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In this paper, Y and X will be (reduced) projective complex varieties. Homology will
be singular homology of underlying topological spaces with Z-coefficients, unless specifi-
cally signalled otherwise.

If Y is smooth and connected and if Z is an effective algebraic cycle in Y ×X equi-
dimensional of dimension r over Y , then the fundamental class [Z] ∈ H2m+2r(Y × X)
determines a homomorphism in homology

φZ : H∗(Y )→ H∗+2r(X)

given by the composition of the Poincaré duality isomorphism D and slant product with
[Z] :

H∗(Y ) D−→ H2n−∗(Y )
\[Z]−→ H∗+2r(X).

We refer to φZ as the correspondence homomorphism in homology attached to Z.
It is not known to us whether one can naturally attach “correspondence homomor-

phisms” in homology to equi-dimensional algebraic cycles in general if the smoothness
hypothesis on Y is dropped. Nonetheless, we think that a perfectly legitimate requirement
for any theory of “geometric (equi-dimensional) correspondences” between projective va-
rieties is that there be naturally associated correspondence homomorphisms in homology.

By a Chow correspondence (of relative dimension r ≥ 0) we mean a continuous
algebraic map f : Y → Cr(X), a morphism from the semi-normalization of Y to the Chow
monoid Cr(X) of effective r-cycles on X (cf. [F1]). A Chow correspondence f has an
associated cycle Zf in Y × X; if Y is normal, then every (effective) algebraic cycle in
Y × X equi-dimensional of fiber dimension r over Y is the cycle associated to a unique
Chow correspondence f : Y → Cr(X) (cf. [F-L]).

In an earlier paper, we obtained a correspondence homomorphism φf : H̃∗(Y ; Q) →
H∗+2r(X; Q) associated to a Chow correspondence f : Y → Cr(X) whose domain of
definition is the subspace H̃∗(Y ; Q) ⊂ H∗(X; Q) of classes of lowest weight for the Mixed
Hodge Structure on the rational homology of a connected variety Y . In this paper, we
construct natural correspondence homomorphisms

Φf : H∗(Y )→ H∗+2r(X)

attached to Chow correspondences f for general Y such that Φf⊗Q restricts to φf whenever
Y is connected. Furthermore, we show that Φf factors through a refinement Φ̃f : H∗(Y )→
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H∗+2r(|Vf |), where |Vf | ⊂ X denotes the projection to X of the support of the cycle
Zf ⊂ Y ×X associated to f .

Our construction of Φf enables us to extend results of [F-M] to possibly singular
varieties. Among the examples presented in section 2 are mappings constructed in [F-M]
only when the domain of the mapping is smooth. Indeed, Theorem 4.2 extends to singular
varieties the main result of [F-M] concerning filtrations on the homology of projective
varietes.

We show that a natural refinement 〈f〉 of the correspondence homomorphism Φf is
precisely the total chern class of a vector bundle generated by global sections in the special
case that f is the classifying map for this bundle. This suggests that 〈f〉 might be viewed
as a characteristic class for an equidimensional family of varieties.

Our paper is organized as follows. In section 1, we construct the correspondence homo-
morphism Φf and its refinement 〈f〉 associated to a Chow correspondence f : Y → Cr,d(X).
We show that this construction is well behaved with respect to compositions and has an
evident extension in the relative context. Examples are presented in section 2, including
the inverse of the Thom isomorphism for vector bundles and the suspension isomorphism
for algebraic suspensions. Section 3 presents the proof that our new construction of the
correspondence homomorphism determines the same homomorphism as that considered
in [F-M] on H̃∗(Y ; Q). Finally, section 4 is devoted to comparing filtrations on homol-
ogy, thereby extending results of [F-M] to singular varieties and refining these results to
homology with integral (rather than rational) coefficients.

We anticipate further generalizations of constructions of correspondence homomor-
phisms (e.g., arising in the context of the “algebraic bivariant cycle complex” of [F-G] or
possibly in the general framework developed by V. Voevodsky involving his “h-topology”
[V]). Is there a theory of “correspondence homomorphisms” in the context of intersection
homology?

We gratefully thank Ofer Gabber for useful conversations.

1. Homomorphisms associated to Chow correspondences.

In Appendix B of [F-M], we discussed weighted maps g : T → S, w : T → N of
simplicial sets and the induced trace maps g! ≡ (g, w)! : Z[S] → Z[T ] which induce trace
maps in homology g! : H∗(S)→ H∗(T ). This construction naturally extends to simplicial
maps g : A→ B of simplicial complexes equipped with a “weighting” since the associated
map of simplicial sets (defined as the map on nerves of the categories of simplicies of A
and B) is a weighted map of simplicial sets. These trace maps satisfy an evident naturality
property with respect to maps f : S′ → S of simplicial sets (and f : A′ → A of simplicial
complexes), yielding maps (f∗g)! : H∗(S′)→ H∗(T ′), where T ′ = S′ ×S T . In a remark in
that appendix, we assert that the homotopy invariance property of the trace construction
permits one to consider continuous maps f : A→ |S| from a space A homotopy equivalent
to a simplicial complex to the geometric realization of a simplicial set.

Indeed, the generalization one obtains in this way has an unwanted feature: the
resulting trace (f∗g)! is not realized as the trace of the topological pull-back A×|S| |T | → A.
In our algebro-geometric context, we implicitly require that the transfer is constructed
in terms of the geometric fibre-product. The following proposition justifies this implicit
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requirement.
We introduce the following notation: SP d(X) denotes the d-fold symmetric product

of X with itself and Γd(X) ⊂ SP d(X)×X denotes the evident incidence correspondence
with projection γ : Γd(X)→ SP d(X).

Proposition 1.1 Let f : Y → X be a morphism of complex, quasi-projective varieties
and let

g : Γ ≡ Y ×SPd(X) Γd(X)→ Y

denote the pull-back of γ via f . Then g admits the structure of a simplicial map of
simplicial complexes equipped with a natural weighting.

Proof. We stratify SP d(X) in the evident way by partitions of the set {1, . . . , n}: a
point σ ∈ SP d(X) lies in the d1 ≥ d2 ≥ . . . dk stratum provided that σ consists k distinct
points with multiplicities d1, . . . , dk. Since this stratification is algebraic, we may apply
the triangulation theorem presented in [H] to conclude SP d(X) admits a semi-algebraic
triangulation subordinate to this stratification. Furthermore, this theorem enables us to
choose the triangulation so that f(Y ) is a subcomplex. We then triangulate Y and Γd(X)
as follows. We first triangulate the pre-images (under f and γ) of the 0-simplicies of
SP d(X); these pre-images are complex algebraic varieties and thereby admit a triangula-
tion. Proceeding by induction on k, we triangulate the pre-image of each k-simplex (which
are semi-algebraic sets and thereby admit triangulations) compatible with the triangula-
tion given on the pre-image of the boundary of the simplex. Each simplex in the pre-image
admits a further triangulation with the property that points (σ, x) ∈ Γd(X) in an open
simplex all have the same multiplicity in σ ∈ SP d(X).

The weighting on γ is that defined [F-M;App B]: a point (σ, x) ∈ Γd(X) has weight
equal to the multiplicity of x in σ. This is readily seen to provide a weighting of γ as
a map of simplicial complexes (provided that the triangulations are chosen as above), so
that g is equipped with a natural weighting.

We conclude that a morphism Y → SP d(X) of complex projective algebraic varieties
induces a “Gysin map”

g! : H∗(Y )→ H∗(Y ×SPd(X) Γd(X))

and a “correspondence homomorphism”

p∗ ◦ f̃∗ ◦ g! : H∗(Y )→ H∗(X) (1.1.1)

where f̃ : Y ×SPd(X) Γd(X) → Γd(X) is the projection onto the second factor and where
p : Γd(X)→ X is the natural projection.

We can provide a homotopy-theoretic interpretation of this correspondence homomor-
phism as follows. For any C.W. complex B, consider the abelian monoid

SP (B) ≡
∐
d≥0

SP d(B)
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and let Z0(B) denote the “naive group completion” of SP (B), defined as the quotient of
SP (B)2 modulo the equivalence relation (σ, µ) ∼ (σ′, µ′) whenever σ + µ′ = µ + σ′ (cf.
[D-T], where the notation AG(B) is used instead of Z0(B)). The Dold-Theorem [D-T]
asserts the existence of a natural (Dold-Thom) isomorphism

δB : π∗(Z0(B)) ' H∗(B).

Let f : A→ SP d(B) be a continuous map of C.W. complexes and let fe : SP e(A)→
SP e(SP d(B))→ SP de(B) denote the induced map for each e ≥ 0. We denote by

f+ : Z0(A) → Z0(B)

the group completion of
∐
d≥0 f

e. Then, we define

Φf ≡ δB ◦ f+
∗ ◦ δ−1

A : H∗(A)→ H∗(B) (1.1.2).

Since Z0(−) is a homotopy functor, Φf depends only upon the homotopy type of f .

Proposition 1.2. Let f : Y → SP d(X) be a morphism of complex projective varieties.
Then the maps of (1.1.1) and (1.1.2) associated to f ,

p∗ ◦ f̃∗ ◦ g! , Φf : H∗(Y )→ H∗(X)

are equal.

Proof. In [F-M;App.B], it is verified that f̃∗ ◦g! = γ! ◦f∗. We easily verify that id+
SPd(B) ◦

Z0(f) = f+. Thus, it suffices to consider the special case in which f is the identity of
SP d(X).

Triangulate Γd(X)→ SP d(X) as in Proposition 1.1 and consider the associated map
of simplicial sets (with respect to which (1.1.1) is defined), τ : T → S′. This weighted map τ
and the weighted map γ : Γd(S)→ SP d(S) (where S is the simplicial set associated to the
simplicial complex X) have geometric realizations which are related by a homeomorphism
which respects weightings. Thus, in the special case in which f is the identity of SP d(X),
we may take g! equal to γ! : H∗(SP d(S))→ H∗(Γd(S)).

We recall that the Dold-Thom isomorphism for a simplicial set S is merely the iden-
tification of the (unnormalized) chain complex of the simplicial abelian group Z(S) with
the chain complex C∗(S), thereby providing a tautological isomorphism δS : π∗(Z(S)) '
H∗(S). Hence, it suffices to prove that

p∗ ◦ γ! = δS ◦ (id+
SPd(S))∗ ◦ δ−1

SPd(S).

This equality follows from the explicit identification of p∗ ◦ γ! given in [F-M;App.B] as the
map in homology induced by the map of chain complexes C∗(SP d(S)) → C∗(S) defined
by sending a k-simplex of SP d(S) (an orbit under the symmetric group of the k-simplices
of Sd) to the sum with multiplicities of the underlying k-simplices of S.
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Now let us consider Chow correspondences f : Y → Cr,d(X) whose relative dimension
r is not necessarily 0. Let

Cr(X) ≡
∐
d≥0

Cr,d(X)

denote the Chow monoid of effective r-cycles on X. The isomorphism class of this algebro-
geometric abelian monoid is shown by Barlet [B] to be independent of the projective
embeddingX ⊂ Pn. We shall view Cr(X) as an abelian topological monoid whose topology
is inherited from the analytic topology of each Cr,d(X). Following P. Lima-Filho [L-F], we
shall consider the abelian topological group Zr(X), the “naive group completion” of Cr(X)
defined as the quotient space of Cr(X)×2 by the equivalence relation (Z1, Z2) ∼ (Z ′

1, Z
′
2)

whenever Z1 + Z ′
2 = Z2 + Z ′

1. Thus, when r = 0, Cr(X) = SP (X) and Z0(X) is the
abelian topological group considered above (with the same name). As can be seen from
its step-by-step construction (cf. [L-F], [F-G]), Zr(X) admits the structure of an abelian
group object in the category of C.W. complexes.

In previous work, there have been (at least) four approaches to forming the group
completion of the topological monoid Cr(X). Namely, in [F1] the homotopy theoretic group
completion ΩBCr(X) was considered; this is an H-space homotopy equivalent to a CW
complex (cf. [M]) with component monoid a group such that the “natural” map Cr(X)→
ΩBCr(X) has the effect in homology of localizing the action of π0(Cr(X)) on H∗(Cr(X))
(cf. [M-S]). In [L-F], [F-G], ΩBCr(X) was shown to be naturally homotopy equivalent to
Zr(X). In [F-M], the simplicial abelian monoid Lim Sing.Cr(X) was considered, defined
as the direct limit of copies of the simplical abelian monoid of singular simplices of Cr(X)
indexed by a “base system” associated to π0(Cr(X)). This was seen to be equivalent as a
simplicial monoid to the group completion of the simplicial monoid Sing.Cr(X) as well as
equivalent to the singular complex of ΩBCr(X). Finally, in [F-G], the simplicial abelian
group Sing.Zr(X) was replaced by its normalized chain complex Z̃r(X).

We define the Lawson homology groups to be the homotopy groups of any of these
group completions (or the homology groups of the chain complex Z̃r(X)). Thus,

LrH∗+2r(X) = π∗(ΩBCr(X)) = π∗(Zr(X)) = π∗(Lim Sing.Cr(X)) = H∗(Z̃r(X)).

Various homotopy-theoretic properties of Zr(X) which we require have been proved for
ΩBCr(X), Lim Sing.Cr(X), and Z̃r(X) in [F1], [F-M], and [F-G]. The equivalences dis-
cussed above justify our use of these references.

In [F-M], the join pairing

# : Cr(X)× C0(P 1)→ Cr+1(X#P 1)

(sending an irreducible subvariety Z ⊂ X ⊂ Pn and point t ∈ P 1 to the cone on Z with
vertex t) and the Lawson suspension equivalence Zr+1(X#P 1)→ Zr−1(X) are combined
to provide a pairing

s : Zr(X) ∧ S2 → Zr−1(X) (1.2.1)

In [F-G], the homotopy type of this pairing is shown to be independent of the projective
embedding X ⊂ Pn. We shall also denote by s the maps

Zr(X)→ Ω2Zr−1(X) , π∗(Zr(X))→ π∗+2(Zr−1(X)) (1.2.2)
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the first being the adjoint of (1.2.1) and the second being the map in homotopy induced
by (1.2.1).

If f : Y → Cr,d(X) is a Chow correspondence (of relative dimension r ≥ 0), let
fe : SP e(Y )→ SP e(Cr,d(X))→ Cr,de(X) denote the induced map for each e ≥ 0, and let

f+ : Z0(Y )→ Zr(X) (1.2.3)

denote the group completion of
∐
e≥0 f

e.

Definition 1.3. The correspondence homomorphism Φf associated to the Chow
correspondence f : Y → Cr,d(X) is the following composition

δX ◦ sr ◦ (f+)∗ ◦ δ−1
Y : H∗(Y )→ π∗(Z0(Y ))→ π∗(Zr(X))→ π∗+2r(Z0(X))→ H∗+2r(X).

If f restricts to f1 : V → Cr,d(W ), then the relative correspondence homomorphism
is defined to be the composition

Φf,f1 ≡ δX,W ◦ sr ◦ (f+)∗ ◦ (δY,V )−1 : H∗(Y, V ) ' π∗(Z0(Y )/Z0(V ))

→ π∗(Zr(X)/Zr(W ))→ π∗+2r(Z0(X)/Z0(W )) ' H∗+2r(X,W ).

If V is empty, then we denote this composition by

Φf : H∗(Y )→ H∗+2r(X,W ).

We recall the graph mapping

Γf : Zk(Y )→ Zr+k(X)

associated to a Chow correspondence f : Y → Cr(X) as considered in [F2], defined as the
group completion of the composition

tr ◦ f∗ : Ck(Y )→ Ck(Cr(X))→ Cr+k(X)

where f∗ is the map functorially induced by f (cf. [F1;2.9]) and tr is the trace map of
[F-L;7.1]. In the special case k = 0, Γf equals f+ of (1.2.3). Since the graph mapping
commutes with the s-operation ([F2;2.3]), we obtain for m, k with m−2k ≥ 0 the following
commutative diagram

LkHm(Y )
(Γf )∗→ Lr+kH2r+m(X)

δY ◦ sk
y yδX ◦ sr+k

Hm(Y )
Φf→ Hm+2r(X)

(1.3.1)

As defined in [F2;2.6], the composition product g · f : Y → Cr+s(T ) of Chow corre-
spondences f : Y → Cr(X), g : X → Cs(T ) is defined to be the composition

g · f = tr ◦ g∗ ◦ f : Y → Cr(X)→ Cr(Cs(T ))→ Cr+s(T ).
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Proposition 1.4. Let Y,X, T be projective varieties and consider Chow correspondences

f : Y → Cr(X) , g : X → Cs(T ).

Then the correspondence homomorphism associated to the composition product defined
above is given as the composition of the correspondence homomorphisms:

Φg·f = Φg ◦ Φf : H∗(Y )→ H∗+2r+2s(T ).

Proof. We compare the following diagram

L0H∗(Y )
(Γf )∗→ LrH2r+∗(X)

(Γg)∗→ Lr+sH∗+2r+2s(T )y y y
H∗(Y )

Φf→ H∗+2r(X)
Φg→ H∗+2r+2s(T )

to the square
L0H∗(Y )

(Γg·f )∗→ Lr+sH∗+2r+2s(T )y y
H∗(Y )

Φg·f→ H∗+2r+2s(T )

where the vertical maps are the natural homomorphisms from Lawson homology to singular
homology. By (1.3.1), these diagrams commute. By [F2;2.7], the composition of the upper
row of the first diagram equals the upper arrow of the square. The corollary now follows,
since the left vertical arrow of each diagram is an isomorphism.

As observed in [F2], the graph mapping Γf : Zk(Y )→ Zr+k(X) associated to a Chow
correspondence f : Y → Cr(X) admits a refinement

Γ̃f : Zk(Y )→ Zr+k(Vf ),

where Vf = prX∗(|Zf |) is the projection to X of the support of the cycle Zf on Y × X
associated to f , giving the commutative triangle

H∗(Y )
Φ̃f

↘
Φf ↓ H∗+2r(Vf )

↙
H∗+2r(X)

(1.4.1)

Definition 1.5. Let f : Y → Cr,d(X) be a Chow correspondence. The total character-
istic class 〈f〉 of f is the homotopy class of the composition

sr ◦ Γf ◦ iY : Y → Z0(Y )→ Zr(X)→ Ω2rZ0(X)
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where iY : Y → Z0(Y ) is the natural inclusion Y = C0,1(Y ) ⊂ C0(Y )→ Z0(Y ).
If Ext1(Hi−1(X), Hi(X)) = 0 for all i > 0 so that the identification Z0(X) '∏

iK(Hi(X), i) is naturally determined up to homotopy, then we view 〈f〉 as a total
cohomology class

〈f〉 ∈
∏
i

Hi(Y,H2r+i(X)).

Observe that 〈f〉, the homotopy class of sr ◦ Γf ◦ iY , naturally determines the corre-
spondence homomorphism Φf .

2. Examples.

If a subvariety Z ⊂ Y × X is flat over Y of relative dimension r ≥ 0, then Z = Zf
for one and only one Chow correspondence f : Y → Cr,d(X). One way to see this is to
appeal to Hilbert schemes: the flat “family” Z → Y is equivalent to a map Y → Hilbr(X)
which naturally maps to Cr(X). Alternatively, any cycle Z on Y ×X each component of
which dominates some component of Y determines a generically defined map φZ : Y −− >
Cr,d(X). The flatness of Z over Y implies that the specializations of the generic fibres of
Z at some closed point of Y depend only upon y ∈ Y and not the “path” of specialization.
This is equivalent to the assertion that φ extends to a continuous algebraic map. The
uniqueness of such an extension is clear.

In particular, a flat map g : X → Y of relative dimension r ≥ 0 determines a Chow
correspondence f : Y → Cr(X) which sends a point y ∈ Y to the Chow point of the cycle
[Xy] associated to the scheme-theoretic fibre of g above y.

Example 2.1. Let E be a rank r (algebraic) vector bundle over Y and let P (E⊕1), P (E)
denote the projective bundles associated to the bundles E ⊕ 1, E. Let

fE : Y → Cr(P (E ⊕ 1))

denote the Chow correspondence associated to the flat projection P (E ⊕ 1) → Y . Then
the associated relative correspondence homomorphism

ΦE ≡ ΦfE
: H∗(Y )→ H∗+2r(P (E ⊕ 1), P (E))

is an isomorphism.
Moreover, the inverse of ΦE is given by cap product with the Thom class τE ∈

H2r(P (E ⊕ 1), P (E)).

Proof. Following Lima-Filho [L-F], we let Zr(U) denote Zr(Y )/Zr(W ) whenever i : W ⊂
Y is a closed subvariety of the projective variety Y with complement U . As an object in
the derived category, the complex Z̃r(U) (defined as the normalized chain complex of the
simplicial abelian group Sing.Zr(X)) depends only upon U and not the projective closure
U ⊂ Y [F-G;1.6]. Thus, we may write Zr(V (E)) for Zr(P (E⊕ 1))/Zr(P (E)), where V (E)
denotes the quasi-projective variety associated to the symmetric algebra of the dual of E as
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an OY -module. Moreover, ΓfE
: Z0(Y ) → Zr(V (E)) is then identified with flat pull-back

of cycles via π : V (E)→ Y .
Flat pull-back determines a map of distinguished triangles of chain complexes (arising

from the localization property of Lawson homology; cf [F-G;1.6])

Z̃0(W ) → Z̃0(Y ) → Z̃0(U)y y y
Z̃r(V (i∗E)) → Z̃r(V (E)) → Z̃r(V (E|U ))

Arguing by induction on the dimension of Y , we must show that the relative correspondence
homomorphism

ΦE : H∗(Y,W )→ H∗+2r(P (E ⊕ 1), P (E) ∪ P (i∗(E ⊕ 1)))

is an isomorphism with inverse given by cap product with τE whenever E restricted to U
is trivial. A similar argument further reduces the proof to the special case in which E is
the trivial rank r bundle on Y .

We are thus reduced to verifying that the composition

Z0(Y )→ Zr(Y × P r)→ Ω2r(Z0(Y × P r)/Z0(Y × P r−1))

induces the evident isomorphism in homotopy groups. Using the representation of the s-
map given in (1.2.1) and representing S2r as P r/P r−1, we may interpret this composition
as the map sending y ∈ Y to the map P r/P r−1 → Z0(Y × P r)/Z0(Y × P r−1) induced by
P r → Z0(Y ×P r) sending t ∈ P r to (y, t). The required isomorphism in homotopy groups
is now a special case of the general observation for any simplicial set T that the natural
map Z(T )→ ΩZ(σ(T )) induces the evident isomorphism in homotopy groups, where σ(T )
is the (topologist’s) suspension of T .

The following example, essentially a special case of our previous example, is a gener-
alization to possibly singular varieties Y of the “suspension isomorphism” of [F-M;App.A].
Recall that the r-th algebraic suspension ΣrX ⊂ Pn+r of X ⊂ Pn equals the algebraic
join X#P r−1.

Example 2.2. Consider the Chow correspondence νr : X → Cr,1(ΣrX) associated to the
cycle Σr(∆/X) ⊂ X ×ΣrX consisting of pairs (x, y) with y ∈ x#P r−1 ⊂ Pn+r. Then the
graph mapping

Γνr : Zk(X)→ Zk+r(ΣrX)

equals the map which sends a k-cycle to its r-th algebraic suspension. Moreover, the
associated correspondence homomorphism

Φνr : H∗(X)→ H∗+2r(X#P r−1)

is an isomorphism.
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Proof. Γνr sends a k-dimensional subvariety Y ⊂ X to the projection via pr2 : Y ×ΣrX →
ΣrX of the cycle associated to the restriction of νr to Y , Y → Cr,1(ΣrX). This projection
is readily seen to be the r-th algebraic suspension of Y , so that Γνr is the map which sends
a k-cycle to its r-th algebraic suspension. Since the graph mapping commutes with the
s-operation, we factor sr ◦ Γνr as

(s ◦ Γν)r : Z0(X)→ Ω2Z0(ΣX)→ . . .→ Ω2rZ0(ΣrX)

where ν = ν1 : ΣiX → C1,1(Σ(ΣiX)). Thus, it suffices to consider the case r = 1.
We view ΣX as P (OX(1) ⊕ 1)/P (OX(1)). By [F-G;1.6], the projection P (OX(1) ⊕

1)/P (OX(1))→ (ΣX, pt) induces a quasi-isomorphism of chain complexes

Z̃r(P (OX(1)⊕ 1)/Z̃r(P (OX(1)))) ' Z̃r(ΣX)/Z̃r(pt).

Since ν : X → C1,1(ΣX) ⊂ C1(ΣX) factors through X → C1(P (OX(1)⊕ 1)), the asserted
isomorphism now follows from that of Example 2.1.

We shall have occasion to use the following relative form of the suspension map as
first introduced in [F-M].

Example 2.3. Consider the Chow correspondence

νr/Y ≡ × ◦ (1× νr) : Y ×X → Y × Cr,1(ΣrX)→ Cr(Y × ΣrX).

Then the graph mapping

Γνr/Y : Zk(Y ×X)→ Zr+k(Y × ΣrX)

equals the r-th fibre-wise (over Y ) algebraic suspension mapping ΣrY as introduced in
[F-M;App.A]. Moreover, the associated correspondence homomorphism

ΣrY ∗ ≡ Φνr/Y : H∗(Y ×X)→ H∗+2r(Y × ΣrX)

sends b⊗ c ∈ Hi(Y )⊗Hj(X) to b⊗ Σr∗(c).

Proof. The identification of Γνr/Y with ΣrY is easily verified using the observation that
any point y × x ∈ Y ×X is mapped by νr/Y to Y × (x#P r−1).

To identify ΣrY ∗ on b ⊗ c we use the fact proved in [F2;1.5] that sr : π∗(Zr(X)) ⊗
π2r(Z0(P r))→ π∗+2r(Z0(X)) is induced by Zr(X)× P r → Zr(X × P r)→ Z0(X), where
the last map is the Gysin map of [F-G]. The map sending b⊗ c to b⊗Σr∗(c) is determined
by the upper row of the following diagram, whereas Φνr/Y is determined by the lower row:

Z0(Y )× Z0(X)× P r → Z0(Y )× Zr(ΣrX)× P ry y
Z0(Y ×X)× P r → Zr(Y × ΣrX)× P r
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→ Z0(Y )× Zr(ΣrX × P r) → Z0(Y )× Z0(X)y y
→ Zr(Y × ΣrX × P r) → Z0(Y × ΣrX)

.

The commutativity of this diagram follows from the naturality of the Gysin map [F-
G;3.4.d].

The following proposition justifies our view of 〈f〉 as a characteristic class of the Chow
correspondence f : Y → Cr(X). Because Pn has homology only in even dimensions, we
may view 〈f〉 associated to a Chow correspondence f : Y → Cr(Pn) as a cohomology class
〈f〉 ∈∏

iH
i(Y,H2r+i(Pn)).

Proposition 2.4. Let f : Y → GrassN−r(PN ) = CN−r,1(PN ) be the classifying map
associated to the data of a rank r vector bundle E on Y provided with N + 1 generating
global sections. Then

〈f〉 ∈
∏
i

Hi(Y,H2N−2r+i(PN )) =
j=r∏
j=0

H2j(Y,Z)

is naturally identified with the total chern class of E.

Proof. Clearly, it suffices to take f to be the identity id, corresponding to the universal
algebraic vector bundle of rank r over G = GrassN−r(PN ) generated by N + 1 global
sections.

By Example 2.2, the correspondence homomorphism for the Chow correspondence
νr : P r → GrassN−r(PN ) induces an isomorphism

Φνr : H∗(P r)→ H∗+2N−2r(PN ). (2.3.1)

Moreover, using the idenitification of ΦE as the inverse of cap product with τE and the
identification of Φνr in terms of iterates of ΦO(1), we conclude that (2.3.1) sends the
oriented generator of H2j(P r) to the oriented generator of H2j+2N−2r(PN ).

By Example 2.2, Φνr = δPN ◦ sN−r ◦ΣN−r ◦ (δP r )−1. Using the identification of Φνr

on H∗(P r) achieved above and the usual splitting Z0(P r) '
∏
iK(Z, 2i), we conclude that

εr : P r → Z0(P r) is homotopic to the composition sN−r ◦ ΣN−r ◦ εr. This implies that

sN−r ◦ ΣN−r : Z0(P r)→ ZN−r(PN )→ Z0(P r)

is homotopic to the identity.
We consider the following diagram

P r → Z0(P r) = Z0(P r) ' ∏r
j=0K(Z, 2j)

ΣN−r
y y

G → ZN−r(PN ) sN−r

→ Ω2N−2rZ0(PN ) ' ∏N
i=N−rK(Z, 2i− 2N − 2r)

11



whose splittings are chosen in the usual manner and whose right vertical arrow is the
evident equivalence. The commutativity of this diagram follows from our verification that
sN−r ◦ ΣN−r is homotopic to the identity. The bottom row of this diagram determines
〈f〉, whereas the homotopy type of the composition

G→ ZN−r(PN )
(ΣN−r)−1

→ Z0(P r) '
r∏
j=0

K(Z, 2j)

is shown by Lawson-Michelsohn [L-M] to be the total chern class of the universal bundle
over G.

Recall that the cohomology H∗(P (E)) of the projectivization P (E) of a rank r vector
bundle E over Y is multiplicatively isomorphic to H∗(Y ) × H∗(P r−1) if and only if the
total chern class c(E) vanishes in positive degrees.

Question 2.5. Let f : Y → Cr(X) be a Chow correspondence. What are the implications
for H∗(|Zf |) of the condition that 〈f〉 be trivial?

3. Reformulations

The purpose of this section is to demonstrate that Φf ⊗Q restricts to the correspon-
dence homomorphism φf on H̃∗(Y,Q), the domain of definition of φf as constructed in
[F-M].

For any simplicial set T , there are natural maps

SP e(SP d(T ))→ SP de(T )

which induce a transfer
tr : Z(Z(T ))→ Z(T ).

This leads to a homology transfer

τ∗ ≡ δZ(T ) ◦ tr∗ ◦ (δT )−1 : H∗(Z(T ))→ H∗(T ).

Similarly, for a C.W. complex B, we obtain

tr : Z0(Z0(B))→ Z0(B) , τ∗ : H∗(Z0(B))→ H∗(B)

where tr is induced by the abelian group structure on Z0(B).
Recall that the Hurewicz homomorphism ηB : π∗(B)→ H∗(B) for any C.W. complex

B can be defined as the composition

ηB = δB ◦ i∗ : π∗(B)→ π∗(Z0(B))→ H∗(B)

where i : B → Z0(B) is the natural inclusion (cf. [D-T]). We record the following imme-
diate consequence of the fact that tr : Z0(A)→ A induced by the abelian group structure
of a topological abelian group A satisfies the condition tr ◦ i = idA.
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Lemma 3.1 Let A be a C.W. complex with the structure of a abelian topological group.
Then

ξA ≡ tr∗ ◦ (δA)−1 : H∗(A)→ π∗(A)

has the property that ξA ◦ ηA equals the identity of π∗(A).

The following reformulation of the correspondence homomorphism Φf involves only
maps in homology, so that it lends itself more readily to comparison with the constructions
of [F-M].

Proposition 3.2 Let f : Y → Cr,d(X) be a Chow correspondence of relative dimension
r ≥ 0. Then

Φf : H∗(Y )→ H∗+2r(X)

is given by the following composition

H∗(Y )
f∗→ H∗(Cr,d(X))

j∗→ H∗(Zr(X))
id⊗[P r]→ H∗(Zr(X))⊗H2r(P r)

→ H∗+2r(Zr(X)× P r) (#)∗→ H∗+2r(Zr+1(X#P r))
(Σr+1)−1

→ H∗+2r(Z0(X)) τ∗→ H∗+2r(X).

In the above composition, the unmarked arrow is the inclusion of a Künneth summand,
j : Cr,d(X) → Zr(X) is the natural inclusion, τ∗ is the homology transfer map, and the
map # : Zr(X) × P r → Zr+1(X#P r) is given by sending (Z, t) to Z#t (and factors
through the smash product Zr(X) ∧ Z0(P r)).

In particular, if r = 0, then Φf = τ∗ ◦ j∗ ◦ f∗.

Proof. In [F2;1.5], the r-th iterate of the s-map is shown to be induced by the pairing

(Σr+1)−1 ◦# : Zr(X)× P r → Zr+1(X#P r)→ Z0(X),

where Σr+1 is the map which sends a cycle to its r + 1-st algebraic suspension. Conse-
quently, the upper rows of the following diagram determine Φf whereas the lower rows
determine the asserted composition, so that it suffices to check its commutativity:

H∗(Y )
(δY )−1

→ π∗(Z0(Y ))
(Γf )∗→ π∗(Zr(X))

=
xy xξZr(X)

H∗(Y )
f∗→ H∗(Cr,d(X))

j∗→ H∗(Zr(X))

and

π∗(Zr(X))⊗ π2r(Z0(P r))
(#)∗→ π∗+2r(Zr+1(X#P r))

(Σr+1)−1

→ π∗+2r(Z0(X))

ξZr(X) ⊗ δ−1
P r

x ξZr+1(X#P r)

x xξZ0(X)

H∗(Zr(X))×H2r(P r)
(#)∗→ H∗+2r(Zr+1(X#P r))

(Σr+1)−1

→ H∗+2r(Z0(X))
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The commutativity of the first diagram follows from the equality Γf = tr ◦ j∗ ◦ f∗ :
Z0(Y ) → Zr(X), whereas the commutativity of the second diagram follows immediately
from naturality of the Dold-Thom isomorphisms and tr∗.

We recall that for e sufficiently large, there exists a map ψe : Cr+1,d(X#P r) →
C0,de(X) with the property that Σr+1 ◦ψe is algebraically homotopic to multiplication by
e (cf. [F;3.5)]). Thus, ψe represents e times the Lawson inverse of Σr+1.

Proposition 3.3. The correspondence homomorphism Φf : H∗(Y )→ H∗+2r(X) sends a
class c ∈ H∗(Y ) to

(Φψe+1#f − Φψe#f )(c× [P r]) = τ∗ ◦ j∗ ◦ (ψe+1#f − ψe#f)∗(c× [P r])

where ψe#f denotes the composition

Y × P r f×1→ Cr,d(X)× P r #→ Cr+1,d(X#P r)
ψe→ C0,de(X)

and j : C0,de(X)→ Z0(X) is the natural inclusion.

Proof. The equality Φψe#f = τ∗ ◦ j∗ ◦ (ψe#f)∗ is given by Proposition 3.2. To compare
this with Φf , we consider the following diagram:

Y × P r → Cr,d(X)× P r → Cr+1,d(X#P r)
ψe→ C0,de(X)

↓ ↓ ↓ ↓
Y × P r → Zr(X)× P r → Zr+1(X#P r)

(Σr+1)−1

→ Z0(X) e→ Z0(X)

whose vertical arrows are the natural inclusions and the composition of whose top row
is ψe#f . Then all squares but the right-most square commute, whereas the right-most
square commutes up to homotopy. Proposition 3.2 implies that the map in homology
induced by the bottom row when applied to c × [P r] and then composed with τ∗ yields
Φf (c) for any c ∈ H∗(Y ). The homotopy commutativity of the diagram implies the asserted
identification of Φf (c× [P r]).

Theorem 3.4. Let f : Y → Cr,d(X) be a Chow correspondence with Y smooth of
dimension n, and let Z be the associated equidimensional geometric correspondence in
Y ×X. Then

Φf = φZ : H∗(Y )→ H∗+2r(X)

where φZ is defined as the composition of the Poincaré duality isomorphism D and slant
product with [Z].

Proof. For r = 0, the equality Φf = φZ follows from Proposition 1.2 and the verification
in [F-M;4.5] that φZ = p∗ ◦ γ!

d ◦ f∗.
Let T (e) in Y × P r ×X denote the cycle associated to ψe#f : Y × P r → C0,de(X)

for e sufficiently large as in Proposition 3.3. Let W in (Y × P r) × (X#P r) denote the
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cycle associated to the map f#1 : Y × P r → Cr+1,d(X#P r). We consider the following
diagram

H∗(Y )
×[P r]−→ H∗+2r(Y × P r) = H∗+2r(Y × P r)

D
y D

y yD
H2n−∗(Y )

pr∗
1−→ H2n−∗(Y × P r) = H2n−∗(Y × P r)

\[Z]

y \[W ]

y
y\[T (e+ 1)]− [T (e)]

H∗+2r(X)
Σr+1

∗−→ H∗+4r+2(X#P r)
Σr+1

∗←− H∗+2r(X)

The composition of the maps of the right vertical column is φT (e+1) − φT (e), which by
the special case r = 0 equals Φψe+1#f − Φψe#f . Thus, Proposition 3.3 implies that the
composition of the maps of the upper row and right column is Φf .

Since Σr+1
∗ is an isomorphism by Example 2.2, to prove the theorem it suffices to

prove the commutativity of the diagram. Only the two lower squares require verification.
The commutativity of the left lower square is given by the following equalities for any
α ∈ H2n−∗(Y ):

Σr+1
∗ (α \ [Z]) = α \ (Σr+1

Y )∗([Z]) = pr∗
1(α) \ [W ]

where ΣY denotes the fibrewise suspension over Y . The first of these equalities follows
from Example 2.3 and a standard property of slant products (cf [D]). To verify the second
equality, observe that

(Σr+1
Y )∗([Z]) = [Σr+1

Y (Z)]

by (1.3.1). Thus, the second equality follows from the projection formula for slant product
(cf. [D;11.7]) and the fact that the projection pr1,3 : Y × P r × Σr+1(X)→ Y × Σr+1(X)
sends W to Σr+1

Y (Z). (The generic fibre of W over Y ×P r is a cycle on Σr+1X with Chow
point the image under Σr+1 : Cr,d(X)→ C2r+1,d(X#P r) of the Chow point of the generic
fibre of Z over Y ; since Σr+1 sends the Chow point of a cycle to the Chow point of the
(r + 1)-st suspension of that cycle, we readily equate pr1,3W and Σr+1

Y (Z) by comparing
generic fibres over Y .)

To prove the commutativity of the right lower square, we demonstrate the equalities

Σr+1
∗ (β \ [T (e)]) = β \ Σr+1

∗ ([T (e)]) = β \ e · [W ]

for any β ∈ H2n−∗(Y × P r) and any e > 0. The first of these equalities follows as above
from Example 2.3. To prove the second, observe that Σr+1T (e), eW are the associated
cycles of the Chow correspondences

νr+1 ◦ ψe#f , e · (# ◦ f × 1) : Y × P r → Cr+1(X#P r)

Since multiplication by e is algebraically homotopic to νr+1 ◦ ψe, the last equality follows
from the following sublemma.
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Sublemma. Let F : Y ×A1 → Cr,d(X) be a continuous algebraic map relating f, g : Y →
Cr,d(X). Then the associated cycles Zf , Zg in Y ×X are rationally equivalent.

Proof. Let ZF denote the cycle in Y × A1 × X associated to F . As shown in [F-M],
the cycles Zf , Zg are given by the intersection-theoretic pull-backs of ZF via the standard
inclusions i0, i1 : Y ×X → Y ×A1 ×X:

Zf = i!0(ZF ) , Zg = i!1(ZF ).

On the other hand, since ZF is flat over A1, i!t(ZF ) equals the fibre associated to the
geometric fibre of ZF above t for any point t ∈ A1.

For any Chow correspondence f : Y → Cr,d(X), a map

φf : H̃∗(Y ; Q)→ H∗+2r(X; Q)

is defined in [F-M;4.2], where H̃∗(Y ; Q) ⊂ H∗(Y ; Q) consists of homology classes of lowest
weight with respect to the Mixed Hodge Structure on H∗(Y ; Q). The map φf is defined
using a resolution of singularities q : Y ′ → Y (i.e., Y ′ is smooth and q is proper and
birational) by the condition that

φf (c) = φZ′(c′)

where c′ ∈ H∗(Y ′; Q) satisfies p(c′) = c and where Z ′ is the cycle associated to f ◦q : Y ′ →
Cr,d(X).

The following is an immediate corollary of Theorem 3.4 and the naturality of Φf .

Corollary 3.5. For any Chow correspondence f : Y → Cr,d(X), the correspondence
homomorphism φf : H̃∗(Y ; Q) → H∗+2r(X; Q) constructed in [F-M] is the restriction to
H̃∗(Y ; Q) ⊂ H∗(Y ; Q) of Φf ⊗Q.

4. Comparison of Filtrations

In this section, we use Φf to define and compare filtrations on H∗(X).

Definition 4.1. Let r, i be non-negative integers. The r-th geometric subgroup (whose
cohomological formulation was considered by A. Grothendieck in [G])

GrH2r+i(X) ⊂ H2r+i(X)

is the subgroup generated by elements of H2r+i(X) which lie in the image of maps f∗ :
H2r+i(W )→ H2r+i(X) as f : W → X ranges over morphisms with domainW of dimension
≤ r + i. The r-th correspondence subgroup

CrH2r+i(X) ⊂ H2r+i(X)
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is the subgroup generated by elements ofH2r+i(X) which lie in the image of correspondence
homomorphisms Φf : Hi(Y )→ H2r+i(X) as f ’s range over Chow correspondences f : Y →
Cr,d(X) with Y projective of dimension ≤ i and d ≥ 0. The r-th topological subgroup

TrH2r+i(X) ⊂ H2r+i(X)

is the image of the composition

πi(Zr(X)) sr

−→ πi+2r(Z0(X)) δX→ Hi+2r(X).

The following theorem is a generalization of the main result of [F-M] to the case of
singular varieties. Furthermore, our theorem is a refinement of that of [F-M] even for
smooth varieties, for it is a comparison of filtrations on homology with integer coefficients.

Theorem 4.2. Let r, i be non-negative integers. Then for any projective variety X

CrH2r+i(X) = TrH2r+i(X) ⊂ GrH2r+i(X).

Proof. The (elementary) equalities

CrH2r(X) = TrH2r(X) = GrH2r(X)

are proved in [F-M;7.1]; we assume below that i > 0.
We define Φr as

Φr ≡ τ∗ ◦ (Σr+1)−1 ◦ (#)∗ ◦ (1⊗ [P r]) :

H∗(Zr(X))→ H∗+2r(Zr(X)×P r)→ H∗+2r(Zr+1(X#P r))→ H∗+2r(Z0(X))→ H∗+2r(X)

and define
Φr,d ≡ Φr ◦ jr,d∗ : H∗(Cr,d(X))→ H∗+2r(X)

where jr,d : Cr,d(X) → Z0(X) is the natural inclusion. Since any correspondence homo-
morphisms Φf factors through some Φr,d by Proposition 3.2,

CrH2r+i(X) ⊂ Φr(Hi(Zr(X))).

For any d > 0, we intersect Cr,d(X) with hypersurfaces H1, ..., Ht(d) (dimCr,d(X) =
t(d) + i), such that Hj contains the singular locus and all irreducible components of di-
mension < t(d) + i− (j − 1) of Cr,d(X)∩H1 ∩ · · · ∩Hj−1 and furthermore meets properly
each irreducible component of dimension t(d) + i− (j − 1) of this intersection. Let

fd : Yd = Cr,d(X) ∩H1 ∩ ... ∩Ht(d) → Cr,d(X)
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denote the inclusion; so defined, Yd has dimension i. The Lefschetz hyperplane theorem
for singular varieties (cf. [A-F]) applied to these successive intersections implies that

Φfd
(Hi(Yd)) = Φr,d(Hi(Cr,d(X))).

We conclude that
CrH2r+i(X) = Φr(Hi(Zr(X))).

In the above discussion, we are applying the Andreotti-Frankel result to ambient
varieties (the varieties Cr,d(X)∩H1∩· · ·Hj−1) which are not necessarily irreducible. Since
the statement of the theorem in [A-F] requires the ambient variety be irreducible, let us
note that their proof does not, in fact, need irreducibility: the essential key to their proof is
that the complement of the hypersurface in the ambient variety is a Stein variety. But since
(even in the general case of a not necessarily irreducible ambient variety) the hypersurface
to be removed contains the singular locus of the ambient variety, the complement of that
hypersurface is a disjoint union of Stein varieties and thus itself Stein. Hence, their theorem
holds without the assumption of irreducibility.

The pair of commutative diagrams in the proof of Proposition 3.2 implies the equality

Φr = δX ◦ sr ◦ ξZr(X).

Since ξZr(X) ◦ ηZr(X) = 1 this implies the equality

δX ◦ sr = Φr ◦ ηZr(X).

These two equalities immediately imply the equality

TrH2r+i(X) = CrH2r+i(X).

To prove the inclusion CrH2r+i(X) ⊂ GrH2r+i(X), we consider f : Y → Cr,d(X)
with Y of dimension ≤ i. Then (1.4.1) implies that Φf has image contained in the the
image of Hi+2r(Vf )), where Vf = prX∗(|Zf |). Since the dimension of |Zf | is ≤ i + r, we
conclude that im(Φf ) ⊂ GrH2r+i(X). On the other hand, CrH2r+i(X) is by definition
the union of such im(Φf ).
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