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The purpose of this paper is to establish in Theorem 13.13 a spectral sequence
from the motivic cohomology of a smooth variety X over a field F to the algebraic
K-theory of X:

Ep,q2 = Hp−q(X,Z(−q)) = CH−q(X,−p− q)⇒ K−p−q(X). (13.13.1)

Such a spectral sequence was conjectured by A. Beilinson [Be] as a natural ana-
logue of the Atiyah-Hirzebruch spectral sequence from the singular cohomology to
the topological K-theory of a topological space. The expectation of such a spec-
tral sequence has provided much of the impetus for the development of motivic
cohomology (e.g., [B1], [V2]) and should facilitate many computations in algebraic
K-theory.

In the special case in which X equals SpecF , this spectral sequence was estab-
lished by S. Bloch and S. Lichtenbaum [B-L]. Our construction depends crucially
upon the main result of [B-L], the existence of an exact couple relating the motivic
cohomology of the field F to the multirelative K-theory of coherent sheaves on
standard simplices over F (recalled as Theorem 5.5 below). A major step in gener-
alizing the work of Bloch and Lichtenbaum is our reinterpretation of their spectral
sequence in terms of the “topological filtration” on the K-theory of the standard
cosimplicial scheme ∆• over F . We find that the spectral sequence arises from a
tower of Ω-prespectra

K(∆•) = K0(∆•)←− K1(∆•)←− K2(∆•)←− · · ·

Thus, even in the special case in which X equals SpecF , we obtain a much clearer
understanding of the Bloch-Lichtenbaum spectral sequence which is essential for
purposes of generalization.

Following this reinterpretation, we proceed using techniques introduced by V.
Voevodsky in his study of motivic cohomology. In order to do this, we provide an
equivalent formulation of K-theory spectra associated to coherent sheaves on X
with conditions on their supports Kq(∆• ×X) which is functorial in X. We then
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verify that the homotopy groups of these spectra satisfy almost all of the conditions
of a pretheory in the sense of Voevodsky. This enables us to apply Voevodsky’s
machinery to identify the homotopy fibers of the tower for K(∆• ×X) in view of
our earlier identification in the special case in which X equals SpecF . [In [Le], M.
Levine constructs the spectral sequence (13.13.1) by starting with our results for
SpecF and then proceeding by alternate methods.]

We conclude this introduction with a brief summary of the various sections of this
paper. The first four sections of the paper are dedicated to proving for a simplicial
prespectrum X• that the homotopy fiber fib(cuben(X•)) of the associated n-cube of
prespectra maps naturally to the n−1-st loops Ωn−1|X•| of the geometric realization
inducing an isomorphism in homotopy groups in a specified range of degrees. The
relevance of this purely topological result for our purposes is that the multirelative
K-theory considered by Bloch and Lichtenbaum is easily identified as the homotopy
groups of such a homotopy fiber. The proof of this general topological result for
simplicial prespectra proceeds in several steps. In section 2, we show the existence of
a natural map from the homotopy cofiber cofib(cuben(X•)) to Σ|X•| which induces
a homotopy equivalence in a specified range. This is proved using the special case
of a simplicial abelian group considered in section 1. Sections 3 and 4 then present
the perhaps well known comparison of (iterated) homotopy fibers and cofibers for
maps of prespectra.

In Theorem 6.1, we present our topological interpretation of the Bloch-
Lichtenbaum exact couple (for X equal to SpecF ). Having observed in Theo-
rem 5.7 that the derived exact couple of the Bloch-Lichtenbaum exact couple has a
pleasing interpretation in terms of K-theory of simplicial schemes, the verification
of this topological interpretation is relatively straight-forward. Section 7 estab-
lishes the homotopy invariance of the K-theory prespectra Kq(∆• × X) which is
required for our modification of the K-theory spectra Kq(∆• × X) given in the
following section. This modification in the case X = SpecF , replacing coherent
sheaves with support of codimension ≥ q on ∆n by coherent sheaves on ∆n × Aq
with support quasi-finite over ∆n, is shown in Theorem 8.6 to yield a prespectrum
weakly equivalent to Kq(∆•). Section 10 introduces “pseudo pretheories”, a slightly
less rigid structure than Voevodsky’s pretheories and Corollary 11.4 shows that our
modified prespectra yielding K-theory with support conditions determine pseudo
pretheories.

The work of earlier sections establishes the necessary tower of fibrations for X
equal to SpecR where R is the semi-local ring associated to a finite collection of
points on a smooth schemeX of finite type over F . After stipulating our formulation
of motivic cohomology of smooth schemes in section 12, we employ in section 13
the techniques of simplicial sheaves developed by K. Brown and S. Gersten [B-G]
to globalize the requisite tower of fibrations and thereby the Bloch-Lichtenbaum
spectral sequence. We observe in Theorem 13.18 that our spectral sequence for
smooth varieties easily yields a similar spectral sequence for an arbitrary scheme
X of finite type over F (converging to the K-theory K ′(X) of coherent sheaves on
X). In section 14, we show that the spectral sequence for smooth varieties has a
natural multiplicative structure. Finally, in section 15, we observe that our spectral
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sequence immediately yields similar spectral sequences for K-theory with finite or
rational coefficients.

The authors are both grateful for the hospitality of I.H.E.S. during the writing
of this paper. Moreover, the first author thanks the I.A.S. and M.S.R.I., and the
second author thanks M.P.I.-Bonn for further hospitality.

§1. Iterated cofibers for simplicial abelian groups.

In this first section, we investigate the relationship between the total complex of
an n-cube cuben(A•) of abelian groups associated to a simplicial abelian group A•
with the associated chain complex of A•. (See §A.1 of the appendix for notation
and conventions concerning n-cubes.) Our conclusion in Theorem 1.2 is that there
is a natural quasi-isomorphism from Tot(cuben{A•}) to (σ≤n−1(M(A•))[1], the
naive truncation of the Moore complex of A• shifted “to the left” (as in §A.2). The
refinement of this to simplicial spaces in the next section will provide the key link
between multirelative K-groups (defined in terms of the homotopy fibre of a multi-
cube associated to applying the K-functor to a simplicial variety) and K-groups of
the simplicial variety (defined as an associated total space). With this extension in
mind, one should view the total complex of cuben(A•) as an iterated cofibre of the
face maps in the n− 1-truncation of A•.

We start with the following auxiliary construction. Let r < n be a pair of
integers. We consider partially defined non-decreasing surjective maps φ : [n−1]→
[r] with domain of definition Dom(φ) consisting of r + k + 1 elements. Denote by
Ck = Ck(n, r) the free abelian group generated by such maps. Define the differential
d : Ck → Ck−1 by the formula

d(φ) =
r+k+1∑
i=1

(−1)i−1∂i−1(φ),

where Dom(∂i−1(φ)) is obtained from Dom(φ) by deleting the i− th element, and
∂i−1(φ) is the restriction of φ to Dom(∂i−1(φ)) in case this restriction is surjective
and ∂i−1(φ) = 0 otherwise. One checks easily that in this way we get a complex

C• = (C0 ←− C1 ←− . . . ←− Cn−r−1).

Lemma 1.1. The obvious augmentation map C0 → Z defines a quasi-isomorphism
C• = C•(n, r) −→ Z.

Proof. We proceed by induction on r. In case r = 0 our complex coincides with
the standard complex computing homology of a n − 1 simplex and the statement
is obvious. Denote by C0

• ⊂ C• the subcomplex generated by those functions φ for
which φ−1(0) = {0}. This subcomplex is canonically isomorphic to C•(n− 1, r− 1)
and hence is a resolution of Z according to the induction hypothesis. Define further
a homotopy operator s : Ck → Ck+1 via the formula

s(φ) =

{
0 if 0 ∈ Dom(φ)

the unique extension of φ to 0 ∪Dom(φ) if 0 6∈ Dom(φ).
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A straightforward verification shows that the operator p = 1− ds− sd is given by
the formula

p(φ) =

{
0 if |φ−1(0)| > 1

φ0 if |φ−1(0)| = 1

Here Dom(φ0) = (Dom(φ) \ φ−1(0)) ∪ {0} and φ0 coincides with φ on the set
Dom(φ) \ φ−1(0) whereas φ0(0) = 0 (in particular φ0 = φ in case φ−1(0) = {0}).
Thus p defines a homomorphism of complexes p : C• → C0

• which is inverse (up to
homotopy) to the obvious embedding i : C0

• ↪→ C•. This shows that the embedding
i is a quasi-isomorphism and concludes the proof. �

Recall (see [May]) that the category of simplicial abelian groups is naturally
equivalent to the category of non-negative complexes of degree −1. The complex
corresponding to the simplicial abelian group A• is its Moore complex

M(A•) = (Mo
∂0←−M1

∂0←−M2 ←− . . . ).

Here Mn ⊂ An is the intersection of kernels of the face operations ∂i : An →
An−1 (i = 1, ..., n) and the differential of the Moore complex coincides with the
face operation ∂0. We shall use also a slightly different description of the complex
M(A•): namely, the complexM(A•) is naturally isomorphic to the quotient of the
complex obtained from A• by taking the alternating sum of all face operations as a
differential (we keep the same notation A• for this complex) modulo the subcomplex
consisting of degenerate elements.

To each simplicial abelian group A• (and each n ≥ 0) we may associate the n-
cube in the category Ab: cuben{A•} ≡ Y•,...,• (cf. §A.1). Note further that n-cubes
in the category Ab are the same as n-complexes bounded in all directions between
0 and 1. Thus Y•,...,• may be viewed as a n-complex. Denote by T• = Tot(Y•,...,•)
the corresponding total complex.

Theorem 1.2. The complex Tot(cuben{A•}) ≡ T• is naturally quasi isomorphic
to (σ≤n−1M(A•))[1]. Here σ≤n−1 denotes the naive truncation of the complex
M(A•), that is

{σ≤n−1M(A•)}j =

{
Mj for j < n

0 for j ≥ n

and the shift C•[1] of a complex C• satisfies (C•[1])j = Cj−1 as in §A.2.

Proof. We first construct a homomorphism of complexes T• → (σ≤n−1A•)[1], where
we keep the same notation A• for the complex with terms Ak and the differential
equal to the alternating sum of the face operations. The group Tr is a direct
sum of

(
n
r

)
copies of Ar−1 (0 ≤ r ≤ n), which are indexed by r-element subsets

S ⊂ {0, 1, ..., n − 1}. The total differential of T•, restricted to the summand ASr−1

corresponding to the subset S = {s1 < ... < sr} is given by the formula

d(aS) =

r∑
i=1

(−1)i−1∂i−1(a){s1,...,
∧
si,...,sr}.
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We map Tr to Ar−1, taking the identity map on each copy ASr−1 of Ar−1 in Tr.
The above formula for the differential shows immediately that in this way we get
a homomorphism of complexes T• → A•[1], which factors through (σ≤n−1A•)[1]
since the complex T• is zero in degrees > n. We compose this homomorphism with
the natural projection

(σ≤n−1A•)[1]→ (σ≤n−1M•)[1].

We proceed to show that the resulting map of complexes is a quasi-isomorphism.
To do so we recall that each Aj is a direct sum of copies of Mk (k ≤ j) indexed by
the set Φ(j, k) of nondecreasing surjective maps φ : [j]→ [k] - see [May]

Aj =

j⊕
k=0

⊕
φ∈Φ(j,k)

Mk,

where the copy of Mk, corresponding to φ ∈ Φ(j, k), is mapped to Aj by means
of the simplicial operation φ∗ : Ak → Aj . Each of the face maps respects this
direct sum decomposition and does not increase the corresponding index k. Thus
we may filter the complex T• , taking Fl(T•) to be the direct sum of terms Mj with
j ≤ l. We take a similar filtration on M• (which happens to be just the canonical
filtration). The homomorphism from T• to (σ≤n−1M•)[1] obviously respects the
above filtrations, so to prove our claim it suffices to show that the induced map
on quotient complexes Fr/Fr−1 is a quasi-isomorphism for each 0 ≤ r ≤ n − 1.
In other words we have to verify that if we leave only Mr terms in the complex
T•, then the resulting complex is a resolution of Mr[r + 1]. Denote the complex
Fr/r−1(T•)[−r−1] by D•. This is a non-negative complex with the following terms:

Dk =
⊕

S⊂{0,1,...,n−1}
|S|=r+k+1

⊕
φ∈Φ(r+k,r)

Mr.

The above total sum may be re-indexed using partially defined non-decreasing
surjective maps φ : [n − 1] → [r] with domain of definition Dom(φ), consisting
of r+ k+ 1 elements. Thus Dk = Ck(n, r)⊗ZMr. Moreover one checks easily that

the differential ofD• coincides with that of C•(n, r)⊗ZMr, i.e. D•
∼
= C•(n, r)⊗ZMr.

Thus, it suffices to apply Lemma 1.1. �

Corollary 1.3. The homomorphisms in homology induced by the homomorphism
of complexes T• −→ A•[1] is an isomorphism in degrees ≤ n−1 and an epimorphism
in degree n.

Proof. This follows immediately from the fact that the natural projection A• −→
M(A•) is a quasi-isomorphism. �
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§2. Iterated homotopy cofibres for simplicial spaces

The key result in this section is Corollary 2.10 which asserts for a “good” pointed
simplicial space X• that the result of applying cofib(−) to cuben(X•) is a space
which is provided with a natural map

ηX : cofib(cuben(X•)) −→ Σ|X•|

which induces an isomorphism in homology in a suitable range of degrees. This is
proved using the analysis given in the previous section of the total complex of the
n-cube associated to a simplicial abelian group. We begin this section by defining
the functor cofib(−) from the category of n-cubes of pointed topological spaces to
the category of pointed spaces and establishing some of its basic properties. (See
§A.4 for a brief discussion of homotopy cofibres.)

Let Y•,... ,• be a n-cube of pointed spaces. We define the (iterated) cofibre of

the n-cube Y•,... ,• using induction on n. A 1-cube is just a morphism Y1
d0−→ Y0

of pointed topological spaces and we define the cofiber cofib(Y•) as the (reduced)
mapping cone of d0. In the general case the n-cube Y•,...,• defines two (n−1)-cubes
Y1 = Y•,... ,•,1 and Y0 = Y•,... ,•,0 and a morphism dn−1 : Y1 → Y0 of (n − 1)-
cubes, so that we may define cofib(Y•,... ,•) as the (reduced) mapping cone of the
corresponding morphism cofib(dn−1) : cofib(Y1) −→ cofib(Y0). One checks easily
that the iterated cofiber may be also described directly as the quotient space

cofib(Y•,... ,•) ≡
∨
S

YS ∧ I∧|S|/∼,

where S runs through all subsets of [n − 1] and the equivalence relation ∼ is gen-
erated by the identification

y ∧ (t0 ∧ ... ∧ 1
l
∧ ... ∧ tk−1) ∼ ∂l(y) ∧ (t0 ∧ ... ∧

∧
1 ∧ ... ∧ tk−1) y ∈ YS , k = |S|.

The above description of the iterated cofiber is equivalent to the following uni-
versal mapping property.

Lemma 2.1. Let Z be a pointed topological space. To give a pointed continuous
map p : cofib(Y•,...,•) → Z is the same as to give a family of continuous pointed

maps pS : YS ∧ I∧|S| → Z (S ⊂ [n − 1]) which satisfy the following compatibility
property.
For every S and every 0 ≤ l ≤ |S| − 1 the following diagram (in which T denotes
the subset of S obtained by deleting the l-th element) commutes:

YS ∧ I∧(|S|−1)
y∧(t)7→y×(t0∧...∧1

l
∧...∧tk−2)

−−−−−−−−−−−−−−−−−−−→ YS ∧ I∧|S|

∂l∧1

y pS

y
YT ∧ I∧|T |

pT−−−−→ Z.
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�

Let Y•,...,• be a n-cube of pointed topological spaces and let Z be a compact
pointed topological space. In this case (i0, ..., in−1) 7→ Yi0,...,in−1

∧ Z is a new
n-cube of pointed topological spaces. For each S ⊂ [n − 1] we have a pointed
continuous map

(YS ∧ Z) ∧ I∧|S| ∼−→ (YS ∧ I∧|S|) ∧ Z −→ cofib(Y•,...,•) ∧ Z.

These maps are obviously compatible in the sense of Lemma 2.1 and hence define
a continuous map cofib(Y•,...,• ∧ Z) −→ cofib(Y•,...,•) ∧ Z. Induction on n together
with Lemma A.4.1 prove immediately the following result.

Lemma 2.2. Assume that the space Z is compact. Then for any n-cube of pointed
spaces Y•...• we have a natural identification

cofib(Y•,...,• ∧ Z) = cofib(Y•,...,•) ∧ Z.

In particular, we have a natural identification

cofib(ΣkY•,...,•) = Σkcofib(Y•,...,•). �

Using induction on n and Lemma A.4.3, one establishes easily the following
result.

Lemma 2.2.1. Let f•...• : X•...• −→ Y•...• be a morphism of n-cubes. Let Ci0,...,in−1

denote the cone of the map

fi0,...,in−1 : Xi0,...,in−1 → Yi0,...,in−1 .

Then the spaces C•...• form a n-cube, and we have a natural identification

cofib(C•...•) = cone(cofib(X•...•)→ cofib(Y•...•)). �

To each pointed simplicial space X• we may associate an n-cube of spaces (cf.
§A.1)

cuben(X•) ≡ Y•,...,•.

To compare cofib(cuben(X•)) with Σ|X•|, we start by constructing a natural map
cofib(cuben(X•)) −→ Σ||X•|||/Σ|| ∗ ||, where ||X•|| is a modified version of the
geometric realization introduced by G. Segal [Seg] and ∗ is the trivial simplicial
subspace of X•, consisting of distinguished points (namely, the base point of X0

and its image in each Xn via degeneracy maps). Recall that, like |X•|, Segal’s
space ||X•|| is a quotient space of

∐∞
n=0Xn×∆n, the only difference being that the

equivalence relation defining ||X•|| takes into account only strictly increasing maps
θ : [n] → [m] (i.e., ignores degeneracy maps). The space ||X•|| comes equipped
with an obvious projection ||X•|| → |X•| mapping || ∗ || to the base point, which is
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a homotopy equivalence for good simplicial spaces [Seg]. (Recall that a simplicial
space X• is called good provided that all degeneracy maps Xi−1 −→ Xi are closed
cofibrations.)

To construct a map cofib(cuben(X•)) −→ Σ||X•|||/Σ|| ∗ || we start by describ-
ing the space Σ||X•|| in terms similar to those in which we described the space
cofib(cuben(X•)) above - i.e. as an appropriate quotient space. The description
we are about to give is certainly quite well-known, but it seems difficult to give an
explicit reference.

By definition the space ||X•|| is a quotient of
∐
n≥0Xn × ∆n. Since the unit

interval I is compact, we conclude from Lemma A.3.1 that the corresponding map
∞∐
n=0

Xn ×∆n × I = (
∞∐
n=0

Xn ×∆n)× I −→ ||X•|| × I

is again a quotient map. Since the obvious map ||X•|| × I −→ Σ||X•|| is also a
quotient map, we conclude that Σ||X•|| is a quotient of

∐∞
n=0Xn×∆n× I modulo

an appropriate equivalence relation. Note further that the canonical map Xn ×
∆n× I −→ Σ||X•|| factors through Xn× (∆n× I/∆n×0). The space ∆n× I/∆n×0
may be identified with ∆n+1 via the map

∆n × I
(t0,...tn)×t 7→(tt0,...,ttn,1−t)−−−−−−−−−−−−−−−−−−→ ∆n+1.

Furthermore since this quotient map ∆n × I −→ ∆n+1 is proper, we conclude from
Lemma A.3.3 that for any X the corresponding map X ×∆n × I −→ X ×∆n+1 is
still a quotient map. The above remarks show that for each n the resulting map
Xn× (∆n× I/∆n×0) = Xn×∆n+1 −→ Σ||X•|| is continuous and moreover Σ||X•||
is a quotient of

∐
n≥0Xn ×∆n+1 modulo an appropriate equivalence relation.

Since set-theoretically the description of Σ||X•|| does not present any difficulties.
we have proved the following lemma.

Lemma 2.3. For any pointed simplicial space X• the topological space Σ||X•|| is
canonically homeomorphic to the quotient space

∞∐
n=0

Xn ×∆n+1/ ∼

where ∼ is an equivalence relation generated by the following identifications

(1) For any strictly increasing map θ : [m] → [n], any x ∈ Xn and any v ∈
∆m+1 we have:

θ∗(x)× v ∼ x× (
∼
θ)∗(v)

Here
∼
θ : [m + 1] → [n + 1] is the strictly increasing map taking m + 1 to

n+ 1 and coinciding with θ on [m].
(2) For any x ∈ Xn and any v = (v0, ..., vn) ∈ ∆n

x× (v, 0) ∼ x× (0, ..., 0, 1) ∼ ∗

(3) ∗× v ∼ ∗ for any v ∈ ∆1. Here ∗ on the left denotes the distinguished point
of X0.
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�

Since the space cofib(cuben(X•)) is built out of cubes whereas the suspen-
sion Σ||X•|| is built out of simplices, we start the construction of the map ηX :

cofib(cuben(X•)) −→ Σ||X•|| by defining appropriate maps ηk : Ik → ∆k (0 ≤ k ≤
∞).

Lemma 2.4. There exists a sequence of continuous maps ηk : Ik → ∆k (0 ≤ k <
∞) with the following properties.

(1) For each 0 ≤ l ≤ k− 1 the map ηk takes the (k− 1)-dimensional subcube of

Ik, given by the equation tl = 0 to the face tk = 0 of ∆k.
(2) For each 0 ≤ l ≤ k − 1 the following diagram commutes �

Ik−1
(t) 7→(t0,...,1

l
,...tk−2)

−−−−−−−−−−−−−→ Ik

ηk−1

y ηk

y
∆k−1

δl:(t) 7→(t0,...,0
l
,...,tk−1)

−−−−−−−−−−−−−−−→ ∆k.

Moreover this sequence of maps is unique up to homotopy. More precisely, if ηk
and η′k are two families of maps with the above properties then there exists a family
of maps Fk : Ik+1 → ∆k such that

(1) Fk|tk=0
= ηk, Fk|tk=1

= η′k.

(2) For each 0 ≤ l ≤ k− 1 the map Fk takes the k-dimensional subcube of Ik+1,
given by the equation tl = 0 to the face tk = 0 of ∆k.

(3) For each 0 ≤ l ≤ k − 1 the following diagram commutes

Ik
(t)7→(t0,...,1

l
,...tk−1)

−−−−−−−−−−−−−→ Ik+1

Fk−1

y Fk

y
∆k−1

δl:(t)7→(t0,...,0
l
,...,tk−1)

−−−−−−−−−−−−−−−→ ∆k.

Proof. Both the existence and the uniqueness are essentially obvious. For example
given two families ηk and η′k as above one can define the homotopy Fk using the
formula

Fk(t0, ..., tk) = (1− tk)ηk(t0, ..., tk−1) + tkη
′
k(t0, ..., tk−1).

�

To be absolutely precise we fix one family ηk, which we will use in the sequel,
by setting

ηk(t0, ..., tk−1) = (1− t0, t0(1− t1), ..., t0...tk−2(1− tk−1), t0...tk−1).
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Remark 2.5 Let ηk be the family of maps as above. According to the definition,
the map ηk takes the boundary ∂Ik to the boundary ∂∆k and hence defines a map
ηk : Ik/∂Ik → ∆k/∂∆k, which is independent (up to homotopy) of the choice of

ηk. The spaces Ik/∂Ik and ∆k/∂∆k are both homeomorphic to the sphere Sk.
Moreover one checks easily that with our particular choice of ηk the corresponding
map ηk : Ik/∂Ik → ∆k/∂∆k is a homeomorphism, which we choose to identify these
two models of the sphere.

Having fixed a sequence of maps ηk as above and using Lemmas 2.1 and 2.3
we immediately obtain the desired natural morphisms ηX : cofib(cuben(X•)) −→
Σ||X•|||/Σ|| ∗ ||.

Corollary 2.6. For any simplicial space X• and any n ≥ 0 there exists a unique
continuous map ηX : cofib(cuben(X•)) −→ Σ||X•|||/Σ|| ∗ || such that for any subset
S ⊂ [n− 1] (containing k elements) the following diagram commutes.

YS × Ik = Xk−1 × Ik
1X×ηk−−−−→ Xk−1 ×∆ky y

cofib(cuben(X•))
ηX−−−−→ Σ||X•||/Σ|| ∗ ||.

�

The following formal property of the map ηX is obvious from the construction.

Lemma 2.7. The following diagram commutes for any n ≥ 0

cofib(cuben(X•))
ηX−−−−→ Σ||X•|||/Σ|| ∗ ||y =

y
cofib(cuben+1(X•))

ηX−−−−→ Σ||X•|||/Σ|| ∗ ||.

�

The preceding lemmas provide the technical basis for the following theorem which
enables us to extend the results of §1 to simplicial spaces.

Theorem 2.8. Let X• be a pointed simplicial space. Assume that all Xi are Haus-
dorff and all distinguished points ∗ ∈ Xi are non-degenerate (i.e. ∗ ↪→ Xi is a closed
cofibration). Assume further that each Xi is N -acyclic for some fixed N ≥ −1. In
this case the natural map

ηX : cofib(cuben(X•)) −→ Σ||X•|||/Σ|| ∗ ||

induces isomorphisms in singular homology up to degree N+n and an epimorphism
in degree N + n+ 1.
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Proof. Denote the n-cube cuben(X•) by Y•,...,•, the space cofib(cuben(X•)) by C,
and the space Σ||X•|||/Σ|| ∗ || by Σ. Consider the following filtrations of these
spaces

C(k) ≡ Im{
∐
|S|≤k

YS × I|S| → C = cofib(Y•,...,•)} (C(k) = ∗ for k ≤ 0).

Σ(k) ≡ Im{
∐
j≤k

Xj−1 ×∆j → Σ = Σ||X•|||/Σ|| ∗ ||} (Σ(k) = ∗ for k ≤ 0).

One checks easily that Σ(k) (resp. C(k)) is closed in Σ (resp. in C) and that
topology of Σ(k) (resp. of C(k)) is coinduced by the obvious projection

∐
j≤kXj−1×

∆j −→ Σ(k) (resp.
∐
|S|≤k YS × I|S| −→ C(k)). Using these remarks one concludes

further that the space Σ(k) is obtained from Σ(k−1) by attaching Xk−1 ×∆k along
a continuous map Xk−1 × ∂∆k ∪ ∗ ×∆k −→ Σ(k−1) , so that we have a cocartesian
square

Xk−1 × ∂∆k ∪ ∗ ×∆k −−−−→ Xk−1 ×∆ky y
Σ(k−1) −−−−→ Σ(k).

In the same way C(k) is obtained from C(k−1) by attaching
∐
|S|=kXk−1×Ik along a

continuous map
∐
|S|=k(Xk−1×∂Ik∪∗×Ik) −→ C(k−1), so that we have a cocartesian

square ∐
|S|=k(Xk−1 × ∂Ik ∪ ∗ × Ik) −−−−→

∐
|S|=kXk−1 × Iky y

C(k−1) −−−−→ C(k).

Note that in both cases the top horizontal arrow is a closed cofibration and hence
the bottom horizontal arrow is also a closed cofibration. The above filtrations of
spaces define induced filtrations on the corresponding singular complexes. In the
case of the space C the filtration is obviously finite. In the case of Σ one should
note that all the spaces Σ(k) satisfy at least the T1-axiom and since the topology
of Σ is weak with respect to the tower of subspaces Σ(0) ⊂ Σ(1) ⊂ ... ⊂ Σ the
usual argument (cf. [St]) shows that every continuous map from a compact space
to Σ factors through one of Σ(k) and hence the singular complex of Σ coincides
with the direct limit of singular complexes of Σ(k). Thus in both cases we get
a spectral sequence converging to the reduced homology of the total space and
with E1-term consisting of relative homology groups. Since Σ(k−1) ↪→ Σ(k) (and
also C(k−1) ↪→ C(k)) is a closed cofibration we conclude that the E1-term of the
spectral sequence, corresponding to the filtration of Σ looks as follows:

E1
pq = Hp+q(Σ

(p),Σ(p−1)) =
∼
Hp+q(Σ

(p)/Σ(p−1)) =
∼
Hp+q(Xp−1 ∧ (∆p/∂∆p) =

∼
Hq(Xp−1).
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In the same way we compute the E1-term of the spectral sequence corresponding
to the filtration of the space C

E′
1
pq = Hp+q(C

(p), C(p−1)) =
∼
Hp+q(C

(p)/C(p−1)) =
∼
Hp+q(∨|S|=pXp−1 ∧ (Ip/∂Ip))

= ⊕|S|=p
∼
Hp+q(Xp−1 ∧ (Ip/∂Ip)) = ⊕|S|=p

∼
Hq(Xp−1).

A straightforward computation shows that the differential d1 in the spectral se-
quence E

d1
pq : E1

pq =
∼
Hq(Xp−1) −→

∼
Hq(Xp−2) = E1

p,q−1

coincides with the alternating sum of maps in homology induced by face operations
∂l : Xp−1 → Xp−2 (0 ≤ l ≤ p−1). In other words the q-th row E1

∗q coincides with

the standard complex of the simplicial abelian group
∼
Hq(X•) shifted by one. In

the same way the q-th row of E′
1

coincides with the complex Tot(cuben(
∼
Hq(X•))).

Clearly the map ηX respects the above filtrations and hence defines a homomor-
phism of spectral sequences

E′
1
pq = ⊕|S|=pHq(Xp−1) =⇒ Hp+q(C)

↓ (ηX)∗
E1
pq = Hq(Xp−1) =⇒ Hp+q(Σ).

Remark 2.5 shows that the homomorphism of complexes E′
1
∗q −→ E1

∗q is noth-
ing but the map considered in section 1 applied to the simplicial abelian group
∼
Hq(X•). Corollary 1.3 implies now that the homomorphism E′

2
p,q

(ηX)∗−−−−→ E2
p,q

is an isomorphism for p < n and an epimorphism for p = n (with q arbitrary).

Since E2
p,q = E′

2
p,q = 0 for q ≤ N and p arbitrary, we conclude that the map

E′
2
p,q

(ηX)∗−−−−→ E2
p,q is an isomorphism for p + q ≤ n + N and an epimorphism for

p+q = n+N+1. The standard comparison theorem for spectral sequences implies
immediately that the map on abutments

(ηX)∗ : Hi(cofib{cuben(X•)}) → Hi(||ΣX•||)

is an isomorphism in degrees ≤ n+N and an epimorphism in degree n+N +1. �

We will say that a simplicial pointed space X• is good if it is good as a simplicial
space (i.e., all degeneracy maps are closed cofibrations) and if in addition all dis-
tinguished points are non degenerate. Note that for a pointed simplicial space X•
the canonical projection ||X•|| −→ |X•| contracts || ∗ || to the distinguished point.

We easily derive from Segal’s homotopy equivalence ||X•|| → |X•| for good
simplicial spaces X• the following result.

Lemma 2.9. Assume that X• is a good pointed simplicial space. Then the natural
projection ||X•||/||∗|| −→ |X•| is a homotopy equivalence and hence Σ||X•||/Σ||∗|| =
Σ(||X•||/|| ∗ ||) −→ Σ|X•| is also a homotopy equivalence.
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Proof. As was noted above the natural projection ||X•|| −→ |X•| is a homotopy
equivalence for any good simplicial space X• . Since the simplicial space ∗ is obvi-
ously good we conclude in particular that the space ||∗|| is contractible. Furthermore
it’s easy to verify that the embedding || ∗ || ↪→ ||X•|| is a closed cofibration. These
two facts together imply that the projection ||X•|| −→ ||X•||/|| ∗ || is a homotopy
equivalence and hence ||X•||/|| ∗ || −→ |X•| is a homotopy equivalence as well. �

We keep the same notation ηX for the composition

cofib(cuben(X•))→ Σ||X•||/Σ|| ∗ || → Σ|X•|.

The following result, an immediate corollary of Theorem 2.8 in view of Lemma 1.9,
is the geometric analogue of Corollary 1.3.

Corollary 2.10. Let X• be a good pointed simplicial space. Assume that all spaces
Xi are Hausdorff. Assume further that each Xi is N -acyclic for some fixed N ≥ −1.
In this case the natural map

ηX : cofib(cuben(X•)) −→ Σ|X•|

induces isomorphisms in singular homology up to degree N+n and an epimorphism
in degree N + n+ 1. �

We recall that a continuous map f : X → Y between pointed spaces is said to be
an n-equivalence (or, equivalently, n-connected) provided that the induced maps
on homotopy groups πi(X)→ πi(Y ) is injective for i < n and surjective for i ≤ n.
In particular, a pointed space X is said to be n-connected provided that the map
from the base point to X is n-connected (i.e., provided that πi(X) = 0 for i ≤ n).

Corollary 2.11. Adopt the hypotheses and notation of Corollary 2.10 and further
assume that N ≥ 1 and that all spaces Xi are N -connected. Then the map ηX :
cofib(cuben(X•)) −→ Σ|X•| is an N + n+ 1-equivalence.

Proof. One checks easily that under our assumptions both spaces are simply con-
nected so that our statement follows from Corollary 2.10 and the Whitehead The-
orem. �

We finish this section by observing in Corollary 2.13 that Corollary 2.11 admits
a natural extension from spaces to prespectra. Such an extension requires the
following observation which follows from the associativity of the smash product.

Lemma 2.12. Let X• be any simplicial space. Then the following diagram of
pointed spaces commutes

Σ(cofib(cuben(X•)))
Σ(ηX)−−−−→ Σ(Σ(|X•|)

=

y ∼
=

y
cofib(cuben(Σ(X•)))

ηΣ(X)

−−−−→ Σ(|Σ(X•)|) = Σ(Σ(|X•|)),

where the right vertical arrow interchanges the two suspensions. �
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Corollary 2.13. Let X• be a simplicial prespectrum. The family of maps ηX
i

:
cofib(cuben(Xi

•))→ Σ(|Xi
•|) is a morphism of prespectra.

Assume further that all pointed simplicial spaces Xi
• are good and the prespectra

Xn are all N -connected for an appropriate integer N . Then the the prespectrum
cofib(cuben(X•)) is (N+1)-connected, the prespectrum |X•| is N -connected and the
following diagram of homotopy groups (in which the vertical arrows are suspension
isomorphisms) commutes up to a sign.

πi(cofib(cuben(X•)))
ηX∗−−−−→ πi−1(|X•|)

Σ

y Σ

y
πi+1(cofib(cuben(Σ(X•))))

ηΣX
∗−−−−→ πi(|Σ(X•)|) = πi(Σ(|X•|)).

�

§3. Comparison of iterated homotopy fibres and cofibres

As we saw in Corollary 2.10, the iterated cofibre cofib(cuben(X•)) of the n-
cube associated to a simplicial space X• is closely related to the suspension of the
geometric realization of X•, Σ|X•|. On the other hand, techniques developed for
the study of algebraic K-theory have utilized the iterated homotopy fibre; namely,
multi-relative K-theory can be interpreted as an iterated homotopy fibre of an n-
cube of spaces obtained by applying the K-functor to an n-cube of schemes. The
purpose of this section is to prove in Proposition 3.4 a comparison between iterated
fibres and iterated cofibres of n-cubes of spaces. Although the material we present
here may well be known to experts, we work through the proofs for want of a
suitable reference.

We proceed by induction on n to define fib(Y•,... ,•), the homotopy fibre of the
n-cube Y•,... ,• of pointed spaces (cf. §A.5). For n = 1, we define fib(Y•) as the

homotopy fiber fib{Y1
d0−→ Y0} of the structure map d0 : Y1 → Y0 as defined in

§A.5. Having defined the iterated fibre for (n − 1)-cubes of pointed spaces, we
proceed as in section 2 to define fib(Y•,... ,•) for the n-cube Y•,... ,•. Namely, we
consider two (n − 1)-cubes Y1 = Y•,...,•,1 and Y0 = Y•,...,•,0 and the structure map
dn−1 : Y1 → Y0 and we define fib(Y•,... ,•) as the homotopy fiber of the induced
map fib(dn−1) : fib(Y1)→ fib(Y0).

One can easily provide an explicit description of fib(Y•,... ,•) similar to the de-
scription of the iterated cofiber given in section 2, which presents fib(Y•...•) as a
subspace in the product space of function spaces

fib(Y•...•) ⊂
∏

S⊂[n−1]

(YS)(In−|S|).

Namely, for any S ⊂ [n − 1] denote by InS
∼
= In−|S| the subcube of In given

by equations ti = 0 (i ∈ S) . The subspace fib(Y•...•) ⊂
∏
S⊂[n−1](YS)(In−|S|)



ALGEBRAIC K-THEORY TO MOTIVIC COHOMOLOGY 15

consists of families of continuous maps ω = {ωS : InS −→ YS}S⊂[n−1] which satisfy
the following compatibility properties

(1) ωS(t) = ∗ if at least one of the coordinates of t equals 1.
(2) Let T be obtained from S by deleting the l-th element (0 ≤ l ≤ |S| − 1).

Then the following diagram commutes

InS
ωS−−−−→ YSy ∂l

y
InT

ωT−−−−→ YT .

Proceeding in the same way as in section 2, one proves easily the following results
dual to Lemmas 2.2 and 2.2.1.

Lemma 3.1. For any n-cube of pointed spaces Y•...• we have a natural identifica-
tion

fib(Ωk Y•,...,•) = Ωk fib(Y•,...,•).

�

Lemma 3.1.1. Let f•...• : X•...• −→ Y•...• be a morphism of n-cubes. Let Fi0,...,in−1

denote the homotopy fiber of the map

fi0,...,in−1
: Xi0,...,in−1

→ Yi0,...,in−1
.

Then the spaces F•...• form a n-cube and moreover we have a natural identification

fib(F•...•) = fib(fib(X•...•)→ fib(Y•...•)).

�

Next, we proceed to define a map fib(Y•...•)→ Ωn(cofib(Y•...•)). We start with
the case n = 1, in which case we have to define a map from the homotopy fiber to
loops on the homotopy cofiber for an arbitrary continuous map of pointed spaces
f : X → Y .

We define a map
Ωf : Q(f) → P(cofib(f))

by sending (x ∈ X, τ : I→ Y ) to the path ω defined by sending t ∈ I to the image
of x ∧ 2t in cofib(f) for 0 ≤ t ≤ 1/2 and to τ(2t − 1) for 1/2 ≤ t ≤ 1. We readily
verify that Ωf is continuous and determines a commutative diagram

fib(f)
i−−−−→ Q(f)

ε1−−−−→ Y

ωf

y Ωf

y yj
Ω cofib(f) −−−−→ P(cofib(f)) −−−−→ cofib(f)

(3.2.0)
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where i : fib(f)→ Q(f), j : Y → cofib(f) are the structure embeddings.
In the general case we use induction on n and define the map fib(Y•...•) →

Ωn(cofib(Y•...•)) as the composition

fib(Y•...•) = fib{fib(Y1) −→ fib(Y0)} −→
fib{Ωn−1(cofib(Y1)) −→ Ωn−1(cofib(Y0))} = Ωn−1(fib{cofib(Y1) −→ cofib(Y0)})
−→ Ωn−1(Ω(cofib{cofib(Y1) −→ cofib(Y0)})) = Ωn(cofib(Y•...•)).

We denote the resulting map fib(Y•...•)→ Ωn(cofib(Y•...•)) by ρ or ρY . We use
the notation ρY : Σn(fib(Y•...•))→ cofib(Y•...•) for the adjoint of ρY .

The preceding explicit description of ωf in the case n = 1 easily yields the
following explicit formula

ρY (ω)(t) = ωS(2t− 1) ∧ (2ti0 ∧ ... ∧ 2tik−1
).

Here S = {i0 < ... < ik−1} = {i ∈ [n − 1] : ti ≤ 1/2}, and the point 2t− 1 is
obtained from 2t− 1 replacing all negative coordinates by 0.

Using (for example) this formula one establishes immediately the following fact.

Lemma 3.2. For any (n+ 1)-cube Y = Y•...• of pointed spaces the following dia-
gram commutes up to (base point preserving) homotopy

Ω fib(Y0) −−−−→ fib(Y )y y
Ω Ωn(cofib(Y0))

∼
= Ωn Ω(cofib(Y0)) = Ωn+1(cofib(Y0)) −−−−→ Ωn+1(cofib(Y )).

�

Lemma 3.2 immediately gives us the following useful fact relating the boundary

map δ in the long exact sequence for the fibration sequence fib(Y )→ fib(Y1)
dn−→

fib(Y0) to the map on homotopy groups of iterated cofibres induced by the lower
horizontal map of the above square.

Corollary 3.2.1. The following diagram of homotopy groups commutes up to a
sign (−1)n.

πi(fib(Y0))
δ−−−−→ πi−1(fib(Y ))

(ρY0 )∗

y (ρY )∗

y
πi+n(cofib(Y0)) −−−−→ πi+n(cofib(Y )).

�

We will also need the following result, which is an easy application of Corollary
3.2.1.
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Corollary 3.2.2. Let f : X → Y be a morphism of n-cubes. Let F = F•...• (resp.
C = C•...•) denote the n-cube of homotopy fibers (resp. cofibers) of f . The following
diagram of homotopy groups commutes up to a sign

πi(fib(Y )) −−−−→ πi+n(cofib(Y ))
=−−−−→ πi+n(cofib(Y ))y y

πi−1(fib(F)) −−−−→ πi+n−1(cofib(F)) −−−−→ πi+n(cofib(C))).

Here the last arrow at the bottom line is the composition of the suspension ho-
momorphism πi+n−1(cofib(F)) −→ πi+n(Σcofib(F)) = πi+n(cofib(ΣF)) and the
homomorphism in homotopy groups induced by the morphism of n-cubes ΣF → C.

Proof. Let Z denote the (n+ 1)-cube such that Z0 = X,Z1 = Y and the structure
morphism dn coincides with f . Lemma 3.1.1 and Lemma 2.2.1 provide us with
canonical identifications fib(F) = fib(Z), cofib(C) = cofib(Z). Now it is easy to
see that the composition of the bottom row of our diagram coincides with the map
induced by ρZ : fib(F) = fib(Z)→ Ωn+1(cofib(Z)) = Ωn+1(cofib(C)). �

Our main objective in this section is to show that the resulting map fib(Y•...•)→
Ωn(cofib(Y•...•)) is an equivalence up to a certain degree. As always we start with
the case n = 1.

Proposition 3.3. Let f : X → Y be a map of N -connected, pointed spaces. Then
the map of (3.2.0)

ωf : fib(f) → Ω cofib(f)

is a 2N -equivalence (i.e., the induced map on πi is an isomorphism in degrees < 2N
and an epimorphism in degree 2N) of (N − 1)-connected spaces.

Proof. We will assume for simplicity that N ≥ 2; the cases N = 0, 1 may be
treated similarly, using in addition the van Kampen Theorem. Note that if Y is
a point, our statement asserts that for an N -connected space X the natural map
X −→ ΩΣ(X) is a 2N -equivalence, whereas the Freudenthal Suspension Theorem
(cf. [Wh]) asserts that this map is actually a (2N + 1)-equivalence. We will show
that the general case of our proposition follows from the Freudenthal Suspension
Theorem and the Blakers-Massey Homotopy Excision Theorem (cf. [Wh]). The
space fib(f) is obviously (N − 1)-connected so it suffices to show that ωf is a
2N -equivalence; in other words, we must show that the induced map in homotopy
groups

πi(fib(f))→ πi(Ω(cofib(f))) = πi+1(cofib(f))

is an isomorphism in degrees < 2N and an epimorphism in degree 2N . To do so
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we set F = fib(f), C = cofib(f) and consider the diagram

πi+1(Y ) −−−−→ πi(F) −−−−→ πi(X) −−−−→ πi(Y )y y
↓= ↓ πi+1(ΣX) −−−−→ πi+1(ΣY )x x

πi+1(Y ) −−−−→ πi+1(C) −−−−→ πi+1(C, Y ) −−−−→ πi(Y ).

Here the top row is a part of the long exact sequence corresponding to the fibration
F → Q(f)

∼
= X → Y , the bottom row is a part of the long exact homotopy sequence

of the pair (C, Y ), the maps πi(X) → πi+1(ΣX) and πi(Y ) → πi+1(ΣY ) are the
suspension homomorphisms and the homomorphism πi+1(C, Y ) → πi+1(ΣX) is
induced by the obvious map of pairs (C, Y ) −→ (ΣX, pt) contracting Y to the point.

One readily verifies that the above diagram commutes. For i ≤ 2N all vertical
arrows on the right are isomorphisms as one sees from the Homotopy Excision
Theorem and the Freudenthal Suspension Theorem. The 4-Lemma immediately
implies that in this situation the homomorphism πi(F) −→ πi+1(C) is surjective. For
i < 2N we extend the above diagram one step to the left and use the 5-Lemma. �

We now extend Proposition 3.3 in the evident way to n-cubes of pointed spaces.

Proposition 3.4. Let Y•...• be a n-cube of N -connected spaces. Then the natural
map

fib(Y•...•) −→ Ωn(cofib(Y•...•))

is a (2N − n+ 1)-equivalence of (N − n)-connected spaces.

Proof. We proceed by induction on n. The case n = 1 was settled above. Assume
that n > 1 and denote by Y1 = Y•,...,•,1, Y0 = Y•,...,•,0 the corresponding (n − 1)-

cubes. The maps fib(Y1) → Ωn−1(cofib(Y1)), fib(Y0) → Ωn−1(cofib(Y0)) are
(2N −n+ 2)-equivalences according to the induction hypothesis. This implies that
the induced map on the homotopy fibers

fib(Y•...•) = fib(fib(Y1)→ fib(Y0))→ fib(Ωn−1(cofib(Y1))→ Ωn−1(cofib(Y0)))

= Ωn−1(fib(cofib(Y1)→ cofib(Y0))

is a (2N −n+ 1)-equivalence. Furthermore the spaces cofib(Y1), cofib(Y0) are still
N -connected according to the induction hypothesis and hence the map

fib(cofib(Y1)→ cofib(Y0)) −→ Ω cofib(cofib(Y1)→ cofib(Y0)) = Ω cofib(Y•...•)

is a 2N -equivalence according to Proposition 3.3. Thus the induced map on loop
spaces

Ωn−1(fib(cofib(Y1)→ cofib(Y0))→ Ωn cofib(Y•...•)

is a (2N − (n− 1))-equivalence. �
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§4. Iterated fibers for simplicial prespectra.

In this section, we extend the results of the previous sections from simplicial
spaces to simplicial prespectra (i.e,, simplicial objects in the category of prespectra
as discussed in §B.1). The need to pass to spectra (or their more rigid formulation
as prespectra) can be seen in the formulation of Proposition 3.4. In applications,
the connectivity (designated N in Proposition 3.4) of pointed spaces constituting
an n-cube will be fixed (typically, N = −1) but we shall wish to consider arbitrarily
large n-cubes. Another advantage of this extension is that it permits us to consider
negative homotopy groups (in applications, we shall consider π−1). In Theorem 4.3,
we present the extension to simplicial prespectra of the investigation of the map on
homotopy groups

πi(fib(cuben(X•))) −→ πi+n−1(|X•|)

provided by Corollary 2.10 and Proposition 3.4.
We refer the reader to §B.1 of the appendix for our conventions concerning pre-

spectra. In particular, a prespectrum X = (X0, X1, . . . ) is said to be N -connected
if Xk is N + k connected for each k ≥ 0. We recall that the j-th homotopy group
of the prespectrum X is defined as

πn(X) = lim−→
k≥−n

πn+k(Xk) (−∞ < n <∞).

A map of prespectra f : X → Y is said to be a weak equivalence provided that f
induces isomorphisms f∗ : πj(X)

∼−→ πj(Y ) for all j.
Let Y•...• be a n-cube in the category of prespectra. We denote the spaces

constituting the prespectrum Yi0,...,in−1
by Y ki0,...,in−1

(k = 0, 1, ...). For each k the

spaces Y ki0,...,in−1
give us a n-cube in the category of pointed spaces and hence we

may consider the spaces cofib(Y k•...•) and fib(Y k•...•). Moreover the structure maps
Σ(Y k•...•)→ Y k+1

•...• give us a morphism of n-cubes and hence we get the induced map
on cofibers

Σ(cofib(Y k•...•)) = cofib(Σ(Y k•...•)) −→ cofib(Y k+1
•...• )

In this way we get a prespectrum

cofib(Y•...•) = (cofib(Y 0
•...•), cofib(Y

1
•...•), ...).

In the same way we verify that the spaces fib(Y k•...•) constitute a prespectrum
which we denote fib(Y•...•). The following lemma sums up some of the elementary
properties of these operations.

Lemma 4.1. a) Assume that Y•...• is an n-cube in the category of Ω-prespectra.
Then fib(Y•...•) is also a Ω-prespectrum.
b) Assume that the prespectra Yi0,...,in−1

are N -connected. Then the prespectrum
fib(Y•...•) is (N − n)-connected and the prespectrum cofib(Y•...•) is N -connected.
c) The family of maps fib(Y k•...•)→ Ωn cofib(Y k•...•) is a morphism of prespectra.

Proof. To prove a), it suffices to establish that the homotopy fiber of a morphism of
Ω-prespectra is again a Ω- prespectrum, which is straightforward from definitions.
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Assertion b) follows immediately from Proposition 3.4. To prove c), it suffices (in
view of the inductive definition of the map in question) to consider the case n = 1,
in which case our statement is straightforward. �

The following prespectrum analogue of Proposition 3.4 has the strong conclu-
sion of a weak equivalence rather than an equivalence in a range bounded by the
connectivity.

Proposition 4.2. Let Y•...• be an n-cube in the category of N -connected prespec-
tra. Then fib(Y•...•) is an (N − n)-connected prespectrum, cofib(Y•...•) is an N -
connected prespectrum and the natural morphisms

fib(Y•...•)
ρY−−→ Ωn(cofib(Y•...•))

Σn(fib(Y•...•))
ρY−−→ cofib(Y•...•)

are weak equivalences of prespectra.

Proof. For each k, we may apply Proposition 3.4 to the maps of pointed spaces

fib(Y k•...•)
ρY

k

−−→ Ωn(cofib(Y k•...•))

associated to the n-cube Y k•,... ,• of N + k-connected spaces to conclude that ρY
k

induces isomorphisms in homotopy groups up to degree 2N + 2k − n. Passing to
the limit on k we see immediately that the map in homotopy groups induced by the
morphism of prespectra ρY is an isomorphism in all degrees. Since ρY∗ on πi equals
ρY∗ on πi+n, the fact that ρY is a weak equivalence immediately implies that ρY is
also a weak equivalence. �

Let X• be a simplicial prespectrum. Assume that all the simplicial pointed
spaces Xk

• are good and all the prespectra Xi are N -connected. For every n ≥ 0
we get a natural morphism of prespectra

fib(cuben(X•))
ρ−→ Ωn(cofibn(X•))

η−→ Ωn(Σ(|X•|)
and the induced homomorphism on homotopy groups

πi(fib(cuben(X•)))
∼−→ πi(Ω

n(cofib(cuben(X•)))) = πi+n(cofib(cuben(X•))) −→
πi+n(Σ|X•|) = πi+n−1(|X•|).

Theorem 4.3. Let X• be an N -connected good simplicial prespectrum. Then the
natural homomorphism

(η ◦ ρ)∗ : πi(fib(cuben(X•))) −→ πi+n−1(|X•|)
is an isomorphism in degrees i ≤ N (and an epimorphism in degree N + 1).

Proof. Since the spaces Xk
i are (N +k)-connected we conclude from Corollary 2.11

that the homomorphism

πi+n+k(cofib(cuben(Xk
• )) −→ πi+n+k(Σ|Xk

• |)
is an isomorphism in degrees ≤ N + k + n (i.e. for i ≤ N) and an epimorphism in
degree N + k + n+ 1 (i.e. for i = N + 1). �

Proposition 4.2 and Theorem 4.3 easily imply the following useful result (whose
last statement is certainly well known).
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Corollary 4.4. Let f• : X• → Y• be a morphism of N -connected good simplicial
prespectra. Assume that each morphism fi : Xi → Yi is a weak equivalence. Then

(1) For any n ≥ 0 the induced morphism fib(cuben(X•)) −→ fib(cuben(Y•)) is
a weak equivalence.

(2) For any n ≥ 0 the induced morphism cofib(cuben(X•)) −→ cofib(cuben(Y•))
is a weak equivalence.

(3) The induced morphism |X•| −→ |Y•| is a weak equivalence.

Proof. The first statement is proved using immediate induction on n. The second
follows from the first one and Proposition 4.2. The last statement follows from the
first one and Theorem 4.3. �

Once again, let f• : X• → Y• be a morphism of N -connected good simplicial
prespectra. Denote by F• (resp. C•) the homotopy fiber (resp. cofiber) of f•.

Denote further by F the homotopy fiber of the morphism |X•|
|f•|−−→ |Y•|. Note that

we have obvious morphisms of prespectra

|F•| −→ |X•|, |F•| ∧ I = |F• ∧ I| −→ |Y•|

which are compatible and hence define a morphism

|F•| −→ F .

Here we consider I as a pointed space with distinguished point 1 ∈ I.

Lemma 4.5. The above defined morphism |F•| −→ F is a weak equivalence.

Proof. This follows immediately from the commutativity of the diagram

|Σ(F•)| = Σ(|F•|) −−−−→ Σ(F)y y
|C•|

=−−−−→ cofib(|X•| → |Y•|)

since both vertical arrows are weak equivalences, according to Corollary 4.4 and
Proposition 4.2 respectively. �

One might restate Lemma 4.5 by saying that the sequence

|F•| −→ |X•| −→ |Y•|

is a homotopy fibration. In particular we get canonical connecting homomorphisms

δ : πi(|Y•|) −→ πi−1(|F•|).

The following compatibility property will be essential in section 6.
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Proposition 4.6. Let f• : X• → Y• be a morphism of N -connected good simplicial
prespectra. Then the following diagram commutes (up to a sign) for any n.

πi(fib(cuben(Y•)))
δ−−−−→ πi−1(fib(cuben(F•)))

(ηρ)Y∗

y (ηρ)F∗

y
πi+n−1(|Y•|)

δ−−−−→ πi+n−2(|F•|).

Proof. To prove the statement we compose both maps πi(fib(cuben(Y•))) −→
−→ πi+n−2(|F•|) with the isomorphism πi+n−2(|F•|)

∼−→ πi+n−1(|C•|). Using the
above description of the connecting homomorphism δ : π∗(|Y•|) → π∗−1(|F•|) one
easily checks that the composition

πi+n−1(|Y•|)
δ−→ πi+n−2(|F•|)

∼−→ πi+n−1(|C•|)
is induced by the obvious embedding Y• ↪→ C• and hence the composition of δ(ηρ)Y∗
with the above isomorphism may be also decomposed as

πi(fib(cuben(Y•)))
ρ∗−→ πi+n(cofib(cuben(Y•))) −→πi+n(cofib(cuben(C•)))

η∗−→
−→ πi+n−1(|C•|).

On the other hand the commutative (up to a sign) diagram (see Corollary 2.13)

πi−1(fib(cuben(F•)))

ρ∗

y
πi+n−1(c(cuben(F•)))

Σ−−−−→ πi+n(c(cuben(ΣF•))) −−−−→ πi+n(c(cuben(C•)))

η∗

y η∗

y η∗

y
πi+n−2(|F•|)

Σ−−−−→ πi+n−1(|ΣF•|) −−−−→ πi+n−1(|C•|)
(here we had to abbreviate cofib to c in the middle row) shows that the composition

of (ηρ)∗δ with the isomorphism πi+n−2(|F•|)
∼−→ πi+n−1(|C•|) coincides (up to a

sign) with the composition

πi(fib(cuben(Y•)))
δ−→ πi−1(fib(cuben(F•))) −→ πi+n−1(cofib(cuben(F•)))

Σ−→
πi+n(cofib(cuben(ΣF•))) −→ πi+n(cofib(cuben(C•))) −→ πi+n−1(|C•|).

The proposition follows from these computations and Corollary 3.2.2. �

Finally we mention the following result which follows immediately from Lemma
2.7 and Corollary 3.2.1.

Lemma 4.7. Let X• be a N -connected simplicial prespectrum. Then the following
diagram commutes up to a sign

πi(fib(cuben(X•)))
δ−−−−→ πi−1(fib(cuben+1(X•)))

(ηρ)∗

y (ηρ)∗

y
πi+n−1(|X•|)

=−−−−→ πi+n−1(|X•|).
�
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§5. Multirelative K-theory with supports.

A difficult theorem of Spencer Bloch and Steven Lichtenbaum, Theorem 5.5
below, asserts the exactness of a long exact sequence of multirelative K0-groups
associated to the K-theory of an arbitrary field F . This theorem is the starting
point of our investigations. Bloch and Lichtenbaum’s exact sequence provides them
with an exact couple and thus a spectral sequence, the special case of a field of the
spectral sequence we seek to construct. In Theorem 5.7, we provide a particularly
useful interpretation of the derived exact couple of this exact couple in terms of
homotopy groups of naturally defined simplicial prespectra.

As recalled in §B.7, multirelative K-theory is essentially by definition the homo-
topy groups of appropriate iterated homotopy fibres of cubes of prespectra. We
begin this section by recasting the Bloch-Lichtenbaum context of multirelative K-
theory into our context of simplicial prespectra and associated iterated homotopy
fibres. For example, Proposition 5.4 asserts that π0 of an appropriate iterated ho-
motopy fibre is the Moore complex associated to the Bloch complex, the complex
whose homology groups are Bloch’s higher Chow groups.

We fix a field F and denote by ∆• the standard cosimplicial scheme over F with
∆n the standard algebraic n-simplex Spec F [T0, ..., Tn]/(T0 + ... + Tn − 1). If X
is a smooth, irreducible scheme over F , we denote by ∆• × X = ∆• ×k X the
corresponding cosimplicial scheme over X.

For any j, n ≥ 0, we let F j(X,n) denote the family of closed subschemes Y ⊂
∆n × X which meet every face of ∆n × X in codimension ≥ j (and in particular
are of codimension ≥ j themselves). We shall employ the notation

Kj(∆n ×X) = KF
j(X,n)(∆n ×X)

for the algebraicK-theory prespectrum of coherent sheaves on ∆n×X with supports
in F j(X,n) (cf. §B.6). Since each structure morphism of ∆• is a composition
of a flat surjective morphism and a regular embedding, the inverse image of any
Y ∈ F j(X,n) under any structure morphism ∆m × X → ∆n × X belongs to
F j(X,m). As discussed in §B.8 of the appendix, this implies that n 7→ Kj(∆n×X)
is a simplicial prespectrum which we denote by Kj(∆• ×X).

Following Bloch and Lichtenbaum, we consider multirelative K-theory. The
key object of study is multirelative K0 (with supports) of ∆n with respect to all
faces. Observe that the (n + 1)-cube corresponding to the multirelative K-theory
prespectrum of ∆n with respect to all faces (and with supports in F j) is nothing
but cuben+1(Kj(∆•)). Denoting this (n + 1)-cube by Y•...•, one sees further that
the n-cube corresponding to the prespectrum of multirelative K-theory of ∆n with
respect to all faces but the face given by the equation tn = 0 (and with supports
in F j) coincides with Y1 = Y•,...,•,1. Thus, denoting the family of all faces (of
codimension one) of ∆n by ∂ and the family of all faces except for the face given
by the equation tn = 0 by Λ, we see that

KF
j

0 (∆n, ∂) = π0(fib(cuben+1(Kj(∆•)))

KF
j

0 (∆n,Λ) = π0(fib({cuben+1(Kj(∆•))}1)).
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An easy but useful observation of Bloch and Lichtenbaum is that the multirel-
ative K-theory of ∆n with respect to all faces but one injects into the absolute
K-theory and hence is easy to understand. Our first proposition recalls this result
in slightly greater generality.

Proposition 5.1. Let X• be a simplicial prespectrum. Set Y•...• = cuben+1(X•)
and define the n-cube Y1 = Y•,...,•,1 in the usual way. The homomorphisms in
homotopy groups induced by the obvious projection fib(Y1) → Y1,...,1,1 = Xn are
injective.

Proof. For any 1 ≤ k ≤ n + 1 define the (n + 1 − k)-cube Yk by the formula
Yk = Y•,...,•,1, ..., 1︸ ︷︷ ︸

k

. Thus Yk+1 = (Yk)1 and we have a homotopy fibration

fib(Yk)→ fib(Yk+1)→ fib((Yk)0)

and hence an exact sequence of homotopy groups

πi+1(fib(Yk+1))→ πi+1(fib((Yk)0))→ πi(fib(Yk))→ πi(fib(Yk+1)).

We will see in a moment that the morphism fib(Yk+1)→ fib((Yk)0) has a section
and hence induces epimorphisms in homotopy groups. This together with the above
exact sequence of homotopy groups implies that all homomorphisms πi(fib(Yk))→
πi(fib(Yk+1) are (split) injective. Since fib(Yn+1) = Xn, our claim follows. The
section in question is induced by the morphism of (n− k)-cubes (Yk)0 → Yk+1

Yi0,...,in−k−1,0,1,...,1 = Xi0+...+in−k−1+k−1

si0+...+in−k−1−−−−−−−−−→
−→ Yi0,...,in−k−1,1,1,...,1 = Xi0+...+in−k−1+k

(here s• are the degeneracy operators of our simplicial prespectrum), which is left
inverse to dn−k : Yk+1 → (Yk)0. �

Proposition 5.1 has the following important corollary.

Corollary 5.2. With hypotheses and notation as in Proposition 5.1 the image of
the canonical monomorphism

πi(fib({cuben+1(X•)}1)) ↪→ πi(Xn)

coincides with the n-th term of the Moore complex M(πi(X•)) corresponding to the
simplicial abelian group πi(X•). In particular the prespectrum fib({cuben+1(X•)}1)
is N -connected provided that all prespectra Xi are N -connected. �

Proof. We show more generally that (in the notation of the proof of Proposition 5.1)
for any k the image of πi(fib(Yk)) −→ πi(Xn) coincides with the intersection of the
kernels of face operations ∂s (0 ≤ s ≤ n−k) of the simplicial abelian group πi(X•).
The statement is obvious for k = n+ 1. Proceeding by decreasing induction on k,
we note that the image of πi(fib(Yk)) → πi(fib(Yk+1)) coincides with the kernel
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of the endomorphism of πi(fib(Yk+1)) induced by the endomorphism of the cube
Yk+1:

Yk+1
dn−k−−−→ {Yk}0

sn−k−−−→ Yk+1.

Since the endomorphism of Y1,...,1 = Xn defined by the above endomorphism of the
cube Yk+1 equals sn−k∂n−k, the statement follows. �

We easily identify the differential in the Moore complex M(πi(X•)).

Corollary 5.3. With the identifications of Corollary 5.2, the homomorphism in
homotopy groups induced by the following composition of morphisms of prespectra

fib({cuben+1(X•)}1) −→ fib({cuben+1(X•)}0) = fib({cuben(X•)}) −→
−→ fib({cuben(X•)}1)

coincides with the differential ∂n of the Moore complex.

Proof. This follows immediately from the commutativity of the diagram

fib({cuben+1(X•)}1) −−−−→ fib({cuben(X•)}) −−−−→ fib({cuben(X•)}1)y y y
Xn

∂n−−−−→ Xn−1
=−−−−→ Xn−1.

�

We next recall the definition of the higher Chow groups of Bloch [B1]. Let X be
an equidimensional scheme of finite type over a field F . Let zq(X,n) be the free
abelian group generated by closed integral subschemes Z ⊂ ∆n×X of codimension
q which intersect all faces of ∆n ×X properly. One checks easily that zq(X, •) is a
simplicial abelian group and one defines Bloch’s higher Chow groups as

CHq(X,n) = πn(zq(X, •)).

Another useful application of Proposition 5.1 is the following.

Proposition 5.4. (cf. [B-L]) The prespectrum fib({cuben+1(Kq(∆•))}1) is
(−1)-connected. The group π0(fib({cuben+1(Kq(∆•))}1)) = KF

q

0 (∆n,Λ) coincides
with the n-th term of the Moore complex Mq(F, •) =M(zq(F, •)) corresponding to
the simplicial abelian group zq(F, •).

Proof. In view of Corollary 5.2 it suffices to establish that KF
q

0 (∆n) is canonically
isomorphic to zq(F, n) via the map which sends a coherent sheaf on ∆n to its
support. This is proved in [La;§1] (see also [B-L]); the essential point is that the

natural map KF
q+1

0 (∆n)→ KF
q

0 (∆n) is 0. �

Here is the fundamental exact sequence established by Bloch and Lichten-
baum which plays the central role in what follows.
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Theorem 5.5 [B-L]. The following sequence is exact

..→ KF
q+1

0 (∆n, ∂)
i−→ KF

q

0 (∆n, ∂)
j−→ KF

q

0 (∆n,Λ) =Mq(F, n)
k−→ KF

q

0 (∆n−1, ∂)

i−→ KF
q−1

0 (∆n, ∂)→ ...

Here the first arrow is induced by the obvious embedding of the families of supports
Fq+1 ⊂ Fq, the second and the third arrow come from the long homotopy sequence
corresponding to the fibration

fib(cuben+1(Kq(∆•))) −→fib({cuben+1(Kq(∆•))}1) −→
−→ fib({cuben+1(Kq(∆•))}0) = fib(cuben(Kq(∆•))).

�

Theorem 5.5 gives immediately an exact couple

D1 i−→ D1

k ↖ ↙ j
E1

with D1
p,q = KF

q

0 (∆p+q, ∂) and E1
p,q =Mq(F, p+ q) and hence a spectral sequence

converging to the algebraic K-theory of F . The differential of the complexMq(F, •)
is the standard one by Corollary 5.3 and hence the Bloch-Lichtenbaum spectral
sequence has the form

E2
p,q = CHq(F, p+ q) ⇒ Kp+q(F ). (5.6.0)

Changing signs, we may re-index this spectral sequence cohomologically as follows:

Ep,q2 = CH−q(F,−p− q) ⇒ K−p−q(F ). (5.6.1)

The key to our generalization of this spectral sequence to smooth varieties X
over F is the following observation which identifies the derived exact couple of the
Bloch-Lichtenbaum exact couple in a useful way. Recall that the term D2 of an
exact couple equals the image of i : D1 → D1 and hence is naturally isomorphic to
the cokernel of k : E1 → D1. Thus

D2
p,q = Coker(KF

q+1

0 (∆p+q+1,Λ)
k−→ KF

q+1

0 (∆p+q, ∂)).

To compute the above cokernel we consider the exact homotopy sequence of the
fibration

fib(cubep+q+2(Kq+1(∆•))) −→ fib({cubep+q+2(Kq+1(∆•))}1) −→
−→ fib({cubep+q+2(Kq+1(∆•))}0) = fib(cubep+q+1(Kq+1(∆•)))

whose relevant part is

KF
q+1

0 (∆p+q+1,Λ)
k−→ KF

q+1

0 (∆p+q, ∂)
δ−→ π−1(fib(cubep+q+2(Kq+1(∆•))))→ 0.

(The exactness at the far right is a consequence of Corollary 5.2.) Theorem 4.3
(with N = −1, i = −1, n = p + q + 2) now identifies the cokernel of k, thereby
establishing the following statement.

Theorem 5.7. We have a natural identification

D2
p,q = KF

q+1

p+q (∆•).
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§6. Topological filtration for the K-theory of ∆•.

Let X be an irreducible smooth scheme of finite type over F . The homotopy
invariance of algebraic K-theory implies readily that the obvious morphism of pre-
spectra K(X) → K(∆• × X) is a weak equivalence (cf. Proposition B.1.2). In
generalizing the spectral sequence (5.6.0) from the special case X = Spec F to
such a smooth X, we shall employ the spectral sequence associated to the following
tower of prespectra:

K(∆• ×X) = K0(∆• ×X)←− K1(∆• ×X)←− K2(∆• ×X)←− . . .

Our eventual goal is to show that the spectral sequence associated to this tower
strongly converges to the K-theory of X and has E2

p,q-groups given by the higher
Chow groups of X. To prove this, we must identify the homotopy fiber of each
morphism Kq(∆• ×X)←− Kq+1(∆• ×X).

In this section, we begin this task by investigating the special case in which
X = Spec F , the case in which the Bloch-Lichtenbaum Theorem (Theorem 5.5)
provides us with the strongly convergent spectral sequence (5.6.0). The purpose of
this section is to prove the following theorem whose import is the statement that the
long exact sequences arising in the derived exact couple of the Bloch-Lichtenbaum
exact couple can be identified with the long exact sequence in homotopy for fibration
sequences associated to the maps Kq(∆•)← Kq+1(∆•)

Theorem 6.1. For any p ≥ 0 the sequence of maps of Ω-prespectra

Kq+1(∆•) −→ Kq(∆•) −→ |B(zq(F, •))|

is a homotopy fibration. Here, Kq(∆•) −→ |B(zq(F, •))| is the canonical morphism
of prespectra of (B.2.1), and the canonical map from Kq+1(∆•) to the homotopy
fiber of Kq(∆•) −→ B(zq(F, •)) comes from the fact that the composition morphism
Kq+1(∆•) −→ Kq(∆•) −→ B(zq(F, •)) is trivial.

Proof (depending upon Lemma 6.2 and Propositions 6.4, 6.5 below).
Let Fq(∆n) denote the homotopy fiber of the map of prespectra Kq(∆n) −→
−→ B(zq(F, n)). The prespectra Fq(∆n) obviously form a simplicial prespectrum
and Lemma 4.5 implies that the canonical morphism of prespectra |Fq(∆•)| →
fib(|n 7→ Kq(∆n)| −→ |n 7→ B(zq(F, n))|) is a weak equivalence. Thus, the sequence

(6.1.1) |Fq(∆•)| −→ Kq(∆•) = |n 7→ Kq(∆n)| −→ |B(zq(F, •))|

is a homotopy fibration.
For each n the composition morphism

Kq+1(∆n) −→ Kq(∆n) −→ B(zq(F, n))

is trivial and hence defines a canonical morphism of prespectra Kq+1(∆n) −→
Fq(∆n). We proceed to show that the resulting map on the geometric realiza-
tions

(6.1.2) Kq+1(∆•) = |n 7→ Kq+1(∆n)| −→ |n 7→ Fq(∆n)|.
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is also a weak equivalence. To do so we compare the exact sequence of the derived
exact couple (D2, E2) with the long exact sequence of homotopy groups for the
homotopy fibration (6.1.1). Thus we consider the diagram (in which n = p+ q)

E2
p+1,q

k′−−−−→ πn(|Kq+1(∆•)| = D2
p,q

i′−−−−→ D2
p+1,q−1

j′−−−−→

=

y y =

y
πn+1(|B(zq(F, •)|) δ−−−−→ πn(|Fq(∆•|) −−−−→ πn(Kq(∆•)) −−−−→

(6.1.3)
In the remainder of this section, we verify the commutativity of (6.1.3) which will,
by the 5-Lemma, imply that (6.1.2) is a homotopy equivalence.

To prove the commutativity of the above diagram we identify the homomor-
phisms i′, j′, k′ appearing in the derived exact couple and check the commutativity
of each of the three types of squares in this ladder. This is achieved in Lemma 6.2,
Proposition 6.4, and Proposition 6.5.

The naturality of our identification in Theorem 5.7 immediately implies the
following lemma identifying i′ and proving part of the required commutativity of
(6.1.3).

Lemma 6.2. The homomorphism

i′ : D2
p,q = Kq+1

p+q (∆•) −→ D2
p+1,q−1 = Kq

p+q(∆
•)

is induced by the canonical morphism of prespectra Kq+1(∆•) −→ Kq(∆•).

Next we identify the homomorphism j′ : D2
p+1,q−1 = πp+q(Kq(∆•)) → E2

p,q =
CHq(F, p + q) = πp+q(|B(zq(F, •))|). Before doing so we discuss a certain general
construction which applies to any (−1)-connected simplicial prespectrum and of
which the homomorphism j′ is a special case. So let X• be a (−1)-connected
simplicial prespectrum. Consider the diagram with an exact column

(6.3.0)

0x
π−1(fib(cuben+1(X•)))

∼−−−−→ πn−1(|X•|)x
π0(fib(cuben(X•))) −−−−→ π0(fib({cuben(X•)}1))x

π0(fib({cuben+1(X•)}1))

Start with an element in πn−1(|X•|), lift it to π0(fib(cuben(X•))) and then take
the image of the lifting to π0(fib({cuben(X•)}1)) = Mn−1(π0(X•)). One checks
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immediately that the resulting element is a cycle of the complex M(π0(X•)) and
the homology class of this cycle is independent of the choice of the lifting. Thus for
any (−1)-connected simplicial prespectrum X• we get a canonical homomorphism,
which we denote j′X

j′X : πn−1(|X•|) −→ Hn−1(M(π0(X•))) = πn−1(π0(X•)).

This homomorphism is obviously functorial with respect to morphisms of
(−1)-connected prespectra and the homomorphism

j′ : D2
p,q = πp+q(Kq(∆•))→ E2

p,q = CHq(F, p+ q) = πp+q(z
q(F, •))

from the exact couple (D2, E2) is exactly this homomorphism applied to the sim-
plicial prespectrum Kq(∆•).

One function of the isomorphism established in the following lemma is to make
explicit the identification between E2

p,q = πp+q(z
q(F, •)) and πp+q(|B(zq(F, •))|).

Lemma 6.3. Let A• be a simplicial abelian group and let X• = B(A•) be the
corresponding simplicial prespectrum. The corresponding homomorphism

πn−1(|X•|)
j′X−−→ πn−1(π0(X•))

is an isomorphism for any n.

Proof. Note that πi(Xn) = 0 for all n and all i 6= 0. In view of Proposition 5.1 this
readily implies that πi(fib(cuben+1(X•)1)) = 0 for all n and all i 6= 0. Using now
an easy induction on n we conclude that

πi(fib(cuben(X•))) = 0, ∀ n, i > 0, (6.3.1)

This vanishing of homotopy groups in positive degrees implies further the injectivity
(for all n) of the homomorphism

π0(fib(cuben(X•))) −→ π0(fib({cuben(X•)}1)) =Mn−1(π0(X•)). (6.3.2)

Next we extend the middle row of (6.3.0) to the exact sequence

0 = π1(fib({cuben(X•)}0)) −→ π0(fib(cuben(X•))) −→
−→ π0(fib({cuben(X•)}1)) −→ π0(fib({cuben(X•)}0)).

The above remarks together with Corollary 5.3 show that cycles in degree n−1 of the
Moore complex M(π0(X•)) coincide with the kernel of the last map. This implies
the surjectivity of j′X . Injectivity of j′X follows immediately from the injectivity of

π0(fib(cuben(X•))) −→ π0(fib({cuben(X•)}1)).

�

Lemma 6.3 enables us to identify the homomorphism j′ and verify another por-
tion of the commutativity of (6.1.3).
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Proposition 6.4. The homomorphism j′ : D2
p+1,q−1 = πp+q(Kq(∆•)) → E2

p,q =
CHq(F, p+ q) = πp+q(|B(zq(F, •))|) coincides with the canonical map in homotopy
groups induced by the morphism of simplicial prespectra Kq(∆•) −→ B(zq(F, •)).

Proof. We use the isomorphism of Lemma 6.3 to identify E2
p,q = πp+q(z

q(F, •))
with πp+q(|B(zq(F, •))|). Then, our statement follows from the commutativity of
the diagram

πp+q(|Kq(∆•)|)
j′Kq−−−−→ πp+q(z

q(F, •))

can

y =

y
πp+q(|B(zq(F, •))|)

j′B(zp)−−−−→ πp+q(z
q(F, •))

together with the verification achieved prior to Lemma 6.3 that j′ = j′Kq . �

Finally we need to identify the homomorphism (where as always n = p+ q)

k′ : E2
p,q = πn(|B(zq(F, •))|) −→ D2

p−1,q = πn−1(|Kq+1(∆•)|)

or rather its composition with the homomorphism

πn−1(|Kq+1(∆•)|) −→ πn−1(|Fq(∆•)|).

Proposition 6.5. The following diagram commutes (up to a sign)

E2
p,q = πn(zq(F, •)) k′−−−−→ D2

p−1,q = πn−1((|Kq+1(∆•)|)
∼
=

y(j′B(zq))
−1 can

y
πn(|B(zq(F, •))|) δ−−−−→ πn−1(|Fq(∆•)|).

Here δ is the connecting homomorphism from the long exact homotopy sequence
corresponding to the homotopy fibration

|Fq(∆•)| −→ |Kq(∆•)| −→ |B(zq(F, •))|.

Proof. The homomorphism k′ originates from the diagram

πn−1(|Kq+1(∆•)|)

(ηρ)∗

x∼=
π−1(fib(cuben+1(Kq+1(∆•))))

δ←−−−− π0(fib(cuben(Kq+1(∆•))))

i

y
π0(fib({cuben+1(Kq(∆•))}1))

k−−−−→ π0(fib(cuben(Kq(∆•))))

j

y
π0(fib({cuben(Kq(∆•))}1))
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Namely, we start with a n-cycle x of the complex π0(fib({cube∗+1(Kq(∆•))}1)) =
M(zq(F, ∗)). Since j ◦ k(x) = 0 we can find y ∈ π0(fib(cuben(Kq+1(∆•)))) such
that i(y) = k(x) and we set k′([x]) = (ηρ)∗δ(y). To compute the image of k′([x]) in
πn−1(|Fq(∆•|) we may take the image z of y in π0(fib(cuben(Fq(∆•)))) and then
apply the homomorphism

π0(fib(cuben(Fq(∆•)))) δ−→ π−1(fib(cuben+1(Fq(∆•)))) (ηρ)∗−−−→ πn−1(|Fq(∆•|)
to z. To simplify matters slightly we make a few remarks.

(6.5.1) The kernel of the homomorphism j coincides with the kernel of the homo-
morphism

π0(fib(cuben(Kq(∆•))) −→ π0(fib(cuben(B(zq(F, •)))).
This follows immediately from (6.3.2) and the identification

π0(fib({cuben(Kq(∆•))}1)) = π0(fib({cuben(B(zq(F, •))}1)).

(6.5.2) The homomorphism π0(fib(cuben(Fq(∆•))) → π0(fib(cuben(Kq(∆•))) is
injective.

This follows immediately from (6.3.1).

Thus the diagram needed for the computation of the image of k′([x]) in
πn−1(|Fq(∆•|) looks as follows

πn−1(|Fq(∆•)|) 0

(ηρ)∗

x∼= y
π−1(fib(cuben+1(Fq(∆•)))) δ←−−−− π0(fib(cuben(Fq(∆•))))

i

y
π0(fib({cuben+1(Kq(∆•))}1))

k−−−−→ π0(fib(cuben(Kq(∆•))))y
π0(fib(cuben(B(zq(F, •)))))

Denote the simplicial prespectrum Kq(∆•) by X•, the simplicial prespectrum
B(zq(F, •)) by B•, the simplicial prespectrum Fq(∆•) by F• and consider the fol-
lowing commutative diagram (in which we dropped the notation fib everywhere
so that it would fit the page), each of whose rows and columns are the fibration
sequences

cuben+1(F•) −−−−→ cuben+1(F•)1 −−−−→ cuben(F•)y y y
cuben+1(X•) −−−−→ cuben+1(X•)1 −−−−→ cuben(X•)y y y
cuben+1(B•) −−−−→ cuben+1(B•)1 −−−−→ cuben(B•).
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Note that π1(fib(cuben(B•)) = 0 according to (6.3.1) and hence the sequences
obtained by applying the functor π0 to both the rightmost column and the bottom
row are left exact. We start with an element x in the kernel of

π0(fib(cuben+1(X•)1) −→ π0(fib(cuben(B•)))

apply to it the diagram chase which may be described as “first go right, then up,
then apply δ”. We can equally consider the diagram chase described as “first go
down, then left, then apply δ”.

(6.5.3). Both diagram chases give the same result (up to a sign).

Namely, the element x comes from the (unique) element x0 ∈ π0(F ′), where
F ′ = fib(fib(cuben+1(X•)1) −→ fib(cuben(B•)). There are two canonical maps
p : F ′ −→ fib(cuben+1(B•)) and q : F ′ −→ fib(cuben(F•)) and the results of the two
diagram chases are equal to δq∗(x0) and δp∗(x0) respectively. Thus our statement
follows from Corollary A.5.4.

Furthermore, we have a commutative (up to a sign) diagram (see Proposition
4.6 and Lemma 4.7), in which we again omitted the notation fib in the top row

π−1(cuben+2(B•))
δ←−−−− π0(cuben+1(B•))

δ−−−−→ π−1(cuben+1(F•))

(ηρ)∗

y∼= (ηρ)∗

y (ηρ)∗

y
πn(|B•|)

=←−−−− πn(|B•|)
δ−−−−→ πn−1(|F•|).

Finally, the diagram chase go down, then left, then apply

π0(fib(cuben+1(B•))
δ−→ π−1(fib(cuben+2(B•)))

∼−→ πn(|B•|)

establishes the isomorphism (j′)−1 : E2
p,q

∼−→ πn(|B•|) used to identify these two
groups. �

§7. The homotopy invariance of the prespectrum Kq(∆• ×X).

The main result of this section, Theorem 7.6, asserts for any smooth scheme X
over our fixed field F that flat pull-back

Kq(∆• ×X) −→ Kq(∆• ×X × A1)

is a weak equivalence. As we see in Proposition 7.2 below, this “homotopy in-
variance” would be elementary provided that Kq(∆• ×−) were a well-defined con-
travariant functor on smooth schemes. To overcome the lack of functoriality of
Kq(∆• × −), we use a technique developed by S. Bloch by showing that suitable
functoriality can be arranged on finite subcomplexes.

We start with the following elementary observation.
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Lemma 7.1. Let X 7→M(X) be a contravariant functor from the category Sm/F
of smooth schemes of finite type over a field F to the category of pointed spaces.
For any X ∈ Sm/F the two continuous maps

|M(∆• × A1 ×X)|
i∗0−→−→
i∗1

|M(∆• ×X)|

induced by the embeddings X
i0:x 7→0×x−−−−−−→−−−−−−→
i1:x 7→1×x

A1×X are homotopic and hence induce the

same homomorphisms in homotopy groups.

Proof. Let I• denote the simplicial set corresponding to the poset {0 < 1} (i.e.
n-simplices of I• are nondecreasing sequences j0 ≤ j1 ≤ ... ≤ jn (jk ∈ {0 < 1})).
We construct explicitly a simplicial homotopy

I× |M(∆• × A1 ×X)| = |I• ×M(∆• × A1 ×X)| H−→ |M(∆• ×X)|

setting Hn(j × m) = (fj × 1X)∗(m) (j ∈ In,m ∈ M(∆n × A1 × X)), where
fj : ∆n → ∆n × A1 is the linear morphism sending the k-th vertex vk ∈ ∆n to
vk × jk ∈ ∆n × A1. �

Remark 7.1.1. The explicit form of the above homotopy shows immediately that

its composition with the map |M(∆• × X)| p∗−→ |M(∆• × A1 × X)| (where p :
A1 × X −→ X is the obvious projection) is the constant homotopy relating the
identity endomorphism to itself.

Lemma 7.1 easily implies the following proposition.

Proposition 7.2. Let X 7→ M(X) be a contravariant functor from the category
Sm/F of smooth schemes of finite type over a field F to the category of prespectra.
Then for any X ∈ Sm/F the obvious morphism

M(∆•×X) = |n 7→ M(∆n×X)| p
∗

−→M(∆•×A1×X) = |n 7→ M(∆n×A1×X)|

induced by the projection A1 ×X p−→ X, is a weak equivalence of prespectra.

Proof. The embedding i : X
x7→0×x−−−−−→ A1 × X is right inverse to p and hence the

induced morphism of prespectra i∗ is left inverse to p∗. The composition i ◦ p :
A1 × X → A1 × X is algebraically homotopic to the identity endomorphism, i.e.

there exists a morphism H : A1 × (A1 × X)
s×t×x 7→st×x−−−−−−−−−→ A1 × X such that the

restriction H0 of H to 0× (A1×X) equals i ◦ p, whereas the restriction H1 of H to
1× (A1×X) equals the identity. Thus, Lemma 7.1 implies that the homomorphism
in homotopy groups induced by i ◦ p equals the identity. �

Proposition 7.2 does not apply to the prespectrum Kq(∆•X) since the assignment
X 7→ Kq(∆•X) is contravariant functorial only for flat morphisms. To prove the
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homotopy invariance of the prespectrum Kq(∆•X) we use a modification of a method
developed by S. Bloch [B1 ].

For any a ∈ A1(F ) denote by Fqa(∆n×A1×X) the family of supports consisting
of all closed subschemes of ∆n × A1 ×X which for any face ∆m ⊂ ∆n intersect in
codimension ≥ q the subschemes ∆m ×A1 ×X and ∆m × a×X. Since, according
to the definition, the inverse image of any Y ∈ Fqa(∆n ×A1 ×X) under the closed

embedding ia : ∆n × X
v×x 7→v×a×x−−−−−−−−→ ∆n × A1 × X is in Fq(∆n × X) we have

canonical morphisms of spaces and prespectra (specialization at a)

sa = i∗a : |SF
q
a
• (∆• × A1 ×X)| −→ |SF

q

• (∆• ×X)|

sa = i∗a : KF
q
a (∆• × A1 ×X) −→ KF

q

(∆• ×X).

We refer the reader to §B.6 for a brief discussion of the Waldhausen construction

of the simplicial set S
{Xi}
• (X) ≡ wS•(CP{Xi}(X))) obtained from the Waldhausen

category CP{Xi}(X) of complexes of big vectors bundles on X acyclic outside of
the family of closed subschemes {Xi ⊂ X}. The geometric realization of this
simplicial set is the first term of the Ω-prespectrum K{Xi}(X). Thus, the spaces
and prespectra above arise as geometric realizations of bisimplicial sets obtained
by applying this construction to the cosimplicial schemes ∆• × A1 ×X,∆• ×X.

Assume now that we have two elements a, b ∈ A1(F ). Denote by Fqa,b(∆n×A1×
X) the family of supports consisting of all closed subschemes Z ∈ Fq(∆n×A1×X),
whose inverse image under each of the morphisms

∆n ×X fj×1X−−−−→ ∆n × A1 ×X v×λ×x 7→v×(1−λ)a+λb×x−−−−−−−−−−−−−−−−−→ ∆n × A1 ×X

is in Fq(∆n × X). Here j = (j0 ≤ j1 ≤ ... ≤ jn), jk ∈ {0 < 1} and fj is the
morphism considered in the proof of Lemma 7.1; the second arrow is induced by
the linear automorphism of A1, taking 0 to a and 1 to b. Note that

Fqa,b(∆
n × A1 ×X) ⊂ Fqa(∆n × A1 ×X) ∩ Fqb (∆n × A1 ×X)

and hence both specialization maps sa, sb are defined on |S
Fqa,b
• (∆•×A1×X)|. Using

the same simplicial homotopy as in the proof of Lemma 7.1 we get immediately the
following result.

Lemma 7.3. The specialization maps

|S
Fqa,b
• (∆• × A1 ×X)|

sa−→−→
sb
|SF

q

• (∆• ×X)|

are homotopic.

The following lemma is easily proved by observing that Y ∈ Fq(∆n × A1 ×X)
is not in Fqa(∆n ×A1 ×X) if and only if Y satisfies at least one of a finite number
of proper, closed conditions (of improper intersection with some ∆m × a×X). We
leave the proof to the reader.
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Lemma 7.4. 1) Assume that Y ∈ Fq(∆n×A1×X). Then Y ∈ Fqa(∆n×A1×X)
for all but finitely many a ∈ A1(F ).
2) Assume that Y ∈ Fqa(∆n × A1 ×X). Then Y ∈ Fqa,b(∆n × A1 ×X) for all but

finitely many b ∈ A1(F ).

Lemmas 7.3 and 7.4 easily imply the following corollary.

Corollary 7.5. Let T ⊂ SFq• (∆•×A1×X) be a simplicial subset with only finitely

many non-degenerate simplices. Then T ⊂ S
Fqa
• (∆• × A1 × X) for all but finitely

many a and hence for all but finitely many a we have a well defined specialization
map

sa : |T | −→ |SF
q

• (∆• ×X)|.

Moreover, if F is infinite and if

sb : |T | −→ |SF
q

• (∆• ×X)|

is another specialization map defined on T , then these two maps are homotopic.

Proof. The first statement is obvious from Lemma 7.4. To prove the second, observe
that since F is infinite there are elements c ∈ A1(F ) for which

T ⊂ SF
q
a,c
• (∆• × A1 ×X) ∩ S

Fqb,c
• (∆• × A1 ×X)

and hence sa|T
∼
= sc|T

∼
= sb|T according to Lemma 7.3. �

We can now prove the main result of this section.

Theorem 7.6. Assume that the field F is infinite. For any X ∈ Sm/F and any
p ≥ 0, the canonical morphism of prespectra

Kq(∆• ×X)
p∗−→ Kq(∆• × A1 ×X),

induced by the (flat) projection A1 ×X p−→ X, is a weak equivalence.

Proof. We have to show that the induced homomorphisms in homotopy groups

p∗ : πi(|SF
q

• (∆• ×X)|) −→ πi(|SF
q

• (∆• × A1 ×X)|) (7.6.1)

are isomorphisms. Corollary 7.5 shows that we have well-defined specialization
homomorphisms on homotopy groups

s = sX : πi(|SF
q

• (∆• × A1 ×X)|) −→ πi(|SF
q

• (∆• ×X)|),

and the composition

πi(|SF
q

• (∆• ×X)|) p∗−→ πi(|SF
q

• (∆• × A1 ×X)|) s−→
s−→ πi(|SF

q

• (∆• ×X)|)
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is obviously the identity. To show that the other composition is also the identity it

suffices to consider elements coming from πi of an appropriate |SF
q
a
• (∆•×A1×X)|.

Making if necessary a translation we may even restrict our attention to elements

coming from πi(|T |), where T ⊂ SF
q
0
• (∆•×A1×X) is a finitely generated simplicial

subset. Set Y = A1 ×X and consider the flat morphism m : A1 × Y = A1 × A1 ×
X

a×b×x7→ab×x−−−−−−−−−→ Y = A1 ×X. A straightforward verification shows that the exact

functor m∗ takes SF
q

• (∆•×A1×X) to S
Fq1
• (∆•×A1×Y ) and takes S

Fq0
• (∆•×A1×X)

to S
Fq0
• (∆• × A1 × Y ). Moreover the following diagrams of spaces commute

|SFq• (∆• × A1 ×X)| m∗−−−−→ |SF
q
1
• (∆• × A1 × Y )|

=

y sY1

y
|SFq• (∆• × A1 ×X)| =−−−−→ |SFq• (∆• × Y )|

|SF
q
0
• (∆• × A1 ×X)| m∗−−−−→ |SF

q
0
• (∆• × A1 × Y )|

sX0

y sY0

y
|SFq• (∆• ×X)| p∗−−−−→ |SFq• (∆• × Y )|.

Applying Corollary 7.5 to Y and using the above commutative diagrams we con-
clude that the restriction of p∗ ◦ sX0 to |T | is homotopic to the identity map which
concludes the proof. �

Theorem 7.6 implies in particular the following extension of Theorem 6.1.

Corollary 7.7. For any n, q ≥ 0 the following sequence of Ω-prespectra is a ho-
motopy fibration

Kq+1(∆• × An) −→ Kq(∆• × An) −→ B(zq(An, •)). (7.7.1)

More precisely the composition of the above maps is trivial and the induced map

Kq+1(∆• × An) −→ fib (Kq(∆• × An) −→ B(zq(An, •)))

is a weak equivalence.

Proof. As previously remarked in the proof of Proposition 5.4 (cf. [La], [B-L]), the
canonical homomorphism

KF
q

0 (∆m × An) −→ zq(An,m)

is an isomorphism. Thus the second arrow of (7.7.1) is the canonical morphism of
prespectra associated to the simplicial prespectrum m 7→ Kq(∆m × An) and the
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composition of arrows is trivial. Observe that the projection p : An → SpecF gives
us a commutative diagram all vertical arrows of which are weak equivalences,

Kq+1(∆•) −−−−→ Kq(∆•) −−−−→ B(zq(F, •))

p∗
y p∗

y p∗
y

Kq+1(∆• × An) −−−−→ Kq(∆• × An) −−−−→ B(zq(An, •)).

Since the top row is a homotopy fibration by Theorem 6.1, the bottom row is a
homotopy fibration as well. �

We conclude this section with few further remarks concerning the situation dis-

cussed above. For any a ∈ A1(F ) denote by la : A1 t 7→t+a−−−−→ A1 the automorphism
”translation by a”.

Lemma 7.8. The associated map of spaces

l∗a : |SF
q

• (∆• × A1 ×X)| −→ |SF
q

• (∆• × A1 ×X)|

is homotopic to the identity map.

Proof. Set Y = A1 ×X and denote by l : A1 × Y = A1 × A1 ×X −→ A1 ×X the
morphism taking a× b×x to (a+ b)×x. A straightforward verification shows that

l∗ takes |SFq• (∆• × A1 ×X)| to |SF
q
0,a
• (∆• × A1 × Y )|. Since sY0 l

∗ = id, sYa l
∗ = l∗a

our statement follows from Lemma 7.3. �

One derives easily from the above proof an explicit simplicial homotopy relating
l∗a and the identity map.

(7.10.0) Hn(j ×m) = (fj × 1X)∗(m) (j ∈ In,m ∈ |SF
p

• (∆n × A1 ×X)|)

where this time fj : ∆n×A1 −→ ∆n×A1 is an automorphism given by the formula

(t0, ..., tn)× t 7→ (t0, ..., tn)× (t0j0 + ...+ tnjn)a+ t.

The same simplicial homotopy may be used to prove the following result.

Lemma 7.9. The map

l∗a : |SF
q
0,a
• (∆• × A1 ×X)| −→ |SF

q
0
• (∆• × A1 ×X)|

is homotopic to the natural embedding. �

Applying Corollary 7.5 and Lemma 7.9, we conclude the following.
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Corollary 7.10. Assume that the field F is infinite. Then the natural embedding

|SF
q
0
• (∆• × A1 ×X)| ↪→ |SFq• (∆• × A1 ×X)| is a weak equivalence.

Proof. For any finitely generated simplicial subset T ⊂ SFq• (∆•×A1×X) one can

find a ∈ A1(F ) such that T ⊂ SF
q
a
• (∆• × A1 ×X) and consider a map

|T | ↪→ |SF
q
a
• (∆• × A1 ×X)| l

∗
a−→ |SF

q
0
• (∆• × A1 ×X)|.

Lemma 7.9 implies that the resulting map is (up to homotopy) independent of the
choice of a (cf. the proof of Corollary 7.5) and the composition

|T | −→ |SF
q
0
• (∆• × A1 ×X)| ↪→ |SF

q

• (∆• × A1 ×X)|

is homotopic to the realization of the given simplicial inclusion. In this way we

get canonical homomorphisms πi(|SF
q

• (∆• ×A1 ×X)|) −→ πi(|S
Fq0
• (∆• ×A1 ×X)|)

inverse to the homomorphisms induced by the embedding |SF
q
0
• (∆• × A1 ×X)| ↪→

|SFq• (∆• × A1 ×X)|. �

Remark 7.11 We’ll show later (in Theorem 9.6) how to eliminate the assumption
of infiniteness of the field F in the results of this and next section.

§8. The Ω-prespectrum Kq(∆• × Aq)
and sheaves with quasifinite support.

The purpose of this section is to demonstrate that the Ω-prespectra Kq(∆•) can
be replaced up to weak equivalence by the Ω-prespectra KQ(∆•×Aq). Here, Q(∆n×
Aq) denotes the family of supports on ∆n ×Aq consisting of all closed subschemes
quasifinite over ∆n. A major advantage of such a replacement is thatX 7→ KQ(∆•×
Aq ×X) (as defined later in this section) is a well defined contravariant functor on
the category Sm/F .

The technique we employ is borrowed from [Su] where it is shown that if Bloch’s
condition on codimension q cycles on ∆n×X that the cycles have good intersection
with all faces is replaced (for q less than or equal to the dimension of X) by the
stronger condition that the cycles be equidimensional over ∆n then the resulting
complex is weakly equivalent to Bloch’s complex zq(X, •).

Throughout this section the field F is assumed to be infinite.
We begin by recalling the key technical “moving” result which permits such a

replacement.

Theorem 8.1 [Su]. Let S be an affine scheme, let further V be a closed subscheme
in ∆n × S and let t be a nonnegative integer with the property dimV ≤ n + t.
Assume that we are given an effective divisor Z ⊂ ∆n and an S-morphism ψ :
Z × S → ∆n × S. Then there exists an S-morphism φ : ∆n × S → ∆n × S such
that

(1) φ|Z×S = ψ
(2) The fibers of the projection φ−1(V ) → ∆n over points of ∆n \ Z are of

dimension ≤ t.
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Let φ• : ∆• × Aq −→ ∆• × Aq be a family of Aq-morphisms such that for every
strictly increasing map θ : [m]→ [n] the diagram

∆m × Aq φm−−−−→ ∆m × Aq

θ∗×1

y θ∗×1

y
∆n × Aq φn−−−−→ ∆n × Aq

commutes. In this situation we will say that φ• is a pseudo endomorphism of the
cosimplicial scheme ∆• × Aq. Denote by φFq resp φQ the family of supports on
∆n × Aq consisting of those Y ∈ Fp(∆n × Aq) (resp. Y ∈ Q(∆n × Aq)) whose
inverse image under φn still belongs to Fq(∆n × Ap) (resp. to Q(∆n × Aq)). For
each n, the morphism φn defines a map

φ∗n : |SφF
q

• (∆n × Aq)| −→ |SF
q

• (∆n × Aq)|.

These maps are compatible with the maps induced by the strictly increasing θ :
[m]→ [n] and hence give a map on Segal realizations

|| n 7→ |SφF
q

• (∆n × Aq)| || φ
∗

−→ || n 7→ |SF
q

• (∆n × Aq)| ||.

In the same way we get a map

|| n 7→ |SφQ• (∆n × Aq)| || φ
∗

−→ || n 7→ |SQ• (∆n × Aq)| ||.

Using Theorem 8.1, we establish the existence of pseudo endomorphisms trans-
porting a finite family {Y ni } ⊂ Fq(∆n ×Aq) to a family of subschemes quasi-finite
over ∆n.

Proposition 8.2. Assume that we are given an integer N ≥ 0 and for each 0 ≤
n ≤ N a finite subfamily {Y ni } ⊂ Fq(∆n × Aq). Then there exists a pseudo
endomorphism φ• : ∆• × Aq → ∆• × Aq such that

φ−1
n (Y ni ) ∈ Q(∆n × Aq) ∀ 0 ≤ n ≤ N, ∀ i

and, in particular, Y ni ∈ φFq(∆n × Aq).
Proof. We may assume obviously that for any strictly increasing map θ : [m] →
[n] (0 ≤ m ≤ n ≤ N) and for any i the scheme (θ∗ × 1Aq )

−1(Y ni ) is a member of
the family {Y mj }. We proceed to construct φn : ∆n ×Aq −→ ∆n ×Aq which satisfy
the following properties

(1) The following diagrams (in which δi : [n−1]→ [n] (0 ≤ i ≤ n) is the strictly
increasing map missing i) commute

(8.3.0)

∆n−1 × Aq φn−1−−−−→ ∆n−1 × Aq

(δi)∗×1

y (δi)∗×1

y
∆n × Aq φn−−−−→ ∆n × Aq.

(2) If n ≤ N then φ−1
n (Y ni ) ∈ Q(∆n × Aq) ∀ i.
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Assume that we have already constructed φ0, ..., φn−1 which satisfy the above prop-
erties. Commutativity of diagrams (8.3.0) determines the morphism φn on each of
the faces ∆n

i ×Aq ⊂ ∆n×Aq (∆n
i ⊂ ∆n is the divisor given by the equation ti = 0).

Moreover the inductive assumption implies that these data are compatible one with
another and define a morphism ψ : ∂∆n × Aq → ∆n × Aq, where ∂∆n ⊂ ∆n is
the divisor given by the equation t0 · ... · tn = 0. According to Theorem 8.1 we
may extend ψ to a morphism φn : ∆n × Aq → ∆n × Aq, so that the projection
φ−1
n (Y ni )→ ∆n is quasifinite outside ∂∆n. However, over ∂∆n the above projection

is quasifinite according to the induction assumption. Thus φ−1
n (Y ni ) is quasifinite

over ∆n. �

The following is an immediate corollary of Proposition 8.2.

Corollary 8.3. For any compact subset K ⊂ || n 7→ |SFq• (∆n × Aq)| ||, there

exists a pseudo endomorphism φ• such that K ⊂ || n 7→ |SφF
q

• (∆n × Ap)| || and
φ∗(K) ⊂ || n 7→ |SQ• (∆n × Aq)| ||.

Our next objective is to show that the embeddings of K and φ∗(K) in Corollary
8.3 above are homotopic. To do so, we repeat the argument of Proposition 8.2 to
construct a homotopy.

By a homotopy between φ• and the identity endomorphism we mean a pseudo
endomorphism

Φ• : ∆• × A1 × Aq −→ ∆• × A1 × Aq

of the cosimplicial scheme ∆•×A1×Aq such that the following diagrams (in which
i0 and i1 denote closed embeddings defined by points 0, 1 ∈ A1) commute

∆• × Aq φ•−−−−→ ∆• × Aq

i0

y i0

y
∆• × A1 × Aq Φ•−−−−→ ∆• × A1 × Aq

∆• × Aq =−−−−→ ∆• × Aq

i1

y i1

y
∆• × A1 × Aq Φ•−−−−→ ∆• × A1 × Aq.

For a homotopy Φ• as above let ΦFq(∆n × A1 × Aq) (resp ΦQ(∆n × A1 × Aq))
be a family of supports on ∆n × A1 × Aq, consisting of those closed subschemes
Y ∈ Fq(∆n × A1 × Aq) (resp., Y ∈ Q((∆n × A1) × Aq)) whose inverse image
under any morphism of the form Φn ◦ (fj × 1Aq ) : ∆n × Aq → ∆n × A1 × Aq (here
j = (j0 ≤ j1 ≤ ... ≤ jn) ji ∈ {0 < 1} is a nondecreasing sequence and fj is a
morphism defined in the proof of Lemma 7.1) belongs to Fq(∆n × Aq) (resp. to
Q(∆n × Aq)).

Let ΦFq(∆n×Aq) (resp ΦQ(∆n×Aq)) denote a family of supports on ∆n×Aq,
consisting of those closed subschemes Y , whose inverse image under the projection
p : ∆n×A1×Aq −→ ∆n×Aq is in ΦFq(∆n×A1×Aq) (resp. is in ΦQ(∆n×A1×Aq)).
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Proposition 8.4. Assume that we are given an integer N ≥ 0 and for each 0 ≤
n ≤ N a finite subfamily {Y ni } ⊂ φFq(∆n × Aq) (resp. {Y ni } ⊂ φQ(∆n × Aq)).
Then there exists a homotopy Φ• : ∆•×A1×Aq → ∆•×A1×Aq between φ• and the
identity endomorphism such that Y ni ∈ ΦFq(∆n ×Aq) (resp. Y ni ∈ ΦQ(∆n ×Ap)).

Proof. We may assume obviously that for any strictly increasing map θ : [m] →
[n] (0 ≤ m ≤ n ≤ N) and for any i the scheme (θ∗ × 1Aq )

−1(Y ni ) is a member of
the family {Y mj }. We proceed to construct Φn : ∆n × A1 × Aq −→ ∆n × A1 × Aq
which satisfy the following properties

(1) The following diagrams (in which δi : [n−1]→ [n] (0 ≤ i ≤ n) is the strictly
increasing map missing i) commute

(8.4.0)

∆n−1 × A1 × Aq Φn−1−−−−→ ∆n−1 × A1 × Aq

(δi)∗×1

y (δi)∗×1

y
∆n × A1 × Aq Φn−−−−→ ∆n × A1 × Aq.

(2) The following diagrams commute

∆n × Aq φn−−−−→ ∆n × Aq

i0

y i0

y
∆n × A1 × Aq Φn−−−−→ ∆n × A1 × Aq

∆n × Aq =−−−−→ ∆n × Aq

i1

y i1

y
∆n × A1 × Aq Φn−−−−→ ∆n × A1 × Aq.

(3) If n ≤ N then for any i the projection Φ−1
n (Y ni ×A1) −→ ∆n×A1 is quasifinite

over ∆n × (A1 \ {0, 1}).
The construction of Φ’s repeats word by word the construction of φ’s in the proof
of Proposition 8.2 and we skip the obvious details.

In case of the family of supports Q we can say moreover that the projection
Φ−1
n (Y ni × A1) −→ ∆n × A1 is quasifinite over all ∆n × A1 (over ∆n × {0, 1} it is

quasifinite since Y ni ∈ φQ(∆n×Ap)). This implies readily that the inverse image of
Φ−1
n (Y ni ×A1) under the morphism fj × 1 : ∆n×Aq → ∆n×A1×Aq is quasifinite

over ∆n, i.e. Y ni ∈ ΦQ(∆n × Aq), which finishes the proof in this case.
In the case of the family of supports Fq, one readily verifies that the inverse

image of Φ−1
n (Y ni × A1) under the morphism fj × 1 : ∆n × Aq → ∆n × A1 × Aq

is of codimension ≥ q. Since the pull back of this scheme under the morphism

∆m×Aq θ∗×1−−−→ ∆n×Aq corresponding to the strictly increasing map θ : [m]→ [n]
may be obtained in a similar way from ((θ∗ × 1Aq )

−1Y ni ) × A1 we conclude that
(Φn ◦ (fj × 1))−1(Y ni ) ∈ Fq(∆n × Aq) i.e. Y ni ∈ ΦFq(∆n × Aq). �
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Two maps between pointed spaces (X,x0)
f−→−→
g

(Y, y0) are weakly homotopic if

their restrictions to any compact subspace K ⊂ X, containing x0 are related by a
(base point preserving) homotopy. Proposition 8.4 leads to the following important
result about pseudo endomorphisms.

Proposition 8.5. Let φ• be a pseudo endomorphism of the cosimplicial scheme
∆• × Aq. Then the morphisms

|| n 7→ |SφF
q

• (∆n × Aq)| || φ
∗

−→ || n 7→ |SF
q

• (∆n × Aq)| ||.

|| n 7→ |SφQ• (∆n × Aq)| || φ
∗

−→ || n 7→ |SQ• (∆n × Aq)| ||.
are weakly homotopic to the canonical inclusion maps.

Proof. Let Φ• be a homotopy between φ• and the identity endomorphism. Asso-
ciating to every pair j ×m ∈ In × |SΦFq

• (∆n × A1 × Aq)| the element (Φn ◦ (fj ×
1Aq ))

∗(m) ∈ |SFq• (∆n × Ap)|, we get a sequence of maps Hn : In × |SΦFq
• (∆n ×

A1×Aq)| → |SFq• (∆n×Aq)| which are compatible with maps of the corresponding
spaces defined by strictly increasing θ : [m]→ [n] and hence define a map on Segal
realizations

|| I• × (n 7→ |SΦFq
• (∆n × A1 × Aq)|) || H−→ || n 7→ |SF

q

• (∆n × Aq)| ||.
Since for any simplicial space Z• the obvious embeddings

||Z•|| −→−→||I• × Z•||

defined by points 0 and 1 are homotopic, we conclude the commutativity up to
homotopy of the following diagrams.

|| n 7→ |SΦFq
• (∆n × A1 × Aq)| || i∗0−−−−→ || n 7→ |SφF

q

• (∆n × Aq)| ||

i∗1

y φ∗
y

|| n 7→ |SFq• (∆n × Aq)| || =−−−−→ || n 7→ |SFq• (∆n × Aq)| ||

|| n 7→ |SΦQ
• (∆n × A1 × Aq)| || i∗0−−−−→ || n 7→ |SφQ• (∆n × Aq)| ||

i∗1

y φ∗
y

|| n 7→ |SQ• (∆n × Aq)| || =−−−−→ || n 7→ |SQ• (∆n × Aq)| ||.
Observe that the compositions p ◦ i0 and p ◦ i1 coincide with the identity mor-

phism. Thus, we conclude that ΦFq(∆n × Aq) ⊂ φFq(∆n × Aq) and the restric-

tion of φ∗ to || n 7→ |SΦFq
• (∆n × Aq)| || is homotopic to the inclusion map || n 7→

|ΦFq(∆n×Aq)| || ↪→ || n 7→ |Fq(∆n×Aq)| ||. Similarly, ΦQ(∆n×Aq) ⊂ φQ(∆n×Aq)
and the restriction of φ∗ to || n 7→ |SΦQ

• (∆n ×Aq)| || is homotopic to the inclusion
map || n 7→ |ΦQ(∆n × Aq)| || ↪→ || n 7→ |Q(∆n × Aq)| ||.

The proof is now complete by appealing to Proposition 8.4 �

The preceding results in conjunction with Theorem 7.6 now provide us with the
following theorem.
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Theorem 8.6. The embedding of Ω-prespectra

KQ(∆• × Aq) ↪→ KF
q

(∆• × Aq)←↩ KF
q

(∆•)

are weak equivalences.

Proof. Theorem 7.6 asserts that the right embedding is a weak equivalence. Corol-
lary 8.3 and Proposition 8.5 show easily that the embedding of spaces

|| n 7→ |SQ• (∆n × Aq)| || ↪→ || n 7→ |SF
q

• (∆n × Aq)| ||

is a weak equivalence. Since the natural projection from the Segal realization to
the usual one is also an equivalence, we conclude that the embedding

| n 7→ |SQ• (∆n×Aq)| | = |SQ• (∆•×Aq)| ↪→ | n 7→ |SF
q

• (∆n×Aq)| | = |SF
q

• (∆•×Aq)|

is a weak equivalence as well. �

We are going to change our notations slightly. For any schemes X,S ∈ Sm/F
denote by KQ,S(X) the K-theory prespectrum of the scheme S ×X with family of
supports QX(S × X) consisting of all closed subschemes quasi-finite over X, and
by ZQ,S(X) denote the free abelian group generated by closed integral subschemes
Z ⊂ X × S, which are quasifinite and dominant over some connected component
of X. The presheaf X 7→ ZQ,S(X) is an etale sheaf with transfers in the sense of
Voevodsky [V1]. This is a special case of the sheaf of equidimensional cycles studied
in [F-V].

Lemma 8.7. 1) For any X,S ∈ Sm/F there exists a natural surjective homomor-

phism KQ,S0 (X) −→ ZQ,S(X).
2) In case X = An the above homomorphism is an isomorphism.

Proof. The K-groups KQ,S∗ (X) coincide with the K-groups of an abelian category
M, consisting of coherent sheaves F on S ×X such that SuppF ∈ QX(S ×X) -
see [TT]. Let M′ denote the Serre subcategory of M consisting of sheaves F ∈M
whose support is not dominant over a component of X. The quotient abelian
category M/M′ may be identified with

∐
zMfl(Oz), where Mfl stands for the

category of modules of finite length and z in the coproduct runs throughout the set
of generic points of closed integral subschemes Z ⊂ S × X, which are quasifinite
and dominant over a component of X. According to the devissage Theorem [Q2]
the group K0(

∐
zMfl(Oz)) coincides with ZQ,S(X), which immediately provides

us with the desired natural surjective homomorphism.
To show that this homomorphism is an isomorphism in case X = An one has to

show that in this case the embeddingM′ ↪→M induces a zero map on K0-groups.
The proof of this last fact is based on the use of the linear version of Quillen’s trick
and proceeds as follows - cf. [La] proof of Theorem 1.2.

Let M be a coherent sheaf on An × S whose support Z = SuppM is quasifinite
but not dominant over An . Denote by Y the closure of the image of Z in An.
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Since dimY < n there exists a non-zero polynomial P ∈ F [X1, ..., Xn] vanishing
on Y . Making a change of variables we may even assume that P is monic in Xn.
Denote by p : An × S −→ An−1 × S the projection onto the first n− 1 coordinates.
Since a sufficiently high power of P annihilates M , we conclude easily that p∗(M)
is a coherent sheaf on An−1×S, with support quasifinite over An−1. Multiplication
by Xn determines an endomorphism α of p∗(M). Finally we use the well-known
characteristic exact sequence of an endomorphism (see [Ba], ch 12)

0 −→ p∗(p∗(M))
Xn−p∗(α)−−−−−−→ p∗(p∗(M)) −→M −→ 0

to conclude that [M ] = [p∗(p∗(M))]− [p∗(p∗(M))] = 0 ∈ K0(M). �

Lemma 8.7.1. Let S, S′ ∈ Sm/F be equidimensional schemes with dimS′ <
dimS. Let further X ∈ Sm/F be a scheme and f : X×S′ → X×S be a quasifinite
morphism over X. Then the induced homomorphism

KQ,S0 (X)
f∗−→ KQ,S

′

0 (X) −→ ZQ,S
′
(X)

is trivial.

Proof. We may obviously assume that X is irreducible. As was noted above the

group KQ,S0 (X) coincides with K0(M), whereM is the abelian category of coherent
sheaves on X×S with support quasifinite over X - see [TT]. For any M ∈M denote

by [M ] its class in KQ,S0 (X) = K0(M). To compute the image of [M ] under f∗

one should consider a resolution

0←−M ←− P0 ←− P1 ←− . . .←− Pn ←− 0

of M by vector bundles, apply f∗ to P• and take the alternating sum of classes of
the homology sheaves of f∗(P•). In other words the inverse image is given by the
usual Tor-formula

f∗([M ]) =
∞∑
i=0

(−1)i[Tor
OX×S
i (OX×S′ ,M)].

Let Z ′ ⊂ X×S′ be a closed integral subscheme quasifinite and dominant over X, let
z′ be the generic point of Z ′ and let z = f(z′) denote the image of z′ in X×S. The

multiplicity with which Z ′ appears in the image of f∗([M ]) in ZQ,S′(X) coincides
with

∞∑
i=0

(−1)ilOX×S′,z′ (Tor
OX×S
i (OX×S′ ,M)z′) =

= [F (z′) : F (z)] ·
∞∑
i=0

(−1)ilOX×S,z (Tor
OX×S,z
i (OX×S′,z′ ,Mz)).
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The last expression is zero since

dimOX×S′,z′ + dimMz ≤ dimX + dimS′ − dimZ ′ + dimSuppM − dimZ =

= dimS′ + dimSuppM − dimX ≤ dimS′ < dimS = dimX + dimS − dimZ =

= dimOX×S,z

- see [Se], ch 5, §3 .
�

Note that, for any S, X 7→ KQ,S(X) is a contravariant functor from Sm/F
to the category of prespectra. This implies in particular that for any cosimplicial
scheme X• the prespectra KQ,S(Xn) form a simplicial prespectrum and we may
set (as always) KQ,S(X•) = |n 7→ KQ,S(Xn)|. Thus the Ω-prespectrum which we
previously denoted by KQ(∆• × Aq) will now be denoted by KQ,Aq (∆•).

Note further that every quasifinite morphism S′ → S defines a natural (in X)
morphism of prespectra

KQ,S(∆• ×X) −→ KQ,S
′
(∆• ×X)

In particular we have a natural (in X) morphism of prespectra

KQ,A
q+1

(∆• ×X) −→ KQ,A
q

(∆• ×X).

corresponding to the embedding i0 : Aq ↪→ Aq+1 = Aq × A1 defined by the point
0 ∈ A1.

Setting Cn(ZQ,S)(X) = ZQ,S(∆n × X) we get a simplicial sheaf C•(ZQ,S). In
view of Lemma 8.7, the usual construction (cf. §B.2) provides us with a canonical
morphism of prespectra

KQ,A
q

(∆•) −→ B(C•(ZQ,A
q

)(SpecF )).

Lemma 8.7.1 shows that the composition

KQ,A
q+1

(∆•) −→ KQ,A
q

(∆•) −→ B(C•(ZQ,A
q

)(SpecF ))

is trivial.

Lemma 8.8. Let Q0(∆n × Aq+1) denote the family of supports on ∆n × Aq+1

consisting of those closed subschemes Y ∈ Q(∆n × Aq+1) whose intersection with
∆n × Aq belongs to Fq+1(∆n × Aq). Then natural morphisms of prespectra

KQ0,Aq+1

(∆•) −→ KQ,A
q+1

(∆•)

KQ0,Aq+1

(∆•) −→ Kq+1(∆• × Aq)

are weak equivalences.
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Proof. Essentially the same argument as in the proof of Corollary 7.10 establishes
that the first embedding is a weak equivalence. To show that the second morphism
is a weak equivalence we note that it coincides with the composition

KQ0,Aq+1

(∆•) −→ KF
q+1
0 (Aq × A1 ×∆•)

s0−→ Kq+1(∆• × Aq)
where the first arrow is induced by the obvious inclusion of families of supports
and the second arrow is the specialization at 0 morphism considered in §7. The
first equivalence of the present Lemma together with Corollary 7.10 imply that the
first arrow above is a weak equivalence, whereas Theorem 7.6 in conjunction with
Corollary 7.10 show that the second arrow is an equivalence as well. �

Theorem 8.9. The sequence of maps

KQ,A
q+1

(∆•) −→ KQ,A
q

(∆•) −→ B(C•(ZQ,A
q

)(F ))

is a homotopy fibration.

Proof. By Lemma 8.8, it suffices to show that the sequence

KQ0,Aq+1

(∆•) −→ KQ,A
q

(∆•) −→ B(C•(ZQ,A
q

)(F ))

is a homotopy fibration. Consider the following commutative diagram

KQ0,Aq+1

(∆•) −−−−→ KQ,Aq (∆•) −−−−→ B(C•(ZQ,A
q

)(F ))y y y
Kq+1(∆• × Aq) −−−−→ Kq(∆• × Aq) −−−−→ B(zq(Aq, •)).

By Lemma 8.8, the left vertical map is a weak equivalence, Theorem 8.6 implies
that the middle vertical arrow is a weak equivalence, and [Su] verifies that the right
vertical arrow is also a weak equivalence. Since the bottom row is a homotopy
fibration by Corollary 7.7, the top row is likewise a homotopy fibration. �

The embedding Aq ↪→ Aq+1, used above to define the morphism of prespectra

KQ,Aq+1

(∆•) −→ KQ,Aq (∆•) is by no means essential for our construction. The
following result shows that we can replace it by any other coordinate embedding.

Lemma 8.10. Let i, i′ : Aq → Aq+1 be two coordinate embeddings (i.e. embed-
dings of the form (x1, ..., xq) 7→ (x1, ..., 0

k
, ..., xq)). For any scheme X ∈ Sm/F the

corresponding morphisms of prespectra KQ,Aq+1

(∆•×X) −→ KQ,Aq (∆•×X) are ho-
motopic. Moreover the corresponding homotopy becomes constant being composed
with the morphism KQ,Aq (∆• × X) −→ B(C•(ZQ,A

q

)(X)) and hence the resulting
morphisms

KQ,A
q+1

(∆• ×X) −→ fib{KQ,A
q

(∆• ×X)→ B(C•(ZQ,A
q

)(X))}
are also homotopic.

Proof. It suffices to consider the case when the corresponding indices k differ by 1.
In this case one checks easily that the morphism Aq × A1 −→ Aq+1 × A1 (x, t) 7→
(t · i(x) + (1− t) · i′(x), t) is quasifinite and our statement follows from the following
(more general) fact.
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Lemma 8.10.1. Let i, i′ : Aq → Aq+1 be two quasifinite morphisms for which the
morphism

I : Aq × A1 −→ Aq+1 × A1 (x, t) 7→ (t · i(x) + (1− t) · i′(x), t)

is quasifinite as well. Then for any scheme X ∈ Sm/F the corresponding mor-

phisms of prespectra KQ,Aq+1

(∆•×X) −→ KQ,Aq (∆•×X) are canonically homotopic
and the corresponding homotopy becomes trivial being composed with the morphism
KQ,Aq (∆• ×X) −→ B(C•(ZQ,A

q

)(X)).

Proof. Consider the following diagram of prespectra

KQ,A
q+1

(∆• ×X) −→ KQ,A
q

(∆• ×X × A1) −→−→KQ,A
q

(∆• ×X).

Here the first arrow is induced by the morphism Aq × A1 −→ Aq+1 (x, t) 7→ t ·
i(x) + (1− t) · i′(x), and the last two arrows are pull-backs corresponding to closed
embeddings X → X×A1 defined by closed points 0, 1 ∈ A1. Now it suffices to note
that the two morphisms in question coincide with the top and bottom compositions
of the above morphisms and use Lemma 7.1. The fact that the resulting homotopy
becomes trivial being composed with KQ,Aq (∆• ×X) −→ B(C•(ZQ,A

q

)(X)) follows
easily from the explicit form of the homotopy, using Lemma 8.7.1. �

Consider in particular the special case where i = iq, i
′ = iq−1 are two coordinate

embeddings (so that i∗ is the standard morphism used before). Let Ft denote the
homotopy relating the morphisms i∗q and i∗q−1. In §14 we will need the following
property of this homotopy.

Lemma 8.10.2. The homotopy Ft becomes constant being composed with the mor-

phism KQ,Aq (∆• ×X) −→ KQ,Aq−1

(∆• ×X).

Proof. Note that the composition

Aq−1 × A1 −→ Aq × A1 (x,t)7→ti(x)+(1−t)i′(x)−−−−−−−−−−−−−−−→ Aq+1

coincides with the composition Aq−1 × A1 p−→ Aq−1 ↪→ Aq+1. This implies readily
the commutativity of the diagram

KQ,Aq+1

(∆• ×X) −−−−→ KQ,Aq (∆• ×X × A1)
i∗0 ,i
∗
1−−−−→ KQ,Aq (∆• ×X)y y y

KQ,Aq−1

(∆• ×X)
p∗−−−−→ KQ,Aq−1

(∆• ×X × A1)
i∗0 ,i
∗
1−−−−→ KQ,Aq−1

(∆• ×X).

Our result follows now from Remark 7.1.1 �
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§9. Transfers in homotopy groups of
prespectra Kq(∆• × X) and KQ,Aq (∆• × X).

In this section we define transfers in the homotopy groups of the prespectra in
the title of the section corresponding to finite flat morphisms. This construction
will be crucial in §11. Here we use it to extend the results of the two previous
sections to the case of finite fields.

Let p : D −→ S be a finite flat morphism of schemes. Consider the functor
p∗ : P(Sch/D) → P(Sch/S). This functor is defined uniquely up to a unique
isomorphism, but not quite uniquely as yet. To make it absolutely well-defined
we have to fix models for all schemes S′ ×S D (S′ ∈ Sch/S). As soon as these
choices are made the required big vector bundle is defined uniquely by the formula
p∗(P )(S′) = P (D ×S S′). Here P : Sch/D → Ab is a big vector bundle on the
site Sch/D and the resulting sheaf of O-modules on the site Sch/S is a big vector
bundle since the morphism p : D −→ S is finite and flat. Let now S′ → S be a
scheme of finite type over S. Proceeding in the same way as above we may consider
the functor p′∗ : P(Sch/D ×S S′) → P(Sch/S′). Note however that by now we
don’t need to make any choices, since for any S′′/S′ the scheme S′′ ×S D already
fixed above may (and will) be chosen as the model for (D×S S′)×S′ S′′. With this
agreement we see immediately that the following statement holds.

Lemma 9.1. Consider a Cartesian diagram of schemes as above

D′ = D ×S S′ −−−−→ D

p′
y p

y
S′ −−−−→ S .

Then the following diagram of functors strictly commutes.

P(Sch/D)
res−−−−→ P(Sch/D′)

p∗

y p′∗

y
P(Sch/S)

res−−−−→ P(Sch/S′) .

Here the horizontal arrows are the inverse image (restriction of the domain) func-
tors and the vertical arrows are the direct image functors as fixed above.

�
We shall use the notation TrD/S for the functors p∗, p

′
∗ introduced above. Lemma

9.1 implies immediately the following corollary

Corollary 9.2. Let θ : [m]→ [n] be a non-decreasing map and let the same letter
θ be used to denote the corresponding morphism of schemes ∆m → ∆n. For any
q ≥ 0 the following diagram of functors strictly commutes

P(Sch/∆n × Aq ×D)
θ∗−−−−→ P(Sch/∆m × Aq ×D)

TrD/S

y TrD/S

y
P(Sch/∆n × Aq × S)

θ∗−−−−→ P(Sch/∆m × Aq × S).
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�
Corollary 9.2 implies readily that for any q ≥ 0 we get natural morphisms of

simplicial prespectra (where in the second case we assume that the scheme S, and
hence also D, is equidimensional)

TrD/S :KQ,A
q

(∆• ×D) −→ KQ,A
q

(∆• × S)

TrD/S :Kq(∆• ×D) −→ Kq(∆• × S).

Moreover one checks easily that if we change the choices for the fiber products
which were made to produce the above map then the corresponding maps

TrD/S : KQ,A
q

(∆n ×X) −→ KQ,A
q

(∆n × S), T rD/S : Kq(∆• ×D) −→ Kq(∆• × S)

are replaced by homotopic ones and, in particular, the induced homomorphisms in
homotopy groups are independent of the choices made. We keep the same notation
TrD/S for the maps in homotopy groups of the above prespectra induced by the
morphisms of prespectra TrD/S .

In case of the prespectrum KQ,Aq (∆n×X), which depends contravariantly func-
torially on X, the transfer maps are compatible with pull backs. The following
statement follows immediately from Lemma 9.1.

Lemma 9.3. Let f : S′ → S be a scheme of finite type over S. Consider the
Cartesian diagram

D′ = D ×S S′
fD−−−−→ D

p′
y p

y
S′

f−−−−→ S.

Then the following diagram of simplicial prespectra commutes

KQ,Aq (∆• ×D)
f∗D−−−−→ KQ,Aq (∆• ×D′)

TrD/S

y TrD′/S′

y
KQ,Aq (∆• × S)

f∗−−−−→ KQ,Aq (∆• × S′).

Proposition 9.4. Assume that the vector bundle p∗(OD) is a free OS-module of
rank n. Then the compositions

πi(KQ,A
q

(∆• × S))
p∗−→ πi(KQ,A

q

(∆• ×D))
TrD/S−−−−→ πi(KQ,A

q

(∆• × S))

πi(Kq(∆• × S))
p∗−→ πi(Kq(∆• ×D))

TrD/S−−−−→ πi(Kq(∆• × S))

coincide with multiplication by n.
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Proof. This follows easily from the Waldhausen Additivity Theorem [Wa] in view
of the fact that the composition functor p∗ ◦p∗ is naturally isomorphic to the direct
sum of n copies of the identity functor.

As a first application of the existence of the transfer maps we show that the
results of the previous two sections remain valid over finite fields. To do this, we
need one more elementary technical result.

Lemma 9.5. Let E/F be an algebraic extension of fields. Then for any scheme
X ∈ Sm/F we have natural isomorphisms

KQ,A
q

i (∆• ×XE) = lim−→
L

KQ,A
q

i (∆• ×XL)

Kq
i (∆• ×XE) = lim−→

L

Kq
i (∆• ×XL)

where L runs through all finite subextensions of E/F .

�

Theorem 9.6. All the results of §7 and §8 (in particular, Theorems 7.6, 8.6, 8.9)
are valid over finite fields.

Proof. We only show how to extend Theorem 7.6 to the case of finite fields, other
results are extended in the same way. Let F be a finite field and let X/F be a
smooth scheme over F . We have to show that the homomorphisms

Kq
i (∆• ×X)

p∗−→ Kq
i (∆• × A1 ×X)

are isomorphisms. We shall show that these maps are injective, surjectivity is
proved similarly. Assume that a ∈ Kq

i (∆• × X) is in the kernel of p∗. For any
infinite algebraic extension E/F the image of a in Kq

i (∆• ×XE) is trivial in view
of Theorem 7.6. We conclude further from Lemma 9.5 that there exists a finite
subextension F ⊂ L ⊂ E such that a dies in Kq

i (∆• ×XL) and hence is killed by
[L : F ] according to Proposition 9.4. Finally for any prime integer l we can find
an infinite extension E/F with Galois group Gal(E/F ) = Zl, in which case the
degree [L : F ] is a power of l (for any finite subextension L). Thus a is killed by a
sufficiently high power of an arbitrary prime integer and hence a = 0.

§10. Pseudo Pretheories.

Vladimir Voevodsky has introduced the concept of a pretheory which has proved
extremely useful in the study of several problems. A pretheory on the cate-
gory Sm/F is a contravariant functor which has well-behaved transfers. A key
property of a homotopy invariant pretheory F is the fact the restriction map
F(S) → F(F (S)) is injective for any smooth affine irreducible semilocal scheme
S with field of rational functions F (S); in particular, F vanishes on such semilocal
schemes whenever it vanishes on all fields.
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In order to apply this to extend the fibration sequence of Theorem 6.1 from fields
to semilocal schemes, we need a minor modification of Voevodsky’s pretheories, for
as we shall see in the next section the functors X 7→ πn(KQ,Aq (∆• ×X)) are not
quite pretheories. The purpose of this section is to introduce the slightly weaker
notion of a pseudo pretheory and to verify that minor modifications of Voevodsky’s
arguments imply that the above injectivity property remains valid for such pseudo
pretheories.

We say that a contravariant functor F from the category of smooth schemes over
a given field F to abelian groups is a homotopy invariant pseudo pretheory if F
satisfies the following properties:

(1) The functor F is homotopy invariant.
(2) For any smooth affine curve X/S and any effective Cartier divisor D ⊂

X finite and surjective over S we have a canonical homomorphism TrD :
F(X) → F(S). If D ⊂ X is the graph of some section i : S → X, then
TrD = F (i). Moreover these transfer homomorphisms are compatible with
pull-backs.

(3) TrD + TrD′ = TrD·D′ whenever the restriction of the line bundle ID to D′

is trivial.

A pseudo pretheory is a pretheory (as defined by Voevodsky) provided that it
satisfies the above conditions with the last strengthened by requiring TrD+TrD′ =
TrD·D′ for any pair of divisors D,D′.

As always we extend canonically all functors defined on the category Sm/F to
the wider category of appropriate pro-schemes (which includes at least all semilo-
calizations of all smooth schemes) by taking direct limits. The above properties
obviously remain true after such extension as well.

Our first proposition verifies that the transfers on a pseudo pretheory F are suf-
ficiently well behaved to give an action of relative 0-cycles on F(S) for S semilocal.

Proposition 10.1. Let F be a homotopy invariant pseudo pretheory and let S/F
be a smooth connected semilocal scheme. Let further X/S be a smooth affine curve
over S. Then there exists a natural pairing

F(X)⊗ C0(X/S)
Tr−→ F(S)

which is uniquely characterized by the formula Tr(f ⊗ c(D)) = TrD(f) for any
f ∈ F(X) and any effective Cartier divisor D ⊂ X finite and surjective over S,
where c(D) ∈ C0(X/S) denotes the Weil divisor corresponding to the Cartier divisor
D. Moreover this pairing defines a pairing

F(X)⊗H0(X/S) −→ F(S).

The group C0(X/S) above denotes the free abelian group generated by closed inte-
gral subschemes D ⊂ X finite and surjective over S, and H0(X/S) stands for the
corresponding singular homology group - see [SV-1] for the explicit definitions.

Proof. Observe that for the semilocal scheme S the assumptions of (3) are always
satisfied, since in this case the scheme D′ is also semilocal and hence Pic(D′) = 0.
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This shows that TrD·D′ = TrD + TrD′ : F(X)→ F(S) ∀D,D′. Thus the pairing
(f,D) 7→ TrD(f) is bilinear and hence factors to define the pairing in question
(since C0(X/S) is precisely the group completion of the abelian monoid of effective
Cartier divisors finite and surjective over S). Assume now that D ⊂ X × A1 is an
effective Cartier divisor finite and surjective over S×A1. Denote by D0, D1 ⊂ X the
effective Cartier divisors (finite and surjective over S) obtained as pull-backs of D
under the two standard embeddings i0, i1 : S ↪→ S×A1. Let f ∈ F(X) = F(X×A1)
be an arbitrary element. The compatibility of transfers with pull-backs shows that
the pull-backs of TrD(f) ∈ F(S ×A1) = F(S) under the embeddings i0 and i1 are
equal to TrD0

(f) and TrD1
(f) respectively. In view of the homotopy invariance of

the functor F these pull-backs are the same. Thus TrD0
(f) = TrD1

(f) i.e. our
pairing kills elements of the form c(D0)− c(D1). Since such elements generate the
kernel of the projection C0(X/S)→ H0(X/S) the statement follows. �

The next proposition is the analogue of [V1;4.16] for pseudo pretheories.

Proposition 10.2. Let X ∈ Sm/F be a smooth irreducible affine scheme over
F and let x = {x1, ..., xn} be a finite number of points of X. Denote by Xx the
semilocalization of X in x. Let finally U 6= ∅ be an open subscheme of X. Then
for any homotopy invariant pseudo pretheory F there exists a homomorphism ϕ :
F(U)→ F(Xx) such that the following diagram commutes

F(X)
res−−−−→ F(U)

res

y ϕ

y
F(Xx)

=−−−−→ F(Xx).

Proof. The proof essentially repeats the proof of the Proposition 4.16 [V1] so we
only sketch the main points. The geometric part of the argument remains un-
changed. We may obviously assume that all the points xi are closed, we note also
that we can always diminish both X and U if necessary. Proposition 4.8 [V1] shows
that upon diminishing X and U we may assume that there exists a smooth affine
morphism p : X → S of relative dimension one (i.e. X is a smooth curve over a
smooth affine S) whose restriction to Z = X \U is finite (cf. also [Q2] Lemma 5.12).
Moreover we may assume that there exists a proper morphism of relative dimension
one p : X → S with X normal and integral and an open embedding i : X ↪→ X
such that p ◦ i = p. Finally we may assume also that the following property holds
(where we set X∞ = X \X): the closed subscheme Z

∐
X∞ ⊂ X admits an open

affine neighborhood (in other words X is a good compactification for both X → S
and U → S -see [SV-1] for the definition of the good compactification) . Consider
now a smooth affine curve U ×S Xx → Xx. According to Proposition 10.1 each
element D ∈ H0(U ×S Xx/Xx) defines a homomorphism

F(U) −→ F(U ×S Xx)
TrD−−−→ F(Xx).
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In the same way each element D ∈ H0(X ×S Xx/Xx) defines a homomorphism

F(X)
TrD−−−→ F(Xx) and the restriction homomorphism res : F(X) −→ F(Xx) coin-

cides with TrD0
where D0 ⊂ X ×S Xx/Xx is the graph of the obvious S-morphism

Xx → X. Thus the statement would follow if we can show that the homomorphism

H0(U ×S Xx/Xx) −→ H0(X ×S Xx/Xx)

induced by the open embedding U ↪→ X is surjective. Let Y be the normalization of
the disjoint sum of components ofX×SXx considered as closed reduced subschemes.
The relative curve Y → Xx is obviously a good compactification for both U×SXx →
Xx and X ×S Xx → Xx. Thus setting Y∞ = Y \X ×S Xx we have the following
computation of the corresponding H0’s:

H0(U ×S Xx/Xx) = Pic(Y , Y∞
∐

Z ×S Xx)

H0(X ×S Xx/Xx) = Pic(Y , Y∞)

-see [SV-1]. Finally we note that the scheme Z ×S Xx is semilocal and hence has
trivial Picard group. The short exact sequence

Pic(Y , Y∞
∐

Z ×S Xx) −→ Pic(Y , Y∞) −→ Pic(Z ×S Xx) = 0

concludes the proof. �

The injectivity property we require is now an easy consequence.

Theorem 10.3. For any homotopy invariant pseudo pretheory F and any smooth
affine irreducible semilocal scheme S, the restriction map F(S) −→ F(F (S)), where
F (S) is the field of rational functions on S, is injective.

Proof. Assume that S is the semilocalization of a smooth affine scheme X in the
finite set of points x = {x1, ..., xn}. Since

F(S) = lim−→
x⊂U
F(U), F(F (S)) = lim−→

U 6=∅
F(U),

it would suffice to show that if a certain element of F(X) dies being restricted to
some non empty U then it also dies being restricted to Xx = S. However this is
obvious from Proposition 10.2. �

Corollary 10.4. Assume that the homotopy invariant pseudo pretheory F satisfies
the condition that F(E) = 0 for any finitely generated separable extension E/F .
Then F(S) = 0 for any smooth affine semilocal S.

§11. Extension from fields to semi-local rings.

In Theorem 8.9, we exhibited homotopy fibrations

KQ,A
q+1

(∆•) −→ KQ,A
q

(∆•) −→ B(C•(ZQ,A
q

)(F ))
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which determine the first derived exact couple of the Bloch-Lichtenbaum exact
couple and thus the spectral sequence (5.6.0). Since the composition of the maps is
easily seen to be trivial, the fundamental result is the assertion that the induced map
from the first space to the homotopy fibre of the second map is a weak equivalence.
Our approach to extending this result is straight-forward: for more general smooth
schemes S over F , consider the sequence of maps

KQ,A
q+1

(∆• ×F S) −→ KQ,A
q

(∆• ×F S) −→ B(C•(ZQ,A
q

)(S))

and show that the induced map from the first space to the homotopy fibre of the
second map is a homotopy equivalence or equivalently that the kernel and cokernel
of the induced maps on homotopy groups vanish.

In this section, we employ Voevodsky’s technique extended to pseudo pretheories
as formulated in Theorem 10.3 to obtain fibration sequences for smooth, affine semi-
local schemes S. To carry out this argument, we must verify that the functors

X 7→ πi(KQ,A
q

(∆• ×X)), X 7→ πi(fib(KQ,A
q

(∆• ×X)
can−−→ B(C•(ZQ,A

q

)(X))))

are indeed pseudo pretheories.
Let S ∈ Sm/F be a smooth scheme and let X/S be a smooth affine curve over

S. Let further D ⊂ X be an effective Cartier divisor (i.e. a closed subscheme whose
defining sheaf of ideals is a line bundle) on X, which is finite and surjective over
S. Since its fibers all have the same degree, the projection pD : D → S is also
flat. Thus according to the results of §9 we see that for any q ≥ 0 we get a natural
morphism of simplicial prespectra

TrD : KQ,A
q

(∆• ×X) −→ KQ,A
q

(∆• ×D)
TrD/S−−−−→ KQ,A

q

(∆• × S).

Here the first arrow is the obvious restriction map whereas the second arrow is the
transfer homomorphism (defined in §9) corresponding to the finite flat morphism
D → S. As was discussed in §9 the construction of TrD/S depends on certain
choices; however the resulting morphism is well defined up to homotopy and in
particular the corresponding homomorphisms in homotopy groups are independent

of the choices made. Recalling the construction of the homomorphism KQ,A
q

0 (∆n×
X)

can−−→ ZQ,Aq (∆n × X) defined at the end of §8, we verify easily the following
lemma.

Lemma 11.1. 1) For any n, q ≥ 0 the following diagram commutes

π0(KQ,Aq (∆n ×X))
can−−−−→ ZQ,Aq (∆n ×X)

TrD

y TrD

y
π0(KQ,Aq (∆n × S))

can−−−−→ ZQ,Aq (∆n × S).

Here the left vertical arrow is the map in homotopy groups induced by the morphism
of prespectra TrD : KQ,Aq (∆n ×X) −→ KQ,Aq (∆n × S) and the right vertical arrow



ALGEBRAIC K-THEORY TO MOTIVIC COHOMOLOGY 55

is the transfer map corresponding to the presheaf with transfers ZQ,Aq (i.e. the
obvious combination of pull-back and push-forward operations for cycles).
2) We have a commutative diagram of simplicial prespectra

KQ,Aq (∆• ×X)
TrD−−−−→ KQ,Aq (∆• × S)y y

B(C•(ZQ,A
q

)(X))
TrD−−−−→ B(C•(ZQ,A

q

(S))

and hence the morphism TrD defines also a morphism of prespectra

TrD : fib(KQ,A
q

(∆• ×X)
can−−→ B(C•(ZQ,A

q

)(X))) −→

−→ fib(KQ,A
q

(∆• × S)
can−−→ B(C•(ZQ,A

q

)(S))).

3) The morphism of prespectra

KQ,A
q+1

(∆• ×X) −→ fib(KQ,A
q

(∆• ×X)
can−−→ B(C•(ZQ,A

q

)(X)))

is compatible with transfers.

The transfer maps defined by effective divisors finite and surjective over S are
compatible with pull backs. The following result is an obvious corollary of Lemma
9.3.

Proposition 11.2. Let f : S′ → S be a morphism in Sm/F . Consider the Carte-
sian diagram

X ′ = X ×S S′
fX−−−−→ X

p′
y p

y
S′

f−−−−→ S.
Let D be an effective Cartier divisor on X finite and surjective over S and let
further D′ = D×SS′ be the corresponding Cartier divisor on X ′. Then the following
diagram commutes

πi(KQ,A
q

(∆• ×X))
f∗X−−−−→ πi(KQ,A

q

(∆• ×X ′))

TrD

y TrD′

y
πi(KQ,A

q

(∆• × S))
f∗−−−−→ πi(KQ,A

q

(∆• × S′)).
The same applies equally if we replace everywhere the prespectrum KQ,Aq (∆• ×X)

by the prespectrum fib(KQ,Aq (∆• × X)
can−−→ B(C•(ZQ,A

q

)(X))). In other words
transfer maps we have defined are compatible with pull backs.

�
Unfortunately, the homomorphism TrD does not usually depend additively on D

i.e. the homomorphism TrD·D′ is not necessarily equal to TrD+TrD′ , so that S 7→
πi(KQ,A

q

(∆•×S)) is not a pretheory in the sense of Voevodsky [V1]. Nevertheless,
these transfers are sufficiently well behaved to determine the structure of pseudo
pretheories.
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Proposition 11.3. Let D and D′ be effective Cartier divisors on X which are finite
and surjective over S. Assume further that the restriction of the sheaf of ideals ID
(defining D on X) to the scheme D′ is a trivial line bundle. Then TrD·D′ =
TrD + TrD′ .

Proof. Denote by i : D ↪→ D · D′, i′ : D′ ↪→ D · D′ the corresponding closed
embeddings. One checks easily that we have the following short exact sequence of
coherent sheaves on D ·D′

0→ i′∗(ID ⊗OX OD′) −→ OD·D′ −→ i∗(OD)→ 0.

Let f ∈ Γ(D′, ID ⊗OX OD′) be the trivialization of the line bundle ID ⊗OX OD′ .
Multiplication by f defines a short exact sequence of coherent OD·D′ -modules

0→ i′∗(OD′)
f−→ OD·D′ −→ i∗(OD)→ 0.

For any vector bundle P ∈ P(X) the above exact sequence gives the following exact
sequence

0→ i∗(P ⊗OX OD′)
f−→ P ⊗OX OD·D′ −→ i∗(P ⊗OX OD)→ 0.

Applying to the above exact sequence of coherent sheaves the exact functor (pD·D′)∗
we get an exact sequence of vector bundles on S

0→ (pD′)∗(P ⊗OX OD′)→ (pD·D′)∗(P ⊗OX OD·D′) −→ (pD)∗(P ⊗OX OD)→ 0.

Passing now from vector bundles on X to the equivalent category of vector bundles
on Sch/X we conclude immediately that multiplication by f defines a homomor-
phism of functors (from P(Sch/X) to P(Sch/S)) f : TrD′ → TrD·D′ and moreover
the following sequence of functors is exact

0 −→ TrD′ −→ TrD·D′ −→ TrD → 0.

Now the statement follows easily from Waldhausen’s Additivity Theorem [Wa]. �

Corollary 11.4. Let F denote either

X 7→ πi(KQ,A
q

(∆• ×X)), X 7→ πi(fib(KQ,A
q

(∆• ×X)
can−−→ B(C•(ZQ,A

q

)(X)))).

Then F is a homotopy invariant pseudo pretheory (as discussed in §10).

Proof. Homotopy invariance follows from Lemma 7.1, since both constructions are
functorial on Sm/F . The second and third defining properties of a pseudo pretheory
are given by Propositions 11.2 and 11.3. �

Combining Theorem 8.9, Theorem 10.3 and Corollary 11.4, we now easily obtain
the fibration sequences we seek for smooth, affine semilocal schemes.
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Theorem 11.5. Let S/F be a smooth, affine, semilocal scheme. Then the sequence
of maps

KQ,A
q+1

(∆• ×F S) −→ KQ,A
q

(∆• ×F S) −→ B(C•(ZQ,A
q

)(S))

is a homotopy fibration.

Proof. We have to show that the induced homomorphisms

πi(KQ,A
q+1

(∆• ×F S)) −→ πi(fib(KQ,A
q

(∆• ×F S) −→ B(C•(ZQ,A
q

)(S)))

are isomorphisms for smooth affine semilocal S. By Corollary 11.4, the kernel and
the cokernel of the above homomorphism of functors is a homotopy invariant pseudo
pretheory. Since these pretheories vanish on fields according to Theorem 8.9, they
vanish on all smooth affine semilocal schemes according to Corollary 10.4. �

§12. Higher Chow groups and motivic cohomology.

In this section we fix our definition of motivic cohomology and show that motivic
cohomology is naturally isomorphic to higher Chow groups of S. Bloch [B 1, B 2].

Recall the etale sheaf with transfers X 7→ ZQ,Aq (X) introduced in §8: ZQ,Aq (X)
is the free abelian group on the closed integral subschemes Z ⊂ X × Aq which are
quasi-finite and dominant over some connected component of X. Applying to this
sheaf the singular complex construction (i.e. setting Cn(ZQ,Aq )(X) = ZQ,Aq (∆n ×
X)), we get a simplicial sheaf C•(ZQ,A

q

). We use the notation C∗(ZQ,A
q

) for the
corresponding complex of sheaves with differential equal to the alternating sum of
face operations. We set further Ci(ZQ,Aq ) = C−i(ZQ,A

q

), so that C∗(ZQ,Aq ) is a
non positive complex of degree +1. We define the motivic complex Z(q) as a degree
shift of the complex C∗(ZQ,Aq ):

Z(q) = C∗(ZQ,A
q

)[−2q].

We define the motivic cohomology H∗(X,Z(q)) of X to be the hypercohomology
of X with coefficients in this complex of sheaves.

The fact that this definition agrees with the definition given in [V2] is proved in
[F-V] whenever F admits resolution of singularities and is proved in [V3] for general
fields F . It has the advantage that the corresponding motivic cohomology groups
always coincide with the higher Chow groups.

Proposition 12.1. For any smooth scheme X ∈ Sm/F there is a natural isomor-
phism in the derived category of complexes of sheaves on the small Zariski site of
X

C∗(ZQ,A
q

)
∼
= zq(−, ∗),

where zq(U, n) is the free abelian group generated by closed integral subschemes
Z ⊂ ∆n × U of codimension q which intersect all faces of ∆n × U properly.
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Proof. Consider the following complex of sheaves on XZar,

U 7→ zq(U × Aq, ∗).

The homotopy invariance of higher Chow groups implies that the natural homo-
morphism

zq(−, ∗) −→ zq(−× Aq, ∗)

is a quasi-isomorphism. Furthermore we have an obvious embedding of complexes

C∗(ZQ,A
q

) ↪→ zq(−× Aq, ∗).

The homomorphisms in homology induced by this embedding

Hn(ZQ,A
q

(X)) −→ Hn(zq(X × Aq, ∗)) = CHq(X,n)

are isomorphisms in the case of fields according to [Su]. Since both sides are homo-
topy invariant presheaves with transfers we conclude further from [V1] that these
homomorphisms are isomorphisms for any smooth local scheme X, which shows
that the embedding

C∗(ZQ,A
q

) ↪→ zq(−× Aq, ∗)

is a quasi-isomorphism. �

Corollary 12.2. For any smooth quasiprojective scheme X ∈ Sm/F we have nat-
ural isomorphisms

Hp(X,Z(q)) = CHq(X, 2q − p).

Proof. It suffices to note that higher Chow groups satisfy localization [B2] and hence
Zariski decent, which implies easily that the natural map from CHq(X,−n) to the
n-th hypercohomology group of the complex zq(−, ∗) (re-indexed cohomologically)
is an isomorphism. �

The symmetric group Σq acts canonically on the scheme Aq which defines a

(right) action of Σq on the complex of sheaves C∗(ZQ,A
q

) and hence also an action
of Σq in motivic cohomology. The next result will be needed in §14.

Lemma 12.3. The natural action of Σq in Hp(X,Z(q)) is trivial.

Proof. This follows immediately from the fact that both quasi-isomorphisms in the
diagram

zq(−, ∗) ↪→ zq(−× Aq)←↩ C∗(ZQ,A
q

)

are Σq-equivariant and the action of Σq on zq(−, ∗) is trivial.

We conclude this section by a discussion of products in motivic cohomology. For
any schemes X,X ′ ∈ Sm/F , by taking the direct product of cycles we get a natural
map

ZQ,A
q

(X)⊗ ZQ,A
q′

(X ′)→ ZQ,A
q+q′

(X ×X ′).
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Applying this product operation to the schemes X × ∆n and X ′ × ∆m, we get a
natural homomorphism of bisimplicial abelian groups

ZQ,A
q

(X ×∆•)⊗ ZQ,A
q′

(X ′ ×∆•) −→ ZQ,A
q+q′

(X ×X ′ ×∆• ×∆•).

Composing this external product operation with the homomorphism induced by
∆X : X → X ×X we get in the usual way for any X ∈ Sm/F a natural homomor-
phism of bisimplicial abelian groups

ZQ,A
q

(X ×∆•)⊗ ZQ,A
q′

(X ×∆•) −→ ZQ,A
q+q′

(X ×∆• ×∆•).

Consider now the homomorphism of the associated total complexes and utilize the

fact that the complex Tot(ZQ,Aq+q
′

(X×∆•×∆•)) is canonically homotopy equiva-

lent to the complex ZQ,Aq+q
′

(X×∆•) (see [SV-2] §0). Explicitly, the homomorphism

ZQ,Aq+q
′

(X×∆•) −→ Tot(ZQ,Aq+q
′

(X×∆•×∆•)) is induced by the projection onto
the first copy of ∆•, whereas the homotopy inverse map is defined by the shuffle
map

ZQ,A
q+q′

(X ×∆n ×∆m)

∑
φ:[n+m]→[n]×[m] ε(φ)φ∗

−−−−−−−−−−−−−−−−→ ZQ,A
q+q′

(X ×∆n+m).

Here the sum is taken over all strictly increasing maps φ : [n + m] → [n] × [m]
(which are in one to one correspondence with (n,m) shuffles), ε(φ) denotes the
sign of the corresponding shuffle and we use the same letter φ to denote the linear
isomorphism of schemes ∆n+m → ∆n ×∆m which coincides with φ on the set of
vertices.

The previous considerations imply that we have a canonical pairing of complexes
of sheaves

ZQ,A
q

(X ×∆•)⊗ ZQ,A
q′

(X ×∆•) −→ ZQ,A
q+q′

(X ×∆•)

explicitly given by the formula

(12.4.0) (Z,Z ′) 7→
∑

φ=(φ′,φ′′):[n+m]→[n]×[m]

ε(φ){(φ′)∗(Z)×X×∆n+m (φ′′)∗(Z ′)}.

Re-indexing, we get a pairing of complexes

Z(q)⊗ Z(q′) −→ Z(q + q′)

which defines pairings in the hypercohomology groups

Hp(X,Z(q))⊗Hp′(X,Z(q′)) −→ Hp+p′(X,Z(q + q′)).

The following properties of the product structure in motivic cohomology are obvious
from definitions and Lemma 12.3.

Lemma 12.4. The bigraded ring H∗(X,Z(∗)) is associative and graded commuta-
tive with respect to the cohomological index.

Remark 12.5. It’s not hard to see that in case resolution of singularities holds the
above product structure coincides with the one introduced in [V2], [SV-2]. We leave
details to the reader.
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§13. The global spectral sequence.

In this section, we complete the program described at the beginning of §11 to
produce homotopy fibrations and thus the globalization of the spectral sequence
(5.6.0). As we have seen, the task is to show that the kernel and cokernel of certain
natural maps of homotopy groups vanish. In §11, we verified this for smooth, affine
semilocal schemes S. In this section, we recall techniques of simplicial sheaves
established by K. Brown and S. Gersten ([B-G]) and show that these apply to
globalize our result.

The globalization construction of Brown-Gersten involves the formulation of hy-
percohomology of a Noetherian scheme X with coefficients in a pointed simplicial
sheaf K,

Hq(X,K) = π−qRΓ(X,K).

The result of this globalization affects neither the E2-term of our spectral sequence
nor the abutment since both higher Chow groups and algebraic K-theory satisfy
Zariski descent. The basic idea is to show that Theorem 11.5 establishing the
required vanishing of homotopy groups for local rings implies the same vanishing
for associated hypercohomology on global schemes.

Let X be a Noetherian scheme. Recall (see [B-G]) that a morphism p : E → B
of simplicial sheaves on X is said to be a global fibration provided that for any
inclusion U ⊂ V of open sets the map of simplicial sets

E(V )
(p(V ),res)−−−−−−→ B(V )×B(U) E(U)

is a Kan fibration. Taking here U = ∅ and noting that E(∅) = ∗ for any simplicial

sheaf E, we see in particular that E(V )
p(V )−−−→ B(V ) is a Kan fibration for any open

V ⊂ X.

A simplicial sheaf E is called flasque (or fibrant) if the natural morphism E −→ ∗
is a global fibration. In other words E is fibrant, provided that for any open subsets
U ⊂ V ⊂ X the restriction map E(V ) −→ E(U) is a Kan fibration. Taking here
U = ∅ we conclude in particular that E(V ) is a Kan complex for any open V ⊂ X.

A morphism p : E → B of simplicial sheaves is said to be a weak equivalence
provided that for each point x ∈ X the induced map on stalks px : Ex → Bx is a
weak equivalence of simplicial sets.

Finally a morphism p : E → B of simplicial sheaves is said to be a cofibration
provided that it is injective (the definition given in [B-G] is different but it’s not
hard to see that it amounts to the same thing).

A morphism of simplicial sheaves which is both a global fibration (resp. cofi-
bration) and a weak equivalence is called a trivial (global) fibration (resp. a trivial
cofibration).

One of the main result proved in [B-G] states that the category of simplicial
sheaves on X, as well as the category of pointed simplicial sheaves, is a closed
model category in the sense of Quillen [Q1].
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Theorem 13.1 [B-G]. The category of simplicial sheaves on X with the above
notions of (global) fibration, weak equivalence and cofibration is a closed model
category in the sense of Quillen [Q1]. In particular the following statements hold

(1) (The lifting property).
For any commutative diagram of simplicial sheaves

K −−−−→ E

i

y p

y
L −−−−→ B

in which i is a cofibration, p is a global fibration and either i or p is a
weak equivalence there exists a morphism s : L→ E for which the resulting
diagram still commutes.

(2) (The factorization property).
Any morphism f : K → L of simplicial sheaves may be factored as f = pi,
where i is a cofibration, p is a global fibration and either i or p can be taken
to be a weak equivalence.

If A is a simplicial set then we keep the same notation A for the corresponding
constant simplicial sheaf (i.e. the sheaf associated to the presheaf U 7→ A). For a
simplicial sheaf K the product sheaf K ×A coincides obviously with the simplicial
sheaf associated to the presheaf U 7→ K(U)×A. We use the notation I = I• for the
standard simplicial interval (i.e. I = ∆1) and also for the corresponding constant
simplicial sheaf. We say that two morphisms of simplicial sheaves g0, g1 : K −→ L
are homotopic provided there exists a morphism H : K× I −→ L such that H|K×0 =
g0, H|K×1 = g1. Note that in this case the induced morphisms of simplicial sets
g0(U), g1(U) : K(U)→ L(U) are homotopic for every open U ⊂ X.

The following lemma, a standard consequence of Theorem 13.1, will be used
sufficiently often that we provide a simple proof.

Lemma 13.2. For any commutative diagram of simplicial sheaves

K
f−−−−→ E

i

y p

y
L

g−−−−→ B

in which i is a cofibration, p is a global fibration and either i or p is a weak equiv-
alence, a lifting s : L→ E (which makes the total diagram commutative) is defined
uniquely up to a fiberwise homotopy constant on K.

Proof. Let s0, s1 : L→ E be two such liftings. Consider the following diagram

L
∐
K×0K × I

∐
K×1 L

(s0,fp1,s1)−−−−−−−→ E

(i0,i×1,i1)

y p

y
L× I

gp1−−−−→ B.
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This diagram obviously commutes, the right vertical arrow is still a global fibration
and the left vertical arrow is obviously a cofibration. Moreover the left vertical arrow
is a trivial cofibration in case i is a trivial cofibration. Thus the lifting property
applies and gives us a morphism H : L× I→ E such that H|L×0 = s0, H|L×1 = s1.
�

Applying the factorization property to the canonical morphism K → ∗ we con-
clude that for any simplicial sheaf K there exists a trivial cofibration i : K → J
from K to a flasque simplicial sheaf J . In this situation we say that that J is a
flasque resolution of K. For any open subscheme U ⊂ X we define the simplicial
set RΓ(U,K) via the formula RΓ(U,K) = J(U) (where J is a flasque resolution of
K). Note that according to the definition of a flasque sheaf the simplicial set J(U)
is a Kan complex. One defines the hypercohomology of X with coefficients in the
pointed simplicial sheaf K using the formula

Hq(X,K) = π−qRΓ(X,K).

Note that H0 in general is just a pointed set and the group H−1 in general need
not to be abelian.

One important consequence of Lemma 13.2 is the following proposition.

Proposition 13.3. Let i : K → J be a flasque resolution of K and let f : K → L
be any morphism from K to a flasque simplicial sheaf L. Then f extends to a
morphism g : J → L and moreover this extension is defined uniquely up to homotopy
constant on K.

Consequently, the simplicial set RΓ(U,K) is defined uniquely up to (a unique
up to a homotopy) homotopy equivalence and depends functorially on K. Thus
the hypercohomology groups are defined uniquely up to a unique isomorphism and
depend functorially on K.

�
We recall from [B-G] the following property of a weak equivalence of flasque

simplicial sheaves.

Lemma 13.4 [B-G]. Let f : K → L be a weak equivalence of flasque simplicial
sheaves. Then for any open U ⊂ X the corresponding morphism of simplicial sets

K(U)
f(U)−−−→ L(U) is also a weak equivalence.

Proposition 13.5. Assume we are given a sequence of pointed simplicial sheaves

K ′
f ′−→ K

f−→ K ′′ such that the composition f ◦ f ′ maps K ′ to the distinguished
point of K ′′ and for any point x ∈ X the corresponding sequence of stalks at x

K ′x −→ Kx −→ K ′′x

is a homotopy fibration. Then there exists a commutative diagram

K ′
f ′−−−−→ K

f−−−−→ K ′′

i′

y i

y i′′

y
J ′

g′−−−−→ J
g−−−−→ J ′′.

(13.5.1)
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such that the vertical maps are flasque resolutions, g is a global fibration and the
composition g ◦ g′ maps J ′ to the distinguished point of J ′′. In this case

J ′(U)
g′(U)−−−→ J(U)

g(U)−−−→ J ′′(U)

is a homotopy fibration for any open U ⊂ X.

Proof. Choose flasque resolutions K ′′
i′′−→ J ′′,K ′

i′−→ J ′. Applying the factorization

property to the morphism K
f−→ K ′′

i′′−→ J ′′ we get a flasque resolution K
i−→ J and

a global fibration g : J → J ′′ such that gi = i′′f . Let F denote the fiber of g over
the distinguished point. Applying Proposition 13.3 to the morphism K ′ −→ F we

get a morphism J ′
g′−→ J such that the composition g ◦ g′ is trivial and the (13.5.1)

commutes.
Since g is a global fibration we conclude that g(U) is a Kan fibration and hence

|g(U)| : |J(U)| −→ |J ′′(U)| is a fibration of topological spaces. This implies that
the homotopy fiber of |g(U)| is canonically homotopy equivalent to the usual fiber,

i.e. to |F(U)|. Thus it would suffice to show that the map J ′(U)
g′(U)−−−→ F(U) is a

homotopy equivalence. However this follows immediately from Lemma 13.4. �

Corollary 13.5.1. In conditions and notations of Lemma 13.5 assume further
that the simplicial sheaves K ′,K,K ′′ are flasque. Then for any open U ⊂ X the
sequence

Γ(U,K ′) −→ Γ(U,K) −→ Γ(U,K ′′)

is a homotopy fibration.

Proof. This follows immediately from the presence of a commutative diagram

Γ(U,K ′) −−−−→ Γ(U,K) −−−−→ Γ(U,K ′′)y y y
Γ(U, J ′) −−−−→ Γ(U, J) −−−−→ Γ(U, J ′′)

whose vertical arrows are weak equivalences and whose bottom row is a homotopy
fibration.

The following important result provides us with a canonical way to resolve sim-
plicial sheaves.

Proposition 13.6([Ja]Thm 7.6.5, [M-V]). For any Noetherian scheme X of fi-
nite Krull dimension there exists a functor R : L 7→ R(L) from the category of

simplicial sheaves on X to itself and a natural transformation Id
φ−→ R with the

following properties

(1) The functor R commutes with finite products and, in particular takes the
trivial simplicial sheaf to itself.

(2) For any simplicial sheaf L the sheaf R(L) is flasque and the morphism
φL : L→ R(L) is a weak equivalence.
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Proof. The functor R is the composition R = G◦Ex of the Kan’s functor Ex with
the Godemant resolution functor G (cf. §A.7). Applying the functor Ex to L we get
a simplicial sheaf Ex(L), whose stalks are Kan complexes and a weak equivalence
L −→ Ex(L). The functor G takes stalkwise fibrations to global fibrations and in
particular takes every simplicial sheaf whose stalks are Kan complexes to a fibrant
(=flasque) sheaf. Finally the natural morphism L −→ G(L) is a weak equivalence
for any L provided that the cohomological dimension of abelian sheaves on X is
bounded above - see [M-V] or [Ja]. Thus it suffices now to use the theorem of
Grothendieck showing that cohomological dimension of abelian sheaves on X is
bounded by dimX. �

¿From this point on we assume that X is a Noetherian scheme of finite Krull
dimension and we always use the canonical flasque resolution R(L) when talking
about the simplicial set RΓ(U,L), i.e. set RΓ(U,L) = Γ(U,R(L)).

Lemma 13.7. With the conditions and notations of Proposition 13.5, the sequence

RΓ(U,K ′) −→ RΓ(U,K) −→ RΓ(U,K ′′)

is a homotopy fibration. Thus, in particular, we have a long exact homotopy se-
quence

πi+1(RΓ(U,K))
f∗−→ πi+1(RΓ(U,K ′′))

∂−→ πi(RΓ(U,K ′))
f ′∗−→ πi(RΓ(U,K)) −→ . . .

−→ . . . −→ π0(RΓ(U,K))
f∗−→ π0(RΓ(U,K ′′)).

Proof. This follows immediately from the commutative diagram

RΓ(U,K ′) −−−−→ RΓ(U,K) −−−−→ RΓ(U,K ′′)y y y
RΓ(U, J ′) −−−−→ RΓ(U, J) −−−−→ RΓ(U, J ′′)x x x
Γ(U, J ′) −−−−→ Γ(U, J) −−−−→ Γ(U, J ′′)

whose vertical arrows are weak equivalences according to Lemma 13.4 and whose
bottom row is a homotopy fibration according to Proposition 13.5. �

Corollary 13.7.1. Consider a commutative diagram

K ′ −−−−→ K −−−−→ K ′′

f ′
y f

y f ′′
y

L′ −−−−→ L −−−−→ L′′
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whose rows satisfy the conditions of Proposition 13.5. Applying to this diagram the
functor RΓ we get a commutative diagram whose rows are homotopy fibrations

(13.7.2)

RΓ(U,K ′) −−−−→ RΓ(U,K) −−−−→ RΓ(U,K ′′)

RΓ(U,f ′)

y RΓ(U,f)

y RΓ(U,f ′′)

y
RΓ(U,L′) −−−−→ RΓ(U,L) −−−−→ RΓ(U,L′′).

Thus, in particular, for any open U ⊂ X the following diagram of homotopy groups
commutes

πi+1(RΓ(U,K ′′))
∂−−−−→ πi(RΓ(U,K ′))

(f ′′)∗

y (f ′)∗

y
πi+1(RΓ(U,L′′))

∂−−−−→ πi(RΓ(U,L′)).

To apply Lemma 13.7, we denote by Ω−1Kq the simplicial sheaf on X associated

to the presheaf U 7→ SQ,A
q

• (∆• × U). For every q ≥ 0 we have a sequence of
simplicial sheaves

Ω−1Kq+1 −→ Ω−1Kq −→ B(C•(ZQ,A
q

))

and Theorem 11.5 implies that the conditions of Proposition 13.5 are satisfied.
Thus we obtain from Lemma 13.7 the following corollary.

Corollary 13.8. For any X ∈ Sm/F and any q ≥ 0, we have a homotopy fibration

RΓ(X,Ω−1Kq+1) −→ RΓ(X,Ω−1Kq) −→ RΓ(X,B(C•(ZQ,A
q

)))

and hence a long exact homotopy sequence

−→ πn(RΓ(X,Ω−1Kq)) −→ πn(RΓ(X,BC•(ZQ,A
q

)))
∂−→ πn−1(RΓ(X,Ω−1Kq+1)) −→

. . . −→ π0(RΓ(X,Ω−1Kq)) −→ π0(RΓ(X,BC•(ZQ,A
q

))).

Corollary 13.8 gives us a tower of homotopy fibrations

RΓ(X,Ω−1Kq+1) −→ RΓ(X,Ω−1Kq) −→ . . . −→ RΓ(X,Ω−1K0).
↓

RΓ(X,B(C•(ZQ,A
q

)))

Our goal is to show that this tower satisfies the conditions of Proposition A.6.1 and
hence defines a strongly convergent spectral sequence with limit K∗(X).

Proposition 13.9. For X ∈ Sm/F , πn(RΓ(X,Ω−1K0)) = Kn−1(X).

Proof. Since algebraic K-theory is homotopy invariant, the simplicial presheaf

U 7→ SQ,A
0

• (∆• × U) = wS•(CP(∆• × U)) is weakly equivalent to the simplicial
presheaf U 7→ wS•(CP(U)). Moreover, wS•(CP(U)) is the first delooping of the
space whose homotopy groups are the K-groups of U . As seen in [B-G], the Mayer-
Vietoris property for algebraic K-theory implies that the presheaf wS•(CP(−)) is
“pseudo-flasque”, which implies that the canonical morphism Γ(X,wS•(CP(−)) −→
RΓ(X,wS•(CP(−))∼) (where (−)∼ denotes the associated sheaf) is a weak equiv-
alence. �
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Lemma 13.10. Let I• be a simplicial abelian sheaf on X and let M∗ denote the
non-negative complex of sheaves on X corresponding to I•. The following conditions
are equivalent

(1) The simplicial sheaf I• is flasque.
(2) All terms of the complex M∗ except possibly for M0 are flasque sheaves.

Proof. The simplicial sheaf I• is flasque iff for any open V ⊂ U the homomorphism
of simplicial abelian groups

I•(U) −→ I•(V )

is a Kan fibration. However a homomorphism of simplicial abelian groups is a Kan
fibration if and only if the corresponding homomorphism of non-negative complexes
is surjective in positive degrees (see [May]). Thus I• is flasque iff for any V ⊂ U
and any i > 0 the restriction homomorphism Mi(U) −→Mi(V ) is surjective, i.e. iff
the sheaves Mi (i > 0) are flasque.

Corollary 13.10.1. Let C• be a simplicial abelian sheaf on X. Denote by C∗
(resp. by M∗) the complex of abelian sheaves with terms Ci and differential equal
to the alternating sum of face operations (resp. the Moore complex corresponding
to C•) and set Ci = C−i, Mi = M−i so that C∗ (resp. M∗) is a non-positive
complex of degree +1. Then for all p ≥ 0 we have canonical isomorphisms

πp(RΓ(X,C•)) = H−p(X,C•)
∼−→ H−p(X,C∗) = H−p(X,M∗).

Proof (cf. [B-G] Prop. 2. ) The equality H−p(X,C∗) = H−p(X,M∗) is obvious.
Since the functor R commutes with products we conclude immediately that the
simplicial sheaf R(C•) is actually a simplicial abelian sheaf. Moreover the natural

weak equivalence C•
φ−→ R(C•) is a homomorphism of simplicial abelian sheaves.

The corresponding homomorphism of non-positive complexes M∗ −→ M(R(C•))
∗

is a quasi-isomorphism and hence defines canonical homomorphisms

πp(RΓ(X,C•)) = H−p(Γ(X,M(R(C•))
∗) −→ H−p(X,M∗)

-see §A.7. Finally these homomorphisms are isomorphisms for p ≥ 0 according to
Corollary A.7.3 since all terms of the complex M(R(C•))

∗ standing in negative
degrees are flasque. �

Corollary 13.10.2. In conditions and notation of Corollary 13.10.1, let πn(C) =
πn(C•) denote the sheaf on X associated to the presheaf U 7→ πn(C•(U)) (i.e. the
n-th homology sheaf of the complex M∗). Assume that Hp(U, πn(C)) = 0 for all
open U ⊂ X and all p > n. Then, for any open U ⊂ X, all the hypercohomology
groups Hp(U,M∗) with p > 0 are trivial and hence the natural homomorphism

Hp(U,C•) −→ Hp(U,C∗) = Hp(U,M∗)

is an isomorphism in all degrees.

Proof. The standard hypercohomology spectral sequence implies immediately that
under the given conditions the hypercohomology groups Hp(U,M∗) vanish for p >
0. �
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Lemma 13.11. Let C• be a simplicial abelian sheaf and let BC• denote the clas-
sifying simplicial abelian sheaf for C• (see §B.2 for definitions). Then the complex
(BC•)∗ is naturally quasiisimorphic to the complex C∗[1]. Hence, passing to the co-

homological notations, we get a canonical quasi-isomorphism (BC•)
∗ ∼= C∗[1] and

the induced isomorphisms in hypercohomology groups

Hp(X, (BC•)
∗) = Hp+1(X,C∗).

Proof. This follows immediately from Lemma B.1.6

Corollary 13.11.1. The homotopy groups of the space RΓ(X,BC•(ZQ,A
q

)) are
given by the formulae:

πp(RΓ(X,BC•(ZQ,A
q

))) = H−p+2q+1(X,Z(q)) = CHq(X, p− 1).

Thus, in particular this space is connected and its fundamental group is abelian.

Proof. This follows immediately from Corollary 13.10.1 and Lemma 13.11. �

Lemma 13.12. The space RΓ(X,Ω−1Kq) is (q − dimX)-connected.

Proof. Denote by πqn Zariski sheaf associated to the presheaf

U 7→ πn(Ω−1Kq(U)).

By definition, the stalk of πqn at the point x ∈ X coincides with

πn−1(KQ,A
q

(∆• ×F S))

where S is the localization of X at x. Theorem 10.3 shows that this group injects
into

πn−1(KQ,A
q

(∆• ×F F (X)))
∼
= πn−1(KF

q

(∆• ×F F (X))).

Note further that the prespectrum KFq (∆n×F F (X)) is trivial provided that q > n,
which implies that the prespectrum KFq (∆• ×F F (X)) is (q − 1)-connected. Thus
the sheaf πqn is trivial provided that n ≤ q. Our statement is trivial in case q <
dimX. Thus we may assume that q ≥ dimX. In this case, Hi(X,πqn) = 0 for i ≥ n
which allows us to use the spectral sequence

Ei,j2 = Hi(X,πqj ) =⇒ πj−i(RΓ(X,Ω−1Kq))

(cf. [B-G]). This spectral sequence implies immediately that πm(RΓ(X,Ω−1Kq)) =

0 for m ≤ q − dimX (since Ei,j2 6= 0 implies that j > q, i ≤ dimX). �
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Corollary 13.12.1. The space RΓ(X,Ω−1Kq) is connected for all q ≥ 0. Moreover
the group π1(RΓ(X,Ω−1Kq)) is abelian.

Proof. We prove the first statement using decreasing induction on q. For q ≥ dimX,
our statement follows from Lemma 13.12. To pass from q + 1 to q, it suffices to
use the exact sequence of Lemma 13.8 together with Lemma 13.11.1. The second
statement will follow once we show that the space RΓ(X,Ω−1Kq) is an infinite loop
space - see 13.16.1 below. �

The results established above together with Proposition A.6.1 prove the following
Main Theorem.

Theorem 13.13. The tower of spaces

RΓ(X,Ω−1Kq+1) −→ RΓ(X,Ω−1Kq) −→ . . . −→ RΓ(X,Ω−1K0)
↓

RΓ(X,B(C•(ZQ,A
q

)))

yields a strongly convergent spectral sequence

Ep,q2 = Hp−q(X,Z(−q)) = CH−q(X,−p− q)⇒ K−p−q(X). (13.13.1)

In the next section we will need to know that the same spectral sequence may

be obtained using the delooping presheaves U 7→ S• . . . S
Q,Aq
• (∆• × U).

For any pointed simplicial set K, let P(K) denote the simplicial path space of
K, so that p-simplices of P(K) are maps of simplicial sets ∆p × I −→ K which
take ∆p× 0 to the distinguished point of K. Evaluation at 1 gives a canonical map

P(K)
ε1−→ K. The fiber of ε1 over the distinguished point of K is the simplicial loop

space ΩK of K. Thus p-simplices of ΩK are maps of simplicial sets ∆p × I −→ K
which take ∆p×{0, 1} to the distinguished point of K. The functor Ω (as in the case
of topological spaces) is right adjoint to the functor Σ: for any pointed simplicial
set L the set of pointed maps L −→ ΩK is in one to one correspondence with the
set of pointed maps ΣL→ K. Note further that for any K we have canonical maps
|PK| −→ P(|K|), |ΩK| −→ Ω|K| and the following diagram commutes

|ΩK| −−−−→ |P(K)| |ε1|−−−−→ |K|y y =

y
Ω|K| −−−−→ P(|K|) ε1−−−−→ |K|.

We skip the proof of the following elementary lemma.

Lemma 13.14. Let K −→ L be a Kan fibration of simplicial sets. Then the obvious
map P(K) −→ P(L) ×L K is again a Kan fibration and hence the induced map
Ω(K) −→ Ω(L) is also a Kan fibration. In particular, for any Kan complex K the

map P(K)
ε1−→ K is a Kan fibration and hence Ω(K) is also a Kan complex.
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Since the space |P(K)| is contractible for anyK one concludes easily from Lemma
13.14 that for a Kan complex K the natural map |ΩK| −→ Ω|K| is a weak equiva-
lence.

For a pointed simplicial sheaf K set

(P(K))(U) = P(K(U)), (Ω(K))(U) = Ω(K(U)).

One checks easily that P(K) and Ω(K) are again pointed simplicial sheaves. More-
over Lemma 13.14 implies that for a flasque simplicial sheaf K the canonical mor-
phism of simplicial sheaves

P(K)
ε1−→ K

is a global fibration and hence the simplicial sheaves P(K) and Ω(K) are also
flasque.

LetK,K ′ be pointed simplicial sheaves. Assume we are given a morphism ΣK
f−→

K ′ such that for any x ∈ X the induced map of topological spaces |Kx| −→ Ω|K ′x| is
a weak equivalence. The morphism ΣK = I×K/({0, 1}×K ∪ I×∗) −→ K ′ defines
a morphism I × R(K) −→ R(I) × R(K) = R(I ×K) −→ R(K ′). The naturality of
R implies readily that the above morphism factors through ΣR(K). Thus we get
canonical morphisms of simplicial sheaves ΣR(K) −→ R(K ′) and of simplicial sets
of sections over U ⊂ X

ΣRΓ(U,K) −→ RΓ(U,K ′).

Lemma 13.15. With the above notations and assumptions, the induced maps of
topological spaces

|RΓ(U,K)| −→ |Ω(RΓ(U,K ′))| −→ Ω|RΓ(U,K ′)|

are weak equivalences for any open U ⊂ X.

Proof. Consider the commutative diagram

K −−−−→ P(K ′)
ε1−−−−→ K ′

φK

y P(φK′ )

y φK′

y
R(K) −−−−→ P(R(K ′))

ε1−−−−→ R(K ′).

The top row satisfies the conditions of Proposition 13.5 and the vertical arrows
are weak equivalences. This implies that the bottom row satisfies conditions of
Proposition 13.5 as well. Since all simplicial sheaves appearing in the bottom row
are flasque we conclude from Corollary 13.5.1 that the sequence of simplicial sets

RΓ(U,K) −→ Γ(U,P(R(K ′))) = P(RΓ(U,K ′)) −→ RΓ(U,K ′)

is a homotopy fibration and hence the map |RΓ(U,K)| −→ |Ω(RΓ(U,K ′))| is a
weak equivalence. Finally the map |Ω(RΓ(U,K ′))| −→ Ω|RΓ(U,K ′)| is also a weak
equivalence since the simplicial set RΓ(U,K ′) is a Kan complex. �
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Assume we are given a sequence of pointed simplicial sheaves Lq together with
pointed maps ΣLq → Lq+1. Applying to this sequence the functor R, we get a
sequence R(Lq) of fibrant simplicial sheaves and the associated sequence of sections
over an open U ⊂ X

RΓ(U,Lq) = Γ(U,R(Lq)).

Moreover, as we saw above, the structure morphism ΣLq −→ Lq+1 defines a canon-
ical morphisms of simplicial sheaves ΣR(Lq) −→ R(Lq+1) and of simplicial sets of
sections over U ⊂ X

ΣRΓ(U,Lq) −→ RΓ(U,Lq+1).

In other words RΓ(U,L∗) is a prespectrum. The following result is an immediate
consequence of Lemma 13.15.

Corollary 13.16. With the above conditions and notations, assume in addition
that for any x ∈ X the prespectrum of stalks L∗x at x is an Ω-prespectrum. Then
for any open U ⊂ X, the prespectrum RΓ(U,L∗) is also an Ω-prespectrum.

Consistent with the notation Ω−1Kq for the simplicial sheaf on a variety X
associated to the simplicial presheaf

U 7→ SQ,A
q

• (∆• × U) ≡ wS•(CPQ,A
q

(∆• × U)),

we denote by Ω−nKq the simplicial sheaf associated to the presheaf sending U to
S• · · ·S•︸ ︷︷ ︸

n

Q,Aq (∆• × U).

As seen in (B.2), the natural maps ΣΩ−iKq −→ Ω−i−1Kq have the property that
for any point x ∈ X the induced map of topological spaces

|Ω−iKqx| −→ Ω(|Ω−i−1Kqx|)

is a weak equivalence. Corollary 13.16 implies now the following result.

Corollary 13.16.1. For any open subset U ⊂ X and any q ≥ 0 the sequence
|RΓ(U,Ω−iKq)| is an Ω-prespectrum. In particular |RΓ(U,Ω−iKq)| is an infinite
loop space for every q ≥ 0, i ≥ 1. Moreover the space |RΓ(U,Ω−i−1Kq)| is connected
for any U and i ≥ 1 and hence is a connected delooping of the space |RΓ(U,Ω−iKq)|.
The same conclusions also apply to the prespectrum |RΓ(U,B•...B•︸ ︷︷ ︸

i

(C•(ZQ,A
q

)))|.

Proof. Only the connectedness of the space |RΓ(U,Ω−i−1Kq)| remains to be proved.
However this is proved in exactly the same fashion as Corollary 13.12.1. �

Consider finally the commutative diagram of simplicial sheaves.

ΣΩ−iKq+1 −−−−→ ΣΩ−iKq −−−−→ ΣB•...B•︸ ︷︷ ︸
i

(C•(ZQ,A
q

))

y y y
Ω−i−1Kq+1 −−−−→ Ω−i−1Kq −−−−→ B•...B•︸ ︷︷ ︸

i+1

(C•(ZQ,A
q

)).
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Applying to this diagram the functor RΓ and taking into account the previous
discussion we get a commutative diagram of spaces

RΓ(X,Ω−iKq+1) −−−−→ RΓ(X,Ω−iKq) −−−−→ RΓ(X,B•...B•︸ ︷︷ ︸
i

(C•(ZQ,A
q

)))

y y y
ΩRΓ(Ω−i−1Kq+1) −−−−→ ΩRΓ(Ω−i−1Kq) −−−−→ ΩRΓ(B•...B•︸ ︷︷ ︸

i+1

(C•(ZQ,A
q

)))

whose rows are homotopy fibrations and whose vertical arrows are weak equiva-
lences. This implies that the homotopy exact sequence defined by the homotopy
fibration

RΓ(X,Ω−i−1Kq+1) −→ RΓ(X,Ω−i−1Kq) −→ RΓ(X,B•...B•︸ ︷︷ ︸
i+1

(C•(ZQ,A
q

)))

coincides up to a shift with the homotopy exact sequence defined by the homotopy
fibration

RΓ(X,Ω−iKq+1) −→ RΓ(X,Ω−iKq) −→ RΓ(X,B•...B•︸ ︷︷ ︸
i

(C•(ZQ,A
q

))).

Thus we obtain the following proposition.

Proposition 13.17. For any i > 0, the tower of spaces

RΓ(X,Ω−iKq+1) −→ RΓ(X,Ω−iKq) −→ . . . −→ RΓ(X,Ω−iK0)
↓

RΓ(X,B•...B•︸ ︷︷ ︸
i

(C•(ZQ,A
q

)))

determines an exact couple and a strongly convergent spectral sequence, which co-
incides (after appropriate re-indexing) with the spectral sequence

Ep,q2 = Hp−q(X,Z(−q)) = CH−q(X,−p− q)⇒ K−p−q(X) (13.13.1)

of Theorem 13.13.

We finish this section with the following version of the spectral sequence (13.13.1)
for non-smooth schemes.

Theorem 13.18. Let Z be a (not necessarily smooth) equidimensional quasipro-
jective scheme. Then there exists a strongly convergent spectral sequence

Ep,q2 = CH−q(Z,−p− q) =⇒ K
′

−p−q(Z),
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where K
′

∗ (X) denotes the Quillen K-theory of the exact category of coherent
sheaves on Z.

Proof. Embed Z as a closed subscheme in a smooth irreducible scheme X and set
U = X \Z. For any simplicial sheaf A• on X let RΓZ(X,A•) be the fiber over the
distinguished point of the Kan fibration

RΓ(X,A•) = Γ(X,R(A•)) −→ RΓ(U,A•) = Γ(U,R(A•))

Consider the following commutative diagram

RΓZ(X,Ω−1Kq+1) −−−−→ RΓZ(X,Ω−1Kq) −−−−→ RΓZ(X,B(C•(ZQ,A
q

)))y y y
RΓ(X,Ω−1Kq+1) −−−−→ RΓ(X,Ω−1Kq) −−−−→ RΓ(X,B(C•(ZQ,A

q

)))y y y
RΓ(U,Ω−1Kq+1) −−−−→ RΓ(U,Ω−1Kq) −−−−→ RΓ(U,B(C•(ZQ,A

q

))).

All columns of this diagram and all rows except possibly for the top one are ho-
motopy fibrations which implies that the top row is a homotopy fibration as well.
Thus we get a tower of homotopy fibrations

RΓZ(X,Ω−1Kq+1) −→ RΓZ(X,Ω−1Kq) −→ . . . −→ RΓZ(X,Ω−1K0).
↓

RΓZ(X,B(C•(ZQ,A
q

)))

Moreover the previous results imply immediately that the spaces RΓZ(X,Ω−1Kq)
(the same as RΓZ(X,B(C•(ZQ,A

q

)))) are connected infinite loop spaces and are at
least (q − dimX − 1)-connected. Thus Proposition A.6.1 yields a strongly conver-
gent spectral sequence. Quillen’s Localization Theorem implies immediately that
the limit of this spectral sequence coincides with K ′∗(X) and Bloch’s Localization
Theorem implies that the E2-term consists of higher Chow groups of Z. �

Remark 13.18.1. With our approach it is far from obvious that the above spectral
sequence is independent of the smooth embedding Z ↪→ X.

§14. Multiplicative structure of the spectral sequence

In this section we show that the spectral sequence (13.13.1) has a natural multi-
plicative structure. This structure is induced in an obvious way by products in the
K-theory with supports, corresponding to the tensor product operation on vector
bundles (cf. (B.3 )). To define the product operation on the K-theory of the cosim-
plicial scheme X ×∆•, we unfortunately need to assume that the tensor product
operation for (big) vector bundles is strictly functorial. Since it is not clear whether
this can be always achieved, we begin this section by replacing (in the case of an
affine scheme) the category of big vector bundles by an equivalent category of what
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may be called small vector bundles. This new category has an advantage of having
strictly functorial tensor products.

Let X be any scheme. Set A = Γ(X,OX). By a small vector bundle on X we
mean a pair, consisting of an integer n ≥ 0 and an idempotent matrix α ∈Mn(A).
In case n = 0 the ring Mn(A) is trivial (consists of zero only), so we shall drop α
from the notation in this case. Since we want our category to have only one zero
object we assume α 6= 0 for n > 0. Define morphisms of small vector bundles via
the formula

HomOX ((n, α), ((m,β)) = {γ ∈Mm,n(A) : γ = γα, βγ = γ}.

Note further that to any small vector bundle (n, α) we may associate an actual
vector bundle

Pn,α = Ker(OnX
1−α−−−→ OnX) = Im(OnX

α−→ OnX) ⊂ OnX .

Obviously HomOX ((n, α), (m,β)) = HomOX (Pn,α,Pm,β). Thus the category of
small vector bundles on X is naturally equivalent to the category of those vector
bundles P which are direct summands in some OnX . In particular the category of
small vector bundles is equivalent to the category of vector bundles in case X is
affine.

Let f : Y → X be any morphism of schemes. For a small vector bundle (n, α)
on X define

f∗(n, α) =

{
(n, f∗(α)), if f∗(α) 6= 0

0 , if f∗(α) = 0,

where f∗ on the right denotes the canonical ring homomorphism Γ(X,OX)
f∗−→

Γ(Y,OY ). Note that (fg)∗(n, α) = g∗(f∗(n, α)) for any pair of composable mor-
phisms f, g. Thus associating to a pair (n, α) the family of vector bundles Y 7→
Pn,f∗(α) we get a big vector bundle on X. Once again the natural functor from
the category of small vector bundles to that of big vector bundles is an equivalence
provided that the scheme X is affine. Define the tensor product of two small vector
bundles using the formula

(n, α)⊗OX (m,β) =

{
(nm,α⊗ β), if α⊗ β 6= 0

0 , if α⊗ β = 0

where (α⊗β)k,l = αi,j ·βi′,j′ provided that k = (i′−1)n+ i, l = (j′−1)n+ j (1 ≤
i, j ≤ n; 1 ≤ i′, j′ ≤ m). Note that f∗((n, α) ⊗ (m,β)) = f∗(n, α) ⊗ f∗(m,β) so
that for small vector bundles tensor product is strictly functorial. Note also that
the tensor product operation for small vector bundles is strictly associative.

Replacing in the definition of the prespectrum KQ,Aq (X×∆•) big vector bundles
by small ones we get an Ω- prespectrum

KQ,A
q

sm (X ×∆•) = (wS•CPQ,A
q

sm (X ×∆•)), wS•S•CPQ,A
q

sm (X ×∆•), . . . ),
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where CP{Yi}sm stands for the category of bounded complexes of small vector bundles
acyclic outside of the family of supports {Yi}. Moreover we have an obvious mor-
phism of prespectra KQ,Aqsm (X) −→ KQ,Aq (X) which is a weak equivalence in case of
affine schemes.

Let X,X ′;S, S′ be any smooth schemes. The tensor product operation on com-
plexes of (small) vector bundles defines a functor

CPQ,Ssm (X)× CPQ,S
′

sm (X ′) −→ CPQ,S×S
′

sm (X ×X ′)
C∗ × C ′∗ 7→ p∗(C∗)⊗OX×X′×S×S′ (p′)∗(C ′∗)

where X × S p←− X ×X ′ × S × S′ p′−→ X ′ × S′ are the canonical projections. This
functor is exact in each variable and preserves weak equivalences. Thus it defines
a pairing of simplicial sets (see §B.3)

(wS•CPQ,Ssm (X)) ∧ (wS•CPQ,S
′

sm (X ′)) −→ wS•S•CPQ,S×S
′

sm (X ×X ′).

Composing this external pairing with the diagonal map we get internal pairings
defined for any X ∈ Sm/F , S, S′ ∈ Sm/F

(wS•CPQ,Ssm (X)) ∧ (wS•CPQ,S
′

sm (X)) −→ wS•S•CPQ,S×S
′

sm (X ×X)
∆∗−−→

∆∗−−→ wS•S•CPQ,S×S
′

sm (X).

Since our tensor product operation is strictly functorial one checks immediately that
the above construction generalizes to cosimplicial schemes, i.e. for any (smooth)
cosimplicial scheme X• we have a natural pairing

(wS•CPQ,Ssm (X•)) ∧ (wS•CPQ,S
′

sm (X•)) −→ wS•S•CPQ,S×S
′

sm (X•).

In particular we get canonical pairings

(wS•CPQ,A
q

sm (X ×∆•)) ∧ (wS•CPQ,A
q′

sm (X ×∆•)) −→ wS•S•CPQ,A
q+q′

sm (X ×∆•).

Returning to the notations and assumptions of §13, let X ∈ Sm/F be a smooth
scheme over a field F . For any integer q ≥ 0 denote by Ω−1Kqsm (resp. Ω−2Kqsm) the
simplicial sheaf on X associated to the presheaf U 7→ wS•CPQ,A

q

sm (∆• × U) (resp.
U 7→ wS•S•CPQ,A

q

sm (∆•×U)). The previous discussion shows that the natural maps

Ω−1Kqsm −→ Ω−1Kq, Ω−2Kqsm −→ Ω−2Kq

are weak equivalences and furthermore we have a natural pairing of simplicial
sheaves Ω−1Kqsm ∧ Ω−1Kq′sm −→ Ω−2Kq+q′sm .

For the remainder of this section we only consider small vector bundles, and we
shall drop the subscript sm in the notations; also, we shall always use the canonical
flasque resolution R(L) when talking about the simplicial set RΓ(U,L), i.e. set
RΓ(U,L) = Γ(U,R(L)).

The following lemma follows formally from the properties of the functor R.



ALGEBRAIC K-THEORY TO MOTIVIC COHOMOLOGY 75

Lemma 14.1. For any X ∈ Sm/F , the tensor product pairings induce natural
pairings of simplicial sheaves on X

Ω−1Kq ∧ Ω−1Kq
′
→ Ω−2Kq+q

′

and thereby pairings of connected infinite loop spaces

RΓ(X,Ω−1Kq) ∧RΓ(X,Ω−1Kq
′
)→ RΓ(X,Ω−2Kq+q

′
).

We plan to verify that the pairings introduced above satisfy the conditions of
Proposition A.6.5 and hence induce products on the spectral sequence relating
motivic cohomology to K-theory.

Note that for each q we have q + 1 coordinate embeddings Aq
i0,...,iq−−−−→ Aq+1

given by the formulae ik : (x1, ..., xq) 7→ (x1, ..., xk, 0, xk+1, ..., xq), which satisfy the
cosimplicial relations ik◦il = il◦ik−1 : Aq−1 −→ Aq+1 (0 ≤ l < k ≤ q). Associated to
this embeddings we have q+1 morphisms of simplicial prespectra f0 = (i0)∗, ..., fq =

(iq)
∗ : KQ,Aq+1 −→ KQ,Aq which satisfy the corresponding simplicial relations. Note

also that we choose the map f = fq : Kq+1 → Kq as the preferred one in the tower
of fibrations defining the spectral sequence of §13.

Lemma 14.2. The tensor product pairings of Lemma 14.1 fit in commutative
squares

RΓ(X,Ω−1Kq+1) ∧RΓ(X,Ω−1Kq′) −−−−→ RΓ(X,Ω−2Kq+q′+1)

f∧1

y yfq
RΓ(X,Ω−1Kq) ∧RΓ(X,Ω−1Kq′) −−−−→ RΓ(X,Ω−2Kq+q′)

1∧f
x xf

RΓ(X,Ω−1Kq) ∧RΓ(X,Ω−1Kq′+1) −−−−→ RΓ(X,Ω−2Kq+q′+1).

Proof. This follows immediately from the commutativity of the following diagram
of schemes

Aq+1 × Aq′ =−−−−→ Aq+q′+1

iq×1

x xiq
Aq × Aq′ =−−−−→ Aq+q′

1×iq′
y yiq+q′

Aq × Aq′+1 =−−−−→ Aq+q′+1.

�

For any (affine) scheme X the pairing of simplicial sets

(wS•CPQ,A
q

(X)) ∧ (wS•CPQ,A
q′

(X)) −→ wS•S•CPQ,S×S
′
(X)
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induces a pairing on K0-groups KQ,A
q

0 (X) ⊗ KQ,A
q′

0 (X) −→ KQ,A
q+q′

0 (X) and it’s
clear from definitions that the following diagram commutes

KQ,A
q

0 (X)⊗KQ,A
q′

0 (X) −−−−→ KQ,A
q+q′

0 (X)y y
ZQ,Aq (X)⊗ ZQ,Aq

′

(X) −−−−→ ZQ,Aq×q
′

(X).

Here vertical arrows are canonical homomorphisms (see §8) and the bottom pairing
sends the pair of cycles (Z,Z ′) to the cycle (∆X)∗(Z × Z ′).

The pairings ZQ,Aq (X ×∆n)⊗ZQ,Aq
′

(X ×∆n) −→ ZQ,Aq×q
′

(X ×∆n) determine

a pairing of simplicial abelian sheaves C•(ZQ,A
q

)⊗C•(ZQ,A
q′

) −→ C•(ZQ,A
q×q′

) and
the induced pairing of classifying simplicial sheaves (see §B.1)

B(C•(ZQ,A
q

))⊗B(C•(ZQ,A
q′

)) −→ B2(C•(ZQ,A
q×q′

)).

Thus we get, in particular, a pairing of simplicial sheaves

B(C•(ZQ,A
q

)) ∧B(C•(ZQ,A
q′

)) −→

−→B(C•(ZQ,A
q

))⊗B(C•(ZQ,A
q′

)) −→ B2(C•(ZQ,A
q×q′

)).

The following result is now obvious from definitions

Lemma 14.3. The following diagram of simplicial sheaves commutes

Ω−1Kq ∧ Ω−1Kq′ −−−−→ Ω−2Kq+q′y y
B(C•(ZQ,A

q

)) ∧B(C•(ZQ,A
q′

)) −−−−→ B2(C•(ZQ,A
q×q′

))

and hence determines the following diagram of simplicial sets

RΓ(X,Ω−1Kq) ∧RΓ(X,Ω−1Kq′) −−−−→ RΓ(X,Ω−2Kq+q′)y y
RΓ(X,B(C•(ZQ,A

q

))) ∧RΓ(X,B(C•(ZQ,A
q′

))) −−−−→ RΓ(X,B2(C•(ZQ,A
q×q′

))).

Lemma 14.4. The maps of simplicial sheaves

Ω−1Kq+1
fq−−−→−−−→
fq−1

Ω−1Kq

are related by a simplicial homotopy which becomes constant being composed with

maps Ω−1Kq f−→ Ω−1Kq−1 and Ω−1Kq −→ B(C•(ZQ,A
q

)). Hence the same conclu-
sion holds for the maps of simplicial sets

RΓ(X,Ω−1Kq+1)
fq−−−→−−−→
fq−1

RΓ(X,Ω−1Kq).

Proof. This follows immediately from Lemma 8.10, Lemma 8.10.2 and properties
of the functor R.
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Theorem 14.5. The tensor product operation on complexes of (small) vector bun-
dles induces a multiplicative structure on the spectral sequence

Epq2 = Hp(X,Z(q)) =⇒ K2q−p(X).

The product structure on the abutment K∗(X) is the usual product structure on
K-theory and the product structure on the E2 term is the usual product structure
in motivic cohomology (see §12) .

Proof. We have three towers of fibrations satisfying the conditions of Proposition
A.6.1 :

X ′q = X ′′q = RΓ(X,Ω−1Kq), Xq = RΓ(X,Ω−2Kq)

B′q = B′′q = RΓ(X,B(C•(ZQ,A
q

))), Bq = RΓ(X,B2(C•(ZQ,A
q

))).

Moreover we have pairings X ′q ∧ X ′′q −→ Xq, B
′
q ∧ B′′q −→ Bq. Lemmas 14.2, 14.3,

14.4 and 12.3 show that conditions of Proposition A.6.5 are satisfied and hence we
get a pairing of the spectral sequences defined by (X ′, B′) and (X ′′, B′′) to the
spectral sequence defined by (X,B). However all three spectral sequences coincide
(after appropriate re-indexing) by Proposition 13.17. Thus we get a multiplicative
structure on our spectral sequence. The product structure on the limit is easily
seen to coincide with the usual multiplicative structure on K-theory. To identify
the multiplicative structure on the E2 term we need a few additional remarks.

Remark 14.5.1 Let A•, B• and C• be simplicial abelian sheaves. The data of a
bilinear pairing of simplicial abelian sheaves A•×B• −→ C• defines a homomorphism

of complexes of abelian sheaves A∗ ⊗ B∗
EZ−−→ C∗ where EZ is obtained using the

Eilenberg-Zilber homomorphism A∗ ⊗ B∗
EZ−−→ (A• ⊗ B•)∗ - see §B.1. Moreover

applying this construction to the pairing C•(ZQ,A
q

) × C•(ZQ,A
q′

) −→ C•(ZQ,A
q+q′

)
we get (after re-indexing) the homomorphism Z(q)⊗Z(q′) −→ Z(q+ q′) introduced
in §12 which defines products in motivic cohomology.

Return back to the case of an arbitrary bilinear pairing of simplicial abelian
sheaves A• ×B• −→ C• and the associated homomorphism of complexes of abelian

sheaves A∗ ⊗B∗ EZ−−→ C∗. Since the functor R preserves products we conclude im-
mediately that the simplicial sheaves R(A•),R(B•),R(C•) are actually simplicial

abelian sheaves and the augmentation maps A•
φA−−→ R(A•), . . . are homomor-

phisms of simplicial abelian sheaves. Furthermore applying the functor R to the
map A• ×B• −→ C• we get a map of simplicial sheaves

R(A•)×R(B•) = R(A• ×B•) −→ R(C•)

which is easily seen to be bilinear. Taking finally global sections we get a bilinear
pairing of simplicial abelian groups

RΓ(X,A•)×RΓ(X,B•) −→ RΓ(X,C•)

and hence the induced pairing in homotopy groups

πp(RΓ(X,A•))⊗ πq(RΓ(X,B•)) −→ πp+q(RΓ(X,C•)).
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Lemma 14.5.2. After the identification of πp(RΓ(X,A•)) with H−p(X,A∗),
πq(RΓ(X,B•)) with H−q(X,B∗) and πp+q(RΓ(X,C•)) with H−p−q(X,C∗) (see
Corollary 13.10.1) the above pairing in homotopy groups coincides with the pairing

H−p(X,A∗)⊗H−q(X,B∗) −→ H−p−q(X,C∗)

defined by the homomorphism of complexes A∗ ⊗B∗ −→ C∗.

Proof. The pairing in homotopy groups defined by the bilinear pairing RΓ(X,A•)×
RΓ(X,B•) −→ RΓ(X,C•) coincides with the pairing in homology defined by the
homomorphism of complexes (see Corollary B.1.4)

Γ(X,R(A•))
∗ ⊗ Γ(X,R(B•))

∗ = RΓ(X,A•)
∗ ⊗RΓ(X,B•)

∗ −→Γ(X,R(C•))
∗ =

=RΓ(X,C•)
∗.

Furthermore the homomorphisms A∗
φA−−→ R(A•)

∗, . . . are quasi-isomorphisms and
hence define canonical maps

Hp(Γ(X,R(A•))) −→ Hp(X,A∗)

which are isomorphisms in negative degrees according to Corollary A.7.3. Finally
we have a commutative diagram of complexes of sheaves

(14.5.2.0)

A∗ ⊗B∗ −−−−→ C∗

φA⊗φB
y φC

y
R(A•)

∗ ⊗R(B•)
∗ −−−−→ R(C•)

∗

which according to Proposition A.7.1 yields a commutative diagram in cohomology

Hp(Γ(X,R(A•)))⊗Hq(Γ(X,R(B•))) −−−−→ Hp+q(Γ(X,R(C•)))y y
Hp(X,A∗)⊗Hq(X,B∗) −−−−→ Hp+q(X,C∗).

Here the bottom arrow is the product pairing in hypercohomology defined by the
homomorphism of sheaves A∗⊗B∗ −→ C∗, the top arrow coincides with the pairing
in homotopy groups we are studying and the vertical arrows are isomorphisms
provided that both p and q are negative. �

Lemma 14.5.2 admits the following generalization which together with Remark
14.5.1 completes the proof of the Theorem 14.5.

Lemma 14.5.3. For any simplicial abelian sheaf A• on a Noetherian topological
space of finite Krull dimension we have natural identifications

πi(RΓ(X,BkA•)) = H−i+k(X,A∗) i ≥ 0.
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Moreover given a bilinear pairing of simplicial abelian sheaves A• × B• −→ C•, the
pairing in homotopy groups with finite coefficients defined by the bilinear pairing of
simplicial abelian groups

RΓ(X,BkA•)×RΓ(X,Bk
′
B•) −→ RΓ(X,Bk+k′C•)

coincides with the pairing in the hypercohomology groups induced by the pairing of
complexes A∗ ⊗B∗ −→ C∗.

Proof. The homotopy group πp(RΓ(X,BkA•)) coincides with H−p(X, (BkA•)
∗).

Furthermore the complex (BkA•)
∗ is canonically quasiisomorphic to A∗[k] (see

Lemma B.1.5) and hence H−p(X, (BkA•)
∗) = H−p+k(X,A∗), which proves the

first statement. To prove the second one it suffices to establish the commutativity of
the following diagram (where the vertical arrows are canonical quasi-isomorphisms
introduced in Lemma B.1.5 )

A∗[k]⊗B∗[k′] −−−−→ C∗[k + k′]

gA⊗1B

y gC

y
(BkA•)∗ ⊗Bk

′
B∗ −−−−→ (Bk+k′C•)∗.

This is done by induction on k and k′ starting with Lemma B.1.6. �

Corollary 14.5.4. For any k, l ≥ 0 the pairing in homotopy groups induced by the
bilinear pairing of simplicial abelian groups

RΓ(X,BkZQ,A
q

)×RΓ(X,BlZQ,A
q′

) −→ RΓ(X,Bk+lZQ,A
q+q′

)

coincides (after re-indexing) with the product map in motivic cohomology.

§15 The spectral sequence for the
K-theory with finite coefficients.

Theorem 15.1. For any k ≥ 2 the tower of spaces

RΓ(X,Ω−kKq+1) −→ RΓ(X,Ω−kKq) −→ . . . −→ RΓ(X,Ω−kK0)
↓

RΓ(X,B•...B•︸ ︷︷ ︸
k

(C•(ZQ,A
q

)))

yields a strongly convergent spectral sequence for the K-theory with coefficients Z/l

Ep,q2 = Hp−q(X,Z(−q)/l)⇒ K−p−q(X,Z/l) (15.1.1)

which is independent of the choice of k ≥ 2. Moreover, in case l 6≡ 2 mod 4, a

choice of comultiplication Σ2M2
l

c−→M2
l ∧M2

l determines a multiplicative structure
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on this spectral sequence which on the limit coincides with the multiplicative struc-
ture on K-theory with finite coefficients (see §B.4) and on the E2-term coincides
with the multiplicative structure on the motivic cohomology with finite coefficients
and, in particular, is independent of the choice of the comultiplication c. Finally
for any l we have a canonical pairing between the integral spectral sequence and the
spectral sequence with coefficients Z/l.
Proof. The existence of the spectral sequence follows from Proposition A.6.1.1 since
the spaces appearing in the above tower are 2-connected infinite loop spaces. Inde-
pendence of the above spectral sequence of the choice of k ≥ 2 is proved in exactly
the same way as Proposition 13.17. For any k, k′ ≥ 2 we have a natural pair-
ing of the tower determined by simplicial sheaves Ω−k and the tower determined
by simplicial sheaves Ω−k

′
to the tower determined by simplicial sheaves Ω−k−k

′
.

Moreover as we saw in §14 the conditions of the Proposition A.6.5 are satisfied.
Thus, taking M ′ = M ′′ = M = M2

l we get a natural multiplicative structure on
our spectral sequence (which is also independent of the choice of k, k′). The mul-
tiplicative structure on the limit obviously coincides with the usual multiplicative
structure on the K-theory with coefficients Z/l. Thus once again the only thing to
verify is that the multiplicative structure on the E2-term coincides with the usual
multiplicative structure on motivic cohomology with finite coefficients (and, in par-
ticular, is independent of the choice of comultiplication on the space M2

l ). This is
done in essentially the same way as in the proof of the Theorem 14.5. We sketch
the main steps below.

Lemma 15.2. Let A• be a simplicial abelian sheaf on a Noetherian topological
space of finite Krull dimension. Then

πp(RΓ(X,A•),Z/l) = H−p(X,Cl(A
∗)),

where Cl(A
∗) = C(A∗

l−→ A∗) is the cone of the multiplication by l on A∗. If the
abelian sheaves Ai are Z-flat, the above cohomology group may be further identified
with H−p(X,A∗/l)

Proof. According to Lemma B.4.1 we have a natural identification

πp(RΓ(X,A•),Z/l) = Hp(Cl(RΓ(X,A•))) = H−p(Γ(X,Cl(R(A•)
∗)).

The complex Cl(R(A•)
∗) is a resolution of the complex Cl(A

∗) which gives us
canonical homomorphisms H−p(Γ(X,Cl(R(A•)

∗)) −→ H−p(X,Cl(A
∗)). Moreover

since all terms of the complex Cl(R(A•)
∗) except possibly for the ones standing

in degrees 0 and −1 are flasque the above homomorphisms are isomorphisms in
degrees p ≥ 1 - see Corollary A.7.3. The last part of the statement is obvious
since for complexes of Z-flat sheaves the natural map Cl(A

∗) −→ A∗/l is a quasi-
isomorphism.

Let A• × B• −→ C• be a bilinear pairing of simplicial abelian sheaves on a
Noetherian topological space X of finite Krull dimension. This pairing induces a
bilinear pairing of simplicial abelian groups

RΓ(X,A•)×RΓ(X,B•) −→ RΓ(X,C•),
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and hence an associated pairing in homotopy groups with finite coefficients

πi(RΓ(X,A•),Z/l)⊗ πj(RΓ(X,B•),Z/l) −→ πi+j(RΓ(X,C•),Z/l).

On the other hand the pairing A• × B• −→ C• determines a pairing of complexes
of sheaves A∗ ⊗B∗ −→ C∗ (see §B.1) and hence also a pairing Cl(A

∗)⊗ Cl(B∗) −→
Cl(C

∗). The last pairing determines further a pairing in hypercohomology groups

H−i(X,Cl(A
∗))⊗H−j(X,Cl(B∗)) −→ H−i−j(X,Cl(C

∗)).

Lemma 15.3. After the identification of πi(RΓ(X,A•),Z/l) with H−i(X,Cl(A
∗)),

πj(RΓ(X,B•),Z/l) with H−j(X,Cl(B
∗)), and πi+j(RΓ(X,C•),Z/l) with

H−i−j(X,Cl(C
∗)) the pairing in homotopy groups

πi(RΓ(X,A•),Z/l)⊗ πj(RΓ(X,B•),Z/l) −→ πi+j(RΓ(X,C•),Z/l)

coincides with the pairing in the hypercohomology groups

H−i(X,Cl(A
∗))⊗H−j(X,Cl(B∗)) −→ H−i−j(X,Cl(C

∗)).

Proof. The proof is essentially identical to that of Lemma 14.5.2; we leave obvious
details to the reader. �

The bilinear pairing of simplicial abelian sheaves

C•(ZQ,A
q

)× C•(ZQ,A
q′

) −→ C•(ZQ,A
q+q′

)

determines a homomorphism of complexes of sheaves

C∗(ZQ,A
q

)⊗ C∗(ZQ,A
q′

) −→ C∗(ZQ,A
q+q′

)

which up to re-indexing coincides with the pairing Z(q)⊗ Z(q′) introduced in §12.
According to Lemma 15.3 the pairing in homotopy groups

πi(RΓ(X,C•(ZQ,A
q

)),Z/l)⊗ πj(RΓ(X,C•(ZQ,A
q′

)),Z/l) −→

−→ πi+j(RΓ(X,C•(ZQ,A
q+q′

)),Z/l)

coincides with the pairing in hypercohomology groups induced by the homomor-
phism of complexes

Cl(C
∗(ZQ,A

q

))⊗ Cl(C∗(ZQ,A
q′

)) −→ Cl(C
∗(ZQ,A

q+q′

))

and hence coincides (up to reindexing) with the product map in motivic cohomology
with finite coefficients. To finish the proof of Theorem 15.1 it suffices now to
establish the following lemma.
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Lemma 15.4. For any simplicial abelian sheaf A• on a Noetherian topological
space of finite Krull dimension we have natural identifications

πi(RΓ(X,BkA•),Z/l) = H−i+k(X,Cl(A
∗)), i ≥ 2.

Moreover given a bilinear pairing of simplicial abelian sheaves A• × B• −→ C•, the
pairing in homotopy groups with finite coefficients defined by the bilinear pairing of
simplicial abelian groups

RΓ(X,BkA•)×RΓ(X,Bk
′
B•) −→ RΓ(X,Bk+k′C•)

coincides with the pairing in the hypercohomology groups induced by the pairing of
complexes Cl(A

∗)⊗ Cl(B∗) −→ Cl(C
∗).

Proof. The proof is identical to the proof of Lemma 14.5.3. �

Appendix A: Categorical and Topological Constructions.

In this appendix, we recall various facts about n-cubes, topological constructions,
homotopy cofibers, and homotopy fibers. This provides us the opportunity to
establish notational conventions.

A.1. n-cubes in categories. By a n-cube in a category C we mean a commu-
tative diagram in C indexed by vertices (and edges) of an n-dimensional cube. To
be more precise, n-cube Y•,... ,• in C consists of the data of objects Yi0,...,in−1

∈ C
(for each n-tuple of indices (i0, ..., in−1) ∈ {0, 1}×n) and the data of arrows dk =

d
i0,...,ik−1,ik+1,...in−1

k : Yi0,...,1
k
,...,in−1 −→ Yi0,...,0

k
,...,in−1 , such that for k < l all dia-

grams of the form

Yi0,...,1
k
,...,1

l
,...,in−1

dk−−−−→ Yi0,...,0
k
,...,1

l
,...,in−1

dl

y dl

y
Yi0,...,1

k
,...,0

l
,...,in−1

dk−−−−→ Yi0,...,0
k
,...,0

l
,...,in−1

commute. The same concept may be described in slightly different terms. Note that
to give an n-tuple of indices (i0, ..., in−1) ∈ {0, 1}×n is the same as to give a subset
S = {k : ik = 1} of [n − 1] = {0, 1, ..., n − 1}. One checks immediately that the
n-cube Y•,... ,• is nothing but a contravariant functor to C from the category whose
objects are subsets S ⊂ {0, 1, . . . , n − 1} and whose maps S → T are inclusions.
We often use the notation ∂l : YS → YT for the structure morphism corresponding

to the embedding of the subset T = {s0, ...,
∧
sl, ..., sk−1} into the set S = {s0 < ... <

sl < ... < sk−1} (thus ∂l = dsl).
To any n-cube Y = Y•...• one can associate two (n− 1)-cubes, which we usually

denote Y1 and Y0. These cubes are defined via the formulae

(Y1)i0,...,in−2 = Yi0,...,in−2,1 (Y0)i0,...,in−2 = Yi0,...,in−2,0.
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Assume that the category C has a final object ∗ and let X• be a simplicial object
in C. For any n ≥ 0 we define a n-cube Y = cuben(X•) setting

Yi0,...,in−1 = Xi0+...+in−1−1

(here we use convention X−1 = ∗) and taking the map

dk : Yi0,...,1
k
,...,in−1 −→ Yi0,...,0

k
,...,in−1

to be ∂i0+...+ik−1
. Note that with these definitions the arrow ∂l : YS = X|S|−1 →

YT = X|S|−2 as defined above coincides with the face operator ∂l of the original
simplicial object X•. Another useful general remark is that for any n we have a
natural identification

{cuben(X•)}0 = cuben−1(X•).

A.2. Degree shift for complexes of degree −1. In this paper we mostly
deal with complexes of degree −1 (i.e. with homological complexes). Let A• be
such a complex, we define the complex A[k], setting A[k]n = An−k and taking
the differential of A[k] to be the differential of A• (shifted by k to the “left” or
“up”). Note that in the first few sections of the paper, we do not change the sign
of the differential as is usually done. This does not affect the resulting complex,
since multiplication by (−1)kn establishes the isomorphism of our complex with the
complex with the sign of the differential changed.

A.3. Quotient maps. Recall that a map of topological spaces f : X → Y is
called a quotient map provided that it is surjective and a subset U ⊂ Y is open in
Y iff its inverse image f−1(U) ⊂ X is open in X. In this case we also say that Y is
a quotient space of X and the topology of Y is coinduced by that of X. On several
occasions we will use the following well-known and easy fact.

Lemma A.3.1. Let f : X → Y be a quotient map and let Z be a compact topo-
logical space. Then the corresponding map X × Z → Y × Z is also a quotient
map.

Recall that a continuous map f : X → Y is called proper provided that for any
space Z the induced map f × 1Z : X ×Z → Y ×Z is closed. A characterization of
proper maps is given by the following well-known theorem - see [Bou].

Theorem A.3.2. A continuous map f : X → Y is proper if and only if it is closed
and all fibers f−1(y) (y ∈ Y ) are quasicompact.

Since every closed surjective continuous map is obviously a quotient map we
derive immediately from the definition the following statement.

Lemma A.3.3. Let f : X → Y be a proper surjective map. Then for any space Z
the corresponding map X × Z → Y × Z is a quotient map.

Smash products. Let (X,x0) and (Y, y0) be pointed topological spaces. Recall
that the smash product X ∧ Y of X and Y is obtained from X × Y by contracting
x0 × Y ∪X × y0 to a point (distinguished point of X ∧ Y ).
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Corollary A.3.4. Let f : X → Y be a quotient map of pointed spaces and let Z be
a pointed space. Assume that either Z is compact or f : X → Y is a proper map.
Then the corresponding map X ∧ Z → Y ∧ Z is also a quotient map.

Proof. This follows immediately from the consideration of a commutative diagram

X × Z −−−−→ Y × Zy y
X ∧ Z −−−−→ Y ∧ Z

in which all maps, except possibly for the bottom horizontal one, are quotient
maps. �

Let X1, ..., Xn be pointed topological spaces. In this case we will use the notation
X1∧ ...∧Xn for the iterated smash product (...(X1∧X2)∧ ...)∧Xn. Using Corollary
A.4 one proves easily the following fact.

Corollary A.3.5. Assume that at most one of the spaces X1, ..., Xn is not compact.
Then

(1) The natural map X1 × ... × Xn → X1 ∧ ... ∧ Xn is a quotient map, so
that X1 ∧ ... ∧ Xn may be identified with the quotient space obtained from
X1× ...×Xn by contracting to a point the subspace consisting of points with
(at least) one distinguished coordinate.

(2) For any 0 < m < n the obvious bijection

(X1 ∧ ... ∧Xm) ∧ (Xm+1 ∧ ... ∧Xn)
∼−→ X1 ∧ ... ∧Xn

is a homeomorphism.

We leave the proof of the following elementary statement as an easy exercise to
the reader.

Lemma A.3.6. For any pointed spaces X,Y, Z we have a natural identification

(X ∨ Y ) ∧ Z = (X ∧ Z) ∨ (Y ∧ Z).

A.4. The cone (homotopy cofiber) of a map. Whenever we consider the unit
interval I as a pointed space we always choose (if not specified otherwise) 0 ∈ I as
a distinguished point. For a pointed space X the smash product X ∧ I is known as
the (reduced) cone over X. More generally let f : X → Y be a (pointed) map of
pointed topological spaces. The reduced cone of f (denoted cone(f) or cofib(f))
is defined as the quotient space of (X ∧ I) ∨ Y modulo the equivalence relation
generated by the identification x ∧ 1 ∼ f(x).
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Lemma A.4.1. Let f : X → Y be a (pointed) map of pointed topological spaces and
let Z be a compact pointed topological space. Then we have a natural identification

cone(f ∧ 1Z) = cone(f) ∧ Z.

Proof. According to Corollary A.3.4, Corollary A.3.5 and Lemma A.3.6, we have a
quotient map

((X ∧Z)∧ I)∨ (Y ∧Z) = ((X ∧ I)∧Z)∨ (Y ∧Z) = ((X ∧ I)∨Y )∧Z −→ cone(f)∧Z.

This map is obviously compatible with the equivalence relation defining cone(f ∧
1Z) and hence defines a quotient map cone(f ∧ 1Z) −→ cone(f) ∧ Z. Finally a
straightforward verification shows that the last map is bijective and hence is a
homeomorphism. �

For any pointed map f : X → Y of pointed spaces, we denote by

Σf : ΣX −→ ΣY

the map f ∧ 1 : X ∧ S1 → Y ∧ S1.

Corollary A.4.2. For any pointed map of pointed spaces f : X → Y we have a
natural identification cone(Σnf) = Σncone(f).

More generally we have the following statement.

Lemma A.4.3. Consider a commutative diagram of pointed spaces

X ′
f ′−−−−→ Y ′

gX

y gY

y
X

f−−−−→ Y.

In this case we have a natural identification

cone(cone(gX) −→ cone(gY )) = cone(cone(f ′)→ cone(f)).

Proof. One checks easily that both sides coincide with a quotient space of

(X ′ ∧ I ∧ I) ∨ (X ∧ I) ∨ (Y ′ ∧ I) ∨ Y

modulo an appropriate equivalence relation. �

A.5. The homotopy fiber of a map. For any pointed space Y we denote by Y I

the space of all continuous maps from the unit interval I to Y (with compact-open

topology). Let ε0 : Y I → Y denote the evaluation at 0 map and let P(Y ) denote
the fiber of ε0 over the distinguished point. As is well-known the path space P(Y )
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is contractible and the evaluation at 1 map ε1 : P(Y )→ Y is a fibration. The fiber
of the last map over the distinguished point is the loop space Ω(Y ). Assume now
that f : X → Y is a continuous map of pointed spaces. Define the path space Q(f)
using the following Cartesian square

Q(f) −−−−→ Y Iy yε0
X

f−−−−→ Y.

The space Q(f) is homotopy equivalent to X and the evaluation at one map ε1 :
Q(f)→ Y is a fibration. The homotopy fiber F(f) = fib(f) is defined as the fiber
of ε1 : Q(f)→ Y over the distinguished point of Y .

One proves easily the following results dual to Corollary A.4.2 and Lemma A.4.3.

Lemma A.5.1. Let f : X → Y be a pointed map of pointed topological spaces.
Then we have a natural identification

fib(Ωn(X)→ Ωn(Y )) = Ωn(fib(X → Y )).

Lemma A.5.2. Consider a commutative diagram of pointed spaces

X ′
f ′−−−−→ Y ′

gX

y gY

y
X

f−−−−→ Y.

In this case we have a natural identification

fib(fib(gX) −→ fib(gY )) = fib(fib(f ′)→ fib(f)).

With the conditions and notations of Lemma A.5.2, denote the homotopy fiber
of f by F , the homotopy fiber of f ′ by F ′, that of gX by FX and that of gY by FY .
Finally denote the double homotopy fiber by F ′′. Thus we have a commutative
diagram of pointed spaces each row and column of which is a “homotopy fiber
sequence”

F ′′ −−−−→ FX −−−−→ FYy y y
F ′ −−−−→ X ′

f ′−−−−→ Y ′y gX

y gY

y
F −−−−→ X

f−−−−→ Y.



ALGEBRAIC K-THEORY TO MOTIVIC COHOMOLOGY 87

Let further G denote the homotopy fiber of X ′ → Y . We have two canonical maps
G → F and G → FY , from which we derive two maps from ΩG to F ′′

p : ΩG −→ ΩF −→ F ′′

q : ΩG −→ ΩFY −→ F ′′.

We leave the proof of the following statement as a (relatively) easy exercise to
the reader.

Lemma A.5.3. The maps p and qi (where i denotes the canonical involution of
the loop space ΩG) are homotopic.

Corollary A.5.4. The following diagram of homotopy groups commutes up to a
sign.

πi(G) −−−−→ πi(F)y δ

y
πi(FY )

δ−−−−→ πi−1(F ′′).

Definition A.5.5. A sequence of maps of pointed spaces Z
i−→ X

f−→ Y is called a
homotopy fibration provided that the composition map f ◦i : Z −→ Y is trivial (sends
Z to the distinguished point of Y ) and the induced map from Z to the homotopy
fiber of f is a weak equivalence.

A.6. The homotopy spectral sequence.

Proposition A.6.1. Consider a sequence of pointed maps of connected spaces with
abelian fundamental groups

. . .
fq+2−−−→ Xq+1

fq+1−−−→ Xq
fq−→ . . .

f1−→ X0 = X

Assume further that for each q we are given a pointed map pq : Xq → Bq with Bq
connected such that the composition Xq+1 −→ Xq −→ Bq is trivial and the associated
map from Xq+1 to the homotopy fiber of Xq −→ Bq is a weak equivalence. Assume
further that for each i ≥ 0 there exists n ≥ 0 such that Xq is i-connected for q ≥ n.
In this case there exists a strongly convergent spectral sequence

E2
pq = πp+q(Bq) =⇒ πp+q(X).

Proof. Set D2
pq = πp+q(Xq), E2

pq = πp+q(Bq). Considering long exact homotopy
sequences corresponding to the homotopy fibrations

Xq+1 −→ Xq −→ Bq,

we conclude that (D2, E2) is an exact couple (with maps i, j, k of bidegrees (1,−1),
(0, 0), (−2, 1) respectively) and hence defines a spectral sequence. The assumption



88 E. M. FRIEDLANDER AND A. SUSLIN

concerning high connectivity of Xq implies that the exact couple is bounded below
(i.e. for any n there exists f(n) such that D2

pq = 0 whenever p < f(p + q)). Since
the exact couple is obviously bounded above we conclude that the spectral sequence
converges to Hn = lim−→pD

2
p,n−p = πn(X) - see [Wei, § 5.9]. �

We need also a version of Proposition A.6.1 for homotopy groups with finite
coefficients. More generally consider a finite pointed CW -complex M of dimension
d. For any pointed space X set

πi(X,M) = [Si−d ∧M,X] if i ≥ d.

Thus πi(X,M) is defined only for i ≥ d, πd(X,M) is only a pointed set, πi(X,M) is
a group for i > d, which is abelian provided that i > d+ 1 or X is an H-space. For
any homotopy fibration X ′ −→ X −→ B we get a long exact sequence of homotopy
groups with coefficients in M

πi(X
′,M) −→ πi(X,M) −→ πi(B,M)

∂−→πi−1(X ′,M) −→ . . . −→
−→ πd(X

′,M) −→ πd(X,M) −→ πd(B,M).

All terms of this sequence except the last three are groups and all the maps
not involving these three last terms are group homomorphisms. Note also that
πi(X,M) = 0 for all i ≤ n provided that X is n-connected. With these remarks
the proof of the following statement becomes identical to that of Proposition A.6.1.

Proposition A.6.1.1. With the conditions and notations of Proposition A.6.1,
assume further that M is a pointed finite CW -complex such that

(1) [M,Xq] = [M,Bq] = ∗ for all q ≥ 0.
(2) The groups [ΣM,Xq] and [ΣM,Bq] are abelian for all q ≥ 0.

In this case, there exists a strongly convergent spectral sequence

E2
pq = πp+q(Bq,M) =⇒ πp+q(X,M).

The following general result concerning the multiplicative properties of the spec-
tral sequence defined by an exact couple is an extraction from a paper of W. Massey
[Ma].

Proposition A.6.2. Let (D2, E2; i, j, k), (D′
2
, E′

2
; i′, j′, k′), (D′′

2
, E′′

2
; i′′, j′′, k′′)

be three exact couples (with degrees of i, j, k being equal to (1,−1), (0, 0), (−2, 1)

respectively). Assume that we are given bilinear pairings (respecting bidegrees) E′
2⊗

E′′
2 −→ E2 and the following condition is satisfied for all n ≥ 0:

µn: For any bihomogenous elements b′ ∈ E′
2
, b′′ ∈ E′′

2
and any bihomogenous

elements x′ ∈ D′2, x′′ ∈ D′′2 such that

k′(b′) = (i′)n(x′), k′′(b′′) = (i′′)n(x′′),
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there exists x ∈ D2 for which

k(b′ · b′′) = in(x), j(x) = j′(x′) · b′′ + (−1)degb
′
b′ · j′′(x′′).

Then for all r ≥ 2 we have natural pairings E′
r ⊗ E′′

r (y′,y′′) 7→y′·y′′−−−−−−−−−→ Er, the
differentials dr are ”derivations” in the sense that

dr(y
′ · y′′) = d′r(y

′) · y′′ + (−1)degy
′
y′ · d′′r (y′′),

and the isomorphisms E′
r+1

= H(E′
r
, d′

r
), E′′

r+1
= H(E′′

r
, d′′

r
),

Er+1 = H(Er, dr) are compatible with pairings.
Assume further that all three exact couples are bounded (i.e. for any n there

exists f(n) and g(n) such that D2
p,n−p = 0 for p < f(n) and D2

p,n−p
i−→ D2

p+1,n−p−1

is an isomorphism for p > g(n)). Then the spectral sequences converge strongly
to H ′, H ′′ and H respectively, where Hn = lim−→pD

2
p,n−p provided with the filtration

FpHn = Im(D2
p,n−p → Hn).

Assume finally that we are also given pairings D′
2 ⊗ D′′

2 −→ D2, which are
compatible with the j-maps, i.e. the following diagram commutes

D′
2 ⊗D′′2 −−−−→ D2

j′⊗j′′
y j

y
E′

2 ⊗ E′′2 −−−−→ E2

and the map i is a transducer, i.e. i(a′ · a′′) = i′(a′) · a′′ = a′ · i′′(a′′). In this
case we get a canonical pairing H ′∗ ⊗ H ′′∗ −→ H∗ compatible with filtrations, i.e.
Fp′(H

′
∗) ·Fp′′(H ′′∗) ⊂ Fp′+p′′(H∗) and hence also the induced pairing on the associ-

ated graded groups. Moreover the isomorphisms Fp/p−1Hp+q
∼−→ E∞pq are compatible

with pairings.

Whenever the conditions of Proposition A.6.2 are satisfied we shall say that we
have a pairing of exact couples. Thus proposition A.6.2 may be restated in short
by saying that a pairing of exact couples defines a pairing of associated spectral
sequences.

The following lemma is useful for the computation of the map ∂ : [ΣM,B] −→
[M,Y ] in case of a homotopy fibration. In what follows we identify the reduced
suspension ΣM with S1 ∧M , where S1 = I/{0, 1}. We consider I as a pointed
space with a distinguished point 0 ∈ I and we denote by CM = I ∧M the reduced
cone over M , so that ΣM = CM/M .

Lemma A.6.3. Let Y
f−→ X

p−→ B be a sequence of continuous maps of pointed
spaces. Assume that the composition map pf is trivial and the induced map from Y
to the homotopy fiber of p is a weak equivalence. Let further M be a finite pointed
CW -complex of dimension d.

(1) Let w : M → Y, v : CM → X be continuous maps of pointed spaces such
that, v|M = f ◦ w. Then p ◦ v contracts M to the distinguished point ∗ of
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B, thus defining a map (which we still denote p ◦ v) ΣM
p◦v−−→ B such that

∂([p ◦ v]) = [w] ∈ [M,Y ].
(2) Let b ∈ [ΣM,B], y ∈ [M,Y ] be elements such that ∂(b) = y and let w : M →

Y be a representative of y. Then there exists a pointed map v : CM → X
for which v|M = f ◦ w, b = [p ◦ v].

Proof. Statement (1) obvious. To prove the second statement set Q = X ×B BI ,
denote by q the evaluation at 1 map q = ε1 : Q → B and by F denote the
homotopy fiber F = q−1(∗) of p. Let further i : X → Q be the standard map,
sending x ∈ X to the pair consisting of x and the trivial path at p(x). Choose a
representative u : SM −→ B for b. Since q : Q → B is a fibration we may find a
lifting v1 : CM → Q for u. Set w1 = v1|M According to our assumptions the maps

M
w1−−→−−→
ifw
F

are homotopic. Using again the homotopy lifting property we conclude that by
replacing v1 by a homotopic map we may assume that v1|M = i ◦ f ◦ w. Set

v = pr1 ◦ v1 (where pr1 : Q = X ×B BI −→ X is the coordinate projection). Then
v|M = f ◦w and p ◦ v is homotopic to u in view of the homotopy commutativity of
the diagram

Q
pr1−−−−→ X

q

y p

y
B

=−−−−→ B.

�

With the conditions and notations of Lemma A.6.3, assume that we are given
a map u : Σk+lM = Sk ∧ Sl ∧ M −→ B and a lifting v : (I ∧ I) ∧ Σk+l−2M =
(I ∧ Sk−1) ∧ (I ∧ Sl−1) ∧M −→ B for u. Assume finally that we are given a map
w : ∂(I ∧ I) ∧ Σk+l−2M −→ Y such that

v|∂(I∧I)∧Σk+l−2M = f ◦ w

In what follows we identify ∂(I ∧ I) with S1. To do so we just need to fix the
orientation of ∂(I∧ I), which we do by requiring that we first go through 1× I in the
standard direction and then go through I× 1 in the reverse. Now we may identify
∂(I ∧ I) ∧ Σk+l−2M with Σk+l−1M which we do positioning ∂(I ∧ I) as the k-th
suspension coordinate.

We leave the proof of the following elementary lemma to the reader.

Lemma A.6.3.1. With the above conditions and notations, we have the following
formula

∂([u]) = [w] ∈ πk+l−1+d(Y,M).

Assume we are given three finite pointed CW -complexes M ′,M ′′ and M of di-
mensions d′, d′′ and d respectively (with d′ + d′′ ≥ d) and a pointed map
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Σd
′+d′′−dM −→ M ′ ∧M ′′. Assume further that we have also three pointed spaces

X ′, X ′′, X and a pairing of spaces X ′ ∧ X ′′ −→ X. In this case every pair of con-

tinuous pointed maps Σi−d
′
M ′

f ′−→ X ′, Σj−d
′′
M ′′

f ′′−→ X ′′ (i ≥ d′, j ≥ d′′) defines a
pointed continuous map (which we denote by f ′ · f ′′)

f ′ · f ′′ : Σi+j−dM = Σi+j−d
′−d′′Σd

′+d′′−dM −→ Σi+j−d
′−d′′(M ′ ∧M ′′) =

= Σi−d
′
M ′ ∧ Σj−d

′′
M ′′

f ′∧f ′′−−−−→ X ′ ∧X ′′ −→ X.

A straightforward verification shows that the above pairing on maps respects homo-
topy and thus we get pairings πi(X

′,M ′)× πj(X ′′,M ′′) −→ πi+j(X,M). Moreover
the above pairings are bilinear provided that i > d′, j > d′′.

Proposition A.6.4. Assume that we are given three finite pointed CW -complexes
M ′,M ′′ and M of dimensions d′, d′′ and d respectively (with d′ + d′′ ≥ d) and a

pointed map Σd
′+d′′−dM −→ M ′ ∧ M ′′. Assume further that we are given three

towers (X ′, B′), (X ′′, B′′), (X,B) as in Proposition A.6.1 satisfying the conditions
of Proposition A.6.1.1 with respect to M ′, M ′′ and M respectively. Assume finally
that for all q′, q′′ ≥ 0, we are given pairings of spaces

X ′q′ ∧X ′′q′′ → Xq′+q′′ , B′q′ ∧B′′q′′ → Bq′+q′′

which fit in commutative diagrams

X ′q′+1 ∧X ′′q′′ −−−−→ Xq′+q′′+1 ←−−−− X ′q′ ∧X ′′q′′+1y y y
X ′q′ ∧X ′′q′′ −−−−→ Xq′+q′′ ←−−−− X ′q′ ∧X ′′q′′

X ′q′ ∧X ′′q′′ −−−−→ Xq′+q′′y y
B′q′ ∧B′′q′′ −−−−→ Bq′+q′′ .

Then the above pairings of spaces induce natural pairings of the associated homotopy
exact couples, and hence of the associated spectral sequences, as in Proposition
A.6.1.1.

Proof. As was explained above, the given pairings of spaces induce pairings in ho-

motopy groups thus defining products D′
2⊗D′′2 −→ D2, E′

2⊗E′′2 −→ E2. Moreover
these products are obviously compatible with the j-homomorphisms and the ho-
momorphism i is obviously a transducer. Thus we only need to check the validity
of the condition µr (r ≥ 0). Let b′ ∈ πn(B′q′ ,M

′), x′ ∈ πn−1(X ′q′+r+1,M
′), b′′ ∈

πm(B′′q′′ ,M
′′), x′′ ∈ πm−1(X ′′q′′+r+1,M

′′) (n > d′,m > d′′) be elements such
that

∂(b′) = (i′)r(x′) = (f ′q′+2 ◦ ... ◦ f ′q′+r+1)∗(x
′)

∂(b′′) = (i′′)r(x′′) = (f ′′q′′+2 ◦ ... ◦ f ′′q′′+r+1)∗(x
′′).
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Represent x′ (resp. x′′) by w′ : Σn−d
′−1M ′ −→ X ′q′+r+1 (resp. by w′′ : Σm−d

′′−1M ′′

−→ X ′′q′′+r+1). According to Lemma A.6.3 there exist maps v′ : CΣn−d
′−1M ′ → X ′q′ ,

v′′ : CΣm−d
′′−1M ′′ → X ′′q′′ such that

v′|Σn−d′−1M ′
= f ′q′+1 ◦ ... ◦ f ′q′+r+1 ◦ w′, b′ = [p′q′ ◦ v′]

v′′|Σm−d′′−1M ′′
= f ′′q′′+1 ◦ ... ◦ f ′′q′′+r+1 ◦ w′′, b′′ = [p′′q′′ ◦ v′′].

Denote the map p′q′ ◦ v′ : Σn−d
′
M ′ = CΣn−d

′−1M ′/Σn−d
′−1M ′ −→ B′q′ (resp.

p′′q′′ ◦ v′′ : Σm−d
′′
M ′′ = CΣm−d

′′−1M ′′/Σm−d
′′−1M ′′ −→ B′′q′′) by u′ (resp. by u′′),

so that b′ = [u′], b′′ = [u′′]. The map u = u′ · u′′ : Σn+m−dM −→ Bq′+q′′ is a
representative for b′ · b′′ and the map v = v′ · v′′ : (I ∧ I) ∧ Σn+m−d−2M −→ Xq′+q′′

is a lifting of u. Consider the restriction of v to ∂(I ∧ I) ∧ Σn+m−d−2M . Observe
that ∂(I ∧ I) = 1× I ∪ I× 1. The restrictions of v to (1× I) ∧ Σn+m−d−2M and to
(I× 1) ∧ Σn+m−d−2M are given by the formulae:

v|(1×I)∧Σn+m−d−2M = ((f ′)r+1 ◦ w′) · v′′ = fr+1 ◦ (w′ · v′′)
v|(I×1)∧Σn+m−d−2M = v′ · ((f ′′)r+1 ◦ w′′) = fr+1 ◦ (v′ · w′′).

Define a map w : Σn+m−d−1M = (∂(I∧ I))∧Σn+m−d−2M → Xq′+q′′+r+1 requiring
that

w|(1×I)∧Σn+m−d−2M = w′ · v′′, w|(I×1)∧Σn+m−d−2M = v′ · w′′.

Note that the restrictions of w′ · v′′ and of v′ · w′′ to (1 × 1) × Σn+m−d−2M are
both equal to fr+1 ◦ (w′ · w′′). Thus the above partial data for w are compatible
one with another and hence the map w is well defined. Furthermore

fq′+q′′+1 ◦ ... ◦ fq′+q′′+r+1 ◦ w = (v′ · v′′)|∂(I∧I)∧Σn+m−d−2M .

Lemma A.6.3.1 implies that [fq′+q′′+2 ◦ ... ◦ fq′+q′′+r+1 ◦ w] = ∂(b′ · b′′), i.e. ∂(b′ ·
b′′) = ir([w]). Moreover j([w]) = [pq′+q′′+r+1 ◦ w]. The restriction of the map
p ◦ w : (∂(I ∧ I)) ∧ Σn+m−d−2M → Bq′+q′′+r+1 to (1× I) ∧ Σn+m−d−2M (resp. to
(I × 1) ∧ Σn+m−d−2M) coincides with (p′ ◦ w′) · u′′ (resp. with u′ · (p′′ ◦ w′′)). In
particular this map contracts 1×1×Σn+m−d−2M to the distinguished point ∗ and
hence may be factored in the form

∂(I ∧ I) ∧ Σn+m−d−2M −→ (∂(I ∧ I)/{∗, 1× 1}) ∧ Σn+m−d−2M =

= (S1 ∨ S1) ∧ Σn+m−d−2M = §n+m−d−1M ∨ §n+m−d−1M −→ Bq′+q′′+r+1.

Thus the class of this map in πn+m−1(Bq′+q′′+r+1,M) is a sum of two classes, one
being represented by a map (p′ ◦ w′) · u′′ and the second being represented by a
map which we previously wrote (not quite accurately) as u′ · (p′′ ◦ w′′), but which
actually differs from this product map by a cyclic permutation of the first n−d′+1
suspension coordinates. Thus

[pw] = [p′w′] · [u′′] + (−1)n−d
′
[u′] · [p′′ ◦ w′′] = j′(x′) · b′′ + (−1)n−d

′
b′ · j′′(x′′).
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The sign we get above might be different from the sign required in Proposition
A.6.2, but this is obviously of no importance. �

The pairings appearing in K-theory do not quite satisfy the conditions of Propo-
sition A.6.4. In this case the tower of fibrations (X,B) (the same as X ′, X ′′) has a
much richer structure described in the following proposition.

Proposition A.6.5. Assume that we are given three finite pointed CW -complexes
M ′,M ′′ and M of dimensions d′, d′′ and d respectively (with d′ + d′′ ≥ d) and a

pointed map Σd
′+d′′−dM −→ M ′ ∧ M ′′. Assume further that we are given three

towers (X ′, B′), (X ′′, B′′), (X,B) satisfying the conditions of A.6.1.1 with respect
to M ′, M ′′ and M respectively. Assume also that the tower (X,B) has the following
additional structure.

(1) For each q we have q + 1 maps

f0
q+1, f

1
q+1, ..., f

q
q+1 : Xq+1 −→ Xq

which satisfy the simplicial relation f iq ◦ f
j
q+1 = f j−1

q ◦ f iq+1 : Xq+1 → Xq−1

(0 ≤ i < j ≤ q). The map fq+1 : Xq+1 → Xq of the tower coincides with
fqq+1.

(2) For each q the group Σq acts on Xq and Bq on the right. More precisely, for
each σ ∈ Σq we have automorphisms of Xq and Bq (which we both denote
by the same letter σ∗) such that (στ)∗ = τ∗σ∗. The projection pq : Xq → Bq
is Σq-equivariant.

(3) The map fq+1 = fqq+1 : Xq+1 → Xq is Σq-equivariant.

(4) For each 0 ≤ i ≤ q we have the following relation

f iq+1 = fq+1 ◦ τ∗i : Xq+1 → Xq,

where τi = τ q+1
i is the cyclic permutation τi = (i+ 1, i+ 2, ..., q + 1).

(5) For each q we are given a homotopy Ht between fq−1
q+1 , f

q
q+1 : Xq+1 → Xq

with the following properties
i) The homotopy fq◦Ht between fqf

q−1
q+1 = fq−1

q fq−1
q+1 and fqf

q
q+1 = fq−1

q fqq+1

= fq−1
q fq−1

q+1 is constant.

ii) The homotopy pHt between pqf
q−1
q+1 = ∗ and pqf

q
q+1 = ∗ is constant.

(6) The induced action of Σq in the homotopy groups of Bq with coefficients in
M is trivial.

Assume finally that for each q′, q′′, we are given pairings of spaces

X ′q′ ∧X ′′q′′ → Xq′+q′′ , B′q′ ∧B′′q′′ → Bq′+q′′

which fit in commutative diagrams

(A.6.5.0)

X ′q′ ∧X ′′q′′+1 −−−−→ Xq′+q′′+1

1∧f ′′
q′′+1

y fq′+q′′+1

y
X ′q′ ∧X ′′q′′ −−−−→ Xq′+q′′



94 E. M. FRIEDLANDER AND A. SUSLIN

(A.6.5.1)

X ′q′+1 ∧X ′′q′′ −−−−→ Xq′+q′′+1

f ′
q′+1
∧1

y fq
′

q′+q′′+1

y
X ′q′ ∧X ′′q′′ −−−−→ Xq′+q′′

X ′q′ ∧X ′′q′′ −−−−→ Xq′+q′′y y
B′q′ ∧B′′q′′ −−−−→ Bq′+q′′ .

Then the above pairings of spaces induce natural pairings of the associated ho-
motopy exact couples and hence of the associated spectral sequences as well.

Proof. The given pairings of spaces induce (as was explained above) pairings in

homotopy groups thus defining products D′
2 ⊗ D′′

2 −→ D2, E′
2 ⊗ E′′

2 −→ E2.
Moreover these products are obviously compatible with the j-homomorphisms. To
see that i is a transducer it suffices (in view of the commutativity of A.6.5.0 and
A.6.5.1) to show that all the maps f iq+1 are homotopic one to another.

Lemma A.6.6. For any 0 ≤ i < j ≤ q the maps f iq+1, f
j
q+1 : Xq+1 −→ Xq are

homotopic. Moreover the corresponding homotopy becomes constant being composed
with p : Xq → Bq and with f◦(q−i) : Xq → Xi.

Proof. It suffices to consider the case j = i+1. For i = q−1 the required homotopy
is already given. In the general case we show that there exist τ ∈ Σq (not moving
1, ..., i) and σ ∈ Σq+1 such that f i = τ∗fq−1σ∗, f i+1 = τ∗fqσ∗. The above
relations amount to the following relations in the symmetric group

τi = στq−1τ, τi+1 = στ.

Thus σ = τi+1τ
−1 and we are left with one equation τ−1

i+1τi = τ−1(q, q + 1)τ (=

(τ−1(q), q + 1)). An easy computation shows that τ−1
i+1τi = (i+ 1, q + 1) and hence

we have only one requirement for τ : τ(i + 1) = q. Having chosen τ and σ we
get the homotopy τ∗Htσ

∗ relating f i and f i+1. This homotopy obviously becomes
constant being composed with p. To see that it becomes constant being composed
with f◦(q−i) it suffices to show that f◦(q−i) ◦ τ∗ = f◦(q−i) : Xq → Xi provided that
τ ∈ Σq does not move the indices 1, ..., i. The last fact is proved by an easy inverse
induction on i starting with the observation that

f◦2 = fq−2
q−1 ◦ fq−1

q = fq−2
q−1 ◦ fq−2

q = fq−2
q−1 ◦ fq−1

q ◦ (q − 1, q)∗ = f◦2 ◦ (q − 1, q)∗.

�

Lemma A.6.6 shows that the homomorphism i is a transducer, thus once again
we need only to check the condition µr (r ≥ 0). We proceed in the same way as in
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the proof of the Proposition A.6.4. Let b′, b′′; x′, x′′; w′, w′′; v′, v′′; u′, u′′; u, v have
the same meaning as in that proof. The restriction of v to (I × 1) ∧ Σn+m−d−2M
and to (1× I) ∧ Σn+m−d−2M are given by the formulae:

v|(I×1)∧Σn+m−d−2M = v′ · ((f ′′)◦(r+1) ◦ w′′) = f◦(r+1) ◦ (v′ · w′′)

v|(1×I)∧Σn+m−d−2M = ((f ′)◦(r+1) ◦ w′) · v′′ = fq
′

q′+q′′+1 ◦ ... ◦ f
q′+r
q′+q′′+r+1 ◦ (w′ · v′′)

= f◦(r+1) ◦ τ∗ ◦ (w′ · v′′),

where τ = τ q
′+q′′+r+1
q′+r ◦ ... ◦ τ q

′+q′′+1
q′ ∈ Σq′+q′′+r+1. The restrictions of v′ · w′′ and

τ∗◦(w′ ·v′′) to (1×1)×Σn+m−d−2M = Σn+m−d−2M do not agree and hence we can
not patch them together to get a map w : (∂(I× I))∧Σn+m−d−2M −→ Xq′+q′′+r+1

as was done in the proof of A.6.4. Fortunately they are at least homotopic so that
we can patch them together having modified one (or both) of them. In fact

v′ · w′′|Σn+m−d−2M = ((f ′)◦(r+1) ◦ w′) · w′′ =fq
′

q′+q′′+r+2 ◦ ... ◦ f
q′+r
q′+q′′+2r+2◦

◦ (w′ · w′′) = f◦(r+1) ◦ α∗ ◦ (w′ · w′′)

where α = τ q
′+q′′+2r+2
q′+r ◦ ... ◦ τ q

′+q′′+r+2
q′ ∈ Σq′+q′′+2r+2.

τ∗ ◦ (w′ · v′′)|Σn+m−d−2M = τ∗ ◦ f◦(r+1) ◦ (w′ · w′′) = f◦(r+1) ◦ τ∗ ◦ (w′ · w′′).

Denote the map α∗ ◦ (w′ ·w′′) by w0. Then τ∗ ◦ (w′ ·w′′) = λ∗ ◦w0 where λ = α−1τ
is an order two shuffle permuting the blocks {q′ + q′′ + 1, ..., q′ + q′′ + r + 1} and
{q′ + q′′ + r + 2, ..., q′ + q′′ + 2r + 2}. Note that

f◦(r+1) ◦ λ = fq
′+q′′+1
q′+q′′+r+2 ◦ ... ◦ f

q′+q′′+r+1
q′+q′′+2r+2.

Lemma A.6.6 implies that there exists a homotopy Ft between f◦(r+1) ◦ λ and
f◦(r+1) such that the homotopy f◦(r+1) ◦ Ft is constant. Extend the homotopy
Ft ◦ w0 between τ∗ ◦ (w′ · v′′)|Σn+m−d−2M and v′ · w′′|Σn+m−d−2M to a homotopy Gt

defined on (1× I) ∧ Σn+m−d−2M and starting with G0 = τ∗ ◦ (w′ · v′′). According
to the construction the map v′ · w′′ on (I × 1) ∧ Σn+m−d−2M and the map G1

on (1 × I) ∧ Σn+m−d−2M agree one with another and hence define a map w :
Σn+m−1M = (∂(I∧ I))∧Σn+m−d−2M −→ Xq′+q′′+r+1. Note further that the maps

f◦(r+1) ◦ w and v|(∂(I∧I))∧Σn+m−d−2M coincide outside (1 × I) ∧ Σn+m−d−2M and

there restrictions to (1× I) ∧ Σn+m−d−2M are related by a homotopy constant on
(1× {0, 1}) ∧ Σn+m−d−2M . Thus they are homotopic and hence

∂(b′ · b′′) = [f◦r ◦ w] = ir([w]).

Finally the same reasoning as in the proof of A.6.4 shows that

[p ◦w] = (τ∗)∗((j
′(x′) · b′′) + (−1)n−d

′
b′ · j′′(x′′) = (j′(x′) · b′′ + (−1)n−d

′
b′ · j′′(x′′).
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�

A.7. Products in hypercohomology. Let A∗ and B∗ be two complexes of
abelian sheaves on a Noetherian scheme of finite Krull dimension. In this case we
have canonical pairings in hypercohomology groups

Hp(X,A∗)⊗Z H
q(X,B∗)

∪−→ Hp+q(X,A∗ ⊗Z B
∗).

The easiest way to define these ∪-product maps is via the Godement resolutions
(cf. [Go], ch. 2, §6). Recall that for an abelian sheaf A on an arbitrary topological
space X its Godement resolution G∗(A) is defined as follows. One first defines a
sheaf G(A) via the formula

Γ(U,G(A)) =
∏
x∈U

Ax.

In other words G(A) =
∏
x∈X(ix)∗(Ax). Note that the sheaf G(A) is obviously

flasque. Furthermore we have a natural sheaf homomorphism A
iA−→ G(A) and the

induced homomorphisms on stalks Ax −→ G(A)x are canonically split by means of
obvious maps px : G(A)x −→ Ax. Note also that the family of homomorphisms px
defines a sheaf homomorphism p : G(G(A)) −→ G(A).

Finally we set Gn(A) = G ◦ ... ◦G︸ ︷︷ ︸
n+1

(A) (so that G(A) = G0(A)) and define the

coface operations δi : Gn(A) −→ Gn+1(A) (0 ≤ i ≤ n+ 1) via the formulae

Gn(A) = Gi−1(Gn−i(A))
Gi−1(iGn−i(A))−−−−−−−−−−→ Gi−1(Gn−i+1(A)) = Gn+1(A).

The codegeneracy operators are defined similarly using now the homomorphisms
p. One checks easily (see [Go] ch. 2, §6) that the augmented cosimplicial sheaf

A
iA−→ G∗(A) is acyclic, i.e. G∗(A) is a flasque resolution of A. Moreover the

homomorphism iA is a stalkwise homotopy equivalence -see [Go].

For an arbitrary complex of sheaves A∗ the natural homomorphism A∗
iA∗−−→

Tot(G∗A∗) is a stalkwise homotopy equivalence and in particular a quasi-isomorphism.
Moreover the complex Tot(G∗A∗) consists of flasque sheaves provided that A∗ is
bounded below or the topological space X is Noetherian (in which case arbitrary
direct sum of flasque sheaves is flasque).

Assume now that X is a Noetherian topological space of finite Krull dimension.
In this case we can use the following elementary but useful result.

Lemma A.7.1. Let A∗ be an acyclic complex of abelian sheaves on a Noetherian
topological space of finite Krull dimension. Assume that the sheaves Ai are acyclic
(e.g. flasque) for i ≤ n−1. Then the complex Γ(X,A∗) is acyclic in degrees ≤ n+1.

Proof. Set Zi = Ker(Ai
d−→ Ai+1). Using the short exact sequences 0 −→ Zi−1 −→

Ai−1 −→ Zi −→ 0 and acyclicity of Ai−1 for i ≤ n we conclude immediately that for
i ≤ n we have isomorphisms

Hp(X,Zi) = Hp+1(X,Zi−1) = . . . = 0
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since the cohomological dimension of abelian sheaves on X is bounded by dim X.
Thus the sheaves Zi (i ≤ n) are also acyclic. This implies exactness of the following
sequences

. .

0 −→ Γ(X,Zn−1) −→ Γ(X,An−1) −→ Γ(X,Zn) −→ 0

0 −→ Γ(X,Zn) −→ Γ(X,An) −→ Γ(X,Zn+1) −→ 0

0 −→ Γ(X,Zn+1) −→ Γ(X,An+1) −→ Γ(X,An+2)

and hence exactness of Γ(X,A∗) in degrees ≤ n+ 1. �

Corollary A.7.2. Let A∗ −→ B∗ be a quasi-isomorphism of complexes of abelian
sheaves on a Noetherian topological space of finite Krull dimension. Assume further
that the sheaves Ai and Bi are acyclic for i ≤ n − 1. Then the homomorphism of
complexes of global sections Γ(X,A∗) −→ Γ(X,B∗) induces isomorphisms in coho-
mology in degrees ≤ n.

Now we can define hypercohomology of X with coefficients in an arbitrary (not
necessarily bounded below) complex of sheaves A∗ via the formula

Hp(X,A∗) = Hp(Γ(X,Tot(G∗A∗)) = Hp(Tot(Γ(X,G∗A∗)))

One verifies easily that all the usual properties of hypercohomology still hold. In

particular for any quasi-isomorphism A∗ −→
∼
A∗ we get canonical homomorphisms

Hp(Γ(X,
∼
A∗)) −→ Hp(X,A∗)

which arise from the commutative diagram of complexes

Γ(X,A∗) −−−−→ Γ(X,
∼
A∗)y y

Γ(X,G∗A∗) −−−−→ Γ(X,G∗
∼
A∗),

the bottom row of which is a quasi-isomorphism.
Consequently, Corollary A.7.2 immediately yields the following result.

Corollary A.7.3. Let A∗ −→
∼
A∗ be a quasi-isomorphism of complexes of abelian

sheaves on a Noetherian topological space of finite Krull dimension. Assume that

the sheaves
∼
Ai are acyclic for i ≤ n − 1. Then the associated homomorphisms

Hp(Γ(X,
∼
A∗)) −→ Hp(X,A∗) are isomorphisms in degrees p ≤ n.

Corollary A.7.3 shows in particular that hypercohomology may be equally de-
fined using the Cartan-Eilenberg resolutions and hence we have the usual strongly
convergent hypercohomology spectral sequences - see [SV-2] §0.

The following lemma often simplifies the computations.
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Lemma A.7.4 -cf.[Go]ch.2, 4.8.1. Let A∗ −→
∼
A∗ be a resolution of a complex A∗.

Assume further that we are given a homomorphism of resolutions f :
∼
A∗ −→ G∗A∗.

Then the natural homomorphisms H∗(Γ(X,
∼
A∗)) −→ H∗(X,A∗) = H∗(Γ(X,G∗A∗))

coincide with the homomorphisms induced by f .

Proof. The general case is reduced easily to the case when
∼
A∗ = G∗A∗ and f = Id.

In this case we have to show that the following two homomorphisms of complexes

G∗A∗
G∗(iA∗ )−−−−−→−−−−−→
iG∗A∗

G∗G∗A∗

induce the same homomorphisms on homology of global sections. To do so we
note that the homomorphism G∗(iA∗) − iG∗A∗ is killed on the right by a quasi-
isomorphism iA∗ and hence is killed on the left by an appropriate quasi-isomorphism

G∗G∗A∗
g−→ B∗. Replacing B∗ by its flasque resolution we may even assume that

the complex B∗ consists of flasque sheaves. However in the latter case the homo-
morphism Γ(X, g) of complexes of global sections is a quasi-isomorphism and our
statement becomes obvious. �

Assume now that A∗ and B∗ are two complexes of abelian sheaves on a Noe-
therian topological space X of finite Krull dimension. The homomorphism A∗ ⊗Z

B∗
iA⊗iB−−−−→ G∗A∗ ⊗Z G

∗B∗ stalkwise is a tensor product of two homotopy equiva-
lences and hence is a stalkwise homotopy equivalence as well. In particular iA⊗Z iB
is a quasi-isomorphism. This gives us canonical pairings

Hp(X,A∗)⊗Hq(X,B∗) = Hp(Γ(X,G∗A∗))⊗Hq(Γ(X,G∗B∗)) −→
−→ Hp+q(Γ(X,G∗A∗ ⊗Z G

∗B∗)) −→ Hp+q(X,A∗ ⊗Z B
∗).

Moreover we have a natural homomorphism of resolutions G∗A∗ ⊗Z G
∗B∗

fA,B−−−→
G∗(A∗ ⊗Z B

∗)- see [Go] ch.2, §6.4. Lemma A.7.4 shows now that the last arrow
above coincides with the homomorphism in homology of global sections induced by
fA,B .

The following important result is proved in [Go], Theorem 6.6.1 in case A∗ and
B∗ are single sheaves. The proof in the general case does not present any new
difficulties and we skip it.

Proposition A.7.5. Let
∼
A∗,

∼
B∗,

∼
C∗ be resolutions of complexes A∗, B∗ and C∗

respectively. Assume further that we are given homomorphisms A∗ ⊗ B∗ −→ C∗,
∼
A∗ ⊗

∼
B∗ −→

∼
C∗ which fit into a commutative diagram

A∗ ⊗B∗ −−−−→ C∗y y
∼
A∗ ⊗

∼
B∗ −−−−→

∼
C∗.
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Then the following diagram of cohomology groups commutes

Hp(Γ(X,
∼
A∗))⊗Hq(Γ(X,

∼
B∗)) −−−−→ Hp+q(Γ(X,

∼
C∗))y y

Hp(X,A∗)⊗Hq(X,B∗) −−−−→ Hp+q(X,C∗).

Appendix B: Prespectra and K-theory.

We recall the naive category of prespectra, which we shall call the category of
prespectra, which requires strictly commutative diagrams. We then recall construc-
tions of Waldhausen, Grayson, and Thomason which facilitate this strict commuta-
tivity. We conclude with the definitions of multirelative K-theory and the K-theory
of simplicial schemes.

B.1. Prespectra and Ω-prespectra. In this paper we consider only the naive
category of prespectra. Recall that a prespectrum is a sequence of pointed spaces
X = (X0, X1, ...) together with continuous pointed maps φk : ΣXk → Xk+1 (or
equivalently ψk : Xk → ΩXk+1). A morphism of prespectra is a sequence of
continuous pointed maps fk : Xk → Y k such that the following diagrams commute

ΣXk φkX−−−−→ Xk+1

Σfk
y fk+1

y
ΣY k

φkY−−−−→ Y k+1.

Equivalently one can require the commutativity of the diagrams

Xk ψkX−−−−→ ΩXk+1

fk
y Ω fk+1

y
Y k

ψkY−−−−→ ΩY k+1.

A prespectrum (X0, X1, ...) is called an Ω-prespectrum provided that all maps
ψk : Xk → ΩXk+1 are homotopy equivalences (of pointed spaces). For each
prespectrum X = (X0, X1, ...) we have canonical maps πi(X

k) → πi(ΩXk+1) =
πi+1(Xk+1). The homotopy groups of the prespectrum X = (X0, X1, ...) are de-
fined via the formula

πn(X) = lim−→
k≥−n

πn+k(Xk) (−∞ < n <∞).

Note that if X is an Ω-prespectrum, then πn(X) = πn+k(Xk) whenever k ≥ −n.
A morphism of prespectra f : X → Y is called a weak equivalence provided that it
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induces isomorphisms on all homotopy groups. We will say that the prespectrum
X = (X0, X1, ...) is N -connected provided that each space Xk is (N+k)-connected.
In case of Ω-prespectra, this requirement is equivalent to the vanishing of πi(X) for
all i ≤ N .

Let X be a prespectrum and let k ≥ 0 be an integer. We define new prespectra
ΣkX,ΩkX setting

(ΣkX)n = ΣkXn, (ΩkX)n = ΩkXn

and defining the corresponding structure morphisms as compositions

φnΣkX :Σ(ΣkXn)
∼−→ Σk(ΣXn)

ΣkφnX−−−−→ ΣkXn+1

ψnΩkX : ΩkXn Ωk ψn−−−−→ Ωk(ΩXn+1)
∼−→ Ω(ΩkXn+1).

Lemma B.1.1. a) For any prespectrum X we have natural isomorphisms

πn(ΩkX) = πn+k(X).
b) Assume that the prespectrum X is N -connected for some integer N . In this case
we have natural isomorphisms πn(ΣkX) = πn−k(X).

Proof. The first part is essentially obvious. For any i > −n− k we have a natural
identification πn+i(Ω

kXi) = πn+k+i(X
i). Moreover the diagram

πn+i(Ω
kXi) −−−−→ πn+i+1(ΩkXi+1)

=

y =

y
πn+i+k(Xi) −−−−→ πn+i+k+1(Xi+1)

commutes up to a sign (−1)k. Thus the direct systems defining πn(ΩkX) and
πn+k(X) are canonically isomorphic. The second part follows in the same way,
using in addition the Freudenthal Suspension Theorem. �

Let f : X → Y be a morphism of prespectra. Denoting the homotopy fiber
(resp. cofiber) of fn : Xn → Y n by Fn (resp. Cn) one checks immediately that
the sequences (F0,F1, ... ) and (C0, C1, ... ) have natural structures of a prespectra,
which we denote fib(f) (resp. cofib(f)). Moreover fib(f) is an Ω-prespectrum
provided that X and Y are Ω-prespectra. Finally Lemma A.5.1 and Corollary
A.5.2 immediately generalize to the case of Ω-prespectra.

Let X• be a simplicial prespectrum (i.e., a simplicial object of prespectra). De-
note the spaces constituting the prespectrum Xi by Xn

i . For every n we get a
simplicial space Xn

• and hence may consider its geometric realization |Xn
• |. More-

over for each n we have a canonical pointed map

Σ|Xn
• | = |ΣXn

• | → |Xn+1
• |

Thus |X•| = (|X0
• |, |X1

• |, ...) is a prespectrum.
The following well-known result (cf. [B-F;B.7] is of considerable importance for

our purposes.
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Proposition B.1.2. Let X• be a simplicial object in the category of Ω-prespectra.
Assume that each of the simplicial pointed spaces Xn

• is good in the sense of Segal
[Seg]. (In other word, all degeneracy maps Xn

i−1 → Xn
i are closed fibrations and

all distinguished points are non-degenerate.) Then the prespectrum |X•| is an Ω-
prespectrum. Moreover if all Ω-prespectra Xi are N -connected for an appropriate
integer N , then |X•| is also N -connected and there exists a spectral sequence

E2
p,q = πp(πq(X•)) =⇒ πp+q(|X•|).

To each abelian group A we associate an Ω-prespectrum B(A). Recall that the
classifying space of A is the simplicial abelian group B•(A) with Bn(A) = An and
face and degeneracy operators defined via the formulae:

∂0(a1, ..., an) = (a2, ..., an)

∂i(a1, ..., an) = (a1, ..., ai + ai+1, ..., an) (1 ≤ i ≤ n− 1)

∂n(a1, ..., an) = (a1, ..., an−1)

si(a1, ..., an) = (a1, ..., 0
i+1
, ..., an).

Applying the functor B• to a simplicial abelian group A• we get a bisimplicial
abelian group B•(A•) and an obvious continuous map of pointed spaces Σ|A•| −→
|B•(A•)|. It’s well-known that the associated map |A•| −→ Ω |B•(A•)| is always
a homotopy equivalence. In particular applying the functor B• to the simplicial
abelian group B•(A•) we get a bisimplicial abelian group B•B•(A•) whose geo-
metric realization is a delooping of |B•(A•)|. Repeating this procedure we get a
delooping of |B•B•(A•)| etc. Finally we set

B(A•) = (|A•|, |B•(A•)|, |B•B•(A•)|, . . . ).

The above mentioned fact that for any simplicial abelian group A• the simplicial
abelian group B(A•) is a delooping of A• follows immediately from the presence of
a fibration (of bisimplicial abelian groups)

A• −→ E(A•) −→ B(A•)

and contractibility of E(A•). Here E(A•) is a (bi)simplicial abelian group with
Ep,q = (Ap)

q+1, the simplicial operations in the p-direction being induced by the
simplicial operations in A• while face and degeneracy operations in q-direction are
given by omitting the corresponding coordinate (resp. repeating it). The map
E −→ B is given by taking differences of neighboring components. The simplicial
abelian group A• is considered as a bisimplicial abelian group constant in q direction
and the homomorphism Ap = Ap,q −→ Ep,q = (Ap)

q+1 is the diagonal map. The
above sequence of bisimplicial abelian groups is easily seen to be exact and hence
defines a fibration. Finally the simplicial abelian group Ep,• is contractible for any
p which readily implies that E•,• is contractible. The connecting homomorphism
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∂ : πi(B(A•)) −→ πi−1(A•) is an isomorphism for all i, which we choose to identify
the above homotopy groups.

For any simplicial abelian groups A•, B• we get a canonical map of simplicial
sets A• ∧B• −→ A• ⊗B• which defines a pairing in homotopy groups

πi(A•)× πj(B•) −→ πi+j(A• ∧B•) −→ πi+j(A• ⊗B•)

For any x ∈ πi(A•), y ∈ πj(B•) we denote by x ⊗ y ∈ πi+j(A• ⊗ B•) the image
of x × y under this pairing. We need the following explicit formula for the above

pairing. Recall that the strictly increasing maps [i + j]
φ=(φ′,φ′′)−−−−−−→ [i] × [j] are in

one to one correspondence with (i, j)-shuffles - see [May]. For any such map φ we
denote by ε(φ) the sign of the corresponding shuffle.

Lemma B.1.3. Let a ∈ Ai, b ∈ Bj be Moore cycles (i.e. all faces of a and b are
trivial). Then ∑

φ=(φ′,φ′′):[i+j]→[i]×[j]

ε(φ)(φ′)∗(a)⊗ (φ′′)∗(b)

(where φ = (φ′, φ′′) runs through all strictly increasing maps [i+ j] −→ [i]× [j] ) is a
Moore cycle of dimension i+ j of A•⊗B• and its class in πi+j(A•⊗B•) coincides
with the [a]⊗ [b].

Proof. The cycles a and b determine maps

a : ∆i −→ A•, b : ∆j −→ B•

which collapse the boundaries of the respective simplices to the distinguished point
0. The product map

∆i ×∆j a×b−−→ A• ×B• −→ A• ∧B• −→ A• ⊗B•

contracts the boundary of ∆i ×∆j to a point and hence defines an element in

[(∆i ×∆j , ∂(∆i ×∆j)), (A• ⊗B•, 0)] = πi+j(A• ⊗B•)

which is exactly [a] ⊗ [b]. To identify this element we note that [a] ⊗ [b] may be
also described as (a× b)∗(α), where α is the distinguished generator of πi+j(∆

i ×
∆j , ∂(∆i×∆j)) = Z. Consider the following commutative diagram, whose vertical
arrows are the Hurewicz homomorphisms.

Z = πi+j(∆
i ×∆j , ∂(∆i ×∆j))

(a×b)∗−−−−→ πi+j(A• ⊗B•, 0)

∼
=

y y
Z = Hi+j(∆

i ×∆j , ∂(∆i ×∆j))
(a×b)∗−−−−→ Hi+j(A• ⊗B•, 0).

The image of α in Hi+j(∆
i × ∆j , ∂(∆i × ∆j)) is the distinguished generator of

this homology group and coincides, as is well-known, with
∑
φ ε(φ)φ, where we
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keep the same notation φ for the map ∆i+j → ∆i ×∆j corresponding to φ. This
implies that the image of [a] ⊗ [b] in Hi+j(A• ⊗ B•, 0) is the alternating sum of
singular simplices (a × b) ◦ φ : ∆i+j −→ A• ⊗ B•. Finally we note that for any
simplicial abelian group C• the Hurewicz homomorphism πi+j(C•) −→ Hi+j(C•, 0)
has a canonical right inverse induced by the homomorphism of simplicial abelian

groups
∼
Z(C•) = Z(C•)/Z · 0 −→ C•. The statement now follows immediately. �

Note that to any simplicial abelian group A• we may associate naturally three
complexes - the complex A∗ with terms Ai and differential equal to the alternating
sum of the face operations, its Moore complexM∗(A•) with termsMi = Ker ∂1 ∩
...∩Ker ∂i and differential equal to ∂0 and finally its normalized complex KN,∗(A•)
which is obtained from A∗ by factoring out the degenerate part. Moreover we have
obvious homomorphisms of complexes

M∗(A•) −→ A∗ −→ KN,∗(A•)

both of which are homotopy equivalences and whose composition is an isomorphism
(so that the complexes M∗(A•) and KN,∗(A•) may be canonically identified) - see
[Mac] , [May]. Furthermore we have natural identifications πi(A•) = Hi(A∗) =
Hi(M(A•)). Let A• and B• be two simplicial abelian groups. The Eilenberg-Zilber
Theorem shows that the complex (A• ⊗ B•)∗ is naturally homotopy equivalent to
A∗ ⊗B∗. The corresponding homotopy equivalence

A∗ ⊗B∗
EZ−−→ (A• ⊗B•)∗

is given by the following formula (cf. [Mac], ch 8,§8):

EZ(ai ⊗ bj) =
∑

φ=(φ′,φ′′):[i+j]→[i]×[j]

ε(φ)(φ′)∗(ai)⊗ (φ′′)∗(bj).

Moreover the homomorphism EZ also defines homotopy equivalences on Moore
subcomplexes and on normalized quotient complexes. Lemma B.1.3 may be now
restated as follows.

Corollary B.1.4. The following diagram commutes

πi(A•)⊗ πj(B•) −−−−→ πi+j(A• ⊗B•)
∼
=

y ∼
=

y
Hi(A∗)⊗Hj(B∗)

EZ−−−−→ Hi+j((A• ⊗B•)∗).

For any simplicial abelian group A• the simplicial abelian group BA• may be
canonically identified with the tensor product A•⊗B•Z. Furthermore the complex
(B•Z)∗ is canonically homotopy equivalent to M∗(B•Z) = Z[1]. The Eilenberg-
Zilber Theorem now shows that the complex (BA•)∗ is canonically homotopy equiv-
alent to the complex A∗[1]. Using finally the explicit form of the Eilenberg-Zilber
map we easily obtain the following result.
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Lemma B.1.5. For any simplicial abelian group A• we have a natural homotopy

equivalence A∗[1]
s−→ (BA•)∗ given by the formula

a ∈ An−1 7→ (s0(a),−s1(a), ..., (−1)n−1sn−1(a)) ∈ Ann = (BA•)n.

Assume that A′•, A
′′
• , A• are simplicial abelian groups and A′• × A′′•

φ−→ A• is a
bilinear map of simplicial sets. The map φ defines in an obvious way a homomor-
phism of simplicial abelian groups A′•⊗A′′• −→ A• and hence a pairing in homotopy
groups πi(A

′
•)× πj(A′′•) −→ πi+j(A•).

The map φ defines further two new bilinear maps

BA′• ×A′′• −→ BA• (a′1, ..., a
′
p)× a′′ 7→ (φ(a′1, a

′′), ..., φ(a′p, a
′′))

A′• ×BA′′• −→ BA• a′ × (a′′1 , ..., a
′′
p) 7→ (φ(a′, a′′1), ..., φ(a′, a′′p))

and hence two new pairings in homotopy groups

πi(A
′
•)× πj(A′′•) = πi+1(BA′•)× πj(A′′•) −→ πi+j+1(BA•) = πi+j(A•)

πi(A
′
•)× πj(A′′•) = πi(A

′
•)× πj+1(BA′′•) −→ πi+j+1(BA•) = πi+j(A•).

Lemma B.1.6. The following diagrams of complexes commute

A′∗[1]⊗A′′∗ −−−−→ A∗[1]

s⊗1

y s

y
(BA′•)∗ ⊗A′′∗ −−−−→ (BA•)∗

A′∗ ⊗A′′∗ [1] −−−−→ A∗[1]

1⊗s
y s

y
A′∗ ⊗ (BA′′•)∗ −−−−→ (BA•)∗.

Hence the pairings in homotopy groups defined by the pairings of simplicial abelian
groups BA′•×A′′• −→ BA•, A

′
•×BA′′• −→ BA• coincide (up to a sign) with pairings

in homotopy groups defined by the original pairing φ.

Proof. The first statement may be verified directly, or deduced from the strict coas-
sociativity of the shuffle map. The second follows immediately from the first. �

B.2. Waldhausen’s S-construction. Let C be a category with cofibrations
and weak equivalences in the sense of Waldhausen [Wa]. To each such category
Waldhausen associates an Ω-prespectrum K(C) whose definition we recall briefly.
We shall assume for simplicity that the category C has a unique zero object O. First
of all Waldhausen defines the category Sn(C) of n-filtered objects. The objects of
this category are chains of cofibrations

0 = X0 � X1 � . . . � Xn
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together with the choice of subfactors Xi,j = Xj/Xi for all i < j. A morphism
in Sn(C) from a filtered object X to a filtered object Y is a morphism in C from
Xn to Yn which preserves filtrations. A morphism f : X → Y is a cofibration
(resp. equivalence) in Sn(C) provided that the induced morphisms on all subfactors
Xi,j → Yi,j are cofibrations (resp. equivalences) and for that it suffices that the
morphisms Xi,i+1 −→ Yi,i+1 be cofibrations (equivalences) for all i. One checks
immediately that S•(C) is a simplicial category with cofibrations and equivalences.
Repeating this construction one gets a bisimplicial category with cofibrations and
weak equivalences S•S•(C) , etc. Denoting the category of weak equivalences in
S•...S•(C) by wS•...S•(C) and regarding each category as a simplicial set in the
usual way we get a sequence of spaces

K0(C) = |wC|, K1(C) = |wS•(C)|, K2(C) = |wS•S•(C)| , . . .

Since wS1(C) = wC, the “1-skeleton in the S• direction” of |wS•(C)| is homeo-
morphic to Σ|wC| and similarly for wS• . . . S•(C), we obtain canonical (pointed)
maps

ΣKn(C) −→ Kn+1(C)

(i.e., a prespectrum). Moreover Waldhausen shows that the associated maps

Kn(C) −→ ΩKn+1(C)

are homotopy equivalences for n ≥ 1, i.e. K(C) is an Ω-prespectrum.
As always the group K0(C) = π0(K(C)) may be identified with the abelian group

with generators [X] (X ∈ C) which are subject to relations

[X] = [Y ] + [X/Y ] for any cofibration Y � X,

[X] = [Y ] for any weak equivalence X
∼−→ Y.

We finish this brief discussion with the construction of a canonical morphism of
prespectra

K(C) −→ B(K0(C)). (B.2.1)

Associating to a filtered object 0 = X0 � X1 � . . . � Xn an element
([X1/X0], ..., [Xn/Xn−1]) we get a functor from the category wSn(C) to (K0(C))n
(considered as a trivial category). One checks immediately that this construction
commutes with face and degeneracy operators and thus provides us with a canonical
map of bisimplicial sets

wS•(C)→ B•(K0(C))

where B•(K0(C)) is considered as a bisimplicial set trivial in the q-direction and
hence gives us a canonical pointed continuous map |wS•(C)| → |B•(K0(C))|. In the
same way we get canonical morphisms

|wS•...S•︸ ︷︷ ︸
n

(C)| → |B•...B•︸ ︷︷ ︸
n

(K0(C))|
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for all n ≥ 0.

B.3. Products in K-theory. Let C, C′, C′′ be categories with cofibrations and
weak equivalences. Assume further that we are given a bifunctor ⊗ : C′ × C′′ −→ C
which is exact in each variable with other variable fixed (i.e. takes 0 to 0, takes cofi-
brations to cofibrations and preserves the pushout diagrams involving cofibrations)
and also takes weak equivalences to weak equivalences. These properties show that
starting with an i-filtered object X ∈ C′ and an j-filtered object Y ∈ C′′ we get
an (i, j)-bifiltered object X ⊗ Y ∈ C, i.e. ⊗ defines a functor from the bisimplicial
category S•(C′)× S•(C′′) to the bisimplicial category S•S•(C′′). This functor takes
weak equivalences to weak equivalences and hence defines a map

|wS•(C)| ∧ |wS•(C)| −→ |wS•S•(C)|.

These maps define product pairings on homotopy groups Kn(C′) × Km(C′′) →
Kn+m(C). In the same way one constructs canonical maps of simplicial sets

Kn(C′) ∧ Km(C′′) −→ Kn+m(C)

which fit (for all m,n > 0) into commutative diagrams

ΣKn−1(C′) ∧ Km(C′′) −−−−→ ΣKn+m−1(C)y y
Kn(C′) ∧ Km(C′′) −−−−→ Kn+m(C)x x
Kn(C′) ∧ ΣKm−1(C′′) −−−−→ ΣKn+m−1(C)

and hence induce the same (as above) pairings in homotopy groups

Ki(C′)×Kj(C′′) = πi+n(Kn(C′))× πj+m(Km(C′′)) −→ πi+j+n+m(Kn+m(C)) =

= Ki+j(C).

B.4. K-theory with finite coefficients. Fix an integer l ≥ 2 and consider the
multiplication by l endomorphism of S1

S1 = I/{0, 1} l−→ S1 = I/{0, 1}.

Let M = M2
l denote the cone of this morphism. Thus M2

l is a CW-complex of
dimension 2, which has one cell of dimension 2, one cell of dimension 1, and one
cell of dimension 0 (the distinguished point). The homotopy groups with finite
coefficients of a pointed space X are defined via the formula

πi(X,Z/l) = [Si−2 ∧M2
l , X] if i ≥ 2.
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Thus π2(X,Z/l) is only a pointed set, πi(X,Z/l) is a group for i > 2, which is
abelian provided that i > 3 or X is an H-space. This definition is immediately
generalized to the case of prespectra by setting for a prespectrum X = (X0, X1, ...)

πi(X,Z/l) = lim−→
k≥−i

πi+k(Xk,Z/l) (−∞ < i <∞).

Note that in the case of prespectra the homotopy groups with finite coefficients
πi(X,Z/l) are defined for all i ∈ Z and always are abelian groups. Furthermore
πi(X,Z/l) = πi+k(Xk,Z/l) ∀ k ≥ 2 − i, provided that X is an Ω-prespectrum.
Note also that πi(X,Z/l) = 0 for i < 0 for a (−1)-connected prespectrum X.
This last remark applies in particular to prespectra of algebraic K-theory. For a
category C with cofibrations and weak equivalences we define theK-groups of C with
finite coefficients as homotopy groups with finite coefficients of the corresponding
prespectrum:

Ki(C,Z/l) = πi(K∗(C),Z/l).

Returning to the situation discussed in §B.3, we note first that the pairing of
spaces Kn(C′) ∧ Km(C′′) −→ Kn+m(C) defines pairings in homotopy groups with
coefficients (see discussion after Lemma A.6.3.1, where we take M ′ = S0,M ′′ =
M2
l ,M = M2

l )

πi(Kn(C′))× πj(Km(C′′),Z/l) −→ πi+j(Kn+m(C),Z/l) i ≥ 0, j ≥ 2,

πi(Kn(C′),Z/l)× πj(Km(C′′)) −→ πi+j(Kn+m(C),Z/q) i ≥ 2, j ≥ 0.

These pairings define pairings in K-groups with coefficients

Ki(C′)×Kj(C′′,Z/l) −→ Ki+j(C,Z/l),
Ki(C′,Z/l)×Kj(C′′) −→ Ki+j(C,Z/l),

which are independent of the choice of n,m ≥ 2.
Thus in the situation discussed in §B.3 we get canonical pairings between integral

K-groups and K-groups with coefficients. To define pairings on the K-groups with

coefficients, we need to fix a comultiplication Σ2M2
l

c−→ M2
l ∧ M2

l . To be more
explicit consider the cofibration sequence

S1 l−→ S1 i−→M2
l

p−→ S2.

Taking its smashed product with the space M2
l we get another cofibration sequence

ΣM2
l

q−→ ΣM2
l

i∧1
M2
l−−−−→M2

l ∧M2
l

p∧1
M2
l−−−−→ Σ2M2

l .

The required comultiplication Σ2M2
l

c−→M2
l ∧M2

l has to be homotopy inverse (on

the right) to the canonical map M2
l ∧M2

l

p∧1
M2
l−−−−→ Σ2M2

l . It is known that such a
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map exists in case l 6≡ 0 mod 4 and is uniquely (up to homotopy) defined by the
above requirement in case l is odd - see [Br]. Thus in case l 6≡ 0 mod 4 we may
define products in homotopy groups with finite coefficients: every pairing of pointed
spaces Y ′ ∧ Y ′′ −→ Y defines a pairing in homotopy groups with finite coefficients

πi(Y
′,Z/l)⊗ πj(Y ′′,Z/l) −→ πi+j(Y,Z/l) i, j ≥ 2

-see general discussion after Lemma A.6.3.1. In particular, in the situation discussed
in §B.3 we get pairings on the K-groups with coefficients in Z/l:

Ki(C′,Z/l)×Kj(C′′,Z/l) −→ Ki+j(C,Z/l).

However this pairing in general depends on the choice of the map c. Finally we get
really well-defined product maps on K-groups with coefficients Z/l for all odd l’s.

In the main body of the paper we need a few facts concerning products in
homotopy groups with finite coefficients in the case of simplicial abelian groups.
We start with the following elementary observation.

Lemma B.4.1. For any simplicial abelian group A• we have natural isomorphisms

πi(|A•|,Z/l) = Hi(Cl(A∗)),

where Cl(A∗) = C(A∗
l−→ A∗) is the cone of the multiplication by l homomorphism.

Proof. Let Y• be a simplicial model for the space M2
l , i.e. |Y•| is homotopy equiv-

alent to M2
l . According to definitions

πi(|A•|,Z/l) = [|Σi−2Y•|, |A•|]0

where [ , ]0 stands for the set of homotopy classes of pointed maps. Since the sim-
plicial set A• is a Kan complex we conclude that the natural map [Σi−2Y•, A•]0 −→
[|Σi−2Y•|, |A•|]0 is an isomorphism. To give a pointed simplicial map Σi−2Y• −→ A•

is the same as to give a homomorphism of simplicial abelian groups
∼
Z(Σi−2Y•) =

Z(Σi−2Y•)/Z · ∗ −→ A• and since the category of simplicial abelian groups is equiv-
alent to the category of non-negative complexes this is the same as to give a homo-

morphism of associated normalized complexes KN (
∼
Z(Σi−2Y•)) −→ KN (A•). More-

over one checks easily that two pointed maps of simplicial sets

Σi−2Y• −→−→ A•

are simplicially homotopic iff the corresponding homomorphisms of complexes

KN (
∼
Z(Σi−2Y•)) −→−→ KN (A•)

are homotopic in the usual sense of homological algebra. These considerations
imply that

πi(|A•|,Z/l) = [KN (
∼
Z(Σi−2Y•)),KN (A•)].



ALGEBRAIC K-THEORY TO MOTIVIC COHOMOLOGY 109

Moreover, the complex KN (
∼
Z(Y•)) has only one non-zero homology group, namely

Z/l in degree one, which readily implies that this complex is homotopy equiva-

lent to Z
1

l←− Z
2
. Moreover the Eilenberg-Zilber Theorem shows that the complex

KN (
∼
Z(Σi−2Y•)) is naturally homotopy equivalent to

KN,∗(
∼
Z(Y•))⊗KN,∗(S

1)⊗(i−2) = KN,∗(
∼
Z(Y•))[2− i]

∼
= (Z
−1

l←− Z
0
)[−i]

Now the statement becomes obvious. �

Remark B.4.2. One derives easily from the previous proof the following explicit
form of the isomorphism of Lemma B.4.1. Let f : Σi−2M2

l −→ |A•| be a pointed con-

tinuous map. Denote by f∗ :
∼
H∗(Σ

i−2M2
l ,Z/l) −→

∼
H∗(|A•|,Z/l) = H∗(A•,Z/l) the

induced map in homology with finite coefficients. Note further that the homology
group Hi(Σ

i−2M2
l ,Z/l) = H2(M2

q ,Z/l) is canonically isomorphic to Z/l and let φi
denote the canonical generator of this group. Denote finally by p : H∗(A•,Z/l) −→
H∗(Cl(A∗)) the homomorphism in homology induced by the following chain of ho-
momorphisms of complexes, the first of which is a quasi-isomorphism

∼
Z/l(A•)∗ ←− Cl(

∼
Z(A•)∗) −→ Cl(A∗).

The explicit formula for the isomorphism of Lemma B.4.1 looks now as follows:

[f ] 7→ pf∗(φi).

Note that the correspondence A∗ 7→ Cl(A∗) defines a functor from the category
of complexes to itself. Moreover for any complexes A∗, B∗ we have a natural homo-
morphism Cl(A∗)⊗Cl(B∗) −→ Cl(A∗⊗B∗). Thus for any simplicial abelian groups
A• and B• we get a natural homomorphism of complexes

Cl(A∗)⊗ Cl(B∗) −→ Cl(A∗ ⊗B∗)
Cl(EZ)−−−−−→ Cl((A• ⊗B•)∗).

Lemma B.4.3. For any simplicial abelian groups A•, B• we have a commutative
diagram

πi(A•,Z/l)⊗ πj(B•,Z/l) −−−−→ πi+j(A• ⊗B•,Z/l)
∼
=

y ∼
=

y
Hi(Cl(A∗))⊗Hj(Cl(B∗)) −−−−→ Hi+j(Cl((A• ⊗B•)∗)).

Proof. Let f : Σi−2M2
l → |A•|, g : Σj−2M2

l → |B•| be pointed continuous maps.
The image of [f ]⊗ [g] in πi+j(|A•⊗B•|,Z/l) is represented by a pointed continuous
map

h : Σi+j−2M2
l = Σi+j−4Σ2M2

l
Σi+j−4c−−−−−→ Σi+j−4(M2

l ∧M2
l ) = Σi−2M2

l ∧ Σj−2M2
l

f∧g−−→ |A• ∧B•| −→ |A• ⊗B•|.
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According to Remark B.4.2, the image of this element in Hi+j(Cq((A• ⊗ B•)∗))
equals ph∗(φi+j). One checks easily from the definition that the element

(Σi+j−4c)∗ ∈
∼
Hi+j(Σ

i−2M ∧ Σj−2M) coincides with the generator φi ⊗ φj of this

group. Hence the image of this element in
∼
Hi+j(|A• ∧ B•|,Z/l) coincides with

f∗(φi) ⊗ g∗(φj). Now it suffices to verify the commutativity of the following dia-
gram, which we leave as an easy exercise to the reader
∼
Hi(A•,Z/l)⊗

∼
Hj(B•,Z/l) −→

∼
Hi+j(A• ∧B•,Z/l) −→

∼
Hi+j(A• ⊗B•,Z/l)

↓ p⊗ p ↓ p
Hi(Cl(A∗))⊗Hj(Cl(B∗)) −→ Hi+j(Cl((A• ⊗B•)∗).
�

B.5. Big Vector Bundles. Let X be a Noetherian scheme. Consider the big
Zariski site Sch/X of all schemes of finite type over X. Let P : Sch/X → Ab be an
O-module. For every Y ∈ Sch/X restricting P to the small Zariski site of Y gives
an OY -module PY . Following Grayson [Gr], we say that P is a big vector bundle
on X provided that the following conditions hold

(1) For every Y ∈ Sch/X the OY -module PY is a vector bundle on Y (i.e., a
locally free, coherent OY -module).

(2) For every arrow f : Y → Z in Sch/X the induced homomorphism
f∗(PZ) −→ PY is an isomorphism (obviously it suffices to require that the
above condition holds for the structure morphisms Y → X only).

In other words a big vector bundle on X is a family of vector bundles PY (Y ∈
Sch/X) together with a data of isomorphisms f∗(PZ) −→ PY which satisfy appro-
priate compatibility conditions. Denote by P(Sch/X) the category of big vector
bundles considered as a full subcategory in the category of O-modules. Denot-
ing the category of vector bundles on X by P(X), we have an obvious functor
P(Sch/X) → P(X). One checks easily (cf. [Gr]) that this functor is an equiva-
lence. For every scheme of finite type f : Y → X we have an obvious restriction
functor P(Sch/X)→ P(Sch/Y ) which we denote f∗. The main advantage of this

construction is that whenever we have a chain of arrows Z
g−→ Y

f−→ X the functors
(f ◦ g)∗ and g∗ ◦ f∗ coincide (not simply agree up to a canonical isomorphism).

B.6. The Ω-Prespectra of Algebraic K-Theory. Let X be a Noetherian
scheme. The category P(X) is an exact category in the sense of Quillen [Q2] and
hence one can apply Quillen’s Q-construction [Q2] or Waldhausen’s S-construction
[Wa] to get the corresponding K-theory prespectrum. However it will be more
convenient for our purposes to follow the approach developed by Thomason in [TT]
(replacing also the category P(X) by the equivalent category P(Sch/X)).

Denote by CP(X) the category of bounded complexes of big vector bundles
on X. The category CP(X) may be considered as a Waldhausen category, in
which cofibrations are degree-wise split monomorphisms and equivalences are quasi-
isomorphisms. Waldhausen’s machinery associates to each category with cofibra-
tions and equivalences an Ω-prespectrum as discussed above (cf. [Wa]). We de-
note by K(X) the Ω-prespectrum corresponding to the category CP(X). It is
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known [TT] that this Ω-prespectrum is equivalent to the usual Ω-prespectrum of
algebraic K-theory. Let f : Y → X be a scheme of finite type over X. The
exact functor f∗ : CP(Sch/X) → CP(Sch/Y ) defines a morphism of prespectra
f∗ : K(X) → K(Y ). Furthermore if g : Z → Y is a scheme of finite type over Y
then the diagram of prespectra

K(X)
f∗−−−−→ K(Y )

(fg)∗
y g∗

y
K(Z)

=−−−−→ K(Z)

strictly commutes.
Assume now that we are given a family of closed subschemes {Xi ⊂ X}i∈I .

Denote by CP{Xi}(X) the full subcategory of CP(X) consisting of complexes acyclic
outside of ∪i∈IXi. The category CP{Xi}(X) is a Waldhausen category in its own
right. We denote by K{Xi}(X) the corresponding Ω-prespectrum (this is called
the prespectrum of K-theory with supports in {Xi}i∈I). The first term of this
Ω-prespectrum is the space |wS•(CP{Xi}(X))|. We usually use the abbreviated

notation |S{Xi}• (X)| for this space. Assume further that f : Y → X is a scheme
of finite type over X and {Yj}j∈J is a family of closed subschemes of Y . The

exact functor f∗ : CP(X)→ CP(Y ) takes CP{Xi}(X) to CP{Yj}(Y ) provided that
f−1(Xi) ⊂ ∪j∈JYj for all i ∈ I. In this case we get the induced morphism of

prespectra f∗ : K{Xi}(X) → K{Yj}(Y ). Once again the formula (fg)∗ = g∗f∗ :
K{Xi}(X)→ K{Zk}(Z) holds whenever both sides make sense.

Since the Ω-prespectrum provided by the Waldhausen construction is always
(−1)-connected we conclude that the Ω-prespectra K(X) and K{Xi}(X) are (−1)-
connected.

B.7. Relative and multirelative K-theory. Let X be a Noetherian scheme
and Y ⊂ X a closed subscheme of X. The Ω-prespectrum of algebraic K-theory
of X relative to Y is defined as the homotopy fiber of the morphism of prespectra
K(X)→ K(Y ):

K(X;Y ) = fib(K(X)→ K(Y ))

and the relative K-groups are defined as homotopy groups of this prespectrum:

Ki(X;Y ) = πi(K(X;Y )).

More generally if we are given a family of closed subschemes Y0, ..., Yn−1 ⊂ X one
defines the Ω-prespectrum of multirelative K-theory inductively, setting

K(X;Y0, ..., Yn−1) = fib(K(X;Y0, ..., Yn−2)→ K(Yn−1;Y0∩Yn−1, ..., Yn−2∩Yn−1)).

One may rephrase the above construction in slightly different terms. The above
data defines a n-cube in the category of prespectra KS = K(

⋂
i 6∈S Yi) and the
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prespectrum K(X;Y0, ..., Yn−1) by the very definition is the iterated homotopy fiber
of this n-cube (see §3,4 for a detailed discussion of this construction). Assume
finally that each of the intersection schemes Yi0 ∩ ...∩Yik is provided with a family
of supports F(Yi0 ∩ ... ∩ Yik) such that for any Z ∈ F(Yi0 ∩ ... ∩ Yik) and any
ik+1 6= i0, ..., ik the intersection of Z with Yik+1

is contained in F(Yi0 ∩ ... ∩ Yik ∩
Yk+1). In this case we can repeat the previous construction replacing everywhere
the prespectra of K-theory by prespectra of K-theory with supports. We denote the
corresponding Ω-prespectrum by KF (X;Y0, ...Yn−1). It follows immediately from
the definitions that the Ω-prespectrum KF (X;Y0, ...Yn−1) is (−n− 1)-connected.

B.8. K-theory of cosimplicial schemes. Let X• be a Noetherian cosimpli-
cial scheme. The Ω-prespectra K(Xn) form a simplicial Ω-prespectrum and we
define the Ω-prespectrum K(X•) as the geometric realization of this simplicial Ω-
prespectrum. Assume now that each of the schemes Xn is provided with a family
of supports F(Xn) in such a way that for any Y ∈ F(Xn) and any structure mor-
phism Xm → Xn the inverse image of Y in Xm is in F(Xm). Then we can repeat
the previous construction replacing everywhere K(Xn) by KF(Xn)(Xn) thus getting
the Ω-prespectrum of K-theory with supports in F :

KF (X•) = |n 7→ KF(Xn)(Xn)|.
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