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Abstract. Given a quasi-projective complex variety X and a projective variety Y ,

one may endow the set of morphisms, Mor(X,Y ), from X to Y with the natural
structure of a topological space. We introduce a convenient technique (namely, the

notion of a functor on the category of “smooth curves”) for studying these function

complexes and for forming continuous pairings of such. Building on this technique,
we establish several results, including: (1) the existence of cap and join product

pairings in topological cycle theory, (2) the agreement of cup product and intersection

product for topological cycle theory, (3) the agreement of the motivic cohomology cup
product with morphic cohomology cup product, and (4) the Whitney sum formula

for the Chern classes in morphic cohomology of vector bundles.

At first glance, imposing a topology on the set Mor(X,Y ) of morphisms be-
tween two complex algebraic varieties seems unnatural. Nevertheless, just such a
construction applied to the set of morphisms from X to certain Chow varieties of
cycles in projective space leads to the “morphic cohomology” of X as introduced
in [FL-1]. In this paper, we show that, in general, the “topology of bounded con-
vergence” (introduced in [FL-2]) on Mor(X,Y ) has a natural algebraic description
arising from the enriched structure on Mor(X,Y ) as a contravariant functor on
the category of smooth curves. This functorial interpretation leads to a convenient
formulation of the technique of demonstrating “uniqueness of specialization” in-
troduced in [F-1] for the construction of continuous algebraic maps. We use this
new technique to establish the continuity of various constructions and pairings in-
volving the “function spaces”Mor(X,Y )an, where X and Y are complex (but not
necessarily projective) varieties.

More generally, we introduce the notion of a “proper, constructible presentation”
of a functor (cf. Definition 2.1), a property which provides a natural topological
realization of a contravariant functor on smooth curves. This point of view fa-
cilitates (cf. Theorem 2.6) a careful proof of the continuity of the slant product
pairing of [FL-1] and the cap product pairing relating Lawson homology and mor-
phic cohomology which plays a central role in [F-3]. Indeed, our techniques provide,
not merely a pairing on the level of homology groups, but pairings (in the derived
category) of the presheaves of chain complexes used to define Lawson homology
and morphic cohomology. Similarly, the join product of cycles in projective spaces
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determines a cup product in morphic cohomology as first recognized in [FL-1]. We
provide a definition of this product at the level of presheaves of chain complexes
on an arbitrary complex quasi-projective variety (Proposition 3.3). As we make
explicit in (4.1.1), there is a natural map of presheaves of chain complexes from
those complexes which define motivic cohomology to those which define morphic
cohomology. In Theorem 4.4, we show that this natural map commutes with prod-
ucts. On a smooth variety X, we show cup product corresponds to the intersection
product of cycles under duality – that is, we refine the intersection product of [F-
G] to be a pairing of presheaves of chain complexes on X compatible with our cup
product.

In verifying in [F3] that suitably enriched versions of Lawson homology and
morphic cohomology satisfy the axioms of Bloch-Ogus [B-O], the first author in-
troduced a cap product whose continuity was not evident. One of the motivations
of the present paper is a careful proof of continuity of cap product, set in a more
general context. Moreover, the formulation of cup product presented here in terms
of a pairing of complexes of sheaves also permitted the verification in [F3] of the
stronger result that this “topological cycle theory” satisfies the stronger axioms of
H. Gillet [G].

In the final section of this paper, we apply our improved understanding of prod-
ucts to show in Theorem 5.4 that the geometric construction of [FL-1;§10] does
indeed determine Chern class maps on K0(X) for a quasi-projective variety X and
that these Chern classes satisfy the expected Whitney sum formula.

Throughout this paper, all varieties considered will be quasi-projective varieties
(by which we mean reduced, locally closed subschemes of projective space) over
a base field of characteristic 0 (usually the complex field C). We shall frequently
consider Chow varieties associated to projective varieties. If Y ⊂ PN is a projective
variety provided with a given closed embedding in some projective space PN , then
Cr,dY denotes the Chow variety whose rational points are the effective r-cycles on
Y of degree d. We shall consider the Chow monoid CrY ≡

∐
d≥0 Cr,dY of all

effective r-cycles on Y , a monoid whose isomorphism type is independent of the
projective embedding Y ⊂ PN (cf. [B]).

We are grateful to I.H.E.S., I.A.S., and Rutgers University for their hospitality
during the writing of this paper.

§1 Continuous algebraic maps

One is naturally led to consider continuous algebraic maps to Chow varieties
when one is confronted with their construction in terms of elimination theory
rather than as a representable functor. Indeed, as we see in Example 1.3, Chow
varieties have a natural functorial description in terms of functors on smooth
curves. A simple observation which motivates the consideration of such functors
is the fact that a continuous algebraic map X → Y between quasi-projective vari-
eties is equivalent to a natural transformation of associated contravariant functors
Mor≤1(−, X)→ Mor≤1(−, Y ) (see Proposition 1.1)

The usefulness of this functorial point of view is that the construction of pairings
of functors is often straight-forward. In conjunction with the topological realization
considered in the next section, our functorial point of view will provide a good
formalism for proving the continuity of various pairings.

Eventually, we will be working over the complex numbers, but in this section we
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work over an arbitrary field K of characteristic 0 and we consider varieties defined
over K. Recall that a continuous algebraic map f : X → Y is a closed subvariety
Γf ⊂ X × Y with the property that prX : Γf → X is finite and bijective on
geometric points – or, equivalently, that prX is a universal homeomorphism (cf.
[V1; 3.2.4]). We say that prX is a bicontinuous morphism. We further recall that

a variety X admits a natural normalization X̃ → X (defined locally by taking
integral closures in the total ring of quotients of X), and that this normalization
factors as

X̃ −→ Xw −→ X,

where Xw is the weak normalization of X (cf. [A-B]). The variety Xw has the prop-
erty that Xw → X is bicontinuous and is universal among varieties mapping bicon-
tinuously to X. (The weak normalization Xw coincides with the semi-normalization
of X since K has characteristic zero – see [S].) Thus, a continuous algebraic map of
algebraic varieties X → Y is equivalent to a morphism Xw → Y . We say a variety
X is weakly normal if it is equal to its weak normalization, in which case every
continuous algebraic map from X to Y is a morphism of varieties.

We proceed to formalize a technique introduced in [F1] to construct continuous
algebraic maps. Let (Sm/K)≤1 denote the category of smooth affine schemes over
SpecK which are essentially of finite type, connected, and have Krull dimension
at most 1. That is, every object of (Sm/K)≤1 is the scheme associated to a ring
A where A has Krull dimension one and is the localization of a finitely generated
smooth, integral K-algebra R. In scheme-theoretic language, we observe that any
C ∈ (Sm/K)≤1 is a filtered limit of smooth varieties of finite type over K (possibly
of dimension more that 1) such that the transition maps in the system are open
immersions. A typical example of an object of (Sm/K)≤1 is SpecOX;x1,...,xn , where
X is a smooth, connected variety, the xi are the generic points of codimension
one subvarieties, and OX;x1,...,xn denotes semi-localization at these points. If C ∈
(Sm/K)≤1 and X is a quasi-projective variety over K, then we define Mor(C,X)
to be the set of morphisms of schemes over SpecK from C to X and we write

Mor≤1(−, X) : (Sm/K)≤1 −→ (Sets)

for the functor so defined.
Intuitively, we think of (Sm/K)≤1 as consisting of all curves and the motivation

for its introduction is that a continuous algebraic map on a variety is uniquely
determined by its value on all curves. More precisely, we have the following key
result.

Proposition 1.1. For any field K of characteristic 0, a continuous algebraic map
f : X → Y between quasi-projective varieties over K is equivalent to a natural
transformation of contravariant functors

Φf : Mor≤1(−, X) −→ Mor≤1(−, Y ) : (Sm/K)≤1 −→ (Sets).

Proof. Assume given such a natural transformation Φf . Then Φf immediately
determines a rational map from X to Y : namely, given a generic point η : SpecF →
X, we send η to Φf (η) : SpecF → Y . Let Y ⊂ Y be a projective closure and let

Γf ⊂ X × Y be the graph of this rational map, so that Γf is the closed subvariety
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whose irreducible components have generic points (η,Φf (η)) : SpecF → X × Y ⊂
X × Y . It suffices to verify that for any finitely generated field extension L of K
and any map γ : SpecL→ Γf , γ is of the form (p ◦ γ,Φf (p ◦ γ)) : SpecL→ X × Y
where p : X × Y → X is the projection map.

We argue by induction on the codimension of γ(SpecL) ∈ Γf . For codimension
0, all maps γ are of the given form by construction. Assume we have verified that
all maps γ : SpecL → Γf are of the given form if γ(SpecL) has codimension ≤ s,
and consider γ : SpecL → Γf with γ(SpecL) ∈ Γf of codimension s + 1. Choose
a non-constant map g : C → Γf defined over SpecL from a smooth, connected,
affine curve C ∈ (Sm/K)≤1 to Γf with the property that some L-rational point
c : SpecL → C maps to γ. By induction, the generic point ν : SpecE → C of C
satisfies the condition that g ◦ ν : SpecE → Γf is the map (p ◦ g ◦ ν,Φf (p ◦ g ◦ ν)),
which by the naturality of Φf is equal to the map (p ◦ g,Φf (p ◦ g)) ◦ ν. Thus, we
conclude that g : C → Γf ⊂ X × Y is of the form (p ◦ g,Φf (p ◦ g)). Naturality of
Φf now implies that γ = (p ◦ g ◦ c,Φf (p ◦ g) ◦ c) equals (γ,Φf (γ)).

Proposition 1.1 motivates the following definition.

Definition 1.2. Let K be a field of characteristic 0. We define Mor≤1 to be the
category of contravariant functors F : (Sm/K)≤1 → (Sets). For F,G ∈ Mor≤1,
we write Mor(F,G) for the set of natural transformations from F to G. If X is
a scheme over K, we also let X denote the functor on (Sm/K)≤1 sending C to
HomK(C,X).

We provide Mor(F,G) with the structure of a contravariant functor from (Sm/K)≤1

to (Sets), written using the calligraphic Mor(F,G), by defining Mor(F,G)(C) =
Mor(C × F,G).

If X and Y are schemes over K, then in light of Proposition 1.1 the functor
Mor(X,Y ) may be identified with the functor on (Sm/K)≤1 which sends C to
Mor(X × C, Y ).

Observe that Mor(F,G) is an internal Hom-object for the category Mor≤1 –
for any H : (Sm/K)≤1 → (Sets) we have

Mor(H,Mor(F,G)) = Mor(H × F,G).

First of all, a natural transformation ψ : H → Mor(F,G) determines H(C) →
Mor(F,G)(C) → Hom(Sets)(F (C), G(C)) natural with respect to C. Conversely,
a natural transformation φ : H × F → G determines for each C the map H(C)→
Mor(C × F,G) associated to the pairing natural with respect to C ′ determined by
φ, H(C)×HomK(C ′, C)→ Hom(Sets)(F (C ′), G(C ′)). We readily verify that these
constructions are mutually inverse.

Example 1.3. Let Y ⊂ PN be a quasi-projective variety and consider the functor
CrY : (Sm/K)≤1 → (Sets) which associates to C ∈ (Sm/K)≤1 the monoid of
effective cycles in C × Y which are flat (equivalently, dominant) over C of relative
dimension r. The map (CrY )(C)→ (CrY )(C ′) associated to a morphism C ′ → C is
given by pullback of cycles (which is well-defined in light of the flatness condition).

When Y is projective, the functor CrY is represented by the disjoint union of
Chow varieties

∐
d Cr,d(Y ), where Cr,d(Y ) parameterizes effective r-cycles of degree

d on Y . Each Cr,dY is a projective variety defined over K, and, as shown in [F1],
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the Chow monoid
CrY ≡

∐
d≥0

Cr,d(Y )

is independent of the embedding Y ⊂ PN in the sense that two different embeddings
yield monoids which are related by a continuous algebraic map whose graph projects
to each via a bicontinuous morphism. We recall that a map from any normal
variety X to CrY is equivalent to an effective cycle on X × Y equidimensional
over X of relative dimension r, so that, in particular, the functor CrY is given as
Mor(−, CrY ).

If Y is merely quasi-projective with some chosen projective closure Y ⊂ Y ,
the functor CrY is a “quotient” of the representable functor CrY . Specifically,
for any C ∈ (Sm/K)≤1, we can realize (CrY )(C) as the quotient of the monoid

Mor(C, CrY ) by the submonoid Mor(C, CrY∞), where Y∞ = Y \ Y .

The following proposition verifies the functoriality of the association Y 7→ CrY
for Y projective. This functoriality is a reformulation of the naturality of proper
push-forward of cycles.

Proposition 1.4. Let X, Y be projective varieties. For any r ≥ 0, there is a
natural transformation

Mor(X,Y ) −→Mor(CrX, CrY ).

Proof. We may replace X by its weak normalization, since both Mor(X,Y ) and
CrX are unaffected by this substitution, so that every continuous algebraic map
will be a morphism of varieties.

For C ∈ (Sm/K)≤1, consider an element f : C ×X → Y ofMor(X,Y )(C). We
proceed to define a natural transformation

C × CrX
f∗−→ CrY : (Sm/K)≤1 → (Sets).

For any C ′ ∈ (Sm/K)≤1 and any g = (g1, g2) : C ′ → C × CrX let Zg denote the
effective cycle on C ′ × X associated to g2, so that Zg equidimensional of relative
dimension r over C ′. Consider the proper map

f ∗ g ≡ (1C′ , f) ◦ (1C′ , g1, 1X) : C ′ ×X → C ′ × C ×X → C ′ × Y

and define f∗(g) to be (f ∗ g)∗(Zg), an effective cycle on C ′× Y equidimensional of
relative dimension r over C ′.

To verify that f∗ is a natural transformation, we consider some h : C ′′ → C ′ in
(Sm/K)≤1. The fact that following diagram consists of Cartesian squares

C ′′ ×X −−−−→ C ′′ × C ×X −−−−→ C ′′ × Y

h×1

y yh×1×1

yh×1

C ′ ×X −−−−→ C ′ × C ×X −−−−→ C ′ × Y

together with the commutativity of push-forward and pull-back implies that h∗

applied to (f ∗g)∗(Zg) ∈ Mor(C ′, CsY ) equals (f ∗g′)∗(Zg′) ∈ Mor(C ′′, CsY ), where
g′ = g ◦ h as required by functoriality.
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To complete the proof, we must verify the functoriality with respect to C of
f 7→ f∗. Consider k : C̃ → C ∈ (Sm/K)≤1 and f : C × X → Y . To prove
functoriality, we must show that

(f ◦ k)∗ = f∗ ◦ (k, 1) : C̃ × CrX → CrY.

Observe that f∗ : C × CsX → CsY sends a geometric point (c, Z) of C × CrX
to (f|c×X)∗(Z), whereas (f ◦ k)∗ sends a geometric point (c̃, Z) of C̃ × CsX to
((f ◦ k× 1)|c̃×X)∗(Z). Hence, (f ◦ k)∗ and f∗ ◦ (k, 1) agree on geometric points and
thus are equal.

We next present a proof of the well-definedness of the trace map introduced in
[FL-1; 7.1] which is more formal and perhaps clearer than the original proof.

Proposition 1.5. Let Y be a projective variety. For any C ∈ (Sm/K) and any
morphism f : C → Cs(CrY ), let Zf = ΣZi be the associated effective cycle on
C × CrY equidimensional of relative dimension s over C and let pi : Zi → C
denote the projection maps of the irreducible components of Z. For each i, let Z̃
be the effective cycle on Zi × Y associated to Zi → C × CrY → CrY ; thus Z̃i is
equidimensional of relative dimension r over Zi. Define tr(f) = Σ(pi× 1)∗(Z̃i), an
effective cycle on C × Y equidimensional of relative dimension r+ s over C. Then
sending f to tr(f) determines a continuous algebraic map

tr : Cs(CrY ) → Cr+sY.

Proof. It suffices to verify the functoriality of the construction f 7→ tr(f) with
respect to maps g : C ′ → C ∈ (Sm/K)≤1. Observe that tr(f) ∈ Mor(C, Cr+sY )(C)

is sent via g to the cycle associated to the pull-back Σ(1 × pi)∗(Z̃i) ×C C ′, since
tr(f) is flat over C. Similarly, the effective cycle Zf◦g on C ′ × CrY is the cycle
associated to the pull-back of Zf via g. Thus, the required equality

tr(f ◦ g) = g∗(tr(f))

follows from the commutativity of push-forward (along proper maps) and pull-back
(along flat maps).

The following proposition, in conjunction with the topological realization dis-
cussed in the next section, justifies the cap pairing considered in [FL-1; 7.2]. This
cap product plays a central role in [F3].

Proposition 1.6. Let X be a quasi-projective variety and let Y be a projective
variety. Then sending a pair (f, Z) with Z an irreducible s-cycle on X to the graph
of the composition Z → X → CrY determines a “cap product” pairing

Mor(X, CrY )× CsX → Cr+s(X × Y )

for any r, s ≥ 0.

Proof. We may replace X with its weak normalization without loss of generality.
For C ∈ (Sm/K)≤1, we define a map

Ψ :Mor(X, CrY )(C)× (CsX)(C) −→ Cr+s(X × Y )(C)
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by sending (f : C × X −→ CrY,W ) to the graph of the composite map W −→
C ×X −→ CrY , where W is a closed, integral subscheme of C ×X that is flat over
C. We regard this graph, which is naturally a cycle in W × Y , as being a cycle
in C ×X × Y . We extend Ψ linearly, so that Ψ is defined on all cycles. Observe
that Ψ sends (f,W ) to an element of Cr+s(X × Y )(C) since the cycle constructed
is clearly dominate over C.

To verify functoriality of Ψ with respect to C, we begin by choosing a projective
closure X ⊂ X. Given f : C ×X −→ CrY , g : C −→ CsX (where g is associated
to the W considered above), observe that f determines f ′ : C ×X −→ Cr(X × Y ).
(One sends the cycle Z on C × X × Y determined by f to the push-forward by
the diagonal map to a cycle on C × X × X × Y .) Choose a projective closure
C ×X ⊂ C ×X so that f ′ extends to f : C ×X → Cr(X × Y ) and the projection
C × X → X extends to C ×X → X. Observe that g : C −→ CsX determines
g′ : C −→ Cs(C × X). (One sends the cycle W on C × X flat over C to the
push-forward by the diagonal map to a cycle on C × C ×X.) We choose a lifting
g̃ : C −→ Cs(C ×X) of g′. Then the pair (f, g̃) determines the map

Ψ(f, g) : C −→ Cs(C ×X)→ Cs(Cr(X × Y ))→ Cr+s(X × Y )→ Cr+s(X × Y ),

where the first map is g̃, the second is induced by f using Proposition 1.4, the
third is the trace map of Proposition 1.5, and the fourth is the defining projection.
One readily verifies that the graph of Ψ(f, g) is precisely Ψ(f,W ) by checking this
equality at the generic point of C, and, in particular, the map Ψ(f, g) is independent
of the choices made.

Assume given h : C ′ → C ∈ (Sm/K)≤1 as well as (f, g). Provided one chooses

C ′ ×X to map to C ×X and chooses (g ◦ h)∼ = g̃ ◦ h, one sees immediately that

Ψ(f, g) ◦ h = Ψ(f ◦ (h× 1), g ◦ h)

as required for functoriality.

In subsequent sections, we shall require the continuity and associativity of com-
position, which is implied by the next proposition together with the topological
realization functor of the next section.

Proposition 1.7. Let X, Y , W be quasi-projective varieties over K. Composition
of morphisms determines a pairing of functors

Mor(X,Y )×Mor(Y,W ) −→Mor(X,W )

which is associative in the evident sense.
Similarly, if X is a quasi-projective variety, Y and W are projective varieties,

then composition together with the trace map of Proposition 1.5 determines a bilin-
ear pairing

Mor(X, CrY )×Mor(Y, CsW )→Mor(X, Cr+sW )

which is associative in the evident sense.

Proof. The first pairing is given by sending f : C × X → Y , g : C × Y → W to
g ◦ (1C , f) : C ×X →W for any C ∈ (Sm/K)≤1. This is clearly natural in C.

The second pairing is the composition of maps given by applying Proposition
1.4, the first pairing, and the trace map of Proposition 1.5:

Mor(X, CrY )×Mor(Y, CsW )→Mor(X, CrY )×Mor(CrY, Cr(CsW ))

→Mor(Crx, Cr(CsW ))→Mor(X, Cr+sW ).
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§2. Topological realization for K = C

Every complex variety admits a realization as a topological space and every mor-
phism of complex varieties induces a continuous map on the associated spaces. The
goal of this section is to generalize this simple concept in two ways. Namely, we wish
to replace “varieties” with “constructible sets modulo proper equivalence relations”
(see Definition 2.1) and also to replace “morphisms” with “natural transformations
of the associated functors on (Sm/K)≤1.” The precise statement is Theorem 2.3.
This generalized notion of topological realization, together with the results of sec-
tion 1, allows us to establish the continuity of various maps arising in the study of
Lawson homology and morphic cohomology.

Many of the functors on (Sm/K)≤1 introduced in section 1 admit a kind of
presentation in terms of algebro-geometric information. The following definition
provides the formal notion which covers all of the cases arising in this paper.

Definition 2.1. Consider the data: Y =
∐
d Yd, a disjoint union of projective

varieties over SpecK; E =
∐
dEd, where each Ed is a constructible algebraic subset

of Yd; a “proper equivalence relation” R = R ∩ (E×2), where R ⊂ Y×2 is a closed
equivalence relation such that R = R∩ (E ×Y). Then we say (Y, E , R) is a proper,
constructible presentation of a functor F : (Sm/K)≤1 → (Sets) if F is the functor
given by sending C ∈ (Sm/K)≤1 to Mor(C, E)/Mor(C,R) (where, in general, if E
is a constructible subset of variety Y , we define Mor(X,E) to be the set of those
morphisms from X to Y whose set theoretic images land in E).

As seen in Example 1.3, given a quasi-projective variety Y , the functor CrY
admits a proper, constructible presentation. The following proposition implies that
Mor(X,Y ) does as well.

Proposition 2.2. Let X, Y be quasi-projective varieties over SpecK, Xw the
weak normalization of X, and assume Xw ⊂ X

w
, Y ⊂ Y are projective closures.

ThenMor(X,Y ) : (Sm/K)≤1 → (Sets) admits a proper, constructible presentation

(C̃(X
w × Y ), E0,1(Xw, Y ), R) defined as follows: C̃(X

w × Y ) is the Chow variety

of effective cycles in X
w × Y which have dimension equal to the dimension of Xw

(locally); E0,1(Xw, Y ) ⊂ Cd(X
w × Y ) is the constructible subset of those cycles

whose restriction to Xw × Y are graphs of morphisms from Xw to Y ; and R is the
equivalence relation associated to the diagonal action of C̃(Xw

∞ × Y ), the subset of

those cycles supported on Xw
∞ × Y , on (C̃(X

w × Y )×2, where Xw
∞ = X

w −Xw.
Furthermore, when X and Y are both projective varieties, this presentation of

Mor(X,Y ) realizes Mor(X,Y ) as the functor associated to an inductive limit of
quasi-projective varieties.

Proof. To simplify notation, we replace X with its weak normalization and omit
the superscript w everywhere.

The constructibility of the subset E0,1(X,Y ) ⊂ C̃(X × Y ) can be verified by

using the incidence correspondence I(X,Y ) ⊂ C̃(X × Y ) × X × Y consisting of
those triples (Z, x, y) with the property that (x, y) lies in the support of the cycle

Z. For consider the natural map ρ : I(X,Y )→ C̃(X × Y )×X. Let B ⊂ I(X,Y )
be the constructible set of points (Z, x, y) such that x ∈ X and (Z, x, y) lies in a
fiber of ρ consisting of more than one point – i.e., a fiber of dimension more than 0
or of degree more than 1. Then E0,1(X,Y ) is the complement of the projection of

B to C̃(X × Y ).
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Observe that the image of the diagonal action of C̃(X∞× Y ) (which is a proper
map between disjoint unions of projective varieties)

C̃(X × Y )× C̃(X∞ × Y )×2 −→ C̃(X × Y )×2

is a closed equivalence relation R on C̃(X × Y ) which satisfies the property

R ≡ R ∩ E0,1(X,Y )×2 = R ∩ (E0,1(X,Y )× C̃(X × Y )).

To verify that

Mor(X,Y ) = E0,1(X,Y )/R : (Sm/K)≤1 → (Sets),

observe that an element of E0,1(X,Y )(C) is a cycle γ in C ×X × Y satisfying the

condition that γ is equidimensional over C and that γ ∩ (C ×X × Y ) is the graph
of a morphism from C × X to Y . Here, we are using (a) a rational map with
domain C ×X is the graph of a morphism if and only if for each geometric point
c × x ∈ C ×X there is a unique geometric point of the form (c, x, y) in its graph;
and (b) the pull-back of γ over C to c has restriction to {c} ×X × Y the graph of

the map from X×{c} to Y given by the image of c in E0,1(X,Y ) ⊂ C̃(X×Y ) since
γ is flat over C. Thus, there is an evident map E0,1(X,Y )(C) −→ Mor(X,Y )(C)

obtained by restriction of cycles to C × X × Y . This map is surjective, since we
may lift elements in the target set by taking closures of cycles. (Such closures must
remain equidimensional over C since they will dominate C which is one-dimensional
and smooth.) Finally, two elements γ and γ′ of Er(Y )(X)(C) are sent to the same
element under this map if and only if their restrictions to C × X × Y coincide –
that is, if and only if γ + δ = γ′ + δ′ for some δ, δ′ contained in C ×X∞ × Y and
equidimensional over C. In other words, two elements are sent to the same element
under this map if only only if their images are the graphs of the same morphism
from C ×X to Y .

Finally, if X and Y are both projective varieties, then we take X = X and
Y = Y . The constructible subset B defined above is actually closed in this case.
Thus, E0,1(X,Y ), which is the complement of the image of B under a proper map,

is open in C̃(X×Y ). The equivalence relation R is clearly trivial in this case, and so
Mor(X,Y ) is represented by the ind-variety E0,1(X,Y ) = lim−→n E0,1(X,Y )n, where
E0,1(X,Y )n in the quasi-projective variety consisting of those cycles in E0,1(X,Y )n
of degree at most n.

We now restrict our attention to complex varieties. For a complex quasi-projective
algebraic variety X, we write Xan for the set X(C) of C points of X provided with
its topology as an analytic space. If (E ,Y, R) is a proper, constructible represen-
tation of a functor F as in Definition 2.1, we write Ean for the subspace of Yan
consisting of points E(C) ⊂ Y(C) and we let (E/R)an denote the space consisting
of points E(C)/R(C) provided with the quotient topology given by the surjective
map Ean −→ (E/R)an. Observe that the set of points of (E/R)an is simply F (C).

Thus, any functor admitting a proper, constructible presentation has a topo-
logical presentation. The following theorem shows that a natural transformation
of such functors induces, as one would hope, a continuous map on the associated
spaces. This result is particularly useful for establishing the continuity of various
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pairings, as well as showing the well-definedness of the topology associated to var-
ious constructions, which arise in Lawson homology and morphic cohomology. For
example, if X a normal, quasi-projective variety and Y projective, then the topol-
ogy on Mor(X,CrY ) as given in [F2] is described by a somewhat different proper,
constructible presentation than that given by Proposition 2.2. Theorem 2.3 assures
us that these different presentations determine the same topology.

Theorem 2.3. Let F, F ′ : (Sm/C)≤1 → (Sets) be contravariant functors pro-
vided with proper, constructible presentations (Y, E , R), (Y ′, E ′, R′). Then a natural
transformation ψ : F → F ′ induces a continuous map

ψan : (E/R)an −→ (E ′/R′)an.

Proof. Observe that if S ⊂ X is a constructible subset of a projective variety X,
then S has a canonical expression as a union of irreducible constructible subsets
S = ∪βSβ , where β runs through those (Zariski) points of X which lie in S and
which satisfy the condition that they do not lie in the closure of any point β′ 6= β
with β′ ∈ S. Thus, Sβ equals S ∩ Xβ , where Xβ ⊂ X is the closed subvariety
with generic point β. Clearly, if R is a proper equivalent relation on S ⊂ X, then
(S/R)an = ((

∐
Sβ)/R∼)an where each Sβ ⊂ Xβ and R∼ is the equivalence relation

determined by R. Thus, we may assume that each Yd and each Y ′d are irreducible
and that each Ed ⊂ Yd and each E′d ⊂ Y ′d are dense.

For each generic point ηγ : Spec k(γ) → E of E , choose some generic point

ψ̃(ηγ) : Spec k(γ) → E ′ satisfying ψ ◦ p(ηγ) = q(ψ̃(ηγ)), where p : E → F and
q : E ′ → F ′ are the natural quotient maps. Let Γγ ⊂ Y ×Y ′ denote the irreducible
subvariety with generic point

(ηγ , Ψ̃(ηγ)) : Spec k(γ)→ Eγ × E ′ψ̃(ηγ)
→ Yγ × Y ′ψ̃(ηγ)

,

and let Γψ ⊂ Y × Y ′ denote the union

Γψ ≡
⋃
γ

Γγ .

To prove that ψ induces a continuous map ψan, it suffices to prove that the
restriction of Γanψ ⊂ Yan × Y

′an to Ean × E ′an has image in (E/R)an × (Y/R′)′an
which maps bijectively to (E/R)an and is contained in (E/R)an × (E/R′)an. (For
in this case, the bijective map must be a homeomorphism, since it is a proper
map between Hausdorff spaces.) For this, it suffices to prove that for any point
(χ, ζ) ∈ Γψ such that χ lies in E , we have

ψ ◦ p(χ) = q(ζ).

(Here, Y ′/R′ : (Sm/C)≤1 → (Sets) is defined as the evident quotient functor of Y ′

with projection q : Y ′ → Y ′/R′.) We proceed by induction on the codimension of
χ ∈ E (i.e., the maximum over all irreducible components S of E containing χ of
the codimension of χ in S). By construction, the required equality is valid for all
χ of codimension 0 (i.e., for generic points). Assume that the equality is valid for
all points of codimension ≤ s and let (x, y) ∈ Γψ be such that x : Spec k(x) → E
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is a point of codimension s + 1. Let gC : C → Γψ be a non-constant map from a
smooth curve C defined over k(x) with some k(x)-rational point c ∈ C mapping to
(x, y). Let ψ(pr1 ◦gC)∼ be any lifting of ψ(pr1 ◦gC) to a map from C to Y ′. Letting
γ : Spec k(γ)→ C denote the generic point of C, observe that by hypothesis,

q (ψ(pr1 ◦ gC)∼ ◦ γ) = q (ψ(pr1 ◦ gC ◦ γ)) = q(pr2 ◦ gC ◦ γ).

In other words, the map

(ψ(pr1 ◦ gC)∼, pr2 ◦ gC) : C −→ Y ′ × Y ′

sends the generic point of C into R
′
. It thus sends c into R

′
as well, and so

q (ψ(pr1 ◦ gC)∼ ◦ c) = q(pr2 ◦ gC ◦ c),

which, by the naturality of ψ, implies that ψ ◦ p(x) = q(x), as desired.

It follows from [FL-1; 1.4] that if X and Y are projective varieties, then the
set Mor(X,Y ) of morphisms from X to Y has the natural structure of a quasi-
projective variety. Taking the analytic topology of this quasi-projective variety
gives us a “natural” topology on Mor(X,Y ). For X not necessarily projective,
Mor(X,Y ) is no longer a variety but the “analytic” topology on Mor(X,Y ) does
have a concrete description as recalled in the following proposition.

Proposition 2.4. ( [FL-2; A.3]) Let X be a weakly normal quasi-projective vari-
ety, X ⊂ X a projective closure, and Y a projective variety. Then the following
topologies on Mor(X,Y ) are equivalent:

a. Identification of Mor(X,Y ) with (E0,1(X,Y )/R)an, where (C̃(X×Y ), E0,1(X,Y ), R)
is the proper, constructible presentation of Proposition 2.2.

b. The topology of convergence with bounded degree: a sequence {fi} of morphisms
converges if and only if this sequence converges in Homcont(X

an, Y an) provided
with the compact open topology and there exists some upper bound for the degrees
of the closures in X × Y of the graphs of fi
We let Mor(X,Y )an denote the resulting topological space.

We include the following result which indicates thatMor(X,Y )an has a “good”
topology – i.e., has the homotopy type of C.W. complex. The reader should note
that [F2; 1.5] erroneously claims that spaces such asMor(X,Y )an admit the struc-
ture of C.W. complexes. We give in Proposition 2.5 a slightly weakened (but
functionally equivalent) version of this claim, together with a proof.

Proposition 2.5. Let X be a quasi-projective variety and Y a projective variety.
Then Mor(X,Y )an has the homotopy type of a C.W. complex.

Proof. We may assume X is weakly normal. Choose a projective closure X ⊂ X
and use the notations of Proposition 2.2. Additionally, let Sn denote the subset
of C̃(X,Y ) consisting of cycles of degree n which lie in E0,1(X,Y ). Further, let
Rn denote the subset of Sn consisting of cycles with a non-trivial component at
infinity – i.e., cycles in the image of the map

∐
k>0 C̃k(X∞×Y )×Sn−k → Sn given

by addition of cycles. Then Rn ⊂ Sn is a closed subset (in the Zariski topology)
of the constructible subset Sn. Finally, define En to be the constructible subset
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of E0,1(X,Y ) consisting of cycles whose intersection with X × Y have closures of
degree at most n.

There is an evident push-out square

Rn × C̃(X∞ × Y ) −−−−→ Sn × C̃(X∞ × Y )y y
En−1 −−−−→ En

(2.5.1)

with vertical arrows given by addition of cycles. Note also that the monoid C̃(X∞×
Y ) acts on the square (2.5.1). If we mod out by this monoid action, we obtain
another push-out square

Rn −−−−→ Sny y
Xn−1 −−−−→ Xn,

(2.5.2)

where Xn = En/C̃(X∞ × Y ).
Note that Rn ⊂ Sn is a closed immersion of constructible subsets of some pro-

jective space PN . By [H] PN admits a semi-algebraic triangulation so that Sn and
Rn are each unions of open simplices. Now form the barycentric subdivision of
this triangulation and define S′n, R′n to be the so-called “cores” – namely, S′n is the
union of all closed simplices of the barycentric subdivisions contained entirely in Sn,
and R′n is defined similarly. Observe there is an evident straight-line deformation
retract of Sn ⊂ Rn onto S′n ⊂ R′n, and that S′n ⊂ R′n is a cellular extension.

Suppose, by induction on n, we have constructed a homotopy equivalenceXn−1 →
Yn−1, where Yn−1 has the structure of a CW complex. Define f : Rn → Yn−1 to

be the composition Rn � R′n ↪→ Rn → Xn−1 → Yn−1 and define Ỹn so that

Rn −−−−→ Sn

f

y y
Yn−1 −−−−→ Ỹn

is a pushout square. Since Rn ⊂ Sn is an NDR subspace and f is homotopic to
the composition Rn → Xn−1 → Yn−1, we have by [LW; IV.2.3] that there is a

homotopy equivalence Xn → Ỹn causing the triangle

Xn−1 −−−−→ Xny y
Yn−1 −−−−→ Ỹn

to commute. Finally, define Yn so that

R′n −−−−→ S′ny y
Yn−1 −−−−→ Yn
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is a pushout square. The deformation retract of Rn ⊂ Sn onto R′n ⊂ S′n induces a

deformation retract of Ỹn onto Yn. Hence there is a homotopy equivalence Xn → Yn
compatible with the homotopy equivalence Xn−1 → Yn−1.

Finally, the space Mor(X,Y )an is the direct limit of the Xn’s, which maps via
a homotopy equivalence to the direct limit of the Yn’s. Since each map Yn−1 → Yn
is a cellular extension, the proof is complete.

In light of Theorem 2.3, each of the natural transformations of Propositions
1.4, 1.5, 1.6, and 1.7 (since they are natural transformations of functors admitting
proper, constructible presentations) induces a continuous map between the associ-
ated topological spaces. We record in the following theorem a specific case of this
continuity, since it is used extensively in [F3].

Theorem 2.6. Let X be a quasi-projective variety, Y a projective variety, and
s, r ≥ 0 integers. Then the pairing of Proposition 1.6 induces a continuous pairing

Mor(X, CrY )an × (CsX)an −→ (Cr+s(X × Y ))an.

Proof. The functors Mor(X,Y ), CsX, and Cr+s(X×Y ) admit proper, constructible
presentations by Example 1.3 and Proposition 2.2. The pairing is induced by a natu-
ral transformation of functors by Proposition 1.6. Thus, continuity is a consequence
of Theorem 2.3.

We conclude this section with the following explicit description of the set of
connected components of Mor(X,Y )an.

Proposition 2.7. For a quasi-projective varieties X and Y , the set π0Mor(X,Y )an

is the quotient of the setMor(X,Y ) by the equivalence relation generated by declar-
ing two continuous algebraic maps f and g to be equivalent if there is a smooth,
connected curve C (of finite type over C) with closed points c, d and a continuous
algebraic map h : X × C −→ Y such that f = h|X×{c} and g = h|X×{d}.

Proof. In fact, we will describe the set of connected components of (E/R)an, when-
ever (Y, E , R) is a proper, constructible presentation of a contravariant functor
E/R : (Sm/C)≤1 → (Sets). This applies to Mor(X,Y ) by Proposition 2.2. We
claim two points x, y in (E/R)an lie in the same component if and only if there is
a sequence of smooth, connected curves C0, . . . , Cn, morphisms gi : Ci → E , and
points ci, c

′
i ∈ Ci such that g0(c0) = x, gn(c′n) = y, and (gi(c

′
i), gi+1(ci+1)) ∈ R for

0 ≤ i < n.
To establish the claim, first observe that the existence of such a sequence of

curves shows that x and y lie in the same component of (E/R)an.
For the converse, observe that we may assume each Ed ⊂ Yd is dense. In fact,

we may assume each Ed is connected, for whenever we have Ed = E′d
∐
E′′d , we can

replace Yd with Y ′d
∐
Y ′′d , where Y ′d , Y ′′d are the closures in Yd of E′d, E

′′
d . Let A

denote the indexing set for the connected Y ’s and E’s. We readily verify in this
case that π0(E/R)an is naturally identified with the set of equivalence classes of A
for the equivalence relation generated by pairs (a, a′) ∈ A×2 with the property that
there exists some t ∈ Ea, t′ ∈ Ea′ with (t, t′) ∈ R. It therefore suffices to show for
any fixed α ∈ A that given any two points x, y ∈ Eα, we can connect x and y by a
sequence of curves mapping to Eα.

Since Eα is connected, it must contain points of W ∩ Z for any two irreducible
components Z, W of Yα (for otherwise we would have Eα = (Eα ∩Z)

∐
(Eα ∩W )).
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Thus, it suffices to join together any two points on Eα ∩Z ⊂ Z, for any irreducible
component Z of Yα. In other words, we may assume Yα is irreducible. In this case,
Eα contains a dense, irreducible Zariski open subset Vα of Yα. Let v ∈ Vα be a
chosen closed point. Since Yα is an irreducible complex variety, there are smooth
curves C, D with closed points c, c′ ∈ C, d, d′ ∈ D, and maps f : C −→ Yα,
g : D −→ Yα so that f(c) = x, f(c′) = v, g(d) = v, g(d′) = y. Finally, restrict
f , g to C ′ = C ∩ f−1(Eα), D′ = D ∩ g−1(Eα). Since each of C ′, D′ contain open
subsets of C,D (namely, the inverse images of the open subset Vα ⊂ Yα), both C ′

and D′ are connected, smooth curves mapping to Eα and they connect the points
x and y together as desired.

§3 Construction of pairings

In this section, we build on the foundation of the earlier sections to define a
“join pairing” (which is essentially cup product) for morphic cohomology and for
its closely related variation, topological cycle cohomology. In fact, the join pairing
is defined for the objects in the derived category of presheaves on Sch/C (the
category of quasi-projective complex varieties) which represent these cohomology
theories, so that the pairing is natural in a very strong sense. This naturality is
needed to establish the main result of the next section (compatibility of the join
pairing with the cup product of motivic cohomology – see Corollary 4.5) and also
to prove the main result of section 5 (the Whitney sum formula for Chern classes
in morphic cohomology – see Theorem 5.4). We also introduce various related
pairings and, in particular, show that the join pairing of morphic cohomology and
the intersection pairing of Lawson cohomology coincide, for a smooth variety X,
under Poincare duality. Here as well, this correspondence is obtained on the level
of the representing objects in the derived category of presheaves on X

We begin with a description of the objects used to define morphic cohomol-
ogy and topological cycle cohomology. For any complex, projective variety Y , the
abelian monoid structure on CrY provides the singular complex SingMor(X, CrY )an

associated to the space Mor(X, CrY )an with the structure of a simplicial abelian
monoid. We let

Mor(X, CrY )∼ ≡ N([SingMor(X, CrY )an]+)

denote the normalized chain complex associated to the simplicial abelian group
[SingMor(X, CrY )an]+ obtained by level-wise group completion. Following [F3],
we define the chain complex

M(X, a) ≡ cone
{
Mor(X, C0Pa−1)∼ −→Mor(X, C0Pa)∼

}
[−2a]

and viewM(−, a) as a presheaf on Sch/C. Both the morphic cohomology and the
topological cycle cohomology of X (of weight a) are determined using the com-
plex of presheaves M(−, a) restricted to X (see below). In this definition, we
have viewed Pa−1 ⊂ Pa as the hyperplane obtained as the zero locus of the last
coordinate function Ta of Pa = ProjC[T0, . . . , Ta]. On the other hand, the homo-
topy class of Mor(X, C0Pa−1)an → Mor(X, C0Pa)an is independent of this choice
of linear embedding of Pa−1 in view of the transitivity of the action of the con-
nected group PGLn+1(C) on the linear hyperplanes of Pn. Thus, the isomorphism
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class of Mor(X, C0Pa)∼ → M(X, a)[2a] in the derived category of presheaves is
independent of the choice of linear hyperplane Pa−1 ⊂ Pa.

Observe thatM(X, a) is a chain complex of torsion free abelian groups since for
all k ≥ 0 and all singular k-simplices α : ∆k

top →Mor(X, C0Pa)an if some positive

integer multiple of α lies inMor(X, C0Pa−1)an then α itself lies inMor(X, C0Pa−1)an.
Thus, derived tensor products involving M(X, a) can be represented by ordinary
tensor products.

We recall the join pairing

# : CrPm × CsPn −→ Cr+s+1Pm+n+1

defined by sending an irreducible subvariety Y ⊂ Pm of dimension r given by
homogeneous equations {Fi(T0, . . . , Tm) : i ∈ I} and an irreducible subvariety
W ⊂ Pn of dimension s given by homogeneous equations {Gj(S0, . . . , Sn) : j ∈ J}
to the irreducible subvariety of Y#W ⊂ Pm+n+1 of dimension r + s + 1 given by
the union of these two sets of homogeneous equations viewed as equations in the
m+n+ 2 variables T0, . . . , Tm, S0, . . . , Tn. Geometrically, we view Pm, Pn linearly
embedded with disjoint images in Pm+n+1 and define Y#W as the union of lines
in Pm+n+1 from points on Y to points on W .

Proposition 3.1. The join map

Pa × Pb −→ C1,1Pa+b+1

determines a bilinear join pairing

# : C0(Pa)× C0(Pb) −→ C1(Pa+b+1)

which induces a pairing in the derived category of presheaves on Sch/C

# :M(−, a)
L
⊗M(−, b) −→M(−, a+ b). (3.1.1)

Proof. Composition with the bilinear join pairing C0Pa × C0Pb → C1Pa+b+1 deter-
mines the bilinear pairing of topological monoids

Mor(X, C0Pa)an ×Mor(X, C0Pb)an →Mor(X, C1Pa+b+1)an.

(This pairing sends (f, g) to f#Xg : X → C1Pm+n+1 whose value on x ∈ X equals
the join of f(x) and g(x).) Thus, join determines a pairing of chain complexes
natural in X

# :Mor(X, C0Pa)∼ ⊗Mor(X, C0Pb)∼ →Mor(X, C1Pa+b+1)∼. (3.1.2)

We recall that the algebraic proof of the Lawson suspension theorem given in
[F1] and modified slightly in [F-V] determines a natural transformation for any
projective variety Y and any r ≥ 0

Ψ : Cr+1(ΣY )× A1 −→ Cr+1(ΣY )×2
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sending an effective r-cycle Z on Y and a point t ∈ A1 to a pair of effective r-cycles
(ψ+
t (Z), ψ−t (Z)) such that ψ+

0 (Z) − ψ−0 (Z) = Z and for t 6= 0 both ψ+
t (Z) and

ψ−t (Z) lie in the image of the suspension map Σ : CrY → Cr+1(ΣY ). As essentially
observed in the proof of [FL-1;3.3], this determines a natural transformation

Mor(X, Cr+1(ΣY ))× A1 −→ Mor(X, Cr+1(ΣY ))×2

whose induced map

Mor(X, Cr+1(ΣY ))∼ ⊗∆[1] −→ Mor(X, Cr+1(ΣY ))∼

is a deformation retraction of the suspension mapMor(X, CrY )∼ −→Mor(X, Cr+1(ΣY ))∼.
In particular, the suspension maps

Σt :Mor(X, CrPn)∼
∼−→Mor(X, CrPn+t)∼ (3.1.3)

are quasi-isomorphisms, for all t, n, and r. By composing the pairing (3.1.2) with
the inverse of

Σ :Mor(X, C0Pa+b)
∼−→Mor(X, C1Pa+b+1)

we obtain a natural (in the derived category) bilinear pairing

Mor(X, C0Pa)∼ ×Mor(X, C0Pb)∼ →Mor(X, C0Pa+b)∼. (3.1.4)

Recall that Pn can be viewed as SPn(P1), the n-th symmetric product of P1.
From this point of view, there is a natural map

C0,d(Pn) = SP d(Pn) −→ C0,d(nj)
(Pj)

for any 0 < j ≤ n. As shown in [FL-1; 2.10], these maps determine a quasi-
isomorphism

Mor(X, C0Pn)∼
'−→

n⊕
j=0

M(X, j)[2j]. (3.1.5)

This splitting is natural with respect to X and satisfies
(i.) the composition Mor(X, C0Pj)∼ →Mor(X, C0Pn)∼ →M(j)[2j] is the natural

projection to the cone, and
(ii.) the composition of Mor(X, C0Pi)∼ → Mor(X, C0Pn)∼ → Mor(X, C0Pn)∼ →

M(j)[2j] is trivial for i < j and any linear embedding Pi ↪→ Pn.
We re-write the bilinear map (3.1.4) as

a⊕
i=0

M(X, i)[2i]×
b⊕
j=0

M(X, j)[2j] −→
a+b⊕
k=0

M(X, k)[2k]. (3.1.6)

To prove the proposition it suffices to verify that the composition of the sum-
mand inclusion of M(X, i)[2i] ×M(X, j)[2j], followed by (3.1.6), followed by the
factor projection to M(X, a + b)[2a + 2b] is trivial whenever i + j < a + b. This
follows from the observation that such a summand inclusion intoMor(X, C0Pa)∼×
Mor(X, C0Pb)∼ factors through the natural inclusion ofMor(X, C0Pi)∼×Mor(X, C0Pj)∼,
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so that the further composition with the join map to Mor(X, C0Pa+b)∼ factors
through Mor(X, C0Pi+j)∼.

Using the suspension quasi-isomorphism (3.1.3), we readily conclude that the
pairing of Proposition 3.1 is also induced by the bilinear join pairing

# : CrPm × CsPn −→ Cr+s+1Pm+n+1

whenever m− r = a, n− s = b.
For any variety X, we let XZar denote the small Zariski site whose objects are

Zariski open subsets of X. If P is a presheaf on Sch/C, we write PZar for the
associated Zariski sheaf on the big Zariski site (Sch/C)Zar. If P is a presheaf on
XZar (or a presheaf on Sch/C implicitly viewed as a presheaf onXZar by restriction),
then we write PZar also for the associated Zariski sheaf on XZar.

Proposition 3.2. For any quasi-projective variety X, the join pairing induces an
internal product pairing in the derived category of presheaves on XZar

# :M(−, a)
L
⊗M(−, b) −→M(−, a+ b) (3.2.1)

which is associative in the appropriate sense.
Similarly, for any quasi-projective varieties X, Y , the join pairing induces an

external product pairing in the derived category of presheaves on (X × Y )Zar

# : pr∗XM(−, a)
L
⊗ pr∗YM(−, b) −→M(−, a+ b) (3.2.2)

which is associative in the appropriate sense.

Proof. The internal product pairing (3.2.1) is obtained from (3.1.1) by simply re-
stricting the presheaves to XZar.

The bilinear join pairing (3.1.2) admits an external analog

# :Mor(X, C0Pa)∼ ⊗Mor(Y, C0Pb)∼ →Mor(X × Y, C1Pa+b+1)∼ (3.2.3)

sending (f, g) to f#g : X×Y → C1Pm+n+1 whose value on (x, y) equals f(x)#g(y).
As argued in the proof of Proposition 3.1, this leads to a pairing in the derived
category of complexes of abelian groups

M(X, a)⊗M(Y, b) −→M(X × Y, a+ b)

natural with respect to X and Y . Thus, pairing (3.2.2) follows from the observation
that there exist canonical maps

pr∗XM(−, a)|X →M(−, a)|X×Y , pr∗YM(−, b)|Y →M(−, b)|X×Y .

The asserted associativity follows easily from the following three facts.
a.) The associativity of the join product – that is, the commutativity of the square

C0Pa × C0Pb × C0Pc −−−−→ C1Pa+b+1 × C0Pcy y
C0Pa × C1Pb+c+1 −−−−→ C2Pa+b+c+2
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for all a, b, c ≥ 0,
b.) the naturality of the suspension isomorphism (3.1.3), and
c.) the naturality of the splitting (3.1.6).

We recall that “morphic cohomology” of a normal quasi-projective variety X is
defined by

Ls Hn(X) ≡ π2s−n(Mor(X, C0Ps)+/Mor(X, C0Ps−1)+)

which is naturally isomorphic to Hn(M(X, s)) (cf. [FL-1],[F2]). Here, the super-
script + denotes taking naive group completion of the given topological abelian
monoid. This definition was modified in [F3], yielding “topological cycle cohomol-
ogy” defined as

Hn(X, s) ≡ Hn
Zar(X,M(−, s)Zar).

As shown in [F3; 5.7], the canonical map

H∗(M(X, s)) −→ H∗(X, s) (3.3.0)

is an isomorphism whenever X is smooth.

Proposition 3.3. For any quasi-projective variety X, there is a commutative
square

Hm(M(X, r))⊗Hn(M(X, s))
∪−−−−→ Hm+n(M(X, r + s))y y

Hm(X, r)⊗Hn(X, s)
#−−−−→ Hm+n(X, r + s)

whose top pairing is the “cup product” pairing of [FL-1], whose vertical maps are
the canonical maps (3.3.0), and whose bottom pairing is induced by the internal
product pairing (3.2.1).

Proof. Both pairings are induced by the pairing (3.1.2). The cup product in mor-
phic cohomology was obtained from (3.1.2) by passing to homotopy groups, ob-
serving that the pairing on homotopy groups commutes with the operations on
morphic cohomology induced by the operations introduced in [F-M], and then an-
nihilating those classes in the image of the “h-operation”. As verified in the proof
of [FL-1; 5.2], this is precisely the effect (on cohomology) of the projection map
Mor(X,Pa)∼ →M(X, a)[2a] used to define the pairing (3.1.2).

For a projective variety Y , define Cr(Y )∼ to be N ([Sing Cr(Y )]+) – that is, the
normalized chain complex of abelian groups associated to the degree-wise group
completed singular simplicial set associated to the topological monoid Cr(Y ). If X is
a quasi-projective variety, choose a projective closure X ⊂ X and let X∞ = X−X.
Define Cr(X)∼ to be the chain complex of abelian groups

Cr(X)∼ ≡ cone
{
Cr(X∞)∼ → Cr(X)∼

}
.

We extend this definition to obtain a presheaf of chain complexes on XZar as follows.
For U ⊂ X a Zariski open subset, let U∞ = X − U . Define L(U, r) to be

L(U, r) ≡ cone
{
Cr(U∞)∼ → Cr(X)∼

}
[2r].
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Since V∞ ⊃ U∞ if V ⊂ U , L(−, r) is naturally a presheaf on XZar. As shown in
[F3; 3.2], the presheaf L(−, r) determines Lawson homology:

Lr Hn(X) = H−n(L(X, r))
∼−→ H−nXZar

(X,L(−, r)).

ForX of pure dimension d and Y projective, the natural transformationMor(X, CrY )→
Cr+d(X × Y ) sending a continuous algebraic map to its graph defines a continuous
map

D :Mor(X, CrY )an → Cr+d(X × Y )an

called the “duality map”. This extends to the map of presheaves on XZar

D :M(−, s)[−2s] −→ L(−, d− s)[2d− 2s]

or, equivalently, to the map

D :M(−, s) −→ L(−, d− s)[2d].

If X,Y are both smooth, then the main results of [FL-2], [F2] assert that the map

D :Mor(X, CrY )∼ → Cr+d(X × Y )∼

is a quasi-isomorphism. In particular, for X smooth of pure dimension d, this
duality isomorphism has the form

D :M(−, s) ∼−→ L(−, d− s)[2d] (3.4.0)

where we have implicitly used the homotopy invariance of Lawson homology (i.e.,
flat pull-back determines a quasi-isomorphism Cj(X)∼ → Cj+1(X × A1)∼).

Proposition 3.4. Let X, Y be quasi-projective varieties of pure dimension d, e
respectively. Then the external product pairing (3.2.2) is compatible via duality
isomorphisms with the pairing in homology given by external product of cycles.
Namely, the following square commutes in the derived category of presheaves on
X × Y Zar:

pr∗XM(−, r)
L
⊗ pr∗YM(−, s) #−−−−→ M(−, r + s)

D⊗D
y yD

pr∗XL(−, d− r)[2d]
L
⊗ pr∗Y L(−, e− s)[2e] ×−−−−→ L(−, d+ e− r − s)[2(d+ e)].

In particular, taking cohomology of the complexes of global sections on X × Y ,
we conclude the following commutative square of pairings

Lr Hi(X)⊗ Ls Hj(Y )
#−−−−→ Lr+s Hi+j(X × Y )

D
y yD

Ld−rH2d−i(X)⊗ Le−sH2e−j(Y )
×−−−−→ Ld+e−r−sH2d+2e−i−j(X × Y ).
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Proof. Let W ⊂ Pr×Ps×Pr+s+1 denote the “graph” of the join pairing of degree
one zero-cycles: a point in W consists of triples (x, y, t) such that t ∈ Pr+s+1 lies
on the line joining x ∈ Pr with y ∈ Ps, where Pr, Ps are embedded in Pr+s+1

into the first r + 1 and last s + 1 coordinates, respectively. Then the projection
π : W → Pr × Ps is the projection of the projectivization of the rank 2 bundle
pr∗PrO(1) ⊗ pr∗PsO(1) over Pr × Ps. Moreover, the join pairing C0Pr × C0Ps →
C1Pr+s+1 can be factored as the composition

C0Pr × C0Ps
π∗−→ C1W

p∗−→ C1Pr+s+1

where p : W → Pr+s+1 is the projection.
We employ the following commutative diagrams natural with respect to maps

U ′ → U in XZar, V
′ → V in YZar:

Mor(U, C0Pr)×Mor(V, C0Ps) −−−−→ Cd(U × Pr)× Ce(V × Ps)

×
y y×

Mor(U × V, C0(Pr × Ps)) −−−−→ Cd+e(U × V × Pr × Ps)

π∗
y yπ∗

Mor(U × V, C1W ) −−−−→ Cd+e+1(U × V ×W )

p∗

y yp∗
Mor(U × V, C1Pr+s+1) −−−−→ Cd+e+1(U × V × Pr+s+1)

Σ

x xΣ

Mor(U × V, C0Pr+s) −−−−→ Cd+e(U × V × Pr+s)

where the horizontal maps are given by taking the graph of a continuous algebraic
map. The construction of the pairing of (3.2.2) is induced by the left vertical maps
as in the proof of Proposition 3.1.

External product on cycles is given by the composition

Cd−r(U)∼ ⊗ Ce−s(V )∼ → Cd(U × Pr)∼ ⊗ Ce(V × Ps)∼ → Cd+e(U × V × Pr × Ps)∼

followed by the projection

Cd+e(U × V × Pr × Ps)∼ → Cd+e−r−s(U × V )∼

right inverse to flat pull-back. Thus, to prove the proposition, it suffices to observe
the composition of

p∗ ◦ π∗ : Cd+e(U ×V ×Pr ×Ps)→ Cd+e+1(U ×V ×W )→ Cd+e+1(U ×V ×Pr+s+1)

with flat pull-back Cd+e−r−s(U×V )→ Cd+e(U×V ×Pr×Ps) is again flat pull-back.

As established in [F-G], intersection of cycles on a smooth variety X of pure
dimension d determines an intersection product pairing (in the derived category)

• : Cr(X)∼ ⊗ Cs(X)∼ −→ Cr+s−d(X)∼. (3.5.0)
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One aspect of the following theorem is the (implicit) statement that this intersection
pairing is sufficiently natural to determine a pairing on the level of presheaves on
XZar. The central point is that it provides a refinement (at the level of presheaves
of chain complexes rather than simply cohomology groups) of [FL-2; 4.7],[F2; 4.8]
establishing that for a smooth variety the duality map converts cup product in
morphic cohomology to intersection product in Lawson homology.

Theorem 3.5. Let X be a smooth scheme of pure dimension d. Then the internal
product pairing X of (3.2.1) and the intersection product pairing • of (3.5.0) are
compatible via duality isomorphisms. Namely, the following diagram commutes in
the derived category of presheaves on XZar:

M(−, r)
L
⊗M(−, s) #−−−−→ M(−, r + s)

D
y yD

L(−, d− r)[2d]
L
⊗L(−, d− s)[2d]

•−−−−→ L(−, d− r − s)[2d]

where D is the duality isomorphism.

Proof. The pairing (3.5.0) is constructed using the external product pairing on
cycles and a Gysin map ∆! (well defined up to quasi-isomorphism) associated to
the regular closed embedding ∆ : X → X×2. By Proposition 3.4, it suffices to
show that this Gysin map fits in a square commutative in the derived category of
presheaves on XZar:

∆∗(M(−, s)) ∆∗−−−−→ M(−, s)

D
y yD

∆∗(L(−, 2d− s)[2d])
∆!

−−−−→ L(−, d− s)[d]

(3.5.1)

In view of the naturality (in the derived category of presheaves on XZar) of the
projection map L(− × Ps, j) → L(−, j), it suffices to choose a representative map
of chain complexes for

(∆U × 1)! : C2d(U × U × Ps)∼ → Cd(U × Ps)∼

natural with respect to U ∈ XZar so that the following diagram of presheaves
determines a commutative square in the derived category of presheaves on XZar:

Mor((−)×2, C0(Ps))∼ ∆∗−−−−→ Mor(−, C0(Ps))∼

D
y yD

C2d((−)×2 × Ps)∼ (∆×1)!−−−−→ Cd(−× Ps)∼

(3.5.2)

For simplicity of notation and consistency with [F-G], we consider the more
general case of a regular closed embedding iW : W → Y of codimension c. Then
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i!W is constructed using the technique of deformation to the normal cone, so that a
diagram of the following form is considered (cf. [Fu; §5.1]):

NWY −−−−→ QWY
j←−−−− Y × A1y y y

{∞} −−−−→ P1 ←−−−− A1

where π : NWY → Y is the normal bundle of iW : W → Y . Following [F-G; 3.4]
(see also [F-G; 3.3]), we define

i!W = (π∗)−1 ◦ ε̃∗ : Cr(Y )∼ → Cr(NWY )∼ → Cr−c(W )∼

where ε : Y = Y × {1} ⊂ QWY and ε̃ is defined as a lifting of ε∗ : Cr(Y )∼ →
Cr(QWY )∼ determined by a choice of null-homotopy for the composition j∗ ◦ ε∗ :
Cr(Y )∼ → Cr(QWY )∼ → Cr(Y × A1)∼.

We choose our null-homotopy to be parameterized by P1

h : CrY × P1 → Cr(Y × P1)/Cr(Y × {∞}) = Cr(Y × A1),

and defined by sending (Z, t) ∈ CrY × P1 to Z × {t} ∈ Cr(Y × P1)/Cr(Y × {∞}).
This homotopy gives us a homotopy in the category of complexes of presheaves on
YZar

h̃ : Cr(−)∼ ⊗ C0(P1)∼ −→ Cr(−× A1)∼ (3.5.3)

which determines
ε̃∗ : Cr(−)∼ → Cr(N(−∩W )−)∼

whose composition with the inverse (in the derived category) of flat pull-back π∗ :
Cr−c(−)∼ → Cr(N(−∩W )−)∼ gives us our functorial (on YZar) representation of i!W .

Let Z ⊂ Y be an irreducible r-cycle on Y and consider the following commutative
diagram with Cartesian squares

P(CW∩ZZ ⊕ 1) −−−−→ QW∩ZZ ←−−−− Z × A1y y y
P(NWY ⊕ 1) −−−−→ QWY ←−−−− Y × A1

where CW∩ZZ is the normal cone of W∩Z ⊂ Z and P(CW∩ZZ⊕1) is the associated
projective completion of C [Fu; App.B]. If Z meets W properly, then P(CW∩ZZ ⊕
1) meets the 0-section of P(NWY ⊕ 1) properly and their “classical” intersection
W • Z (defined in terms of intersection multiplicities of the components of their
intersection) is equal to i!W (Z) (cf. [Fu; 7.1]).

To verify the commutativity of (3.5.2), we let Cr(Y ;W ) ⊂ CrY denote the sub-
monoid of those effective r-cycles on Y which meeting W properly (i.e., in codi-
mension c). Then the composition of Cr(Y ;W ) ⊂ CrY with the homotopy h admits
a natural lifting

H : Cr(Y ;W )× P1 → Cr(QWY )

given once again by sending (Z, t) to Z × {t} for t 6= ∞ and sending (Z,∞) to
P(CW∩ZZ) (i.e., this is deformation to the normal cone of cycles meeting W prop-
erly).
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We now revert to our initial notation in which W → Y as above becomes X ×
Ps → X×2 × Ps. Observe that the image of the duality map Mor(X×2, C0Ps) →
C2d(X×2 × Ps) lies in C2d(X×2 × Ps; ∆ × Ps) so that H gives us a specific lifting
of the homotopy h when restricted to Mor(X×2, C0Ps). The naturality of this
construction with respect to Zariski open subsets U ⊂ X implies that H determines
a specific lifting

H̃ :Mor((−)×2, C0(Ps))∼ × C0(P1)∼ → C2d(Q−∩W−))∼

of h̃ of (3.5.3). Consequently, we conclude that H̃, ε̃ give the same map (in the
derived category) Mor((−)×2, C0(Ps))∼ → Cr(N(W∩−)−)∼. Since the two compo-
sition of the square (3.5.2) are obtained from these maps by composing with the

quasi-inverse of π∗, and since composition of H̃ with the quasi-inverse of π∗ rep-
resents intersection with the diagonal, the commutativity of (3.5.2) in the derived
category has been proved.

We recall from [F3] the presheaves MW (−, a) on XZar which determine topo-
logical cycle cohomology of X of weight a with supports on the closed subvariety
W ⊂ X. Namely, for any Zariski open subset U ⊂ X we define

MW (−, a)(U) ≡ cone {M(U, a)→M(U ∩ (X −W ), a)} [−1]

The next proposition states the evident analog in this context of Proposition 3.2.

Proposition 3.6. Let W ⊂ X, Q ⊂ Y be closed embeddings of quasi-projective
varieties. Then the pairings of (3.1) and (3.2) determine pairings

# :MW (−, a)
L
⊗MW (−, b) −→MW (−, a+ b) (3.6.1)

# : pr∗XMW (−, a)
L
⊗ pr∗YMQ(−, b) −→MW×Q(−, a+ b) (3.6.2)

in the derived category of presheaves on XZar and (X × Y )Zar, respectively.

Proof. Using the distinguished triangle

MW (−,a+ b) −→M(−, a+ b) −→M(− ∩ (X −W ), a+ b)

−→MW (−, a+ b)[1]

we obtain pairings of the form (3.6.1) and (3.6.2), but do not in this way establish
that these pairings are uniquely defined (in the derived category). For this, it suf-
fices to observe that the pairings of (3.1.2) are natural when viewed in the category
of chain complexes (not the coarser derived category) and thereby induce pairings
on cone complexes

cone {Mor(−, C0Pa)∼ →Mor(− ∩X −W, C0Pa)∼}
L
⊗ cone

{
Mor(−, C0Pb)∼ →Mor(− ∩ (X −W ), C0Pb)∼

}
−→ cone

{
Mor(−, CaPa+b+1)∼ →Mor(− ∩X −W, C1Pa+b+1)∼

}
.

Repeating the argument in the proof of Proposition 3.1, we conclude as in the proof
of Proposition 3.2 that these pairings determine pairings of the form (3.6.1) and
(3.6.2) as required.
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We recall from [F3; 5.6] that the duality isomorphism (3.4.0) has an extension to
the context of cohomology of supports. Namely, if X is a quasi-projective variety
provided with a closed embedding i : X ⊂ M in a smooth variety M of pure
dimension m, then the duality map is a quasi-isomorphism of presheaves on MZar:

D :MX(−, s)[2s] ' i∗L(−,m− s)[2m− 2s].

We conclude this section with the following proposition asserting that external
product of cycles in Lawson homology can be reinterpreted as join product in
cohomology with supports. The proof is a merely a repetition of the proof of
Proposition 3.4 applied to cone complexes as in the proof of Proposition 3.6.

Proposition 3.7. Let X, Y be quasi-projective varieties. Choose closed embed-
dings X ⊂ M , Y ⊂ N of X, Y in smooth varieties M , N of dimension m, n,
respectively. Then the pairing in Lawson homology induced by external product of
cycles on X and Y can be obtained from the pairing (3.6.2) as explained in the
following commutative diagram of presheaves on X × Y :

p∗MMX(−, r)⊗ p∗NMY (−, s) #−−−−→ MX×Y (−, r + s)

D⊗D
y' '

yD
p∗M iX∗L(−,m− r)[2m]⊗ p∗N iY ∗L(−, n− s)[2n]

×−−−−→ iX×Y ∗L(−,m+ n− r − s)[2m+ 2n]

§4. Compatibility with motivic products

In this section, we describe a morphism from the motivic cohomology of a
smooth, complex variety to its morphic cohomology. We then establish that this
map is compatible with the cup product in motivic cohomology and the join prod-
uct in morphic cohomology. Considering hypercohomology with respect to the cdh
topology on non-smooth varieties, one could verify this compatibility more gener-
ally provided that one modified the definition of topological cycle cohomology to
incorporate cdh descent (as is done with motivic cohomology).

For smooth varieties X and Y , let zequi(Y, r)(X) denote the free abelian group
on the collection of closed, integral subschemes of X × Y that are equidimensional
of relative dimension r over X. Then zequi(Y, r)(X) is a contravariant functor in
X. It is also covariant in Y for proper morphisms and contravariant in Y for
flat morphisms (cf. [F-V; 2.1]). When Y is a projective variety, we can describe
zequi(Y, r)(X) as the naive group completion of the abelian monoid Hom(X, CrY ),
where CrY is the Chow variety parameterizing dimension r effective cycles on Y
[F1; 1.4].

To obtain a chain complex from the functor zequi(Y, r)(−), we introduce the
standard cosimplicial variety ∆•, which is given in degree d by

∆d ≡ SpecC[x0, . . . , xd]/(x0 + · · ·+ xd − 1)

and which is equipped with the familiar face and degeneracy maps. We then con-
sider the simplicial abelian group

zequi(Pn, r)(X ×∆•) ≡ d 7→ zequi(Pn, r)(X ×∆d).
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By an abuse of notation, we also use zequi(Pn, r)(X×∆•) to refer to the associated
normalized chain complex of this simplicial abelian group.

For a smooth variety X, we define a chain complex of abelian groups Z(X,n) by
the formula

Z(X,n) ≡ zequi(An, 0)(X ×∆•)[−2n]. (4.0.1)

The following proposition justifies our consideration of the chain complex Z(X,n)
rather than a complex of sheaves as in [F-V].

Proposition 4.1. If X is a smooth variety, then the motivic cohomology groups
of X (as defined in [F-V; 9.2] and which are written Hq

M(X,Z(n))) satisfy

Hq
M(X,Z(n)) ∼= Hq(Z(X,n)).

Similarly, the topological cycle cohomology groups of a smooth variety X satisfy

Hq(X,n) ∼= Hq(M(X,n)).

Proof. The first assertion follows from [F-V; 8.1] and second follows from [F3; 5.7]
(cf. (4.3.0)).

Observe that there is a natural sequence

zequi(Pn−1, 0)(X ×∆•) −→ zequi(Pn, 0)(X ×∆•) −→ zequi(An, 0)(X ×∆•)

of simplicial abelian groups. By [F-V; 5.11,8.1], this sequence induces a distin-
guished triangle in the derived category of abelian groups (after taking the associ-
ated normalized chain complexes) provided that X is smooth. Thus, we have the
isomorphism

Hq
M(X,Z(n)) ∼= Hq−2n

(
cone

{
zequi(Pn−1, 0)(X ×∆•) −→ zequi(Pn, 0)(X ×∆•)

})
.

For X a smooth variety, we introduce the chain complex

Malg(X,n) ≡ cone
{
zequi(Pn−1, 0)(X ×∆•) −→ zequi(Pn, 0)(X ×∆•)

}
[−2n].

(4.1.1)
The above results combine to show that for X smooth the chain complexes

Z(X,n) and Malg(X,n) are quasi-isomorphic under a natural map

Malg(X,n)
∼−→Z(X,n).

We persist in using two notations to refer to essentially the same object since the
cup product operation is more directly defined using Z(X,n), whereas the complex
Malg(X,n) is more easily compared with the complex defining topological cycle
cohomology and admits a naturally defined join product.

In order to construct a map from the motivic cohomology groups of X to the
topological cycle cohomology groups of X, we consider the map of simplicial sets

ρ : Hom(X ×∆•, CrY ) −→ SingMor(X, CrY )an
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defined as follows, for any r ≥ 0 and projective variety Y . Given an element f of
Hom(X ×∆n, CrY ), there is an induced map

f̃ : (∆n)an −→Mor(X, CrY )an

defined by passing to the associated analytic spaces and applying adjointness. The
map f̃ is induced by the natural transformation of functors on (Sm/C)≤1 with
proper, constructible representations which sends g : C → ∆n to f ◦ (g× idC), and

thus f̃ is continuous by Theorem 2.3.
Upon restricting the domain of f̃ to ∆n

top ⊂ (∆n)an, where ∆n
top is the subspace

of real points having nonnegative coordinates in (∆n)an, we obtain the continuous
map

ρn(f) : ∆n
top −→Mor(X, CrY )an.

The construction of ρn(f) is clearly compatible with the simplicial structures so
that we obtain a map of simplicial sets ρ as desired.

In particular, taking Y to be Pn and setting r = 0, we have the map

Hom(X ×∆•, C0Pn) −→ SingMor(X, C0Pn)an.

Passing to the category of chain complexes and using the naturality of the con-
struction with respect to the inclusion Pn−1 ↪→ Pn, we obtain the map

Malg(X,n) −→M(X,n). (4.1.2)

We now proceed to define a join pairing for motivic cohomology. The join pairing
will serve as an intermediary for the purposes of comparing the join product in
topological cycle cohomology with the cup product in motivic cohomology (whose
definition is recalled below). In fact, the definition of the join pairing for motivic
cohomology is parallel to the definition of the join pairing for topological cycle
cohomology. Namely, let W ⊂ Pn × Pm × Pn+m+1 be the join correspondence and
define the join pairing

# : zequi(Pn, r)(X)⊗ zequi(Pn, s)(X) −→ zequi(Pn+m+1, r + s+ 1)(X)

to the composition of the maps

zequi(Pn, r)(X)⊗zequi(Pm, s)(X)
×−→ zequi(Pn × Pm, r + s)(X)

π∗1−→ zequi(W, r + s+ 1)(X)
π2∗−→ zequi(Pn+m+1, r + s+ 1)(X),

which is natural in X. For any t and k, let

Σk : zequi(Pt, q)(X ×∆•) −→ zequi(Pt+k, q + k)(X ×∆•)

be the map induced by the pairing

# : zequi(Pt, q)(−)⊗ zequi(Pk−1, k − 1)(−) −→ zequi(Pt+k, q + k)(−)

by fixing the element [Pk−1] in zequi(Pk−1, k−1)(−). It follows from [F-V; 8.3] that
the map Σk is a quasi-isomorphism. Therefore, in the derived category of abelian
groups, we may form the pairing

zequi(Pm, 0)(X ×∆•)⊗ zequi(Pn, 0)(X ×∆•) −→ zequi(Pm+n, 0)(X ×∆•) (4.2.0)

by composing with the quasi-inverse of Σ1.
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Proposition 4.2. The pairing (4.2.0) induces a pairing natural in the smooth
variety X

# :Malg(X,m)
L
⊗Malg(X,n) −→Malg(X,m+ n).

Proof. The construction from the proof of Proposition 3.1 carries over directly into
this purely algebraic setting to produce a direct sum decomposition

zequi(Pt, 0)(X ×∆•) ∼=
t⊕
i=0

Malg(X, i)[2i].

As before, it remains to show that the composition of maps

zequi(Pi, 0)(X ×∆•)⊗ zequi(Pj , 0)(X ×∆•)

−→ zequi(Pi+j , 0)(X ×∆•) −→Malg(X,n+m)[2m+ 2n]

is zero for i+ j < m+ n. This follows as in the proof of Proposition 3.1, since the
map

zequi(H, 0)(X ×∆•) −→Malg(X,m+ n)[2m+ 2n]

is homotopic to zero for any hyperplane H of Pn+m.

The construction of the join pairing in motivic cohomology leads immediately to
the following compatibility with the join pairing in topological cycle cohomology.

Proposition 4.3. For any smooth variety X, the square

Malg(X,m)
L
⊗Malg(X,n)

#−−−−→ Malg(X,m+ n)y y
M(X,m)

L
⊗M(X,n)

#−−−−→ M(X,m+ n)

commutes in the derived category of abelian groups.

Proof. The proposition follows directly from the observation that the diagram of
abelian monoids

Hom(X ×∆d, C0Pm)×Hom(X ×∆d, C0Pn)
#−−−−→ Hom(X ×∆d, C1Pm+n+1)y y

Hom(∆d
top,Mor(X, C0Pm))×Hom(∆d

top,Mor(X, C0Pm))
#−−−−→ Hom(∆d

top,Mor(X, C1Pm+n+1))

commutes.

Let us recall the definition of the cup product in motivic cohomology. Observe
that there is a pairing

× : zequi(Am, 0)(X)⊗ zequi(An, 0)(X) −→ zequi(Am+n, 0)(X),

natural in X, defined by sending a pair of generators (V,W ) to the cycle associated
to V ×X W [F-V; §8]. By naturality in X, this pairing extends to a map

∪ : Z(X,m)⊗ Z(X,n) −→ Z(X,m+ n).
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As verified in [W; 4.5], the pairing ∪ coincides with the cup product on the motivic
cohomology groups of X as given in [V2].

In light of Proposition 4.3, the map from the motivic cohomology of X to its
topological cycle cohomology will be proven to be compatible with the motivic
cup product and the topological join product provided we can establish that the
motivic join product coincides with cup product. The key ingredient in establishing
the compatibility of join and cup product is the observation that after pulling back
along the natural surjection Ai+1 \ {0} −→ Pi, the join product coincides with
cartesian product. This observation motivates the proof of the following theorem.

Theorem 4.4. For any smooth variety X, the diagram

Malg(X,n)
L
⊗Malg(X,m)

#−−−−→ Malg(X,n+m)

∼=
y ∼=

y
Z(X,n)

L
⊗Z(X,m)

∪−−−−→ Z(X,n+m)

commutes in the derived category of abelian groups.

Proof. We will show that the diagram

zequi(Pm, 0)(X ×∆•)⊗ zequi(Pn, 0)(X ×∆•)
#−−−−→ zequi(Pn+m+1, 1)(X ×∆•)y y

zequi(Am, 0)(X ×∆•)⊗ zequi(An, 0)(X ×∆•) zequi(Am+n+1, 1)(X ×∆•)

×
y =

y
zequi(Am+n, 0)(X ×∆•)

π∗−−−−→ zequi(Am+n+1, 1)(X ×∆•)

commutes up to homotopy, where π is projection on the first n+m coordinates of
An+m+1. This will suffice to prove the theorem since π∗ is a quasi-isomorphism by
[F-V; 8.3].

Rather than pull back along the surjections Ai+1 \ {0} −→ Pi to re-interpret the
join product, we use Gm × A1 ⊂ Ai+1 \ {0} instead (where Gm ≡ A1 \ {0}). Let

pi : Gm × Ai −→ Pi

be the map sending (x0, x1, . . . , xi) to [x0 : x1 : · · · : xi] and

q : Gm × An ×Gm × Am −→ Pn+m+1

the map sending (x0, . . . , xn, y0, . . . , ym) to [x0 : · · · : xn : y0 : · · · : ym]. As
suggested before, the diagram of abelian groups

zequi(Pn, 0)(X)⊗ zequi(Pm, 0)(X)
#−−−−→ zequi(Pn+m+1, 1)(X)

p∗n⊗p
∗
m

y q∗
y

zequi(Gm × An, 1)(X)⊗ zequi(Gm × Am, 1)(X)
×−−−−→ zequi(Gm × An ×Gm × Am, 2)(X)

(4.4.1)
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commutes and is natural in X.
Define

βi : Gm × Ai −→ Ai

by βi(λ, a1, . . . , ai) = (λ−1a1, . . . , λ
−1ai). Then observe that the map pi factors

as βi followed by the standard inclusion of Ai into Pi and the map q factors as
βn × idGm×Am followed by the standard inclusion of An ×Gm × Am into Pn+m+1.

We claim that for any variety Y and integer r, the map

π∗ : zequi(Y, r)(X ×∆•) −→ zequi(Y ×Gm, r + 1)(X ×∆•) (4.4.2)

is a split injection in the derived category of abelian groups. To see this, observe
that by homotopy invariance, the map

π∗ : zequi(Y, r)(X ×∆•) −→ zequi(Y × A1, r + 1)(X ×∆•)

is a weak equivalence [F-V; 8.3]. Further, from [F-V; 5.11] there is a distinguished
triangle

zequi(Y×{0}, r + 1)(X ×∆•) −→ zequi(Y × A1, r + 1)(X ×∆•) −→
zequi(Y ×Gm, r + 1)(X ×∆•) −→ zequi(Y × {0})(X ×∆•)[1],

and thus it suffices to show that the map

zequi(Y × {0}, r + 1)(X ×∆•) −→ zequi(Y × A1, r + 1)(X ×∆•) (4.4.3)

is homotopic to the zero map (for then the triangle splits by basic properties of the
derived category). It follows from [F-V; 8.3] that

zequi(Y×{0}, r+1)(X×∆•) −→ zequi(Y×P1, r+1)(X×∆•)
i∗−→ zequi(Y×A1, r+1)(X×∆•)

is part of a distinguished triangle, where i : A1 ⊂ P1 is the open complement of any
rational point of P1. In particular, the composite map

zequi(Y × {0}, r + 1)(X ×∆•) −→ zequi(Y × A1, r + 1)(X ×∆•),

which coincides with the map (4.4.3), is zero.
Since (4.4.2) is a split injection, we conclude that

β∗i : zequi(Ai, 0)(X ×∆•) −→ zequi(Gm × Ai, 1)(X ×∆•)

is also a split injection, since βi differs from the projection map by an automorphism.
Thus β∗n⊗β∗m and (βn× inc)∗ are split injections as well, where inc : Gm×Am −→
Am+1 is the evident inclusion. Therefore, to show that the top square in the diagram

zequi(Pn, 0)⊗ zequi(Pm, 0)
#−−−−→ zequi(Pn+m, 1)y y

zequi(An, 0)⊗ zequi(Am, 0)
π∗◦×−−−−→ zequi(An × Am+1, 1)

β∗n⊗β
∗
m

y (βn×inc)∗
y

zequi(Gm × An, 1)⊗ zequi(Gm × Am, 1)
×−−−−→ zequi(Gm × An ×Gm × Am, 2)

commutes in the derived category, it suffices to establish the commutativity of
the outer square. (Here, we have omitted “(X ×∆•)” everywhere to simplify the
notation.) But the outer square is precisely the commutative diagram (4.4.1).

The commutative diagram of chain complexes in Theorem 4.4 has the following
immediate consequence for the cohomology of these chain complexes.
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Corollary 4.5. For X smooth, there is a natural graded ring homomorphism⊕
r

H∗M(X,Z(r)) −→
⊕
r

H∗(X, r)

where the product on the left is the cup product operation of motivic cohomology and
the product on the right is the join product operation of topological cycle cohomology.

§5. Whitney sum formula

The main result of this section will be that the operation of join of cycles is
compatible with the direct sum decomposition of Mor(X, CrPn)∼ introduced in
(3.1.5) (and recalled below). This is a slightly subtle point, whose proof turns out
to be rather delicate. The reader should bear in mind that every though we have
defined the join pairing

M(X, r)
L
⊗M(Y, s) −→M(X, r + s)

as being induced under the natural surjection from the pairing

# :Mor(X, C0Pr)∼ ×Mor(X, C0Ps)∼ −→Mor(X, C1Pr+s+1)∼,

it does not follow a priori that this latter pairing respects the grading given by the
direct sum decomposition

Mor(X, CkPn)∼ ∼=
n−k⊕
i=0

M(X, i)[2i].

However, this is indeed the case, as shown by Theorem 5.3.
We then use Theorem 5.3 to establish that the Chern classes of vector bundles

generated by their global sections taking values in morphic cohomology (or topo-
logical cycle cohomology), which were first introduced in [FL-1], satisfy the familiar
Whitney sum formula. The settles a question left open in [FL-1; §10].

Since we will use it often, we observe here the following consequence of our
results from sections 1 and 2. For projective varieties X and Y , it follows from
Proposition 1.7 and Theorem 2.3 that an element f of Mor(X, CrY ) determines a
natural transformation of functors from Sch/C to topological spaces

f∗ :Mor(−, CsX)an −→Mor(−, Cr+sY )an,

for any s. Moreover, two such maps f1 and f2 lying in the same component of the
space Mor(X, CrY )an define homotopy equivalent maps

f1∗ ∼ f2∗ :Mor(Z, CsX)an −→Mor(Z, Cr+sY )an

for all quasi-projective Z. In fact, choosing a path in Mor(X, CrY )an from f1 to
f2 determines a homotopy from f1∗ to f2∗ which is natural in Z; thus f1∗ and f2∗
define the same map

f1∗ = f2∗ :Mor(−, CsX)∼ −→Mor(−, Cr+sY )∼
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in the derived category of presheaves on Sch/C.
We shall need to formalize the splitting ofMor(X, CrPn)∼ introduced in (3.1.5).

Let
ρn,i : Pn −→ C0Pi

denote the map sending a point P1·. . .·Pn of SPn(P1) = Pn to
∑
k1<···<ki Pk1 ·. . .·Pki .

Then for any X,

Mor(X, CrPn)∼
∼=−→

n⊕
i=0

M(X, i)[2i],

where the map to the ith summand is the composition of the map induced by ρn,i,

ρn,i∗ :Mor(X, CrPn)∼ −→Mor(X, CrPi)∼,

with the natural split surjection

Mor(X, CrPi)∼ −→M(X, i)[2i].

This construction is clearly natural in X.
For any integers r and s and projective varieties X and Y , we define the “external

product” map

CrX × CsY
×−→ Cr+s(X × Y )

by sending a pair of integral closed subschemes (Z,W ) to Z×W and then extending
by linearity. We use the same notation for the induced map

Mor(−, CrX)an ⊗Mor(−, CsY )an
×−→Mor(−, Cr+s(X × Y ))an

of presheaves of topological spaces on Sch/C.
We use the notation ρn,i × ρm,j to refer to the composition

Pn × Pm −→ C0Pi × C0Pj −→ C0(Pi × Pj),

where the first map is what one might more accurately write as ρni × ρm,j and the
second is given by the evident bilinear trace map.

We will need the following simple result.

Lemma 5.1. The diagram of presheaves on Sch/C

Mor(−, CrPn)∼
L
⊗Mor(−, CsPm)∼

×−−−−→ Mor(−, Cr+s(Pn × Pm))∼

ρn,i⊗ρm,j
y ρn,i×ρm,j

y
Mor(−, CrPi)∼

L
⊗Mor(−, CsPj)∼

×−−−−→ Mor(−, Cr+s(Pi × Pj))∼

commutes.

Proof. Observe that it suffices to check that the diagram of spaces

Mor(X, CrPn)an ×Mor(X, CsPm)an
×−−−−→ Mor(X, Cr+s(Pn × Pm))an

ρn,i×ρm,j
y ρn,i×ρm,j

y
Mor(X, CrPi)an ×Mor(X, CsPj)an

×−−−−→ Mor(X, Cr+s(Pi × Pj))an
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commutes, for any X. By Proposition 1.7, it suffices to check that the diagram

CrPn × CsPm
×−−−−→ Cr+s(Pn × Pm)

ρn,i×ρm,j
y ρn,i×ρm,j

y
CrPi × CsPj

×−−−−→ Cr+s(Pi × Pj)

(5.1.1)

commutes. Observe that the map ρl,k : Pl −→ C0Pk has “graph”

Γl,k ⊂ Pl × Pk

which is finite and flat over Pl (via the map π1) and proper over Pk (via the map
π2), so that the map

ρl,k∗ : CrPl −→ CrPk

is well defined by the formula

V 7→ π2∗π
∗
1(V ).

The commutativity of (5.1.1) follows from the fact that taking external products of
cycles commutes with the proper pushforward and flat pullback of cycles (cf. [Fu;
1.10]).

The following proposition provides the key technique that will be used to prove
the main result (Theorem 5.3) of this section.

Proposition 5.2. For any smooth variety X, there are natural isomorphism

H0

(
cone

{
Mor(X, CrPt−1)∼ −→Mor(X, CrPt)∼

})
∼= π0[Mor(X, Cr+sPt)an/Mor(X, Cr+sPt−1)an]+

∼= At−r(X),

where An(X) is the group of codimension n cycles modulo algebraic equivalence.
This isomorphism is induced by sending f : X −→ CrPt to the class of the intersec-
tion of its graph Γf ⊂ X × Pt with X × {P} for a general point P ∈ Pt. Moreover,
two morphisms

f, g : X −→ CrPt

define the same map

Mor(−, CsX)∼ −→ cone
{
Mor(−, Cr+sPt−1)∼ −→Mor(−, Cr+sPt)∼

}
in the derived category for all s if and only if the classes of f and g coincide in
At−r(X).

Proof. The first isomorphism follows from [FL-2; C4], while the second is a conse-
quence of duality for smooth, projective varieties [FL-2; 5.2].

If f and g determine the same class in At−r(X), then for suitable choices of
elements h1, h2 ∈Mor(X, CrPt−1)an, we have that f+h1 and g+h1 lie in the same
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component of Mor(X, CrPt)an (cf. [F2; 7.1]). As indicated previously, Proposition
1.7 tells us that f + h1 and g + h2 define the same morphism

(f + h1)∗ = (g + h2)∗ :Mor(−, CsX)∼ −→Mor(−, Cr+sPt)∼

in the derived category. Since (f − g)∗ differs from 0 = (f + h1)∗ − (g + h2)∗ by
a morphism that factors though Mor(−, Cr+sPt−1)∼, it follows that we have the
desired equality

f∗ = g∗ :Mor(−, CsX)∼ −→ cone
{
Mor(−, Cr+sPt−1)∼ −→Mor(−, Cr+sPt)∼

}
.

Conversely, if f∗ = g∗, then applying these morphisms to the “identity” map in
Mor(X, C0X)∼, we see immediately that f and g determine the same class in
At−r(X).

The following theorem asserts that the join product is compatible with the nat-
ural direct sum decomposition of Mor(X, C0Pn)∼.

Theorem 5.3. For any quasi-projective variety X, the operation of linear join on
Mor(X, C0Pn)∼ is graded in the sense that the diagram

Mor(X, C0Pn)∼
L
⊗Mor(X, C0Pm)∼

#−−−−→ Mor(X, C1Pn+m+1)∼

∼=
y ∼=

y⊕n
i=0M(X, i)[2i]⊗

⊕m
j=0M(X, j)[2j]

∑
#−−−−→

⊕m
k=0M(X, k)[2k]

commutes in the derived category.

Proof. It will suffice to establish that the diagram

Mor(−, CrPn)∼
L
⊗Mor(−, CsPm)∼

#−−−−→ Mor(−, Cr+s+1Pm+n+1)∼

ρn,i
L
⊗ ρm,j

y ρm+n+1,k+1

y⊕
i+j=kMor(−, CrPi)∼

L
⊗Mor(−, CsPj)∼ Mor(−, Cr+s+1Pk+1)∼

∑
#

y y
Mor(−, Cr+s+1Pk+1)∼ −−−−→ Mor(−, Cr+s+1Pk+1)∼/Mor(−, Cr+s+1Pk)∼

(5.3.1)
commutes in the derived category of presheaves. (Actually, we need to know the
commutativity of this diagram just for the case r = s = 0, but we prove the more
general assertion since it is no more difficult.)

Recall that the join operation factors as

Mor(−, CrPi)∼⊗Mor(−, CsPj)∼
×−→Mor(−, Cr+s(Pi×Pj))∼

#−→Mor(−, Cr+s+1Pi+j+1)∼,

where the second map (which we also call “join”) is induced by the pairing of
Proposition 1.7

Mor(X, Cr+s(Pi × Pj))×Mor(Pi × Pj , C1Pi+j+1) −→Mor(X, Cr+s+1Pi+j+1)
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by fixing the element of
Mor(Pi × Pj , C1Pi+j+1)

which sends a pair of points to the line they span in Pi+j+1. The commutative
diagram of Lemma 5.1 allows us to replace the upper left arrow of (5.3.1) with the
map

Mor(−, Cr(Pn × Pm))∼
ρn,i×ρm,j−→

⊕
i+j=k

Mor(−, Cr(Pi × Pj))∼,

so that to establish the commutativity of diagram (5.3.1), we need to show the
diagram

Mor(−, Cr+s(Pn × Pm))∼
#−−−−→ Mor(−, Cr+s+1Pm+n+1)∼

ρn,i×ρm,j
y ρn+m+1,k+1

y⊕
i+j=kMor(−, Cr+s(Pi × Pj))∼ Mor(−, Cr+s+1Pk+1)∼

Σ◦#
y y

Mor(−, Cr+s+1Pk+1)∼ −−−−→ Mor(−, Cr+s+1Pk+1)∼/Mor(−, Cr+s+1Pk)∼

(5.3.2)
commutes in the derived category.

Let us consider first the composition

Mor(−, Cr+s(Pn×Pm))∼
#−→Mor(−, Cr+s+1Pm+n+1)∼

ρm+n+1,k+1−→ Mor(−, Cr+s+1Pk+1)∼.

The associativity condition of Proposition 1.7 implies that this composition is in-
duced by the composition of the maps

Pn × Pm #−→ C1Pn+m+1 C1(ρ)−→ C1Pk+1.

(By C1(ρ) we mean the evident map associated to ρ = ρm+n+1,k+1; that is, the map
obtained by pairing ρ with the identity on C1Pn+m+1 in the pairing of Proposition
1.7.) Let us write this composition as φ.

Similarly, the associativity and bilinearity conditions of Proposition 1.7 imply
that the composition

Mor(−, Cr+s(Pn×Pm))∼ −→
⊕
i+j=k

Mor(−, Cr+s(Pi×Pj))∼ −→Mor(−, Cr+s+1Pk+1)∼

is induced by the sum over all i+ j = k of the maps given as the composition of

Pn × Pm
ρn,i×ρm,j−→ C0(Pi × Pj) C0(#)−→ C1Pk+1.

Let us write this map as ψi,j and write their sum as ψ =
∑
i+j=k ψi,j .

To prove the theorem, it suffices to show that two maps

φ = C1(ρ) ◦#, ψ =
∑
i+j=k

ψi,j : Pn × Pm −→ C1Pk+1



FUNCTION SPACES AND CONTINUOUS ALGEBRAIC PAIRINGS FOR VARIETIES 35

induce homotopic natural transformations of functors. By Proposition 5.2, this
amounts to showing φ and ψ determine the same class in

Ak(Pn × Pm) ∼=
⊕
p+q=k

Z · [Pn−p × Pm−q]

upon intersection of their graphs with Pn × Pm × {P} for a general point P . We
will show in fact that both maps determine the class∑

p+q=k

[Pn−p × Pm−q]. (5.3.3)

To compute the class of φ in Ak(Pn × Pm), we begin with the observation that
for any t and s, the graph of ρt,s : Pt −→ C0Ps, which is an integral subvariety of
Pt × Ps, forms a projective bundle over Ps with fibers isomorphic to Pt−s. Indeed,
the fiber of this graph over the point P1 • · · · • Ps ∈ SPs(P1) ∼= Ps consists of all
points Q1 • · · · • Qt of SPt(P1) ∼= Pt such that Qji = Pi, for all i, for some choice

1 ≤ j1 < · · · < js ≤ t, which is precisely the image of SPt−s(P1) ↪→ SPt(P1) under
the closed immersion given by “multiplication” with P1 • · · · • Ps. Thus, we have

graph(ρt,s) ∩
(
Pt × {P}

)
= H ∼= Pt−s, (5.3.4)

for a general (in fact, every) point P . In particular, the intersection of the graph
of ρn+m+1,k+1 with Pn+m+1×{P} for a general point P in Pk+1 is a general linear
subspace of Pn+m+1 of dimension n+m− k.

We claim that the intersection of the graph of #, which is the subscheme W ⊂
Pm × Pn × Pn+m+1 introduced earlier, with Pn × Pm ×H for a general dimension
n + m − k linear subspace H pushes forward to Pn × Pm to the class (5.3.3) in
Ak(Pn × Pm). This will show that φ determines the class (5.3.3) of Ak(Pn × Pm)
since we have

graph(φ) ∩ (Pn × Pm × {P})
= graph(#) ∩

[
Pn × Pm ×

(
graph(ρn+m+1,k+1) ∩ Pn+m+1 × {P}

)]
(5.3.5)

= graph(#) ∩ (Pn × Pm ×H) .

To establish the claim, observe that we need only show that the image under the
composition

A∗(Pn+m+1)
π∗2−→ A∗(W )

π1∗−→ A∗(Pn × Pm)

of [H], for H a linear subspace of dimension n+m− k, is the class (5.3.3). Recall
from the proof of Proposition 4.4 that W −→ Pn×Pm is the projectivized bundled
associated to O(1, 0)⊕O(0, 1), and thus

A∗(W ) ∼= A∗(Pn × Pm)[ζ]/(ζ2 − (α+ β)ζ + α · β),

where α = [Pn−1 × Pm], β = [Pn × Pm−1], and ζ is the canonical divisor of the
projectivized bundle. The map π∗2 is a ring map and sends [Pn+m] to ζ. The map
π1∗ is a A∗(Pn × Pm)-module map which sends ζ to 1 = [Pn × Pm] and [W ] to 0
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(since W −→ Pn × Pm has relative dimension one). The claimed equality follows
for the case k = 0 immediately. For general k, observe that

π∗2 [Pn+m−k] = ζk+1.

One may easily verify that

ζk+1 =

 ∑
p+q=k

αpβq

 ζ + constant term

in Ak(W ). Thus, we have, for all k,

π1∗π
∗
2 [H] =

∑
p+q=k

[Pn−p × Pm−q]. (5.3.6)

As indicated in (5.3.5), it follows that φ determines the class (5.3.3) in Ak(Pn×Pm).
Recall that ψ is the sum

∑
i+j=k ψi,j . We now compute the class in Ak(Pn×Pm)

of the map
ψi,j = C0(#) ◦ (ρn,i × ρm,j) : Pn × Pm −→ Pk+1.

Taking n = i, n = j, and k = i+j in the equation (5.3.6) shows that the intersection
of the graph of # : Pi × Pj −→ Pk with Pi × Pj × {P} for a general point P ∈ Pk
is the class of a point in Pi × Pj . By equation (5.3.4), the intersection of the graph
of ρn,i × ρm,j with Pn × {Q} × Pm × {R} for points Q ∈ Pi and R ∈ Pj is the class
[Pn−i × Pm−j ]. Since we have

graph(ψi,j) ∩ (Pn × Pm × {P})
= graph(ρn,i × ρm,j) ∩

(
Pn × Pm ×

[
graph(#) ∩

(
Pi × Pj × {P}

)])
= graph(ρn,i × ρm,j) ∩ (Pn × Pm × {Q} × {R}) ,

it follows that ψi,j has class [Pn−i × Pm−j ] in Ak(Pn × Pm). Consequently, ψ has
class (5.3.3) in Ak(Pn × Pm), since ψ is the sum of the ψi,j .

Since φ and ψ determine the same class (5.3.3) in Ak(Pn × Pm), they define the
same map in the derived category by Proposition 5.2. The theorem is therefore
proven.

The following was suggested in [FL-1], but was not proven in that paper for lack
of a version of Theorem 5.3.

Theorem 5.4. For any quasi-projective variety X, there are Chern class maps

cn : K0(X) −→ H2nM(X,n) −→ H2n(X,n)

which extend the Chern class maps of [FL-1; 10.3] for vector bundles generated by
global sections. Moreover, these Chern class maps satisfy the Whitney sum formula

cn(−) =
⊕
i+j=n

ci(−)#cj(−).
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Proof. Recall that H∗M(X, ∗) is defined in terms of the weak normalization Xw

of X and observe that there is a natural map K0(X) −→ K0(Xw). So we may
assume X is weakly normal.

Let Grasse(PN ) be the Grassmannian variety of dimension e − 1 linear subva-
rieties of PN . Then Grasse(PN ) represents the functor sending X to the set of

quotient objects ON+1
X � E (that is, isomorphism classes of surjection), where

E is a rank e vector bundle on X. Moreover, as in Proposition 2.4, the set
Mor(X,Grasse(PN )) comes equipped with a natural topology.

Let
Ψ : Grasse(PN ) −→ CePN ≡ CN−ePN

be the morphism of varieties which sends a quotient π : CN+1 � Ce to the cycle
which is the projectivization of the kernel of π. Then Ψ determines a continuous
map of topological spaces

Mor(X,Grasse(PN ))an −→Mor(X, Ce(PN ))an

by Theorem 2.3.
Observe that for all M , we have a commutative diagram

Grasse(PN ) −−−−→ CePNy ΣM

y
Grasse(PN+M ) −−−−→ CePN+M .

The map on the left in this diagram sends CN+1 � Ce to the composition CN+1+M �
CN+1 � Ce (in which the first map is projection onto the first N + 1 coordinates),
and the map on the right is given by suspension. Thus we obtain a map of direct
systems

lim−→
N

Grasse(PN ) −→ lim−→
N

CePN

which induces the continuous map of topological spaces

lim−→
N

Mor(X,Grasse(PN ))an −→ lim−→
N

Mor(X, CePN )an.

Using the suspension isomorphism (3.1.3), we have canonical isomorphisms

Mor(X, CePN )∼ ∼=
e⊕
i=0

M(X, i)[2i]

in the derived category of abelian groups. It follows that we obtain a natural map

Vecte(X) ≡ lim−→
N

πoMor(X,Grasse(PN ))an −→
e⊕
s=0

H2sM(X, s).

We may associate to a vector bundle E on X of rank e which is generated by its
global sections an element of Vecte(X) by choosing a surjectionON+1

X � E , for some
N >> 0, and then taking the associated class in π0 lim−→Mor(X,Grasse(PN ))an. We
claim the resulting class in Vecte(X) is independent of the choice made. To see this,
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suppose p : ON+1
X � E , q : OM+1

X � E are two different choices. Then consider the
point in Mor(X,Grasse(PN+M+1))an defined by the surjection

ON+1+M+1
X = ON+1

X ⊕OM+1
X

(p,q)
� E .

There is a path from this point to the point given by the surjection (p, 0) (re-
spectively, (0, q)) defined by (p, λq) (respectively, (λp, q)) for λ ∈ [0, 1]. Similarly,
there is a path from the point associated to (0, q) to the point associated to (q, 0).
This shows that our two choices coincide at some stage in the direct limit defining
Vecte(X). In fact, this argument shows that there is a natural, surjective map

IsoPgl(X) −→ ⊕e Vecte(X), (5.4.1)

where IsoPgl(X) is the set of isomorphism classes of vector bundles on X which
are generated by global sections.

Define a pairing

⊕ : Grasse(PN )×Grasse
′
(PM ) −→ Grasse+e

′
(PN+M+1)

by sending the pair (CN+1 � Ce,CM+1 � Ce′) to CN+1+M+1 = CN+1⊕CM+1 �
Ce ⊕ Ce′ . It is easy to verify that the diagram

Grasse(PN )×Grasse
′
(PM )

⊕−−−−→ Grasse+e
′
(PN+M+1)y y

CePN × Ce′PM #−−−−→ Ce+e′PN+M+1

(5.4.2)

commutes. If we consider the space of morphisms from X to each variety in diagram
(5.4.2), we obtain a commutative diagram of spaces. Further, the maps induced by
each arrow in diagram (5.4.2) are compatible with the maps in the direct systems
lim−→NMor(X,Grasse(PN ))an and lim−→NMor(X, CePN )an on the level of π0 (in fact,
up to homotopy), and thus the composite map

c = (cn) : IsoPgl(X) −→
∏̃

e
Vecte(X) −→

∞⊕
s=0

H2sM(X, s) (5.4.3)

is actually a homomorphism of monoids. Here IsoPgl(X) is a monoid under direct

sum of vector bundles and
⊕∞

s=0 H2sM(X, s) is a monoid under the join pairing.

The notation
∏̃
e Vecte(X) refers to the restricted direct product, defined as the

subset of the product consisting of sequences of elements αe ∈ Vecte(X) such that
αe coincides with the image of the trivial bundle OeX for almost all e.

Set H(X) =
⊕∞

s=0 H2sM(X, s). Then H(X) is actually a ring under addition of

cycles and the join product. One may easily check that c0(E) = 1 ∈ H0M(X, 0) ∼=
Z. Let 1 +H(X)+[[t]] denote the subset of the set of formal power series H(X)[[t]]
consisting of those power series whose coefficient of tn lies in H2n(X,n) and whose
constant term is 1. Then the join operation on H(X) endows 1 +H(X)+[[t]] with
the structure of multiplicative abelian group. The map

ct : IsoPgl(X) −→ 1 +H+[[t]]
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defined by ct(E) = 1 + c1(E) + c2(E) + . . . is a map of abelian monoids, with target
an abelian group. It therefore extends to a map

ct : IsoPgl(X)+ −→ 1 +H(X)+[[t]]

from the group completion of IsoPgl(X). Observe that the target of ct is homotopy
invariant in X, since there is for any X,Y a natural pairing

Mor(X × A1, Y )× A1 −→Mor(X × A1, Y )

relating the identity to the map induced by i ◦ pr : X ×A1 → X × {0} → X ×A1.
Thus, ct factors though the cokernel

IsoPgl(X × A1)+ α1−α0−→ IsoPgl(X)+ (5.4.4)

where αi is induced by restriction to X × {i}.
We claim the cokernel of (5.4.4) is isomorphic to

K0(X)/(homotopy) ≡ coker
(
K0(X × A1)

α1−α0−→ K0(X)
)
.

Say X is a subvariety of Pn. Then by using the Koszul resolution induced by the
canonical surjection On+1

Pn � OPn(1), one shows that every class in K0(X) is a
difference of the classes of vector bundle generated by global sections. Further,
given a short exact sequence

0 −→ E ′ −→ E −→ E ′′ −→ 0

of vector bundles on X, let

0 −→ E ′[t] −→ E [t] −→ E ′′[t] −→ 0

be the pullback of this sequence to X × SpecC[t] = X ×A1. Now define the vector

bundle Ẽ on X × A1 so that the square

Ẽ −−−−→ E ′′[t]y ·t
y

E [t] −−−−→ E ′′[t]

is cartesian. Then Ẽ |X×{0} ∼= E ′ ⊕ E ′′ and Ẽ |X×{1} ∼= E , and so every short exact
sequence may be deformed continuously to a short exact sequence. The claim
follows.

We thus obtain the map

ct : K0(X) −→ 1 +H(X)+[[t]].

and we define
cn : K0(X) −→ H2nM(X,n)

by taking the coefficient of tn in ct. The Whitney sum formula is an obvious
consequence of the construction.
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