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THE FRIEDLANDER–MILNOR CONJECTURE

by Eric M. FRIEDLANDER

The conjecture of the title of this note has resisted 40 years of effort and
remains not only unsolved but also lacking in a plausible means of either
proof or counter-example.

The original form of this conjecture is one I struggled with during my
days at Princeton in the early 1970’s :

CONJECTURE 32.1. Let G(C) be a complex reductive algebraic group and
let G(C)

�
denote this group viewed as a discrete group. Then the map on

classifying spaces of the continuous (identity) group homomorphism

i : G(C)
���

G(C)

induces an isomorphism in cohomology with finite coefficients Z
�
n for any

n � 0 :

i � : H � (BG(C) � Z � n)
i �� H � (G(C)

� � Z � n) 	

Conjecture 32.1 is easily seen to be true for a torus (i.e., G 
 G � r
m for

some r � 0), but even the simplest non-trivial case (that of G 
 SL2 ) remains
inaccessible.

Guido and I published 5 papers together, all in some sense connected
with this conjecture. We used the integral form GZ of a complex reductive
algebraic group (which is a group scheme over Spec Z ) in order to form the
group G(F) of points of G with values in a field F . Most of our joint work
investigated various relations between G(C) and G(F) , the case F 
 Fp (the
algebraic closure of a prime field Fp ) being of special interest.

One knows from considerations of étale cohomology that the cohomology
of BG(C) with Z

�
n coefficients is naturally isomorphic to that of the étale

L’Enseignement Mathématique, t. 54 (2008)



E. M. FRIEDLANDER 91

homotopy classifying space of the algebraic group GF for F algebraically
closed of characteristic p � 0 :

H � (BG(C) � Z � n) � H � ((BGF)et � Z � n) � provided that (p � n) 
 1 	
This enables one to construct a map H � (BG(C) � Z � n) �

�
H � (G(F) � Z � n)

relating the cohomology with mod-n coefficients of the classifying space
of G(C) with the cohomology with mod-n coefficients of the discrete
group G(F) for any field F .

The following is a generalization of Conjecture 32.1, one that appears
likely to be true if and only if Conjecture 32.1 is valid.

CONJECTURE 32.2. Let G(C) be a complex reductive algebraic group,
let n � 0 be a positive integer, and let p denote either 0 or a prime
which does not divide n. Then for any algebraically closed field F of
characteristic p, the comparison of the cohomology of BG(C) and G(F)
determines an isomorphism

H � (G(F) � Z � n) � H � (BG(C) � Z � n) 	

In our first paper together [1], Guido and I began our investigation of
“locally finite approximations” of Lie groups. We also formulated the following
conjecture and proved it equivalent to Conjecture 32.2.

CONJECTURE 32.3. Let F be an algebraically closed field of characteristic
p � 0 and let n � 0 be a positive integer not divisible by p if p � 0 . Then
Conjecture 32.2 is valid for G(F) if and only for every 0

�
 x � H � (G(F) � Z � n) ,
there exists some finite subgroup ��� G(F) such that x restricts non-trivially
to H � ( � � Z � n) .

The most familiar form of the “Friedlander–Milnor Conjecture” is that
formulated by John Milnor in [2]. In that paper, Milnor verifies this conjecture
for solvable groups.

CONJECTURE 32.4. Let G be a Lie group with finitely many components
and let G

�
denote the same group now viewed as a discrete group. Then

for any integer n � 0 , the continuous (identity) map i : G
� �

G induces an
isomorphism on cohomology with mod-n coefficients :

i � : H � (BG � Z � n)
i �� H � (G � � Z � n) 	
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We remark that the most substantial progress to date on these conjectures
is due to Andrei Suslin, who proves a “stable” version of Conjectures 32.1
and 32.2 in [3].
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