ(G)M⊗N . �

Remark 4.8. The previous examples show the necessity of the hypothesis of irre-
ducibility in Proposition 4.7. Example 4.6 contradicts the inclusion

Γ(G)M⊗N ⊃ (Γ(G)M ∪ Γ(G)N) ∩ (Π(G)M ∩ Π(G)N),

whereas Example 4.5 contradicts the inclusion

Γ(G)M⊗N ⊂ (Γ(G)M ∪ Γ(G)N) ∩ (Π(G)M ∩ Π(G)N).

Next we offer a suggestive characterization of modules of constant Jordan type
for those finite group schemes G with Π(G) irreducible.

Proposition 4.9. If Π(G) is irreducible, then a non-projective kG-module M has
constant Jordan type if and only if for every finite dimensional kG-module N the
tensor product M ⊗ N has the property that Γ(G)N = Γ(G)M⊗N .
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Proof. First assume that M does not have constant Jordan type. If N = k (the
trivial module), then Γ(G)k is empty whereas Γ(G)k⊗M is not empty.

Conversely, assume that M has constant Jordan type and M is not projective. Let

αK : K[t]/tp // KG be a π-point such that N has maximal Jordan type at αK.

By Theorem 4.2, the Jordan type of α∗
K(MK⊗NK) ' α∗

K(MK)⊗α∗
K(NK) is maximal

for M ⊗N . Hence, we get the inclusion Γ(G)N ⊃ Γ(G)M⊗N . To prove the opposite
inclusion, assume [αK] ∈ Γ(G)N . Since MK is not projective, Corollary 4.4 implies
that αK does not have maximal Jordan type on M ⊗ N . Hence, [αK] ∈ Γ(G)M⊗N ,
and we have established the opposite inclusion. �

5. Endotrivial modules

We recall the definition of an endotrivial module, classically formulated for finite
groups but admitting a natural extension to all finite group schemes. Endotrivial
modules were introduced by Dade [11], who showed that for an abelian p-group,
the only endotrivial kG-modules have the form Ωn(k) ⊕ P where P is a projective
module. The endotrivial modules are the building blocks for the endopermutation
modules which for many groups are the sources of the simple modules and are also
a part of the Picard group of self equivalences of the stable module category. See
[8] for references. A classification of the endotrivial modules for finite p-groups was
completed in [9].

Definition 5.1. Let G be a finite group scheme over k. A kG-module M is an
endotrivial module provided Endk(M) is stably isomorphic as a kG-module to the
trivial module. In other words, M is endotrivial provided that there exists a kG-
projective module P and a kG-isomorphism

Homk(M, M) ∼= k ⊕ P.

As can readily be verified (for example, using formula (28) of the Appendix) an
indecomposable k[t]/tp-module is endotrivial if and only if it is stably isomorphic to
either 1[1] or 1[p − 1], the trivial module k and the Heller shift Ω1(k) of k. More
generally, Theorem 5.6 below implies that for any finite group scheme the Heller
shifts Ωi(k) of the trivial module are endotrivial modules. As mentioned earlier, for
elementary abelian p-groups, these are the only indecomposable endotrivial modules.
On the other hand, there do exist sporadic examples of finite groups admitting
other endotrivial modules. For example, if G is a dihedral group of order 8, then
Rad(kG)/ Rad4(kG) is the direct sum of two modules of dimension three that are
endotrivial (see [8]).

As we show in Theorem 5.6 below, every endotrivial module is a module of con-
stant Jordan type. As seen in section 2 and as well in the next section, there exist
many examples of modules of constant Jordan type which are not direct sums of
endotrivial modules.
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If M, N are kG-modules, then we may identify Homk(M, N) as a kG-module with
M# ⊗ N , where M# = Homk(M, k). For our purposes, it suffices to analyze M#

and then apply Section 4 in order to investigate Homk(M, N).
Let G be a finite group scheme and (as usual) let kG denote the group algebra of

G. Denote by S the antipode of the Hopf algebra kG. If ρM : kG // Endk(M) =

M# ⊗M is a finite dimensional representation of G determining the kG-module M ,
then

(8) ρM# = φ ◦ ρM ◦ S : kG // kG // M# ⊗ M // M ⊗ M# ,

where φ exchanges factors (and thus is the transpose from the point of view of
matrices).

Observe that the dual [i]# of the indecomposable k[t]/tp-module [i] is indecom-
posable, and thus isomorphic to [i] as can be seen by comparing dimensions. The
following proposition enables us to work with the generic and maximal Jordan types
of Homk(M, N) for finite dimensional kG-modules M, N .

Proposition 5.2. Let G be a finite group scheme, M be a finite dimensional kG-

module, and αK : K[t]/tp // KG be a π-point of G. Assume that αK has maximal

Jordan type on M . Then

α∗
K(M#

K ) ' α∗
K(MK) ' (α∗

K(MK))#.

Moreover, αK has maximal Jordan type on M if and only if it has maximal Jordan
type on M#.

Proof. Let CK ⊂ GK be a unipotent abelian group scheme through which αK fac-
tors, so that αK has maximal Jordan type for MK as a KCK-module. The restric-
tion of the KG-module M#

K to KCK is the dual of the restriction of MK , since

KCK
// KGK is a map of Hopf algebras. Thus, to prove the first asserted iso-

morphism, it suffices to assume G is a unipotent abelian finite group scheme.
By [25, 14.4], kG ' k[T1, . . . , Tn]/(T pei

i ). Let ti = T pei−1

. Let I = (T1, . . . , Tn) be
the augmentation ideal of kG, and let I (p) be the ideal generated by (t1, . . . , tn). Let
∇ : kG → kG ⊗ kG be the coproduct in kG. Recall that ∇(αK(t)) − 1 ⊗ αK(t) −
αK(t) ⊗ 1 ∈ I ⊗ I (cf. [22, I.2.4(1)]). Since αK(t) has p-th power 0, we can refine
this further, concluding that

(9) ∇(αK(t)) − 1 ⊗ αK(t) − αK(t) ⊗ 1 ∈ I ⊗ I (p) + I (p) ⊗ I.

Let µ : kG ⊗ kG → kG be the multiplication map in kG. We have (µ ◦ (S ⊗
Id))(∇(αK(t)) = ε(αK(t)) = 0 by one of the Hopf algebra axioms (see [22, I.2.3])
where ε : kG → k is the counit map, and S is the antipode. Hence, applying
µ ◦ (S ⊗ Id) to (9), we get

αK(t) + S(αK(t)) ⊂ I · I (p) + I (p) · I.
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Therefore, we can apply [20, 1.12] to obtain that αK(t) and S(αK(t)) have the same
(maximal) Jordan type. Hence, upon composing (8) with αK, we conclude that

α∗
K(M#

K ) ' α∗
K(MK).

The second isomorphism follows immediately from the observation that [i]# = [i].
�

Since sending M to M# is idempotent, we get the following corollary.

Corollary 5.3. Let G be a finite group scheme, and let M be a finite dimensional
kG-module. Then

Γ(G)M = Γ(G)M#.

Another corollary follows immediately from Corollary 4.3, Proposition 5.2 and
the isomorphism Homk(M, N) ' M# ⊗ N .

Corollary 5.4. Let G be a finite group scheme, and let M, N be finite dimensional
kG-modules of constant Jordan types a = ap[p] + · · · + a1[1], b = bp[p] + · · · + b1[1],
respectively. Then Homk(M, N) has constant Jordan type a ⊗ b (given explicitly by
the formula (28)).

Corollary 5.5. Let G be a finite group scheme, and consider two finite dimensional
kG-modules M , N , and a π-point αK of G. If αK has maximal Jordan type on
HomK(MK, NK), then

α∗
K(HomK(MK, NK)) ' HomK(α∗

K(MK), α∗
K(NK))

Proof. Let i : CK ↪→ GK be a unipotent abelian group scheme through which
αK factors, so that αK is maximal on HomK(MK , NK) as a KCK-module. Since
i : CK ↪→ GK is a map of Hopf algebras, it commutes with Hom. Hence, we
may assume that G is a unipotent abelian group scheme. In particular, Π(G) is
irreducible.

Since αK has maximal Jordan type on HomK(MK , NK) ' M#
K ⊗ NK, Theorem

4.2(2) implies that

α∗
K((MK)# ⊗ NK) ' α∗

K((MK)#) ⊗ α∗
K(NK).

If α∗
K((MK)#)⊗ α∗

K(NK)) is projective, then either α∗
K(NK) or α∗

K((MK)#) is projec-
tive. Since projectivity of α∗

K((MK)#) implies projectivity of α∗
K(MK)#, we conclude

that in this case HomK(α∗
K(MK), α∗

K(NK)) is projective.
Assume that α∗

K((MK)#) ⊗ α∗
K(NK) is not projective. In this case nei-

ther α∗
K(NK) nor α∗

K((MK)#) is projective. Since Π(G) is irreducible, Corol-
lary 4.4 implies that αK has maximal Jordan types on both N and M#.
Hence, α∗

K((MK)#) ' (α∗
K(MK))#. Therefore, HomK(α∗

K(MK), α∗
K(NK)) '

(α∗
K(MK))# ⊗ α∗

K(NK) ' α∗
K((MK)#) ⊗ α∗

K(NK) ' α∗
K(HomK(MK , NK)).

�
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We now conclude that endotrivial modules are modules of constant Jordan type.
The second statement of the theorem provides a “local” criterion of endotriviality,
similar to the projectivity criterion given by the Dade’s lemma (see [11]).

Theorem 5.6. Let G be a finite group scheme, and let M be a finite dimensional
kG-module.

(1) If M is endotrivial, then M has constant Jordan type of the form either
m[p]+1[1] or m[p]+1[p−1] for some m ≥ 0, and thus α∗

K(MK) is endotrivial
for every π-point αK of G.

(2) Conversely, if α∗
K(MK) is endotrivial for each π-point αK of G (and hence

of the form either m[p] + 1[1] or m[p] + 1[p − 1]), then M is endotrivial.

Proof. Observe that any endotrivial module must have dimension whose square is
congruent to 1 modulo p and thus must have dimension congruent to either 1 or
p − 1 modulo p. To prove the first assertion, we assume that M is endotrivial,
so that Endk(M) = k ⊕ (proj). Thus, α∗

K(EndK(M)) has Jordan type m[p] + 1[1]
at each π-point αK. In particular, every π-point αK has maximal Jordan type on
Endk(M). By Corollary 5.5, α∗

K(EndK(MK)) ' EndK(α∗
K(MK)). Hence, α∗

K(MK)
is an endotrivial K[t]/tp-module. The statement now follows from the fact that the
only such modules are of the form m[p] + 1[1] or m[p] + 1[p − 1] for some m ≥ 0.

To prove the converse, we assume that α∗
K(MK) is an endotrivial K[t]/tp-module

for each π-point αK : K[t]/tp // KG . Thus, for each αK, α∗
K(MK) has Jordan

type either m[p] + 1[1] or m[p] + 1[p − 1] for some m ≥ 0. Since the dimension of
M can not be congruent to both 1 and p − 1 modulo p, we conclude that M has
constant Jordan type. Consider the short exact sequence

(10) 0 // X // Endk(M)
Tr

// k // 0,

where Tr is the trace map. By Corollary 5.5, α∗
K(EndK(MK)) ' EndK(α∗

K(MK)).
Moreover, because the dimension of Endk(M) is relatively prime to p, the trace map
of (10) splits. Pulling back the split short exact sequence (10) via αK, we conclude
that

α∗
K(X) ' ker{EndK( α∗

K(MK)) // k } ' m[p]

is projective for all π-points αK and thus X is projective ([19, 5.4]). Hence, M is
endotrivial. �

6. Constructing modules of constant Jordan type

In this section, we consider two different methods of constructing modules of
constant Jordan type. Proposition 6.1 presents the observation that an extension of
modules of constant Jordan type has “total module” also of constant Jordan type if
the extension splits when pulled back along any π-point. This observation fits well
with the Auslander-Reiten theory of almost split exact sequences as we discuss in
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§8. Proposition 6.6 presents a method of constructing extensions of constant Jordan
type whose pull-backs along π-points are not split.

Proposition 6.1. Suppose that G is a finite group scheme over k. Let M and N
be kG-modules of constant Jordan type, and suppose that

(11) 0 // M // B // N // 0

is an exact sequence. Let ζ ∈ Ext1kG(N, M) be the class of (11). If for every π-point

αK : K[t]/tp // KG the restriction α∗
K(ζ) is zero, then B has constant Jordan

type. Moreover, if the Jordan types of M and N are
∑p

i=1 mi[i] and
∑p

i=1 ni[i], then
the Jordan type of B is

∑p
i=1(mi + ni)[i].

Proof. Because the cohomology class vanishes under restriction to a π-point αK, we
have that the restriction of (11) along αK splits and α∗

K(BK) ' α∗
K(MK)⊕α∗

K(NK).
The result is now obvious. �

Proposition 6.1 does not always produce “new” examples of modules of constant
Jordan type as we observe in the special case G = Z/2 × Z/2.

Example 6.2. Let G be Z/2 × Z/2. As presented in [2], [21], there is a complete
classification of the kG-modules. Using this classification, we observe that the only
indecomposable kG-modules of constant Jordan type are of the form Ωn(k) for some
n.

Namely, it is shown in [21] that all of the indecomposable kG-modules of odd
dimension are of the form Ωn(k) for some n. On the other hand, the non-projective
indecomposable modules of even dimension are all isomorphic to Lζ for ζ ∈ Hn(G, k).
The support varieties of these even dimensional modules are proper non-trivial sub-
varieties of Π(G), so that none of these have constant Jordan type.

It is instructive to look more closely to see why Proposition 6.1 does not de-
termine other modules of constant Jordan type in this example. Observe that
H∗(G, k) ∼= Ext∗kG(k, k) is a polynomial ring in two variables having no element
whose restriction to every π-point vanishes. Hence the only possible application of
Proposition 6.1 would be in a situation where N ∼= Ωn(k), M ∼= Ωm(k) and n < m.

Then (11) represents an element of negative Tate cohomology, ζ of Ĥ
n−m+1

(G, k).
By Proposition 6.3 which follows, ζ restricts to zero at every π-point, but the middle
term of this non-split short exact sequence splits as Ωn+a(k) ⊕ Ωn+b ⊕ (proj) where
a and b are nonnegative integers such that a + b = m− n (cf. the proof of Theorem
6.13).

The preceding example is special since Z/2 × Z/2 has tame representation type.
For more general groups, the observation of Proposition 6.1 in conjunction with the
following proposition does give new examples.

Proposition 6.3. Let G be a finite group scheme with the property that every π-
point factors by way of a flat map through a unipotent abelian group scheme whose
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cohomology has Krull dimension at least 2. Let ζ ∈ Ĥ
n
(G, k) for n < 0 be an

element in negative Tate cohomology of G corresponding to a short exact sequence
of the form

(12) 0 // k // E // Ωn−1(k) // 0.

Then for any π-point αK : K[t]/tp // KG , the pull-back of (12) along αK is split

(i.e. α∗
K(ζK) = 0).

Proof. Recall that every element ζ of Ĥ
n
(G, k) is represented by a homomorphism

ζ ′ : k // Ω−n(k) . In order to prove the lemma, it is sufficient to show that for any

π-point αK : K[t]/(tp) : // KG , the restriction of ζ ′ factors through a projective

K[t]/(tp)-module. We proceed to establish such a factorization using our knowledge
of the modules Ω−n(K) for n < 0. By Theorem 1.4, equivalent π-points induce
the same map in cohomology. Thus, it suffices to prove the statement for some
representative αK of each [αk] ∈ Π(G).

Our hypothesis immediately allows us to replace G by some abelian unipotent
group scheme (defined over K) whose cohomology has Krull dimension at least
2. After possibly passing to some finite extension of K, [25, 14.1] enables us to

conclude that KG ' K[T1, . . . , Tr]/(T pe1

1 , . . . , T per

r ), where r ≥ 2. Because neither
our hypothesis nor our conclusion depends upon the coalgebra structure on KG, we

may assume that G is an abelian p-group. Let ti = T pei−1

i and let E ⊂ G be the
(unique) elementary abelian p-group with KE = k[t1, . . . , tr]/(tp1, . . . , t

p
r) ⊂ KG. By

[17, 4.1], any K-rational π-point of KG has a representative factoring through KE.
Thus, we may assume that G = E is an elementary abelian p-group of rank at least
2. Changing the generators of KE, we may further assume t1 = αK(t); moreover, it
suffices to assume that E has rank 2, for if the proposition is valid for an elementary
abelian subgroup of G of rank 2, then it is valid for G itself. Thus, we are reduced
to the case that KG is isomorphic to K[u, v]/(up, vp) with u = αK(t).

The structure of a minimal KG-projective resolution of K is well known [10]. For
example, suppose that m = −n > 0 is even. Then Ωm(K) is a submodule of a
projective module P = KGm. A set of generators a1, . . . , am for P can be chosen so
that Ωm(K) is the submodule generated by the elements

up−1a1, va1 − ua2, vp−1a2 − up−1a3, va3 − ua4, . . . , vam−1 − uam, vp−1am.

That is, P is the (m−1)st term of the projective resolution and Ωm(K) is the kernel
of the boundary map. Every KG-fixed point of P , and thus also of Ωm(K) is a
linear combination of the elements up−1vp−1ai. Moreover, for i odd,

up−1vp−1ai = up−1vp−2(vai − uai+1)

and for i even
up−1vp−1ai = up−1(vp−1ai − up−1ai+1).
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Consequently, every KG-fixed point of Ωm(K) has the form up−1z for some z ∈

Ωm(K). Thus, as a map of K[t]/tp-modules (via αK : K[t]/tp // KG ), ζ ′
K factors

as the composition of K // K[t]/tp sending 1 to tp−1 and K[t]/tp // Ωm(K)

sending 1 to z. Hence, α∗
K(ζ ′) factors through the rank 1 projective module K[t]/tp

as required. �

The following property is an immediate corollary of Proposition 6.3.

Corollary 6.4. Let E be an elementary abelian p-group of rank at least 2, and let

θ : Ωm(k) // Ωn(k)

be a homomorphism. If the restriction of θ along some π-point αK : K[t]/tp → KE
does not factor through a projective K[t]/tp-module, then m ≥ n.

The following proposition shows that there are limitations on the Jordan types
which can be realized as extensions.

Proposition 6.5. Let G be a finite group scheme over a field k of characteristic
p > 2 with the property that every π-point factors by way of a flat map through
a unipotent abelian group scheme whose cohomology has Krull dimension at least
2. Then there does not exist a kG-module M of constant Jordan type n[p] + 1[2]
which is an extension of a kG-module of constant Jordan type m[p] + 1[1] and one
of constant Jordan type (n − m)[p] + 1[1].

Proof. As argued above in the proof of Proposition 6.3, we may assume that G is an
elementary abelian p-group of rank 2. Consider a short exact sequence of the form

(13) E : 0 // L // M // N // 0

in which both L and N have stable constant Jordan type 1[1]. By Theorem 5.6, L
and N are endotrivial modules, so that L ∼= Ωa(k), N ∼= Ωb(k) for some integers a
and b. Since p > 2, both a and b must be even integers.

Thus the class of (13) is a cohomology class ζ in

Ext1
kG(Ωb(k), Ωa(k)) ∼= Ĥ

b−a+1
(G, k).

If M has constant Jordan type n[p] + 1[2], then the restriction of (13) along any
π-point αK does not split; equivalently, the restricted class α∗

K(ζ) does not vanish.
However, the only such cohomology classes ζ are scalar multiples of the identity in
degree b − a + 1 = 0. Since both a and b are even integers, such classes ζ can not
occur. �

We now proceed to describe a second method of constructing modules of stable
constant Jordan type n[1] that cannot be created by the methods of Proposition 6.1.
The construction can be summarized as follows: if a certain map represented by a

matrix with coefficients in Ĥ
∗
(G, k) has the maximal possible rank when restricted

to any π-point of G, then it has a kernel of constant Jordan type.



26 JON F. CARLSON, ERIC M. FRIEDLANDER AND JULIA PEVTSOVA

Theorem 6.6. Let G be a finite group scheme, and choose integers m > n, mi

and nj such that all mi and nj are even if p > 2. Choose cohomology classes

ζi,j ∈ Ĥ
mj−ni

(G, k) and let ζ̂i,j : Ωmj (k) → Ωni(k) represent ζi,j. We consider an
exact sequence

0 // L // M
ϕ=(ζ̂i,j )

// N // 0

of kG-modules where

M ∼=

m∑

j=1

Ωmj (k) ⊕ (proj) and N ∼=

n∑

i=1

Ωni(k).

Assume that for every π-point αK : K[t]/tp // KG , the restriction of the matrix

of cohomology elements (α∗
K(ζi,j)) ∈ Mn,m(Ĥ

∗
(K[t]/tp, K)) has rank n. Then the

module L has stable constant Jordan type (m − n)[1].

Proof. Let αK : K[t]/tp // KG be a π-point. For any s, which is even if p > 2,

the restriction of the module Ωs(k) along αK has the form α∗
K(Ωs(K)) ∼= K⊕(proj).

Moreover, if we have a map ζ : Ωs(k) // Ωt(k) whose cohomology class when

restricted along αK is not zero, then the composition

K
ι

// α∗
K(Ωs(K))

α∗

K(ζK)
// αK(Ωt(K))

ρ
// K,

where ι and ρ are the split inclusion and projection maps, is an isomorphism. Thus
our hypothesis asserts that the composition

Km ι
// α∗

K(MK)
ϕK

// α∗
K(NK)

ρ
// Kn

is a split surjection. It follows that the kernel of ϕ has stable Jordan type (m−n)[1]
on L. As this happens for any αK, we are done. �

Theorem 6.6 is stated for even dimensional cohomology classes (for p > 2), yet as
we observe in the following proposition a very similar argument can also be applied
to odd dimensional classes to yield additional modules of constant Jordan type.

Proposition 6.7. Let G be a finite group scheme, and choose positive integers
m > n, m1, . . .mm all odd, n1, . . . , nn all even. Assume p > 2. Choose cohomology

classes ζi,j ∈ Ĥ
mj−ni

(G, k) and let ζ̂i,j : Ωmj (k) → Ωni(k) represent ζi,j. We consider
an exact sequence

0 // L // M
ϕ=(ζ̂i,j )

// N // 0
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of kG-modules where

M ∼=

m∑

j=1

Ωmj (k) ⊕ (proj) and N ∼=

n∑

i=1

Ωni(k).

Assume that for every π-point αK : K[t]/(tp) // KG , the restriction of the ma-

trix of cohomology elements α∗
K(ζi,j) ∈ Mn,m(Ĥ

∗
(K[t]/tp, K)) has rank n. Then the

module L has stable constant Jordan type (m − n)[p − 1] + n[p − 2].

Proof. Our hypothesis implies that the restriction of (ζ̂i,j) via any αK is a map of
K[t]/tp-modules which remains surjective after free summands are dropped. We
write such a map of K[t]/tp-modules symbolically as a map of their (stable) Jordan
types m[p − 1] � n[1]. Such a surjective map of K[t]/tp-modules with indicated
stable Jordan type necessarily has kernel with Jordan type (m−n)[p−1]+n[p−2]. �

In general, it is very easy to construct examples for which Theorem 6.6 and
Proposition 6.7 are relevant. These modules are multi-parametrized versions of
important modules introduced and studied by the first author.

Example 6.8. Let ξ1. . . . , ξr be homogeneous elements in H•(G, k) such that the
radical of the ideal generated by the ξi’s is the augmentation ideal of H•(G, k). Al-
ternatively, for p odd, let ξ1. . . . , ξr be homogeneous elements in H∗(G, k) of odd
degree whose Bocksteins generate an ideal of H•(G, k) whose radical is the augmen-

tation ideal. For each i, let ξ̂i : Ωni(k) // k be a cocycle representing ξi, where

ni is the degree of ξi. Define

ϕ :

r⊕

i=1

Ωn
i (k) → k

by the formula ϕ(a1, . . . , ar) = ξ̂1(a1) + · · · + ξ̂r(ar). Then

(14) Lξ1,...,ξr
≡ Kerϕ

has constant Jordan type.

In Theorem 6.13 below, we give an explicit example of such an Lξ1,...,ξr
which can

not be constructed using the technique of Proposition 6.1. The detailed verification
of this example will occupy the remainder of this section, and involves the following
four lemmas.

Recall that if E ' (Z/p)×r is an elementary abelian p-group of rank r, then

(15) H∗(E, k) ∼=

{
k[ζ1, . . . , ζr, η1, . . . , ηr]/(η2

1, . . . , η
2
r) if p > 2

k[η1, . . . , ηr] if p = 2.

where each ηj has degree one and each ζi has degree 2.
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Lemma 6.9. Let E be an elementary abelian p-group of rank r, for r > 1. For
n > 0,

(1) DimHn(E, k) =
(

n+r−1
r−1

)
.

(2) DimPn =
(

n+r−1
r−1

)
·pr, where Pn is the n-th term of a minimal kE-projective

resolution of k.
(3) DimΩn(k) = pr · ar,n + (−1)n, n > 0 where

ar,n =

(
n + r − 2

r − 1

)
−

(
n + r − 3

r − 1

)
+ · · ·+ (−1)n−1

(
r − 1

r − 1

)
.

(4) If r = 2, then Dim(Ω2n(k)) = p2n + 1.
(5) If r = 3, then Dim(Ω2n(k)) = p3n(n + 1) + 1

Finally, if n < 0, then Dim(Ωn(k)) = Dim(Ω−n(k)).

Proof. The computation of Dim Hn(E, k) is a straightforward and familiar compu-
tation.

In a minimal projective kE-resolution of k,

. . . // P2
∂2

// P1
∂1

// P0
ε

// k // 0,

each Pn is a direct sum of copies of kG, the number of copies equal to the dimension
of Hn(E, k).

Using the vanishing of the Euler characteristic of an exact sequence, we conclude
the asserted formula for the dimension of Ωn(k).

The assertions for r = 2, 3 are special cases. �

Lemma 6.10. Let E be an elementary abelian p-group of rank 3, n be a negative

integer, and Q // Ω2n(k) be the projective cover of the 2nth Heller shift of k.

Then Dim Q = p3(2n2 − n).

Proof. Taking duals we have an injection Ω−2n(k) // Q∗ , where Q∗ is the injec-

tive hull of Ω−2n(k). Hence, Q∗ ' P−2n−1, the (−2n − 1)st term of the minimal
projective resolution of k. As seen in Lemma 6.9(2), the dimension of P−2n−1 is
p3

(
−2n−1+2

2

)
= p3(2n2 − n). �

Lemma 6.11. Suppose that E is an elementary abelian p-group of rank at least 2.
Let

θ : Ωm(k) // Ωn(k)

be a homomorphism for some nonnegative integers m and n, which are both even

in case p > 2. Assume that for some π-point αK : K[t]/(tp) // KE the restric-

tion along α of θ does not factor through a projective K[t]/(tp)-module. Then θ is
surjective.
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Proof. By Corollary 6.4, we have m − n ≥ 0. Let θ̂ denote the cohomology class of
θ in

Extm−n
kE (k, k) ∼= Hm−n(E, k).

The condition on the restriction of θ along α together with the fact that m − n

is even if p > 2 implies that θ̂ is a non-nilpotent element of Hm−n(E, k). Since
HomkE(Ωn(k), k) ∼= Hn(E, k), it follows that θ induces an injective map

θ′ : HomkE(Ωn(k), k) // HomkE(Ωm(k), k) .

So θ must be surjective. �

Lemma 6.12. Suppose that E is an elementary abelian p-group of rank 2. Let
ξ1 ∈ H2m(E, k), ξ2 ∈ H2n(E, k), and assume that the radical of the ideal generated
by ξ1, ξ2 is the augmentation ideal of H•(E, k). Consider the exact sequence

0 // Lξ1,ξ2
// Ω2m(k) ⊕ Ω2n(k)

 

ξ1

ξ2

!

// k // 0.

Then Lξ1,ξ2 ' Ω2m+2n(k).

Proof. The condition on ξ1, ξ2 is equivalent to the condition that the matrix (ξ1, ξ2)
has rank 1 when restricted to any π-point of G. Hence, by Theorem 6.6, Lξ1,ξ2 has
stable constant Jordan type 1[1], and it is an endotrivial module. By Lemma 6.9,
the dimension of Lξ1,ξ2 is p2(m + n) + 1, and hence Lξ1,ξ2 ' Ω±(2m+2n)(k).

Now suppose that Lξ1,ξ2 ' Ω−(2m+2n)(k). Then the sequence represents a non-
zero element γ ∈ H2m+2n+1(E, k) which has the property that α∗

K(γK) is zero for

any π-point αK : K[t]/tp // KE . However, because 2m+2n+1 is both positive

and odd, there is no such element. Therefore, we must have that Lξ1,ξ2 ' Ω2m+2n(k)
as desired. �

As we show in the following proposition, there exist examples of modules of con-
stant Jordan types constructed as in Proposition 6.6 which are not middle terms of
extensions of endotrivial modules as in Proposition 6.1.

Theorem 6.13. Let G be an elementary abelian p-group of rank 3 and consider the
kG-module L = Lζ1,ζ2,ζ3 as in (14), where {ζi}i=1,2,3 ⊂ H2(G, k) form a system of
generators of H•(G, k)red. Then there does not exist a projective kG-modules P such
that M = L ⊕ P fits in a short exact sequence of the form

(16) 0 // L′ // M // L′′ // 0

with both L′, L′′ endotrivial modules.

Proof. Observe that M has stable Jordan type 2[1], so that in any short exact
sequence of the form (16) both L′, L′′ must have stable Jordan type 1[1]. We assume
that such a short exact sequence exists and proceed to obtain a contradiction. First,
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by eliminating projective summands we may reduce to the case when both L′ and L′′

are projective-free. Since E is a p-group, we have P ∼= (kE)t for some t ≥ 0. Since
L′, L′′ have stable constant Jordan type 1[1], they are endotrivial by Theorem 5.6. If
p > 2, then we immediately conclude L′ ∼= Ω2n1(k), L′′ ∼= Ω2n2(k) for some integers
n1, n2 since L′, L′′ have stable Jordan type 1[1]. If p = 2, then DimL′ + Dim L′′ =
DimL + Dim P ≡ 2 (mod Dim kE). Since Dim Ωn(k) ≡ (−1)n (mod Dim kE), we
get that L′, L′′ must be even syzygies in the case p = 2 as well. Thus, the sequence
becomes

(17) 0 // Ω2n1(k) // L ⊕ (kE)t // Ω2n2(k) // 0

Consider the subgroup F = 〈g1, g2〉 ⊆ E. The restriction of ζ3 to F vanishes, so
that

L|F
∼= Ω2(k) ⊕ L|F,ζ1ζ2 ⊕ (proj),

where L|F,ζ1ζ2 is constructed as in (14) with respect to the group F . By Lemma
6.12, L|F,ζ1ζ2

∼= Ω4(k) as a kF -module. Consequently,

L|F
∼= Ω2(k) ⊕ Ω4(k) ⊕ (proj) .

Restricting (17) to F and eliminating the projective summands at the ends, we
obtain an exact sequence of kF -modules

(18) 0 // Ω2n1(k) // Ω2(k) ⊕ Ω4(k) ⊕ (proj) // Ω2n2(k) // 0

By performing a shift and eliminating excess projectives, we get the sequence of
kF -modules

(19) 0 // Ω2n1−2n2(k) // Ω4−2n2(k) ⊕ Ω2−2n2(k) ⊕ (proj)
θ

// k // 0

where θ restricts to θ1 on Ω4−2n2(k) and to θ2 on Ω2−2n2(k). Since the kernel of
θ has stable Jordan type 1[1], at least one of θ1, θ2 does not factor through a
projective module when restricted to any π-point of F . Hence, Proposition 6.3
implies that n2 ≤ 2. By the same argument applied to the other end of Sequence
(19), we have that 2n1 − 2n2 cannot be less than 2 − 2n2 or that n1 ≥ 1. We
further observe that if there were a non-trivial projective summand in the middle
term of (19), then θ restricted to the projective summand would be surjective, and,
hence, the kernel would have stable Jordan type different from 1[1]. It follows
that there is no projective summand in the middle term of (19). Hence, we get
p3(|4− 2n2|+ |2− 2n2|)+ 2 = Dim(Ω4−2n2(k)⊕Ω2−2n2(k)) = Dim Ω2n1−2n2(k)+ 1 =
p3(|2n1 − 2n2|) + 2 by Lemma 6.9. Hence,

(20) |2 − n2| + |1 − n2| = |n1 − n2|

We conclude that n1 +n2 = 3 when n2 ≤ 1. Moreover, n1 and n2 must have different
parity.

We consider two cases:
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(I) n2 ≥ 0, that is n2 = 2, 1, 0, and
(II) n2 < 0.

Case I. The strategy here is to first show that t = 0, and then get a contradiction
by a dimension count. (Recall that t is the rank of the free summand of the middle
term of (17).)

Step I.1. We show that t = 0. The sequence (17) represents a cohomology class in

Ĥ
2n2−2n1+1

(E, k) which we denote by η. Restriction of (17) to any π-point of E has
the form

0 // n[p] + 1[1] // (n + m)[p] + 2[1] // m[p] + 1[1] // 0

This sequence of Z/p-modules is necessarily split. Hence, η vanishes upon restriction
to any π-point of E. Moreover, if the sequence (17) is split then there is no projective
summand in the middle term. Thus, we may assume that η is not zero.

Applying HomkE(−, k) to the short exact sequence (17), we obtain a long exact
sequence

. . . // Êxt
−1

kE(Ω2n1(k), k)
δ

// Êxt
0

kE(Ω2n2(k), k) // Êxt
0

kE(L, k) // . . . .

which is equivalent to

(21) . . . // Ĥ
2n1−1

(E, k)
·η

// Ĥ
2n2

(E, k) // Êxt
0

kE(L, k) // . . . .

The rank of the free summand (kE)t in the middle term of the sequence (17) equals
the dimension of the image of the connecting homomorphism δ, which is multipli-
cation by η.

We consider the three possible values for n2 ∈ {0, 1, 2} separately.
• n2 = 2. Then the sequence (18) becomes

0 // Ω2n1(k)
i

// Ω2(k) ⊕ Ω4(k) ⊕ (proj)
θ

// Ω4(k) // 0

By Proposition 6.3, θ1 factors through a projective module when restricted to any
π-point of E. Hence, the restriction of θ2 to any π-point does not factor through
a projective module. Therefore, θ2 : Ω4(k) → Ω4(k) is surjective by Lemma 6.11.
Hence, θ2 is an isomorphism. We conclude that the sequence splits and, thus, n1 = 1.
Hence, η is a non-trivial cohomology class in H2n2−2n1+1(E, k) = H3(E, k) which
must vanish on restriction along every π-point. If p = 2 then there is no such class.
If p > 2, then up to scalar multiple, the cohomology class is η1η2η3 where η1, η2, η3

are the nilpotent generators in degree 1 of H∗(E, k). Thus, the multiplication by η
of any odd-dimensional class in zero. Hence, t = 0.
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• n2 = 1. In this case n1 = 2, and the sequence (17) takes the form

0 // Ω4(k)
i

// L ⊕ (kE)t θ
// Ω2(k) // 0

Therefore, η is a non-trivial cohomology class in Ĥ
−1

(E, k). As Ĥ
−1

(E, k) is 1-

dimensional, η is a multiple of any non-zero element in Ĥ
−1

(E, k). On the other

hand, an almost split sequence 0 // Ω4(k) // M // Ω2(k) // 0 represents

such cohomology class. By [13], the middle term of this almost split sequence is
indecomposable. Hence, t = 0 in this case.

• n2 = 0. In this case, n1 = 3 and the image of the connecting homomorphism δ

belongs to Ĥ
2n2

(E, k) = H0(E, k). Hence, we have t = 1 or t = 0. Suppose t = 1.
Then the sequence (17) has the form

0 // Ω2n1(k) // L ⊕ kE // k // 0

The dimension of L is 3 Dim(Ω2(k)) − 1 which, by Lemma 6.9, is equal to 3(2p3 +
1)−1 = 6p3 +2. Hence, the dimension of the middle term of the sequence is at most
7p3 + 2 On the other hand, by the same lemma, Dim Ω2n1(k) = n1(n1 + 1)p3 + 1 =
12p3 + 1. which presents us with a contradiction. Hence, t = 0 in this case.

Step I.2. We now compare the dimensions of the terms of the sequence (17) in
which we take t = 0. Note that n1 and n2 are both non-negative in the cases that
we are considering. We get

6p3 +2 = Dim L = Dim Ω2n1(k)+ DimΩ2n2(k) = n1(n1 +1)p3 +1+n2(n2 +1)p3 +1

using Lemma 6.9. Hence, we get the following equation on n1, n2:

n2
1 + n2

2 + n1 + n2 = 6

The only integer solutions are (2, 0) and (0, 2). This is impossible since (n1, n2) must
have the opposite parity by (20). Hence, we obtain a contradiction as desired, and
the case n2 ≥ 0 is finished.

Case II. We now consider the case of negative n2. The projective summand (kE)t

in the middle term of the sequence (17) can not be any bigger than a projective cover

of Ω2n2(k) as otherwise, kernel of the map (kE)t // Ω2n2(k) has a projective

submodule which is then a direct summand of the right hand term of (17). By
Lemma 6.10, t ≤ 2n2

2 − n2. Hence,

Dim L ≥ DimΩ2n2(k) + DimΩ2n1(k) − p3(2n2
2 − n2)

= p3(n2
2 − n2) + p3(n2

1 + n1) + 2 − p3(2n2
2 − n2)
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Simplifying, and using the fact that n2 + n1 = 3, we get

Dim L ≥ p3(n2
1 − n2

2 + 3 − n2) + 2

= p3(3(n1 − n2) + 3 − n2) + 2 = p3(3n1 + 3 − 4n2) + 2

Since n1 ≥ 1, and n2 < 0, we conclude that Dim L ≥ 10p3 + 2. On the other hand,
DimL = 6p3 + 2 by Lemma 6.9, and we have a contradiction. �

7. Constraint on ranks

A consequence of our constructive techniques is a new proof of a special case of
Macaulay’s Generalized Principle Ideal Theorem. The point is that if the coefficients
are in a field of finite characteristic, then we can represent homogeneous elements of
a multivariable polynomial ring as elements in the cohomology ring of an elementary
abelian p-group. We can represent a matrix of such elements as a map of modules
over the group algebra. Specifically we have the following

Theorem 7.1. (See Exercise 10.9 of [12]) Suppose that k is an infinite field. Fix
integers n, r and d1, . . . , dr+1, with n ≥ 3, r ≥ 2, and di > 0 for all i. Let
P = k[x1, . . . , xn] be a polynomial ring in n variables. Let A = A(x1, . . . , xn) be a
(r+1)×r matrix with the property that every entry in column i of A is a homogeneous
polynomial in P of degree di for all i = 1, . . . , r + 1. Then there is some point
α ∈ kn\{0} such that A(α) has rank less than r. Equivalently, the determinants of
the r × r minors of A (which are elements of P ) have a common non-trivial zero.

Proof. Assume first that the characteristic of k is p > 0, as in the rest of the paper.
Let E denote an elementary abelian p-group of rank n. As recalled in (15), H∗(E, k)
contains a polynomial subring Q ∼= k[ζ1, . . . , ζn], where the elements ζi are in degree
2 if p > 2 and in degree 1 if p = 2. For the purposes of the argument, we assume
that p > 2. The proof in the even characteristic case is very similar.

Let A = (ai,j) where for each i and j, ai,j = ai,j(x1, . . . , xn) is a homogeneous
polynomial of degree dj. Then, ai,j(ζ1, . . . , ζn) is an element in H2dj (E, k). Moreover,
such an element is uniquely represented by a cocycle

a′
i,j(ζ1, . . . , ζn) : Ω2dj (k) // k.

Now we let A′ be the map

A′ :
r+1⊕
t=1

Ω2dt(k) // kr

whose matrix is A′ = (a′
i,j(ζ1, . . . , ζn)).

We proceed to prove the theorem by contradiction, observing that if A(α) had
rank r for all α ∈ kn\{0}, then, because k is infinite (so that the k-rational points of
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Π(E) are dense), the kernel L of A′ would be a module of constant Jordan type (with
stable Jordan type 1[1]) as in Theorem 6.6. By Theorem 5.6, L is an endotrivial

module. Hence, L ∼= Ω2m(k) + (proj) for some m. Since
r+1⊕
t=1

Ω2di(k) does not have

projective summands, we conclude that L ∼= Ω2m(k).
As in the proof of Theorem 6.13, we can use a dimension argument to ascertain

the value of m. Let H ⊂ E be an elementary abelian subgroup of rank 2. Restricting
to H and eliminating the projective summand in L and in the domain of A′, we get
that the dimension of the projective-free part of L ↓H is precisely p2

∑r+1
i=1 di + 1 by

Lemma 6.9(4). Consequently, by the same lemma m =
∑r+1

i=1 di.
Now let H ′ ⊂ E be an elementary abelian p-subgroup of rank 3, and let L′ be the

projective-free part of the restriction of L to H ′. Since L′ ' Ω2m(k) as H ′-modules,
Lemma 6.9(5) implies that

(22) Dim L′ = p3m(m + 1) + 1 = p3(

r+1∑

i=1

di)(

r+1∑

i=1

di + 1) + 1

On the other hand, L′ is the projective-free part of the kernel of the map A′ re-
stricted to H ′. Applying Lemma 6.9(4) to compute the dimension of the H ′-module
r+1⊕
t=1

Ω2di(k) we get

(23) Dim L′ = p3
r+1∑

t=1

di(di + 1) + 1.

As all di > 0, the formula (22) clearly yields a greater value than (23). Thus, we
get a contradiction.

Now, we consider a field of characteristic 0, still denoted k. Let R ⊂ k be the ring
finitely generated over Z by the coefficients of the (homogeneous polynomial) entries
of A. The r + 1 determinants of the r × r minors of A define a closed subscheme
Z of the projective scheme Pn−1

R . By the preceding argument for fields of positive

characteristic, Z intersects each geometric fiber of Pn−1
R

// Spec R at a point of

Spec R with positive residue characteristic.
Observe that the geometric points of Spec R whose residue characteristics are

positive are dense in Spec R. Hence, the image of Z ⊂ Pn−1
R in Spec R is both closed

and dense and thus all of Spec R. We conclude that Z intersects every geometric

fiber of Pn−1
R

// Spec R , including that given by R // k . �
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8. Auslander Reiten Components

In this section, we use Auslander-Reiten theory of almost split sequences to gen-
erate indecomposable modules of constant Jordan type. We refer the reader to [1]
or [3, I.4] for basic facts on almost split sequences and Auslander-Reiten quivers.

We fix the following notation which differs from the standard in the case of finite
groups: Let A ⊂ B be rings, and M be a left A-module. Then

CoindB
AM = B ⊗A M

Let G be a finite group scheme, and αK : K[t]/tp // KG be a π-point. We

denote by K〈αK(t)〉 the subalgebra of KG = KGK generated by αK(t).

Lemma 8.1. Let G be a finite group scheme and let αK : K[t]/tp → KG be a
π-point of G. Let N be a finite dimensional K[t]/tp-module which is not projective
and set M = CoindKG

K〈αK(t)〉N. Then

Π(GK)M = {[αK]} ⊂ Π(GK).

Proof. If Π(GK)M were empty, then M would be projective, and, hence, injective.
On the other hand, the Eckmann-Shapiro Lemma (cf. [3, I.2.8.4]) would enable us to
then conclude that Ext∗>0

GK
(M, K) = Ext∗>0

K〈αK(t)〉(N, K) = 0 which would contradict

our assumption that N is not projective. Thus, Π(GK)M is non-empty.
Let UK ⊂ GK be a unipotent abelian subgroup scheme through which αK factors.

The proof of [20, 4.12] which is stated for induction rather than coinduction implies
that

Π(GK)M ⊂ im{Π(UK) → Π(GK)}

so that we may assume that GK = UK is a unipotent abelian finite group scheme
over K.

After possibly replacing K by some purely inseparable extension which does not
change the space Π(GK)M , we may by [25, 14.4] assume that KGK is isomorphic

(as an algebra) to K[T1, . . . , Tn]/(T pe1

1 , . . . , T pen

n ) for suitable choice of n, e1, . . . , en.

Let ti = T pei−1

i , and recall that any π-point βL : L[t]/tp → LGK must send t to a
sum of monomials in T1, . . . , Tn at least one of which is a non-linear scalar multiple
of some ti and each of which are divisible by some (possibly varying) ti. By a change
of generators, we may arrange that αK(t) = t1 + p(T ) where each monomial of the
polynomial p(T ) is a non-scalar multiple of some ti.

In order to verify that [βL] /∈ Π(GK)M for [βL] 6= [αK], we may choose a rep-
resentative βL of [βL] which is linear in the ti’s. Assuming [βL] 6= [αK ], we may
change generators once again so that αK(t) retains the form t1 + p(T ) as above and
βL(t) = t2. The condition that [βL] /∈ Π(GK)M is equivalent to the condition that
β∗

L(ML) is free. Clearly, it suffices to assume that N is indecomposable of the form
K[t]/ti, i < p. Then ML

∼= L[T1, . . . , Tn]/(tp1, . . . , t
p
n, (t1 + p(T ))i) which is free over
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L〈t2〉 with a monomial basis {T j1
1 , T j2

2 , . . . , T jn
n }, where 0 ≤ j1 < ipe1−1, 0 ≤ j2 <

pe2−1, 0 ≤ j3 < pe3 . . . 0 ≤ jn < pen . �

Recall that for a finite-dimensional kG-module M the transpose of M (in the sense
of Auslander-Reiten), denoted Tr M, can be defined as

Tr M = Ω−2(M#)

(see [1, IV]). Since kG is a finite-dimensional Hopf algebra, the coinverse map
gives an isomorphism between (kG)op and kG. Hence, the standard duality func-
tor D : kG // kGop (see [1, II.3]) can be identified with taking linear duals. We
conclude that the translation functor τ = D ◦ Tr : kG → kG is given by

(24) τM = (Ω−2(M#))#

Further recall that if M is an indecomposable kG-module, then the almost split
sequence of kG-modules with right-most term M (unique up to isomorphism) is of
the form

0 → τM → B → M → 0.

We require the following elementary lemma concerning the base change of an
almost split sequences of kG-modules.

Lemma 8.2. Let

E : 0 // N // B // M // 0

be an almost split sequence of kG-modules and let K/k be a field extension. Then

EK : 0 // NK
// BK

// MK
// 0.

is a direct sum of almost split sequences of KGK-modules.

Proof. Write MK
∼= ⊕M i

K as a direct sum of indecomposable KGK-modules and let

E i
K : 0 // N i

K
// Bi

K
// M i

K
// 0.

be the almost split sequence of KGK-modules with right-most term M i
K . Because

τ commutes with direct sums, NK
∼= ⊕N i

K . Thus, it suffices to show for each i that
there is a map of short exact sequences

(25)

0 // N

��

// B

��

// M //

��

// 0

0 // N i
K

// Bi
K

// M i
K

//// 0

whose left and right vertical arrows are given by base change followed by summand
projection.
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To establish the map (25), we consider the following commutative square

(26)

HomkG(M, M)#

��

∼=
// Ext1

kG(M, N)

��

HomKGK
(M i

K , M i
K)#

∼=
// Ext1

KGK
(M i

K , N i
K)

whose horizontal arrows arise from the natural duality relating HomΛ(M,−) and
Ext1

Λ(−, τM) (cf. [3, 4.12]) and whose vertical arrows are once again induced by
base change followed by summand projection. Any non-zero element in the socle of
the module HomkG(M, M)# for the local ring EndkG(M) is mapped via the upper
horizontal arrow of (26) to the class of the almost split sequence E . On the other
hand, the left vertical arrow of (26) sends such an element to a non-zero element of
the socle of the module HomKGK

(M i
K , M i

K)# for the local ring EndKGK
(M i

K), and
this is mapped by the lower horizontal arrow of (26) to the class of the almost split
sequence E i

K. Thus, we conclude the existence of the map (25). �

The following proposition is in some sense an extension of Lemma 6.3.

Proposition 8.3. Let G be a finite group scheme such that the dimension of Π(G)
is at least 1, and let M be an indecomposable non-projective kG-module of constant
Jordan type. Consider the almost split sequence of kG-modules

E : 0 // N // B // M // 0.

Then for any π-point αK : K[t]/tp // KG , α∗
K(EK) is a split short exact sequence

of K[t]/tp-modules.

Proof. Write MK
∼= ⊕M i

K as a direct sum of indecomposable KGK-modules as in
the proof of Lemma 8.2. By Theorem 3.7, each M i

K is a module of constant Jordan
type. Let

E i
K : 0 // N i

K
// Bi

K
// M i

K
// 0.

be the almost split sequence of KGK-modules with right-most term M i
K . Since EK

is a direct sum of almost split sequences E i
K by Lemma 8.2, it suffices to prove that

α∗
K(E i

K) is split for each i. Hence, we may assume that MK is neither projective

nor decomposable, and that EK : 0 // NK
// BK

// MK
// 0 is an almost

split sequence of KGK-modules.
Let M̃K = CoindKG

K〈αK(t)〉(α
∗
K(MK)). We have a commutative diagram

(27)

HomKGK
(M̃K, BK)

∼=
��

// HomKGK
(M̃K , MK)

∼=
��

HomK〈αK(t)〉(α
∗
K(MK), α∗

K(BK)) // HomK〈αK(t)〉(α
∗
K(MK), α∗

K(MK))
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where the vertical arrows are isomorphisms by the Eckmann-Shapiro Lemma. If
α∗

K(EK) were not split, then the lower horizontal arrow of (27) and thus also the
upper horizontal arrow of (27) would not be surjective. On the other hand, the
defining property of almost split sequences would then imply that M̃K must have
MK as a direct summand. If so, then Π(GK)MK

⊂ Π(GK)M̃K
. Since MK is a

non-projective module of constant Jordan type, we have Π(GK)MK
= Π(GK), and,

hence, the support of MK has dimension at least 1. Since Π(GK)M̃K
consists of only

1 point by Lemma 8.1, we obtain a contradiction. �

The following lemma is a straight-forward consequence of Proposition 1.8 and
Corollary 5.4.

Lemma 8.4. Let G be a finite group scheme, and M be a finite-dimensional kG-
module. Then M is a module of constant Jordan type if and only if τM is a module
of constant Jordan type, where τ is given in (24). Moreover, if M is a module of
constant Jordan type then the stable Jordan types of M and τM are the same.

Proof. Recall α∗
K(−) commutes with Heller shifts for any π-point αK , and that

the second Heller shift Ω2(−) of a K[t]/tp-module preserves its stable Jordan type.
Since α∗

K(−) also commutes up to isomorphism with taking the linear dual of a
kG-module M provided that the π-point αK : K[t/tp → KG is maximal on M , we
conclude that if M is a module of constant Jordan type then τM also has constant
Jordan type with the same stable Jordan type. Moreover, the operator τ has an
inverse in the stable category. Namely, the inverse sends M to (Ω2(M#))#. If M
is indecomposable and not projective, then the inverse operator sends τM to M .
Then the same argument as above implies that if τM has constant Jordan type then
so does M . �

The following theorem asserts that whether or not an indecomposable kG-module
M has constant Jordan type is a function of the connected components of the stable
Auslander-Reiten quiver of kG containing M .

Theorem 8.5. Let G be a finite group scheme, and let M be an indecomposable
non-projective module of constant Jordan type. Let Θ be a component of the stable
Auslander-Reiten quiver of kG containing the vertex [M ]. Then for any [N ] ∈ Θ,
the module N has constant Jordan type.

Proof. We first consider the case when Dim Π(G) = 0. By Theorem 3.4, Π(G)
consists of one point. Hence, any module is tautologically a module of constant
Jordan type.

We may therefore assume that DimΠ(G) ≥ 1. Let [N ] be any successor of [M ]
in the stable quiver component Θ. Then there exists an almost split sequence

E : 0 // τM // B // M // 0
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such that N is a direct summand of B. By Lemma 8.4, τM is a module of constant
Jordan type. Let αK : K[t]/tp → KGK be a π-point. By Proposition 8.3, α∗

K(EK)
splits. Thus, α∗

K(BK) = α∗(τMK) ⊕ α∗(MK). We conclude that B is a module
of constant Jordan type, so that Theorem 3.7 implies that N has constant Jordan
type.

Now let [N ] be any predecessor of [M ], i.e. there is an arrow [N ] → [M ]. By [1,
V.1.12] and [1, V.5.3], there is an arrow [τM ] → [N ]. Applying the argument above
to τM and N , we conclude that N has constant Jordan type.

Since Θ is connected, the argument is finished by induction. �

To prove the following “realization of constant types” result, we appeal to the
work of K. Erdmann [13] in the case of finite groups and that of R. Farnsteiner
[15], [16] for arbitrary finite group schemes. Namely, a result of [14] (see also [16])
following earlier work of Webb [26] asserts that if kG has wild representation type
then the Auslander-Reiten component of the trivial module has a very restricted
form. Results of Erdmann and Farnsteiner assert that under hypotheses specified
in the theorem below, the Auslander-Reiten component of the trivial module must
have type A∞.

Theorem 8.6. Let G be a finite group scheme (over k algebraically closed) satisfying
one of the following conditions: either G is a finite group which has p-rank at least 2
and whose Sylow p-subgroup is not dihedral or semi-dihedral or Π(G) has dimension
at least 2. Then for any n there exists an indecomposable module of stable constant
Jordan type n[1].

Proof. By [13, 2] in the case of finite groups and [16, 3.3] for arbitrary finite group
schemes, our assumptions imply that the stable Auslander-Reiten component of the
trivial module must have the tree class A∞.

Let Vn be an indecomposable module representing the nth node of the tree con-
taining the trivial module. The bottom node has label 0. By Proposition 8.5, Vn

has constant Jordan type for every n. Let an be the stable Jordan type of Vn.
Proposition 8.3 implies that the middle term Bn of the almost split sequence

0 // τVn
// Bn

// Vn
// 0

has stable constant Jordan type 2an.
Since the tree class is A∞, V1 must be the only non-projective indecomposable

summand of the middle term of the almost split sequence for V0:

0 // τV0
// B0

// V0
// 0

Hence, a1 = 2a0. The middle term of the almost split sequence for V1

0 // τV1
// B1

// V1
// 0

has two indecomposable non-projective summands, one of which is isomorphic to
τV0. Hence, the other summand has stable constant Jordan type 2a1 − a0 = 3a0.
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Proceeding by induction, we see that the module which represents the nth node in
this A∞ tree has stable constant Jordan type an = na0.

We immediately conclude that k must be at the bottom node since the stable
Jordan type of k is 1[1]. Hence, a0 = 1[1]. Therefore, Vn is an indecomposable
module of stable constant Jordan type n[1]. �

9. Questions and Conjectures

We offer a few broad questions as well as specific conjectures which provide chal-
lenges for further investigation.

Question 9.1. For a given finite group scheme G, what Jordan types are realized
as the (generic) Jordan type of finite dimensional kG-modules with constant Jordan
type?

Certainly, there are constraints as the following examples illustrate.

Example 9.2. Let G be a quasi-elementary abelian group scheme, G = Ga(s) × E
with E and elementary abelian p-group of rank r and p > 2. Then any kG-module
M of constant Jordan type of stable type 1[1] is endotrivial, and hence of the form
Ωi(k) [11]. The Jordan type of such a module has the form 1[1] + mpr+s−1[p] for
some m ≥ 0 (cf. Lemma 6.9).

Example 9.3. We verify that there does not exist a finite dimensional kE-module of
constant Jordan type [2]+ [p] for p > 3 for E an elementary abelian p-group of rank
2, which the reader can see as very limited evidence for Conjecture 9.5. Suppose V
is such a kE-module and write kE = k[x, y]/(xp, yp). Consider the k-vector space
basis u, xu, v, xv, x2v, . . . , xp−1v for V .

We will show that some linear combination y − bx satisfies (y − bx)p−1V = 0,
so that the Jordan form associated to y − bx has no block of size p. Observe that
y(v) written in our given basis has coefficient 0 for v because y is nilpotent and
only v in our basis satisfies xp−1v 6= 0. Second, suppose that y(v) has coefficient
b for xv and consider y − bx. Then once again (y − bx)(v) has coefficient 0 for
v and by construction coefficient 0 for xv. Let us replace y by y − bx, so that
y(v) ∈ span{u, xu, x2v, . . . , xp−1v}.

If we apply y to the given basis, the only basis element with the property that
y applied to it can have non-zero coefficient for u is u itself, since any of the other
basis elements would have to be annihilated by x2 and thus in the image of x. Since
y is nilpotent, we conclude that y(u) ∈ span{xu, x2v, . . . , xp−1v} so that y2(u) ∈
span{x4v, . . . , xp−1v}.

Thus, y3u and y3v are both contained in x4V , and we conclude that yp−1(xiv) =
0 = yp−1(xiu).
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The challenge of Question 9.1 seems more interesting if we work stably, so that
we identify two Jordan types a = ap[p] + · · ·+ a1[1], b = bp[p] + · · ·+ b1[1] provided
that ai = bi, i 6= p.

Question 9.4. For which finite group schemes G is every stable Jordan type the
(generic) Jordan type of a finite dimensional kG-module of constant Jordan type?

The following is a specific conjecture would be a step towards answering the
previous question.

Conjecture 9.5. Let E be an elementary abelian p-group of rank ≥ 2, with p > 3.
Then there does not exist a finite dimensional kE-module of stable constant Jordan
type [2].

Andrei Suslin has formulated the following intriguing question whose affirmative
answer would in particular verify the preceding conjecture.

Question 9.6. Let E be an elementary abelian p-group of rank 2, with p > 3. Let M
be a kE-module with constant Jordan type

∑
i ai[i] and let i be an integer, 1 < i < p.

Is it the case that if ai 6= 0, then either ai+1 6= 0 or ai−1 6= 0?

Of course, if Conjecture 9.5 is valid, then it follows that there is no module of
stable constant Jordan type [2] for any finite group scheme G containing a quasi-
elementary subgroup scheme H = Ga(r) × E such that the rank s of E plus r is
greater or equal to 2.

We can make many other “non-existence conjectures” such as the following. We
recall that for E an elementary abelian p-group of rank n ≥ 2 there exists a kE-
module whose stable type is constant of type 1[2] + (n − 1)[1]

Conjecture 9.7. Let E be an elementary abelian p-group of rank n ≥ 2, with p > 3.
There does not exist a kE-module whose stable type is constant of type 1[2] + j[1]
with j ≤ n − 2.

We next formulate questions of a more qualitative nature.

Definition 9.8. Let G be a finite group scheme over a field k (of characteristic
p > 0). We denote by L = Np the (additive) lattice of Jordan types over k. We
denote by

R(G) ⊂ L

the sublattice of those Jordan types which can be realized as the (generic) Jordan
types of kG-modules of constant Jordan type.

Question 9.9. For which finite group schemes G is L/R(G) finite? Among such
finite group schemes, how does the invariant L/R(G) behave?

For those finite group schemes G for which L/R(G) is infinite, can we give some
interpretation of the rank of this quotient in more familiar terms?
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In view of our discussion involving Auslander-Reiten almost split sequences, it
seems of considerable interest to consider I(G) as defined below.

Definition 9.10. Let G be a finite group scheme over a field k (of characteristic
p > 0) and let R(G) ⊂ L = Np−1 denote the subset of those stable Jordan types
realizable as the (generic) stable Jordan type of a finite dimensional kG-module of
constant Jordan type. Further, let us denote by I(G) ⊂ R(G) ⊂ L = Np−1 the
subset of stable Jordan types which are the (generic) Jordan types of indecomposable
kG-modules of constant Jordan type.

Question 9.11. For which G is I(G) closed under addition?

Remark 9.12. If G is the Klein four group, G ' Z/2 × Z/2, then the only non-
projective indecomposable modules of constant Jordan type are Heller shifts of the
trivial module k. Thus, for this choice of G, I(G) is not closed under addition.

One is tempted to ask many questions concerning how the realizability of modules
of constant type behaves with respect to change of finite group scheme. We ask one
such question.

Question 9.13. For which H ⊂ G does restriction induce a bijection from the set
of Jordan types realized as Jordan types of kG-modules of constant Jordan type to
the set of Jordan types realized as Jordan types of kH-modules of constant Jordan
type?

10. APPENDIX: Decomposition of tensor products of k[t]/tp-modules

The purpose of this appendix is to establish a closed form for tensor products of
k[t]/tp-modules, presumably implicit in [24]. Here, we view k[t]/tp as a self-dual Hopf
algebra; in other words, as the restricted enveloping algebra of the 1-dimensional
p-restricted Lie algebra (with trivial p-restriction operator). Thus, the coproduct is
given by the formula t 7→ 1 ⊗ t + t ⊗ 1. Our technique will be to reduce this to a
formula for the tensor product of tilting modules, a formula known in much greater
generality.

The result of the appendix can be summarized in the following formula. We
assume j ≥ i, and for convenience we write [i] for the indecomposable k[t]/tp-module
which has dimension i and Jordan type 1[i].
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(28) [i] ⊗ [j] =





`=i+j−1∑

` = j − i + 1
` ≡ i + j + 1 mod 2

[`] if j + i ≤ p

(j + i − p)[p] +
`=2p−1−i−j∑

` = j − i + 1
` ≡ i + j + 1 mod 2

[`] if j + i > p

=





[j − i + 1] + [j − i + 3] . . . [j + i − 3] + [j + i − 1] if j + i ≤ p

[j − i + 1] + · · ·+ [2p − 1 − i − j] + (j + i − p)[p] if j + i > p.

Let V (λ) denote the Weyl module of highest weight λ for the algebraic group SL2.
Let e, h, f be the standard generators for sl2. Viewing V (λ) as a module for the
distribution algebra of SL2 we can restrict V (λ) to u(sl2) ' Dist1(SL2) and then
further to k[t]/tp ' u(〈e〉) ⊂ u(sl2) where 〈e〉 is a 1-dimensional p-restricted Lie
algebra generated by the element e. For λ ≤ p− 1, the restriction of V (λ) to u(sl2)
is a simple sl2-module of highest weight λ (see [22, II.3]). The sl2-representation
theory implies that

(29) V (λ) ↓u(〈e〉)' [λ + 1]

as k[t]/tp-modules. It is known that the tensor product of two Weyl modules with
weights in the restricted range splits as a direct sum of Weyl modules, at least
modulo a projective summand. Thus, we can effectively replace calculating the de-
composition of k[t]/tp modules [i]⊗[j] into indecomposable modules with calculating
the decomposition of SL2-modules V (i− 1)⊗ V (j − 1) into the direct sum of Weyl
modules. We now implement this strategy in the following proof of the formula 28.

Proposition 10.1. Let C`
ij be the structure constants in the decomposition of the

tensor product [i] ⊗ [j] of k[t]/tp-modules into indecomposable modules:

[i] ⊗ [j] =
∑

1≤`≤p

C`
ij[l]

Then

I. Cp
ij =

{
i + j − p if i + j > p
0 if i + j ≤ p,

and for 1 ≤ ` ≤ p − 1,
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II. C`
ij =





1 if |j − i| + 1 ≤ ` ≤ min{i + j − 1, 2p − 1 − i − j}
and ` ≡ i + j + 1 mod 2

0 otherwise.

Proof. If either [i] or [j] is projective, then the statement is clear. Thus, we may
assume that i, j < p.

Suppose that 0 ≤ λ, µ ≤ p − 2. Then the Weyl modules V (λ), V (µ) are tilting
modules of highest weights λ, µ respectively [22, II.E.1]. By [22, II.E.2, and II.E.7]
tensor product of tilting modules decomposes as a direct sum of indecomposable
tilting modules. By [22, II.E.8], an indecomposable SL2-tilting module T (λ) of
highest weight λ restricts to a projective sl2-module unless it is isomorphic to the
Weyl module of highest weight λ where 0 ≤ λ ≤ p − 2. These observations imply
that there is a decomposition

(V (λ) ⊗ V (µ)) ↓sl2=
∑

0≤ν≤p−2

Bν
λ,µV (ν) ↓sl2 + (proj)

for some multiplicities Bν
λ,µ. Isomorphism (29) implies that

C`
ij = B`−1

i−1,j−1

for 1 ≤ i, j, ` ≤ p − 1. Thus, it suffices to compute multiplicities Bν
λ,µ.

Assume 0 ≤ ν ≤ p−2. By [22, E.12], the multiplicity of V (ν) as a direct summand
of V (λ) ⊗ V (µ) equals to

(30) Bν
λ,µ =

∑

w∈Wp

(−1)`(w)dim V (λ)w·ν−µ

where Wp = Z/2 n 2pZ is the affine Weyl group, `(w) is the length function and
w · ν = w(ν + 1) − 1 is the standard “dot” action.

The weights of V (λ) are 〈λ, λ−2, . . . ,−λ〉 and all weight spaces are 1-dimensional.
Assume that λ ≥ ν. To compute the multiplicity of V (ν) in V (λ) ⊗ V (µ) we first
determine all w ∈ Wp such that DimV (λ)w·ν−µ can be non-trivial. Since the weights
of V (λ) are between −λ and λ, we get

−λ ≤ w · ν − µ ≤ λ

Because 0 ≤ λ, µ ≤ p − 2, this condition implies

−(p − 2) ≤ w · ν ≤ 2p − 4

Since we also have 0 ≤ ν ≤ p− 2, we conclude that there are only three elements of
Wp for which non-zero multiplicity can occur. Specifically these elements are:

(a) Identity element: w0 = id; w0 · ν = ν
(b) Simple reflection: w1 = sα; w1 · ν = −ν − 2
(c) Simple reflection followed by the translation by 2p: w2 · ν = 2(p − 1) − ν
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We record the respective values of the length function here: `(w0) = 0, `(w1) = 1,
`(w2) = 1. Since wi(ν) ≡ ν mod 2 for any i, we assume ν ≡ λ + µ mod 2.

CASE I. Assume λ + µ < p. Then w2 · ν − µ = 2(p − 1) − ν − µ > λ. Thus, we
only need to consider w0 and w1.

For (a): w0, we have V (λ)w0·ν−µ = 1 for all ν such that V (λ) has a weight ν − µ,
i.e.

−λ + µ ≤ ν ≤ λ + µ

and V (λ)w0·ν−µ = 0 otherwise. Since we assumed µ ≤ λ, we have V (λ)w0·ν−µ = 1 if
and only if ν ≤ λ + µ.

For (b): w1, it is the case that V (λ)w1·ν−µ = 1 if an only if the space V (λ) has a
weight w1 · ν − µ = −ν − 2 − µ, i.e.

−λ + µ ≤ −ν − 2 ≤ λ + µ.

Simplifying, we get ν ≤ λ − µ − 2.

Since `(w0) = 0, `(w1) = 1, the first case yields the following result.

Bν
λµ =

{
1 if λ − µ ≤ ν ≤ λ + µ
0 otherwise.

CASE II. Assume λ + µ ≥ p.
For (a): w0, we argue as in Case I to get that the multiplicity 1 for all ν.
For (b): w1, by the same argument as in Case I, we get multiplicity 1 whenever

ν ≤ λ − µ − 2.
For (c): w2, we have that V (λ)w2·ν−µ = 1 whenever V (λ) has a weight w2 ·ν−µ =

2(p − 1) − ν − µ. This translates to

2(p − 1) − λ − µ ≤ ν.

Inserting this information into formula (30), we see that in this case

Bν
λµ =

{
1 if λ − µ ≤ ν ≤ 2(p − 2) − λ − µ
0 otherwise.

Hence, the final result for multiplicities Bν
λµ is the following.

Bν
λµ =





1 λ − µ ≤ ν ≤ λ + µ, ν ≡ λ + µ mod 2 and λ + µ < p
1 λ − µ ≤ ν ≤ 2(p − 2) − λ − µ, ν ≡ λ + µ mod 2

and λ + µ ≥ p
0 otherwise.
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Since C`
ij = B`−1

i−1,j−1, the formula above immediately produces the multiplicities C `
ij

for ` < p.

C`
ij =





1 if j − i + 1 ≤ ` ≤ min{i + j − 1, 2p − 1 − i − j},
and ` ≡ i + j + 1 mod 2

0 otherwise.

Finally, the multiplicity Cp
ij is computed by comparing dimensions. We get

Cp
ij =

{
i + j − p if i + j > p
0 if i + j ≤ p

�

We conclude the appendix with the analogous formula for the tensor product of
indecomposable kCp-modules where Cp is a cyclic group of order p. A subtlety here
is that even though the module categories for kCp and the algebra k[t]/tp with the
coproduct t 7→ 1⊗ t + t⊗ 1 are equivalent, the tensor product structure comes from
two different coproducts. Nonetheless, the tensor multiplicities turn out to be the
same.

Corollary 10.2. Let [i], 1 ≤ i ≤ p, be indecomposable kCp-modules. Then

[i] ⊗ [j] =
∑

1≤`≤p

C`
ij[l]

where C`
ij are as determined in Proposition 10.1.

Proof. By [20, 4.5] the tensor product of any two kCp-modules M , N is isomorphic
as k[t]/tp-module to the tensor product M ⊗N using the coproduct t 7→ 1⊗ t+ t⊗1.
The statement now follows from 10.1. �
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