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Abstract. The well known isomorphism relating the rational algebraic K-theory groups and the rational motivic
cohomology groups of a smooth variety over a field of characteristic 0 is shown to be realized by a map (the
“Segre map”) of infinite loop spaces. Moreover, the associated Chern character map on rational homotopy groups
is shown to be a ring isomorphism. A technique is introduced which establishes a useful general criterion for
a natural transformation of functors on quasi-projective complex varieties to induce a homotopy equivalence of
semi-topological singular complexes. Since semi-topological K-theory and morphic cohomology can be formulated
as the semi-topological singular complexes associated to K-theory and motivic cohomology, this criterion provides
a rational isomorphism between the semi-topological K-theory groups and the morphic cohomology groups of
a smooth complex variety. Consequences include a Riemann-Roch theorem for the Chern character on semi-
topological K-theory and an interpretation of the “topological filtration” on singular cohomology groups in K-
theoretic terms.

Introduction

A celebrated consequence of A. Grothendieck’s Riemann-Roch Theorem (cf. [SGA6], [BS]) is the fact
that the Chern character induces a multiplicative isomorphism

ch : K0(X)⊗Q
∼=
−→ CH∗(X)⊗Q,

where K0(X) denotes the Grothendieck group of algebraic vector bundles on a smooth quasi-projective
variety X and CH∗(X) denotes the Chow ring of algebraic cycles on X modulo rational equivalence (cf.
[Fu; 15.2.16]). This theorem was extended to higher K-groups by S. Bloch [B] (cf. M. Levine [Le]) who
established an isomorphism ⊕

n

Kn(X)⊗Q
∼=
−→
⊕

n,q

CHq(X,n)⊗Q (0.1)

relating the Quillen K-groups of X to Bloch’s higher Chow groups. These results were motivated by the
earlier theorem of M. Atiyah and F. Hirzebruch [AH] which asserts the existence of a multiplicative isomor-
phism

chtop :
⊕

n

K−n
top (T )⊗Q

∼=
−→

⊕

n,q

H2q−n
sing (T,Q) (0.2)

relating the topological (complex) K-theory of a space T to its singular cohomology.

Key words and phrases. Chern character, morphic cohomology, motivic cohomology, algebraic K-theory, semi-topological
K-theory.
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The purpose of this paper is to further investigate such rational isomorphisms for smooth quasi-projective
varieties defined over the complex numbers C or real number field R. In particular, in Theorem 4.7 we
establish a natural isomorphism of graded rings

chsst :
⊕

n

Ksst
n (X)⊗Q

∼=
−→

⊕

n,q

LqH2q−n(X,Q) (0.3)

relating the singular semi-topological K-theory of a smooth, complex variety to its morphic cohomology. The
(singular) semi-topologicalK-theory of complex varieties was introduced and studied by the authors in [FW3]
(where it was written K∗(X ×∆•

top)). Morphic cohomology is a theory introduced by the first author and
H. B. Lawson based on topological abelian groups of algebraic cycles [FL1]. The isomorphism (0.3) enables
us to further our program of establishing the basic formal properties of (singular) semi-topological K-theory.
Our point of view is that this theory, based as it is on algebraic equivalence of vector bundles, interpolates
between rational equivalence and topological equivalence. The analogous program for cohomology led the
first author and Lawson to formulate morphic cohomology [FL1], whose properties are well established [F4].

In order to derive (0.3) from (0.1), we first establish that Bloch’s isomorphism (0.1) can be realized
by a natural transformation of spaces and can be refined to give (as expected) an isomorphism of graded
rings induced by the Chern character. Our proof uses the motivic spectral sequence as constructed by the
first author and A. Suslin [FS] following the fundamental construction of Bloch and S. Lichtenbaum [BL].
Theorem 1.10 establishes that the isomorphisms of (0.1) arise as the maps on rational homotopy groups of
a natural “Segre map” Seg : K(X)→ Hmult(X) of infinite loop spaces.

In our original formulation [FW2], we defined the semi-topological K-theory of a variety X , Ksemi
∗ (X), as

the homotopy groups of the group completion of the space of algebraic morphisms from X to Grassmannians.
We think of this definition as geometric in nature, especially since for a smooth projective curve C it is closely
related to a stabilization of the moduli space of stable vector bundles on C. Indeed, we achieved several
computations in this theory, including the semi-topological K-theory of projective curves and homogeneous
spaces. However, we have found this formulation of semi-topological K-theory inadequate for two reasons:
a.) for quasi-projective varieties, we have been unable to provide a clear understanding of the topology on
these function spaces; and b.) it appears extremely difficult to prove general properties using this definition.

Consequently, we introduced in [FW3] an alternative formulation, defined by the geometric realization of
a certain simplicial space d 7→ K(X × ∆d

top), which one can informally describe as the “Kan extension of
algebraic K-theory from the Zariski site to the analytic site”. For projective, weakly normal varieties, the
space

Ksst(X) = K(X ×∆•
top) = |d 7→ K(X ×∆d

top)|

coincides up to homotopy with Ksemi(X) [FW3; 1.4]. For brevity, we shall typically refer to the homotopy
groups of Ksst(X) as “the semi-topological K-groups of X” even in the case in which X is not projective
(thus taking Ksst(X) as our “default” formulation). Since Ksst(X) is formulated as a sort of colimit of
algebraic K-theory spaces, we have been able to translate several general properties of algebraic K-theory
to this theory including mod-n equivalence with algebraic K-theory and Nisnevich descent (cf. [FW3]).

The point of view afforded by the formulation Ksst(X) has led us to develop a very useful recognition
principle for establishing isomorphisms of the sort we seek. This recognition principle, Theorem 2.3, is
inspired by similar results of V. Voevodsky and uses his techniques. Theorem 2.3 is the result of our many
efforts to prove that some version of the Segre map from semi-topological K-theory to rational cohomology
is a rational equivalence. The problem which continually confronted us is the following: Even though we
are primarily interested in the semi-topological K-theory of a smooth variety X , the colimit involved in the
construction of Ksst(X) necessarily ranges over singular varieties. Hence, results such as Poincaré duality
(to name just one of many similar examples) for semi-topological K-theory are not easily deduced from their
purely algebraic analogues. These difficulties are circumvented with Theorem 2.3 and its corollaries.
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Our recognition principle is employed to relate semi-topological K-theory to morphic cohomology. To do
this, we verify that morphic cohomology of a smooth variety can be formulated as the homotopy groups of
the space

Hsst
mult(X) = Hmult(X ×∆•

top) = |d 7→ Hmult(X ×∆d
top)|,

where Hmult(Y ) denotes an (infinite loop) space whose homotopy groups give the motivic cohomology of Y
whenever Y is smooth.

For applications, it is important to establish the existence of a graded ring isomorphism as in (0.3).
The Chern character ch takes values in rational homotopy groups, but has the great advantage that it is
multiplicative. This multiplicative property of the Chern character is not an immediate consequence of our
analysis of the Segre map Seg. Indeed, we introduce a technique of realizing homotopy classes of K-theory
spaces by applying functors to “oriented simplicial complexes” in order to obtain a necessary understanding
of the behavior of the Segre map with respect to multiplication in K-theory.

The relationship of various theories can best be seen by contemplating the following commutative diagram
of (infinite loop) spaces

K(X) −−−−→ Ksst(X) −−−−→ Ktop(X
an)

Segalg

y Segsst

y Segtop

y

Hmult(X) −−−−→ Hsst
mult(X) −−−−→ Hsing(Xan),

(0.4)

(where Hsing denotes a space defining singular cohomology). The vertical maps of (0.4) induce isomorphisms
on rational homotopy groups equal to the isomorphisms of (0.1), (0.2), and (0.3). The left horizontal maps
of (0.4) induce isomorphisms on homotopy groups with finite coefficients [FW3]. As one application of
our multiplicative isomorphism (0.3), we conclude in Theorem 5.8 that the right horizontal maps induce
isomorphisms in integral homotopy groups provided one inverts the “Bott element” in semi-topological K-
theory and the “s element” in morphic cohomology. In a paper written jointly with C. Haesemeyer [FHW],
we further explore these relationships by establishing spectral sequences of “Atiyah-Hirzebruch type” which
relate these algebraic, semi-topological, and topological contexts.

As another consequence of our multiplicative isomorphism (0.3), we conclude that the Chern character
of (0.3) satisfies a Riemann-Roch theorem (Theorem 5.2); in other words, not only are the maps of the-
ories associated to (0.4) natural with respect to (contravariant) functoriality, they also satisfy an explicit
compatibility with respect to push-forward maps induced by proper maps of varieties.

One intriguing consequence of the multiplicative isomorphism (0.3) is the re-interpretation of the “topo-
logical filtration” on the rational singular homology of a projective smooth variety X (as introduced by
the first author and B. Mazur in [FM]) in strictly K-theoretic terms (cf. Theorem 5.10). Since one ex-
pects this filtration to be closely related to the rational Hodge filtration on H∗(Xan,Q), we hope that this
re-interpretation might inject a new point of view into efforts to study the Hodge Conjecture.

Although this paper is almost solely concerned with complex algebraic varieties, we establish the isomor-
phisms (0.1) for varieties over any field of characteristic 0 and we establish the analogue of isomorphism
(0.3) for real varieties (following the consideration of real varieties in [FW4]).

We thank Christian Haesemeyer and Andrei Suslin for sharing their insights concerning K-theory and
cycles, and we thank Chuck Weibel for helping us straighten out the details of the proof of Proposition
1.7 below. We also acknowledge the impetus this work received from preprints of Ralph Cohen and Paulo
Lima-Filho [CL1], [CL2] in which a mistaken proof of (0.3) is given.

§1 Algebraic K-theory, Motivic cohomology, and Chern classes

In this section, we recall and study the construction of the total Segre class map (originally developed in
[FW2])

Seg : Knaive(X)→ Hmult(X)
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from (naive) algebraic K-theory (see Definition 1.1) to motivic cohomology. Using the rational degeneration
of the motivic spectral sequence (cf. [FS], [Le]) and a “dimension shifting” argument, we prove in Theorem
1.10 that Seg is a rational equivalence for smooth varieties. Moreover, in Theorem 1.12, we show for smooth
varieties that the Chern character

ch :
⊕

n

Kn(X)Q

∼=
−→

⊕

n,q

H2q−n
M (X,Q(q)).

is an isomorphism of graded rings.
As seen in Proposition 1.5, it is not difficult to determine the effect of Seg on π0 groups. Essentially, this

is the classical total Segre class, closely related to the total Chern class. Using Riemann-Roch, we can relate
Seg0 = π0Seg to the maps on π0 induced by the tower of maps in the Friedlander-Suslin tower of spaces
determining the motivic spectral sequence.

Unlike the remainder of the paper, this section is purely algebraic in nature, and thus we will be working
in the category Sch/k of quasi-projective varieties defined over an arbitrary base field k of characteristic 0.
(We need the hypothesis of characteristic 0 so that resolutions of singularities is known to hold, and hence
so that “naive” motivic cohomology coincides with motivic cohomology defined by Voevodsky.)

We now recall the construction of the total Segre class map from [FW2]. Let Grass denote the ind-variety
lim−→N Grass(kN ) where Grass(kN ) =

∐
r Grassr(k

N ). Here, Grassr(k
N ) parameterizes all r dimensional

quotient k-vector spaces of kN and the transition map Grassr(k
N ) → Grassr(k

N+1) sends the quotient
kN � V to the quotient determined by the composition of kN+1 � kN � V . By definition, Hom(−,Grass)
is the functor sending X to

Hom(X,Grass) = lim−→
N

Hom(X,Grass(kN ))

= lim−→
N

{quotient objects ON
X � E where E is a locally free OX -module}.

As in [FW2], we define I(∆•) to be the simplicial E∞ operad

I(∆•) : n 7→ I(n)(∆•),

where I(n)(∆d) consists of the set of Γ(∆d)-linear injections of (Γ(∆d)∞)n into Γ(∆d)∞:

I(n)(∆d) = {Γ(∆d)-linear injections (Γ(∆d)∞)n ↪→ Γ(∆d)∞}.

(Here, Γ(∆d) = k[x0, . . . , xd]/(
∑

i xi = 1).) By I, we mean the associated topological E∞ operad:

I : n 7→ |I(n)(∆•)|.

For any quasi-projective k-variety X , the simplicial set Hom(X × ∆•,Grass) admits the structure of an
I(∆•)-space, and thus |Hom(X ×∆•,Grass)| is an I-space (cf. [FW2; 6.8]).

The total Segre class map, as defined in [FW2], arises from the collection of morphisms Grassr(k
N ) →

Cr−1(P
N−1), where Cr−1(P

N−1) denotes the Chow monoid of effective (r − 1)-cycles on PN−1. (See the
beginning of §3 for a brief discussion of Chow varieties.) These morphisms are defined by sending a quotient
kN � V to the cycle associated to the closed subscheme P(V ) ⊂ PN−1, where in general P(W ) is defined
to be the projective variety associated to the symmetric algebra S•kW . To accommodate the case r = 0, we
define C−1(P

M ) to be
∐

N Spec k, and we think of C−1(P
M ) as the free abelian monoid scheme on the “empty

cycle” which corresponds to the copy of Spec k indexed by 1 ∈ N. The morphism Spec k = Grass0(k
N ) →

C−1(P
N−1) is then defined by sending kN � 0 to the empty cycle.
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Let Chow denote the ind-variety lim−→N

∐
r≥0 Cr−1P

N and let Hom(−,Chow)+ denote the functor sending

a connected variety X to lim−→N

∐
r≥0 Hom(X, Cr−1(P

N ))+, where the superscript + denotes taking the group

completion of the displayed abelian monoid. The value of Hom(−,Chow)+ on a general X is given by⊕k
i=1 Hom(Xi,Chow)+, where X =

∐k
i=1 Xi is a decomposition of X into its connected components.

The morphisms Grassr(C
N )→ Cr−1(P

N−1) stabilizes to produce a natural transformation

Hom(−,Grass)→ Hom(−,Chow)+

which factors through

Hom(X,Grass)→
∐

r≥0

Hom(X, Cr−1(P
∞))+1 .

Here, the subscript 1 designates the subset of Hom(X, Cr−1(P
∞))+ consisting of cycles which have degree 1

on each connected component of X . (By convention, the empty cycle has degree 1.) For brevity, we write
Hom(X,Chow)+1 for

∐
r≥0 Hom(X, Cr−1(P

∞))+1 . We thus have a natural transformation of functors from

Sch/k to Sets:
cyc : Hom(−,Grass)→ Hom(−,Chow)+1 .

As shown in [FW2; 6.9], for any X the simplicial set

Hom(X ×∆•,Chow)+1

admits the structure of an I(∆•)-space given by taking linear join of cycles such that the map

cyc : Hom(∆•,Grass)→ Hom(∆•,Chow)+1

is a map of I(∆•)-spaces.
Recall that zequi(A

q , 0)(−) is the presheaf (in fact, qfh sheaf) of abelian groups defined on Sch/k whose
value at a normal variety U is the collection of cycles in U × Aq which are quasi-finite and dominant over
some component of U . (See Section 3 for a more detailed definition.) The following definitions introduce
the main objects of study for this section.

Definition 1.1. Let X be a quasi-projective k-variety. Define Knaive(X) to be the spectrum associated (as
in [Ma; §14]) to the I-space |Hom(X ×∆•,Grass)|. Define Hmult(X) to be the spectrum associated to the
I-space |Hom(X ×∆•,Chow)+1 |. We also write, ambiguously, Knaive(X) and Hmult(X) for the group-like
H-spaces given by taking 0-th spaces of these spectra. The map

Seg : Knaive(X)→ Hmult(X)

is defined as the map of spectra (or group-like H-spaces) associated to the map of I-spaces

cyc : |Hom(X ×∆•,Grass)| → |Hom(X ×∆•,Chow)+1 |.

For all q ≥ 0, define HM,naive(X,Z(q)) to be the abelian topological group obtained by taking the geometric
realization of the simplicial abelian group d 7→ zequi(A

q , 0)(X ×∆d),

HM,naive(X,Z(q)) = |d 7→ zequi(A
q , 0)(X ×∆d)|.

The homotopy groups for each of these constructions are denoted as follows:

πnK
naive(X) = Knaive

n (X)

πnHmult(X) = H−n
mult(X)

πnHM,naive(X,Z(q)) = H2q−n
M,naive(X,Z(q)).
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Proposition 1.2. Suppose X is a smooth, quasi-projective k-variety. Then there is a chain of natural
homotopy equivalences joining the spectrum Knaive(X) and K(X) = ΩBQP(X), the algebraic K-theory
spectrum defined from the category of locally free OX -modules using Quillen’s Q construction.

Proof. This follows from [GW; 3.3]. See also [FW2; 6.8]. �

Recall that for a variety X , the simplicial abelian group Zd(X, •) consists in degree n of the group of
codimension d cycles on X×∆n which meet the faces of ∆n properly. The group CHd(X,n) is by definition
the n-th homotopy group of this simplicial object.

Theorem 1.3. [Suslin] Let X be a smooth, quasi-projective variety defined over a field k of characteristic
zero. Then there are natural isomorphisms

H2q−n
M,naive(X,Z(q)) ∼= H2q−n

M (X,Z(q)) ∼= CHq(X,n),

where HM denotes the motivic groups as defined using the cdh-hypercohomology of the complexes

zequi(A
q , 0)(−×∆•), q ≥ 0

(cf. [FV; 9.2]).

Proof. This follows from [FV; 4.4 and 8.1] and [Su; 2.1]. �

In light of Proposition 1.2 and Theorem 1.3, if X is a smooth, quasi-projective k-variety (with char k = 0),
we usually suppress the superscript “naive” and simply write K(X) for Knaive(X) and HM(X,Z(q)) for
HM,naive(X,Z(q)).

In [FW2], the space Hmult(X) is related to the spaces HM,naive(X,Z(q)). However, the construction
of [FW2] involves choosing inverses to certain homotopy equivalences, which makes the type of dimension
shifting argument we employ in this paper impossible. Thus we refine slightly the results of [FW2] with the
following proposition. Note that there is a natural transformation

|Hom(X ×∆•,Chow)+1 | → Hom(X,N)

of I-spaces induced by sending Cr−1(P
∞) to r ∈ N. Here, the structure of Hom(X,N) as an I-space is

the standard one for an abelian monoid, and the associated group-like H-space is naturally equivalent to
Hom(X,Z), so that we obtain a natural map

Hmult(X)→ Hom(X,Z).

The follow proposition is the algebraic (i.e., discrete) analogue of [FW2; 6.5].

Proposition 1.4. For any quasi-projective k-variety X, the sequence of natural transformations

|Hom(X ×∆•, C0(P
∞))+1 | −→ Hmult(X) −→ Hom(X,Z),

identifies |Hom(X ×∆•, C0P∞)+1 | as the homotopy fiber over the constant map with value 1 in Hom(X,Z),
where the first map is given as the composition of |Hom(X ×∆•, C0(P∞))+1 | ↪→ |Hom(X ×∆•,Chow)+1 | →
Hmult(X). Moreover, there is a natural homotopy equivalence of the form

Hom(X ×∆•, C0(P
∞))+1

∼
−→ {1} × lim−→

N

N∏

q=1

HM,naive(X,Z(q)). (1.4.1)
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In particular, there is a weak equivalence

Hmult(X)
∼
−→ Hom(X,Z)×

(
{1} × lim−→

N

N∏

q=1

HM,naive(X,Z(q))

)

which is natural up to homotopy.

Proof. We may assume X is connected. Regard Hmult(X) as a pointed space with base point determined
by the image of the constant map with target P0 under Hom(X,Chow)+1 → Hmult(X) and regard Z as a
pointed space with 1 serving as the base point. Then the displayed sequence is a sequence of pointed maps
and is clearly natural in X . Moreover, the composite map

|Hom(X ×∆•, C0(P
∞))+1 | → Hom(X,Z) = Z

is clearly the constant map, and so there exists a natural map from Hom(X×∆•, C0(P∞))+1 to the homotopy
fiber of Hmult(X) −→ Z over 1. To establish the first assertion, it suffices to prove this map is a homotopy
equivalence.

As in [FW2;6.4], we identify π0|Hom(X ×∆•,Chow)+1 | with a submonoid of N× ({[X ]} × CH≥1(X))×,
where {[X ]} ×CH≥1(X))× is a subgroup of the group of units of the ring CH∗(X). Moreover, the class in
π0|Hom(X × ∆•,Chow)+1 | defined by the constant map ε : X → Chow with value P0 ⊂ C0(P∞) ⊂ Chow
represents the class (1, [X ]). In particular, upon inversion of the class of ε, the monoid π0|Hom(X ×
∆•,Chow)+1 | becomes a group.

In close analogy with the construction of [FW4; §7], we define the self map

|Hom(X ×∆•,Chow)+1 |
α
−→ |Hom(X ×∆•,Chow)+1 |

to be “multiplication by ε”, by which we mean the map induced by setting r = 1 and restricting the first
factor to ε in the collection of pairings

µr,s Hom(X ×∆•, Cr−1(P
∞))×Hom(X ×∆•, Cs−1(P

∞))→ Hom(X ×∆•, Cr+s−1(P
∞))

given by first interleaving the two copies of P∞ into one copy via the map

([a1 : a2 : . . . ], [b1 : b2 : . . . ]) 7→ [a1 : · · · : ar : b1 : · · · : bs : ar+1 : · · · ]

and then taking linear join of cycles. We then form the mapping telescope T of

|Hom(X ×∆•,Chow)+1 |
α
−→ |Hom(X ×∆•,Chow)+1 |

α
−→ · · · ,

and we claim that T is the homotopy-theoretic group completion of |Hom(X ×∆•,Chow)+1 |.
The simplicial analogue of the proof of [FW4; 7.3] applies to show that T is a homotopy-associative

H-space and that the map
|Hom(X ×∆•,Chow)+1 | → T

is a map of H-spaces. In more detail, as in the proof of [FW4; 7.3], one endows |Hom(X×∆•,Chow)+1 | with
the structure of a strictly associative H-space by using the collection of pairings µr,s, for r, s ≥ 0, defined
above. The same proof given op. cit. shows that this H-space structure coincides (up to equivalence) with
that induced by the I-space structure. Finally, the proof of op. cit. applies to show that the hypotheses of
[FW4; 7.2] are met (which gives us what we seek). Note that the key fact used to verify the axioms of a
homotopy-associative H-space in the proof of [FW4; 7.3] is that even permutation matrices belong to the
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same connected component as the identity in the topological group GLn(R) — this fact also holds for the
simplicial group GLn(∆•

k), since such matrices are elementary matrices and all elementary matrices lie in
the same component as In in GLn(∆•

k).
Since π0(T ) is given by inverting the class of ε in the monoid π0|Hom(X×∆•,Chow)+1 |, we have from above

that π0(T ) is actually a group. It follows that T is a homotopy-theoretic group completion of |Hom(X ×
∆•,Chow)+1 |.

In particular, T is homotopy equivalent to the 0-th space of the spectrum Hmult(X). Moreover, the
composition of T → Hmult(X)→ Z is induced by the ladder of maps

|Hom(X ×∆•,Chow)+1 |
α

−−−−→ |Hom(X ×∆•,Chow)+1 |
α

−−−−→ · · ·
y

y

N
+1
−−−−→ N

+1
−−−−→ · · · ,

and thus the fiber of T → Z over 1 is given by the mapping telescope of

|Hom(X ×∆•, C0P∞)+1 |
α
−→ |Hom(X ×∆•, C1P∞)+1 |

α
−→ · · · .

As in [FW2; 6.3], each map in this sequence is shown to be a homotopy equivalence by the algebraic
analogue of the Lawson suspension theorem [L] (see also [FL3; 2.6]). It follows that |Hom(X ×∆•, C0P∞)+1 |
is homotopy equivalent to the fiber of T over 1, which establishes the first assertion.

Similarly, the splitting construction of [FL1] is actually algebraic, and so we obtain the homotopy equiv-
alence

|Hom(X ×∆•, C0(P
∞))+1 |

∼
−→ {1} × lim−→

N

N∏

j=1

|Hom(X ×∆•, C0(P
j))+/Hom(X ×∆•, C0(P

j−1))+|.

Since we have a natural homotopy equivalence

|Hom(X ×∆•, C0(P
q))+/Hom(X ×∆•, C0(P

q−1))+|
∼
−→ HM,naive(X,Z(q))

by [FV; 5.12], we see that the equivalence (1.4.1) holds.
The final assertion follows by choosing a splitting for the above sequence of group-like H-spaces. Note

that such a choice of splitting results in a loss of strict functoriality, but that functoriality up to homotopy
is preserved. �

Proposition 1.4 gives, for each n ≥ 0, a natural isomorphism of abelian groups

πnHmult(X) ∼= πn Hom(X,Z)×

(
{1} ×

∞⊕

q=1

H2q−n
M,naive(X,Z(n))

)×
,

where the group law for the the second factor is given by join of cycles. (Here, Hom(X,Z) is regarded as a
discrete topological group.) We define

Segn : Knaive
n (X)→ H−n

M (X,Z(0))×


{1} ×

⊕

q≥1

H2q−n
M,naive(X,Z(q))



×

to be the composition of the map πnSeg : Knaive
n (X) → πnHmult(X) with the isomorphism of Proposition

1.4. We define Segn,q to be the q-th component of Segn, defined by composing Segn with projection onto

the summand H2q−n
M,naive(X,Z(q)). Observe that Seg0,0 : Knaive

0 (X)→ Hom(X,Z) equals rank(−), the map
which gives the multi-rank of a vector bundle on X .

We recall that the (classical) total Segre class s(E) = 1 + s1(E) + · · · + si(E) + · · · is defined by the

formula s(E) = 1/c(E), where c(E) ∈
(
{1} ×

⊕
q≥1 CH

q(X)
)×

is the total Chern class of a vector bundle

E.
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Proposition 1.5. If X is a smooth, quasi-projective k-variety and x is an element of K0(X), then under

the isomorphism H2q
M(X,Z(q)) ∼= CHq(X) of Theorem 1.3 we have

Seg0(x) = rank(x) + c(x∗)−1 ∈ CH∗(X),

where c(−) denotes the classical total Chern class map with values in the multiplicative group


{1} ×

⊕

q≥1

CHq(X)



×

,

and x∗ denotes the dual of x. Thus, for q ≥ 1, we have that Seg0,q coincides with (−1)q times the classical
q-th Segre class map,

Seg0,q = (−1)qsq, q ≥ 1 and Seg0,0 = rank(−).

In particular, for such X the map Seg0 induces an isomorphism after tensoring with Q:

Seg0 : K0(X)Q

∼=
−→ π0Hmult(X)Q

∼= H0
M(X,Q(0))⊕


{1} ×

⊕

q≥1

H2q
M(X,Q(q))



×

∼= CH0(X)×


{1} ×

⊕

q≥1

CHq(X)



×

.

Proof. The map Seg0,0 : K0(X) → Z is induced by the map Grass =
∐

r Grassr(k
∞) → N sending

Grassr(k
∞) to r ∈ N, and thus is given by taking rank of vector bundles.

The group K0(X) is generated by classes of bundles generated by their global sections, so that by using
the Whitney sum formula (which shows x 7→ rank(x) + c(x∗)−1 is a homomorphism) and the fact that Seg0
is a homomorphism, it suffices to verify Seg0([E]) = rank(E) + c(E∗)−1 for such a bundle E. Moreover, the
splitting principles for K-theory and motivic cohomology (which follow from the projective bundle formulas)
and naturality allow us to assume [E] is a sum of classes of line bundles each of which is generated by global
sections.

Given a line bundle L that is generated by its global sections, the value of Seg0,q on [L] (for q ≥ 1) is given

as follows: Choose a surjection ON+1
X � L, which determines a map X → C0(P

∞) by taking the composition
of

X → PN ↪→ P∞ ↪→ C0(P
∞).

The class of this map in π0|Hom(X ×∆•, C0P∞)+1 | gives
∑

q≥1 Seg0,q([L]) under the isomorphism

π0 Hom(X ×∆•, C0(P
∞))+1

∼=
⊕

q≥1

CHq(X). (1.5.1)

By naturality with respect to the morphism X → PN , it suffices to take X = PN , L = O(1), and ON+1
X � L

the canonical quotient. Observe c(O(1)∗)−1 = c(O(−1))−1 = (1 − H1)
−1 = 1 + H1 + H2 + · · · ∈ {1} ×⊕

q≥1 CH
q(PN ), where Hi denote the class of a hyperplane of codimension i in PN . It therefore suffices

to show that the class of the inclusion ι : PN ↪→ C0(P∞) corresponds to the element H1 + H2 + · · · ∈⊕
q≥1 CH

q(PN ) under the isomorphism (1.5.1).

As argued in [FL1; 2.10], for each q ≥ 1, the map

Hom(PN ×∆•, C0(P
∞))+1 → Hom(PN ×∆•, C0(P

q))+/Hom(PN ×∆•, C0(P
q−1))+
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used to define the isomorphism (1.5.1) sends the map ι to the class of PN−q × Pq regarded as a closed
subscheme of PN × Pq via (sym, π2), where sym : PN−q × Pq → PN is the “symmetrization map”. We
readily identify this class with the class of Hq ⊂ PN in CHq(PN ), as desired.

The final assertion holds since the classical total Chern class map is known to induce a rational isomor-
phism on smooth varieties. �

We now proceed to develop our technique of “dimension shifting”. We first introduce natural algebro-
geometric models for products of spheres by adapting a construction of Thomason [Th; §3]. (Our approach
differs slightly from Thomason’s in that we use oriented simplicial complexes in order to more readily consider
products.)

Let M be a finite, oriented (abstract) simplicial complex with vertex set V . By this we mean that V
is a finite poset and that M consists of a collection of totally ordered subsets of V (these subsets are the
“simplices” of M) that contains all singletons {v} for v ∈ V and is closed under taking subsets. A morphism
θ : M → N of oriented simplicial complexes is an order preserving function on vertex sets such that the
image of a simplex of M is a simplex of N . If M and N are two such oriented simplicial complexes with
totally ordered vertex sets V and W , then M ×N is the oriented simplicial complex with vertex set V ×W
which is partially ordered by the rule (v, w) ≤ (v′, w′) if and only if v ≤ v′ and w ≤ w′. Moreover, a simplex
of M × N is a subset S of V ×W which is totally ordered and has the property that the projections of
S to subsets of V and W are simplices of M and N , respectively. For example, if M and N are m- and
n-simplices with totally ordered vertex sets V = {v0 < · · · < vm} and W = {w0 < · · · < wn} (so that every
subset of V is a simplex of M and similarly for N), then there are

(
n+m

b

)
maximal simplices of M × N

(each of dimension m+ n) having the form {(vi0 , wj0), (vi1 , wj1), . . . , (vim+n
, wjm+n

)}, where for all s, either
is+1 = is and js+1 = js + 1 or is+1 = is + 1 and js+1 = js.

Let C(M) denote the category whose objects are the simplices of M and where a morphism is an inclusion
of simplices (i.e., C(M) is the category associated to the poset of all simplices of M). For any simplex
σ = {s0, . . . , sn} of M , define ∆σ

top to be the subspace of R · s0 ⊕ · · · ⊕ R · sn
∼= Rn+1 consisting of points∑

risi such that ri ≥ 0, for all i, and
∑
ri = 1. Then σ 7→ ∆σ

top is a functor from C(M) to spaces. We define
the geometric realization of M , |M |, to be the coequalizer of the diagram of spaces

∐

σ0⊂σ1∈Arr(C(M))

∆σ1

top ⇒
∐

σ∈(C(M))

∆σ
top.

Note that if M and N are two finite, oriented simplicial complexes, then |M×N | is naturally homeomorphic
to |M | × |N |.

In a parallel fashion, we associate to M an affine variety which should be thought of as its “algebro-
geometric realization” — namely, for any simplex σ = {s0, . . . , sn} ofM , define ∆σ

k to be the linear subvariety
of the affine space A(k · s0 ⊕ · · · ⊕ k · sn) ∼= An+1 defined by the equation

∑
xi = 1, where xi is the i-th

coordinate function relative to the basis {s0, . . . , sn}. Then σ 7→ ∆σ
k is a functor from C(M) to Sch/k, and

we define |M |k, the algebro-geometric realization of M over k, as the coequalizer in the category of k-schemes
of the diagram ∐

σ0⊂σ1∈Arr(C(M))

∆σ1

k ⇒
∐

σ∈(C(M))

∆σ
k .

If the vertex set of M is {v0, . . . , vm}, then |M |k is the affine variety Spec k[x0, . . . , xm]/I(M), where I(M)
is the ideal of generated by all monomials of the form xi1 · · ·xit

such that vi1 , . . . , vit
does not span a simplex

of M (cf. [Th; 3.7], [DW]). As before, if N is another finite, oriented simplicial complex, then |M ×N |k is
naturally isomorphic to |M |k ×k |N |k.

Define Top∗ to be the category of pointed topological spaces and let Sm/k be the category of smooth,
quasi-projective k-varieties. A contravariant functor F : Sm/k → Top∗ is said to be homotopy invariant if
the natural map F(X)→ F(X ×∆n

k ) is a weak homotopy equivalence for all algebraic simplices ∆n
k .
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Lemma 1.6. Let M be a finite, oriented simplicial complex and let F : Sch/k → Top∗ be a contravariant
functor that is homotopy invariant on smooth varieties.

(i) There is a natural chain of maps of spaces

F(|M |k) −→ holim
C(M)

F
∼
←− holim

C(M)
F(Spec k)

∼=
−→Maps(|M |,F(Spec k)), (1.6.1)

whose second map is a weak equivalence and whose third map is a homeomorphism.
(ii) A morphism X × |M |k → Y with X smooth determines a natural map

π0F(Y )→ [|M |,F(X)]

(where [−,−] denotes taking base-point free homotopy classes of maps).
(iii) If F takes values in group-like H-spaces, M = M1×· · ·×Mm with each |Mi| homeomorphic to the sphere

Sni , and n = n1 + · · · + nm, then a morphism f : X × |M |k → Y with X smooth determines a natural
map

f# : π0F(Y )→ πnF(X).

Proof. In (1.6.1), the second map is a weak equivalence by homotopy invariance and [BK; XI.5.6], and
the third is a homeomorphism by [BK; XI.4.2]. Thus, (ii) follows from contravariance of F together with
(1.6.1) (for F replaced by F(X ×−)). Finally, (iii) is proved by observing that the various projection maps

πi : |M | → |M1 × · · · × M̂i × · · · ×Mm| are split by the inclusions εi : |M1 × · · · × M̂i × · · · ×Mm| ∼=
|M1 × · · ·Mi−1 × pt×Mi+1 × · · · ×Mm| → |M |. Thus, πnF(X) is the kernel of the split surjection

[|M |,F(X)]→
∏

i

[|M1 × · · · × M̂i × · · · ×Mm|,F(X)].

�

Examples of functors F to which we apply the above considerations are: algebraic K-theory, K; the
functors Kq , q ≥ 0, used by Friedlander and Suslin to produce the motivic spectral sequence; the functors
HM(−,Z(q)), q ≥ 0, defined above; and the functor Hmult(−), also defined above. Thus, for f : X×|M |k →
Y as in Lemma 1.6 (iii), we have natural maps

f# : K0(Y )→ Kn(X)

f# : Kq
0(Y )→ Kq

n(X), q ≥ 0

f# : H2q
M(Y ; Z(q))→ H2q−n

M (X ; Z(q)), q ≥ 0

f# : π0Hmult(Y )→ πnHmult(X).

In the special case of algebraicK-theory, we have the following two key additional properties (Propositions
1.7 and 1.8).

Proposition 1.7. Let M be a finite, oriented simplicial complex and let X be an affine, smooth k-variety.
Then the natural augmentation map

K(X × |M |k)→ holim
C(M)

K(X ×−)

induces an isomorphism on πn for n = 0, 1. Consequently, there is an isomorphism

K0(X × |M |k) ∼= [|M |,K(X)],
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which is natural in both X and M .

Proof. Consider the natural transformation of functors K → KH , where KH(X) is Weibel’s homotopy
K-theory [We]. Recall that K(U) → KH(U) is a weak equivalence for U smooth [We; 6.10]. Moreover,
KH(X×−) satisfies the property that for any decomposition of a finite simplicial complex as a union of two
subcomplexes — M = M1 ∪M2 — the square

KH(X × |M |k) −−−−→ KH(X × |M1|k)
y

y

KH(X × |M2|k) −−−−→ KH(X × |M1 ∩M2|k)

is homotopy Cartesian [We; 4.10]. Consequently, we have by [Th; 3.15] that

KH(X × |M |k)→ holim
C(M)

KH(X ×−)

is a weak homotopy equivalence. Hence, to prove that K(X × |M |k) → holimC(M) K(X × −) induces an
isomorphism on πn for n = 0, 1, it suffices to prove K(X × |M |k)→ KH(X × |M |k) induces an isomorphism
on πn for n = 0, 1. This follows from [We; 1.5], using the fact that X × |M |k is K1-regular by [DW].

The isomorphism K0(X × |M |k) ∼= [|M |,K(X)] follows from Lemma 1.6(i). �

For a quasi-projective variety X and integers n, q ≥ 0, let Kn(X)
(q)
Q denote the weight q piece of the

rational algebraic K-group Kn(X)Q. Recall that Kn(X)
(q)
Q is defined as the eigenspace with eigenvalue kq of

the k-th Adams operator ψk, for any k ≥ 2. In order to employ a dimension shifting argument in conjunction
with Adams operations, we require the following compatibility result.

Proposition 1.8. Let M = M1 × · · · ×Mm be a finite, oriented simplicial complex with |Mi| ∼= Sni , for all
i, and n1 + · · · + nm = n, and let f : X × |M |k → Y be a morphism, where Y is a smooth quasi-projective
k-variety and X is a smooth, affine k-variety. Then the map

f# : K0(Y )→ Kn(X)

defined above commutes with the Adams operations ψk, k ≥ 0.

Moreover, for X a smooth, affine k-variety, given an element γ of Kn(X) (respectively, Kn(X)
(q)
Q for

some q ≥ 0), there is a smooth k-variety Y and a morphism f : X × |M |k → Y such that γ lies in the image

of f# : K0(Y )→ Kn(X) (respectively, f# : K0(Y )
(q)
Q → Kn(X)

(q)
Q ).

Proof. In [Gr] D. Grayson constructs Adams operations Ψk, for k > 0, on the level of K-theory spaces, by
defining natural transformations of functors from Sch/k to the category of pointed topological spaces which
sends X to

Ψk : |S•P(X)| → |S•G̃
(k)P(X)|.

Here, S• is the S-construction of Waldhausen, P(X) is (a suitably functorial model for) the exact category

of coherent, locally free sheaves on X , and G̃(k) arises from a (k−1) dimensional cube of exact categories. In

light of the natural weak equivalences K(X) ∼ Ω|S•P(X)| and K(X) ∼ Ω|S•G̃
(k)P(X)|, these maps induce

operations ψk on the K-groups of X , which we refer to as “Grayson’s Adams operations”.
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Since the maps of spaces Ψk are strictly functorial, we obtain the commutative diagram

|S•P(X × |M |k)|
Ψk

−−−−→ |S•G̃(k)P(X × |M |k)|
y

y

holim
C(M)

|S•P(X × |M |k)|
Ψk

−−−−→ holim
C(M)

|S•G̃(k)P(X × |M |k)|
x

x

holim
C(M)

|S•P(X)|
Ψk

−−−−→ holim
C(M)

|S•G̃(k)P(X)|
y

y

Maps(|M |, |S•P(X)|)
Ψk

−−−−→ Maps(|M |, |S•G̃(k)P(X)|).

In particular, the isomorphism
K0(X × |M |k) ∼= [M,K(X)]

of Proposition 1.7 commutes with Grayson’s Adams operations, and so does the projection map K0(X ×
|M |k) � Kn(X). Since X and Y are regular, the Grayson’s Adams operations are known to agree with the
classical ones (cf. discussion in [Le; §2]).

To prove the second assertion, recall from [BFM] that for any (possibly singular) variety V , we have

K0(V ) ∼= lim−→
V→U

K0(U) (1.8.1)

where the (non-filtered) limit ranges over morphisms V → U with U smooth. Since the the natural transfor-

mation of functors on Sch/k given by K0(U) 7→ K0(U)
(q)
Q is exact, we have K0(V )

(q)
Q = lim−→V→U K0(U)

(q)
Q .

The result follows by taking V = X × |M |k in (1.8.1), using the isomorphism of Proposition 1.7, and using
that the map K0(X × |M |k) � Kn(X) commutes with Grayson’s Adams operations. �

Following the construction of Friedlander and Suslin [FS; §8], for any U ∈ Sch/k define KQ,Aq

(U) to be
the simplicial set giving the K-theory (as defined in [TT]) of the Waldhausen category of perfect complexes
on U × Aq supported on subvarieties which are quasi-finite over U . Note that using the technique of [FS;
App. C] we may view KQ,Aq

(−) as a (strict) functor from Sch/k to simplicial sets. As in [FS; D.6], there is
a natural transformation KQ,Aq

→ Kq of functors from Sch/k to simplicial sets such that Kq is flasque (for
the Zariski topology) and KQ,Aq

→ Kq is locally a weak equivalence. Loosely speaking, Kq is the functor
from Sch/k to simplicial sets given by imposing Zariski descent on KQ,Aq

. (In [FS], the functors KQ,Aq

and
Kq are defined only on Sm/k and, moreover, the functor Kq is derived from KQ,Aq

by first fixing an X and
the looking only at the small Zariski site of X . However, the constructions carry over to this more general
context without any difficulties: to define Kq from KQ,Aq

on all of Sch/k, one forms the Godement resolution
on the big Zariski site (Sch/k)Zar of the Kan extension of the functor KQ,Aq

.)
We also write Kq for the associated functor from Sch/k to spaces obtained by taking geometric realizations.

Then there is an infinite tower of spaces

· · · → Kq+1(X)→ Kq(X)→ · · · → K0(X)

which is natural with respect to X ∈ Sch/k and satisfies K0(X) ∼ K(X) for X smooth. Moreover, for
smooth varieties each step in the tower fits in a homotopy fibration sequence of the form

Kq+1(X)→ Kq(X)→ HM(X,Z(q)), (1.9.1)
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natural with respect to X ∈ Sm/k [FS; 13.6]. Moreover, by [Le; 9.7] the associated spectral sequence
admits natural operations ψk, k ≥ 1, such that the action of ψk on HM(X,Z(q)) is multiplication by kq

and the operations on the homotopy groups of K0(X) ∼ K(X) are the usual Adams operations. Using
the convergence of the spectral sequence, this shows the sequences (1.9.1) split on the the level of rational
homotopy groups, giving short exact sequences of the form

0→ Kq+1
n (X)Q → Kq

n(X)Q → H2q−n
M (X,Q(q))→ 0

for all q ≥ 0 and X ∈ Sm/k, and that the induced filtration on Kn(X)Q,

. . . ↪→ Kq+1
n (X)Q ↪→ Kq

n(X)Q ↪→ . . . ↪→ K0
n(X)Q = Kn(X)Q,

is the usual gamma filtration. In particular, the inclusion Kn(X)
(q)
Q ↪→ Kn(X)Q factors through Kq

n(X)Q ↪→
Kn(X)Q and the induced map

θn,q : Kn(X)
(q)
Q ↪→ Kq

n(X)Q � H2q−n
M (X,Q(q)), (1.9.2)

is a natural isomorphism of contravariant functors from Sm/k to Q vector spaces.
The maps f# on K-theory given in Proposition 1.8 satisfy the following compatibilities with the similarly

defined f# on motivic cohomology.

Proposition 1.9. Let M = M1 × · · · ×Mm be a finite, oriented simplicial complex with |Mi| ∼= Sni , for all
i, and n1 + · · ·+ nm = n, and let f : X × |M |k → Y be a morphism with X and Y both smooth. Then for
any q ≥ 0, the following diagrams commute:

K0(Y )
Seg0,q

−−−−→ H2q
M(Y,Z(q)) K0(Y )

(q)
Q

θ0,q

−−−−→ H2q
M(Y,Z(q))

f#

y f#

y f#

y f#

y

Kn(X)
Segn,q

−−−−→ H2q−n
M (X,Z(q)) Kn(X)

(q)
Q

θn,q

−−−−→ H2q−n
M (X,Z(q))

,

where θn,q is the isomorphism of (1.9.2).

Proof. The commutativity of the first diagram arises from the naturality of the construction of Lemma 1.6
(iii) applied to the natural transformation Seg : K(X) → Hmult(X) and the observation that the map
f# : π0Hmult(Y ) → πnHmult(X) respects the natural splitting on the homotopy groups of Hmult(X) and
Hmult(Y ).

The second diagram is seen to commute by using Lemma 1.6 (iii) once again and noting that the maps
θi,q are induced by natural transformations of space-valued functors Kq(−)→ HM(−,Z(q)). �

We now can apply our dimension-shifting technique to prove that Seg is a rational equivalence, thereby
extending Proposition 1.5.

Theorem 1.10. For any smooth variety X, the natural transformation

Seg : K(X)→ Hmult(X)

is a rational homotopy equivalence.

Proof. Let p : X ′ → X denote an affine vector bundle torsor — that is, X ′ is affine and locally for the
Zariski topology on X , the map p is given by a map of the form π1 : U × An → U (cf. [J]). Since the maps
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p∗ : K(X) → K(X ′) and p∗ : Hmult(X) → Hmult(X
′) are weak equivalences and Seg is natural, we may

assume without loss of generality that X is affine.
It suffices to prove that each

Segn ⊗Q : Kn(X)Q → H−n
M (X,Q(0))×

(
{1} ×

⊕

q>0

H2q−n
M (X,Q(q)

)×

is an isomorphism. For n ≥ 0, give Kn(X)Q the gamma filtration and filter πnHmult(X) by the index q.
For n = 0, the map Seg0 coincides with the classical total Segre map on K0(X) up to a filtration preserving
automorphism of K0 by Proposition 1.5, and thus induces a filtration preserving rational isomorphism by
the Grothendieck Riemann-Roch Theorem [SGA6], [BS] (see also [Fu; 15.3.6]).

For any smooth variety Y , elements of π0Kq(Y ) are represented by coherent sheaves on Y supported

on subschemes of codimension q and the map π0Kq(Y ) → H2q
M(Y,Z(q)) ∼= CHq(Y ) is given by sending

such a sheaf to the codimension q cycle of its support [FS; 8.6]. In particular, the map θ0,q : Kn(Y )
(q)
Q →

H2q
M(Y,Q(q)) ∼= CH2q(Y )Q sends [OZ ] to [Z], for any codimension q integral subscheme Z of Y . Using

Grothendieck’s Riemann-Roch Theorem [SGA6], [BS], one sees that the q-th component of the Chern char-
acter map ch0,q : K0(Y )Q → CHq(Y )Q also sends such a class [OZ ] to [Z] (cf. [Fu; 15.2.16]), so that θ0,q

and ch0,q coincide on K0(Y )
(q)
Q .

Given f : X×|M |k → Y with |Mi| ∼= Sni , for all i, and n1 + · · ·+nm = n the map f# : K0(Y )→ Kn(X)
given by Lemma 1.6 (iii) commutes with the Adams operations by Proposition 1.8, and hence f# is filtration
preserving. Using Proposition 1.8 again and the first square of Proposition 1.9, we have that Segn is filtration
preserving. It thus suffices to show that the map induced by Segn on associated graded objects,

⊕

q

Segn,q :
⊕

q

Kn(X)
(q)
Q →

⊕

q

H2q−n
M (X,Q(q))

is an isomorphism. For α ∈ K0(Y )
(q)
Q , we have

θ0,q(α) = ch0,q(α) =
cq(α)

(q − 1)!
= −

Seg0,q(α
∗)

(q − 1)!

by the result proven above and Proposition 1.5. Thus, the commutative squares of Proposition 1.9 imply
that

Segn,q(x) = −(q − 1)!θn,q(x
∗)

for all x ∈ Kn(X)(q) belonging to the image of f#, for all f as above. Using that θn,q is an isomorphism
together with Proposition 1.8, we see that Segn,q is an isomorphism as required. �

In the following remark, we describe the effect of Segn on a set of generators of Kn(X) in terms of
universal classes on Grassmannians.

Remark 1.11. Let UN
r denote the universal rank r bundle on Grassr(k

N ). For any smooth variety, the set

{f#(UN
r ) | f : X × |M |k → Grassr(k

N )), 0 < r < N}

with |M | ∼= Sn, generates generates Kn(X) as an abelian group. The components of the total Segre map,
given as the composition

sn,q : Kn(X)
(−)∗

−−−→ Kn(X)
Segn
−−−→ H−n

M (X,Z(0))⊕


{1} ×

⊕

q≥0

H2q−n
M (X,Z(q))



×

� H2q−n
M (X,Z(q)),
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send f#(UN
r ) to

f#(s0,q(U
N
r )) ∈ H2q

M(Grassr(k
N ),Z(q)).

Consequently, the universal elements UN
r and s0,q(U

N
r ) completely determine the behavior of the Segre class

maps sn.q : Kn(X)→ H2q−n
M (X,Z(q)).

To complete our discussion of the rational isomorphism relating algebraic K-theory and motivic cohomol-
ogy, we consider the Chern character ch related to the our Segre map Seg and prove that it is an isomorphism
of graded algebras.

Recall that the classical Chern character map ch0 : K0(X) → CH∗(X)Q
∼=
⊕

q H
2q
M(X,Q(q)) is defined

from the individual Chern class maps (and, consequently, from the individual Segre class maps) via universal
polynomials. That is, the q-th component of ch0

ch0,q : K0(X)→ H2q
M(X,Q(q)), q ≥ 1,

is defined by ch0,q = Pq(s0,0, . . . , s0,q), where Pq(x0, . . . , xq) is a certain polynomial with rational coefficients
having degree q, where the degree of xi is defined to be i. (The map ch0,0 is by definition the rank map
K0(X)→ H0

M(X,Q).) We define the higher Chern character map

chn,q : Kn(X)→ H2q−n
M (X,Q(q))

via the formula chn,q(γ) = Pq(sn,0(γ), . . . , sn,q(γ)), using the same polynomial Pq(x1, . . . , xq). If n > 0,
every product of the form sn,isn,j with i, j ≥ 1 is defined to be zero, so that this polynomial expression
simplifies to be

chn,q = (−1)q 1

(q − 1)!
sn,q , n ≥ 1.

The following theorem establishes that ch is a graded ring isomorphism. In the sense that Theorem 1.12
incorporates the ring structure, it presents a stronger result than Theorem 1.10; however, unlike Seg, the
map ch is defined only on rational homotopy groups.

Theorem 1.12. For any smooth variety X, the Chern character map

ch :
⊕

n

Kn(X)→
⊕

n,q

H2q−n
M (X,Q(q))

is a graded ring homomorphism and induces a rational isomorphism

ch :
⊕

n

Kn(X)Q

∼=
−→

⊕

n,q

H2q−n
M (X,Q(q)).

Remark. Observe that H2q−n
M (X,Z(q)) ∼= CHq(X,n) = 0 for q > n + dim(X). In particular, for a given

n, the group Kn(X)Q is isomorphic under the Chern character to a finite sum of cohomology groups.

Proof of 1.12. As in the proof of Theorem 1.10, we may replace X with an affine vector bundle torsor, so
that without loss of generality, we may assume X is affine.

We use that the product structures on K-theory and motivic cohomology are given by external pairings

K(X)∧K(Y )→ K(X × Y )

and
HM(X,Z(p))∧HM(Y,Z(q))→ HM(X × Y,Z(p+ q))
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which are natural up to homotopy. Let M and N be finite, oriented simplicial complexes homeomorphic to
the spheres Sm and Sn respectively, and assume morphisms f : X × |M |k → U and g : X × |N |k → V are
given with U and V smooth. The diagram

K0(X × |M |k)⊗K0(Y × |N |k) −−−−→ K0(X × Y × |M |k × |N |k)
y

y

[M,K(X)]⊗ [N,K(Y )] −−−−→ [M ×N,K(X × Y )]

commutes by naturality of the pairing K(X) × K(Y ) → K(X × Y ). Since this pairing factors through
K(X)∧K(Y ), one deduces the commutativity of

K0(U)⊗K0(V ) −−−−→ K0(U × V )

f#⊗g#

y
y(f×g)#

Km(X)⊗Kn(Y ) −−−−→ Km+n(X × Y ).

(1.12.1)

Similarly, the square

⊕
pH

2p
M(U,Z(p))⊗

⊕
q H

2q
M(V,Z(q)) −−−−→

⊕
r H

2r
M(U × V,Z(r))

f#⊗g#

y
y(f×g)#

⊕
pH

2p−m
M (X,Z(p))⊗

⊕
q H

2q−n
M (Y,Z(q)) −−−−→

⊕
r H

2r−m−n
M (X × Y,Z(r))

(1.12.2)

commutes. Consider the cubical diagram formed by mapping (1.12.1) to (1.12.2) using ch0 ⊗ ch0, ch0,
chm⊗ chn, and chm+n. Using the fact that the classical Chern character map ch0 is multiplicative [BS] and
the commutativity of the first square of Proposition 1.9, we see that each face of this cube commutes except
possibly the face

Km(X)⊗Kn(Y ) −−−−→ Km+n(X × Y )

chm⊗chn

y
ychm+n

⊕
pH

2p−m
M (X,Z(p)) ⊗

⊕
q H

2q−n
M (Y,Z(q)) −−−−→

⊕
r H

2r−m−n
M (X × Y,Z(r)).

(1.12.3)

Hence (1.12.3) commutes upon restriction to the image of K0(U) ⊗K0(V ) → Km(X) ⊗Kn(Y ). As U , V ,
f , and g range over all possibilities, the union of such images forms a generating set of Km(X)⊗Kn(Y ) by
Proposition 1.8. Thus, we conclude that (1.12.3) commutes. By taking X = Y and using naturality of the
Chern character with respect to the pullback along the diagonal map X ↪→ X ×X , the multiplicativity of
the Chern character follows.

As recalled previously, the map ch0 is a rational isomorphism (cf. [Fu; 15.2.16]). For n > 0, we have

chn,q = (−1)q 1

(q − 1)!
sn,q = (−1)q 1

(q − 1)!
Segn,q ◦ (−)∗,

so that Theorem 1.10 implies that ch is an isomorphism. �
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§2 Semi-topological singular complex

As we discussed in the introduction, our purpose in this section is to prove a recognition principle (Theorem
2.3) which will enable us to conclude that certain natural transformations F → G of functors on Sch/C
taking values in topological spaces induce weak homotopy equivalences of the form |F (∆•

top)| → |G(∆•
top)|.

We begin with the functor
(−)an : Sch/C→ Top

sending a variety X to its analytic realization Xan and a morphism f : X → Y of varieties to the continuous
map fan it determines. Here, Sch/C is the category of quasi-projective complex varieties and Top denotes
the category of Hausdorff spaces and continuous maps. Given a contravariant functor F defined on Sch/C
taking values in a category C closed under colimits (e.g., sets, simplicial sets, spaces, spectra), we “promote”
F to take values from Top using the usual Kan extension formula. That is, given T ∈ Top, define V arT

to be the category where objects are continuous maps T → U an, for U ∈ Sch/C, and a morphism from
T → Uan to T → V an is a morphism of varieties U → V causing the evident triangle to commute. Define
the value of F on a topological space T to be

F (T ) = lim−→
(T→Uan)

F (U),

where the colimit is indexed by (V arT )op.
In particular, given such an F and letting C be the category of sets, simplicial sets, spaces, or spectra,

we define F (∆•
top) to be the simplicial object in C given by n 7→ F (∆n

top) and we define |F (∆•
top)| to be the

geometric realization of this simplicial object:

|F (∆•
top)| = |n 7→ F (∆n

top)|.

As alluded to in the introduction, a main difficulty in understanding the homotopy type of |F(∆•
top)| (for

example, when F = K(X × −)) is that the indexing category V ar∆
n
top involves maps ∆n

top → Uan with U
singular. Theorem 2.3 and its consequences allow us to overcome this difficulty — in particular, Corollary
2.7 below shows that if a natural transformation φ : F → G of group like H-spaces is a weak equivalence
when restricted to smooth varieties, then φ induces a weak equivalence |F (∆•

top)|
∼
−→ |G(∆•

top)|.
In order to prove our recognition principle (Theorem 2.3), we first formulate an appropriate Grothendieck

topology. The following topology is essentially due to P. Deligne.

Definition 2.1. (cf. [D; §5]) We say that a continuous map f : S → T of topological spaces is a map of
cohomological descent if for every sheaf of abelian groups F defined on T the natural map

H∗(T, F ) −→ H∗(NT (S), f∗F )

is an isomorphism, where NT (S) is the simplicial space given at level n by the n-fold fibre product of S over
T and the natural map is that induced by the augmentation NT (S)→ T . Such a map f : S → T is said to be
a map of universal cohomological descent if the pull-back f ′ : S′ = S ×T T

′ → T ′ is a map of cohomological
descent for every continuous map T ′ → T .

The topology of universal analytic descent, (Sch/C)uad, is the Grothendieck topology associated to the
pre-topology on Sch/C whose coverings are finite collections of morphisms {fi : Xi → Y } such that the
induced map f :

∐
iX

an
i → Y an is a map of universal cohomological descent.

By Hironaka’s resolution of singularities [H] (or by de Jong’s proof of the existence of smooth alterations
for singular varieties [DeJ]), if Y is a singular variety then there exists a proper surjective map X → Y with
X smooth. As we recall below, such a map is a uad-covering — a key observation that will enable us to
understand certain properties of presheaves on Sch/C by restricting attention to smooth varieties.

We recall Voevodsky’s h topology [V1], which is defined in terms of a Grothendieck pre-topology on Sch/C.
Namely, an h covering of U ∈ Sch/C is a finite collection of morphisms {Ui → U} such that

∐
i Ui → U

is a universal quotient map — that is, given any morphism V → U , the underlying map of Zariski spaces
associated to

∐
i Ui ×U V → V is a quotient map. The h topology is strictly finer than the étale topology.
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Lemma 2.2. The uad topology is finer than the h topology. In particular, if φ : F → G is a map of
presheaves on Sch/C such that the induced map of associated h sheaves φh is an isomorphism, then the map
of associated uad sheaves φuad : Fuad → Guad is also an isomorphism.

Proof. It suffices to show that every h-covering admits a refinement by a uad-covering. By [FV; 10.4], every
h-covering {Yi → X} admits a refinement {Vj → X} such that each Vj → X factors as Vj → X ′ → X ,
where X ′ → X is a surjective proper map and the Vj ’s form a Zariski open cover of X ′. A Zariski open
covering is a uad-covering; moreover, fan : (X ′)an → Xan is a morphism of universal cohomological descent
whenever X ′ → X is proper and surjective by [SGA4; Vbis4.1.1]. The result follows. �

The main result of this section is the following theorem, inspired by a result of Voevodsky [V2; 5.9].

Theorem 2.3. Let F → G be a morphism of presheaves of abelian groups on Sch/C such that Fuad → Guad

is an isomorphism. Then the natural map of simplicial abelian groups

F (∆•
top)→ G(∆•

top)

is a homotopy equivalence.

Proof. For any abelian group A, let A# denote the dual abelian group HomZ(A,Q/Z). For d ≥ 0, let Zd

denote the presheaf on Sch/C defined by

Zd(U) = (Z Homspaces(∆
d
top, U

an))#,

the dual of the singular d-chains of Uan. The collection of presheaves Zd, d ≥ 0, forms a cosimplicial presheaf
of abelian groups in the evident manner, and we let Z• denote the associated bounded below cochain complex
of presheaves. Note that the cohomology of the cochain complex Z•(U) gives the singular cohomology with
Q/Z coefficients of the space Uan:

hnZ•(U) = Hn
sing(Uan,Q/Z).

We first verify for any abelian presheaf F on Sch/C the isomorphism of abelian groups

Hompshvs(F,Z
d) ∼= F (∆d

top)
#. (2.3.1)

Indeed, for each fixed U , we have the isomorphism of abelian groups

HomZ(F (U), Zd(U)) ∼= HomZ(Z Homspaces(∆
d
top, U

an),HomZ(F (U),Q/Z)),

which is natural in U in a suitable sense so that we obtain the isomorphism

Hompshvs(F,Z
d) ∼= Homfun(Z Homspaces(∆

d
top, (−)an),HomZ(F (−),Q/Z)),

where the Homfun refers to the abelian group of natural transformations of covariant functors from Sch/C
to abelian groups. Observe that the functor Z Homspaces(∆

d
top, (−)an) can be represented as the following

direct limit of representable functors:

Z Homspaces(∆
d
top, (−)an) ∼= lim−→

∆d
top
→V an

Z HomSch(V,−),



20 ERIC M. FRIEDLANDER AND MARK E. WALKER ∗

where the indexing category is (V ar∆
d
top)op. Thus we have

Hompshvs(F,Z
d) ∼= Homfun


 lim−→

∆d
top
→V an

Z HomSch(V,−),HomZ(F (−),Q/Z)




∼= lim←−
∆d

top
→V an

Homfun (Z HomSch(V,−),HomZ(F (−),Q/Z))

∼= lim←−
∆d

top
→V an

HomZ (F (V ),Q/Z))

∼= HomZ


 lim−→

∆d
top
→V an

F (V ),Q/Z)




= HomZ

(
F (∆d

top),Q/Z)
)

= F (∆d
top)

#,

where the third isomorphism is given by Yoneda’s Lemma.
Using (2.3.1), we see that the cochain complex of abelian groups Hompshvs(F,Z

•) is isomorphic to
F (∆•

top)
#, where we regard F (∆•

top) as a chain complex in the usual manner and duals (−)# are taken

degree-wise. Since (−)# is a faithful and exact functor, to prove the theorem is suffices to show that the
natural map of chain complexes

Hompshvs(G,Z
•)→ Hompshvs(F,Z

•)

is a quasi-isomorphism. Also using (2.3.1), we see that Zd is an injective object in the category of presheaves
of abelian groups on Sch/C, since “evaluation” at ∆d

top and (−)# are exact functors. Thus, we may identify

Hompshvs(F,Z
•) with R HomD+(pshvs)(F,Z

•) in the derived category of abelian groups, where D+(pshvs)
denotes the derived category of bounded below cochain complexes of presheaves on Sch/C and R Hom is the
total derived functor.

We now proceed to verify that the cochain complex of presheaves Z• satisfies “naive descent” with respect
to the uad-topology; namely, we prove that for any uad-hypercovering X• → X , the natural map

Hn
sing(X

an,Q/Z) = hn (Z•(X))→ hn(Z•(X•)) (2.3.2)

is an isomorphism for all n ∈ Z. Since the analytic realization of any complex variety can be triangulated,
the singular cohomology of Xan with Q/Z coefficients coincides with its sheaf cohomology with values in the
constant sheaf Q/Z:

Hn
sing(Xan,Q/Z) ∼= Hn

sheaf (Xan,Q/Z).

Using the spectral sequence for sheaf cohomology of a simplicial space (cf. [D; 5.2.3.2]), this implies that for
any simplicial variety X• and integer n the natural map

Hn
sheaf (Z•(X•))→ Hn

sheaf (Xan
• ,Q/Z)

is also an isomorphism. Now, using [D; 5.3.5], we see that the natural map of sheaf cohomology groups

Hn
sheaf (Xan,Q/Z)→ Hn

sheaf (Xan
• ,Q/Z)

is an isomorphism for all n and uad-hypercoverings X• → X . We thus conclude that (2.3.2) is an isomor-
phism.
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Let Z• → I•,• be an injective resolution in the category of uad-sheaves: a map of bicomplexes of presheaves
such that each (Zd)uad → Id,• is an injective resolution in the category of uad sheaves. Thus, for each fixed
d, the complex

Zd → Id,0 → Id,1 → . . .

is exact locally in the uad topology and each Id,e is an injective uad sheaf. Then for all integers d, m, and
varieties X , the map

lim−→
X•→X

hm
(
Zd(X•))→ hm(Id,•(X)

)
(2.3.3)

is an isomorphism, where the colimit is indexed by the homotopy category of uad-hypercoverings of X (i.e.,
objects are uad-hypercoverings and maps are simplicial homotopy classes of maps of augmented simplicial
varieties). Combining the isomorphisms (2.3.2) and (2.3.3), we have the isomorphism

hm(Z•(X)) ∼= hm(I•,•(X)),

for all m and X . Thus, Z• → I•,• is a quasi-isomorphism of bicomplexes of presheaves.

As with any topology, the forgetful functor takes injective uad-sheaves to injective presheaves, and thus
Z• → I•,• represents an injective resolution in the category of presheaves of the complex Z• (upon taking
total complexes). We thus have a chain of isomorphisms in the derived category of abelian groups

Hompshvs(F,Z
•) ∼= R HomD+(pshvs)(F,Z

•)

∼= R HomD+(pshvs)(F, I
•,•)

∼= Hompshvs(F, I
•,•)

∼= Homuad−shvs(Fuad, I
•,•),

where the final isomorphism holds since each Id,e is an uad-sheaf. The theorem now follows from the existence
of the following commutative square in the derived category of abelian groups

G(∆•
top)

#
∼=

−−−−→ Hompshvs(G,Z
•)

∼=
−−−−→ Homuad−shvs(Guad, I

•,•)
y

y
y

F (∆•
top)

#
∼=

−−−−→ Hompshvs(F,Z
•)

∼=
−−−−→ Homuad−shvs(Fuad, I

•,•);

namely, if Fuad → Guad is an isomorphism, then G(∆•
top)

# −→ F (∆•
top)

# is a quasi-isomorphism and hence
F (∆•

top) −→ G(∆•
top) is a homotopy equivalence of simplicial abelian groups. �

Theorem 2.3 in conjunction with Lemma 2.2 gives us immediately the following useful corollary.

Corollary 2.4. Suppose F → G is a map of presheaves of abelian groups on Sch/C such that the induced
map Fh → Gh is an isomorphism. Then F (∆•

top)→ G(∆•
top) is a homotopy equivalence.

Suslin and Voevodsky have employed pretheories (or presheaves with transfer) in order to establish Suslin
rigidity for a large number of presheaves (cf. [SV1]). As shown in [FS], Suslin rigidity remains valid for
presheaves such as algebraic K-theory that satisfy slightly weaker conditions than that required to be a
pretheory — namely, for so-called pseudo-pretheories. The following corollary is thus a direct application of
Theorem 2.3 together with Suslin rigidity as developed by [SV1].
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Corollary 2.5. Let F be a presheaf of abelian groups on Sch/C whose restriction to Sm/C, the category
of smooth, quasi-projective complex varieties, is a pseudo-pretheory (cf. [FS; §10]). Suppose there exists an
integer n > 0 such that n · F = 0. Then F (∆•

top) is homotopy equivalent to the constant simplicial abelian
group F (Spec C).

Proof. As argued in the proof of [FW3; 3.2], the results of [SV1; §4] extend to pseudo-pretheories. In
particular, F (Spec C) ∼= Fet(X) for all smooth varieties X , where we view F (Spec C) as a constant presheaf.
Consequently, the natural map of presheaves

F (Spec C) −→ F

induces an isomorphism on associated uad sheaves. Thus, the corollary follows immediately from Theorem
2.3. �

We shall be primarily be concerned with contravariant functors in the context of algebraic topology. For
example, we might consider functors taking values in Ω-spectra or simplicial abelian groups, both of which
have associated functors to which the following theorem applies.

Theorem 2.6. Let θ : F → G be a map presheaves of group-like H-spaces on Sch/C, and assume the
simplicial spaces F (∆•

top) and G(∆•
top) are “good” in the sense of Segal (cf. [Se; A.4]) — for example,

assume the functors F,G : Sch/C→ Top factor through simplicial sets. If θ is a weak equivalence locally in
the uad-topology, by which we mean for all q ≥ 0, the uad-sheafification of the map πqF (−)→ πqG(−) is an
isomorphism, then the induced map of geometric realizations of simplicial spaces

θ : |F (∆•
top)| → |G(∆•

top)|

is a weak equivalence.
Similarly, if the uad-sheafification of the map πq(F (−),Q) → πq(G(−),Q) is an isomorphism for all

q ≥ 0, then the induced map

πq(F (∆•
top),Q)→ πq(G(∆•

top),Q)

is an isomorphism for all q ≥ 0.

Proof. By [BF; B.5] we have a map of convergent spectral sequences from

πp

∣∣d 7→ πqF (∆d
top)
∣∣ =⇒ πp+q |F (∆•

top)|

to

πp

∣∣d 7→ πqG(∆d
top)
∣∣ =⇒ πp+q |G(∆•

top)|,

and thus it suffices to show the map of simplicial abelian groups

(
d 7→ πqF (∆d

top)
)
→
(
d 7→ πqG(∆d

top)
)

is a homotopy equivalence for all q ≥ 0. (The “goodness” hypothesis is needed here to ensure d 7→
| Sing• F (∆d

top)| is weakly equivalent to d 7→ F (∆d
top), and similarly for G.) This follows immediately from

the hypotheses using Theorem 2.3.
The result for rational coefficients follows by the same argument starting with the spectral sequences

obtained by tensoring the above ones by Q. �

We make explicit the following special case of Theorem 2.6.
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Corollary 2.7. Suppose F → G is a map of presheaves of abelian groups (resp., presheaves of group-like H-
spaces such that F (∆•

top) and G(∆•
top) are good) defined on Sch/C such that F (U)→ G(U) is an isomorphism

(resp., weak equivalence) for all smooth U . Then the natural map F (∆•
top) → G(∆•

top) of simplicial abelian
groups (resp., simplicial spaces) is a homotopy equivalence (resp. weak homotopy equivalence).

Proof. This follows immediately from Theorem 2.6 and the fact that every variety in Sch/C is smooth locally
in the h topology, a fact which is seen to hold by applying Hironaka’s resolution of singularities [H] (or by
applying de Jong’s theorem on alterations [DeJ]). �

As a “demonstration” of the effectiveness of Theorem 2.3, we present a very short proof of one of the
main theorems of [FW3].

Theorem 2.8. [FW3; 3.5] For any smooth quasi-projective complex variety X and positive integer n, the
natural map

Kq(X,Z/n) = πq(K(X),Z/n) −→ πq(K(X ×∆•
top),Z/n) = Kq(X ×∆•

top,Z/n)

is an isomorphism.

Proof. Consider the presheaf of group-like H-spaces G on Sch/C given by

U 7→ G(U) = K(X × U) ∧M(Z/n, 0)

where M(Z/n, 0) is the mod-n Moore spectrum (and we have implicitly taken the 0-th space of the indicated
spectrum). Let F be the constant presheaf U 7→ K(X)∧M(Z/n, 0). There is a natural map of presheaves
F → G, and for any q ≥ 0, the induced map on πq groups is Kq(X,Z/n) → Kq(X × U,Z/n). Since the
restriction of the presheaf Kq(X ×−,Z/n) to Sm/C is a homotopy invariant pseudo-pretheory, the proof of
[FW3; 3.2] shows that Suslin rigidity applies to prove that the étale sheafification of Kq(X ×−,Z/n) is the
constant sheaf Kq(X,Z/n). The hypotheses of Theorem 2.6 are thus satisfied, and so F (∆•

top) → G(∆•
top)

is a weak equivalence. �

§3 Reformulation of Lawson homology and morphic cohomology

The formulations of Lawson homology and morphic cohomology have evolved over the past few years.
In the case of Lawson homology, these new formulations (e.g., using topological abelian groups of cycles
rather than homotopy-theoretic group completions of topological abelian monoids of effective cycles) have
merely extended the original definition of Lawson [L] from projective varieties to all quasi-projective varieties
without changing the invariants. However, in the case of morphic cohomology, newer formulations with
better properties (e.g., [F4]) not only extend the original definition [FL1] to all quasi-projective varieties but
also possibly change the invariants for varieties that are not smooth. In the case of smooth varieties, the
requirement that morphic cohomology be dual to Lawson homology pins down its values.

In this section, we present yet another formulation of morphic cohomology of a variety X , which coincides
with the other definitions for smooth varieties but which may differ for singular varieties. Indeed, the theory
we introduce here is really a “naive” one, in the sense that Zariski descent (for singular varieties) might
not hold. Essentially, the new formulation introduced in this section is given by taking the (naive) motivic
cohomology of X × ∆•

top (cf. Corollary 3.5). The advantage this definition had over the others is that
it is more easily related to (naive) motivic cohomology and moreover known properties of (naive) motivic
cohomology are often transferable to it.

In order to make this discussion somewhat self-contained, we briefly recall the definitions we use for Lawson
homology and morphic cohomology. First of all, if Y is a projective (complex) variety given together with
an embedding in some projective space PN , then the Chow variety Cr,d(Y ) is a (not necessarily irreducible)
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closed subvariety of another projective space that has the property that its closed points are in natural one-
to-one correspondence with effective r-cycles on Y of degree d. We write Cr(Y ) for the monoid

∐
d≥0 Cr,d(Y )

and recall that this monoid is independent of the chosen projective embedding of Y . The Lawson homology
of a projective variety Y is given by the formula

LrHm(Y ) = πm−2rZr(Y ) (3.0.1)

where Zr(Y ) = (Cr(Y )an)+ is the “naive group completion” of the topological monoid (Cr(Y ))an.

More generally, if Y is embedded as a Zariski open subset of a projective variety Y with Zariski closed
complement Y∞, then Cr(Y )an is the quotient topological monoid Cr(Y )an/Cr(Y∞)an equipped with the
quotient topology. Setting

Zr(Y ) = (Cr(Y )an)+

we may take (3.0.1) to be the definition of Lawson homology for all quasi-projective varieties. It is worth
noting that Zr(Y ) coincides up to homotopy with (Cr(Y )an)+/(Cr(Y∞)an)+ = Zr(Y )/Zr(Y∞) (see the proof
of [FG; 1.6]) — that is, one may first group complete and then take quotients.

If U, V are quasi-projective varieties, then Mor(U, V ) is the set of continuous algebraic maps from U to
V (cf. [F1]) andMor(U, V ) is the topological space whose underlying set is Mor(U, V ) and whose topology
is defined in [FW1; 2.2]. If X is weakly normal and both X and W are projective, then this topology
is merely the subspace topology of the mapping space Maps(Xan,W an) of continuous maps from Xan to
W an endowed with the compact open topology. More generally, if U is weakly normal but not necessarily
projective, then the topology provided Mor(U,W ) is the “topology of bounded convergence” which has
more open sets than does the compact-open topology (so that convergence inMor(U,W ) of a sequence {fn}
of continuous algebraic maps is stronger than convergence of this sequence inMaps(Y an,W an)). If U is not
even weakly normal, then Mor(U,W ) =Mor(Uw ,W ), where Uw → U is the so-called weak normalization
of U . The morphic cohomology of a quasi-projective variety X is defined by the formula

LsHn(X) = π2s−n(Mor(X, C0(P
s))+/Mor(X, C0(P

s−1))+) (3.0.2)

whereMor(X, C0(Ps))+ denotes the naive group completion of the topological abelian monoidMor(X, C0(Ps)).
In order to incorporate the technique developed in Theorem 2.3, we recall the presheaves of equidimen-

sional cycles used in [FV] and [SV2]. If Y is a quasi-projective complex variety and r is a non-negative
integer, then there is a unique presheaf zequi(Y, r) defined on Sch/C having the following properties: (1) if U
is normal, zequi(Y, r)(U) is the abelian group of cycles on Y ×U freely generated by effective cycles that are
equidimensional of relative dimension r over some irreducible component of U , and (2) zequi(Y, r) is a sheaf
for the qfh topology. Moreover, the assignment Y 7→ zequi(Y, r) is covariantly natural with respect to proper
maps and contravariantly functorial (with a degree shift) with respect to flat morphisms. These functorial
maps are given, in the case when U is normal, by push-forward (along proper maps) and pull-back (along flat
morphisms) of cycles. If Y is a projective variety, then the sheaf zequi(Y, r) coincides with Mor(−, Cr(Y ))+,
which sends a variety U to the (discrete) group completion of the abelian monoid of continuous algebraic
maps from U to the Chow monoid Cr(Y ) [F4; 1.4].

As usual, we define the value of the presheaf zequi(Y, r)(X ×−) on a compact, Hausdorff space T to be

zequi(Y, r)(X × T ) = lim−→
(T→Uan)

zequi(Y, r)(X × U).

where the colimit is indexed by (V arT )op. In particular, an element of zequi(Y, r)(X × T ) is represented by
a pair (f : T → Uan, α ∈ zequi(Y, r)(X × U)).

The following proposition relates Lawson homology to the presheaf zequi(Y, r).
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Proposition 3.1. For any quasi-projective complex variety Y , integer r ≥ 0, and compact Hausdorff space
T , there is a map

zequi(Y, r)(T )→ Maps(T, Zr(Y )) (3.1.1)

given by sending an element of the source represented by the pair (f : T → U an, α ∈ zequi(Y, r)(U)) to the
function t 7→ α|f(t) ∈ zequi(Y, r)(Spec C) = Zr(Y ). This map is contravariantly natural for continuous maps
of compact Hausdorff spaces T ′ → T , contravariantly natural for flat morphism of varieties Y ′ → Y , and
covariantly functorial for proper morphisms of varieties Y → Y ′′.

In particular, there is a natural map of simplicial sets

zequi(Y, r)(∆
•
top) −→ Sing•(Zr(Y )). (3.1.2)

If Y is projective, (3.1.2) coincides with the natural equivalence

(Sing•(Cr(Y )an))+
∼
−→ Sing•(Zr(Y )).

More generally, if Y is quasi-projective with projective closure Y and Zariski closed complement Y∞, then
(3.1.2) fits in a map of homotopy fibration sequences

zequi(Y∞, r)(∆
•
top) −−−−→ zequi(Y , r)(∆

•
top) −−−−→ zequi(Y, r)(∆

•
top)

y
y

y

Sing•(Zr(Y∞)) −−−−→ Sing•(Zr(Y )) −−−−→ Sing•(Zr(Y ))

(3.1.3)

and hence is a homotopy equivalence.

Proof. To verify that (3.1.1) is well defined, we must verify that given a pair (f : T → U an, α ∈ zequi(Y, r)(U)),

the function t 7→ α|f(t) is continuous. We claim there is proper, surjective map p : Ũ → U with Ũ smooth and

an element α ∈ zequi(Y , r)(Ũ ) such that the restriction of α̃ along Y ↪→ Y gives an element in zequi(Y, r)(Ũ )

that coincides with p∗(α). This holds since the map of presheaves zequi(Y , r)(−)→ zequi(Y, r)(−) is surjective
locally in the proper cdh topology by [SV2; 4.2.9 and 4.3.1].

Let T̃ = T ×Uan Ũan and note that T̃ → T is a proper map of topological spaces. The induced map
T̃ → Ũan and the cycle α determine a function T̃ → Zr(Y ). Since α is represented by a difference of

morphisms from Ũ → Cr(Y ), the function T̃ → Zr(Y ) is given by a difference of maps obtained by composing

T̃ → Ũan with elements of Mor(Ũ , Cr(Y )), and hence is continuous. The composition of T̃ → T → Zr(Y )

is easily seen to coincide with the composition of T̃ → Zr(Y ) � Zr(Y ) and thus is also continuous. Since

T̃ → T is a quotient space map, it follows that T → Zr(Y ) must be continuous as well. This is the map
t 7→ α|f(t) whose continuity we sought.

The asserted functoriality properties follow from the results of [SV2; §3]. Specifically, zequi(Y, r)(−) =
zequi(Y × −/−, r) is a presheaf on Sch/C (see [SV2; 3.3.9]) from which functoriality in T is immediate.
Moreover, pullbacks along flat maps Y ′ → Y of relative dimension s (respectively, pushforward along proper
morphisms Y → Y ′′) determine morphisms of presheaves zequi(Y, r) → zr(Y

′, r + s) [SV2; 3.6.4] (resp.,
zequi(Y, r)→ zequi(Y

′′, r) [SV2; 3.6.3]). Thus, there are pullback and pushforward maps for both the source
and target of (3.1.1) as claimed. To prove the functoriality of these maps, it suffices to consider the case
where T is a point, in which case it is obvious.

The fact that (3.1.2) is a homotopy equivalence when Y is projective (so that zequi(Y, r) equals Mor(−, Cr(Y ))+)
follows from Quillen’s theorem [FM; App. Q] identifying the level-wise group completion of a simplicial
abelian monoid with its homotopy-theoretic group completion.

Finally, to show that (3.1.3) is a map of fibration sequences, we recall from [FV; 5.12,8.1] that

zequi(Y∞, r)(U ×∆•) −→ zequi(Y , r)(U ×∆•) −→ zequi(Y, r)(U ×∆•)
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is a fibration sequence whenever U is smooth. Since this composition is the zero map for any variety U ,
there is a natural map from |zequi(Y∞, r)(U ×∆•)| to the homotopy fiber of

|zequi(Y , r)(U ×∆•)| −→ |zequi(Y, r)(U ×∆•)|.

Consequently, Corollary 2.7 implies that

zequi(Y∞, r)(∆
•
top ×∆•) −→ zequi(Y , r)(∆

•
top ×∆•) −→ zequi(Y, r)(∆

•
top ×∆•)

is also a homotopy fibration sequence. By homotopy invariance (cf. [FW3; 1.2]), we conclude that the upper
row of (3.1.3) is a homotopy fibration sequence. The lower row is a fibration sequence by [FG; 1.6]. �

The following corollary is merely a restatement of the conclusion of Proposition 3.1.

Corollary 3.2. For any quasi-projective complex variety Y , there exists a natural isomorphism

πm−2r(zequi(Y, r)(∆
•
top))

∼=
−→ LrHm(Y )

where LrHm(Y ) is the Lawson homology of Y .

In order to provide a similar interpretation for morphic cohomology, we extend the construction of the
map (3.1.1) to a bivariant context (with Y projective).

Proposition 3.3. If Y is a projective complex variety and X is a normal quasi-projective complex variety,
then there is a map

zequi(Y, r)(X × T )→ Maps(T,Mor(X, Cr(Y ))+) (3.3.1)

given by sending (f, α) to t 7→ α|f(t) ∈ zequi(Y, r)(X) = Mor(X, Cr(Y ))+. This map is contravariantly natural
for continuous maps of compact Hausdorff spaces T ′ → T , contravariantly functorial for all morphisms of
varieties X ′ → X, contravariantly functorial for all flat morphisms of varieties Y ′ → Y , and covariantly
functorial for all proper morphisms of varieties Y → Y ′′.

Moreover, this map is compatible with that of Proposition 3.1 in the sense that for any projective complex
variety Y , quasi-projective smooth variety X of pure dimension d, integer r ≥ 0, and compact Hausdorff
space T , the diagram

zequi(Y, r)(X × T ) −−−−→ Maps(T, (Mor(X, Cr(Y ))+)
y

y

zequi(Y ×X, r + d)(T ) −−−−→ Maps(T, Zr+d(Y ×X))

(3.3.2)

commutes, where the top arrow is (3.3.1), the bottom arrow is given by (3.1.1), and the two vertical arrows
are given by the evident inclusions of cycles.

Proof. Once again, we must prove the continuity of the map sending (f, α) to t 7→ α|f(t). Given (f : T →

Uan, α ∈ zequi(Y, r)(X × U)), let Ũ → U denote the normalization of U , α̃ denote the pullback of α to

zequi(Y, r)(X × Ũ), and T̃ denote T ×Uan Ũan. The precomposition of T → Zr(Y ) with T̃ → T coincides

with the function T̃ → Zr(Y ) determined by the pair (f̃ : T̃ → Ũan, α̃). Since X × Ũ is normal, α̃ is

represented by a difference of elements of Mor(X × Ũ , Cr(Y )). The continuity of T̃ → Zr(Y ), and hence of
T → Zr(Y ) follows. Functoriality is verified as for (3.1.1) using the results of [SV2; §3].

To show (3.3.2) commutes, note that the left hand vertical arrow arises from the inclusion of presheaves
zequi(Y, r)(X ×−) ↪→ zequi(Y ×X, r + d)(−). (The definition of these presheaves given in [SV2; §3] makes
it clear that each is a sub-presheaf of a common presheaf Cycl(Y ×X/ SpecC, r + d)Q.) In particular, this
arrow is natural in T . We have shown that the horizontal arrows are also natural in T and the right-hand
vertical arrow is clearly natural in T . It therefore suffices to establish the commutativity of (3.2.2) in the
special case where T is the one-point space. In this case the result is obvious. �

We now give a bivariant generalization of Proposition 3.1.
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Theorem 3.4. Given a smooth quasi-projective complex variety X and a smooth projective complex variety
Y , the natural map of simplicial sets

zequi(Y, 0)(X ×∆•
top)→ Sing•(Mor(X, C0(Y ))+)

is a homotopy equivalence.

Proof. We may assume X is connected, say of dimension d. By Proposition 3.3, the diagram

zequi(Y, 0)(X ×∆•
top) −−−−→ Sing•(Mor(X, C0(Y ))+)

y
y

zequi(Y ×X, d)(∆•
top) −−−−→ Sing•(Zd(Y ×X)),

(3.4.1)

commutes. The lower horizontal map of (3.4.1) is a homotopy equivalence by Proposition 3.1, whereas
the right vertical map of (3.4.1) is a homotopy equivalence by duality of morphic cohomology and Lawson
homology for smooth varieties [F3; 5.2].

We recall from [FV; 8.1,8.2] that the natural map

zequi(Y, 0)(−×∆• ×X) −→ zequi(X × Y, d)(−×∆•)

of presheaves induces a homotopy equivalence on all smooth varieties. Thus,

zequi(Y, 0)(X ×∆•
top ×∆•) −→ zequi(X × Y, d)(∆

•
top ×∆•) (3.4.2)

is also a homotopy equivalence by Corollary 2.7. Homotopy invariance zequi(V, n)(U ×∆•
top×−) (cf. [FW3;

1.2]) thus implies that the left vertical map of (3.4.1) is a homotopy equivalence.
Consequently, we conclude that the upper horizontal map of (3.4.1) is a homotopy equivalence as as-

serted. �

Let Pq = ProjC[x0, . . . , xq ] and Pq−1 ↪→ Pq be the inclusion into the first q homogeneous coordinates. We

let zequi(P
q/q−1, r) denote the cokernel of the map of presheaves

zequi(P
q−1, r) −→ zequi(P

q , r)

induced by the closed immersion Pq−1 ↪→ Pq. In other words, we have

zequi(P
q/q−1, r)(U) = Mor(U, Cr(P

q))+/Mor(U, Cr(P
q−1))+,

for U normal. Restriction to the open subscheme Aq = Pq − Pq−1 defines a morphism of presheaves
zequi(P

q/q−1, r)→ zequi(A
q , r).

We summarize our reformulation of morphic cohomology (for smooth varieties) in the following corollary.

Corollary 3.5. For any smooth, quasi-projective complex variety X, the natural chain of maps

zequi(A
q , 0)(X ×∆• ×∆•

top) −→ zequi(A
q , 0)(X ×∆•

top)←− zequi(P
q/q−1, 0)(X ×∆•

top)

−→ Sing•(Mor(X, C0(P
q))an))+/ Sing•(Mor(X, C0(P

q−1))an))+

consists of homotopy equivalences. The induced map on πj ,

H2q−j
M (X ×∆•

top,Z(q))
∼=
−→ LqH2q−j(X),

identifies the motivic cohomology of X ×∆•
top with the morphic cohomology of X.

Proof. The first map is a homotopy equivalence by homotopy invariance. The fact that the second map is a
homotopy equivalence follows by using the homotopy equivalence (3.4.2), the homotopy fibration sequence
(3.1.3), and the Five Lemma. The fact that the third map is a homotopy equivalence follows from Theorem
3.4 and another application of the Five Lemma. �
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§4 The total Segre class map and Chern character for semi-topological K-theory

In Section 1 we considered the total Segre map from the (naive) algebraic K-theory space to the multi-
plicative motivic cohomology space,

Seg : Knaive(X)→ Hmult(X),

and showed it is a rational equivalence for X smooth. In Section 3, we implicitly saw how to formulate the
analogous map from semi-topological K-theory to morphic cohomology as

Segsst : K(X ×∆•
top) −→ Hmult(X ×∆•

top).

Moreover, in Section 2 we provided a criterion which enables us to verify that a map such as Segsst when
restricted to smooth schemes is a homotopy equivalence. Thus, the pieces are all in place to establish
Theorem 4.2, that Segsst is a rational equivalence. Similarly, we established in Section 1 that the Chern
character chalg associated to Segalg is a multiplicative rational isomorphism. With some more effort, the
techniques we have developed will enable us to show in Theorem 4.7 that

chsst :
⊕

n

Kn(X ×∆•
top)Q −→

⊕

q,n

LqH2q−n(X)Q

is an isomorphism of graded rings.
Recall that if F : (Sch/C)op → (sets) is a presheaf of sets, then we define the simplicial set

F (∆•
top) =

(
n 7→ F (∆n

top)
)

where for any topological space T , we define F (T ) = lim−→T→Uan F (U) where the colimit is indexed by

(V arT )op. In particular, this construction is used to define the semi-topological K-theory space Ksst(X) =
K(X ×∆•

top) as we recall at the beginning of the following definition.

Definition 4.1. For any quasi-projective variety X, the singular semi-topological K-theory of X is the
spectrum (or infinite loop space) Ksst(X) associated to the |I(∆•)|-space |Hom(X×∆•

top,Grass)| [FW4; 2.1].

We sometimes use the more cumbersome but more suggestive notation K(X × ∆•
top) in place of Ksst(X),

and we frequently say “semi-topological K-theory” instead of “singular semi-topological K-theory”.
Similarly, the (singular) semi-topological motivic groups are defined by the formula

Hn
sst(X,Z(q)) = Hn

M(X ×∆•
top,Z(q)) = π2q−n|zequi(A

q , 0)(X ×∆•
top)|.

Define Hmult(X ×∆•
top) = Hsst

mult(X) to be the spectrum (or infinite loop space) associated to the |I(∆•)|-

space Hom(X ×∆•
top,Chow)+1 , and the semi-topological total Segre map

Segsst : Ksst(X) −→ Hsst
mult(X)

to be the map on associated spectra (or infinite loop spaces) induced by the map

cyc : Hom(X ×∆•
top,Grass)→ Hom(X ×∆•

top,Chow)+1 .

of |I(∆•)|-spaces.
For any n, q ≥ 0, we define the semi-topological Segre classes

ssst
n,q : Ksst

n (X)→ LqH2q−n(X),

to be the composition

Ksst
n (X)

(−)∗

−−−→ Ksst
n (X)

πn(Segsst)
−−−−−−−→ πnH

sst
mult(X)

∼=
−→

⊕

q

H2q−n
sst (X,Z(q)) −→ H2q−n

sst (X,Z(q))
∼=
−→ LqH2q−n(X)

where the first indicated isomorphism is given by Proposition 1.4 and the second by Corollary 3.5.

In the following theorem, we make explicit the fact that the group structure on π∗Hsst
mult(X) is not the

evident group structure on morphic cohomology in homotopy degree 0. This reflects the fact that the total
Segre class is multiplicative: s(x+ y) = s(x)s(y).
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Theorem 4.2. For any smooth, quasi-projective complex variety X, the semi-topological Segre map

Segsst : Ksst(X) −→ Hsst
mult(X)

is a rational equivalence.
Equivalently, for each n ≥ 0, the semi-topological rational total Segre class map

ssst
n,∗ : Ksst

n (X)Q →
⊕

q

LqH2q−n(X,Q),

is an isomorphism of graded groups. For n = 0, the group structure on the right is given by the join pairing
and can be viewed as the product of Z[π0(X)] times the multiplicative group of units with leading term 1:

{1} ×
⊕

q≥1

LqH2q−n(X,Q) ⊂
⊕

q≥0

LqH2q−n(X,Q).

Proof. Since Seg is a map of group-like H-spaces, Theorem 2.6 implies that to prove Segsst is a rational
isomorphism (for X smooth) it suffices to prove that

Seg : K(X ×−) −→ Hmult(X ×−)

is a rational isomorphism when restricted to smooth varieties U . This is given by Theorem 1.10.
Since ssst

n,∗ differs from Segn = πnSeg by an automorphism of Ksst
n (X), the fact that ssst

n,∗ is a rational
isomorphism follows immediately from the fact that Seg is a rational equivalence. �

In [FW4], we established semi-topological real K-theory for varieties defined over the real numbers R.
Extending the construction of Section 2, if F : Sch/R→ (sets) is a contravariant functor defined on quasi-
projective real varieties, we define

FR(∆•
top) =

(
n 7→ FR(∆n

top)
)

where for any topological space T we set FR(T ) equal to the set lim−→T→U(R) F (U). Here, the indexing category

of the colimit is (V arT
R )op, where an object of V arT

R is a continuous map T → U(R) (where U is a real variety
and U(R) is the analytic space of real points) and morphisms in V arT

R are given by morphisms of real varieties
satisfying the evident commutativity condition.

The following is simply the real analogue of the definition of Ksst(X) = K(X ×∆•
top) given in Definition

4.1.

Definition 4.3. [FW4; 2.1] For any quasi-projective real variety X, we define

KRsst(X) = K(X ×R ∆•
top)

to be the spectrum (or infinite loop space) associated to the |I(∆•
R)|-space |HomR(X ×R ∆•

top,GrassR)|.
Similarly, for such a quasi-projective real variety X, we define

Hsst
mult,R(X) = Hmult(X ×R ∆•

top)

to be the spectrum (or infinite loop space) associated to the |I(∆•
R)|-space |HomR(X ×R ∆•

top,ChowR)+1 |.
We define

SegR : KRsst(X)→ Hsst
mult,R(X)

to be the map of spectra associated to the map of |I(∆•
R)|-spaces

cyc : |HomR(X ×R ∆•
top,GrassR)| → |HomR(X ×R ∆•

top,ChowR)+1 |.

Thanks to the foundations of real semi-topological K-theory established in [FW4], we easily conclude the
real analogue of Theorem 4.2.
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Corollary 4.4. Let X be a smooth quasi-projective real variety. Then the total Segre class induces a rational
homotopy equivalence

SegR : KRsst(X) −→ Hsst
mult,R(X).

Thus, for each n ≥ 0, the semi-topological total real Segre class

ssst
R,n,∗ : KRsst

n (X)→
⊕

q

LqHR2q−n(X),

is a rational isomorphism of graded groups.

Proof. Let XC denote X ×R Spec C and let π : XC → X be the canonical map. In [FW4; 5.4], a natural
transfer map

π∗ : Ksst(XC) ∼ KRsst(XC)→ KRsst
n (X)

is constructed; in [FW4; 5.6], it is shown that the composition of this transfer map with the natural pullback
map

π∗ : KRsst(X)→ KRsst(XC) ∼ Ksst(XC)

is weakly homotopic to multiplication by 2. Since we have a similar result for Hsst
mult(−) in place of Ksst(−),

we conclude that upon inverting the prime 2, the map SegR is a retract of the rational equivalence

Seg : Ksst(XC) −→ Hsst
mult(XC)

Thus, SegR is also a rational equivalence.
The assertion about the total real Segre class follows immediately from the definition of LqHR2q−n(X)

given in [FW4] and the argument at the end of the proof of Theorem 4.2. �

We define the semi-topological Chern character in terms of semi-topological Segre classes using the same
polynomials as we used for the Chern character on algebraic K-theory (preceding Theorem 1.12):

chsst
n,q = Pq(s

sst
n,0, . . . , s

sst
n,q),

where for n > 0, products of the form ssst
n,is

sst
n,j with i, j ≥ 1 are trivial.

To prove chsst is multiplicative, we employ a dimension shifting technique similar to that of Section 1 that
is suitable for use with semi-topological K-theory and morphic cohomology. For a finite oriented simplicial
complex M , define the (singular) semi-topological K-theory of X × |M |, written Ksst(X × |M |), to be the
homotopy theoretic group completion of the |I(∆•)|-space |Hom(X × |M | × ∆•

top,Grass)|. In particular,

Ksst
0 (X×|M |) is the group completion of the abelian monoid π0|Hom(X×|M |×∆•

top,Grass)|— equivalently,

Ksst
0 (X × |M |) is isomorphic to the direct limit

lim−→
|M |→Uan

Ksst
0 (X × U)

where the colimit is indexed by the category V ar|M |. Observe that there is a map of |I(∆•)|-spaces

|Hom(X × |M | ×∆•
top,Grass)| → Maps(|M |, |Hom(X ×∆•

top,Grass)|)

and hence a map on associated spectra. By [FW2; 3.4], the group-like H-space obtained by taking the 0-th
space of the spectrum associated to the |I(∆•)|-space |Hom(X×∆•

top,Grass)| is naturally weakly equivalent
to the mapping telescope associated to a certain endomorphism of |Hom(X ×∆•

top,Grass)|. It follows that
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the 0-th space of the spectrum associated to Maps(|M |, |Hom(X × ∆•
top,Grass)|) is naturally homotopy

equivalent to
Maps(M,Ksst(X))

We therefore have a map
Ksst(X × |M |)→Maps(|M |,Ksst(X))

which is natural up to weak homotopy in both X and M . Our semi-topological dimension shifting technique
is given by the assertion that this map is a weak equivalence. This is proven in Theorem 4.7 below, but first
we establish a necessary technical result.

Let S(M) denote the simplicial set associated to M . More precisely, S(M)n is the collection of order
preserving maps from [n] = {0 < 1 < · · · < n} to V (the vertex set of M) and the face and degeneracy maps
for S(M) are given by composition in the evident manner. Observe that |S(M)|, the geometric realization
of the simplicial set S(M), is naturally homeomorphic to |M |. For any presheaf of sets F on Sch/C and any
simplicial set S•, there is a natural map F(|S•|)→ Homs.sets(S•,F(∆•

top)), defined in the following manner.
Note that Homs.sets(S•,F(∆•

top)) is the equalizer of the pair of maps

∏

[n],s∈Sn

F(∆n
top) ⇒

∏

[n1]→[n0],s∈Sn0

F(∆n1

top).

The map F(|S•|) → Homs.sets(S•,F(∆•
top)) is induced by the collection of natural maps ∆n

top → |S•|
associated to each pair [n], s ∈ Sn. In particular, we have a natural map

F(|M |)→ Homs.sets(S(M),F(∆•
top)).

Lemma 4.5. Let F be a presheaf of sets on Sch/C satisfying the condition that for every pullback square
of finitely generated C-algebras

A −−−−→ B
y

y

C −−−−→ D

in which all four maps are surjections (so that the associated square of spectra is a push-out diagram of closed
immersions of affine varieties), the induced diagram

F(SpecA) −−−−→ F(SpecB)
y

y

F(SpecC) −−−−→ F(SpecD)

is also a pullback. Then the natural map

F(|M |)→ Homs.sets(S(M),F(∆•
top)) (4.5.1)

is a bijection for any finite, oriented simplicial complex M .

Proof. We proceed by double induction on the dimension d of M and the number of maximal simplices of
M . If M is a d-simplex, then (4.5.1) is obviously a bijection. Otherwise, let M = M1 ∪M2 be a nontrivial
decomposition of M into two subsimplicial complexes, and consider the map from the square

F(|M |) −−−−→ F(|M1|)y
y

F(|M2|) −−−−→ F(|M1 ∩M2|)

(4.5.2)
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to the square
Homs.sets(S(M),F(∆•

top)) −−−−→ Homs.sets(S(M1),F(∆•
top))y

y

Homs.sets(S(M2),F(∆•
top)) −−−−→ Homs.sets(S(M1 ∩M2),F(∆•

top)).

The latter square is a pullback square, since the simplicial sets S(M), S(M1), S(M2), and S(M1 ∩M2)
form a pushout square. If (4.5.2) is also a pullback, then our claim follows by induction (since M1, M2, and
M1 ∩M2 are each either of smaller dimension or have fewer maximal simplices than M).

By [FW2; 4.2], for any compact CW complex N , we have F(N) ∼= lim−→A⊂C(N) F(SpecA), where A ranges

over finitely generated C-subalgebras of C(N), the C-algebra of continuous complex-valued functions on N .
In light of the hypothesis on F , it suffices to prove that the pullback square

C(|M |) −−−−→ C(|M1|)y
y

C(|M2|) −−−−→ C(|M1 ∩M2|)

(4.5.3)

(in which all maps are surjections) is a filtered direct limit of pullback squares of the form

A −−−−→ B
y

y

C −−−−→ D,

(4.5.4)

in which all maps are surjections and A, B, C, and D are finitely generated C-subalgebras of C(|M |), C(|M1|),
C(|M2|), and C(|M1 ∩M2|), respectively. To see this, note that given any finitely generated subalgebra D of
C(|M1 ∩M2|), by taking inverse images of a chosen finite set of generators of D, we may form a square of
the form (4.5.4). �

The following proposition provides us with the means to interpret the groupKsst
n (X) in terms of the group

Ksst
0 (X × |M |), thereby playing a role for semi-topological K-theory similar to that played by Proposition

1.7 for algebraic K-theory. Observe that Ksst
0 (X × |M |k) is not isomorphic to [|M |,Ksst(X)] — if it were,

then one would be able to deduce that Kn(X)→ Ksst
n (X) is a surjection for all n, which is absurd. Hence,

one must replace |M |k with |M | in the context of semi-topological K-theory in order to obtain a correct
version of the dimension shifting formula.

Proposition 4.6. For any quasi-projective complex variety X and any finite, oriented simplicial complex
M , the natural map

Ksst(X × |M |)→Maps(|M |,Ksst(X))

is a weak homotopy equivalence. Consequently, there is an isomorphism

Ksst
0 (X × |M |) ∼= [|M |,Ksst(X)]

which is natural in both X and M .

Proof. Choose a surjection On
X � L with L a very ample line bundle on X . Let α be the endomorphism of

the presheaf Hom(X ×−,Grass) defined at a fixed U ,

α : Hom(X × U,Grass)→ Hom(X × U,Grass),
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by sending a quotient object O∞X×U � E to the quotient object determined by the composition of

O∞X×U
∼= On

X×U ⊕O
∞
X×U � L ⊕ E .

Here, the isomorphism is the evident “shift” map. Now define Hom(X ×−,Grass)∞ to be the direct limit
of presheaves

lim−→

(
Hom(X ×−,Grass)

α
−→ Hom(X ×−,Grass)

α
−→ . . .

)
.

Then for any affine variety U , the simplicial set d 7→ Hom(X × U × ∆d
top,Grass)∞ is weakly homotopy

equivalent to the space Ksst(X×U) by [FW4; 7.3]. Since Hom(X×|M |×∆•
top,Grass)∞ is the direct limit of

simplicial sets of the form Hom(X×U×∆•
top,Grass)∞ for U affine by [FW2; 4.2], we have a weak homotopy

equivalence
Ksst(X × |M |) ∼ |Hom(X × |M | ×∆•

top,Grass)∞|.

It therefore suffices to prove that the natural map

|Hom(X × |M | ×∆•
top,Grass)∞| → Maps(|M |, |Hom(X ×∆•

top,Grass)∞|)

is a weak homotopy equivalence. Since this map is a direct limit of copies of the map

|Hom(X × |M | ×∆•
top,Grass)| → Maps(|M |, |Hom(X ×∆•

top,Grass)|),

it suffices to prove this latter map is a weak homotopy equivalence.
By Lemma 4.5, the natural map

Hom(X × |M |,Grass)→ Homs.sets(S(M),Hom(X ×∆•
top,Grass))

is a bijection for any finite, oriented simplicial complex M . This shows, in particular, that the simplicial set
Hom(X×∆•

top,Grass) satisfies the Kan extension condition. (For note that if Λ ⊂ ∆n denotes the simplicial
set obtained from ∆n by removing any one face, then Λ and ∆n can both be realized as finite, oriented
simplicial complexes and

Hom(X × |∆|,Grass)→ Hom(X × |Λ|,Grass)

is clearly surjective.) Moreover, since M ×∆d is also a finite, oriented simplicial complex for all d, we obtain
an isomorphism

(
d 7→ Hom(X × |M | ×∆d

top,Grass)
)
∼=
(
d 7→ Homs.sets(S(M) ×∆d,Hom(X ×∆•

top,Grass))
)

of simplicial sets. The result now follows from the fact that the Kan condition implies the natural map

∣∣d 7→ Homs.sets(S(M)×∆d,Hom(X ×∆•
top,Grass))

∣∣ −→Maps(|M |, |Hom(X ×∆•
top,Grass)|)

is a weak homotopy equivalence. �

We can now prove the following main theorem.

Theorem 4.7. The semi-topological Chern character associated to Segsst,

chsst :
⊕

n

Ksst
n (X) −→

⊕

q,n

LqH2q−n(X,Q),
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is a natural transformation of graded-ring valued functors on the category of smooth, quasi-projective complex
varieties.

Moreover, chsst induces a rational isomorphism for all X ∈ Sm/C:

chsst :
⊕

n

Ksst
n (X)Q

∼=
−→

⊕

q,n

LqH2q−n(X,Q).

Finally, for any X ∈ Sm/C, the diagram
⊕
n
Kn(X) −−−−→

⊕
n
Ksst

n (X) −−−−→
⊕
n
K−n

top (Xan)

chalg

y chsst

y chtop

y
⊕
q,n
H2q−n
M (X,Q(q)) −−−−→

⊕
q,n
LqH2q−n(X,Q(q)) −−−−→

⊕
q,n
H2q−n

sing (Xan,Q)

(4.7.1)

commutes.

Remark. As in Theorem 1.12, observe that LqH2q−n(X) = 0 for q−n > d = dim(X), so that for a fixed n,
the target of chsemi

n is a finite sum of cohomology groups. Indeed, using duality [F3; 5.2] and the Dold-Thom
Theorem, we have

LqH2q−n(X) ∼= LqH2q−n(X × Aq−d) ∼= L0Hn(X × Aq−d) ∼= HBM
n (X × Aq−d) ∼= HBM

n−2q+2d(X) = 0,

whenever q > d+ n and n ≥ 0 (for then n− 2q + 2d < 0).

Proof of 4.7. A slight modification of the proof of Theorem 1.12 for chalg also applies to show chsst is a ring
homomorphism. More specifically, let X and Y be smooth, quasi-projective complex varieties and suppose
M and N are finite, oriented simplicial complexes with |M | ∼= Sm and N ∼= Sn. Suppose f1 : |M | → W an

and g1 : |N | → Zan are continuous maps with W and Z arbitrary (quasi-projective) complex varieties, and
suppose f2 : X ×W → U and g2 : Y × Z → V are morphisms of varieties with U and V smooth. The pair
f = (f1, f2) induces the map

f# : K0(U)→ Ksst
m (X)

defined as the composition of

K0(U)
f∗2−→ K0(X × Y )

(id×f1)∗

−−−−−→ K0(X × |M |) −→ Ksst
0 (X × |M |)

∼=
−→ [|M |,Ksst(X)] −→ Ksst

m (X),

where the isomorphism is given by Proposition 4.6 and the last map is the canonical surjection determined
by |M | ∼= Sm. Similarly, the pair g = (g1, g2) defines the map g# : K0(V ) → Ksst

n (Y ). As in the proof of
Theorem 1.12, we obtain the analogue of (1.12.1), the commutative square

K0(U)⊗K0(V ) −−−−→ K0(U × V )

f#⊗g#

y
y(f×g)#

Ksst
m (X)⊗Ksst

n (Y ) −−−−→ Ksst
m+n(X × Y ),

where f × g = (f1 × g1, f2 × g2).
Likewise, we obtain the semi-topological analogue of (1.12.2), and the commutativity of the first square of

Proposition 1.9 remains valid (for the same reasons) in the semi-topological context. Naturality then gives
us that the square

Ksst
m (X)⊗Ksst

n (Y ) −−−−→ Ksst
m+n(X × Y )

chsst
m ⊗chsst

n

y chsst
m+n

y
⊕

p L
pH2p−m(X)⊗

⊕
q L

qH2q−n(X) −−−−→
⊕

r L
rH2r−m−n(X)



RATIONAL ISOMORPHISMS BETWEEN K-THEORIES AND COHOMOLOGY THEORIES 35

commutes upon restriction to the image of

K0(U)⊗K0(V )
f#⊗g#

−−−−−→ Ksst
m (X)⊗Ksst

n (Y ).

It therefore suffices to show that as W , Z, U , V , f1, f2, g1, and g2 vary over all possibilities, the union of
these images form a generating set. Every element of K0(X × |M |) lies in the image of (id× f1)

∗ for some
f1 : |M | →W an (and similarly for Y ×|N |). Moreover, as with any (possibly singular) variety, every element
of K0(X ×W ) lies in the image of f∗2 for some f2 : X ×W → U with U smooth (and similarly for Y × Z).
Thus chsst is a ring homomorphism. The fact that it induces a rational isomorphism follows from Theorem
4.2.

To prove the commutativity of (4.7.1), recall that the total Segre maps determine a commutative diagram
of infinite loop spaces denoted (0.4) in the introduction ([FW2; 6.12], [FW4; 8.6])

K(X) −−−−→ Ksst(X) −−−−→ Ktop(X
an)

Segalg

y Segsst

y
ySegtop

Hmult(X) −−−−→ Hsst
mult(X) −−−−→ Hsing

mult(X
an).

Since the total Segre classes arise from the Segre maps (after precomposition with the map induced by taking
duals) and since the Chern characters arise from the total Segre classes using the same universal polyno-
mials in all three contexts (algebraic, semi-topological, and topological), we conclude the commutativity of
(4.7.1). �

In view of Corollary 4.3, Theorem 4.7 has the following corollary.

Corollary 4.8. Let chsst
R be the real semi-topological Chern character defined in terms of the real semi-

topological Segre classes of Corollary 4.3 using the same polynomials as those determining chalg in terms of
Segre classes s∗. Then for any smooth quasi-projective real variety X,

chsst
R :

⊕

n

KRsst
n (X) −→

⊕

n,q

LqHR2q−n(X)Q

is a map of graded rings which is a rational isomorphism.

§5 Riemann-Roch and filtrations

In this final section, we obtain some consequences of our rational isomorphism between semi-topological
K-theory and morphic cohomology. These applications depend strongly upon the refined assertion (The-
orem 4.7) that the Chern character is a ring homomorphism. Riemann-Roch asserts the compatibility of
semi-topological K-theory and morphic cohomology with respect to proper push-forward maps. As we ob-
served earlier in [FW4], the general Riemann-Roch theorem of I. Panin and A. Smirnov [PS] (see also [P])
specializes to give a Riemann-Roch theorem for semi-topological K-theory thanks to Theorem 4.7. Using
the multiplicativity of the Chern character, we also establish the relationship between multiplication by “the
Bott element” in K-theory and application of the “s-operation” in morphic cohomology. For example, we
see that we can re-interpret a filtration on rational cohomology (related to the rational Hodge filtration) in
strictly K-theoretic terms.

Following Panin-Smirnov [PS], let SmOp denote the category of pairs (X,U) of smooth complex quasi-
projective varieties with U an open subscheme of X , and define a cohomology theory to be a functor A∗ from
SmOp to the category of graded abelian groups,

A∗ : SmOp −→ (GrAb),



36 ERIC M. FRIEDLANDER AND MARK E. WALKER ∗

satisfying the axioms of [PS; 2.0.1]. (Briefly, these axioms require the existence of expected long exact
sequences, homotopy invariance, and Nisnevich excision.) Such a functor is a multiplicative cohomology
theory if there are external cup-product type pairings Am(X,U)⊗An(Y, V )→ Am+n(X×Y,X×V ∪U ×Y )
satisfying the axioms given in [PS; 2.3.1] (which require, briefly, associativity, existence of 1, and the expected
compatibility with boundary maps). Finally, an orientation for such a functor is a choice of a Chern class
c1(L) ∈ A(X) for each line bundle L on a smooth variety X such that the axioms of [PS; 3.2.1] hold (which
require naturality, the expected bundle formula for X × P1, and that c1(OX ) = 0).

By embedding the category Sm/C of smooth complex quasi-projective varieties into SmOp in the natural
way (sending X to (X, ∅)), we may restrict a multiplicative cohomology theory A to a functor A|Sm/C :
Sm/C −→ (GrRings) from smooth quasi-projective complex varieties to graded rings.

Recall from Thomason-Trobaugh [TT; 7.4] that given a closed subvariety Z of a quasi-projective varietyX ,
the algebraic K-theory of X with supports in Z is given by the spectrum K(X)Z defined from the category of
perfect complexes onX supported in Z. In [FW4; App. A], the Thomason-Trobaugh construction is extended
to the semi-topological setting by defining Ksst(X)Z to be the geometric realization of d 7→ K(X ×∆d

top)
Z ,

where K(X ×∆d
top)

Z = lim−→∆d
top→Uan K(X × U)Z×U .

Similarly, the motivic cohomology of X (for X smooth) with supports in a closed subscheme Z is defined
using Zariski sheaf hypercohomology with supports by the formula

Hn
M(X,Z(q))Z = Hn

Z(X,Z(q)) = Hn
Z(X, zequi(A

q , 0)(−×∆•)).

Equivalently, for X smooth, Theorem 1.3 gives the natural isomorphism

Hn
M(X,Z(q))Z ∼= hn (cone [zequi(A

q , 0)(X ×∆•))→ zequi(A
q , 0)((X − Z)×∆•)] [−1]) .

We define the semi-topological analogue for a smooth variety X and closed subscheme Z by the expected
formula:

Hn
sst(X,Z(q))Z = Hn

Z(X, zequi(A
q , 0)(−×∆•

top))

∼= hn
(
cone

[
zequi(A

q , 0)(X ×∆•
top))→ zequi(A

q , 0)((X − Z)×∆•
top)
]
[−1]

)
.

By Theorem 3.4, the group Hn
sst(X,Z(q))Z is naturally isomorphic to

π2q−n

(
htpy-fiber

[
Mor(X, C(Pq))+/Mor(X, C(Pq−1))+ →Mor(X − Z, C(Pq))+/Mor(X − Z, C(Pq−1))+

])
,

which is the definition of morphic cohomology with supports given in [F4; §2]. In particular, we have
Hn

sst(X,Z(q))X ∼= LqHn(X).

Proposition 5.1. Each of the functors from SmOp to graded rings given by sending (X,U) ∈ SmOp to

K−∗(X)X−U , Ksst
−∗ (X)X−U , and K∗

top(X
an, Uan)

determines a multiplicative cohomology theory in the sense of Panin-Smirnov. Moreover, an orientation for
each of these theories is given by defining the first Chern class of a line bundle L to be c1(L) = [OX ]−[OL∨ ] ∈
K0(X) (respectively, its images in Ksst

0 (X) and K0
top(X

an))).

Similarly, each of the three functors defined by sending (X,U) to

⊕

q

H2q+∗
M (X,Z(q))X−U ,

⊕

q

H2q+∗
sst (X,Z(q))X−U , and H∗

sing(Xan, Uan; Z)
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determines a multiplicative cohomology theory which is oriented by defining the first Chern class associated
to a line bundle L→ X by the formula

c1(L) = D(L) ∈ CH1(X) ∼= H2
M(X,Z(1))

(respectively, the images of D(L) in H2
sst(X,Z(1)) and H2

sing(X
an)), where D(L) is the Weil divisor associ-

ated to L.

Proof. The Panin-Smirnov axioms for K-theory and motivic cohomology are verified in [PS; §3.6]. (Note
that Panin-Smirnov use a different indexing convention for viewing motivic cohomology as an oriented
multiplicative cohomology theory, but the axioms remain valid with our convention.) For semi-topological
K-theory, these axioms are verified in [FW4; 9.3] (in the more general context of real singular semi-topological
K-theory).

For the theory (X,U) 7→ Ap(X,U) =
⊕

q H
2q+p
sst (X,Z(q))X−U , the required long exact sequences are

immediate from the definition of hypercohomology with supports, while homotopy invariance and Nisnevich
excision follow from Theorem 2.6 and the fact that these properties hold for motivic cohomology with
supports. Thus, A∗ is a cohomology theory (cf. [PS; 2.0.1]). The multiplicative pairings are induced by the
pairings of complexes of presheaves

zequi(A
q, 0)(−×∆•

top)⊗zequi(A
r, 0)(−×∆•

top)→ zequi(A
r+q , 0)(−×∆•

top×∆•
top)→ zequi(A

r+q, 0)(−×∆•
top)

induced by taking Cartesian products of cycles and pulling back along the diagonal ∆•
top ↪→ ∆•

top × ∆•
top.

This pairing is clearly unital and associative up to homotopy, and the required compatibility of multiplication
with the boundary maps is a formal consequence of the properties of hypercohomology with supports. Thus
the axioms of [PS; 2.3.1] hold, making A∗ a multiplicative cohomology theory. Finally, to show that the
indicated definition of a first Chern class makes A∗ into an oriented theory, one uses Theorem 2.6 and the fact
that the required bundle formula holds for motivic cohomology. (Naturality and the fact that c1(OX ) = 0
are obvious.)

The Panin-Smirnov axioms for the topological theories follow from well known properties of topological
K-theory and singular cohomology. �

As formulated by Grothendieck, the Riemann-Roch Theorem is a statement about the compatibility of
covariant push-forward maps of contravariant functors related by a natural transformation φ : A → B.
In the work of Panin-Smirnov, push-forward maps f! for proper maps f are constructed for any oriented
multiplicative cohomology theory A∗. Suppose φ : A∗ → B∗ is a so-called ring operation by which we mean
φ is a natural transformation of the graded ring valued functors A∗|Sm/C → B∗|Sm/C defined on Sm/C (cf.
[PS; 2.3.3]). Panin and Smirnov define the inverse Todd genus of φ by the formula

itdφ(t) = φ∞(u)/t ∈ B[[t]],

where
φ∞ : A∗(Spec C)[[u]] = A∗(P∞) −→ B∗(P∞) = B∗(Spec C)[[t]]

is defined as the evident inverse limit of maps. If itdφ(t) is a unit of B∗(Spec C)[[t]] (a property which holds
for all the cases in which we are interested), then the Todd genus of φ is defined to be

tdφ(t) = 1/itdφ(t) = t/φ∞(u).

In this situation, Panin-Smirnov establish a quite general Riemann-Roch result relating the push-forward
maps f!, the ring operation φ, and the Todd genus of φ in the expected manner [PS; 5.1.4], [P; 2.5.4].

In the theorem below, tdch is the Todd genus of the Chern character, and is given explicitly by the formula
tdch = t/(1− e−t) (cf. [PS; 5.2.1]). For an arbitrary vector bundle E, the class tdch(E) is defined as in [PS;
5.1.2].
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Theorem 5.2. Let f : Y → X be a proper map of smooth quasi-projective complex varieties and let f!

denote the push-forward maps as defined in [PS; 4.4.1] for each of the oriented multiplicative cohomology
theories of Proposition 5.1. Then we have the following commutative diagrams:

Kq(Y )
ch(−)∪tdch(TY )
−−−−−−−−−−→

⊕
iH

2i−q
M (Y,Q(i))

f!

y f!

y

Kq(X)
ch(−)∪tdch(TX )
−−−−−−−−−−→

⊕
i H

2i−q
M (X,Q(i)),

Ksst
q (Y )

ch(−)∪tdch(TY )
−−−−−−−−−−→

⊕
i L

iH2i−q(Y )Q

f!

y f!

y

Ksst
q (X)

ch(−)∪tdch(TX )
−−−−−−−−−−→

⊕
i L

iH2i−q(X)Q,

and

K−q
top(Y

an)
ch(−)∪tdch(TY )
−−−−−−−−−−→

⊕
i H

2i−q
sing (Y an)Q

f!

y f!

y

K−q
top(X

an)
ch(−)∪tdch(TX)
−−−−−−−−−−→

⊕
i H

2i−q
sing (Xan)Q,

where TY and TX denote the tangent bundles of X and Y .
Moreover, the evident double-cube diagram formed by these commutative squares using the natural trans-

formations K∗(−)→ Ksst
∗ (−)→ K−∗

top((−)an) and H∗
M(−,Z(∗))→ L∗H∗(−)→ H∗

sing((−)an) commutes.

Proof. Using Proposition 5.1, Theorem 1.12, Theorem 4.7, and the fact that the topological Chern character
is known to be a ring homomorphism, the theorem is an immediate consequence of the Panin-Smirnov
Riemann-Roch Theorem [PS; 5.1.4] (see also [P; 2.5.4]).

The final assertion follows from [PS; 5.1.6] (see also [P; 2.5.6]), since the natural transformationsK∗(−)→
Ksst
∗ (−)→ K−∗

top((−)an) and H∗
M(−,Z(∗))→ L∗H∗(−)→ H∗

sing((−)an) preserve Chern classes by construc-
tion. �

The following proposition makes more explicit the push-forward maps f! occurring in the commutative
squares of Theorem 5.2 for algebraic K-theory and morphic cohomology.

Proposition 5.3. Let f : Y → X be a proper map of smooth quasi-projective complex varieties. Then the
map f! : K∗(Y )→ K∗(X) occurring in Theorem 5.2 coincides with composition of

K∗(Y )
∼=
−→ G∗(Y )

f∗
−→ G∗(X)

∼=
←− K∗(X),

where G∗(−) denotes the K-theory of the exact category of coherent sheaves on a variety and f∗ is defined
by push-forward of coherent sheaves.

The push-forward map f! for morphic cohomology occurring in Theorem 5.2 coincides with the composition
of ⊕

q

LqH2q−∗(Y )
∼=
−→

⊕

r

LrH2r+∗(Y )
f∗
−→

⊕

r

LrH2r+∗(X)
∼=
←−

⊕

q

LqH2q−∗(Y ),

defined by composing the natural pushforward map in Lawson homology with the duality isomorphisms (see
[FL2; 5.4] and [F3; 5.3]).

Proof. Each of the theories X 7→ K−∗(X) and X 7→
⊕

q L
qH2q+∗(X) is a “ring cohomology pretheory”

in the sense of [P; 1.1.1]. Moreover, the assignment f 7→ f! (where f ranges over proper morphisms of
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smooth, quasi-projective complex varieties) defined in [PS; 4.4.1] is a “perfect integration” in the sense of
[P; 1.1.6]. For each of the two theories in question, let f∗ denote the push-forward map associated to a
proper morphism f described in the statement of the proposition. By [P; 1.1.11], it suffices to prove that the
assignment f 7→ f∗ is also a perfect integration and that for any line bundle over a smooth variety L→ X ,
we have z∗(z∗(1)) = c1(L), where z : X ↪→ L is the zero section embedding.

For K-theory, the assignment f 7→ f∗ is shown to be a perfect integration and the equation z∗(z∗(1)) =
c1(L) is verified in [P; 2.6.1]. For morphic cohomology, we verify the axioms of a perfect integration by refer-
ring to results of [FG], [F3], and [F4]. Many of the results in the references cited are stated for Lawson homol-
ogy but apply to morphic cohomology thanks to the natural duality isomorphism of [F3; 5.3]. Throughout
this paragraph, let A(−) =

⊕
q,n L

qH2q+n(−) and assume all variety are smooth, quasi-projective complex

varieties. In reference to the axioms of [P; 1.1.3] (which define an “integration”), for f proper, the fact that
the map f∗ : A(Y ) → A(X) is a A(X)-module homomorphism (i.e., the projection formula holds) follows
from [F4; 5.4] and the fact that cap product coincides with cup product under the duality isomorphism (cf.
[FW1; 3.5]). Axiom (1) (that (f ◦ g)∗ = f∗ ◦ g∗ holds for any pair of composable proper maps f and g) is
immediate from the definition and covariant functoriality of Lawson homology (cf. [F3; 3.1]). Axioms (2)
(that push-forwards commute with pull-backs for transversal squares) follows from [FG; 3.4] and [F3; 4.3].
(We also use that any transversal square as in [P; 1.1.2] factors into transversal squares such that φ is either
flat or a regular closed immersion.) To establish axiom (3) (that push-forwards along X×Pn → X commute
with an arbitrary pull-back along Y → X), first observe that the morphism Y → X can be factored into flat
morphisms and regular closed immersions. The axiom is now seen to hold by applying [F4; 3.3], [FG; 3.4],
[F3; 4.3], and the fact that flat pullback commutes with the duality isomorphisms (which is evident from the
definitions). Axiom (4) is obvious from the definition of f∗. Axiom (5) (localization) follows from [F3; 6.1].
Thus, f 7→ f∗ defines an integration. To show it is a perfect integration, we need to verify that a suitable
form of the projective bundle formula holds (cf. [P; 1.1.6]). First, we verify the normalization condition.
Namely, let L→ X be any line bundle and define e(L) = z∗(z∗(1)) ∈ L1H2(X), where z : X ↪→ L is the zero
section embedding. Under the isomorphism L1H2(X) ∼= CH2(X), the element e(L) corresponds to z!(z∗(1)),
where z! is the pull-back map on Chow groups for a regular closed immersion. Thus e(L) = c1(L) = D(L)
(essentially by definition of D(L)). Finally, if E is any vector bundle, define ξE = e(OE(−1)) ∈ L1H2(P(E)).
It remains to prove

(π∗, ξE ∪ π
∗, ξ2E ∪ π

∗, . . . , ξr−1
E ∪ π∗) :

r−1⊕

i=0

A(X)→ A(P(E))

is an isomorphism, where π : P(E)→ X is the canonical map. This follows from [F3; 6.5] �

Remark 5.4. The reader can consult [KW] for a context in which a special case of Theorem 5.2 plays a
central role.

The following result is another application of the rational isomorphism between semi-topologicalK-theory
and morphic cohomology.

Theorem 5.5. Let G be a finite group acting on the smooth connected variety Y and assume that the
quotient Y/G = X is also smooth. Let f : Y → X be the quotient map, a finite (but not necessarily étale)
map. Then the natural map

f∗ : Ksst
∗ (X)Q −→ Ksst

∗ (Y )Q

identifies Ksst
∗ (X)Q with the G-invariants of Ksst

∗ (Y )Q.

Proof. By Theorem 4.7, it suffices to verify that the natural map on morphic cohomology

f∗ : LqHm(X,Q) −→ LqHm(Y,Q)G



40 ERIC M. FRIEDLANDER AND MARK E. WALKER ∗

is an isomorphism, for all q,m. Define

f∗ :Mor(Y, C0(P
q))+ →Mor(X, C0(P

q))+

to be the continuous map induced by pushforward of cycles [F3; 3.1] — that is, f∗ is the map induced by
sending an integral subscheme Z of Y × Pq (that is finite over Y ) to

∑
W [k(Z) : k(W )]W , where the sum

ranges over the irreducible components W of the scheme theoretic image of Z under f × id. Let f∗ also
denote the induced map on morphic cohomology

f∗ : LqHm(Y ) −→ LqHm(X).

Then one may readily verify that f∗ ◦ f∗ coincides with multiplication by |G| = deg(f) on LqHm(X), and
we claim f∗ ◦ f∗ is the endomorphism of LqHm(Y ) sending γ to

∑
g∈G g

∗(γ). Indeed, we claim this holds
on the level of spaces — that is, the map

f∗ ◦ f∗ :Mor(Y, C0(P
q))+ →Mor(Y, C0(P

q))+

is given by
∑

g∈G g
∗. To show this, it suffices to restrict to the inverse image in Y of the open dense subset U

of X over which f is étale — in other words, we may assume f is étale, in which case the formula is obvious.
The result now follows, since the above formulas show f ∗ is rationally injective and that the inclusion

LqHm(Y,Q)G ↪→ LqHm(Y,Q) is split by the map 1
|G|f

∗ ◦ f∗. �

We next reformulate the Friedlander-Mazur s-operation in morphic cohomology.

Proposition 5.6. Let s ∈ L1H0(Spec C) denote the class represented by the element in

π2(Hom(∆•
top, C0(P

1))+) ∼= π2(Z0(P
1)) ∼= Z

given by the map S2 ∼= (P1)an → Z0(P
1) sending x ∈ P1 to x −∞ ∈ Z0(P

1). Then for any smooth variety
X of pure dimension d, there is a commutative square

LsHn(X)
s∪−
−−−−→ Ls+1Hn(X)

∼=

y
y∼=

Ld−sH2d−n(X)
s

−−−−→ Ld−s−1H2d−n(X)

(5.6.1)

where the vertical maps are the duality isomorphisms of [FL2], [F3], the upper horizontal map is cup product
with the class s ∈ L1H0(Spec C), and the lower horizontal map is the Friedlander-Mazur “s-operation” in
Lawson homology [FM; §6].

Proof. The square (5.6.1) arises from the commutative square of spaces

Mor(X, C0(Ps))+ ∧Z0(P
1)

#
−−−−→ Mor(X, C1(Ps+2))+

y
y

[
Zd−s(X × Ps)/Zd−s(X × Ps−1)

]
∧Z0(P

1)
#

−−−−→ Zd−s+1(X × Ps+2)/Zd−s+1(X × Ps+1)

(5.6.2)

using the class s in the evident manner. Here, the upper horizontal map is induced by (f : X → C0(P
s), t ∈

C0(P1)) 7→ f#t with (f#t)(x) = f(x)#t ∈ C1(Ps+2), the vertical maps are given by taking the graph of a
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map, and the lower horizontal map sends a pair of cycles to their join. (We have implicitly used an iterated
form of the homotopy equivalence

π∗ : Zr(X)
∼
−→ Zr+1(X × P1)/Zr+1(X × P0)

discussed in the proof of [FG; 2.6].) �

We define the Bott element

β ∈ Ksst
2 (Spec C) ∼= K−2

top(pt)
∼= Z

by the formula c2,1(β) = s, where s ∈ L1H0(Spec C) ∼= Z is given in Proposition 5.6. Note that s is a
generator for the abelian group L1H0(Spec C) and c2,1 : Ksst

2 (Spec C)→ L1H0(Spec C) is an isomorphism.
In particular, β is a generator of Ksst

2 (Spec C) ∼= Z, and, for any integer n > 0, the image of β under the
boundary map

Ksst
2 (Spec C) −→ Ksst

1 (Spec C,Z/n)

in the evident long exact sequence is a generator of Ksst
1 (Spec C,Z/n) ∼= Z/n. Since Ksst

1 (Spec C,Z/n) ∼=
K1(Spec C; Z/n) by [FW3; 3.7], we see that what we have referred to as the “Bott element” here corresponds
with the usual Bott element in algebraic K-theory.

The following corollary asserts that multiplication by the Bott element inK-theory “covers” the Friedlander-
Mazur s-operation in morphic cohomology.

Corollary 5.7. For any quasi-projective complex variety X and integer j, we have a commutative square

Ksst
i (X)

βj∪−
−−−−→ Ksst

i+2j(X)

ch

y
ych

⊕
q≥0

LqH2q−i(X,Q)
sj∪−
−−−−→

⊕
q≥0

Lq+jH2q−i(X,Q)

where the upper map is given by multiplication by the j-th power of the Bott element β ∈ Ksst
2 (Spec C) and

the lower map is the j-th iterate of the (dual of the) Friedlander-Mazur s-operation.

Proof. Since the Chern classes c2,q for Spec C vanish for q 6= 1, we have ch2(β) = s ∈ L1H0(Spec C,Q). The
result follows immediately from the multiplicativity of the Chern character proven in Theorem 4.7. �

Using Theorem 4.7 and Corollary 5.7, we deduce the following result. A version of this theorem was given
in [FW2; 4.2] under the hypothesis that Theorem 4.4 of this paper was valid. Also, in [Wa], a version of
this result is proved for smooth projective varieties. The groups Kn

top(X
an) for n positive are defined in the

usual manner by imposing Bott periodicity, so that
⊕

q∈Z K
−q
top(X

an) =
(⊕

q≥0 K
−q
top(X

an)
) [

1
β

]
.

Theorem 5.8. For any smooth, quasi-projective complex variety X, the natural map

Ksst(X)→ Ktop(X
an)

induces an isomorphism on homotopy groups after inverting the Bott element β ∈ Ksst
2 (Spec C):


⊕

q≥0

Ksst
q (X)



[

1

β

]
∼=
−→

⊕

q∈Z

K−q
top(X

an).
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Proof. Recall that the Dold-Thom Theorem implies that Lawson homology of 0-cycles on X is naturally
isomorphic to Borel-Moore homology of Xan

L0Hm(X) ∼= HBM
m (Xan).

Thus, duality relating morphic cohomology and Lawson homology implies that LdHm(X) ∼= Hm
sing(Xan)

where d = dimX . Moreover, the natural isomorphisms

LqHm(X) ∼= π2q−mZd(X × Aq) ∼= π2q−mZ0(X × Aq−d) ∼= HBM
2q−m((X × Aq−d)an) ∼= HBM

2d−m(Xan)

together with Poincare duality imply that the natural map

LqHm(X)→ Hm
sing(Xan)

is an isomorphism for q ≥ d. We conclude that the natural map

(⊕

q

LqH2q−∗(X)

)[
1

s

]
−→

⊕

q

H2q−∗
sing (Xan)

is an isomorphism.
Corollary 5.7 thus enables us to conclude the rational version of the theorem; namely, the natural map


⊕

q≥0

Ksst
q (X)



[

1

β

]
⊗Q −→

⊕

q∈Z

K−q
top(X

an)Q.

is an isomorphism. The integral statement of the theorem now follows as in [FW2; 4.2] using Thomason’s
theorem [Th], asserting that mod-n algebraic K-theory with the Bott element inverted is naturally isomor-
phic to mod-n topological K-theory, and the natural isomorphism K∗(X,Z/n) ∼= Ksst

∗ (X,Z/n) proven in
[FW2]. �

We recall the “topological filtration” on singular cohomology defined by the formula

T jHm
sing(Xan,Z) = im

(
sj : Ld−jHm(X)→ LdHm(X) ∼= Hm

sing(Xan,Z)
)
,

where d = dim(X). (We set T j = T 0 if j < 0.) This gives a filtration of the form

Hm
sing(Xan,Z) = T 0Hm

sing(Xan,Z) ⊃ T 1Hm
sing(X

an,Z) ⊃ T 2Hm
sing(X

an,Z) ⊃ · · · ,

with T jHm
sing(X

an,Z) = 0 for j > d. Following Grothendieck, we define the coniveau filtration onHm
sing(Xan,Q)

by the formula

GjHm
sing(Xan,Q) =

∑{
ker
(
Hm

sing(Xan,Q)→ Hm
sing((X − Y )an,Q)

)
| Y ⊂ X closed of codimension at least j

}
,

giving a filtration of the form

Hm
sing(Xan,Z) = G0Hm

sing(Xan,Z) ⊃ G1Hm
sing(Xan,Z) ⊃ G2Hm

sing(X
an,Z) ⊃ · · · .
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For X projective, GjHm
sing(X

an,Q) is a subset of T jHm
sing(X,Q) [FM; 4.3]. Moreover, in certain cases,

equality of these two filtrations is known (cf. [F2; 4.2]). We also have the rational Hodge filtration

Hm
sing(Xan,Q) = F 0Hm

sing(Xan,Q) ⊃ F 1Hm
sing(Xan,Q) ⊃ F 2Hm

sing(Xan,Q) ⊃ · · · ,

where F jHm
sing(X

an,Q) is defined by Grothendieck [G] to be the maximal sub-mixed Hodge structure of

Hm
sing(Xan,Q) contained in Hm

sing(X
an,Q)∩

⊕
p≥j H

p,m−p
sing (Xan,C) (where H i,j

sing(Xan,C) refers to the stan-

dard Hodge decomposition of the complex cohomology of a complex manifold). Equivalently, F jHm
sing(X

an,Q)
is the maximal sub-mixed Hodge structure of Hm

sing(X
an,Q) of span m − 2j as defined (for homology) in

[FM; 7.1].
As observed in [FM] in the dual context of homology, for any projective smooth variety and any j there

are natural inclusions

T jHm
sing(Xan,Q) ⊆ GjHm

sing(Xan,Q) ⊆ F jHm
sing(X

an,Q),

for all j.
Finally, we define a filtration on K0

top which is the evident analogue of the “topological filtration” on
cohomology — namely, if X has dimension d, set

T jK0
top(X

an) = im

(
Ksst

2d−2j(X)
βj

−→ Ksst
2d (X)→ K−2d

top (Xan)
βd

←−
∼=

K0
top(X

an)

)
.

(Again, T j = T 0 for j < 0.)

Theorem 5.10. For any smooth, quasi-projective complex variety X, the Chern character restricts to an
isomorphism

chtop : T jK0
top(X

an)Q

∼=
−→

⊕

q≥0

T j−qH2q
sing(X

an,Q),

for all j. In other words, the weight q piece of T jK0
top(X

an)Q is mapped isomorphically via the Chern

character to T j−qH2q
sing(Xan,Q).

Proof. By Theorem 4.7 and Corollary 5.7, we have a commutative ladder of groups of the form

Ksst
0 (X)Q

β
−−−−→ Ksst

2 (X)Q
β

−−−−→ · · ·
β

−−−−→ Ksst
2d (X)Q −−−−→ K−2d

top (Xan)Q

∼=

y
y

y ∼=

y
⊕
p≥0

LpH2p(X)Q
s

−−−−→
⊕
p≥1

LpH2p−2(X)Q
s

−−−−→ · · ·
s

−−−−→
⊕
p≥d

LpH2p−2d(X)Q

∼=
−−−−→

⊕
p≥d

H2p−2d
sing (Xan)Q.

The horizontal maps increase the index of L∗ by one (except for the last map) and leave the cohomological
index H∗ fixed. The vertical maps are defined by taking the composition of

Ksst
2i (X)Q

chsst

−−−→
∼=

⊕

p≥0

LpH2p−2i(X)Q −→
⊕

p≥i

LpH2p−2i(X)Q, 0 ≤ i ≤ d,

where the second map is the canonical surjection. (If LpHm(X) = 0 for m < 0, as is conjectured, then all
of the vertical maps would be isomorphisms.) This establishes the isomorphism

chtop : T jK0
top(X

an)Q

∼=
−→ im


sj :

⊕

p≥d−j

LpH2p+2j−2d(X)Q →
⊕

p≥d

LpH2p−2d(X)Q
∼=
⊕

p≥d

H2p−2d
sing (Xan)Q


 .

(5.10.1)
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Observe that for any m the maps

LdHm(X)Q → Ld+1Hm(X)Q → · · · → Hm(X)Q

are all isomorphisms and that, for each d ≥ p ≥ d− j, the map

sj : LpHm(X)Q → Lp+jHm(X)Q
∼= Hm

sing(Xan)Q (5.10.2)

factors as

LpHm(X)Q
sd−p

−−−→ LdHm(X)Q
sp+j−d

−−−−→
∼=

Lp+jHm(X)Q
∼= Hm

sing(X
an)Q.

The image of (5.10.2) therefore coincides with T d−pHm
sing(Xan)Q provided p ≥ d−j. Using (5.10.1), we have

that chtop maps T jK0
top(X

an)Q isomorphically to

im


sj :

⊕

p≥d−j

LpH2p+2j−2d(X)Q →
⊕

p≥d

LpH2p−2d(X)Q
∼=
⊕

p≥d

H2p−2d
sing (Xan)Q




=
⊕

p≥d−j

im
(
sj : LpH2p+2j−2d(X)Q → Lp+jH2p+2j−2d(X)Q

∼= H2p+2j−2d
sing (Xan)Q

)

=
⊕

p≥d−j

T d−pH2p+2j−2d
sing (Xan)Q =

⊕

q≥0

T j−qH2q
sing(X

an)Q.

�

We recall that S. Abdulali verifies that the topological filtration equals the rational Hodge filtration for
any abelian variety which satisfies the Generalized Hodge Conjecture [A]. The reader can consult [A] for a
lengthy list of abelian varieties known to satisfy the generalized Hodge conjecture.

Theorem 5.11. Let X be an abelian variety satisfying the Generalized Hodge Conjecture. Then there is a
natural isomorphism

T jK0
top(X

an)Q

∼=
−→

⊕

q≥0

F j−qH2q
sing(X

an,Q).

Proof. This follows immediately from Theorem 5.10 and Abdulali’s identity

T jHn
sing(Xan,Q) = F jHn

sing(X
an,Q)

valid for abelian varieties satisfying the Generalized Hodge Conjecture. �
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[V1] V. Voevodsky, Homology of schemes, Selecta Mathematica 2 (1996), 111–153.
[V2] V. Voevodsky, Cohomological theory of presheaves with transfers, Cycles, transfers, and motivic homology theories,

Annals of Math. Studies, vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 10–86.
[Wa] M. Walker, Semi-topological K-homology and Thomason’s Theorem, K-theory 26 (2002), 207–286.
[We] C. Weibel, Homotopy algebraic K-theory, Contemp. Math. 83, Amer. Math. Soc., Providence, RI, 461–488.

Department of Mathematics, Northwestern University, Evanston, IL, 60208-2730, U.S.A.

E-mail address: eric@math.northwestern.edu

Department of Mathematics and Statistics, University of Nebraska – Lincoln, Lincoln, NE, 68588-0323,

U.S.A.

E-mail address: mwalker@math.unl.edu


