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1.1 Introduction

The semi-topological K-theory of a complex variety X , written Ksst
∗ (X), in-

terpolates between the algebraic K-theory, Kalg
∗ (X), of X and the topological

K-theory, K∗
top(X

an), of the analytic space Xan associated to X . (The su-
perscript “sst” stands for “singular semi-topological”.) In a similar vein, the
real semi-topological K-theory, written KRsst

∗ (Y ), of a real variety Y interpo-
lates between the algebraic K-theory of Y and the Atiyah Real K-theory of
the associated space with involution YR(C). We intend this survey to provide
both motivation and coherence to the field of semi-topological K-theory. We
explain the many foundational results contained in the series of papers by
the authors [31, 27, 32], as well as in the recent paper by the authors and
Christian Haesemeyer [21]. We shall also mention various conjectures that
involve challenging problems concerning both algebraic cycles and algebraic
K-theory.

Our expectation is that the functor Ksst
∗ (−) is better suited for the study

of complex algebraic varieties than either algebraic K-theory or topological
K-theory. For example, applied to the point X = Spec C, Kalg

i (−) yields
uncountable abelian groups for i > 0, whereas Ksst

i (Spec C) is 0 for i odd and
Z for i even (i.e., it coincides with the topological K-theory of a point). On the
other hand, topological K-theory is a functor on homotopy types and ignores
finer algebro-geometric structure of varieties, whereas semi-topological and
algebraic K-theory agree on finite coefficients

Kalg
∗ (−, Z/n) ∼= Ksst

∗ (−, Z/n) (1.1)

and the rational semi-topological K-groups Ksst
∗ (X, Q) contain information

about the cycles on X and, conjecturally, the rational Hodge filtration on
singular cohomology H∗(Xan, Q).

To give the reader some sense of the definition of semi-topological K-
theory, we mention that Ksst

0 (X) is the Grothendieck group of algebraic
vector bundles modulo algebraic equivalence: two bundles on X are alge-
braically equivalent if each is given as the specialization to a closed point on
a connected curve C of a common vector bundle on C × X . In particular,
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the ring Ksst
0 (X) (with product given by tensor product of vector bundles)

is rationally isomorphic to the ring A∗(X) of algebraic cycles modulo alge-
braic equivalence (with the product given by intersection of cycles) under the
Chern character map

ch : Ksst
0 (X, Q)

∼=
−→A∗(X, Q).

This should be compared with the similar relationship between Kalg
0 (X) and

the Chow ring CH∗(X) of algebraic cycles modulo rational equivalence. Tak-
ing into consideration also the associated topological theories, we obtain the
following heuristic diagram, describing six cohomology theories of interest.

Table 1.1. Six cohomology theories together with their “base values” for a smooth
variety X

K-theory Cohomology (i.e., cycle theory)

Algebraic K-theory, Kalg
∗ (−) Motivic Cohomology, H∗M(−, Z(∗))

Kalg
0

(X) = algebraic vector bundles
modulo rational equivalence

H2∗
M(X, Z(∗)) = CH∗(X) = cycles modulo

rational equivalence

Semi-topological K-theory, Ksst
∗ (−) Morphic Cohomology, L∗H∗(−)

Ksst
0 (X) = algebraic vector bundles

modulo algebraic equivalence
L∗H2∗(X) = A∗(X) = cycles modulo alge-
braic equivalence

Topological K-theory, K∗top(−) Singular Cohomology, H∗sing(−)

K0

top(X
an) = topological vector bun-

dles modulo topological equivalence
H2∗

sing(Xan) = integral, rectifiable cycles
modulo topological equivalence

As we discuss below, the authors have constructed a precise counter-part
of this heuristic diagram by establishing a homotopy commutative diagram
of spectra — see (1.9) in Section 1.3 below. For example, there are Chern
character maps joining the theories in the left column and the theories (with
rational coefficients) in the right column, and if X is smooth, these Chern
character maps are rational isomorphisms in all degrees. In particular, such
isomorphisms extend the rational isomorphism Ksst

0 (−)Q
∼= A∗(−)Q men-

tioned above.
For certain special varieties X (e.g., projective smooth toric varieties),

the natural map
Ksst
∗ (X)→ K−∗

top(X
an)
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is an isomorphism whenever ∗ ≥ 0 (see [21]). Such an isomorphism can be
interpreted (as we now interpret Lawson’s original theorem) as asserting that
some construction involving algebraic morphisms is a “small” homotopy-
theoretic model for an analogous construction involving continuous maps
between analytic spaces. In general, however, Ksst

∗ (X) differs considerably
from topological K-theory; for example, Ksst

0 (X) need not be finitely gener-
ated even for a smooth projective variety X . Nonetheless, there are natural
transformations

Kalg(−)→ Ksst(−)→ Ktop(−)

from (Sch/C) to Spectra with many good properties, perhaps the most strik-
ing of which is the isomorphism for finite coefficients mentioned above (1.1).
Understanding multiplication in Ksst

∗ (X) by the Bott element

β ∈ Ksst
2 (Spec C) ∼= K−2

top(pt)

is also interesting: for X is smooth, the natural map Ksst
∗ (X)→ K−∗

top(X
an)

induces an isomorphism

Ksst
∗ (X)[β−1] ∼= K−∗

top(X
an)[β−1] = KU−∗(Xan)

upon inverting the Bott element. On the other hand, the kernel of Ksst
0 (X)→

K0
top(X

an) is rationally isomorphic to the Griffiths group (of algebraic cycles
on X homologically equivalent to 0 modulo those algebraically equivalent to
0). Moreover, a filtration on K∗

top(X)⊗Q associated to Ksst(−) → Ktop(−)
and multiplication by β ∈ Ksst

2 (pt) is conjecturally equivalent to the rational
Hodge filtration.

To formulate K-theories, we require some process of “homotopy theoretic
group completion” as first became evident in Quillen’s formulation of alge-
braic K-theory of rings using the Quillen plus construction. This can be con-
trasted with the simpler constructions of cohomology theories: these derive
from structures (e.g., the monoid of effective cycles) which are commutative,
whereas the direct sum of vector bundles is only commutative up to coherent
isomorphism. For this reason, the constructions we present involve use of the
machinery of operads and the utilization of certain other homotopy-theoretic
techniques.

As the reader will see, the analytic topology on a real or complex variety
is used in the construction of semi-topological K-theory. Thus far, there is
no reasonable definition of semi-topological K-theory for varieties over other
base fields, although one might anticipate that p-adic fields and real closed
fields might lend themselves to such a theory.

We conclude this introduction with a few brief comments to guide the
reader toward more details about the topics we discuss. First, the original
paper of H. B. Lawson [39] initiated the study of the analytic spaces of Chow
varieties, varieties that parametrize effective algebraic cycles on a complex
projective variety. Lawson’s remarkable theorem enables one to compute the
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homotopy groups of the topological abelian group of algebraic cycles of a
given dimension on a projective space Pn (i.e., his theorem enables one to
compute what is now known as the Lawson homology of Pn). In [14] the first
author pointed out that the group of connected components of the topologi-
cal abelian group of r-cycles on a complex projective variety X is naturally
isomorphic to the group of algebraic r-cycles on X modulo algebraic equiva-
lence. A key insight was provided by Lawson and M.-L. Michelson [41] who
proved that the universal total Chern class can be interpreted as a map in-
duced by the inclusion of linear cycles on projective spaces into all algebraic
cycles. Important formal properties of Lawson homology were developed by
the first author in collaboration with O. Gabber [20] and by P. Lima-Filho
[46]. B. Mazur and the first author investigated filtrations on homology as-
sociated with Lawson homology in [24], and the first author studied comple-
mentary filtrations on cycles in [15, 19]. H. B. Lawson and the first author
introduced the concept of a cocycle leading to morphic cohomology theory
[23] and established a duality relationship between morphic cohomology and
Lawson homology in [22]. Consideration of quasi-projective varieties using
similar methods has led to awkward questions of point-set topology, so that
plausible definitions are difficult to handle when the varieties are not smooth
(cf. [28]). When contemplating the formulation of semi-topological K-theory
for quasi-projective varieties, the authors introduce singular semi-topological
complexes, which appear to give a good formulation of morphic cohomology
for any quasi-projective algebraic variety [32].

As Lawson homology and morphic cohomology developed, it became nat-
ural to seek a companion K-theory. In [23], H. B. Lawson and the first au-
thor showed how to obtain characteristic classes in morphic cohomology for
algebraic vector bundles. “Holomorphic K-theory” was briefly introduced by
Lawson, Lima-Filho, and Michelsohn in [40]. Following an outline of the first
author [16], the authors established the foundations and general properties of
semi-topological K-theory in a series of papers [31, 27, 32] and extended this
theory to real quasi-projective varieties in [30]. Many of the results sketched
in this survey were first formulated and proved in these papers. A surprisingly
difficult result proved by the authors is the assertion that there is a natural ra-
tional isomorphism (given by the Chern character) relating semi-topological
K-theory and morphic cohomology of smooth varieties [32, 4.7].

Most recently, the authors together with C. Haesemeyer established a
spectral sequence relating morphic cohomology and semi-topological K-
theory compatible with the motivic and Atiyah-Hirzebruch spectral sequences
[21]. Moreover, this paper uses the notion of integral weight filtrations on
Borel-Moore homology (due to Deligne [11] and Gillet-Soulé [33]), which,
in conjunction with the spectral sequence, enable them to establish that
Ksst
∗ (X) → K−∗

top(X
an) is an isomorphism for many of the special varieties

for which one might hope this to be true.
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The subject now is ready for the computation of Ksst
∗ (−) for more com-

plicated varieties and for applications of this theory to the study of geometry.
Since many of the most difficult and long-standing conjectures about com-
plex algebraic varieties are related to such computations, one suspects that
general results will be difficult to achieve. We anticipate that the focus on
algebraic equivalence given by morphic cohomology and semi-topological K-
theory might lead to insights into vector bundles and algebraic cycles on real
and complex varieties.

1.2 Definition of Semi-topological K-theory

Originally [31] semi-topological K-theory was defined only for projective,
weakly normal complex algebraic varieties and these original constructions
involved consideration of topological spaces of algebraic morphisms from
such a variety X to the family of Grassmann varieties Grassn(CN ). The
assumption that X is projective implies that the set of algebraic mor-
phisms Hom(X, Grassn(CN )) coincides with the set of closed points of an
ind-variety, and thus we may topologize Hom(X, Grassn(CN )) by giving
it the associated analytic topology. If, in addition, X is weakly normal,
then Hom(X, Grassn(CN )) maps injectively to Maps(Xan, Grassn(CN )an),
the set of all continuous maps, and we may also endow Hom(X, Grassn(CN ))
with the subspace topology of the spaceMaps(Xan, Grassn(CN )an), the set
Maps(Xan, Grassn(CN )an) endowed with the usual compact-open topology.
In fact, these topologies coincide, and Mor(X, Grassn(CN )) denotes this
topological space. The collection of spacesMor(X, Grassn(CN )) for varying
n and N leads to the construction of a spectrum Ksemi(X) whose homotopy
groups are the semi-topological K-groups of X .

The authors [31] subsequently extended the theory so constructed to all
quasi-projective complex varieties U by providing the set of algebraic mor-
phisms Hom(Uw, Grassn(CN )) (where Uw → U is the weak normalization
of U) with a natural topology (again using Mor(U, Grassn(CN ))an to de-
note the resulting space). We were, however, unable to verify many of the
desired formal properties of this construction Ksemi

∗ (−) when applied to non-
projective varieties.

Inspired by a suggestion of V. Voevodsky, the authors reformulated semi-
topological K-theory in [27]. The resulting functor from quasi-projective com-
plex varieties to spectra, Ksst(−), when applied to a weakly normal projec-
tive variety X gives a spectrum weakly homotopy equivalent to the spectrum
Ksemi(X). We have shown that the functor U 7→ Ksst

∗ (U) satisfies many de-
sirably properties, and thus now view the groups Ksst

∗ as the semi-topological
K-groups of a variety.

In this section, we begin with the definition of Ksemi(X) (restricted to
weakly normal, projective complex varieties). Although supplanted by the
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more general construction Ksst discussed below, the motivation underlying
the construction of Ksemi is more geometric and transparent.

We shall see that the definition is formulated so that there are natural
homotopy classes of maps of spectra

Kalg(X)→ Ksemi(X)→ Ktop(X
an). (1.2)

(Here, Ktop(X
an) denotes the (−1)-connected cover of ku(Xan), the mapping

spectrum from Xan to bu.) These maps are induced by the natural maps of
simplicial sets given in degree d by

Hom(∆d ×X, Grassn(CN ))→ Maps(∆d
top,Mor(X, Grassn(CN ))an)

→ Maps(∆d
top,Maps(Xan, Grassn(CN ))an).

In formulating Ksemi(−) (and later Ksst(−)), we are motivated by the prop-
erty that if one applies the connected component functor π0(−) to the maps
of (1.2), then one obtains the natural maps

Kalg
0 (X)→ Kalg

0 (X)/algebraic equivalence→ K0
top(X

an)

from the Grothendieck group of algebraic vector bundles to the Grothendieck
group of algebraic vector bundles modulo algebraic equivalence to the Grothendieck
group of topological vector bundles.

The reader will find that in order to define the spectra appearing in
(1.2), we use operads to stabilize and group complete the associated map-
ping spaces. This use of operads makes the following discussion somewhat
technical.

1.2.1 Semi-topological K-theory of Projective Varieties: K
semi

Let X be a projective, weakly normal complex variety and define Grass(CN ) =
∐

n Grassn(CN ) where Grassn(CN ) is the projective variety parameterizing
rank n quotient complex vector spaces of CN . Since X and Grass(CN ) are
projective varieties, the set Hom(X, Grass(CN )) is the set of closed points
of an infinite disjoint union (indexed by degree) of quasi-projective com-
plex varieties. We write this ind-variety as Mor(X, Grass(CN )) and we
let Mor(X, Grass(CN ))an denote the associated topological space endowed
with the analytic topology. Since X is weakly normal, one can verify that
Mor(X, Grass(CN ))an is naturally a subspace ofMaps(Xan, Grass(CN )an),
the space of all continuous maps endowed with the compact-open topology.
Considering the system of ind-varietiesMor(X, Grass(CN ) for N ≥ 0, where
the map Grass(CN ) → Grass(CN+1) is given by composing with the pro-
jection map CN+1 → CN onto the first N coordinates, gives the ind-variety
Mor(X, Grass) and the associated space

Mor(X, Grass)an = lim
−→
N

Mor(X, Grass(CN ))an,
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which we may identify with a subspace ofMaps(Xan, Grassan).
The following proposition indicates that the spaceMor(X, Grass)an pos-

sesses interesting K-theoretic information. We shall say that two algebraic
bundles V1 → X , V2 → X are algebraically equivalent if there exists a con-
nected smooth curve C and an algebraic vector bundle V → C×X such that
each of V1 → X , V2 → X is given by restriction of V to some C-point of C.
We define algebraic equivalence on either the monoid of isomorphism classes
of algebraic vector bundles or the associate Grothendieck group Kalg

0 (X) to
be equivalence relation generated by algebraic equivalence of bundles.

Proposition 1.2.1. (cf. [31, 2.10, 2.12]) There is a natural isomorphism of
abelian monoids

π0 (Mor(X, Grass)an) ∼=
{algebraic vector bundles on X generated by global sections}

algebraic equivalence
,

(where the abelian monoid law for the left-hand side is described below). More-
over, the group completion of the above map can be identified with the follow-
ing natural isomorphism of abelian groups

Ksemi
0 (X) = π0 (Mor(X, Grass)an)

+ ∼=
K0(X)

algebraic equivalence
.

The proof of Proposition 1.2.1 is straight-forward, perhaps disguising sev-
eral interesting and important features. First, the condition that two points
in Mor(X, Grass)an lie in the same topological component is equivalent to
the condition that they lie in the same Zariski component of the ind-variety
Mor(X, Grass). Second, upon group completion, one obtains all (virtual)
vector bundles so that one may drop the condition that the vector bundles
be generated by their global sections.

To define the higher semi-topological K-groups, we introduce the struc-
ture of an H-space on Mor(X, Grass). Direct sum of bundles determines
algebraic pairings

Mor(X, Grassn(CN ))×Mor(X, Grassm(CM ))→Mor(X, Grassn+m(CN+M )),

for all M, N . Once one chooses a linear injection C∞ ⊕ C∞ ↪→ C∞, these
pairing may be stabilized in a suitable fashion by letting M, N 7→ ∞ to endow
Mor(X, Grass) with an operation. Under this operation, the associated space
Mor(X, Grass)an is a homotopy-commutative H-space. Using one of several
techniques of infinite loop spaces, one shows that this H-space admits a
homotopy-theoretic group completion

Mor(X, Grass)an → (Mor(X, Grass)an)h+;

by definition, this is a map of H-spaces which induces group completion on
π0 and whose map on (integral, singular) homology can be identified with
the map

H∗(Mor(X, Grass)an)→ Z[π+
0 ]⊗Z[π0] H∗(Mor(X, Grass)an).
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Definition 1.2.2. Let X be a weakly normal, projective complex variety.
We define

Mor(X, Grass)an → Ksemi(X)

to be a homotopy-theoretic group completion of the homotopy commutative
H-spaceMor(X, Grass)an. We call Ksemi(X) the semi-topological K-theory
space of X , and we define the semi-topological K-groups of X by the formula

Ksemi
n (X) = πn(Ksemi(X)), n ≥ 0.

In particular, Ksemi
0 (X) is naturally isomorphic to Kalg

0 (X)/(algebraic equivalence).
For any finitely generated abelian group A, we define the semi-topological K-
groups of X with coefficients in A by the formula

Ksst
n (X, A) = πn(Ksemi(X ; A)), n ≥ 0.

Remark 1.2.3. An equivalent construction of Ksemi(X) is given by Lawson,
Lima-Filho, and Michelsohn in [40]. See also [49]. In these papers, the term
“holomorphic K-theory” is used instead of “semi-topological K-theory”.

The construction of the group-like H-space Ksemi(X) from the H-space
Mor(X, Grass)an can be enriched to yield an Ω-spectrum in several ways.
For example, one can let I = I(n), n ≥ 0, denote the E∞-operad with I(n)
defined to be the contractible space of all linear injections from (C∞)⊕n into
C∞. (Thus I is closely related to the linear isometries operad.) Then I “acts”
onMor(X, Grass)an via a family of pairings

I(n)× (Mor(X, Grass)an)
n →Mor(X, Grass)an, n ≥ 0.

Intuitively, this action can be describe as follows: given a point in I(n) and
n quotients of the form O∞X � Ei, the point of I(n) allows one to move
the n quotient objects into general position so that one may take their in-
ternal direct sum. In particular, the case n = 2 together with a specific
choice of a point in I(2) defines the H-space operation forMor(X, Grass)an

given above. Such an action of the operad I determines an Ω-spectrum
Ω∞Mor(X, Grass)an using the machinery of May [50, §14], and the 0-th
space of this spectrum provides a model for the homotopy-theoretic group
completion Ksemi(X).

It is useful to know that the algebraic K-theory space defined for a
variety Y over an arbitrary field F admits a parallel construction. Recall
that the standard algebraic k-simplex ∆k over Spec F is the affine variety
Spec F [x0, . . . , xk ]/(Σixi − 1) and that these standard simplices determine a
cosimplicial variety ∆•F . The simplicial set d 7→ Hom(X ×F ∆d

F , Grass(F∞))
admits the structure of a homotopy-commutative H-space (if “space” is in-
terpreted to mean “simplicial set”). In fact, Hom(X ×F ∆•F , Grass(F∞)) is
an I(∆•F )-space where I(∆•F ) is a suitable simplicial analogue of the E∞-
operad I introduced above. The following result is due to the second author
and D. Grayson.
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Theorem 1.2.4. (cf. [31, 6.8] [35, 3.3]) Given a smooth, algebraic variety
X over a field F , the homotopy-theoretic group completion of the homotopy-
commutative H-space

Hom(X ×F ∆•F , Grass(F∞))

is weakly homotopy equivalent to Kalg(X), the algebraic K-theory space of X.
In fact, the spectrum associated to the I(∆•)-space Hom(X×F ∆•F , Grass(F∞))
is weakly equivalent to the algebraic K-theory spectrum of X.

Theorem 1.2.4 leads easily to the existence of a natural map

Kalg(X)→ Ksemi(X)

of spectra (more precisely, Kalg(X)→ Sing.(Ksemi(X)) representing the al-
gebraic K-theory and semi-topological K-theory of smooth, projective com-
plex varieties. Furthermore, if we replaceMor(X, Grass)an byMaps(Xan, Grassan),
then we can proceed with the same construction as above to form a space
(in fact, an Ω-spectrum) Ktop(X

an) that receives a map from Ksemi(X). It
follows from [51, I.1] that we have

K−n
top (Xan) := πnKtop(X

an) ∼= ku−n(Xan), n ≥ 0,

where ku∗ denotes the connective topological K-theory of a space (i.e.,
the generalized cohomology theory represented by the connective spectrum
bu). In other words, the spectrum Ktop(X

an) is the (−1)-connected cover
of the mapping spectrum from Xan to bu. Moreover, the subspace in-
clusion Mor(X, Grass)an ⊂ Maps(Xan, Grassan) induces a natural map
Ksemi(X)→ Ktop(X

an) such that the composition

Kalg(X)→ Ksemi(X)→ Ktop(X) (1.3)

induces the usual map from algebraic to topological K-theory.
If Spec C is a point, we clearly have Ksemi(Spec C) = Ktop(pt). A more

interesting computation is the following integral analogue of the Quillen-
Lichtenbaum conjecture for smooth projective complex curves.

Theorem 1.2.5. (cf. [31, 7.5]) If C is a smooth, projective complex curve,
then the natural map

Ksemi(C)→ Ktop(C
an)

is a weak homotopy equivalence, inducing isomorphisms

Ksemi
n (C) ∼= K−n

top (Can), n ≥ 0.

The proof of Theorem 1.2.5 uses a result of F. Kirwan [38, 1.1] on the
moduli space of vector bundles on curves. Specifically, Kirwan shows that the
composition of
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Ad(n)an →Mor(C, Grassn(C∞))an
d →Maps(Can, Grassn(C∞)an)d

induces an isomorphism in cohomology up to dimension k provided

d ≥ 2n(2g + k + 1) + n max(k + 1 + n(2g + k + 1),
1

4
n2g). (1.4)

Here, g is the genus of C, the subscripts d refer to taking the open and closed
subspaces consisting of degree d maps, and Ad(n) refers to the subvariety
of Mord(C, Grassn(C∞)) parameterizing quotients O∞X � V satisfying the
extra condition that H1(C, V ) = 0. Theorem 1.2.5 is deduced from this result
of Kirwan by showing that the homotopy-theoretic group completions of each
of the spaces in the chain

∐

d,n

Ad(n)an →
∐

d,n

Mord(C, Grassn(C∞))an →
∐

d,n

Maps(Can, Grassn(C∞)an)d

can be obtained by taking suitable limits (technically, mapping telescopes) of
self-maps of each of the spaces. The point is that the first map here becomes
an equivalence upon taking such limits since the condition defining Ad(n)
as a subvariety of Mord(C, Grassn(C∞))an becomes trivial, and the second
map becomes an equivalence since the inequality (1.4) is met in all degrees
in the limit.

For higher dimensional varieties X , the map Ksemi(X) → Ktop(X
an) is

rarely a weak homotopy equivalence. For example, if S is a smooth, pro-
jective complex surface, the map Ksemi(S) → Ktop(S

an) usually fails to in-
duce an isomorphism at π0 (although it does induce an isomorphism on all
higher homotopy groups.) In fact, Ksemi

0 (S, Q) ∼= K0
top(S

an, Q) if and only if
H2(San, Q) consists only of algebraic cohomology classes [21, 6.17].

1.2.2 Semi-topological K-theory of Quasi-projective Varieties:
K

sst

The extensions of the definition of semi-topological K-theory from projec-
tive complex varieties to quasi-projective complex varieties has a somewhat
confusing history. Initially, the authors (see especially [31]) carried out this
extension in seemingly the most natural way possible: one imposes a suitable
topology on the set Hom(Xw, Grass) to form a space Mor(X, Grass)an and
then repeats the constructions of the previous section to yield a group-like
H-space (in fact, a spectrum) Ksemi(X). We will not go into the details of
the topology on Mor(X, Grass)an — we refer the interested reader to [28]
for a careful description.

It gradually became apparent that annoying point-set topology consid-
erations prevents one from establishing the desired formal properties of the
theory Ksemi(−) for arbitrary quasi-projective varieties. On the other hand,
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the authors have developed a closely related and conjecturally equivalent the-
ory that allows for such properties to be proven. This newer theory, Ksst, is
now viewed by the authors as the semi-topological K-theory.

To motivate the definition of Ksst(−), we return to the case of weakly
normal, projective complex varieties and consider what happens if we re-
place spaces with singular simplicial sets in the construction of Ksemi(−).
That is, for such a variety X we replace the space Mor(X, Grass)an with
the simplicial set d 7→ Maps(∆d

top,Mor(X, Grass)an) and we replace the
E∞ topological operad I with the associated simplicial one, I(∆•top), defined

by I(∆•top)(n) =
(

d 7→ Maps(∆d
top, I(n))

)

. An important observation is that

since ∆d
top is compact and since Mor(X, Grass)an is an inductive limit of

analytic spaces associated to quasi-projective varieties, we have the natural
isomorphism

Maps(∆d
top,Mor(X, Grass)an) ∼= lim

−→
∆d

top→Uan

Hom(U ×X, Grass),

where the limit ranges over the filtered category whose objects are continuous
maps ∆d

top → Uan, with U a quasi-projective complex variety, and in which
a morphism is given by a morphism of varieties U → V causing the evident
triangle to commute. In other words, if we define

Hom(∆d
top ×X, Grass) = lim−→

∆d
top→Uan

Hom(U ×X, Grass)

then we have Maps(∆d
top,Mor(X, Grass)) ∼= Hom(∆d

top ×X, Grass).
For readers inclined to categorical constructions it might be helpful to

observe that Hom(∆d
top×X, Grass) is the result of applying to the topological

space ∆d
top the Kan extension of the presheaf Hom(−×X, Grass) on Sch/C

along the functor Sch/C→ Top given by U 7→ Uan.
Just as in the construction of Ksemi, it’s easy to show that we have the

action of the simplicial E∞ operad I(∆•top) on the simplicial set Hom(∆•top×
X, Grass), and hence we obtain an associated Ω-spectrum

Ω∞|Hom(∆•top ×X, Grass)|.

Finally, this Ω-spectrum is readily seen to be equivalent to the spectrum
Ksemi(X) constructed above (assuming X is projective and weakly normal).

The idea in defining Ksst, then, is to just take the simplicial set Hom(X×
∆•top, Grass) itself for the starting point of the construction. For observe that
the definition of this simplicial set does not depend on X being either projec-
tive or weakly normal, and so we may use it for arbitrary varieties. Theorem
1.2.4 suggests another alternative — one could simply take the algebraic K-
theory functor taking values in spectra, Kalg , and “semi-topologize” it by
applying it degree-wise to ∆•top × X via the Kan extension formula. The
following proposition shows that the two constructions result in equivalent
theories.
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Proposition 1.2.6. (cf. [27, 1.3]) For any quasi-projective complex variety
X, there are natural weak homotopy equivalences of spectra

|d 7→ Kalg(∆d
top×X)| → Ω∞|Hom(∆•top×∆•×X, Grass)| ← Ω∞|Hom(∆•top×X, Grass)|

where Kalg(−) : (Sch/C) → Spectra is a fixed choice of functorial model
of the algebraic K-theory spectrum of quasi-projective complex varieties and
Kalg(∆d

top ×X) is the value of the Kan extension of Kalg(−×X) applied to

∆d
top.

The choice of |d 7→ Kalg(∆d
top × X)| as the primary definition of semi-

topological K-theory is justified by the “Recognition Principle”, which ap-
pears below as Theorem 1.2.12. As we shall see, this definition is but one of
an interesting collection of “singular semi-topological constructions”.

Definition 1.2.7. For any quasi-projective complex variety X , the (singular)
semi-topological K-theory spectrum of X is the Ω-spectrum

Ksst(X) = K(∆•top ×X) = |d 7→ Kalg(∆d
top ×X)|.

The semi-topological K-groups of X with coefficients in the abelian group
A are given by

Ksst
n (X, A) = πnK

sst(X, A), n ≥ 0.

We find that we may easily construct maps as in (1.3) for any quasi-
projective complex variety.

Proposition 1.2.8. (cf. [27, 1.4]) There are natural maps of spectra (in the
stable homotopy category)

Kalg(X)→ Ksst(X)→ Ktop(X
an). (1.5)

Furthermore, if X is projective and weakly normal, there is a weak equivalence
of spectra

Ksst(X) ' Ksemi(X).

The map Kalg(X) → Ksst(X) is the canonical map Kalg(∆0
top × X) →

|d 7→ K(∆d ×X)|. The map Ksst(X) → Ktop(X
an) is the map in the stable

homotopy category (using Proposition 1.2.6) associated to the map

Ω∞|Hom(∆•top ×X, Grass)| → Ktop(X
an)

that is given by the adjoint of the map | Sing•(−)| → id together with the
natural inclusion Hom(−, Grass) ⊂ Maps((−)an, Grassan).

Upon taking homotopy groups with coefficients in an abelian group A, we
thus have the chain of maps

Kalg
∗ (X, A)→ Ksst

∗ (X, A)→ K−∗
top(X

an, A) (1.6)
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whose composition is the usual map from algebraic to topological K-theory
with coefficients in A.

The following property of Ksst(−) is one indication that Definition 1.2.7 is
a suitable generalization of Ksemi(−) to all quasi-projective complex varieties.

Proposition 1.2.9. [30, 2.5] For any quasi-projective complex variety X,
there is a natural isomorphism

Ksst
0 (X) ∼=

Kalg
0 (X)

algebraic equivalence
.

1.2.3 The Recognition Principle

The formulation of Ksst(−) in Definition 1.2.7 is a special case of the following
singular topological construction.

Definition 1.2.10. Let F be a contravariant functor from Sch/C to a suit-
able category C (such as chain complexes of abelian groups, spaces, and spec-
tra). For any compact Hausdorff space T and variety X ∈ Sch/C, define

F(T ×X) = lim
−→

T→Uan

F(U ×X).

Define Fsst to be the functor from Sch/C to C by

Fsst(X) = Tot(d 7→ F(∆d
top ×X))

where Tot refers to a suitable notion of “total object” (such as total complex
of a bicomplex or geometric realization of a bisimplicial space or spectrum).
We call Fsst the singular semi-topological functor associated to F .

The usefulness of this singular semi-topological construction arises in large
part from the validity of the following Recognition Principle. This theorem
should be compared with an analogous theorem of V. Voevodsky [58, 5.9].

Theorem 1.2.11. [32, 2.7] Suppose F → G is a natural transformation
of contravariant functors from Sch/C to chain complexes of abelian groups,
group-like H-spaces, or spectra. Suppose this map is a weak equivalence locally
in the h-topology (for example, suppose it is a weak equivalence on all smooth
varieties). Then the associated map

F(∆•top)→ G(∆
•
top)

is a weak homotopy equivalence.

As a sample application (many more will be discussed below) of the
Recognition Principle, we have following theorem relating algebraic and semi-
topological K-theory. The authors had originally established the validity of
Theorem 1.2.12 using a much more involved argument (see [27, 3.8]), an ar-
gument which pointed the way toward the formulation and applications of
Theorem 1.2.11.
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Theorem 1.2.12. (cf. [27, 3.7]) For a quasi-projective complex variety X
and positive integer n, we have an isomorphism

Kalg
q (X ; Z/n)

∼=−→Ksst
q (X ; Z/n), q ≥ 0.

Sketch of Proof. Via an evident spectral sequence argument, it suffices to
prove Kalg

q (X ; Z/n) →
(

d 7→ Kalg
q (∆d

top ×X ; Z/n)
)

is a homotopy equiva-
lence of simplicial abelian groups (the source being constant). By the Recog-
nition Principle, it suffices to prove the map of presheaves Kalg

q (X ; Z/n) →

Kalg
q (−×X ; Z/n) is locally an isomorphism in the h topology (where again

the source is constant). This holds already for the étale topology by Suslin
rigidity [55]. ut

1.2.4 Semi-topological K-theory for Real Varieties

In this section, we summarize results of [30] which show that the semi-
topological K-theory for real varieties satisfies analogues of the pleasing prop-
erties of Ksst(−) for complex varieties. We take these properties as confirma-
tion that the definition of KRsst(−) given here is the “correct” analogue of
Ksst(−), but are frustrated by the fact that this extension does not suggest
a generalization to other fields.

The reader should observe that the definition of KRsst(−) below is so for-
mulated that if Y is a quasi-projective complex variety then (see Proposition
1.2.18)

KRsst(Y |R) = Ksst(Y ),

where Y |R denotes the complex variety Y regarded as a real variety via
restriction of scalars. Thus, any result concerning KRsst(−) that applies to
all quasi-projective real varieties incorporates the analogous statement for
Ksst(−) applied to quasi-projective complex varieties.

As in the complex case, the motivation for the definition of real semi-
topological K-theory is most easily seen in the projective case first, and in
this case we first define KRsemi, an equivalent but more geometric version of
KRsst defined below.

Definition 1.2.13. Let Y be a projective real variety. We define

MorR(Y, Grass)an = lim
−→
N

MorR(Y, Grass(RN ))(R),

where MorR(Y, Grass(RN ))(R) denotes the space of real points of the real
ind-variety MorR(Y, Grass(RN )) parameterizing morphisms over R from Y
to Grass(RN ). As in the complex setting,MorR(Y, Grass)an admits the struc-
ture of a homotopy-commutative H-space and we let

MorR(Y, Grass)an → KRsemi(Y )

denote the homotopy-theoretic group completion. We call KRsemi(Y ) the real
semi-topological K-theory space.



1 Semi-topological K-theory 15

As in the complex case, for Y a projective, weakly normal real variety, we
have that

Maps(∆d
top,MorR(Y, Grass)) = lim

−→
∆d

top→U(R)

Hom(U ×R Y, Grass),

where the limit ranges over pairs (U, ∆d
top → U(R)) consisting of a real variety

U and a continuous maps from ∆d
top to the its space of real points U(R). As

before, this leads naturally to the following definition:

Definition 1.2.14. For a quasi-projective real variety Y , the real (singular)
semi-topological K-theory space of Y is defined by

KRsst(Y ) ≡ |d 7→ Kalg(∆d
top ×R Y )|

where
Kalg(∆d

top ×R Y ) = lim
−→

∆d
top→U(R)

Kalg(U ×R Y ).

The real (singular) semi-topological K-groups of Y are defined by

KRsst
n (Y ) = πnKRsst(Y ).

In other words, the theory KRsst is induced from algebraic K-theory using
Kan extension along the functor Sch/R→ Top sending U to U(R).

Proposition 1.2.15. (cf. [30, 2.5] If Y is a weakly normal, projective real
variety, then there is a natural weak equivalence of spectra

KRsemi(Y ) ' KRsst(Y ).

The explicit description of KRsst
0 (Y ) is perhaps a bit unexpected. If V1 →

X, V2 → Y are algebraic vector bundles on the real variety Y , then we say that
V1, V2 are real algebraically equivalent if there exists a smooth, connected real
curve C, an algebraic vector bundle V → Y ×C, and real points c1, c2 ∈ C(R)
lying in the same real analytic component of C(R) such that Vi → Y is the
fibre of V → Y × C over Y × {ci}. We refer to the equivalence relation on

Kalg
0 (Y ) generated by real algebraic equivalence as real algebraic equivalence.

The condition that two bundles be joined via real algebraic equivalence
is significantly stronger than what might be termed “algebraic equivalence
for real varieties” (i.e., requiring only that c1, c2 belong to the same algebraic
component of C). Nevertheless, the next proposition and the subsequent the-
orem indicated that this stronger condition is the appropriate one.

Proposition 1.2.16. (cf. [30, 1.6]) For any quasi-projective real variety Y ,

KRsst
0 (Y ) ∼=

Kalg
0 (Y )

real algebraic equivalence
.
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If Y is a real variety, we write YR(C) for the topological space Y (C)an

equipped with the involution y 7→ y induced by complex conjugation — in
Atiyah’s terminology [4] YR(C) is a Real space. As with any Real space, we
may associated to YR(C) its Atiyah’s Real K-theory space KRtop(YR(C)). We
remind the reader that KRtop(YR(C)) is constructed using the category of
Real vector bundles. Such a bundle is a complex topological vector bundle
V → YR(C) equipped with an involution τ : V → V covering the involution

of YR(C) such that for each y ∈ YR(C), the map Cr ∼= Vy
τ
−→Vy

∼= Cr is given
by complex conjugation.

Proposition 1.2.17. (cf. [30, 2.5, 4.3] For a quasi-projective real variety
Y , there is a natural (up to weak equivalence) triple of spectra

Kalg(Y )→ KRsst(Y )→ KRtop(YR(C)). (1.7)

We may of course view any quasi-projective complex variety Y as a quasi-
projective real variety Y |R via restriction of scalars, and, conversely, any real
variety U admits a base change UC = U ×SpecR Spec C to a complex variety.
If Y is a quasi-projective complex variety, then (Y |R)C = Y

∐

Y and the non-
trivial element of the Galois group Gal(C/R) acts on (Y |R)C by interchanging
the copies of Y . It follows that Hom(U×RY |R, Grass) = Hom(UC×CY, Grass)
for any real variety U , from which the following result may be deduced.

Proposition 1.2.18. [30, 2.4, 4.3] If Y is a complex, quasi-projective variety
and X = Y |R, then

KRsst(X) = Ksst(Y ) and KRtop(XR(C)) = Ktop(Y )

and, moreover, in this case the maps of (1.7) coincide with the maps of (1.5).

The following theorem, generalizing Theorems 1.2.5 and 1.2.12, provides
further evidence of the “correctness” of our definition of KRsst(−).

Theorem 1.2.19. (cf. [30, 3.9, 6.9]) Let Y be a quasi-projective real variety.
Then

Kalg
∗ (Y, Z/n) ∼= KRsst

∗ (Y, Z/n)

for any positive integer n.
Furthermore, if C is a smooth real curve, then

KRsst
q (C) ∼= KR

−q
top(CR(C)), q ≥ 0.

For example, if C is a smooth, projective real curve of genus g such that
C(R) 6= ∅, then we have

KRsemi
0 (C) ∼= Z⊕ Z⊕ (Z/2)c−1,

where c is the number of connected components of the space C(R)an (cf.
[30, 1.7]). This example shows that real algebraic equivalence differs from
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algebraic equivalence for real varieties, since modding out K0(C) by the latter
equivalence relation yields the group Z⊕ Z (cf. [30, 1.8]).

We interpret the next theorem as asserting that the triple (1.7) for the
real variety Y is a retract of the triple (1.5) for its base change to C, YC,
once one inverts the prime 2. In establishing this theorem, the authors first
constructed a good transfer map π∗ : Ksst(YC)→ Ksst(Y ) (see [30, §5]).

Theorem 1.2.20. (cf. [30, 5.4, 5.6]) Let Y be a quasi-projective real variety
and let

π : YC = Y ×Spec R Spec C→ Y

denote the natural map of R-varieties. Then we have a homotopy commutative
diagram of spectra

K(Y )

π∗

��

// KRsst(Y )

π∗

��

// KRtop(YR(C))

π∗

��

K(YC)

π∗

��

// Ksst(YC)

π∗

��

// Ktop(Y (C)an)

π∗

��

K(Y ) // KRsst(Y ) // KRtop(YR(C))

(1.8)

with the property that the vertical compositions are weakly equivalent to mul-
tiplication by 2 with respect to the H-space structures.

The reader seeking to extend the construction of Ksst(−) and KRsst(−)
to varieties over some other ground field F would likely have to address the
following two questions:

– What is the correct notion of “F -algebraic equivalence” if F is not al-
gebraically closed and not equal to R? Specifically, what condition on a
pair of F -points of a variety is analogous to the condition that two points
c1, c2 ∈ C(R) lie in the same real analytic component of C(R)an?

– What should play the role of KRtop(−) or Ktop if F is not equal to R or
C?

1.3 Algebraic, Semi-topological, and Topological

Theories

In this section we state the major results relating semi-topological K-theory
to algebraic K-theory, topological K-theory, and morphic cohomology and
we provide some indications of proofs.

The connections between semi-topological K-theory and these other co-
homology theories are well summarized by the existence of and properties
enjoyed by the commutative diagram
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Kalg
∗ (X ; A) //

�

�

�

Ksst
∗ (X ; A) //

�

�

�

K−∗
top(X

an; A)

�

�

�

⊕

q H2q−∗
M (X, A(q)) //

⊕

q LqH2q−∗(X ; A) //
⊕

q H2q−∗
sing (Xan; A),

(1.9)
where X is a smooth, quasi-projective complex variety and A is an arbitrary
abelian group. In this diagram, the top row is the chain of maps (1.6) de-
fined in the previous section, and the maps in the bottom row are defined
in a similar manner below. The vertical arrows are dashed to indicate that
one must interpret them non-literally in one of three ways: (1) One may in-
terpret them as homomorphisms from K-theories to cycle theories (heading
downward in the diagram) whose targets land, to put it a bit imprecisely, in
the groups of units of the ring cohomology theories along the bottom row —
that is, one may take these arrows to be total Chern class maps; (2) one may
interpret them as natural transformations of ring theories from K-theories
to cycles theories (heading downward in the diagram) provided one takes
A = Q — that is, one may take these arrows to be Chern character maps; or
(3) one may interpret these dashed lines as indicating the existence of three
compatible spectral sequences whose E2-terms are cycles theories and whose
abutments are K-theories. We discuss the first two interpretations of these
vertical arrows in this section and leave the spectral sequence interpretation
for the next.

1.3.1 Motivic, Morphic, and Singular Cohomology

Before describing the many nice properties enjoyed by diagram (1.9), we first
remind the reader of the definition of morphic cohomology and define the
maps along the bottom row of this diagram.

Once again, the definition of morphic cohomology is more intuitive in the
case of projective varieties, and, in fact, we first describe Lawson homology,
the homology theory dual to morphic cohomology for smooth varieties, in this
case. The definition of Lawson homology can be motivated by the Dold-Thom
Theorem [12] that gives the isomorphism

πn

(

(qdS
d(Y ))+

)

∼= Hsing
n (Y )

where Y is a compact space, Sd(−) denotes taking the d-th symmetric power
of a space, and (−)+ denotes forming the topological abelian group associated
to a topological abelian monoid via (naive) group completion. Observe that
if we take Y to be the analytic realization of a projective variety X , then
Sd(Xan) is the space of effective 0-cycles of degree d on X and this space
coincides with the analytic realization of the Chow variety C0,d(X). Thus, in
this context, the Dold-Thom theorem becomes
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πnZ0(X)an ∼= Hsing
n (Xan), where Z0(X)an = (

∐

d

C0,d(X)an)+.

Observe that Z0(X)an coincides the space of all 0-cycles on X . A fas-
cinating theorem of F. Almgren [2] generalizes the Dold-Thom Theorem by
asserting that for sufficiently well-behaved spaces Y (i.e., for Lipschitz neigh-
borhood retracts) and for any r ≥ 0 the topological abelian group Z curr

r (Y )
of “integral r-cycles” (i.e., closed rectifiable currents on Y ) has the property
that

πnZ
curr
r (Y ) = Hsing

n+r (Y ).

This result motivated Blaine Lawson to investigate spaces of algebraic r-
cycles on a complex projective variety X as a “small model” for the space
of integral 2r-cycles on Xan. Namely, the collection of effective r-cycles for
any r ≥ 0 of a fixed degree d on a projective variety X is given as the set of
closed points of the Chow variety Cr,d(X). Letting Cr(X) =

∐

d Cr,d(X), we
see that Cr(X)an is a topological abelian monoid under addition of cycles.
We define

Zr(X)an = (Cr(X)an)+,

the associated topological abelian group given by (naive) group completion.
(Up to homotopy, one may equivalently use a homotopy-theoretic group com-
pletion, defined by the bar construction, in place of naive group completion
[47].) Then Zr(X)an is the topological space of all r-cycles on X , and the
Lawson homology groups are defined to be the homotopy groups of this space:

Definition 1.3.1. For a projective, complex variety X , we define the Lawson
homology groups of X to be

LrHn(X) = πn−2rZr(X)an

where
Zr(X)an = (Cr(X)an)+ and Cr(X) =

∐

d

Cr,d(X).

In fact, this definition generalizes is a straightforward fashion to quasi-
projective varieties. Namely, for U quasi-projective, one chooses a compact-
ification U ⊂ X (i.e., an open, dense embedding with X projective) and
defines

LrHn(U) = πn−2rZr(X)an/Zr(X − U)an

where Zr(X)an/Zr(X−U)an denotes the quotient topological abelian group.
By the Dold-Thom Theorem [12], we have

L0Hn(U) = HBM
n (Uan), for all n,

where HBM denotes Borel-Moore homology, and it is easy to prove (cf. [20])
that

LrH2r(X) = π0Zr(X)an ∼= Ar(X)
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where Ar(X) denotes the group of cycles of dimension r on X modulo alge-
braic equivalence.

The definition of the morphic cohomology groups is also quite natural.
The key motivational observation is that the quotient topological group

Z0(P
q)an/Z0(P

q−1)an

is a model for the Eilenberg-MacLane space K(Z, 2q) by the Dold-Thom
theorem, and thus represents the functor H2q

sing(−, Z). That is, the homotopy

groups ofMaps(Y,Z0(P
q)an/Z0(P

q−1)an) give the singular homology groups
of a space Y . Replacing Maps(−,−) by Mor(−,−)an as in the definition
of Ksemi, we arrive at the definition of morphic cohomology for projective
varieties.

Definition 1.3.2. For a smooth, projective complex variety X , we define
the morphic cohomology groups of X to be

LqHn(X) = π2q−nMor(X,Z0(P
q)/Z0(P

q−1))an

where we define

Mor(X,Z0(P
q)/Z0(P

q−1))an = [Mor(X, C0(P
q))an]+/[Mor(X, C0(P

q−1))an]+.

As before, the definition extends naturally to all quasi-projective varieties,
but we omit the details.

The connection between morphic cohomology and singular cohomology
can be seen from the definition of the former: sinceMor(−,−)an is a subspace
of Maps((−)an, (−)an), we obtain a natural map

Mor(X,Z0(P
q)/Z0(P

q−1))an →Maps(Xan,Z0(P
q)an/Z0(P

q−1)an)

which induces the map

LqHn(X)→ Hn
sing(X

an).

The connection between morphic cohomology and motivic cohomology is
suggested by the following fact:

Proposition 1.3.3. (cf. [26, 4.4, 8.1], [56, 2.1]) For a smooth, quasi-
projective complex variety X, we have

πn Hom(X ×∆•,Z0(P
q)/Z0(P

q−1)) ∼= H2q−n
M (X, Z(q))

where Hom(X×∆•,Z0(P
q)/Z0(P

q−1)) denotes the quotient simplicial abelian
group

Hom(X ×∆•, C0(P
q))+/ Hom(X ×∆•, C0(P

q−1))+.

(Here, the superscript + signifies taking degree-wise group completion of a
simplicial abelian monoid.)
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For a projective variety X , it’s not hard to establish the isomorphism

LqHn(X) ∼= π2q−n Hom(X ×∆•top, C0(P
q))+/ Hom(X ×∆•top, C0(P

q−1))+

in much the same way that the equivalence Ksemi ' Ksst is proven for such
varieties. Indeed, we may thus use this isomorphism to define morphic co-
homology for non-projective varieties. Although less “geometric”, the con-
struction given in the following definition of morphic cohomology is more
amenable.

Definition 1.3.4 (Revised Definition of Morphic Cohomology). For a
smooth, quasi-projective complex variety X , the morphic cohomology groups
of X are defined to be

LqHn(X) = π2q−n Hom(X ×∆•top,Z0(P
q)/Z0(P

q−1))

where

Hom(X×∆•top,Z0(P
q)/Z0(P

q−1)) = Hom(X×∆•top, C0(P
q))+/ Hom(X×∆•top, C0(P

q−1))+.

(The superscripts + denote taking degree-wise group completion of a simpli-
cial abelian monoid.)

In other words, we simply define morphic cohomology to be the “semi-
topologized” theory associated to motivic cohomology.

Definition 1.3.5. The maps along the bottom row of (1.9) are given by
applying π∗ to the sequence of natural maps

Hom(X ×∆•,Z0(P
q)/Z0(P

q−1))→ Hom(X ×∆•top,Z0(P
q)/Z0(P

q−1))

→ Maps(Xan ×∆•top,Z0(P
q)an/Z0(P

q−1)an).

In summary, we have the following heuristic overview: Motivic, morphic,
and singular cohomology are defined as the homotopy groups of, respectively,
the “algebraic space” of algebraic morphisms, the topological space of alge-
braic morphisms, and the topological space of topological morphisms from
a given variety to the object Z0(P

q)/Z0(P
q−1). Moreover, the maps joining

these three theories are given by the canonical maps from the algebraic space
of algebraic morphisms to the topological space of algebraic morphisms to
the topological space of topological morphisms.

1.3.2 The Chern Class Maps

The relation between semi-topological K-theory and morphic cohomology is
given, as one would expect, by the total Chern class map and the closely
related Chern character. The former has the advantage that it is defined
integrally, whereas the later has the advantage that it determines a natural
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transformation of ring-valued cohomology theories. Each map induces a ratio-
nal isomorphism from the rational semi-topological K-groups to the rational
morphic cohomology groups of a smooth, quasi-projective complex variety.
These isomorphisms generalize the isomorphisms on π0 groups

c : Ksst
0 (X)Q

∼=
−→A0(X)Q ×



{1}×
⊕

q≥1

Aq(X)Q





×

and
ch : Ksst

0 (X)Q

∼=
−→A∗(X)Q = L∗H2∗(X ; Q).

The first of these isomorphisms, the total Chern class map

c(α) = (rank(α), 1 + c1(α) + · · · ),

is an isomorphism of abelian groups, where the group law for the second
component of the target is given by cup product (i.e., intersection of cycles).
The second of these isomorphisms, the Chern character, is an isomorphism of
rings and is defined via the usual universal polynomials (with Q coefficients)
in the individual Chern classes ci, i ≥ 1. Each of these isomorphisms may be
deduced easily from the corresponding and well-known isomorphisms relating
Kalg

0 (X) and CH∗(X) by simply modding out by algebraic equivalence.
Lawson and Michelsohn recognized that sending an arbitrary subspace

W ⊂ CN+1 to the linear cycle P(W ∗) ⊂ P((CN+1)∗) ∼= PN stablizes (by
letting N approach infinite) to give the universal total Chern class map [41].
(Here, P(W ∗) = Proj(S∗(W ∗)) is the projective variety parameterizing one
dimensional subspaces of W ∗, the linear dual of W .) Indeed, in [9], Boyer,
Lawson, Lima-Filho, Mann, and Michelsohn show that this model of the total
Chern class is a map of infinite loop spaces, thereby answering a question of
G. Segal. This result is extended in Theorem 1.3.7 below. We find it more
convenient when stabilizing with respect to N and when considering the
pairing determined by external direct sum of vector spaces to send a quotient
space of the form CN+1

� V to the linear cycle P(V ) ⊂ PN . This becomes a
model for the total Segre class. The total Segre and Chern class maps differ
only slightly: We define Seg(α) = (rank(α), 1− s1(α)+ s2(α)−· · · ) where sq

are the Segre class maps, defined by the formula

1 + s1(x) + s2(x) + · · · = (1 + c1(x) + c2(x) + · · · )−1.

It follows from [32, 1.4] that there is a natural isomorphism of the form

Hom(X×∆•top, Cr(P
N ))+ ∼=

N−r
⊕

q=0

Hom(X×∆•top, C0(P
q))/ Hom(X×∆•top, C0(P

q−1))

from which one deduces the isomorphism
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πn

(

Hom(X ×∆•top, Cr(P
∞))+

)

∼=
⊕

q≥0

LqH2q−n(X),

for any r ≥ 0 and any smooth, quasi-projective complex variety X . Thus,
morphic cohomology is “represented” by the ind-variety Cr(P

∞) for any r ≥ 0
just as semi-topological K-theory is represented by Grass(C∞). Now, a point
in the latter ind-variety is given by a quotient C∞ � V (that factors through
CN for N � 0), which in turn determines an effective cycle P(V ) ⊂ P∞ of
degree 1 and dimension dim(V ) − 1 by taking associated projective spaces.
Thus we have a map

Grass(C∞)→
∐

r

Cr−1(P
∞)+1 , (1.10)

where Cr−1(P
∞)+1 denotes the subset of the abelian group Cr−1(P

∞)+ con-
sisting of (not necessarily effective) cycles of degree 1. (As a technical point,
when r = 0 one sets C−1(P

∞)+ = Z, the free abelian group generated by
the “empty cycle” which has degree 1 by convention.) In essence, the map
(1.10) induces the total Segre class map by taking homotopy-theoretic group
completions, although some further details are needed to make this precise.

The ind-variety
∐

r Cr−1(P
∞) admits a natural product given by linear

join of cycles. Namely, we first specify an linear isomorphism P∞
∐

P∞ ∼= P∞

by choosing an isomorphism C∞ ∼= C∞ ⊕ C∞ of vector spaces. Then given
a pair of effective cycles α and β in P∞, we may embed them as cycles in
general position in P∞ by use of the isomorphism P∞

∐

P∞ ∼= P∞ (regarding
α as a cycle on the first copy of P∞ and β as a cycle on the second), so that
their linear join (i.e., the cycle formed by the union of all lines intersecting
both α and β) is well-behaved. This pairing extends to all cycles by linearity
and restricts to a pairing

∐

r

Cr−1(P
∞)+1 ×

∐

r

Cr−1(P
∞)+1 →

∐

r

Cr−1(P
∞)+1

since the linear join of cycles having degrees d and e has degree de. For a
complex variety X , this product endows

(

Hom(X ×∆•top,
∐

r

Cr−1(P
∞))an

)+

1

with the structure of a homotopy-commutative H-space, whose associated
homotopy-theoretic group completion is written Hsst

mult(X). It is apparent
from its definition that the space Hsst

mult(X) should be be closely related to
the morphic cohomology of X and, since cup product in morphic cohomology
can be defined by linear join, that the H-space structure of this space should
be related to cup product. The precise connection is given by the isomorphism
of groups
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πnH
sst
mult(X) ∼= L0H−n(X)×



{1} ×
⊕

q≥1

LqH2q−n(X)





×

,

where
(

{1} ×
⊕

q≥1 LqH2q−n(X)
)×

is a subgroup of the multiplicative group

of units of the ring L∗H∗(X).
A key observation is that the map (1.10) is additive in that it takes direct

sum to linear join — that is, given any projective variety X , the induced map

Hom(X ×∆•top, Grass(C∞))→

(

Hom(X ×∆•top,
∐

r

Cr−1(P
∞))an

)+

1

,

is a map of H-spaces. In fact, it can easily be enriched to be a map of I-spaces,
where I is the the E∞ operad discussed above. Upon taking homotopy-
theoretic group completion of this map, we obtain the total Segre class map

Segsst : Ksst(X)→ Hsst
mult(X),

which is a map of group-like H-spaces (in fact, of spectra). Upon taking
homotopy groups, we get

Segsst : Ksst
n (X)→ L0H−n(X)×



{1} ×
⊕

q≥1

LqH2q−n(X)





×

.

Remark 1.3.6. Lima-Filho [49, 4.1] has constructed a similar map of spectra,
resulting in a total Chern class map.

The above construction of the (semi-topological) total Segre class involves,
in a suitable sense, only constructions on the ind-varieties Grass(C∞) and
∐

r Cr−1(P
∞) representing semi-topological K-theory and morphic cohomol-

ogy. Given that Grass(C∞) and
∐

r Cr−1(P
∞) (resp., the corresponding an-

alytic spaces) can also be used to define algebraic K-theory and motivic
cohomology (resp., topological K-theory and singular cohomology), it is un-
surprising that one also obtains total Segre class maps

Segalg : Kalg
n (X)→ H−n

M (X, Z(0))×



{1} ×
⊕

q≥1

H2q−n
M (X, Z(q))





×

.

and

Segtop : K−n
top → H−n

sing(X, Z)×



{1} ×
⊕

q≥1

H2q−n
sing (X, Z)





×

in the algebraic and topological setting via highly analogous constructions.
We obtain the following theorem.
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Theorem 1.3.7. (cf. [30, 8.6]) The total Segre class maps

Segalg : Kalg
n (X)→ L0H−n(X)×



{1} ×
⊕

q≥1

LqH2q−n(X)





×

,

Segsst : Ksst
n (X)→ H−n

M (X, Z(0))×



{1} ×
⊕

q≥1

H2q−n
M (X, Z(q))





×

, and

Segtop : K−n
top → H−n

sing(X, Z)×



{1} ×
⊕

q≥1

H2q−n
sing (X, Z)





×

are induced by natural transformations of H-spaces (in fact, of spectra).
Moreover, they form the vertical arrows of the commutative diagram (1.9),
provided one interprets the entries along the bottom row as groups in a suit-
able fashion.

The topological version of this theorem was first proven by Boyer et al
in [9], settling in the affirmative a conjecture of Segal that the total Chern
class map is a natural transformation of generalized cohomology theories.
In addition, Lima-Filho [49, §4] has established an equivalent version of the
right half of diagram (1.9) in which the verticle arrows are the total Chern
class maps.

By applying the familiar universal polynomials (which have coefficients
in Q) that define the Chern character from the individual Chern classes, we
obtain the Chern character maps

chalg : Kalg
∗ (X)→ H∗

M(X ; Q(∗)),

chsst : Ksst
∗ (X)→ L∗H∗(X ; Q), and

chtop : K∗
top(X

an)→ H∗
sing(X ; Q)

Theorem 1.3.8. (cf. [32, 4.7] For a smooth, quasi-projective complex va-
riety X, the Chern character maps are ring maps and they induce rational
isomorphisms:

chalg : Kalg
∗ (X)Q

∼=
−→H∗

M(X ; Q(∗)),

chsst : Ksst
∗ (X)Q

∼=
−→L∗H∗(X ; Q), and

chtop : K∗
top(X

an)Q

∼=
−→H∗

sing(X ; Q)

Sketch of Proof. The result is well-known in the algebraic [7, 42] and topolog-
ical [5] settings. For the semi-topological context, the proof is easy to describe
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at a heuristic level (although the rigorous details turn out to be more compli-
cated than one might guess): One first shows, without much difficulty, that
it suffices to prove that the semi-topological total Segre class map induces an
isomorphism on rational homotopy groups. Since this is a map of H-spaces
and since the result is known in the algebraic context for all smooth varieties,
the Recognition Principle (Theorem 1.2.11) implies the desired result. (One
difficulty in making this argument rigorous is proving that the usual Chern
character isomorphism in algebraic K-theory coincides with the map given
by universal polynomials from the map Segalg.) ut

Remark 1.3.9. Cohen and Lima-Filho [10] have claimed a proof of the second
isomorphism of Theorem 1.3.8, but their proof is invalid.

1.3.3 Finite Coefficients and the Bott Element

In this section, we describe two important properties of the horizontal maps
in the diagram (1.9) — that is, we describe results about the comparison of
algebraic and semi-topological theories and about the comparison of semi-
topological and topological theories.

The first property is given by the following result, the first half of which
has already been stated above as Theorem 1.2.12.

Theorem 1.3.10. (cf. [27, 3.7], [54]) The left-hand horizontal maps of (1.9)
are isomorphisms if X is smooth and A = Z/n for n > 0. That is, for n > 0
we have isomorphisms

Kalg
m (X ; Z/n)

∼=
−→Ksst

m (X ; Z/n)

and
Hp
M(X, Z/n(q))

∼=
−→LqHp(X, Z/n)

for all integers p, q, m and all quasi-projective complex varieties X.

Remark 1.3.11. In fact, this theorem is valid even for X singular. For the
second isomorphism, one must define the morphic cohomology so that cdh
descent holds.

As mentioned in the sketch of proof of Theorem 1.2.12, the first isomor-
phism follows from the Recognition Principle and rigidity for algebraic K-
theory with finite coefficients. The second isomorphism was proven originally
by Suslin-Voevodsky [54] but the Recognition Principle can also be used to
give another proof (but one which mimics much of Suslin-Voevodsky’s origi-
nal proof): The map in question is induced by the natural transformation of
functors from Sch/C to chain complexes

zequi
0 (X ×∆•, Pq)/zequi

0 (X ×∆•, Pq−1)⊗ Z/n

−→ zequi
0 (−×X ×∆•, Pq)/zequi

0 (−×X ×∆•, Pq−1)⊗ Z/n



1 Semi-topological K-theory 27

(with the first one being constant). By rigidity [54], this map is locally a
quasi-isomorphism for the étale topology, and hence the induced map

zequi
0 (X ×∆•, Pq)/zequi

0 (X ×∆•, Pq−1)⊗ Z/n

−→ zequi
0 (∆•top ×X ×∆•, Pq)/zequi

0 (∆•top ×X ×∆•, Pq−1)⊗ Z/n

is a quasi-isomorphism by the Recognition Principle. These complexes de-
fine the motivic cohomology and morphic cohomology of smooth varieties,
respectively.

Since using finite coefficients makes the maps from algebraic theories to
semi-topological theories into equivalences, one might ask what modification
of the maps from semi-topological theories to topological theories converts
them to equivalences. The answer is that one needs only invert the Bott
element (for K-theory) and the s element (for cycle theories). In other words,
the integral analogue of Thomason’s theorem [57, 4.11] relating Bott inverted
algebraic K-theory and topological K-theory with finite coefficients holds in
the context of semi-topological K-theory.

Note that since we have the isomorphism Ksst
∗ (Spec C) ∼= K−∗

top(pt)
we have in particular that Ksst

2 (Spec C) ∼= Z. Let β be the generator of
Ksst

2 (Spec C) associated to the canonical map S2 = P1(C) → Grass in-
duced by the surjection C∞ � C2 (defined by projection onto the first 2
coordinate) and call β the “Bott element”. Obviously, under the map from
semi-topological K-theory to topological K-theory, β maps to the usual Bott
element in topology. Moreover, it’s evident that that under the composition

Ksst
2 (Spec C)→ Ksst

2 (Spec C; Z/n) ∼= Kalg
2 (Spec C, Z/n) ∼= µn(C), n > 0,

the element β maps to a generator of µn(C) (i.e., a primitive n-th root of
unity), so that β maps to the Bott element in algebraic K-theory with finite
coefficients.

Since Ksst
∗ (X) is a (graded) module over the (graded) ring Ksst

∗ (Spec C) ∼=
Z[β], we may formally invert the action of β on Ksst

∗ (X). Doing the same to
K∗

top(X
an) results in the 2-periodic (non-connective) K-theory ring KU ∗(Xan).

Clearly, Ksst
∗ (X)

[

β−1
]

maps to KU∗(Xan), and the theorem is simply that
this map is an isomorphism in all degrees:

Theorem 1.3.12. (cf. [32], [60]) For a smooth, quasi-projective complex
variety X, the right-hand horizontal maps of (1.9) become isomorphisms upon
inverting the Bott element:

Ksst
∗ (X)

[

β−1
] ∼=
−→K−∗

top(X
an)
[

β−1
]

= KU−∗(Xan)

We know of three separate proofs of this theorem, two of which use the
analogous result for morphic cohomology. This result involves inverting the
so-called “s operation” in morphic cohomology, defined originally the first
author and B. Mazur [24] in the context of Lawson homology. The original
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definition involved a map defined on the level of cycle spaces; the definition
given here is equivalent, under duality, to the induced map on homotopy
groups.

Definition 1.3.13. For a quasi-projective complex variety X , the s operation

s : LtHn(X)→ Lt+1Hn(X)

is defined as multiplication by the s element s ∈ L1H0(Spec C), which is
given by s = c2,1(β) where c2,1 : Ksst

2 (Spec C)→ L1H0(Spec C) is the Chern
class map.

The element s is a generator of L1H0(Spec C) ∼= Z and it clearly maps
to a unit of the graded ring H∗

sing(Xan), for all X , but is never a unit in the

bigraded ring L∗H∗(X). Let LtHn(X)[s−1] denote the degree (t, n) piece of
the result of inverting s in the bi-graded ring L∗H∗(X).

Proposition 1.3.14. For a smooth, quasi-projective complex variety X, the
canonical map

LtHn(X)
[

s−1
]

→ Hn
sing(Xan)

is an isomorphism for all t, n.

The proposition follows directly from the facts that morphic cohomology
is isomorphic to Larson homology, that under this isomorphism multiplication
by s corresponds to cup product by s (which is a map of the form LtHn(X)→
Lt−1Hn(X)), and that LtHn(X) ∼= HBM

n (Xan) for t ≤ 0.
One proof of Theorem 1.3.12 (cf. [32, 5.8]) is given by establishing the

desired isomorphism in the case of Z/n coefficients and Q coefficients sepa-
rately. For Z/n coefficients, by using Theorem 1.3.10 it suffices to establish
the analogous result comparing Bott inverted algebraic K-theory with Z/n
coefficients to topological K-theory with Z/n coefficients — that this map
is an isomorphism is (a special case of) Thomason’s theorem [57, 4.11]. For
Q coefficients, the result follows directly from the rational isomorphisms of
Theorem 1.3.8, using Proposition 1.3.14 and the fact that chsst(β) = s.

A second proof (one which is not in yet in the literature at the time of
this writing) is quite similar to the proof of the Q coefficients case above,
except that one uses the integral “Atiyah-Hirzebruch-like” spectral sequence
relating morphic cohomology and semi-topological K-theory that has been
established by the authors and Christian Haesemeyer [21, 2.10]. This spectral
sequence is described in the next section. Here again the point is that inverting
the Bott element corresponds under this spectral sequence to inverting the s
element in morphic cohomology, and thus Proposition 1.3.14 applies.

The third proof of Theorem 1.3.12 does not use morphic cohomology in
any fashion, but it applies only to smooth, projective varieties. This proof is
given by the second author in [60].
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Note that the whereas the first proof uses Thomason’s theorem, the latter
two proofs do not. In light of Theorem 1.2.12, these proofs therefore repre-
sent, in particular, new proofs of Thomason’s theorem for the special case of
smooth complex varieties.

We close this section by presenting diagram (1.9) again, this time with
arrows suitable decorated to indicate their properties:

Kalg
∗ (X)

Z/n-equiv.
//

Q-equiv.

��
�

�

�

Ksst
∗ (X)

1
β

-equiv.
//

Q-equiv.

��
�

�

�

K−∗
top(X

an)

Q-equiv.

��
�

�

�

⊕

q H2q−∗
M (X, Z(q))

Z/n-equiv.
//
⊕

q LqH2q−∗(X)
1
s
-equiv.

//
⊕

q H2q−∗
sing (Xan),

(1.11)

1.3.4 Real Analogues

The real analogues of the results of Section 1.3.3 are developed by the au-
thors in [30]. In particular, the real morphic cohomology of the variety X
defined over R is formulated in terms of morphisms defined over R from X
to Chow varieties, and semi-topological real Chern and Segre classes are de-
fined. Moreover, the real analogue of Theorem 1.2.12 is proved. In [32], the
semi-topological real total Segre class is shown to be a rational isomorphism
for smooth, quasi-projective varieties defined over R. Indeed, once one in-
verts the prime 2, the semi-topological total Segre class is a retract of the
semi-topological total Segre class of the complexified variety XC, thanks to
an argument using transfers.

1.4 Spectral Sequences and Computations

In this section we describe the construction of the “semi-topological Atiyah-
Hirzebruch spectral sequence” relating morphic cohomology to semi-topological
K-theory. We also provide computations of semi-topological K-groups for cer-
tain special varieties. These computations essentially all boil down to proving
that for certain varieties, the map from semi-topological to topological K-
theory is an isomorphism, at least in a certain range. These two topics are
related, since the primary technique exploited in this section for such com-
putations is the fact that the map from Lawson homology to Borel-Moore
singular homology is an isomorphism in certain degrees for a special class of
varieties. Such isomorphisms, in the case of smooth varieties, imply isomor-
phisms from morphic cohomology to singular cohomology, which, by using
the spectral sequence, imply isomorphisms relating semi-topological to topo-
logical K-theory. Nearly all of the results in this section are found in the
recent paper [21] of the two authors and C. Haesemeyer.
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1.4.1 The Spectral Sequence

The “classical” Atiyah-Hirzebruch spectral sequence relates the singular co-
homology groups of a finite dimensional CW complex Y with its topological
K-groups, and is given by

Ep,q
2 (top) = Hp−q

sing(Y, Z) =⇒ kup+q(Y ).

Recall that ku∗ denotes the generalized cohomology theory associated to the
(−1)-connected spectrum bu. (In non-positive degrees, ku∗ coincides with
K∗

top.) One method of constructing this spectral sequence is to observe that
the homotopy groups of the spectrum bu are π2nbu = Z, π2n+1bu = 0, for
n ≥ 0. Thus, the Postnikov tower of the spectrum bu is the tower of spectra

· · · → bu[4]→ bu[2]→ bu

and there are fibration sequences

bu[2q + 2]→ bu[2q]→ K(Z, 2q), q ≥ 0,

where K(Z, 2q) denotes the Eilenberg-Maclane spectrum whose only non-
vanishing homotopy group is Z in degree 2q. By applying Maps(Y,−), one
obtains the tower of spectra

· · · → Maps(Y,bu[4])→Maps(Y,bu[2])→Maps(Y,bu) (1.12)

and fibration sequences of spectra

Maps(Y,bu[2q + 2])→Maps(Y,bu[2q])→Maps(Y,K(Z, 2q)), q ≥ 0.

These data determine a collection of long exact sequences that form an exact
couple, and the isomorphisms

πnMaps(Y,K(Z, 2q)) ∼= H2q−n
sing (Y, Z) and πnMaps(Y,bu) = ku−n(Y an), n ∈ Z,

show that the associated spectral sequence has the form indicated above.
One of the more significant developments in algebraic K-theory in re-

cent years is the construction of a purely algebraic analogue of the Atiyah-
Hirzebruch spectral sequence, one which relates the motivic cohomology
groups of a smooth variety to its algebraic K-groups. The construction of this
spectral sequence is given (in various forms) in the papers [8, 25, 43, 34, 53].
To construct the spectral sequence for arbitrary smooth varieties (as is done
in [25, 43, 34, 53]), the essential point is to reproduce the tower (1.12) at
the algebraic level. Namely, for a smooth, quasi-projective variety over an
arbitrary ground field F , one constructs a natural tower of spectra

· · · → K(q+1)(X)→ K(q)(X)→ · · · → K(1)(X)→ K(0)(X) = Kalg(X)
(1.13)
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together with natural fibration sequences of the form

K(q+1)(X)→ K(q)(X)→ HM(X, Z(q)), (1.14)

where HM(X, Z(q)) is a suitable spectrum (in fact, a spectrum associated to
a chain complex of abelian groups) whose homotopy groups give the motivic
cohomology groups of X :

πnHM(X, Z(q)) = H2q−n
M (X, Z(q)).

Such a tower and collection of fibration sequences leads immediately to the
motivic spectral sequence:

Ep,q
2 (alg) = Hp−q

M (X, Z(q)) =⇒ Kalg
−p−q(X).

The semi-topological spectral sequence is defined by simply “semi-topologizing”
the motivic version. That is, once one observes that the spectra appearing in
(1.13) and (1.14) are defined for all X ∈ Sch/C (not just smooth varieties)
and that they represent functors from Sch/C to spectra (see [25] and [21,
§2]), then one may form the tower

· · · → K(q+1)(X ×∆•top)→ K
(q)(X ×∆•top)→ · · ·

· · · → K(1)(X ×∆•top)→ K
(0)(X ×∆•top) = Kalg(X ×∆•top)

(1.15)

and the collection of fibration sequences

K(q+1)(X ×∆•top)→ K
(q)(X ×∆•top)→ HM(X ×∆•top, Z(q)) (1.16)

in the usual manner. Since we have Ksst(X) = Kalg(X ×∆•top) and we also
have (essentially by definition — at least, using the definition given in this
paper)

πnHM(X ×∆•top, Z(q)) = LqH2q−n(X),

the collection of long exact sequences associated to (1.16) determines the
semi-topological spectral sequence

Ep,q
2 (sst) = LqHp−q(X) =⇒ Ksst

−p−q(X). (1.17)

Moreover, just as there is a natural map Ksst(X) → Ktop(X
an), one can

define natural maps K(q)(X ×∆•top)→Maps(Xan,bu[2q]) for all q ≥ 0 [21,
3.4], and thus one obtains a map from the semi-topological version of the
Atiyah-Hirzebruch spectral sequence to the classical one. There is an obvi-
ous map from the motivic spectral sequence to the semi-topological spectral
sequence, and thus we have the following theorem.
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Theorem 1.4.1. [21, 3.6] For a smooth, quasi-projective complex variety X,
we have natural maps of convergent spectral sequences of “Atiyah-Hirzebruch
type”

Ep,q
2 (alg) = Hp−q

M (X, Z(q)) =⇒ Kalg
−p−q(X)





y

Ep,q
2 (sst) = LqHp−q(X) =⇒ Ksst

−p−q(X)




y

Ep,q
2 (top) = Hp−q

sing(Y, Z) =⇒ kup+q(Y )

given by the usual maps from motivic to morphic to singular cohomology and
from algebraic to semi-topological to topological K-theory.

1.4.2 Generalized Cycle Map and Weights

The concept of a weight filtration on the singular cohomology of a complex
variety was introduce by Deligne [11] (for rational coefficients). This notion
was extended to arbitrary coefficients in a paper of Gillet-Soulé [33]. For our
purposes, the analogous notion of a weight filtration for Borel-Moore singular
cohomology, HBM

∗ , turns out to be of more use.
For any U , the weight filtration on HBM

n (Uan) has the form

· · · ⊂WtH
BM
n (Uan) ⊂Wt+1H

BM
n (Uan) ⊂ · · · ⊂ HBM

n (Uan)

and is “concentrated” in the range −n ≤ t ≤ d−n, where d = dim(U), in the
sense that WtH

BM
n (Uan) = 0 for t < −n and WtH

BM
n (Uan) = HBM

n (Uan)
for t ≥ d − n. (That the filtration is concentrated in this range is not so
obvious from the definition below, but see [33, §2].) We have found it use-
ful to consider a slight variation on the groups WtH

BM
n (Uan), which are

written W̃tH
BM
n (U). The groups W̃tH

BM
n (U) do not form a filtration on

HBM
n (Uan), but rather map surjectively to WtH

BM
n (Uan) (with torsion ker-

nel). The groups W̃tH
BM
n (U), however, enjoy better formal properties than

do the groups comprising the weight filtration.
The essential idea underlying the definition of the weight filtration is that

the n-th homology group of a smooth, projective complex variety X is of
pure weight −n, by which we mean

WtH
BM
n (Xan) =

{

0, if t < −n and

HBM
n (Xan), if t ≥ −n,

and, more generally, elements in HBM
∗ (Uan) have weight t if they “come

from” elements of weight t in HBM
∗ (Xan) for X smooth and projective under

a suitable construction.
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In detail, given a quasi-projective complex variety U , one chooses a projec-
tive compactification U (so that U ⊂ U is open and dense) and lets Y = U−U
be the reduced closed complement. One then constructs a pair of “smooth
hyperenvelopes” U• → U and Y• → Y together with a map Y• → U• of such
extending the map Y ↪→ U . In general, a “smooth hyperenvelope” X• → X
is an augmented simplicial variety such that each Xn is smooth and the
induced map Xn → (coskn−1(X•))n is a proper map that is surjective on
F -points for any field F . Loosely speaking, such a smooth hyper-envelope
over X is formed by first choosing a resolution of singularities X0 → X of X
(more specifically, a projective map with X0 smooth that induces a surjection
on F -points for any field F ), then by choosing a resolution of singularities
X1 → X0 ×X X0 = (cosk0(X•))1, then by choosing a resolution of singulari-
ties X2 → (cosk2(X•))1, and so on.

Let Z Sing•(−) denote the functor taking a space to the chain complex
that computes its singular homology (i.e., Z Sing•(−) is the chain complex
associated to the simplicial abelian group d 7→ Z Maps(∆d

top,−)). Then the
total complex associated to the map of bicomplexes (i.e., the tri-complex)

Z Sing•(Y
an
• )→ Z Sing•(U

an

• )

gives the Borel-Moore homology of Uan. That is, letting Ui = U i

∐

Yi−1

(with Y−1 = ∅), we have

HBM
n (Uan) ∼= hn(Tot(· · · → Z Sing•(U1)→ Z Sing•(U0))).

Observe that the definition of WtHn for a smooth, projective variety X given
above amounts to setting

WtHn(X) = hn(tr≥−tZ Sing•(X
an)),

where tr≥−t denotes the good truncation of chain complexes at homological
degree −t. In heuristic terms, the weight filtration on HBM

∗ (Uan) is defined
from the “left-derived functor” of tr≥−t, if we interpret the smooth, projective
varieties Ui as forming a resolution of U .

This idea is formalized in the following definition, which also includes a
definition of related functors W̃tH

BM
n .

Definition 1.4.2. Given a quasi-projective complex variety U , define

W̃tH
BM
n (U) = hn(· · · → tr≥−tZ Sing•(U1)→ tr≥−tZ Sing•(U0)),

where tr≥−t denotes the good truncation of a chain complex at homological
degree −t and the Ui’s are constructed as above.

Define WtH
BM
n (Uan) to be the image of W̃tH

BM
n (U) in HBM

n (Uan) under
the canonical map:

WtH
BM
n (Uan) = image(W̃tH

BM
n (Uan)→ HBM

n (Uan)).
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For an alternative formulation of the weight filtration, observe that as-
sociated to the bicomplex · · · → Z Sing•(U1) → Z Sing•(U0), we have the
spectral sequence

E2
p,q = hp(· · · → Hq(U

an
1 )→ Hq(U

an
0 )) =⇒ HBM

p+q (Uan). (1.18)

The weight filtration on HBM
∗ (Uan) may equivalently be defined to be the

filtration induced by this spectral sequence [33, §3]:

WtH
BM
n (Uan) = image

(

hn (Z Sing•(Un+t)→ · · · → Z Sing•(U0))→ HBM
n (Uan)

)

.

In other words, the groups WtH
BM
n (Uan) are the D∞ terms of the spec-

tral sequence (1.18). What’s more, the groups W̃tH
BM
n (U) are equal to

the D2 terms of this spectral sequence. This implies that for a situation
in which the spectral sequence (1.18) degenerates at the E2 terms, the map
W̃tH

BM
n (U) → WtH

BM
n (Uan) is an isomorphism for all t and n. In par-

ticular, since (1.18) degenerates rationally by Deligne’s result [11], we have
W̃tH

BM
n (U)Q

∼= WtH
BM
n (Uan)Q.

For a simple example, suppose U happens to be smooth and admits a
smooth compactification X such that Y = X −U is again smooth. Then the
spectral sequence (1.18) degenerates (integrally) and it really just amounts
to a single long exact sequence

· · · → Hsing
n (Y an)→ Hsing

n (Xan)→ HBM
n (Uan)→ Hsing

n−1 (Y an)→ · · · .

It follows that W̃tH
BM
n (U) = WtH

BM
n (Uan) and

WtH
BM
n (Uan) =











0, if t < −n,

image(Hsing
n (Xan)→ HBM

n (Uan)), if t = −n, and

HBM
n (Uan), if t > −n.

Thus, in this situation the information encoded by the weight filtration on
HBM
∗ (Uan) concerns which classes in HBM

∗ (Uan) can be lifted to the homol-
ogy of a smooth compactification H∗(X

an).
It is a non-trivial theorem, due to Deligne [11] for Q-coefficients and Gillet-

Soulé [33, §2] in general, that the weight W∗H
BM
∗ filtration is independent

of the choices made in its construction. Using their techniques, the authors
and Christian Haesemeyer have also proven that W̃tH

BM is independent of
the choices made [21, 5.9].

1.4.3 Computations

The generalized cycle map (see [24] and [48]) is the map from the Lawson
homology of a complex variety X to its Borel-Moore homology

LtHn(X)→ Hsing
n (Xan).
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For smooth varieties, the generalized cycle map corresponds under duality to
the map from morphic cohomology to singular cohomology

Ld−tH2d−n(X)→ H2d−n
sing (Xan)

described in Section 1.3.1. For projective (but possibly singular) varieties, the
generalized cycle map is defined by applying πn−2t to the diagram of spaces

Zt(X)
s

−−−−→ Ω2tZt(X × At)
∼

←−−−− Ω2tZ0(X),

where the first map is the “s map” defined by Friedlander and Mazur [24]
(see also Definition 1.3.13) and the second map is the homotopy equivalence
induced by flat pullback of cycles along the projection X × At → X . This
definition is extended to quasi-projective varieties in [20].

Observe that the singular chain complex associated to the space Ω2tZ0(X)
is quasi-isomorphic to tr≥−2tZ Sing•(X

an)[2t], the complex used to define

W̃2tH
BM
∗ . This observation leads to a proof that the generalized cycle class

map from LtHn lands in the weight −2t part of Borel-Moore homology. This
fact, as well as other properties relating the weight filtration on Borel-Moore
homology and the generalized cycle map, is formalized by the following result.

Proposition 1.4.3. (cf. [21, 5.11, 5.12])

1. For any quasi-projective variety U , the generalized cycle map factors as

LtHn(U)→ W̃−2tH
BM
n (U) � W−2tH

BM
n (U) ⊂ HBM

n (U),

and each of these maps is covariantly functorial for proper morphisms and
contravariantly functorial for open immersions. The map LtHn(U) →
W̃−2tH

BM
n (U) is called the refined cycle map.

2. Each of the theories LtH∗(−), W̃tH
BM
∗ (−), HBM

∗ ((−)an) has a long ex-
act localization sequence associated to an open immersion U ⊂ X with
closed complement Y = X − U , and the maps

LtH∗(−)→ W̃tH
BM
∗ (−)→ HBM

∗ ((−)an)

are compatible with these long exact sequences.

Remark 1.4.4. The weight filtration itself, WtH
BM
∗ (−), is not always com-

patible with localization sequences, and the construction W̃tH
BM
∗ was intro-

duced to rectify this defect.

The first part of Proposition 1.4.3 clearly provides an obstruction for the
generalized cycle map to be an isomorphism in certain degrees for certain
kinds of varieties.

Definition 1.4.5. Define C to be the collection of smooth, quasi-projective
complex varieties U such that the refined cycle map LtHn(U) → W̃tHn(U)
is an isomorphism for all t and n.
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Theorem 1.4.6. (cf. [21, 6.3]) Assume X is a quasi-projective complex va-
riety of dimension d that belongs to the class C and let A be any abelian
group.

1. The generalized cycle map

LtHn(X, A)→ HBM
n (Xan, A)

is an isomorphism for n ≥ d + t and a monomorphism for n = d + t− 1.
If X is smooth and projective, this map is an isomorphism for n ≥ 2t.

2. If X is smooth, the canonical map

Ksst
q (X, A)→ K−q

top(X
an, A)

is an isomorphism for q ≥ d− 1 and a monomorphism for q = d − 2. If
X is smooth and projective, this map is an isomorphism for q ≥ 0.

The proof of the first part of Theorem 1.4.6 is achieved via a careful
analysis of the spectral sequence (1.18), and the proof of the second part fol-
lows from a careful analysis of the semi-topological spectral sequence and it’s
comparison with the classical Atiyah-Hirzebruch spectral sequence (Theorem
1.4.1).

The conclusion of the second part of Theorem 1.4.6 (in the not-necessarily-
projective case) is what we term the Semi-topological Quillen-Lichtenbaum
Conjecture, discussed in more detail in Section 1.5 below.

The validity of the following assertions for the class C is the primary rea-
son the groups W̃∗H

BM
∗ (−) were introduced. The corresponding statement

for the class of varieties for which LtHn(−) → W−2tH
BM
n ((−)an) is an iso-

morphism in all degrees is false.

Proposition 1.4.7. (cf. [21, 6.9]) The class C is closed under the following
constructions:

1. Closure under localization: Let Y ⊂ X be a closed immersion with Zariski
open complement U . If two of X, Z, and U belong to C, so does the third.

2. Closure for bundles: For a vector bundle E → X, the variety X belongs
to C if and only if P(E) does. In this case, E belongs to C as well.

3. Closure under blow-ups: Let Z ⊂ X be a regular closed immersion and
such that Z belongs to C. Then X is in C if and only if the blow-up XZ

of X along Z is in C.

Recall that the class of linear varieties is the smallest collection L of
complex varieties such that (1) An belongs to L, for all n ≥ 0, and (2) if X is
a quasi-projective complex variety, Z ⊂ X is a closed subscheme, U = X−Z
is the open complement, and Z and either X or U belongs to L, then so does
the remaining member of the triple (X, Z, U). Examples of linear varieties
include toric and cellular varieties.
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Theorem 1.4.8. (cf. [21, §6]) The following complex varieties belong to C:

1. A quasi-projective curve.
2. A smooth, quasi-projective surface having a smooth compactification with

all of H2
sing algebraic.

3. A smooth projective rational three-fold.
4. A smooth quasi-projective linear variety (e.g., a smooth quasi-projective

toric variety).
5. A toric fibration (e.g., an affine or projective bundle) over one of the

above varieties.

In particular, if X is smooth and one of the above types of varieties, then for
any abelian group A the natural map

Ksst
n (X, A)→ K−n

top (Xan, A)

is an isomorphism for n ≥ dim(X) − 1 and a monomorphism for n =
dim(X) − 2. If X is in addition projective, this map is an isomorphism for
all n ≥ 0.

As mentioned in the introduction, when X is a smooth, projective complex
variety belonging to C, Theorem 1.4.8 implies that the subspace inclusion

Mor(X, Grass) ⊂Maps(Xan, Grassan)

becomes a homotopy equivalence upon taking homotopy-theoretic group com-
pletions. In fact, both homotopy-theoretic group completions can be de-
scribed precisely by taking mapping telescopes of self-maps (essentially de-
fined as “addition by a fixed ample line bundle”) of the spaces above [31,
3.5]. This result therefore gives examples when the stabilized space of all
continuous maps between two complex (ind-)varieties can represented up-
to-homotopy equivalence by the stabilized space of all algebraic morphisms
between them.

1.5 Conjectures

In this section, we discuss various conjectures relating semi-topological K-
theory to topological K-theory and relating morphic cohomology to singular
cohomology.

1.5.1 Integral Versions of the “Classical” Conjectures

One important feature of semi-topological K-theory and morphic cohomol-
ogy is that they allow for the formulation of plausible analogues for arbi-
trary coefficients of the classical conjectures in algebraic K-theory and mo-
tivic cohomology for finite coefficients. For example, the Quillen-Lichtenbaum
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and Beilinson-Lichtenbaum Conjectures, each of which concerns theories
with Z/n-coefficients, admit integral analogues in the semi-topological world.
Moreover, in light of Theorem 1.3.10, these semi-topological conjectures im-
ply their classical counter-parts (for complex varieties).

Perhaps the most fundamental of these conjectures, formulated originally
by A. Suslin, concerns a conjectural description of morphic cohomology in
terms of singular cohomology. To understand Suslin’s Conjecture, as we have
termed it, recall that if we define Zsst to be the complex of abelian sheaves

Zsst(t) = Hom(−×∆•top, C0(P
t))+/ Hom(−×∆•top, C0(P

t−1))+[−2t],

then the morphic cohomology groups of a smooth variety X are given by

LtHn(X) = hn−2tΓ (X, Zsst(t)).

In fact, Zariski descent for morphic cohomology [18] implies that

LtHn(X) ∼= Hn−2t
Zar (X, Zsst(t))

for X smooth, where HZar denotes taking the hypercohomology in the Zariski
topology. The comparison of Zsst(t) with singular cohomology uses the mor-
phism of sites ε : CWopen → (Sch/CZar), where CW denotes the category
of topological spaces homeomorphic to finite dimensional CW -complexes, as-
sociated to the functor U 7→ Uan taking a complex variety to its associated
analytic space. If Z denotes the sheaf associated to the constant presheaf
T 7→ Z defined on CW , then we have

Hn
sing(X

an, Z) ∼= Hn
sheaf (Xan, Z) ∼= Hn

Zar(X
an, Rε∗Z),

for any X ∈ Sch/C. It’s not hard to see that the map from morphic coho-
mology to singular cohomology is induced by a map of chain complexes of
sheaves

Zsst(q)→ Rε∗Z.

More generally, for any abelian group A, if we define Asst(q) = Zsst(q) ⊗A,
then there is a natural map

Asst(q)→ Rε∗A

of complexes of sheaves that induces the map from morphic cohomology with
A-coefficients to singular cohomology with A-coefficients.

To formulate Suslin’s Conjecture, we need the following result:

Theorem 1.5.1. [21, 7.3] For any abelian group A, the map Asst(q)→ Rε∗A
factors (in the derived category of sheaves) as

Asst(q)→ tr≤qRε∗A→ Rε∗A,

where tr≤q represents the “good truncation” at degree q of a cochain complex.
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The proof of Theorem 1.5.1 may be of independent interest, and so we
sketch it here. (This is proved formally in [21], building on ideas from [13].) It
suffices to prove LtHn(−, A) vanishes locally on a smooth variety whenever
n > t. Using duality relating morphic cohomology to Lawson homology [22,
17], we see that it suffices to prove that LtHm(−, A) vanishes at the generic
point of X for m < t + dim(X). Localization for Lawson homology and the
rational injectivity of the Hurewicz map for a topological abelian group shows
that it suffices to verify that the canonical map

lim−→
Y⊂X,codim(Y )≥1

Hsing
m (Zt(Y ), A)→ Hsing

m (Zt(X), A)

is an isomorphism for n < d − t − 1 and a surjection for n = d − t − 1. For
a given X and a given t ≥ 0, the proof of this statement can be reduced to
proving the analogous statements for

lim
−→

Y⊂X,codim(Y )≥1

Hsing
m (Ct,e(Y ), A)→ Hsing

m (Ct,e(X), A), e > 0.

Finally, these statements concerning the (singular) algebraic varieties Ct,e(X)
are then proved using the Lefschetz theorem as proved by Andreotti and
Frankel [3].

Conjecture 1.5.2 (Suslin’s Conjecture). For any abelian group A, the
map of complexes

Asst(q)→ tr≤qRε∗A

is a quasi-isomorphism on the category of smooth, quasi-projective complex
varieties.

Equivalently (see [21, 7.9]), for all smooth, quasi-projective complex va-
rieties X , the map

LtHn(X, A)→ Hn
sing(X, A)

is an isomorphism for n ≤ t and a monomorphism for n = t + 1.

Suslin’s Conjecture is clearly analogous to the Beilinson-Lichtenbaum
Conjecture, which can be stated as follows.

Conjecture 1.5.3 (Beilinson-Lichtenbaum Conjecture). (See [6] and
[45].) Let F be an arbitrary field, let π : (Sch/F )ét → (Sch/F )Zar be the
evident morphism of sites, and let m be a positive integer not divisible by
the characteristic of F . Then the canonical map of complexes of sheaves on
(Sm/F )Zar

Z/m(q)→ tr≤qRπ∗µ
⊗q
m

is a quasi-isomorphism.
Equivalently, for all smooth, quasi-projective F -varieties X , the map

Hn
M(X, Z/n(q))→ Hn

ét(X, µ⊗q
m )

is an isomorphism for n ≤ t and a monomorphism for n = t + 1.
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In light of Theorem 1.3.10 and the fact that étale and singular cohomology
with finite coefficients of complex varieties coincide, the following result is
evident.

Proposition 1.5.4. Suslin’s Conjecture implies the Beilinson-Lichtenbaum
Conjecture for complex varieties.

In a parallel fashion, the Quillen-Lichtenbaum Conjecture, which asserts
an isomorphism between algebraic and topological K-theory with finite co-
efficients in a certain range, admits an integral, semi-topological analogue:

Conjecture 1.5.5 (Semi-topological Quillen-Lichtenbaum Conjec-
ture). For a smooth, quasi-projective complex variety X and abelian group
A, the canonical map

Ksst
n (X, A)→ K−n

top (X, A)

is an isomorphism for n ≥ dim(X)−1 and a monomorphism for n = dim(X)−
2.

Using the isomorphism of Theorem 1.3.10, we see in the case A = Z/m
that this conjecture is equivalent to the assertion that

Kalg
n (X, Z/m)→ K−n

top (X, Z/m)

is an isomorphism for n ≥ dim(X)−1 and a monomorphism for n = dim(X)−
2. This special case is the “classical” Quillen-Lichtenbaum Conjecture (see
[52] and [44]) for complex varieties.

Evidence for the semi-topological Quillen-Lichtenbaum Conjecture is sup-
plied by Theorem 1.3.12, which may be interpreted as saying the map
Ksst
∗ (X) → K−∗

top(X
an) is an isomorphism “stably”. In addition, we have

the following result establishing split surjectivity of this map in a range.

Theorem 1.5.6. For a smooth, quasi-projective complex variety X, the map

Ksst
n (X)→ K−n

top (Xan)

is a split surjection for n ≥ 2 dim(X).

When X is projective, this is proven by the second author in [60] using the
theory of “semi-topological K-homology”. Thanks to the recently established
motivic spectral sequence (1.17), a proof for the gereral case is obtained by
mimicking the argument of [29, 1.4].

Using the semi-topological Atiyah-Hirzebruch spectral sequence (1.17),
one may readily deduce that Suslin’s Conjecture implies the semi-topological
Quillen-Lichtenbaum Conjecture.

Theorem 1.5.7. [21, 6.1] For a smooth, quasi-projective complex variety X
and an abelian group A, if
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LqHn(X, A)→ Hn(Xan, A)

is an isomorphism for n ≤ q and a monomorphism for n = q + 1, then the
map

Ksst
i (X, A)→ ku−i(Xan, A)

is an isomorphism for i ≥ dim(X)−1 and a monomorphism for i = dim(X)−
2.

In other words, Suslin’s Conjecture implies the semi-topological Quillen-
Lichtenbaum Conjecture.

The results described in Section 1.4.3 lead to the following theorem:

Theorem 1.5.8. (cf. [21, 7.14]) Suslin’s Conjecture and the and semi-
topological Quillen-Lichtenbaum Conjectures hold for the following complex
varieties:

1. smooth quasi-projective curves,
2. smooth quasi-projective surfaces,
3. smooth projective rational three-folds,
4. smooth quasi-projective linear varieties (for example, smooth quasi-projective

toric and cellular varieties), and
5. smooth toric fibrations (e.g., affine and projective bundles) over one of

the above varieties.

Consequently, the “classical” Quillen-Lichtenbaum Conjecture and the Beilinson-
Lichtenbaum Conjecture hold for these varieties.

We remind the reader that Voevodsky has recently proven the Beilinson-
Lichtenbaum and “classical” Quillen-Lichtenbaum Conjectures [59].

1.5.2 K-theoretic Analogue of the Hodge Conjecture

The Hodge conjecture [37] concerns which rational singular cohomology
classes of a smooth, complex variety arise from cycles — more precisely,
it asserts that for a smooth, projective complex variety X , every class in
Hp,p

sing(Xan, Q) lies in the image of the rational cycle class map Ap(X)Q →

H2p
sing(Xan, Q), where

Hp,p(Xan, Q) = H2p
sing(Xan, Q) ∩Hp,p(Xan, C)

and Hp,p(Xan, C) refers to the Hodge decomposition of a complex Kahler
manifold. It is easy to show the image of the rational cycle class map is
contained in Hp,p

sing(Xan, Q), and thus the Hodge Conjecture becomes (in the
language of morphic cohomology) that the rational cycle class map

LpH2p(X, Q)→ Hp,p(Xan, Q)

is a surjection.
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The Generalized Hodge Conjecture, as corrected by Grothendieck [36],
asserts that the Hodge filtration and the coniveau filtration on the ratio-
nal homology of a smooth, projective complex variety coincide. The rational
Hodge filtration is given as

Hm
sing(Xan, Q) = F 0

hHm
sing(X

an, Q) ⊃ F 1
hHm

sing(X
an, Q) ⊃ F 2

hHm
sing(X

an, Q) ⊃ · · · ,

where F j
hHm

sing(X
an, Q) is defined by Grothendieck [36] to be the maximal

sub-mixed Hodge structure of Hm
sing(X

an, Q) contained in Hm
sing(Xan, Q) ∩

⊕

p≥j Hp,m−p
sing (Xan, C). The coniveau filtration, N∗Hm

sing(X
an, Q), is given

by

N jHm
sing(X

an, Q) =
⋃

Y⊂X

codim(Y ) = j

ker
(

Hm
sing(Xan, Q)→ Hm

sing((X − Y )an, Q)
)

The containment HjHm
sing(Xan, Q) ⊂ F j

hHm
sing(X

an, Q) always holds, and so
the Generalized Hodge Conjecture amounts to the assertion that the opposite
containment also holds — i.e., every class in F j

hHm
sing(X

an, Q) vanishes on
the complement of a closed subscheme of codimension j.

For any smooth, quasi-projective complex variety X , the topological fil-
tration of Hm

sing(Xan) is given by considering the images of the powers of the
s map:

T jHm
sing(X

an, Z) = image
(

Lm−jHm(X)→ Hm
sing(Xan, Z)

)

.

(We set T j = T 0 if j < 0.) Recall that Suslin’s Conjecture predicts that the
map LmHm(X) → Hm

sing(Xan, Z) is an isomorphism, so that, conjecturally,

T jHm
sing(Xan, Z) may be identified with the image of sj : Lm−jHm

sing(X)→
LmHm(X).

The following result of the first author and B. Mazur (originally stated in
the context of Lawson homology) relates the three filtrations above. Note that
we have modified the indexing conventions here from those of the original.

Proposition 1.5.9. (cf. [24]) For a smooth, projective complex variety X,
we have

T jHm
sing(X

an, Q) ⊂ N jHm
sing(Xan, Q) ⊂ F j

hHm
sing(X

an, Q),

for all j and m.

The following conjecture thus represents a (possibly stronger) version of
the Generalized Hodge Conjecture:

Conjecture 1.5.10 (Friedlander-Mazur Conjecture). (cf. [24] ) For a
smooth, projective complex variety, we have

T jHm
sing(X

an, Q) = F j
hHm

sing(Xan, Q),

for all m and j.
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Proposition 1.5.9 shows that the Friedlander-Mazur Conjecture implies
the Generalized Hodge Conjecture. In the case of abelian varieties, S. Abdulali
has established the following converse.

Theorem 1.5.11. (cf. [1]) For abelian varieties for which the Generalized
Hodge Conjecture is known the Friedlander-Mazur Conjecture also holds.

Semi-topological K-theory provides another perspective on the Hodge
Conjecture, one which could prove to be of some use. Since the topological
filtration on singular cohomology is defined by in terms of the s map, it is
natural to define the topological filtration on topological K-theory in terms
of the Bott map (i.e., multiplication by the Bott element) in semi-topological
K-theory. That is, an element of K0

top(X
an) lies in the j-th filtered piece

of the topological filtration if it comes from semi-topogical K-theory after
applying the j-th power of the Bott map:

T jK0
top(X

an) = (1.19)

image(Ksst
2d−2j(X)

βj

−−−−→ Ksst
2d (X)→ K−2d

top (Xan)
βd

←−−−−
∼=

K0
top(X

an)).

(As before, T j = T 0 for j < 0.) The form of this definition appears more
sensible once one recalls that the map

Ksst
2d (X)→ K−2d

top (Xan)

is known to be a split surjection (see Theorem 1.5.6). We thus have a filtration
of the form

K0
top(X

an) = T 0K0
top(X

an) ⊃ T 1K0
top(X

an) ⊃ · · ·T dK0
top(X

an) ⊃ T d+1K0
top(X

an) = 0,

for a smooth, quasi-projective complex variety X . In fact, for j ≤ d+1
2 , the

Quillen-Lichtenbaum Conjecture predicts that each map in (1.19) is an iso-
morphism, so that conjecturally we have T 0K0

top(X
an) = T 1K0

top(X
an) =

· · · = T
d+1

2 K0
top(X

an).
Rationally, under the Chern character isomorphism, the Bott element in

K-theory corresponds to the s element in cohomology, and thus the topologi-
cal filtrations for K-theory and cohomology defined above are closely related.
The precise statement is the following.

Theorem 1.5.12. (cf. [32, 5.9]) For any smooth, quasi-projective complex
variety X of dimension d, the Chern character restricts to an isomorphism

chtop : T jK0
top(X

an)Q

∼=
−→

⊕

q≥0

T q+j−dH2q
sing(X

an, Q),

for all j. In other words, the weight q piece of T jK0
top(X

an)Q is mapped

isomorphically via the Chern character to T q+j−dH2q
sing(Xan, Q).
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Using the Chern character isomorphism, one can transport the ratio-
nal Hodge Filtration in singular cohomology to a filtration of K0

top(X)Q. In
this manner, the Friedlander-Mazur Conjecture, which implies the General-
ized Hodge Conjecture, can be stated in purely K-theoretic terms. It would
be interesting to find an intrinsic description of the “Hodge filtration” of
K0

top(X)Q.
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Norm. Sup., 18:437–552, 1985.

58. Vladimir Voevodsky. Cohomological theory of presheaves with transfers. In
Cycles, transfers, and motivic homology theories, pages 87–137. Princeton Univ.
Press, Princeton, NJ, 2000.

59. Vladimir Voevodsky. On motivic cohomology with Z/l-coefficients. Preprint.
Available at http://www.math.uiuc. edu/K-theory/0639/, June 2003.

60. Mark E. Walker. Semi-topological K-homology and Thomason’s theorem. K-
Theory, 26(3):207–286, 2002.


