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Abstract. For a finite group scheme G over a field k of characteristic p > 0,
we associate new invariants to a finite dimensional kG-module M . Namely,
for each generic point of the projectivized cohomological variety ProjH•(G, k)
we exhibit a “generic Jordan type” of M . In the very special case in which
G = E is an elementary abelian p-group, our construction specializes to the
non-trivial observation that the Jordan type obtained by restricting M via a
generic cyclic shifted subgroup does not depend upon a choice of generators
for E. Furthermore, we construct the non-maximal support variety Γ(G)M , a
closed subset of Proj H•(G, k) which is proper even when the dimension of M
is not divisible by p.

0. Introduction

Elementary abelian p-subgroups of a finite group G capture significant aspects
of the cohomology and representation theory of G. For example, if k is a field of
characteristic p > 0, then a theorem of D. Quillen [17] asserts that the Krull dimen-
sion of the cohomology algebra H•(G, k) is equal to the maximum of the ranks of
elementary abelian p-subgroups of G and a theorem of L. Chouinard [6] asserts that
a kG-module is projective if and only if its restrictions to all elementary abelian
p-subgroups of G is projective. The cohomology algebra H•(E, k) of an elemen-
tary abelian p-group E is easily computed, whereas kE is of wild representation
type provided that the rank of E is at least 2 (at least 3, for p = 2). Nonethe-
less, Chouinard’s theorem and Quillen’s geometric description of Spec H•(G, k) [17]
provide the basis for interesting invariants of kG-modules, most notably the coho-
mological support variety |G|M of a kG-module M .

The investigation of the cohomology and representation theory of finite groups
is naturally extended to other algebraic structures. Friedlander and B. Parshall
developed a theory of support varieties for finite dimensional p-restricted Lie alge-
bras g over a field k of characteristic p > 0 (e.g., [9]). For restricted Lie algebras,
the role of the group algebra kG of the finite group G is played by the restricted
enveloping algebra u(g). Indeed, restricted Lie algebras lead one to more interest-
ing geometrical structures than do finite groups, and seemingly lead to stronger
results. For example, the theorem of G. Avrunin and L. Scott [1] identifying the
cohomological support variety |E|M of a finite dimensional kE module M for an
elementary abelian p-group E with the rank variety of J. Carlson [3] admits a for-
mulation in the case of a restricted Lie algebras g in terms of closed subvarieties of
the p-nilpotent cone of g (cf. [9], [14], [19]).

Finite groups and finite dimensional p-restricted Lie algebras are examples of
finite group schemes. The representation theory of a finite group scheme is the
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study of kG-modules, where kG is the group algebra of G defined to be the k-linear
dual of the representing Hopf algebra k[G]. A fundamental theorem of Friedlander
and Suslin [13] is that the cohomology algebra H∗(G, k) is finitely generated for
any such finite group scheme.

If G is an affine algebraic group over k, then the rth Frobenius kernel G =
G(r) ≡ ker{F r : G → G(r)} is an infinitesimal group scheme (i.e. a connected
finite group scheme). Such Frobenius kernels play an important role in the study
of (rational) representations of G: the family {G(r); r > 0} faithfully captures the
representation theory of G. In [18], [19], Suslin, Friedlander, and C. Bendel extend
to all infinitesimal group schemes G earlier work on the cohomology and support
varieties of finite dimensional p-restricted Lie algebras (whose restricted enveloping
algebras are the group algebras of infinitesimal group schemes of height 1).

In [10], [12], Friedlander and Pevtsova present a uniform approach to the study
of the cohomology and related representation theory of all finite group schemes.
This approach involves the use of π-points of G, which are finite flat maps of K-
algebras K[t]/tp → KG for field extensions K/k; these play the role of “cyclic
shifted subgroups” in the case that G is an elementary abelian p-group and the
role of 1-parameter subgroups in the case that G is an infinitesimal group scheme.
In [12], the space Π(G) of equivalence classes [αK ] of π-points αK : K[t]/tp →
KG of G is given a scheme structure without reference to cohomology such that
Π(G) is isomorphic as a scheme to Proj H•(G, k). In particular, there is a natural
bijection between such equivalence classes of π-points and homogeneous prime ideals
of H•(G, k). The perspective of π-points leads to the considerations of this present
paper.

As was first suggested in [8], this representation-theoretic interpretation of sup-
port varieties can be refined to determine invariants of kG-modules which provide
more detailed information than that given by support varieties. Namely, for any
π-point αK : K[t]/tp → KG, one can consider the Jordan type of αK(t) as a nilpo-
tent operator on MK . As one quickly discovers, the answer may vary considerably
depending on the representative αK of an equivalence class of π-points in Π(G).
Even in the case of G = Z/p×Z/p the answer depends on the choice of generators
of E which in turn determines the choice of representative of a π-point (cf. Example
2.3).

The following theorem (cf. Theorem 4.2) provides a new intrinsic invariant of
modular representations of finite group schemes. In particular, in the case of an
elementary abelian group, this invariant is independent of the choice of generators.

g-intro Theorem 0.1. Let G be a finite group scheme, let M be a finite dimensional G-
module and let αK be a π-point of G which represents a generic point [αK ] ∈ Π(G).
Then the Jordan type of αK(t) viewed as a nilpotent operator on MK depends only
upon [αK ] and not the choice of αK representing [αK ].

For a given generic point [αK ] ∈ Π(G) and a given finite dimensional kG-module
M , we call the Jordan type of αK(t) on MK the generic Jordan type of M (at [αK ]).
As we verify in Proposition 4.7, sending a module M to its generic Jordan type
[αK ]∗(MK) for generic [αK ] ∈ Π(G) determines a well defined tensor triangulated
functor on stable module categories [αK ]∗ : stmod(kG) → stmod(K[t]/tp). In other
words, generic Jordan type is well-behaved with respect to short exact sequences,
direct sums, tensor products, and Heller shifts.
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We establish Theorem 0.1 by successively considering more general finite group
schemes, beginning with elementary abelian p-groups and then abelian finite group
schemes in §2 and then infinitesimal group schemes in §3 before treating the gen-
eral case in §4. The following theorem (cf. Theorem 1.12) concerning commuting
nilpotent matrices provides the key to our proof of Theorem 0.1.

Theorem 0.2. Let k be an infinite field and let α, α1, . . . , αn be a set of commuting
nilpotent n × n matrices such that the Jordan type of α is greater or equal to the
Jordan type of any α + c1α1 + · · · + cnαn for all ci ∈ k. Then the Jordan type of
α is greater or equal to the Jordan type of any polynomial in α, α1, . . . , αn without
constant term.

For a given kG-module M , some but not necessarily all of the generic Jordan
types are maximal, but maximal Jordan types are also realized at non-generic
points. The locus of non-maximal Jordan types for a given finite dimensional kG-
module M provides us with a geometric invariant Γ(G)M which agrees with the
support variety of M if and only if the maximal type of M is projective. (cf.
Theorems 4.10, 5.2).

Theorem 0.3. Let G be a finite group scheme over k and M a finite dimensional
kG-module. Then whether or not α∗K(MK) is maximal depends only upon the equiv-
alence class of αK , [αK ] ∈ Π(G). The set of those equivalence classes of π-points
αK : K[t]/tp → KG such that α∗K(M) is not of maximal type is a closed subvariety

Γ(G)M ⊂ Π(G)

of Π(G) ' ProjH•(G, k).

The prototype of our non-maximal support variety Γ(G)M was introduced by
W. Wheeler ([21]) for elementary abelian p-groups. Our construction significantly
strengthens Wheeler’s result even in the case of an elementary abelian p-group E,
since we do not rely upon a fixed set of generators for E.

The reader will find various examples throughout the paper intended to illustrate
some of these new invariants and their behavior. More sophisticated examples which
reflect deeper properties of the representation theory of G are considered in [4].

In §1, k will denote an infinite field and in subsequent sections k will denote an
arbirary field of characteristic p > 0. If M is a k-vector space and K/k is a field
extension, we use the notation MK to denote M ⊗k K. If M is a finite dimensional
k vector space equipped with the structure of a k[t]/tp-module, then the data of the
block sizes of M as a k[t]/tp-module (or, equivalently, of the Jordan form of t viewed
as an endomorphism of M) will be called the Jordan type of M . In particular, the
Jordan type of the k[t]/tp-module M is the same as that of the K[t]/tp-module MK

for any field extension K/k. We employ the notation H•(G, k) for the commutative
k-algebra given as the full cohomology algebra H∗(G, k) of G if char (k) = 2 and
for the subalgebra of H∗(G, k) generated by classes homogeneous of even degree if
p 6= 2.

We are pleased to acknowledge useful conversations with Steve Smith. Friedlan-
der and Suslin gratefully acknowledge the support of the Institute for Advanced
Study, and Friedlander and Pevtsova gratefully acknowledge the hospitality of the
Max-Planck Institut in Bonn.
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1. Maximality for commuting nilpotent matrices

In this section, we consider a finite set of pair-wise commuting nilpotent matrices
α1, . . . , αn with coefficients in an infinite field k. Theorem 1.12 establishes that
maximality of the Jordan type among all polynomials in the αi’ s is realized by
some linear combination of the αi’ s. This theorem is the essential step in our
investigation in later sections of maximality of Jordan types associated to finite
dimensional representations of finite group schemes.

Given two partitions n = n1 ≥ n2 . . . ,≥ nN , and m = m1 ≥ m2 . . . ,≥ mN of N
we say that n dominates m, or n ≥ m, if

∑

1≤j≤k

nj ≥
∑

1≤j≤k

mj for 1 ≤ k ≤ N

(see [7, 6.2.1]).

Definition 1.1. Let α ∈ MN (k) be an N × N nilpotent matrix with coefficients
in k. The Jordan type of α is the partition of N , n = n1 ≥ n2 ≥ · · · ≥ ns

with
∑

j nj = N , such that the canonical Jordan form of α is a direct sum of
indecomposable blocks of size nj .

If α, β ∈ MN (k) are two nilpotent matrices, we write α ≥ β (and say that
the Jordan type of α is greater or equal to the Jordan type of β) if the partition
associated to α is greater or equal to the partition associated to β. The condition
that α ≥ β is equivalent to the condition that

ordering (1.1.1) rank (αs) ≥ rank (βs), ∀s > 0,

(see [7, 6.2.2]) which in turn is equivalent to the condition that

dimkKer (αs) ≤ dimkKer (βs), ∀s > 0.

We denote by ∼ the equivalence relation associated to this partial ordering:

α ∼ β iff α ≤ β and β ≤ α.

Observe that α ∼ β if and only if α and β have the same Jordan type if and only
if they are conjugate (under the adjoint action of GLN (k)) elements of MN (k).

The data of the Jordan type of a nilpotent matrix α ∈ MN (k) is equivalent to
each of the following:

• the isomorphism class of kN as a k[t]-module, with t acting as α;
• the data of the ranks of αs, ∀s > 0;
• the data of the dimensions of the kernels of αs,∀s > 0.

If M is an N -dimensional k[t]-module with t acting nilpotently, then we shall fre-
quently refer to the “Jordan type of M” rather than the Jordan type of the matrix
in MN (k) given by the action of t.

rkmax-equiv Lemma 1.2. Let α, α1, · · · , αn ∈ MN (k) be a family of commuting nilpotent ma-
trices with coefficients in an infinite field k. The following conditions are equivalent:

(1) For all λ1, · · · , λn ∈ k,

rank (α) ≥ rank (α + λ1α1 + · · ·+ λnαn),

where α, α + λ1α1 + · · ·+ λnαn are viewed as matrices in MN (k).
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(2) For every field extension K/k, all λ1, · · · , λn ∈ K,

rank (α) ≥ rank (α + λ1α1 + · · ·+ λnαn),

where α, α + λ1α1 + · · ·+ λnαn are viewed as matrices in MN (K).
(3) For t1, . . . , tn independent variables in the field k(t1, . . . , tn) of rational

functions in n variables over k,

rank (α) = rank (α + t1α1 + · · ·+ tnαn).

Proof. For any A ∈ MN (k) and any pair of subsets I, J ⊂ {1, . . . , N} of cardinality
s ≤ N , denote by AI,J the associated minor, an s × s submatrix of A. The
condition rankA ≥ s is equivalent to the condition that there exist I and J such
that det(AI,J ) 6= 0. For any I and J as above, consider

dI,J (t1, . . . , tn) = det((α + t1α1 + · · ·+ tnαn)I,J)

where t1, . . . , tn are independent variables in the field k(t1, . . . , tn). Let K/k be an
arbitrary field extension. Then dI,J (t1, . . . , tn) = 0 if and only if dI,J (λ1, . . . , λn) =
0 for almost all λ1, . . . , λn ∈ K. Thus,

rank (α + t1α1 + · · ·+ tnαn) ≥ rank (α + λ1α1 + · · ·+ λnαn) for all λ1, ..., λn ∈ K

rank (α+t1α1+· · ·+tnαn) = rank (α+λ1α1+· · ·+λnαn) for almost all λ1, ..., λn ∈ K.

¤

Since the argument of the proof of Lemma 1.2 applies equally to all powers of
α, we immediately conclude the following proposition.

max-equiv Proposition 1.3. Let α, α1, · · · , αn ∈ MN (k) be a family of commuting nilpotent
matrices with coefficients in an infinite field k. Then the following conditions are
equivalent:

(1) For all λ1, · · · , λn ∈ k,

α ≥ α + λ1α1 + · · ·+ λnαn.

(2) For every field extensions K/k, all λ1, · · · , λn ∈ K,

α ≥ α + λ1α1 + · · ·+ λnαn.

(3) For t1, . . . , tn independent variables in the field k(t1, . . . , tn) of rational
functions in n variables over k,

α ∼ α + t1α1 + · · ·+ tnαn

in MN (k(t1, . . . , tn)).

Definition 1.4. We say that α is rank maximal with respect to α1, . . . , αn provided
that the equivalent conditions of Lemma 1.2 are satisfied for α, α1, · · · , αn ∈ MN (k).

Similarly, we say that α is maximal with respect to α1, . . . , αn if the equivalent
conditions of Proposition 1.3 are satisfied for α, α1, · · · , αn ∈ MN (k).

existence Remark 1.5. Let α1, . . . , αn ∈ MN (k) be a family of nilpotent commuting matri-
ces. There exists α ∈ MN (k) satisfying the conditions of Proposition 1.3. Indeed,
let s1, . . . , sn be a set of indeterminants. Let

αs = s1α1 + · · ·+ snαn ∈ MN (k(s1, . . . , sn)).

Observe that αs = s1α1+· · ·+snαn ∼ (s1+t1)α1+· · ·+(sn+tn)αn = αs+t1α1+· · ·+
tnαn as elements of MN (k(s1, . . . , sn, t1, . . . , tn)). Indeed, (s1 + t1)α1 + · · ·+ (sn +
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tn)αn can be specialized to s1α1+· · ·+snαn by setting ti = 0. On the other hand, if
one makes a change of variables s′i = si+ti, then αs = (s′1−t1)α1+ · · ·+(s′n−tn)αn

can be specialized to αs + t1α1 + · · ·+ tnαn = s′1α1 + · · ·+ s′nαn by taking ti = 0.
Thus, αs has the same Jordan type as αs + t1α1 + · · · + tnαn. Proposition 1.3
implies that αs is maximal with respect to α1, . . . , αn.

By upper semi-continuity of the Jordan type, there exists an open dense subset in
An

k such that for any (λ1, . . . , λn) from that subset we have αλ = λ1α1+· · ·+λnαn ∼
αs. For any such λ, α = αλ satisfies the conditions of Proposition 1.3.

We proceed to investigate the rank-maximality condition in the special case of
two commuting matrices. For any commuting nilpotent matrices α, β ∈ MN (k) set

Wα,β =
⋃

µ∈k∗
Ker (α + µβ) ⊂ km,

the subspace spanned by the union of the subspaces Ker (α + µβ). Since α, β
commute, each Ker (α + µβ) is invariant under both α and β.

two Lemma 1.6. Let α, β ∈ MN (k) be a pair of commuting matrices and set W =
Wα,β. Then β(W ) = α(W ) ⊂ W and hence

(α + λβ)(W ) ⊂ α(W ) for all λ ∈ k.

Proof. For any µ ∈ k∗, the restriction of β to Ker (α + µβ) equals −µ−1 times the
restriction of α to this Kernel and hence β(Ker (α + µβ)) = α(Ker (α + µβ)). Thus
β(W ) = α(W ). The second claim is now obvious. ¤

Using Lemma 1.6, we obtain a useful criterion for when α is rank-maximal with
respect to α, β.

image Lemma 1.7. Let k be an infinite field, let α, β ∈ MN (k) be two commuting nilpo-
tent matrices, and set W = Wα,β. Then the following conditions are equivalent

• α is rank-maximal with respect to β.
• Ker (α) ⊂ W .

Proof. Set r = maxλ∈krank (α+λβ). As seen in the proof of Lemma 1.3, for all but
finitely many λ ∈ k we have an equality rank (α + λβ) = r and α is rank-maximal
with respect to β if and only if rank (α) = r, i.e. dim(Ker (α)) = N−r. By Lemma
1.6, rank (α|W ) ≥ rank ((α + λβ)|W ) for all λ ∈ k with equality holding for all
but finitely many λ’s. Thus for a “generic” λ ∈ k, we have the following chain of
equalities and inequalities:

dim(Ker α) ≥ dim((Ker α) ∩W ) = dim(Ker (α|W ))

= dim(Ker ((α + λβ)|W ) = dim(Ker (α + λβ)) = N − r

where the last but one equality holds since Ker (α + λβ) ⊂ W for all λ ∈ k∗

by definition of W . This chain shows that dim(Ker α) = m − r if and only if
Kerα ⊂ W . ¤

Lemma 1.7 will now enable us to prove the following key property of rank-
maximality. In some sense, the property proved in Proposition 1.8 is the essential
case of the general maximality result of Theorem 1.12.
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two-max Proposition 1.8. Let k be an infinite field and let α, β ∈ MN (k) be two commuting
nilpotent matrices with α rank-maximal with respect to β. Then for any nilpotent
matrix γ ∈ MN (k) commuting with both α and β,

rank (α) = rank (α + βγ).

Proof. Set W = Wα,β . Since γ commutes with α and β, W is γ-invariant.
We first verify that α(W ) = (α + βγ)(W ). To prove this formula it suffices to

show that α(Vµ) = (α + βγ)(Vµ), where µ ∈ k∗ and V = Vµ = Ker (α + µβ). This
follows immediately from the following relations:

α|V = −µ · β|V (α + βγ)|V = −µ · β|V · (1− µ−1 · γ|V )

since the matrix 1− µ−1 · γ|V is invertible.
Next we show that Ker (α + βγ) ⊂ W . Let v ∈ Ker (α + βγ) be an arbitrary

vector. We are going to show that γi(v) ∈ W for all i ≥ 0 using descending
induction on i. Since γ is nilpotent, this statement is trivial for i large enough.
Assume now that γi+1(v) ∈ W . Then α(γi(v)) = −βγi+1(v) = β(−γi+1(v)) ∈
β(W ) = α(W ). Thus there exists w ∈ W such that α(γi(v) − w) = 0. Hence
γi(v) ∈ W + Ker α = W , since Ker α ⊂ W according to Lemma 1.7.

Using α(W ) = (α + βγ)(W ) and Ker (α + βγ) ⊂ W , we conclude that

rank (α + βγ) = N − dim(Ker (α + βγ)) = N − dim(Ker ((α + βγ)|W )) =

= N − dimW + dim (α + βγ)(W ) = N − dimW + dim α(W ) =

= N − dim Ker α|W = N − dim Ker α = rank α.

¤

The following theorem establishes that rank-maximality with respect to linear
combinations of α1, . . . , αn implies rank-maximality with respect to all polynomials
in α1, . . . , αn. Our ultimate theorem, Theorem 1.12, refines this by replacing rank-
maximality by maximality.

rk-thm Theorem 1.9. Let α, α1, · · · , αn, β1, . . . , βn ∈ MN (k) be a family of commuting
nilpotent matrices, with k an infinite field. Assume that α is rank-maximal with
respect to the family α1, ..., αn. Then α is also rank-maximal with respect to the
family α1, ..., αn, α1β1, . . . , αnβn.

Moreover, rank α = rank (α + α1β1 + . . . αnβn).

Proof. Our procedure is to expand the family of matrices with respect to which α
is rank-maximal.

Our first (and key) step is to show that we can add α1β1. We proceed to verify
that

rank α = rank (α + t1α1 + · · ·+ tnαn + tα1β1)

for independent variables t1, ..., tn, t. Observe that α+ t1α1 + ...+ tnαn is obviously
rank-maximal with respect to α1, so that Proposition 1.8 thus implies that

rank (α + t1α1 + · · ·+ tnαn + tα1β1) = rank (α + t1α1 + · · ·+ tnαn).

On the other hand,

rank (α + t1α1 + · · ·+ tnαn) = rank α

in view of rank-maximality of α with respect to α1, . . . , αn.
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Iterating this procedure, we see that we can add all terms of the form αiβi to our
family, thereby establishing the rank-maximality of α with respect to the family
α1, . . . , αn, α1β1, . . . , αnβn.

To prove the rank-maximality of α + α1β1 + . . . αnβn and the equality rank α =
rank (α + α1β1 + . . . αnβn), we first verify these assertions with α1β1. The equality
of ranks follows immediately from Proposition 1.8. There remains to show that for
independent variables t1, . . . , tn we have the equality

rank (α + α1β1) = rank (α + α1β1 + t1α1 + · · ·+ tnαn).

Since α + t1α1 + · · · + tnαn is maximal with respect to α1, two applications of
Proposition 1.8 imply the equalities

rank (α + t1α1 + ... + tnαn + α1β1) = rank (α + t1α1 + · · ·+ tnαn) = rank α =

= rank (α + α1β1).

Finally, we get the general case by iterating this procedure. ¤

To extend Theorem 1.9 to establish maximality of Jordan types, we employ the
following auxilliary construction which reduces maximality to rank-maximality of
associated matrices. Denote by Js ∈ Ms(k) the Jordan block of size s, i.e. Js is
a nilpotent matrix which acts on the standard basis of ks according to the rule
Js(e1) = 0, Js(ei) = ei−1 (2 ≤ i ≤ s).

Lemma 1.10. For any finite dimensional k-vector space V and any α ∈ Endk(V ),
there is a natural isomorphism

Ker (αs) ' Ker (α⊗ 1s + 1V ⊗ Js).

Proof. Any v ∈ V ⊗ ks can be written uniquely in the form v1 ⊗ e1 + ... + vs ⊗ es

with appropriate v1, . . . , vs ∈ V . Moreover

(α⊗ 1s + 1V ⊗ Js)(v1 ⊗ e1 + · · ·+ vs ⊗ es) =
s−1∑

i=1

(α(vi) + vi+1)⊗ ei + α(vs)⊗ es.

Thus, equations defining Ker (α⊗ 1s + 1V ⊗ Js) look as follows:

α(v1) = −v2, α(v2) = −v3, . . . , α(vs−1) = −vs, α(vs) = 0.

We conclude that v1 determines all other components via the formulae

vi = (−1)i−1αi−1(v1),

and the only equation for v1 is αs(v1) = 0, i.e. v1 ∈ Ker αs. ¤

multi-max Corollary 1.11. Let α, α1, . . . , αn ∈ MN (k) be a family of commuting nilpotent
matrices with k an infinite field. Then the following conditions are equivalent.

• rank (αs) ≥ rank (α + λ1α1 + · · ·+ λnαn)s ∀λ1, · · · , λn ∈ k
• α⊗ 1s + 1N ⊗ Js is rank-maximal with respect to α1 ⊗ 1s, · · · , αn ⊗ 1s

We now formulate the main theorem of this section, a result which will play
a key role in later sections in our consideration of “local maximality” for finite
dimensional modules for an arbitrary finite group scheme.
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Jor-thm Theorem 1.12. Let α, α1, . . . , αn, β1, . . . βn ∈ MN (k) be a finite set of commut-
ing nilpotent matrices with k an infinite field. Assume that α is maximal with
respect to the family α1, . . . , αn. Then α is also maximal with respect to the family
α1, ..., αn, α1β1, . . . , αnβn.

Moreover,
α ∼ α + α1β1 + · · ·+ αnβn.

Proof. This follows immediately by combining Theorem 1.9 and Corollary 1.11. ¤

By taking βi to be polynomials in αj without constant term, we obtain the
following special case of Theorem 1.12.

Jor-pol Corollary 1.13. Assume that α is maximal with respect to a family α1, . . . , αn ∈
MN (k) of commuting nilpotent matrices. Then

α ≥ α + q(α1, . . . , αn)

for any polynomial q ∈ k[X1, . . . , Xn] with no non-zero constant term.
Moreover if q ∈ k[X1, . . . , Xn] with no non-zero constant or linear term, then

α ∼ α + q(α1, . . . , αn).

Remark 1.14. In a few degenerate cases considered below, we shall (implicitly)
have to include the possibility that α, α1, . . . , αn ∈ MN (k) with k finite. Then we
shall say α is maximal with respect to α1, . . . , αn provided that this is the case
when viewing these matrices in MN (K) for some infinite field extension K/k.

2. Maximal Jordan types for abelian finite group schemes
one

If E = Z/p×r is an elementary abelian p-group, then a choice of generators
g1, . . . , gr ∈ E determines an isomorphism kE ' k[t1, . . . , tr]/(tp1, . . . , t

p
r) given by

sending gi to ti + 1. A cyclic shifted subgroup of E with respect to the set of
generators {g1, . . . , gr} is a map of k-algebras specified by some λ = (λ1, . . . , λr) ∈
kr

αλ : k[t]/tp → k[t1, . . . , tr]/(tp1, . . . , t
p
r), t 7→

r∑

i=1

λiti.

A theorem of W. Wheeler [21] asserts that for any finite dimensional kE-module
M , the subset of those λ ∈ kr for which α∗λ(M) is not of maximal Jordan type is
Zariski closed in Ar.

In this section, we use Theorem 1.12 to verify that this maximal Jordan type is
an invariant of the kE-module M independent of the choice of generators of kE. In
particular, the intrinsic, basis-free nature of this maximal Jordan type tells us that
this Jordan type is also maximal if we view the action of kE on M as the action
of the restricted enveloping algebra u(E) of a rank r abelian Lie algebra E with
trivial p-restriction determined by an arbitrary choice of k-algebra isomorphism of
kE ' kG×r

a(1) = u(E).
In Theorem 2.9, this intrinsic maximal Jordan type is shown to extend to the data

of an arbitrary finite abelian group scheme over k acting upon a finite dimensional
k-vector space.

In [10] (as corrected in [11]) and [12], the first two authors consider “π-points”,
an alternative to shifted subgroups of E that generalizes to any finite group scheme.
We recall this alternative in the following definition.
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Definition 2.1. Let G be a finite group scheme over k with group algebra kG. A
π-point of G is a (left) flat map of K-algebras

αK : K[t]/tp → KG

which factors through the group algebra KCK ⊂ KG of some unipotent abelian
subgroup scheme CK ⊂ GK defined over some field extension K/k.

A π-point αK is said to specialize to the π-point βL if for every finite dimensional
kG-module M the condition that β∗L(ML) is free as an L[t]/tp-module implies that
α∗K(MK) is free as a K[t]/tp-module.

If αK specializes to βL and βL specializes to αK , then we say that αK is equiv-
alent to βL (denoted by αK ∼ βL). The equivalence class of the π-point αK is
denoted [αK ].

One of the fundamental properties of π-points is that there is a natural homeo-
morphism

homeo (2.1.1) ΨG : Π(G) ∼→ ProjH•(G, k)

from the space Π(G) of equivalence classes of π-points of G (with topology intrinsi-
cally determined by kG-modules) to ProjH•(G, k) with its Zariski topology, where
H•(G, k) is the commutative algebra of even dimensional cohomology of G for p
odd and the commutative algebra of all cohomology of G for p = 2.

The following proposition makes explicit the equivalence relation αK ∼ βL on
π-points of an elementary abelian p-group E.

explicit Proposition 2.2. Let E = Z/p×r be an elementary abelian p-group viewed as a
finite group scheme over k. Choose some k-linear isomorphism

kE ' k[t1, . . . , tr]/(tp1, . . . , t
p
r).

Let αK : K[t]/tp → KE, βL : L[t]/tp → LE be two π-points of kE. Then
αK ∼ βL if and only if there exist embeddings K ⊂ Ω, L ⊂ Ω over k of K, L into
some field extension Ω over k and some 0 6= ω ∈ Ω such that

(αK ⊗K Ω)(t)− ω(βL ⊗L Ω)(t) ∈ Ω[t1, . . . , tr]/(tp1, . . . , t
p
r)

is a polynomial in the ti’s with no non-zero constant or linear term.

Proof. The projectivized rank variety of E can be identified with the projective
space Proj I/I2 (see [2, II.4]) over an algebraically closed field Ω of characteristic
p where I denotes the augmentation ideal of ΩE. Since Ω-rational points on the
projectivized rank variety of E are precisely equivalence classes of π-points defined
over Ω ([10, 2.6,2.9]), one concludes that two Ω-rational π-points α, β : Ω[t]/tp →
ΩE, are equivalent if and only if there exists is 0 6= ω ∈ Ω such that α(t)−ωβ(t) ∈
I2.

To prove the “if” direction, we observe that non-equivalent π-points remain
non-equivalent after base change. Thus, the argument of the preceding paragraph
implies that the asserted condition is sufficient to imply αK ∼ βL.

Conversely, assume that αK , βL are equivalent as π-points of kE. Let Ω/k be
an algebraically closed field containing both K and L. Let σ : Ω → Ω be a field
automorphism of Ω over k, and consider the action on π-points

σ : αΩ 7→ ασ
Ω
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given by sending αΩ to the Ω-algebra map which sends t to (αΩ(t))σ. If ρ : kG →
Endk(M) specifies a kG-module M , then ρ(ασ

Ω(t)) when viewed as a matrix is
simply the result of applying σ to the matrix entries of ρ(αΩ(t)).

The assertion that αΩ, βΩ are equivalent as π-points of kE implies the existence
of some automorphism σ of Ω/k with the property that αΩ, βσ

Ω are equivalent as
π-points of ΩE. This is easily verified (as in [12, 4.6]) by viewing equivalence
classes of αΩ, βΩ as Ω-rational points of Proj H•(G, Ω) which map to the same
point in ProjH•(G, k). Thus, another application of the argument in the first
paragraph implies that we may find some ω ∈ Ω such that αΩ(t) − ω · βσ

Ω(t) ∈
Ω[t1, . . . , tr]/(tp1, . . . , t

p
r) is a polynomial in the ti’s with no non-zero constant or

linear term. Now twisting the embedding of L ⊂ Ω by the automorphism σ we
obtain the desired relationship between αK and βL.

¤
The following example reflects the “typical” situation in which equivalent π-

points α, β of an elementary abelian group E lead to non-isomorphic k[t]/tp-modules
α∗(M), β∗(M).

depend Example 2.3. Assume p > 2. Let E = Z/p×2 be an elementary abelian group
of rank 2, choose an identification of kE with k[x, y]/(xp, yp), and let M be the
kE-module (with respect to this identification of kE) defined as the quotient
k[x, y]/(x2 − y, xp) of kE. Let α : k[t]/tp → k[x, y]/(xp, yp) be defined by sending
t to x2 − y and let β : k[t]/tp → k[x, y]/(xp, yp) be defined by sending t to y. One
readily checks that the k[t]/tp-module α∗(M) is trivial whereas β∗(M) consists of
two Jordan blocks of sizes p+1

2 and p−1
2 . Then α ∼ β by Proposition 2.2, but α∗(M)

is not isomorphic to β∗(M).

The observation that the Jordan type can change when one replaces a cyclic
shifted subgroup by another within the same equivalence class was made earlier by
S. Kaptanoglu, who also observed that for E = Z/2×2 this phenomenon does not
occur ([16]).

A major conclusion of our work is that if α∗K(MK) has “maximal Jordan type”
for a finite dimensional kG-module M as defined below, then β∗L(MK) has the same
Jordan type whenever αK ∼ βL. We prove this for an arbitrary finite group scheme
G, proceeding in incremental steps of increasing generality, beginning with the case
of an elementary abelian p-group.

Definition 2.4. Let G be a finite group scheme over k and let M be a kG-module
of dimension N . We say that a partition n of N is a maximal Jordan type for
M if there exists some π-point αK : K[t]/tp → KG such that the Jordan type of
α∗K(MK) equals n and if there does not exist a π-point βL : L[t]/tp → LG such
that the Jordan type of β∗L(ML) is strictly greater than n.

Furthermore, we say that a partition n of N is the absolute maximal Jordan type
for M if there exists some π-point αK : K[t]/tp → KG such that the Jordan type
of α∗K(MK) equals n and if n is greater or equal to the Jordan type of β∗L(ML) for
every π-point βL of G.

Remark 2.5. If Π(G) is irreducible and if αK is a generic π-point of G, then
α∗K(MK) has absolute maximal Jordan type by Corollary 4.11. On the other hand,
we shall see in Example 4.13 that a kG-module can have more than one maximal
Jordan type if Π(G) is reducible.
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images Remark 2.6. Let M be a kG-module and αK : K[t]/tp → KG be a π-point
of G such that α∗K(MK) has a maximal Jordan type. Let i : CK ⊂ GK be a
subgroup scheme such that αK factors as i ◦ α′K : K[t]/tp → KCK → KG. Then
α∗K(MK) = α′∗K(i∗MK) is a maximal Jordan type for the restriction of MK to CK .

The following theorem is a re-interpretation of Theorem 1.12 in terms of π-points
of an elementary abelian p-group E = Z/p×r viewed as a finite group scheme over
k. We say that a π-point of a finite group scheme G is generic if its equivalence
class is a generic point of Π(G). One example of a generic π-point of E = Z/p×r is
the map

generic (2.6.1) αk(x1,...,xr) : k(x1, . . . , xr)[t]/tp → k(x1, . . . , xr)E, t 7→
r∑

i=1

xi · (gi − 1)

where {g1, . . . , gr} is a set of generators for E.

elem-ab Theorem 2.7. Let E be an elementary abelian p-group of rank r, and let αK :
K[t]/tp → KE be any generic π-point of E. Then for any finite dimensional kE-
module M , the Jordan type of α∗K(MK) is the absolute maximal Jordan type for
M .

Moreover, let M be a finite dimensional kE-module and αK be a π-point of E
such that the Jordan type of α∗K(MK) is the absolute maximal Jordan type for M .
Then for any βL ∼ αK , the Jordan type of β∗L(ML) equals that of α∗K(MK).

Proof. If r = 1, the assertion is trivial so that we may assume r > 1. Let {g1, . . . , gr}
be a set of generators for E, and let {ti = gi − 1}1≤i≤r be the corresponding
polynomial generators of kE. Let ρ : kG → Endk(M) specify the kG-module
structure of M . According to Remark 1.5, the π-point αk(x1,...,xr) of (2.6.1) has the
property that ρ(αk(x1,...,xr)(t)) is maximal with respect to the set {ρ(t1), . . . , ρ(tr)}.
Theorem 1.12 thus implies that the Jordan type of ρ(αk(x1,...,xr)(t)) is greater or
equal to the Jordan type of ρ(βK(t)) for any π-point βK : K[t]/tp → KG. Thus,
α∗k(x1,...,xr)(Mk(x1,...,xr)) has absolute maximal Jordan type.

As mentioned above, αk(x1,...,xr) is a generic π-point of E. Thus, to complete
the proof of the theorem, it suffices to prove the second assertion. Let M be a
given finite dimensional kE-module M with kE-structure specified by ρ : kE →
Endk(M). Assume that α∗K(MK) has maximal Jordan type so that ρ(αK(t)) is
maximal with respect to the set {ρ(t1), . . . , ρ(tr)}. Since multiplying βΩ by a scalar
does not change the Jordan type of β∗Ω(MΩ), Proposition 2.2 enables us to assume
that αΩ(t) − βΩ(t) ∈ Ω[t1, . . . , tr]/(tp1, . . . , t

p
r) is a polynomial in the ti’s with no

non-zero constant or linear term for some field extension Ω/k. Since extension of
scalars evidently preserves the “maximality” property, we still have that ρ(αΩ(t))
is maximal with respect to the set {ρ(t1), . . . , ρ(tr)}. Theorem 1.12 implies that
ρ(αΩ(t)) has the same Jordan type as ρ(βΩ(t)), thereby verifying that α∗Ω(MΩ) and
β∗Ω(MΩ) have the same Jordan type. Since extension of scalars preserves Jordan
type, we conclude that α∗K(MK) and β∗L(ML) have the same Jordan type. ¤

The following lemma enables us to frequently replace k by a conveniently chosen
finite field extension F/k.

exten Lemma 2.8. Let G be a finite group scheme defined over k, let αK , βL be π-points
of G, and let F/k be a finite normal extension. Then αK ∼ βL as π-points of G
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if and only if there exist embeddings of the composites K̃ = FK, L̃ = FL in some
field extension Ω/F such that α eK ⊗ eK Ω, βeL ⊗eL Ω are equivalent π-points of GF .

Moreover, for any finite field extension F/k, we have that αK is a generic π-point
of G if and only if α eK is a generic π-point of GF , where K̃ is again a composite
of F and K.

Proof. Observe that αK , βL are equivalent π-points of G if and only if their base
changes α eK : K̃[t]/tp → K̃G, βeL : L̃[t]/tp → L̃G remain equivalent π-points of G.
Thus, it suffices to assume that K̃ = K, L̃ = L, so that F ⊂ K ∩ L.

We first consider the case in which F/k is separable and thus Galois. In this
case, H•(G, k) → H•(G,F ) = H•(G, k)⊗k F is a Galois map, so that

Π(GF ) ' ProjH•(GF , F ) → ProjH•(G, k) ' Π(G)

is a finite Galois covering. In particular, the pre-image of any generic point of Π(G)
is a generic point of Π(GF ) and any two points in the pre-image of a given point
of Π(G) (such as [αK ] = [βL]) are conjugate by an element of Gal(F/k). Since the
isomorphism Π(GF ) ' ProjH•(GF , F ) is compatible with the Galois action (see
[12, 4.5]), we get αK ∼ βL as π-points of G if and only if αΩ ∼ βσ

Ω as π-points of
GF . Twisting the embedding of L into Ω by σ, we obtain the desired result.

More generally, F/k factors as F/F s/k where F s/k is separable and F/F s is
purely inseparable. Now, the map H•(G,F s) → H•(G,F ) is a purely inseparable
isogeny, so that

Π(GF ) ' ProjH•(GF , F ) → ProjH•(GF s , F s) ' Π(GF s)

is a bijection. Thus, the general case follows.
¤

We now generalize Theorem 2.7 to an arbitrary finite abelian group scheme.

ab Theorem 2.9. Let C be an abelian finite group scheme over k and let αK : K[t]/tp →
KC be any generic π-point of C. Then for any finite dimensional kC-module M ,
α∗K(MK) has absolute maximal Jordan type.

Moreover, let M be a finite dimensional kC-module and αK be a π-point of C
such that α∗K(MK) has maximal Jordan type. Then for any βL ∼ αK , the Jordan
type of β∗L(ML) equals that of α∗K(MK).

Proof. Let CD be the Cartier dual of C. By [12, 4.2], we may find some finite
extension F/k such that CD

F = (CD
F )0 × π0(CD

F ), where (CD
F )0 is the connected

component of CD
F . Dualizing again, we obtain

CF = (CD
F )D = ((CD

F )0)D × (π0(CD
F ))D

The first factor is coconnected which is equivalent to unipotent, and the second
factor is dual to an etale group scheme, and, hence, is semi-simple. Lemma 2.8
enables us to assume that C itself is a product of a unipotent abelian finite group
scheme and a semi-simple finite abelian group scheme.

Since any π-point of C necessarily factors (by definition) through a unipotent
abelian subgroup scheme of C, we may assume that C is itself unipotent. Let k̄
be the perfect closure of k. By [20, 14.4], the group algebra k̄C is of the form
k̄[t1, . . . , tr]/(tp

e1

1 , . . . , tp
er

r ). Since every generator ti is defined over some finite
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subextension k′/k, we can find a finite purely inseparable L/k such that LC =
L[t1, . . . , tr]/(tp

e1

1 , . . . , tp
er

r ). Hence, applying Lemma 2.8 again, we may assume

kC ' k[t1, . . . , tr]/(tp
e1

1 , . . . , tp
er

r ).

Let Ti = tp
ei−1

i . Any π-point αK : K[t]/tp → KC must send t to a polynomial in

the ti’s, each monomial of which is divisible by some Tj = tp
ej−1

j since tp = 0. As
seen in Remark 1.5, the π-point

αk(x1,...,xr) : k(x1, . . . , xr)[t]/tp → k(x1, . . . , xr)[t1, . . . , tr]/(tp
e1

1 , . . . , tp
er

r )

sending t to
∑

i xiTi is a generic π-point of C; moreover, ρ(αk(x1,...,xr)(t)) is max-
imal with respect to {ρ(T1), . . . , ρ(Tr)} for any finite dimensional kC-module with
structure specified by ρ by Theorem 2.7. Thus, α∗k(x1,...,xr)(Mk(x1,...,xr)) has abso-
lute maximal Jordan type for any finite dimensional kC-module M by Theorem
1.12. Moreover, if M is a specified finite dimensional kC-module with structure
specified by ρ and if α∗K(MK) has absolute maximal Jordan type and if βL ∼ αK ,
then as in the proof of Thereom 2.7 we conclude that Theorem 1.12 implies that
α∗K(MK) and β∗L(ML) have the same Jordan type. ¤

3. Generic and maximal Jordan types for infinitesimal group schemes

Recall that a finite group scheme G over k is said to be infinitesimal if its coordi-
nate algebra k[G] is a (Artinian) local k-algebra. The height of such an infinitesimal
group scheme is the least integer r such that fpr

= 0 for all f in the maximal ideal
of k[G]. A 1-parameter subgroup of an infinitesimal group scheme G of height ≤ r
over some field extension K/k is a morphism Ga(r),K → GK of finite group schemes
over K. If G is an infinitesimal group scheme of height ≤ r, then the functor

(f.g. commutative k-algebras) → (sets)

A 7→ Homgrpsch/A(Ga(r),A, GA)

is representable by an affine scheme denoted Vr(G) = Spec k[Vr(G)] ([18, 1.5]).
Here, GA is the group scheme over A given by base change, GA = G×Spec k Spec A.

In particular, there is a universal 1-parameter subgroup

universal (3.0.1) u : Ga(r),k[Vr(G)] → Gk[Vr(G)]

associated to the identity map of k[Vr(G)] for any infinitesimal group scheme G. In
some ways, the existence of this universal 1-parameter subgroup makes the study
of representations of infinitesimal group schemes more tractable than the represen-
tations of finite groups.

In order to relate 1-parameter subgroups to π-points, we use the map of group
algebras

kGa(1) = k[t]/tp → k[u0, . . . , ur−1]/(up
0, . . . , u

p
r−1) = kGa(r), t 7→ ur−1

where ui is the basis element dual to tp
i

(so that ui = 1
pi!

dpi

dtpi ). This is a map of
Hopf algebras if and only if r = 1 (in which case, we view this map as the identity).
We employ the notation

ε : kGa(1) → kGa(r)
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for this map of group algebras, and stay alert to the fact that ε is not necessarily a
map of Hopf algebras. In this way, we obtain a map

Θ̃G : Vr(G)\{0} → Π(G)

which induces a homeomorphism (see [19, 5.2] and [12, 3.6]) of Zariski topological
spaces

homeo1 (3.0.2) ΘG : Proj (Vr(G)) → Π(G).

This construction sends x : Spec k(x) → Vr(G) to

µx∗ ◦ ε : k(x)[t]/tp → k(x)Ga(r),k(x) → k(x)Gk(x) = k(x)G,

where µx∗ : k(x)Ga(r),k(x) → k(x)Gk(x) is the map on group algebras induced by
the 1-parameter subgroup µx associated to the point x ∈ Vr(G) with residue field
k(x). Indeed, the composition ΨG ◦ΘG of the homeomorphisms (2.1.1) and (3.0.2)
is induced by the isogeny exhibited in [19, 5.2].

1-parameter subgroups give us “natural” representatives for equivalence classes
of π-points. As we now verify, for each finite dimensional kG-module M and each
[αK ] ∈ Π(G), the Jordan type of α∗K(MK) is independent of the 1-parameter sub-
group representing [αK ].

same Proposition 3.1. Let G be an infinitesimal group scheme. For any π-point αK ,
let x ∈ Vr(G)\{0} project onto [αK ] ∈ Π(G). Then

µx∗ ◦ ε : k(x)[t]/tp → k(x)G ∼ αK : K[t]/tp → KG.

Moreover, if µ : Ga(r),K → GK , ν : Ga(r),L → GL are non-zero 1-parameter
subgroups of G which map to the same equivalence class of π-points in Π(G), then
the Jordan type of (µ∗ ◦ ε)∗(MK) is the same as the Jordan type of (ν∗ ◦ ε)∗(ML).

Proof. The first assertion is merely a recollection of the definition of ΘG , granted
that ΘG(x) = [αK ].

If µ : Ga(r),K → GK is a 1-parameter subgroup for some field extension K/k
and if k(x) is the residue field at the point x ∈ Vr(G) determined by the map
Spec K → Vr(G) corresponding to µ, then µ determines an extension K/k(x) of
fields over k and

(3.1.1) µ = µx ×Spec k(x) Spec K.

In particular, (µ∗ ◦ ε)∗(MK) has the same Jordan type as (µx∗ ◦ ε)∗(Mk(x)).
Assume now that µ : Ga(r),K → GK , ν : Ga(r),L → GL are 1-parameter sub-

groups determining the same point of Π(G). By the preceding paragraph, we may
assume that K = L. Then µ, ν are related by the action Vr(G) × A1 → Vr(G)
reflected in the grading of the coordinate algebra k[Vr(G)]. As can be seen us-
ing [19, 1.12], the action of some a ∈ A1(K) sends µ∗ ◦ ε : K[t]/tp → KG to
apr−1

(µ∗ ◦ ε) : K[t]/tp → KG. Thus, (µ∗ ◦ ε)∗(MK) has the same Jordan type as
(ν∗ ◦ ε)∗(MK). ¤

We say that a point η ∈ Vr(G) specializes to a point ζ ∈ Vr(G) if there exists
a map ψ : Spec R → Vr(G) where R is a local, integral k-algebra whose field
of fractions has image η and whose residue field has image ζ. More generally, if
µ : Ga(r),K → G, ν : Ga(r),L → G are 1-parameter subgroups obtained by base
change from η, ζ and if η specializes to ζ, then we say µ specializes to ν.
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special Proposition 3.2. Let G be an infinitesimal group scheme. Assume that the 1-
parameter subgroup µ : Ga(r),K → G specializes to the 1-parameter subgroup ν :
Ga(r),L → G. Then for any finite dimensional kG-module M , the Jordan type of
(µ∗ ◦ ε)∗(MK) is greater or equal to the Jordan type of (ν∗ ◦ ε)∗(ML).

Proof. Let η, ζ ∈ Vr(G) be such that µ : Ga(r),K → KG, ν : Ga(r),L → LG are
obtained by base change from µη, µζ . Let ψ : Spec R → Vr(G) be a morphism
with R a local, integral k-algebra whose field of fractions Ω has image η and whose
residue field F has image ζ. This corresponds to an R-group scheme homomorphism
ψ : Ga(r),R → GR. By Proposition 3.1, if suffices to consider the R[t]/tp-module
obtained as the pull-back of MR via ψ ◦ ε and show that the Jordan form of the
endomorphism t on MR ⊗R Ω is greater or equal to the Jordan form of the endo-
morphism t on MR ⊗R F . This in turn is equivalent to proving for all i, 1 ≤ i < p,
that the rank of ti on MR ⊗R Ω is greater or equal to the rank of ti on MR ⊗R F .
This “upper-semicontinuity” property follows easily from Nakayama’s Lemma. ¤

A simple geometric argument shows that if η ∈ Vr(G) projects onto [αK ], ζ ∈
Vr(G) projects onto [βL], and [βL] is a specialization of [αK ] as points of Π(G), then
η specializes to ζ as points of Vr(G) as formulated prior to Proposition 3.2. . The
following property of Jordan types if now an immediate corollary of Propositions
3.1 and 3.2.

Corollary 3.3. Let G be an infinitesimal group scheme, and consider a π-point
αK : K[t]/tp → KG specializing to the π-point βL : L[t]/tp → LG. Let µ :
Ga(r),Ω → GΩ, ν : Ga(r),Σ → GΣ be non-zero 1-parameter subgroups of G which
project to [αk], [βL] ∈ Π(G). Then, for any finite dimensional kG-module M , the
Jordan type of (µ∗ ◦ ε)∗(MΩ) is greater or equal to the Jordan type of (ν∗ ◦ ε)∗(MΣ)

Using Theorem 2.9, we now establish the well-definedness of the generic Jordan
type (i.e., independence of the choice of representing generic π-point) of a finite
dimensional kG module for any infinitesimal group scheme G.

infin-gen Theorem 3.4. Let G be an infinitesimal group scheme over k and let

αK : K[t]/tp → KG, βL : L[t]/tp → LG

be equivalent generic π-points of G. Then for any finite dimensional kG-module
M , α∗K(MK) has the same Jordan type as β∗L(ML).

Proof. Write αK = iC ◦α′K : K[t]/tp → KCK → KG where CK ⊂ GK is an abelian
subgroup scheme (which is necessarily unipotent). Choose a 1-parameter subgroup
µ : Ga(r),K → CK such that [µ∗ ◦ ε] = [α′K ] ∈ Π(CK) and let η : Ga(r),Ω → CΩ be
another 1-parameter subgroup such that η∗ ◦ε is a generic π-point of CK . Let M be
a kG-module. By Theorem 2.9, (η∗ ◦ ε)∗(i∗CMΩ) has maximal Jordan type among
all γ∗F (i∗CMF ) as γF ranges over all π-points of CK . Since (iC ◦η ◦ ε)∗ ∼ (iC ◦µ◦ ε)∗
as π-points of G, Proposition 3.1 implies that (µ∗ ◦ε)∗(i∗CMK) has the same Jordan
type as (η∗ ◦ ε)∗(i∗CMΩ), and thus is maximal among all γ∗F (i∗CMF ) as γF ranges
over all π-points of CK . Since µ∗ ◦ ε ∼ α′K as π-points of CK , Theorem 2.9 implies
that the Jordan type of α∗K(MK) = α′K(i∗CMK) is also the same as the Jordan type
of (µ∗ ◦ ε)∗(i∗CMK).

Consider βL : iD ◦ β′ : L[t]/tp → LDL → LG equivalent to αK (where DL ⊂ GL

is an abelian subgroup scheme) and let ν : Ga(r),L → GL be a 1-parameter subgroup
scheme such that [ν∗ ◦ ε] = [β′L] ∈ Π(DL). The preceding argument tells us that
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the Jordan type of β∗L(ML) is the same as the Jordan type of (ν∗ ◦ ε)∗(i∗DML). On
the other hand, Proposition 3.1 implies that the Jordan type of (µ∗ ◦ ε)∗(i∗CMK)
equals that of (ν∗ ◦ ε)∗(i∗D(ML) since µ∗ ◦ ε ∼ αK ∼ βL ∼ ν∗ ◦ ε. ¤

As seen implicitly in the proof of Theorem 2.9, Π(C) is irreducible if C is an
abelian finite group scheme. However, this is not true for a general finite group
scheme, even in the case of a height 1 infinitesimal group scheme (i.e., a restricted
Lie algebra). For example, the nullcone of a Borel subalgebra of a reductive Lie
algebra is not necessarily irreducible for small primes (cf. [5]). If Π(G) is not
irreducible, then the Jordan type at a generic point need not be maximal, but
Corollary 4.11 asserts that maximal Jordan types for a given finite dimensional
module M are realized at generic points.

Of course, maximal Jordan types can be realized at π-points which are not
generic. We see in the following theorem that if the Jordan type for a given kG-
module is maximal at some π-point then this Jordan type is independent of the
representative of that π-point.

infin-max Theorem 3.5. Let G be an infinitesimal group scheme over k and M a finite
dimensional kG-module. Let βL : L[t]/tp → LG be a π-point of G with the property
that the Jordan type of β∗L(ML) is maximal. Then for any π-point αK : K[t]/tp →
KG which specializes to βL the Jordan type of α∗K(MK) equals the Jordan type of
β∗L(ML).

Proof. Write αK = iC ◦ α′K : K[t]/tp → KCK → KG and βL = iC ◦ β′L :
L[t]/tp → LDL → LG with CK ⊂ GK , DL ⊂ GL abelian subgroup schemes.
Let µ : Ga(r),K → CK , ν : Ga(r),L → DL be 1-parameter subgroups such that
[β′L] = [ν∗ ◦ ε] ∈ Π(DL) and [α′K ] = [µ∗ ◦ ε] ∈ Π(CK). The maximality of
β∗L(ML) = (β′L)∗(i∗DML) and the fact that β′L ∼ ν∗ ◦ ε imply by Theorem 2.9 that
the Jordan type of β∗L(ML) equals that of (ν∗ ◦ ε)∗(i∗DML) = ((iD ◦ ν)∗ ◦ ε)∗(ML).
Because αK ∼ (iC ◦ µ)∗ ◦ ε specializes to βL ∼ (iD ◦ ν)∗ ◦ ε, Proposition 3.2
implies that ((iC ◦µ)∗ ◦ ε)∗(MK) is likewise maximal. Thus, applying Theorem 2.9
to αK ∼ (iC ◦ µ)∗ ◦ ε, we conclude that α∗K(MK) is also maximal. ¤

4. Generic and maximal Jordan types for arbitrary finite group
schemes

Let G be a finite group scheme of the form Go o τ , where the connected com-
ponent Go ⊂ G is geometrically connected and where τ = π0(G) is the (constant)
group of connected components of G. For each elementary abelian p-subgroup
E ⊂ τ , define Π0((Go)E × E) ⊂ Π((Go)E × E) to be the subset of those π-points
which do not admit a representative factoring through (Go)E×E′ with E′ a proper
subgroup of E.

Recall the “Quillen decomposition” for Π(G) by locally closed subspaces ([12,
4.13]):

disjoint (4.0.1)
∐

Π0((Go)E × E)/Nτ (E) ' Π(G)

where the disjoint union is indexed by conjugacy classes of elementary abelian p-
subgroups of τ , and where Nτ (E) denotes the normalizer of E ⊂ τ .
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In order to consider the Jordan types α∗K(MK) for specific π-points representing
[αK ] ∈ Π(G), we sharpen somewhat this decomposition by considering π-points up
to the finer equivalence defining Π(H) for subgroups H of the form (Go)E × E.

specific Proposition 4.1. Let G be a finite group scheme of the form Go o τ , with τ =
π0(G) constant and Go geometrically connected. Assume given [αK ] ∈ Π(G) and a
representative

αK = i ◦ α′K : K[t]/tp → K((Go)E × E) → KG

of [αK ].
Then there exists a π-point α′′K : K[t]/tp → K((Go)E × E′) equivalent to α′K as

a π-point of (Go)E × E with E′ ⊂ E such that [αK ] ∈ Π0((Go)E′ × E′).

Proof. Let α′K : K[t]/tp → K((Go)E × E) be given by

t 7→
m∑

i=1

aifi +
r∑

j=1

bjsj + p(f, s) ∈ K(Go)E ⊗K KE,

where {fi; 1 ≤ i ≤ n} is a set of commuting nilpotent elements of K((Go)E), where
sj = gj − 1 with {g1, . . . , gr} ⊂ E a set of generators for E, and where p(f, s) is a
polynomial in the fi, sj without constant or linear term. Let α′′K,0 be a π-point of
G0 defined by

α′′K,0(t) =
m∑

i=1

aifi

and α′′K,1 be a π-point of τ defined by

α′′K,1(t) =
r∑

j=1

bjsj

Finally, let
α′′K = α′′K,0 + α′′K,1

and let E′ ⊂ E equal the minimal subgroup such that
∑r

j=1 bjsj ∈ KE′. By [10,
2.2] and a simple base change argument, α′′K is equivalent to α′K as a π-point of
(Go)E × E.

To complete the proof, it suffices to show that αK is not equivalent (as a π-point
of G) to some π-point factoring through (Go)E′′ × E′′ for some strictly smaller
subgroup E′′ ⊂ E′. This is immediate if E′ is trivial. Thus, we may assume that
E′ is non-trivial.

Suppose there exists a π-point γL = i′ ◦ γ′L : L[t]/tp → L((Go)E′′ × E′′) → LG

equivalent to αK which factors through (Go)E′′ × E′′ with E′′ ⊂ E′. We may
assume that E′′ is a minimal such subgroup for γL. By passing to a field extension
if necessary, we may assume L = K. As for αK , let γ′′K = γ′′K,0 + γ′′K,1 be the
“linear” part of γ′K with respect to the same set of generators si of KE. If N is a
(finite dimensional) τ -module, let p∗N denote the kG module with action given by
projecting kG to kτ . Observe that (i◦α′′K)∗(MK) is free if and only if (i′◦γ′′K)∗(MK)
is free since i ◦ α′′K ∼ αK ∼ γK ∼ i′ ◦ γ′′K . Since the action of G0 on modules of
the form p∗N is trivial, we conclude that (iE ◦ α′′K,1)

∗(NK) ' (i ◦ α′′K)∗(p∗NK).
Similarly, (i′′E ◦ γ′′K,1)

∗(NK) ' (i ◦ γ′′K)∗(p∗NK). Since N can be taken to be an
arbitrary τ -module, we conclude that iE ◦ α′′K,1 ∼ iE ◦ γ′′K,1 as π-points of τ , where
iE : E ↪→ τ is the embedding of E into τ .
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By the minimality assumption on E′ for α′′K , we conclude that [α′′K,1] ∈ Π0(E′).
Similarly, [γ′′K,1] ∈ Π0(E′′). If E′′ were a proper subgroup of E, then the “Quillen de-
composition” for the finite group τ (see (4.0.1)) would imply that Π0(E′)/Nτ (E′)∩
Π0(E′′)/Nτ (E′′) = ∅ in Π(τ). This contradicts the fact that iE ◦ α′′K,1 ∼ iE ◦ γ′′K,1,
so that we conclude that E′′ = E′ and thus that E′ is minimal as required. ¤

The following theorem is the culmination of special cases proved earlier as The-
orems 2.7, 2.9, and 3.4.

gen Theorem 4.2. Let G be a finite group scheme over k and let

αK : K[t]/tp → KG, βL : L[t]/tp → LG

be equivalent generic π-points of G. Then for any finite dimensional kG-module
M , α∗K(MK) has the same Jordan type as β∗L(ML).

Proof. As seen in [12, 4.2], we may find a finite field extension F/k such that GF

satisfies the hypotheses of Proposition 4.1 that GF splits as a semi-direct prod-
uct Go

F o τ , with τ = π0(GF ) constant and Go
F geometrically connected. Thus,

appealing to Lemma 2.8, we may assume that G itself satisfies these conditions.
Let [αK ] ∈ Π(G) be a generic point and choose some representative αK = iC ◦

α̃K : K[t]/tp → KCK → KG with CK ⊂ GK a unipotent abelian subgroup scheme.
Let E ⊂ π0(CK) be the maximal elementary abelian p-subgroup and observe that
Π(Co

K × E) → Π(CK) is a homeomorphism. Thus, we may choose α′K : K[t]/tp →
K(Co

K × E) ⊂ K((Go)E × E) whose composition with K((Go)E × E) → KG
represents [αK ]. Since αK is generic, α′K is a generic π-point of (Go)E × E. By
Proposition 4.1, we can find α′′K : K[t]/tp → K((Go)E × E′) such that [α′′K ] ∈
Π0((Go)E′ × E′) and α′′K ∼ α′K as π-points of (Go)E × E. The latter implies that
α′′K is generic for (Go)E × E. Since k((Go)E × E) ' k((Go)E × G×r

a(1)) where r is
the rank of E, we may apply Theorem 3.4 to (Go)E × E. Thus,

α∗K(MK) ' α′′∗K (i′∗MK),

where i′ : (Go)E × E′ → G. Repeating this argument for βL, we conclude that

β∗L(ML) ' β′′∗L (j′∗ML)

where β′′L : L[t]/tp → L((G0)F ×F ′) is generic with F ′ ⊂ F , [β′′L] ∈ Π0((G0)F ′×F ′),
and j′ ◦ β′′L ∼ βL. Here, j′ : (G0)F × F ′ ↪→ G.

We therefore obtain [α′′K ] ∈ Π0((G0)E′ × E′), [β′′L] ∈ Π0((Go)F ′ × F ′) such
that α′′K , β′′L become equivalent (generic) π-points of G after composing with the
embeddings of the corresponding subgroup schemes into G. This implies that E′

and F ′ are conjugate by an element of τ ; otherwise

Π0((G0)E ′ × E′)/Nτ (E′) ∩ Π0((G0)F ′ × F ′)/Nτ (F ′)

would be empty, which would contradict the Quillen decomposition (4.0.1). Thus,
after replacing β′′L by a conjugate, which does not affect the Jordan type, we may
assume that α′′K , β′′L are equivalent generic π-points of (G0)E′ × E′. Applying
Theorem 3.4 once again (using the isomorphism k((Go)E′×E′) ' k((Go)E′×G×r′

a(1))
we conclude that the Jordan type of α′′∗K (i′∗MK) equals that of β′′∗L (j′∗ML), and
hence the Jordan type of α∗K(MK) equals that of β∗L(ML). ¤
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We emphasize the conclusion of Theorem 4.2 with the following definition. As
we shall see in examples given at the end of this section, a given kG-module M can
have different Jordan types at different (equivalence classes of) generic π-points;
moreover, at some generic points, the Jordan type need not be maximal.

Definition 4.3. Let G be a finite group scheme and M be a kG-module. A generic
Jordan type of M is the Jordan type of α∗K(MK) for a generic π-point αK of G.
We denote the isomorphism class of α∗(MK) (as a K[t]/tp-module) by

[αK ]∗(MK).

For the purposes of the following proposition we utilize the coproduct on the
algebra k[t]/tp given by the formula ∇(t) = t ⊗ 1 + 1 ⊗ t. We point out here
that this is a temporary convention: as it will be shown in Corollary 4.5 and more
generally in Remark 4.6 the Jordan type of a tensor product of finite dimensional
k[t]/tp-modules does not depend on the Hopf algebra structure given to k[t]/tp.

Since a π-point is not necessary a Hopf algebra map and not even always equiva-
lent to one, the following proposition is somewhat striking, and will not necessarily
hold for a non-generic π-point.

unipotent Proposition 4.4. Let C be a unipotent abelian finite group scheme of k and let
αK : K[t]/tp → KC be a generic π-point of C. Then for any pair of finite dimen-
sional kC-modules M, N ,

α∗K(MK ⊗K NK) ' α∗K(MK)⊗K α∗K(NK).

Proof. Because we may base change to the perfect closure of k without changing
the conclusion, we may assume that k is perfect. Thus, we may assume that
kC ' k[t1, . . . , tr]/(tp

e1 ,
i . . . , tp

er

r ) (see [20, 14.4]). Set Ti = tp
ei−1

i . Then any
π-point β : k[t]/tp → kC sends t to a polynomial in {ti} whose p-th power is
trivial and thus each of whose monomials is divisible by some Ti; the flatness of β
is equivalent to the conditon that some monomial constituting β(t) is a non-zero
multiple of some Ti.

Let ρM : kC → End(M) be the map defined by the representation M of C,
and similarly define ρN and ρM⊗N . Since αK is generic, Theorem 2.9 implies that
ρM (αK(t)) is maximal among the images under ρM of all p-nilpotent elements of
the commutative algebra kC, and similarly for N . Proposition 1.3 implies the
equivalences

Mmax (4.4.1) ρM (αK(t)) ∼ ρM (αK(t)) + s1ρM (T1) + · · ·+ srρM (Tr)

and

Nmax (4.4.2) ρN (αK(t)) ∼ ρN (αK(t)) + sr+1ρN (T1) + · · ·+ s2rρN (Tr)

where si are indeterminants. Therefore,

tensormax (4.4.3) ρM (αK(t))⊗ 1 + 1⊗ ρN (αK(t)) ∼ ρM (αK(t))⊗ 1 + s1ρM (T1)⊗ 1 + · · ·+
srρM (Tr)⊗ 1 + 1⊗ ρN (αK(t)) + 1⊗ sr+1ρN (T1) + · · ·+ 1⊗ s2rρN (Tr)

Indeed, if A is the matrix which makes the endomorphisms of 4.4.1 similar, and B
is such a matrix for 4.4.2, then A ⊗ B makes the endomorphisms in 4.4.3 similar.
Proposition 1.3 implies that ρM (αK(t)) ⊗ 1 + 1 ⊗ ρN (αK(t)) is maximal with re-
spect to {ρM (Ti) ⊗ 1, 1 ⊗ ρN (Tj); 1 ≤ i, j ≤ r}. Thus, Theorem 1.12 implies that
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ρM (αK(t))⊗ 1 + 1⊗ ρN (αK(t)) is maximal with respect to
rho (4.4.4)

{ρM (q(t))⊗ 1, 1⊗ ρN (q′(t)); each monomial of q, q′ divisible by some Ti}.
Let ∇ : kC → kC ⊗ kC be the coproduct on kC. Since ∇(αK(t)) − αK(t) ⊗

1 − 1 ⊗ αK(t) ∈ I ⊗ I (see [15, I.2.4]) and is p-nilpotent, this difference is a sum
of terms each of which is either a product of the form (q(t) ⊗ 1) · (1 ⊗ f(t)) with
each monomial of q(t) divisible by some Ti and with f having no constant term or
a product of the form (g(t) ⊗ 1) · (1 ⊗ q′(t)) with g having no constant term and
each monomial of q(t) divisible by some Ti. Theorem 1.12 and the maximality of
ρM (αK(t))⊗ 1 + 1⊗ ρN (αK(t)) with respect to (4.4.4) imply

ρM (αK(t))⊗ 1 + 1⊗ ρN (αK(t)) ∼ ((ρM ⊗ ρN ) ◦ ∇)(αK(t)) = ρM⊗N (αK(t)).

Thus, α∗K(M)⊗K α∗K(N) and α∗K(MK ⊗K NK) have the same Jordan type.
¤

The following is an interesting, though very special case of Proposition 4.4 in
which αK : K[t]/tp → KC is the identify id : k[t]/tp → k[t]/tp.

indep Corollary 4.5. Let C be a unipotent abelian finite group scheme with kC = k[t]/tp

and let M, N be finite dimensional kC-modules. Then the tensor product of M, N
as kC-modules is isomorphic as a k[t]/tp-module with the tensor product M ⊗ N
using the coproduct ∇(t) = t⊗ 1 + 1⊗ t.

anyHopf Remark 4.6. The proof of Proposition 4.4 does not use the fact that kC is the
Hopf algebra of a group scheme: namely, we do not need cocommutativity of the
coproduct. The only fact about the coproduct which is needed is that ∇(αK(t))−
αK(t)⊗1−1⊗αK(t) ∈ I⊗I which holds for any Hopf algebra (see, for example, ex.3
on p.19, [20]). With this in mind, we can strengthen the statement of the Corollary
4.5 as follows: Let M, N be finite dimensional k[t]/tp-modules, let M ⊗N denote
the k[t]/tp-module determined by the coproduct ∇(t) = t ⊗ 1 + 1 ⊗ t. Then for
any other coproduct ∇′ : k[t]/tp → k[t]/tp ⊗ k[t]/tp associated to a Hopf algebra
structure on k[t]/tp, the resulting k[t]/tp-module is isomorphic to M ⊗N .

Proposition 4.4 provides the key verification to enable us to prove the following
pleasing properties of generic Jordan type.

gen-prop Proposition 4.7. Let G be a finite group scheme over a field k and let [αK ] ∈ Π(G)
be a generic point for some K/k. Let M,N be finite dimensional kG-modules.

• [αK ]∗(MK ⊕NK) ' [αK ]∗(MK)⊕ [αK ]∗(NK).
• [αK ]∗(MK ⊗NK) ' [αK ]∗(MK)⊗ [αK ]∗(NK).
• [αK ]∗(Ω(MK)) = Ω([αK ]∗(MK)) in the stable module category of finite

dimensional K[t]/tp-modules, stmod(K[t]/tp).
Thus, [αK ]∗ : (kG−modules) → (K[t]/tp −modules) induces a functor on tensor
triangulated categories

α∗K : (stmod(kG)) → (stmod(K[t]/tp)).

Proof. The first property follows from the observation that α∗K commutes with
direct sums.

Let αK : K[t]/tp → KG be a generic π-point and let CK ⊂ GK be a unipotent
abelian subgroup scheme through which αK factors. Write αK = i◦α′K : K[t]/tp →
KCK → KG. If we replace α′K by a generic π-point α′′L : L[t]/tp → CL of CK ,
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the new composition i ◦ α′′L represents the same generic point of Π(G). Thus,
[αK ]∗ = [i ◦ α′′L]∗. The second property now follows from the observation that i is
a Hopf algebra map and that Proposition 4.4 applies to α′′L.

The third property follows from the exactness of α∗K and the fact that α∗K sends
projectives to projectives.

¤

The following example exhibits a finite dimensional kG-module M which has at
least two distinct generic Jordan types for any finite group scheme G with Π(G)
reducible. We implicitly use Proposition 4.7 in the justification of this example.

different Example 4.8. Let G be any finite group scheme with Π(G) reducible; for example,
G any finite group with at least two distinct conjugacy classes of maximal elemen-
tary abelian p-subgroups. Write Π(G) = X ∪ Y with X, Y proper closed subsets
and choose generic points [αK ] ∈ X, [βL] ∈ Y . Extending scalars, if necessary, we
can assume L = K. Choose ζ ∈ H2i(G, k), ξ ∈ H2j(G, k) such that

α∗K(ζK) = 0 6= β∗K(ζK) and α∗K(ξK) 6= 0 = β∗K(ξK)

(Here, α∗K is the map in cohomology H∗(G, K) → H∗(K[t]/tp,K) induced by αK .)
Let Lζ , Lξ be the “Carlson modules” associated to ζ, ξ (cf. [2, II.5.9]). Then
α∗K(Lζ,K) fits into the exact sequence of Z/p - modules

0 → α∗K(Lζ,K) → Ω2iK → K → 0

where the map (ζ̃K) ↓αK : Ω2iK → K is given by ζK via the isomorphism
Hom(Ω2iK, K) = H2i(G,K) and then via restriction via αK . Since α∗K(ζK) = 0,
the map (ζ̃K) ↓αK : Ω2iK → K factors through a projective module. Since Ω2iK =
K ⊕ proj as Z/p - modules, we conclude that the kernel α∗K(Lζ,K) = K ⊕ ΩK ⊕
proj . In other words, the Jordan type of α∗K(Lζ,K) is [1]+[p−1]+[ blocks of size p ].

Arguing similarly, we get that β∗K(Lζ,K) and α∗K(Lξ,K) are projective whereas
β∗K(Lξ,K) has Jordan form [1] + [p− 1] + [ blocks of size p ].
Let M = Lζ ⊕ L⊕2

ξ . Then the generic Jordan types [αK ]∗(MK), [βK ]∗(MK) are
different. Indeed, it is enough to show that they stably different, i.e. different
up to projective summands. The stable Jordan type of [αK ]∗(MK) equals that of
[αK ]∗(Lζ,K) which is [1] + [p − 1], whereas the stable Jordan type of [βK ]∗(MK)
equals that of [βK ]∗(L⊕2

ξ,K) which is 2[1] + 2[p− 1]. In particular, MK has absolute
Jordan type [αK ]∗(MK).

We give a familiar example involving finite groups in which there is more than
one generic type, one of which dominates the others.

std-fp Example 4.9. Consider the example of G = GL(3,Fp) with p > 2. The irreducible
components of Π(G) are indexed by the conjugacy classes of maximal elementary
p-subgroups of G which are represented by subgroups of the unipotent subgroup
U(3,Fp) of strictly upper triangular matrices. There are 3 conjugacy classes, rep-
resented by the following subgroups:







1 a b
0 1 a
0 0 1


 a, b ∈ Fp












1 a b
0 1 0
0 0 1


 a, b ∈ Fp












1 0 b
0 1 a
0 0 1


 a, b ∈ Fp
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Let M be the standard 3-dimensional (rational) representation of G. Then the
Jordan type of M indexed by the first of these maximal elementary abelian sub-
groups of G is a single block of size 3, whereas the Jordan types indexed by each of
the other conjugacy classes of maximal elementary abelian subgroups are strictly
smaller.

We now present the extension of Theorem 3.5 to arbitrary finite group schemes.

max Theorem 4.10. Let G be a finite group scheme over k and M a finite dimensional
kG-module. Let αK : K[t]/tp → KG be such that α∗K(MK) has maximal Jordan
type. Then for any π-point βL : L[t]/tp → LG which specializes to αK , the Jordan
type of α∗K(MK) equals the Jordan type of β∗L(ML); in particular, if αK ∼ βL, then
α∗K(MK) ' β∗L(ML).

Proof. We first consider the special case in which αK ∼ βL, and verify that β∗L(ML)
has the same (maximal) Jordan type as α∗K(MK). We proceed as in the proof of
Theorem 4.2. Write αK = iC ◦ α′K : K[t]/tp → KCK → KG with CK ⊂ GK a
unipotent abelian subgroup scheme. Observe that α∗K(MK) is maximal with respect
to all γ∗Ω(i∗C(MΩ)) as γΩ : Ω[t]/tp → ΩCK runs through all π-points of CK . By [10,
4.2], we may find some subgroup scheme j : Co

K × E ⊂ CK for some elementary
abelian p-subgroup E ⊂ π0(CK) and a π-point δΩ : Ω[t]/tp → Ω(Co

K×E) such that
j ◦ δΩ ∼ α′K as π-points of CK , extending scalars if necessary. The maximality of
α∗(MK) = α′∗K(i∗C(MK)) implies that (j ◦ δΩ)∗(i∗C(MΩ)) has the same Jordan type
by Theorem 2.9.

Let α′′Ω = iC ◦ δΩ : Ω[t]/tp → Ω(Co
K ×E) → Ω((Go

K)E ×E). By Proposition 4.1,
we may find α′′′Ω : Ω[t]/tp → Ω((G0)E × E′) equivalent to α′′Ω with the additional
property that [α′′′Ω ] ∈ Π0((G0)E′ ×E′) for some E′ ⊂ E. Applying Theorem 3.5 to
(G0)E×E ' (G0)E×G×r

a(1) (r = rk(E)), we conclude that α′′′∗Ω (i∗MΩ) has the same
maximal Jordan type as α′′∗Ω (i∗MΩ) = (j◦δΩ)∗(i∗C(MΩ)) where i : (Go

K)E×E → GK

is the inclusion.
We now perform the same operations on βL using the factorization βL = iD ◦

β′L : L[t]/tp → LDL → LG through an abelian subgroup scheme DL ⊂ GL. For
some elementary abelian subgroup F ⊂ π0(G) and some F ′ ⊂ F , we obtain β′′′Ω :
Ω[t]/tp → Ω((Go)F × F ′) with [β′′′Ω ] ∈ Π0((G0)F ′ × F ′).

Using (4.0.1) as in the last paragraph of the proof of Theorem 4.2 we conclude
that some π0(G)-conjugate of β′′′Ω is equivalent to α′′′Ω as a π-point of (G0)E′ × E′.
Thus, Theorem 3.5 implies that β′′′∗Ω (j∗MΩ) has the same maximal Jordan type as
α′′′∗Ω (i∗MΩ) ' α∗Ω(MΩ) , where j : (Go)F × F ′ ⊂ G is the inclusion. Consequently,
the preceding argument given for αK now “run backwards” and applied to βL

implies that β∗L(ML) also has the same maximal Jordan type.

More generally, assume that βL specializes to αK as π-points of G and construct
β′′′Ω , [β′′′Ω ] ∈ Π0((G0)F ′ × F ′) as above. Let j : (G0)F ′ × F ′ ↪→ G denote the
embedding. Since the image of Π((G0)F ′×F ′) in Π(G) is closed, and since j ◦β′′′L ∼
βL specializes to αK , we can find γΩ : Ω[t]/tp → Ω((G0)F ′ × F ′) such that j ◦ β′′′Ω

specializes to j ◦ γΩ, and j ◦ γΩ ∼ αK as π-points of G.
The Quillen decomposition (4.0.1) implies that β′′′Ω specializes to a π0(G)-conjugate

of γΩ as a π-point of (G0)F ′ × F ′. Since j ◦ γΩ ∼ αK , the just proved special case
(in which βL ∼ αK) implies that γ∗Ω(j∗(MΩ)) has the same maximal Jordan type.
Thus, β′′∗Ω (j∗(MΩ)) has the same maximal Jordan type by Theorem 3.5 applied to
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(G0)F ′ × F ′. Since βL ∼ j ◦ β′′′Ω , we conclude by another application of the case of
equivalent π-points that β∗L(ML) has the same maximal Jordan type. ¤

The following corollary follows immediately from Theorem 4.10.

irr Corollary 4.11. Let G be a finite group scheme and M a finite dimensional kG-
module. Then each maximal Jordan type of M can be realized as α∗K(MK) for some
generic point [αK ] ∈ Π(G).

In particular, if Π(G) is irreducible, then for any finite dimensional kG-module
M the Jordan type of α∗K(M) is of absolute maximal type whenever αK represents
the generic point of Π(G).

In order to consider examples obtained by induction from subgroup schemes, we
shall employ the following well known property of support varieties. For lack of a
good reference, we provide a simple proof of this result. Recall that if H ⊂ G is a
closed subgroup scheme and N an H-module, then the induced module IndG

H(N)
is the G-module with underlying vector space (N ⊗ k[G])H , with G action given
by the left regular action of G of k[G] and with H-invariants taken with respect to
the given action on N and the right regular action on k[G].

ind Lemma 4.12. Let G be a finite group scheme and i : H ⊂ G a closed subgroup
scheme. Let N be a finite dimensional kH-module, and let M = IndG

H(N). Then
the natural map i : Π(H) → Π(G) satisfies the property

Π(G)M ⊂ i(Π(H)N ).

Proof. Observe that the action of H•(G, k) on Ext∗G(M, M) factors as the com-
position of the restriction H•(G, k) → H•(H, k) followed by the natural action of
H•(H, k) on Ext∗H(N,M ↓H) = Ext∗G(M,M). Hence, a homogeneous prime ideal
of H•(G, k) contains the annihilator of Ext∗G(M, M) (and hence lies in Proj |G|M =
Π(G)M ) if and only if it is the pre-image of a homogeneous prime ideal of H•(H, k)
containing the annihilator of Ext∗H(N, M ↓H) and the latter are among the homo-
geneous prime ideals of H•(H, k) containing the annihilator of Ext∗H(N, N) (i.e.,
an element of Proj |H|N = Π(H)N ) since the action of H∗(H, k) on Ext∗H(N, M)
factors through Ext∗H(N, N). ¤

To complement Corollary 4.11, we give an example of a finite dimensional kG-
module for which there is no absolute maximal type.

not-comparable Example 4.13. Let G be a finite p-group which has two conjugacy classes of el-
ementary abelian subgroups, represented by E and E′ respectively. Furthermore,
we require E to be normal. Let e = #E, f = #G

#E . Assume p > 3.
For example, take G to be the p-Sylow subgroup of the wreath product Z/p o Sp,

so that G is isomorphic to (Z/p)poZ/p. Then G has two non-conjugate elementary
abelian p-subgroups: E = (Z/p)×p which is normal and F = (Z/p × Z/p × · · · ×
Z/p)Z/p × Z/p.

By Quillen stratification, Π(G) = X∪Y where X = Π(E)/G, Y = Π(F )/NG(F ).
Let [αK ] ∈ X, [βL] ∈ Y be generic points. As usual, we may assume L = K after
scalar extension.

Let n be a positive integer, let M = IndG
E(ΩEk), and let N = L⊕n

ξ where Lξ

is a Carlson module such that [βK ] ∈ Π(G)Lξ
but [αK ] 6∈ Π(G)Lξ

. This can be
achieved by choosing ξ ∈ H2N (G, k) with the property that the restriction of ξ to
H2N (F, k) is 0 and to H2N (E, k) is non-zero.



GENERIC AND MAXIMAL JORDAN TYPES 25

Since E is normal in G, the double coset formula implies that M ↓E ' (ΩEk)⊕f .
Since αK is a π-point of E, the Jordan type of α∗K(ΩEk) is

[p− 1] +
e− p

p
[p]

and the dimension is e− 1. Hence, the Jordan type of α∗K(MK) is

([p− 1] +
e− p

p
[p])f

and the dimension is (e− 1)f . Moreover, β∗K(MK) is projective by Lemma 4.12.
Arguing as in Example 4.8, we get that α∗K(NK) is projective (of dimension

pn(` + 1)) where ` is the number of projective blocks in α∗K(Lξ). i.e. ` = dim Lξ−p
p ,

and the Jordan type of β∗K(NK) is

n`[p] + n[p− 1] + n[1]

Thus, the generic Jordan types of M ⊕N are given by
α∗K((M ⊕N)K) = α∗K(MK)⊕ α∗K(NK) ' ([p− 1] + e−p

p [p])f + n(` + 1)[p] =

[p](
e− p

p
f + n(` + 1)) + [p− 1]f

β∗K((M ⊕N)K) = β∗K(MK)⊕ β∗K(NK) ' (e−1)f
p [p] + n`[p] + n[p− 1] + n[1] =

[p](
(e− 1)f

p
+ n`) + n[p− 1] + n[1]

Observe that for such two Jordan types to be incomparable it suffices for α∗K((M ⊕
N)K) to have fewer blocks of size [p] and fewer blocks altogether than β∗K((M ⊕
N)K). This amounts to two inequalities

(e− p)f
p

+ n(` + 1) <
(e− 1)f

p
+ nl

and
(e− p)f

p
+ n(` + 1) + f <

(e− 1)f
p

+ n` + 2n

This reduces to

last (4.13.1)
f

p
< n < (p− 1)

f

p

Since p > 3 divides f , there exists n satisfying the inequalities 4.13.1. For such n,
the corresponding module M ⊕ N has incomparable generic Jordan types at the
points αK and βK .

The conclusion of Theorem 4.10 is not valid for generic Jordan types. Namely,
as the following example shows, one can find a generic π-point αK of a finite group
scheme G, a π-point β which is a specialization of α and a G-module M such that
the Jordan type of β∗(M) is strictly greater than that of α∗K(MK). According to
Corollary 4.11, in any such example Π(G) must be reducible.

speclialization Example 4.14. We return to the example G = (Z/p)poZ/p of Example 4.13 and
retain the same notation Π(G) = X ∪ Y, E, F, e, f . Let M = IndG

Ek. Then the
double coset formula implies that M ↓E is trivial, so that Π(G)M = X by Lemma
4.12. Let {g1, . . . , gp} be generators of E, ti = gi − 1 and K = k(s1, . . . , sp).
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Let αK : K[t]/tp → KE → KG be a generic π-point of G corresponding to the
component X defined by

αK(t) = s1t1 + · · ·+ sptp.

The Jordan type of α∗K(MK) is trivial. Let γ be a k-rational π-point of G respre-
senting the point on the intersection X ∩ Y given by

γ(t) = t1 + t2 + · · ·+ tp.

Since E acts trivially on M , the Jordan type of γ∗(M) is trivial.
Let β : k[t]/tp → kF → kG be a rational π-point of G such that [β] ∈ Y, [β] /∈ X.

Since Π(G)M ⊂ X, we conclude that β∗(M) is projective. Since both γ and β factor
through kF , β(t) and γ(t) commute. Define a new π-point γ̃ by

γ̃(t) = γ(t) + β2(t).

By Proposition 2.2, [γ] = [γ̃] in Π(G) and, hence, γ̃ is a specialization of αK . On
the other hand, since β∗(M) is projective and p > 2, γ̃∗(M) is non-trivial. Thus,
the Jordan type of γ̃∗(M) is greater than that of α∗K(MK).

As we see in the following example, the maximal Jordan type can sometimes be
easily determined as a familiar invariant associated to a given kG-module M .

std-1 Example 4.15. Let G be a reductive algebraic group over k with Lie algebra g.
Let G = G(1), so that kG ' u(g), the restricted enveloping algebra of g = Lie(G).
Then the maximal Jordan type of a finite dimensional kG-module M is the Jordan
type of any regular nilpotent element X ∈ g acting upon M provided that every
nilpotent element of g is p-nilpotent.

Consider the special case G = SLn(1) and let M be the standard n-dimensional
representation of SLn restricted to G. We make no assumption on the size of
p with respect to n (i.e., we do not assume that every nilpotent element of sln
is p-nilpotent). Each p-nilpotent X ∈ sln determines a 1-parameter subgroup
µX : Ga(1) → G. The Jordan type of (µX)∗(M) is merely the Jordan type of X

itself. The maximal Jordan type is that given by the partition given by
[

n
p

]
blocks

of size p and one block of size n− p
[

n
p

]
.

More generally, let G = SLn(r), r ≥ 1 with M once again the standard repre-
sentation of SLn restricted to G. Since any π-point of SLn(1) can be extended to
a π-point of SLn(r) , the maximal Jordan type of M ↓SLn(1) is at most the max-
imal Jordan type of M ↓SLn(r) . On the other hand, the maximal Jordan type of
M ↓SLn(1) is maximal possible of any module of dimension n. Thus, the maximal

Jordan type of M as SLn(r)-module remains the partition with
[

n
p

]
blocks of size

p and one block of size n− p
[

n
p

]
.

The following most elementary example of an infinitesimal group scheme of
height bigger than 1 gives a first indication of the behavior of generic Jordan type
for infinitesimal group schemes.

twist Example 4.16. Let G = Ga(r) for some r > s > 1. Consider a finite dimensional
kG(r−s)-module M and the pull-back p∗M = M (s) via the projection p : Ga(r) →
Ga(r)/Ga(s) ' Ga(r−s) sending ui ∈ kGa(r) to ui−s ∈ kGa(r−s) for i > s and 0
otherwise. Observe that the action of ui ∈ kGa(r) on M (s) can be identifed with
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the action of ui−s ∈ kGa(r−s) on M . We readily verify that the generic Jordan
type of the kG(r−s)-module M is equal to the generic Jordan type of the kGa(r)-
module M (s). Namely, the generic type of M is determined by the action of a
generic linear combination of the generators ui−s ∈ kGa(r−s), and the generic type
of M (s) is determined by the action of a generic linear combination of ui ∈ kGa(r).
But since ui ∈ kGa(r), i < s acts trivially on M (s) and ui ∈ kGa(r), i ≥ s, acts
as ui−s ∈ kGa(r−s) acts on M , these generic linear combinations clearly yield the
same Jordan type.

5. Non-maximal support varieties

In this section we refine the construction of support varieties for modules over
a finite group scheme. Cohomological support varieties were first introduced in
the case of finite groups by J. Carlson [3], and subsequently extended by various
authors, initially to restricted Lie algebras, then to infinitesimal group schemes,
and finally to arbitrary finite group schemes. Carlson conjectured and G. Avrunin
and L. Scott proved [1] that for elementary abelian p-groups the cohomological
support variety of a module had a representation theoretic interpretation as the
rank variety. This was subsequently generalized, with the ultimate formulation
being the assertion of the existence of the naturally constructed homeomorphism
(2.1.1) restricting to a homeomorphism of support varieties

Π(G)M ' Proj |G|M
for any finite group scheme G and any finite dimensional kG-module M [12].

If the dimension of M is not divisible by p, then the support variety Π(G)M is
necessarily equal to Π(G). In this section, we introduce a refinement Γ(G)M ⊂ Π(G)
of Π(G)M ⊂ Π(G) which does give information about a kG-module M even when
the dimension of M is not divisible by p. On the other hand, if the (absolute)
maximal Jordan type of M is projective, then the absolute maximal Jordan type
of α∗K(MK) is the type of a projective K[t]/tp-module so that the non-maximal
support variety of M equals the support variety of M : Γ(G)M = Π(G)M .

def-non-max Definition 5.1. Let G be a finite group scheme over k and M a finite dimensional
kG-module. We define

Γ(G)M ⊂ Π(G)

to be the set of those equivalence classes [αK ] ∈ Π(G) such that the Jordan type
of α∗K(M) is not maximal for some choice αK : K[t]/tp → KG of representative of
[αK ].

Observe that Theorem 4.10 verifies that [αK ] ∈ Γ(G)M if and only if for every
choice of representative αK of [αK ] the Jordan type of α∗K(M) is not maximal.

non-max Theorem 5.2. Let G be a finite group scheme over k and M a finite dimensional
kG-module. Then Γ(G)M is a closed subspace of Π(G), the non-maximal support
variety of M .

Proof. We first consider the special case in which G is infinitesimal of height r. Let
A denote the coordinate algebra k[Vr(G)] and consider the universal 1-paramter
subgroup (3.0.1),

u : Ga(r),A → GA,
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which provides MA with the rational Ga(r),A-module structure. Let X ⊂ Vr(G) be
the subset of 1-parameter subgroups µ : Ga(r),K → GK such that (µ∗ ◦ ε)∗(MK)
does not have maximal Jordan type. Then X consists of those points x ∈ Vr(G) at
which ε∗(u∗(MA)⊗A k(x)) does not have maximal Jordan type.

Let fA : A[t]/tp → EndA(M) be the composition

fA : A[t]/tp
ε→ AGa(r)

u∗→ AG
ρM−→ EndA(M)

Then x ∈ X if and only if (fA ⊗A k(x))(t) ∈ Endk(x)(M ⊗ k(x)) does not have
maximal Jordan type. This is described by a set of equations on the ranks of
powers of fA(t). Thus, X is the locus of points of Vr(G) = Spec A for which these
equations admit a solution.

For a general finite group scheme G, we extend scalars to be able to assume that
the Quillen decomposition (4.0.1) applies to G. Then Π(G) is the finite union of
the images of the closed maps Π((Go)E × E) → Π(G) as E ⊂ τ = π0(G) varies
over conjugacy classes of elementary abelian p-subgroups of τ . Thus, for a given
finite dimensional kG-module M , Γ(G)M consists of the union of the images of
Π((Go)E ×E) indexed by those conjugacy classes such that the Jordan type of M
at the generic point of (Go)E×E is not maximal and the images of Γ((Go)E×E)M ⊂
Π((Go)E × E) indexed by those conjugacy class such that the Jordan type of M
at the generic point of (Go)E × E is maximal. Consequently, it suffices to prove
that each Γ((Go)E × E)M ⊂ Π((Go)E × E) is closed. Since k((Go)E × E)) '
k((Go)E ×G×r

a(1)) where r is the rank of E, this follows from the verification in the
preceding paragraph for infinitesimal group schemes (applied to (Go)E×G×r

a(1)). ¤

contain Proposition 5.3. Let G be a finite group scheme over k and M,N be finite di-
mensional kG-modules, and f : H → G be a flat map of finite group schemes
Then

(1) Γ(G)M⊕N ⊂ Γ(G)M ∪ Γ(G)N . Moreover, if Π(G) is irreducible, then the
equality holds.

(2) Γ(H)f∗M ⊂ (f∗)−1(Γ(G)M ) where f∗ : Π(H) → Π(G) is the map of
schemes induced by f .

Proof. Let αK : K[t]/tp → KG be a π-point with the property that α∗K(MK) is
maximal for M and α∗K(NK) is maximal for N . Then the assertion that α∗K((M ⊕
N)K) is maximal for M ⊕ N follows easily from the observation that α∗K(−)
commutes with direct sums. Namely, the condition that α∗K(PK) has maximal
type for a kG-module P is a maximality condition on the ranks of powers of
αK(t) ∈ EndK(PK) which is clearly preserved under direct sums.

Assume Π(G) is irreducible and let µ be a generic π-point of G. In this case any
G-module has absolute maximal Jordan type at the π-point µ. Let α ∈ Γ(M) ∪
Γ(N). Without loss of generality we may assume that α∗(M) is not maximal, i.e.
α∗(M) < µ∗(M). We have α∗(N) ≤ µ∗(N). The maximality condition on ranks
which defines the partial ordering (1.1.1) together with the binomial formula imply
that α∗(M ⊕ N) < µ∗(M ⊕ N). Thus, α ∈ Γ(M ⊕ N). We get Γ(M) ∪ Γ(N) ⊂
Γ(M ⊕N).

To show the second assertion observe that if (f ◦ αK)∗(MK) is maximal among
the π-points of G, then it is maximal among the π-points of the form f ◦β where β
is any π-point of H. Thus, α∗K((f∗M)K) is maximal for an H-module f∗M . This
implies the required inclusion.
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¤
The following example demonstrates that the containment of statement (1) of

Proposition 5.3 can not be sharpened to an equality.

Example 5.4. Let G be as in Example 4.8, M1 = Lζ , M2 = L⊕2
ξ . Then

Γ(G)M1 = Π(G)M1 , Γ(G)M2 = Π(G)M2 , so that Γ(G)M1∪Γ(G)M2 = Π(G), whereas
Γ(G)M1⊕M2 6= Π(G). Thus,

Γ(G)M1⊕M2 6= Γ(G)M1 ∪ Γ(G)M2 .

On the other hand, if both M and N have maximal Jordan types which are pro-
jective, then

Γ(G)M⊕N = Π(G)M⊕N = Π(G)M ∪Π(G)N = Γ(G)M ∪ Γ(G)N .

The following examples involve the consideration of the standard n-dimensional
representation of SLn. For these examples, determination of the non-maximal
support variety is particularly easy, but the behavior of these varieties is illustrative.

std Example 5.5. Let G = SLn(1) and let M be the standard n-dimensional rep-
resentation of SLn restricted to G. Recall that Π(G(1)) = Proj (Np), the result
of applying “proj” to the homogeneous closed subvariety Np ⊂ s`n of p-nilpotent
matrices (cf. [9], [19]). By Example 4.15, the non-maximal support variety is home-
omorphic to the subset of Proj (Np) consisting of equivalence classes of p-nilpotent

matrices whose Jordan type is less than the type consisting of
[

n
p

]
blocks of size

p and one block of size n − p
[

n
p

]
. This agrees with Π(G)M ⊂ Π(G) if and only

if n is divisible by p. For p ≥ n, the non-maximal support variety is the comple-
ment inside the nullcone N (of all nilpotent matrices) of the open subset of regular
nilpotent matrices.

Example 5.6. As in Example 4.9, let G be GL(3,Fp) with p > 3 and M be the
standard 3-dimensional GLn-module M restricted to GL(n,Fp). By the computa-
tion of Example 4.9, the non-maximal support variety is the union of two irreducible
components.
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