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Abstract. The semi-topological K-theory of real varieties, KRsemi(−), is an ori-
ented multiplicative (generalized) cohomology theory which extends the authors’ ear-

lier theory, Ksemi(−), for complex algebraic varieties. Motivation comes from consid-

eration of algebraic equivalence of vector bundles (sharpened to real semi-topological
equivalence), consideration of Z/2-equivariant mapping spaces of morphisms of alge-

braic varieties to Grassmannian varieties, and consideration of the algebraic K-theory
of real varieties.

The authors verify that the semi-topological K-theory of a real variety X in-

terpolates between the algebraic K-theory of X and Atiyah’s Real K-theory of the
associated Real space of complex points, XR(C). The resulting natural maps of

spectra

Kalg(X)→ KRsemi(X)→ KRtop(XR(C))

satisfy numerous good properties: the first map is a mod-n equivalence for any
projective real variety and any n > 0; the second map is an equivalence for smooth

projective curves and flag varieties; the triple fits in a commutative diagram of spectra

mapping via total Segre classes to a triple of cohomology theories. The authors also
establish results for the semi-topological K-theory of real varieties, such as Nisnevich

excision and a type of localization result, which were previously unknown even for

complex varieties.

Introduction

In the papers [FW2], [FW3], we introduced and studied semi-topological K-
theory, which is a spectrum valued theory Ksemi(−) defined on the category of
quasi-projective complex varieties. The definition of Ksemi was originally suggested
in [F3], and more recently an equivalent theory defined for smooth, projective
complex varieties, called holomorphic K-theory, has been studied by R. Cohen and
P. Lima-Filho in [CL2]. The semi-topological K-theory of a complex variety X
fits in between the algebraic K-theory of X and the topological K-theory of the
associated topological space of complex points X(C):

Kalg(X)→ Ksemi(X)→ Ktop(X(C)).

The theory Ksemi(X) is a good interpolation between Kalg(X) and Ksemi(X): the
map Kalg(X) → Ksemi(X) induces a isomorphism on homotopy groups with finite
coefficients, while the map Ksemi(X) → Ktop(X(C)) apparently induces an iso-
morphism on homotopy groups once the action of the so-called Bott element in
Ksemi

2 (SpecC) is inverted. Moreover, we view Ksemi(X) as having intrinsic interest,
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for it can be viewed as the stabilization of function complexes of algebraic mor-
phisms of X into Grassmannians, a topic of study in papers such as [Ki], [CLS].
Thus, computations of Ksemi(X) arising from either topological or algebraic K-
theory can provide information about such morphisms, whereas computations of
invariants of certain moduli spaces (such as those in [Ki]) can provide information
about algebraic K-theory.

In this paper, we extend the definition of Ksemi to real varieties, establish nu-
merous foundational properties of our theory, and compute various examples. We
also show how this new theory, KRsemi, is related to various other constructions
in algebraic geometry and topology. As was the case for Ksemi(X), with a com-
plex variety X, the initial motivation for the definition of KRsemi(X), with X a
real variety, is our intention of constructing a theory based on algebraic vector
bundles and algebraic equivalence. A subtlety arises in that we must use the real
analytic topology in our definition of the equivalence relation giving KRsemi

0 (X)

as a quotient of Kalg
0 (X), for a real variety X. This equivalence relation, real

semi-topological equivalence, provides an invariant finer than ordinary algebraic
equivalence (as suggested by [Fu; 10.3]) and thus KRsemi

0 (X) is an invariant more

closely approximating Kalg
0 (X) (cf. Proposition 1.6). As for most constructions of

higher K-groups, to define KRsemi
q (X) for q > 0 we require some machinery to pro-

vide a suitable homotopy-theoretic group completion; we find the “machine” using
E∞-operads convenient for most our purposes (see [M1]), although the equivalent
“machine” stemming from Segal’s notion of a Γ-space (see [Se]) is used instead in
Section 5. Thanks to a stabilization theorem proved in Section 7, we find that this
homotopy-theoretic group completion can be viewed as a colimit of more familiar
spaces of algebraic morphisms.

In analogy with Ksemi, the theory KRsemi fits in between the algebraic K-theory,
Kalg, of real varieties and the so-called Atiyah’s Real K-theory, KRtop, of Real
spaces – i.e., spaces equipped with continuous involutions (cf. [At]). Namely, if
X is a quasi-projective real variety, then writing XR(C) for the analytic space of
complex points equipped with the involution given by complex conjugation, we have
natural maps of spectra

Kalg(X)→ KRsemi(X)→ KRtop(XR(C)).

We mention three theorems which should give the reader some impression of how
KRsemi(X) relates to these other K-theories and also to cohomology theories arising
from cycles. To prove these theorems, we follow [FW3] in introducing a variation
of KRsemi(X), written Kalg(∆•top ×R X), which is weakly equivalent to KRsemi(X)
whenever X is projective (and weakly normal), but which is better behaved for
arbitrary quasi-projective real varieties.

Theorem 0.1. (cf. Corollary 3.10) For a projective real variety X, the natural
map

Kalg
q (X;Z/n)→ KRsemi

q (X;Z/n)

is an isomorphism for all q ≥ 0, n > 0.

Theorem 0.2. (cf. Propositions 6.1 and 6.2) Suppose X is one of the following
projective real varieties: (1) a smooth, projective real curve, or (2) G/P , where G
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is one of the linear algebraic groups GLn,R, SLn,R, Spinn,R, or Sp2n,R and P is a
parabolic subgroup containing a split Borel subgroup. Then the natural map

KRsemi
q (X)→ KR−qtop(X)

is an isomorphism for all q ≥ 0.

Theorem 0.3. (cf. Theorem 8.8) Let X be a smooth, projective real variety. Then
there is a natural commutative diagram

Kalg
i (X) −−−−→ Kalg

i (∆•top ×R X) −−−−→ KR−itop(XR(C))

s

y s

y s

y⊕
q≥0

H2q−i
M (X,Z(q)) −−−−→

⊕
q≥0

LqHR2q−i(X) −−−−→
⊕
q≥0

Hq,q−i
Z/2 (XR(C),Z).

for all i ≥ 0, where H∗M(−,Z(∗)) denotes the motivic cohomology of a real variety,
H∗,∗Z/2(−,Z) denotes the twisted equivariant cohomology of a Real space, L∗HR∗(−)

is the real analogue of morphic cohomology, and the vertical maps are the so-called
“total Segre class maps”. Moreover, this diagram is obtained from a commuting
diagram of spectra by applying πi(−).

As shown in Proposition 1.5, KRsemi(−) and Kalg(∆•top×R−) really do extend the

constructions of Ksemi(−) and Ksemi(∆•top×C−) of [FW2], [FW3], in that whenever
X is a quasi-projective complex variety, there are natural weak equivalences

KRsemi(X)
∼−→ Ksemi(X) and KRsemi(∆•top ×R X)

∼−→ Ksemi(∆•top ×C X).

In particular, theorems proven about KRsemi(−) for real varieties give theorems
about Ksemi for complex varieties. Some of the results in this paper involve ex-
tending known results for Ksemi to KRsemi for complex varieties. This includes
the three theorems mentioned above. However, we also establish a few results
for KRsemi and Kalg(∆•top ×R −) which were unknown before even for the Ksemi-

and Kalg(∆•top ×C −)-theories of complex varieties. For example, we establish that

Kalg(∆•top×R−) satisfies Nisnevich descent and then use this to prove a localization
type result:

Theorem 0.4. (cf. Theorem 3.5) The theory Kalg(∆•top ×R −) satisfies Nisnevich
descent on the category of smooth, quasi-projective real varieties. That is, let X be
a smooth, quasi-projective real variety, p : X ′ → X be an étale map, i : Z ↪→ X be

a closed immersion which factors as Z
j−→ X ′

p−→ X. Then setting U = X − i(Z)
and U ′ = X ′ − j(Z), there is a natural long exact sequence

· · · → Kalg
q (∆•top ×R X)→ Kalg

q (∆•top ×R X
′)⊕Kalg

q (∆•top ×R U)

→ Kalg
q (∆•top ×R U

′)→ Kalg
q−1(∆•top ×R X)→ · · · .
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Theorem 0.5. (cf. Corollary 6.7) Given a regular closed immersion i : Z ↪→ X
of smooth, quasi-projective real varieties, there is a natural long exact sequence

· · · → Kalg
q (∆•top ×R Z)→ Kalg

q (∆•top ×R X)

→ Kalg
q (∆•top ×R X − Z)→ Kalg

q−1(∆•top ×R Z)→ · · · .

In Section 9 we demonstrate that KRsemi satisfies the axioms of a multiplicative
oriented cohomology theory in the sense of Panin-Smirnov [PS]. One significance of
such axioms is that they allow for easy verification of Riemann-Roch type results
involving a suitably multiplicative map between such theories. Ideally, we would like
to apply this machinery to the Chern character map from KRsemi to real morphic
cohomology with rational coefficients (defined in Section 8). But for now, a proof of
the required multiplicative property remains elusive, and so such a Riemann-Roch
result is still conjectural. (However, in [CL1; 4.11] the multiplicativity of a Chern
character is asserted for complex varieties.)

An interesting aspect of our extension of Ksemi to real varieties is the poten-
tial for an equivariant point of view in the study of algebraic K-theory and semi-
topologicalK-theory. Namely, we envision associating to a real varietyX a so-called
Z/2-spectrum (intuitively, a spectrum equipped with a suitably defined notion of
an action by the group Z/2), written KZ/2−semi(X). This construct should have
the property that Ksemi(XC) is recovered by forgetting the Z/2-action, whereas
KRsemi(X) is obtained by taking Z/2-fixed points. Unfortunately, some of the
foundational results for equivariant spectra are missing from the literature (al-
though they are apparently known to the experts). Consequently, we relegate the
discussion of Z/2-spectra to an appendix, which should be viewed as the optimal
way to develop the material in this paper, once the requisite foundational results
become available.

The first author thanks Pedro dos Santos for explaining the importance of Z/2-
equivariant spectra and Ivan Panin for sharing his insight and preliminary manu-
script [PS]. He also expresses his gratitude to ETH-Zurich, I.H.E.S., and the Uni-
versity of Paris VII for their hospitality.

§1 Formulation of KRsemi

In this section, we introduce a spectrum KRsemi(X) associated to a quasi-
projective real variety X, which is analogous to the spectrum Ksemi(Y ) constructed
in [FW2] for complex varieties Y . The spectrum-valued functor X 7→ KRsemi(X)
defines a cohomology theory on the category of quasi-projective real varieties which,
in a suitable sense, lies part-way between the algebraic K-theory of the real vari-
ety X, Kalg(X), and Atiyah’s Real K-theory (cf. [At]) of the Z/2-space XR(C),
KRtop(XR(C)). Here, we write XR(C) for the analytic space of complex points
of a real variety equipped with the Z/2-action given by complex conjugation. The
sense in which KRsemi(X) lies between Kalg(X) and KRtop(X) will be made precise
throughout the remainder of this paper.

We use the notation of [FW1; 2.4], where for quasi-projective k-varieties X and
G, for some ground field k, the set Mork(X,G) consists of all continuous algebraic
morphisms of k-varieties. Assuming k has characteristic 0, then when X is weakly
normal (equivalently, semi-normal – see [Swa]), Mork(X,G) coincides with the set
of all morphisms of k-varieties. More generally, when char k = 0, one may form
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the so-called weak normalization Xw → X, and then Mork(X,G) coincides with
Homk(Xw, G), the collection of morphisms of k-varieties from Xw to G.

As in [FW1; §2], when k = C we impose a topology on MorC(X,G), resulting in
a topological space which we will write asMorC(X,G) here (but which was written
asMor(X,G)an in [FW1]). We briefly recall the description of this topology so as
to extend it to cover the case k = R. First, one chooses projective closures X ⊂ X
and G ⊂ G and then defines Y to be the Chow variety of cycles on X × G of
appropriate degree. Then E ⊂ Y is defined as the constructible subset consisting
of those cycles which give graphs of morphisms from X to G upon restriction to the
open subscheme X ×G. Next, R ⊂ E ×E ⊂ Y × Y is defined as the constructible
subset of pairs of cycles which induce the same graph upon intersection with X×G.
Finally, the topological space MorC(X,G) is defined to be the quotient of the
analytic space E(C) by the equivalence relation R(C). It is shown that this is
a proper equivalence relation, in the sense that each of the two projection maps
R(C) → E(C) is a proper map of topological space, or equivalently the quotient
map E(C) � E(C)/R(C) is proper.

We observe that these constructions apply equally well with R replacing C, since
E(R) and R(R) have natural topologies and R(R) is again a proper equivalence
relation.

Definition 1.1. Let X and G be quasi-projective real varieties. DefineMorR(X,G)
to be the set MorR(X,G) endowed with the topology given as the quotient topology
of E(R) by the proper equivalence relation R(R).

Observe that there is a natural involution on the set MorC(XC, GC) induced by
complex conjugation. Explicitly, assuming X is weakly normal (or if not, replacing
it by its weak normalization), this involution is the involution on HomC(XC, GC)
which sends a morphism f to σG ◦f ◦σX , where σY is the real map on the complex-
ification YC of a real variety Y induced by complex conjugation. (One may easily
check that σG ◦ f ◦ σX is indeed a morphism of complex varieties.)

Lemma 1.2. For X and G quasi-projective real varieties, the space MorR(X,G)
is homeomorphic to the fixed point subspace of MorC(XC, GC) under the action of
complex conjugation.

Proof. If Y is the Chow variety of real cycles (of some degree) on X ×G, then YC
is the Chow variety of complex cycles on XC × GC [F2; 1.1]. Moreover, complex
conjugation defines a continuous involution on the space Y (C) and the fixed point
subspace of this involution is Y (R). This involution restricts to an involution on
the subspace E(C) whose fixed points give the subspace E(R). Similarly, complex
conjugation defines a continuous involution on R(C) with fixed point subspace
R(R). Since the equivalence relations R(R) and R(C) on E(R) and E(C) are
proper, it follows that there is an induced involution on MorC(XC, GC) which is
continuous. This involution is easily seen to coincide with the involution introduced
above and its fixed point subspace is MorR(X,G).

As an aide to the reader, we provide a simpler description of the topology on
MorR(X,G) in the special case when X is a projective real variety. This turns
out to be the primary case of interest for this paper. Let HomR(U, V ) denote the
collection of morphisms of R-schemes from U to V . If X and G are both pro-
jective, then the functor on real schemes HomR(− × X,G) is representable by



6 ERIC M. FRIEDLANDER AND MARK E. WALKER ∗

an infinite disjoint union (indexed by degree) of quasi-projective real varieties,
written HomR(X,G). Thus if additionally we assume X is weakly normal, then
MorR(X,G) is merely the associated analytic space of real points Hom(X,G)(R) of
the ind-variety HomR(X,G). If X and G are projective but X is not weakly normal,
thenMorR(X,G) is homeomorphic to the spaceMorR(Xw, G) = Hom(Xw, G)(R),
where Xw → X is a weak normalization.

When X is projective (and weakly normal) and G is merely quasi-projective,
then a similar result holds. Namely, observe if we choose a projective closure G of
G, then the evaluation map

X ×HomR(X,G)→ G

given by (x, f) 7→ f(x) is a morphism of ind-varieties – more formally, this morphism
corresponds to the natural transformation of functors on real schemes

HomR(−, X)×HomR(−×X,G)→ HomR(−, G)

given by sending (f : Y → X, g : Y × X → G) to g ◦ (id, f). Then B ⊂ X ×
HomR(X,G), defined as the set of (x, f) such that f(x) /∈ G, is easily seen to
be a closed subscheme. The complement of the image of B under the proper
map X × HomR(X,G)→ HomR(X,G) defines an open subscheme HomR(X,G) of
HomR(X,G) which represents the functor HomR(−×X,G). In this case, we have
MorR(X,G) ∼= Hom(X,G)(R), and a similar statement holds for X not weakly
normal.

Observe that if X happens to be a complex variety (i.e., if the structure map
X → SpecR is provided with a factorization X → SpecC → SpecR), then
XC ∼= X

∐
X and complex conjugation acts on MorC(XC, GC) =MorC(X,GC)×

MorC(X,GC) by interchanging the two factors. Consequently, by Lemma 1.2 the
space MorR(X,G) is naturally homeomorphic to MorC(X,GC) in this case.

We now give the construction of KRsemi(X) for a quasi-projective real vari-
ety X. The construction parallels the construction of Ksemi(XC) in [FW2]. Write
GrassR for the real ind-variety

∐
n lim−→N Grassn(PNR ), where Grassn(PNR ) parameter-

izes all rank n subspaces of RN+1. Taking transposes, we may equivalently regard
Grassn(PNR ) as parameterizing rank n quotients of RN+1, and we use this dual per-

spective to regard HomR(X,Grassn(PNR )) as parameterizing quotients ON+1
X � E,

with E locally free of rank n. The space MorR(X,GrassR) is defined as the in-
ductive limit of spacesMorR(X,Grassn(PNR )), and points ofMorR(X,GrassR) are
represented by quotients O∞X � E with E locally free which factor through the
canonical map O∞X � ONX for N � 0.

Set I(n) to be the space of all R-linear injective maps (R∞)n → R∞. The
topology on I(n) is given as a subspace of the compactly generated compact-
open topology for the set of all continuous maps from (R∞)n to R∞, where R∞
is topologized as a direct limit of its finite dimensional subspaces. An element
α = (α1, . . . , αn) : (R∞)×n → R∞ of I(n) induces a natural map

α∗ : O∞X � (

∞∏
i=0

OX)×n

for any real variety X, by taking transposes of the matrices defining each αi and
extending scalars to OX . Given a point ofMorR(X,GrassR)×n – that is, quotients



SEMI-TOPOLOGICAL K-THEORY OF REAL VARIETIES 7

O∞X � Ei, i = 1, . . . , n, each of which factors through the canonical quotient
O∞X � ONX for N � 0 – one may readily verify that the composition

O∞X → (O∞X )×n →
⊕
i

Ei

is well-defined and belongs to MorR(X,GrassR). In fact, we have a well-defined
continuous pairings

I(n)×MorR(X,GrassR)×n →MorR(X,GrassR)

for n = 0, 1, . . . . As in [FW2; 2.8], these pairings are readily verified to satisfy the
axioms of an action of an operad on a space in the sense of [M1; §1]. As shown
in [M1; §14], given the action of an operad I on a space Y , there is a functorial
construction of a spectrum whose zeroth space is the homotopy-theoretic group
completion of Y (see below for a precise definition of this latter term).

Definition 1.3. For any quasi-projective real variety X, define KRsemi(X) to be
the spectrum associated to the I-spaceMorR(X,GrassR), as described in [M1; §14].
In particular, if Xw → X is the weak normalization of X, then

KRsemi(X) ≡ KRsemi(Xw).

The homotopy groups of KRsemi(X) are written

KRsemi
n (X) ≡ πnKRsemi(X).

In particular, there is an induced natural map of H-spaces MorR(X,GrassR)→
KRsemi(X), which is a homotopy-theoretic group completion. Namely, this map
induces isomorphisms

(π0MorR(X,GrassR))
+ ∼=−→ KRsemi

0 (X)

and

H∗(MorR(X,GrassR), A)⊗Z[π0MorR(X,GrassR)] Z
[
(π0MorR(X,GrassR))

+
]

∼=−→ H∗(KRsemi(X), A),

where A is any commutative coefficient ring and the superscript “+” denotes
the group completion of an abelian monoid. This gives some sense of the space
KRsemi(X). In Section 7 of this paper, we give a more explicit description of this
space in terms of a mapping telescope.

The natural map
KRsemi(X) −→ KRsemi(X × A1)

is a weak homotopy equivalence of spectra, since by the techniques of [FW1], for
any real quasi-projective varieties X and G, there is a continuous map

A1(R)×MorR(X × A1, G)→MorR(X × A1, G)
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sending (t, f) to f(−,− · t). This map shows that MorR(X,G) is a deformation
retract of MorR(X × A1, G). Thus the theory KRsemi(−) is homotopy invariant.

We now turn to the issue of relating KRsemi to algebraic K-theory of real vari-
eties. To begin the construction, we define an algebraic version of the operad I.
Namely, define I(n)(∆•) to be the simplicial set

d 7→ lim←−
N

lim−→
M

Hom(∆d
R, I(j)N,M ).

Here, ∆•R is the standard cosimplicial object in the category of real varieties and
I(j)N,M denotes the real variety parameterizing injective R-linear maps RjN ↪→
RM . Upon taking geometric realizations, we obtain the collection of space |I(j)(∆•R)|,
j = 0, 1, . . . . The same structure used to define I gives this collection of spaces
the structure of an E∞-operad written |I(∆•R)|. Indeed, there is a natural map of
E∞-operads

|I(∆•)| → I

and thus we may equivalently regard the spectrum KRsemi(X) as being defined by
the action of |I(∆•R)| on the space MorR(X,GrassR).

For any real variety, consider the simplicial set

d 7→ HomR(∆d
R ×X,GrassR).

There are evident pairings of simplicial sets

I(j)(∆d
R)×HomR(∆d

R ×X,GrassR)×j → HomR(∆d
R ×X,GrassR)

defined just as above for the action of I on MorR(X,GrassR). Indeed, taking
geometric realizations, we obtain an |I(∆•R)|-space

HomR(∆•R ×X,GrassR) ≡ |d 7→ HomR(∆d
R ×X,GrassR)|.

Using the main result of [GW] and mimicking the argument of [FW2; 6.8], which
permits a change of contexts from Segal’s Γ-spaces to spaces with operad actions,
it follows that the spectrum associated to |I(∆•R)|-space |HomR(∆•R ×X,GrassR)|
gives a model for the algebraic K-theory space |d 7→ Kalg(∆d

R ×X)| for any quasi-
projective real variety X. In particular, when X is smooth, we recover the algebraic
K-theory of X in this manner.

For X and G quasi-projective real varieties, a continuous algebraic morphism
∆n

R ×X → G induces a continuous map ∆n(R)→MorR(X,G) (this follows from
the “internal Hom” description of Mor found in [FW1; §1]). Moreover, the stan-
dard topological simplex ∆n

top is naturally a subspace of ∆n(R). There is thus
a natural map MorR(∆•R × X,GrassR) → Maps(∆•top,MorR(X,GrassR)) of sim-
plicial sets, where Maps denotes the set of continuous maps between topological
spaces. Moreover, the geometric realization of this map is easily seen to be a map
of |I(∆•R)|-spaces and there is a natural map of |I(∆•R)|-spaces

|Maps(∆•top,MorR(X,GrassR))| → MorR(X,GrassR).

We therefore obtain the following analogue of [FW2; 6.11].
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Proposition 1.4. For a quasi-projective real variety X, there is a natural map of
spectra

Kalg(∆• ×X)→ KRsemi(X)

induced by the composition of the maps of |I(∆•R)|-spaces

|HomR(∆•R ×X,GrassR)| → |MorR(∆•R ×X,GrassR)|
→ |Maps(∆•top,MorR(X,GrassR))| → MorR(X,GrassR).

The following proposition verifies that our construction of KRsemi(X) gives us the
infinite loop space Ksemi(X) of [FW2] whenever X has the structure of a complex
variety – i.e., if the structure map X → SpecR is given a factorization X →
SpecC→ SpecR.

Proposition 1.5. If X is a quasi-projective complex variety, then there is a natural
homotopy equivalence

KRsemi(X) ∼ Ksemi(X).

Consequently, for any quasi-projective real variety X, there exists a natural map

KRsemi(X) −→ KRsemi(XC) ∼ Ksemi(XC).

Proof. As shown after Definition 1.1, when X is a complex quasi-projective variety,
there is a natural homeomorphism

MorR(X,GrassR) ∼=MorC(X,GrassC),

and this homeomorphism is clearly compatibly with the I-space structures used
to define each of Ksemi(X) and KRsemi(X). (Observe that Ksemi(X) was actually
defined in [FW2] using a complex version of the operad I. Since there is a natural
map from I to this complex version of itself, up to homotopy equivalence, we
can equivalently define Ksemi(X) using the operad I.) The first result follows
immediately, and the second result follows from the first using the contravariant
functoriality of KRsemi.

We next provide an explicit description of KRsemi
0 (−) for projective real varieties

it terms of vector bundles modulo an equivalence relation. The reader should be
warned that real topological equivalence as defined in the following Proposition 1.6
differs from the algebraic equivalence over the field k = R considered in [FW2;
1.1]. The difference is that here the analytic topology is used; i.e., the equivalence
relation is generated by pairs of real algebraic vector bundles which are related by
a family parametrized by an analytically connected portion of a real smooth curve.
By contrast, the equivalence relation suggested in [FW1] would require merely
an algebraically connected parameterizing variety (i.e., a variety connected in the
Zariski topology). In defining Ksemi

0 (X) for a complex variety X, this distinction
disappears since algebraic and analytic connectedness are the same.

Proposition 1.6. For any weakly normal, projective real variety X, the group

KRsemi
0 (X) is the quotient of Kalg

0 (X) defined by real semi-topological equivalence,
the equivalence relation generated by the following equivalence: given a smooth, con-
nected real curve C and real points t0, t1 which lie in the same (analytic) connected
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component of the space C(R) and a vector bundle E on X×RC, the classes of E|t0
and E|t1 are equivalent.

Proof. We show that π0MorR(X,GrassR) can be described as the collection of
isomorphism classes of vector bundles generated by their global sections modulo
real semi-topological equivalence of such bundles (that is, the equivalence relation
defined as in the statement of this proposition in which all bundles considered are
generated by their global sections). Once this assertion is proven, the proofs of
[FW2; 2.10] and [FW2; 2.12] carry over into this context to show that KRsemi

0 (X)

is the quotient of Kalg
0 (X) by real semi-topological equivalence, thereby proving the

proposition.

As in the proof of [FW2; 2.10], π0MorR(X,GrassR) is a quotient of the set,
IsomPgl(X), of isomorphism classes of algebraic vector bundles on X generated
by their global sections because the connected component of a point O∞X � E of
MorR(X,GrassR) depends only on the isomorphism type of E. A bundle on X×RC
together with a choice of global sections which generate it, for C a smooth real curve,
defines a morphism of varieties X ×R C → GrassR and consequently a continuous
map C(R) → MorR(X,GrassR). It follows that the equivalence relation defining
the surjection IsomPgl(X) → π0MorR(X,GrassR) contains real semi-topological
equivalence.

For the opposite containment, recall that since we have assumed X is projec-
tive and weakly normal, the space MorR(X,GrassR) is given as the real points of
HomR(X,GrassR), an infinite disjoint union of quasi-projective varieties. Thus, for
any two points P0, P1 ofMorR(X,GrassR) in the same topological component (say
representing the bundles E0 and E1), there exists a real quasi-projective variety T
mapping to the ind-variety underlying MorR(X,GrassR) (via a morphism of real
ind-varieties) and a pair of points t0, t1 ∈ T (R) which lie in the same topological
component and which map to P0, P1. Such a map determines a vector bundle on
X ×R T which restricts to the bundle Ei on ti. It therefore suffices to show the fol-
lowing: given a quasi-projective real variety T and real points t0, t1 as above, there
exists a finite collection of smooth real curves C1, . . . , Cn, points ai, bi ∈ Ci(R)
lying in the same topological component for each i, and morphisms of real varieties
Ci → T such that a0 maps to t0, bi and ai+1 map to the same point of T for
i = 1, . . . n− 1, and bn maps to the point t1.

As an intermediate step, we claim that such a chain exists if we allow each
Ci to be an arbitrary smooth variety Ti. By [H1], there exists a proper map
p : T ′ → T with T ′ smooth and a proper closed subscheme Z ⊂ T such that T ′−Z ′
maps isomorphically to T − Z, where Z ′ ≡ Z ×T T ′. Choose a semi-algebraic
triangulation of T (R) such that Z(R) forms a subcomplex of this triangulation
and the points t0, t1 are vertices of this triangulation (cf. [H2]). The points t0
and t1 may be joined by a path σ : [0, 1] → T (R) which follows the edges of this
triangulation. In particular, the path σ can be subdivided into finitely many sub-
paths σi : [0, 1]→ T (R) so that either σi([0, 1]) ⊂ Z(R) or σ((0, 1)) ⊂ T (R)−Z(R)
(where (0, 1) denotes the open unit interval). We claim that for all i, the points
σi(0), σi(1) can be joined by a path which either factors through Z(R) ↪→ T (R) or
through T ′(R) → T (R). Since T ′ is smooth and Z is a proper closed subvariety,
this suffices to prove our claim by using Noetherian induction on T . Fix an i.
If σi([0, 1]) ⊂ Z(R), there is nothing to show. If σi((0, 1)) ⊂ T (R) − Z(R), then
observe that since T ′(R)−Z ′(R) = T (R)−Z(R), we may lift σi|(0,1) : (0, 1)→ T (R)
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to σ′i : (0, 1) → T ′(R). Further, since the map p : T ′(R) → T (R) is proper, the
subset p−1(σi([0, 1])) ⊂ T ′(R) is compact. It follows that the closure of σ′i((0, 1)) in
T ′(R) is a compact, connected subset of T ′(R) which necessarily maps surjectively
onto σi([0, 1]) under p. We may thus find lifts of σi(0) and σi(1) which lie in the
same path component of T ′(R). Our claim is proven.

Finally, by [I; Prop. 5], for any smooth, real variety T ′ with points t0, t1 ∈ T ′(R)
which lie in the same path component, there exists a smooth real curve C, points
c0, c1 ∈ C(R) lying in the same path component, and a morphism C → T ′ of real
varieties which sends ci to ti. Thus, we can replace each Ti in the chain constructed
above with a smooth real curve.

We close this section with a calculation of KRsemi
0 (X) when X is a smooth,

projective real curve. As observed in Remark 1.8, this example illustrates in partic-
ular that real semi-topological equivalence of vector bundles differs from algebraic
equivalence

Proposition 1.7. (cf. [PW]) Let X be a smooth, projective real curve of genus
g. Assume X(R) 6= ∅ and let c denote the number of connected components of the
space X(R). Then we have

KRsemi
0 (X) ∼= Z⊕ Z⊕ Z/2⊕(c−1).

Proof. Recall that Kalg
0 (X) ∼= Z ⊕ Z ⊕ Pic0(X), where Pic0(X) is the group of

isomorphism classes of line bundles of degree zero, and the projection to Z ⊕ Z
sends a bundle E to (rank(E), degree(E)). Since the rank and degree maps define
continuous maps MorR(X,GrassR)→ Z, it follows that

KRsemi
0 (X) ∼= Z⊕ Z⊕ Pic0(X)

∼
,

where the equivalence relation on Pic0(X) is given by semi-topological equivalence
of line bundles.

A line bundle L of degree 0 on X ×R U determines a morphism U → Pic0(X),
where Pic0(X) is the projective real variety parameterizing degree zero line bun-
dles on X [G]. Clearly two points of U(R) lying in the same topological compo-
nent determine two real points in Pic0(X) lying in the same topological compo-
nent of Pic0(X)(R), and it follows immediately that Pic0(X)/ ∼ is isomorphic to
π0 Pic0(X)(R).

Finally, as shown in [PW; §1], a classical argument due to Weichold [We] shows
that Pic0(X)(R) is the topological subgroup of Pic0(XC)(C) ∼= (R/Z)×2g fixed by
complex conjugation and moreover we have

Pic0(X)(R) ∼= (R/Z)g × Z/2×(c−1)

as topological groups. The result follows.

Remark 1.8. The example of Proposition 1.7 demonstrates that semi-topological
equivalence, used to define KRsemi

0 , differs from algebraic equivalence, used in
[FW2; 1.1] to define Ksemi

0 over an arbitrary ground field. For observe that (using
the notation of the proof of 1.7) Pic0(X) is a non-singular, (Zariski) connected
algebraic variety. Thus, since every degree 0 line bundles on X is given as the re-
striction of the universal line bundle on X×R Pic0(X) to a real point of Pic0(X), it

follows that Kalg
0 (X) modulo algebraic equivalence is isomorphic to the group Z⊕Z.
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§2 Definitions and basic properties of Kalg(∆•top ×R −)

Our construction of Kalg(∆•top ×R X) for a real quasi-projective variety X is a
generalization of the construction for complex varieties presented in [FW3]. In-
deed, as observed in Proposition 2.4, this construction generalizes that of [FW3].
Proposition 2.5 demonstrates that the natural map

Kalg(∆•top ×R X) −→ KRsemi(X)

is a weak equivalence of spectra whenever X is weakly normal and projective.
(Conceivably, this map is a weak equivalence for all quasi-projective real varieties
X.) The advantage of Kalg(∆•top ×R X) over KRsemi(X) is that general properties

of algebraic K-theory can often be transported to Kalg(∆•top ×R −). In particular,
we establish the projective bundle theorem (Proposition 2.8), Nisnevich excision
for smooth varieties (Theorem 3.5 of the next section), and localization (Theorem
6.6 of Section 6) for Kalg(∆•top ×R −).

For any compact CW complex T , let V arT (R) denote the category in which an
object is a continuous map T → U(R) with U an affine, real variety. A morphism
from T → U(R) to T → V (R) in V arT is a morphism V → U of real varieties
causing the evident triangle of spaces to commute. As argued in [FW2; 4.2] in the
complex context, the category V arT (R) is directed and there is a natural bijection
of sets

Maps(T, Y (R)) ' lim−→
(T→U(R))∈V arT (R)

HomR(U, Y )

whenever Y is an inductive limit of quasi-projective real varieties.
As before, ∆d

top denotes the standard d simplex, a subspace of Rd+1. For any
contravariant functor F from quasi-projective real varieties to sets, spaces, etc. and
for any real quasi-projective variety X, we define a simplicial set by the formula

F (∆•top ×R X) ≡ d 7→ lim−→
(∆d

top→U(R))∈V ar∆d
top (R)

F (U ×R X).

In particular, we can take F to be the functor HomR(−,GrassR) from quasi-
projective real varieties to sets to form the simplicial set

HomR(∆•top ×R X,GrassR) ≡ d 7→ lim−→
∆d

top→U(R)

HomR(U ×R X,GrassR).

Just as for |HomR(∆•R ×R X,GrassR)|, the space |HomR(∆•top ×R X,GrassR)| ob-
tained by geometric realization has the structure of on |I(∆•R)|-space and moreover
the natural map

|HomR(∆•R ×R X,GrassR)| → |HomR(∆•top ×R X,GrassR)|

is a map of |I(∆•R)|-spaces.

Definition 2.1. For a quasi-projective real variety X, Kalg(∆•top ×R X) denotes
the spectrum associated to the |I(∆•R)|-space |HomR(∆•top ×R X,GrassR)|.

As recalled in Appendix A of this paper, there is a strict functor sending a quasi-
projective real variety X to a prespectrum Kalg(X) representing the algebraic K-
theory of X (cf. [FS; App. B]). The word “strict” is used here merely for emphasis –



SEMI-TOPOLOGICAL K-THEORY OF REAL VARIETIES 13

we just mean a functor in the ordinary sense. Note that this means given f : T → Y
and g : Y → X, it follows that the maps (gf)∗, f∗g∗ : Kalg(X)→ Kalg(T ) coincide
exactly on the spaces comprising these spectra, not merely up to homotopy. We can
thus view Kalg(−×X) as a functor from quasi-projective real varieties to prespectra.
In particular, we can extend the definition of the functor Kalg(−×X) to compact
spaces via the formula

T 7→ Kalg(T ×R U) ≡ lim−→
T→U(R)

Kalg(U ×R X),

and we can form a simplicial spectrum d 7→ Kalg(∆d
top ×R X).

As the notation would suggest, we have the following result.

Lemma 2.2. For any quasi-projective real variety X, there is a natural weak equiv-
alence between Kalg(∆•top ×R X) and |d 7→ Kalg(∆d

top ×R X)|.

Proof. The proof is identical to the proof of [FW3; 1.3].

In light of the lemma, we are justified in writing Kalg(∆•top ×R X) to refer to

either of these equivalent spectra. We write Kalg
q (∆•top×RX) for the qth homotopy

group of this spectrum.
Since we shall need it, we describe an extension of Kalg(∆•top ×R X) which in-

corporates supports in a closed subscheme of X. As described in Appendix A,
there is a model for the algebraic K-theory of X with supports in a closed sub-

scheme Z, written Kalg
Z (X), which is also strictly functorial. This induces the

functor U 7→ Kalg
U×Z(U × X) on the category of real varieties. Taking Z = X, we

have Kalg
X (X) = Kalg(X). As explained in the appendix, Kalg

Z (X) admits functorial
deloopings, which we write here as

Ω−1Kalg
Z (X),Ω−2Kalg

Z (X), . . . ,

such that Ω−jKalg
Z (X) is (j − 1)-connected and such that there are natural weak

equivalences

Kalg
Z (X)

∼−→ Ω(Ω−1Kalg
Z (X)), Ω−jKalg

Z (X)
∼−→ Ω(Ω−j−1Kalg

Z (X)), j ≥ 1.

Definition 2.3. For any quasi-projective real variety X and closed subscheme Z,
the space

Kalg
Z (∆•top ×R X).

denotes the geometric realization of the simplicial space

d 7→ lim−→
(∆d

top→U(R))∈V ar∆d
top (R)

Kalg
U×RZ

(U ×R X).

The qth homotopy group of Kalg
Z (∆•top×RX) is written Kalg

Z,q(∆
•
top×RX). The space

Kalg
Z (∆•top ×R X) in enriched to a spectrum by taking

Ω−jKalg
Z (∆•top ×R X) ≡ |d 7→ lim−→

(∆d
top→U(R))∈V ar∆d

top (R)

Ω−jKalg
U×RZ

(U ×R X)|
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for its jth delooping and the structure maps induced in the evident manner.

Recall in [FW3] that we introduced the analogous construction for a complex
quasi-projective variety Y :

Kalg(∆•top ×C Y ) ≡ |d 7→ lim−→
(∆d

top→V (C)∈V ar∆d
top (C)

K(V ×X)|

where V arT (C) denotes the category analogous to V arT (R) with objects given
by continuous map T → U(C), with U an affine, complex variety and morphisms
induced by suitable morphisms of complex varieties. In view of the following propo-
sition, the similarity of notation should offer no confusion.

Proposition 2.4. Let Y be a quasi-projective complex variety and let Kalg(∆•top×C
Y ) denote the construction of [FW3] mentioned above. Then there is a natural
isomorphism

Kalg(∆•top ×R Y ) ' Kalg(∆•top ×C Y ).

Proof. The proposition follows easily from the following general result for any func-
tor F on the category of schemes of finite type over C (with values in sets, groups,
spaces, etc.): The natural map

lim−→
T→V (R)

F (VC)→ lim−→
T→U(C)

F (U)

is an isomorphism.
To prove the assertion, we first prove that the natural map is onto. An element

of the target is represented by a pair (α : T → U(C), γ ∈ F (U)). Let U ′ denote the
Weil transform of U , which is by definition a real variety representing the functor
HomC(−×SpecR SpecC, U). Then there is a natural map π : U ′C → U such that the
composition U ′(R) → U ′C(C) → U(C) is a homeomorphism of topological spaces.
Thus the map α : T → U(C) can be lifted to α′ : T → U ′(R), and we see that the
pair (α, γ) is equivalent to (α′, π∗γ). Thus, this map is onto.

For injectivity, suppose given (α : T → V (R), γ ∈ F (VC)) and (β : T →
W (R), δ ∈ F (WC)) which become equivalent in the target of the map of this claim.
We need to show they are equivalent in the source. Since the indexing set V arT (C)
is directed, it follows there is a complex variety U , a continuous map h : T → U(C),
and a pair of maps (of complex varieties) f : U → VC and g : U → WC so that
the following conditions hold: (1) the triangle formed from the maps T → U(C),
U(C) → VC(C), and T → V (R) → VC(C) commutes and similarly for the triangle
involving W in place of V and (2) f∗γ = g∗δ.

Take Weil transforms of the maps f : U → VC and g : U → WC to get maps
f ′ : U ′ → (VC)′ and g′ : U ′ → (WC)′. There are natural maps of real varieties
V → (VC)′ and W → (WC)′. Define α1 : T → (VC)′(R) to be the composition
T → V (R) → (VC)′(R), and define β1 similarly. The given map h : T → U(C)
determines a map h1 : T → U ′(R), and a diagram chase verifies that the the
triangle formed from T → U ′(R), U ′(R)→ (VC)′(R), and T → (VC)′(R) commutes
and similarly for W replacing V . Thus we have natural morphisms in V arT (R)
from T → (VC)′(R) to T → U ′(R) and from T → (WC)′(R) to T → U ′(R).

In general, given any complex variety X, the complex variety X ′C (i.e., the com-
plexification of the Weil transform of X) is isomorphic to X ×C X. In particular,
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the complexification of the map V → (VC)′ is isomorphic to the diagonal map
VC → VC×C VC, as is thus a split injection, and similarly for W replacing V . Thus,
the element (α, γ) is equivalent to the element (α1, γ1), where γ1 is taken to be any
lifting of γ ∈ F (VC) under the split surjection F ((VC)′C) → F (VC). Say we choose
γ1 by choosing the splitting of VC → (VC)′C given by projection onto the first factor.
Similarly define δ1 ∈ F ((WC)′C) and note that (β, δ) is equivalent to (β1, δ1).

Finally, a diagram chase shows that the pullback of γ1 and δ1 under the maps
U ′C → (VC)′C and U ′C → (WC)′C (which are the complexifications of the maps f ′

and g′ introduced above) coincide. This suffices to show (α1, γ1) and (β1, δ1) are
equivalent, and thus (α, γ) and (β, δ) are equivalent.

Exactly as in the complex context considered in [FW3], we can easily relate
Kalg(∆•top ×R X) and KRsemi(X) whenever X is projective.

Proposition 2.5. Let X be a quasi-projective real variety. Then there are natural
maps of spectra

Kalg(X)→ Kalg(∆•top ×R X)→ KRsemi(X)

whose composition is the map of Proposition 1.4. The map Kalg(∆•top ×R X) →
KRsemi(X) is a weak equivalence of spectra whenever X is both weakly normal
and projective. Moreover, for any quasi-projective real variety X, the natural map

Kalg
0 (X) → Kalg

0 (∆•top ×R X) is the surjection given by modding out by real semi-
topological equivalence.

Proof. The desired maps are induced by the maps of |I(∆•R)|-spaces

|HomR(∆•×RX,GrassR)| −→ |HomR(∆•top×RX,GrassR)| −→ |Sing.MorR(X,GrassR)|.
Here, the first map is induced by the evident continuous map ∆n

top → ∆n(R), and

the second map is induced by sending a pair (∆d
top → U(R), U ×R X → GrassR) to

the composition ∆d
top → U(R)→MorR(X,GrassR). To prove the second assertion,

it suffices to verify that the underlying map

HomR(∆d
top ×R X,GrassR)→ SingdMorR(X,GrassR)

is a bijection for each d when X is projective and weakly normal. The same argu-
ment as [FW2; 4.1] shows that if X and G are projective varieties with X weakly
normal, then the space MorR(X,GR) is the space of real points of the infinite dis-
joint union of real quasi-projective varieties which represents the functor (on real
schemes) U 7→ HomR(U ×R X,GR). Thus, the required bijection follows from the
natural isomorphism

Maps(T, Y (R)) ∼= lim−→
(T→U(R))∈V arT (R)

HomR(U, Y ),

whose proof is identical to that of [FW2; 4.2].
The final assertion follows just as in the proof of 1.6, starting with the observation

that the map

Kalg
0 (∆1

top ×R X)→ Kalg
0 (X),

given as the difference of the two face maps, has for its image all elements of the
form [Eu0

]− [Eu1
], where E is a bundle on U ×RX and U is a quasi-projective real

variety with u0, u1 ∈ U(R) in the same topological component.

We easily verify homotopy invariance of Kalg(∆•top × −) as stated in the next
proposition.
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Proposition 2.6. Let A1 denote the real affine line, SpecR[t]. For any real quasi-
projective variety X, pull-back via the projection map

π∗ : Kalg(∆•top ×R X) −→ Kalg(∆•top ×R X ×R A1)

is a weak equivalence of spectra.

Proof. The proof of [FW3; 1.2] establishes that the asserted pull-back via the pro-
jection map induces an isomorphism in homology,

H∗Kalg(∆•top ×R X) ' H∗Kalg(∆•top ×R X ×R A1).

Since these K-theory spaces are group-like H-spaces and therefore simple, such a
homology equivalence is necessarily a weak homotopy equivalence.

We close this section by establishing the projective bundle theorem forKalg(∆•top×R
−), a result which follows easily from the projective bundle theorem for algebraic
K-theory. The analogous bundle theorem for complex varieties is proven in [FW3].

In Appendix A, a natural multiplication pairing is defined for any two pairs of
closed subscheme inclusions Z ⊂ X, W ⊂ Y ,

Kalg
Z (∆•top ×R X)∧Kalg

W (∆•top ×R Y )→ Kalg
Z×W (∆•top ×R X ×R Y ),

which satisfies the expected properties. (This pairing is actually only defined in the
homotopy category of spaces, since the inverses of certain homotopy equivalences
are needed for it’s definition.) In the special case Z = X = W = Y , this induces a
natural pairing

Kalg(∆•top ×R X)∧Kalg(∆•top ×R X)→ Kalg(∆•top ×R X)

by composing with pullback along the diagonal X ↪→ X × X. In particular, an

element of Kalg
0 (∆•top ×R X) induces by multiplication a natural homotopy class of

endomorphisms of the space Kalg(∆•top ×R X). This multiplication is used in the
following result.

Proposition 2.7. Let X be a quasi-projective real variety and let E → X be a

rank n vector bundle. Let γ ∈ Kalg
0 (P(E)) denote [OP(E)(1)] − [O] as well as its

image in Kalg
0 (∆•top ×R P(E)). Then the map

Σn−1
i=0 γ

i · (−) : Kalg(∆•top ×R X)n → Kalg(∆•top ×R P(E))

is a weak homotopy equivalence.

Proof. For any quasi-projective real variety U , the projective bundle theorem for
the the pull-back of E to U ×X establishes a weak homotopy equivalence

Σn−1
i=0 γ

i · (−) : K(U ×R X)n → K(U ×R P(E))

for each d ≥ 0, which is natural in U . Taking direct limits over V ar∆n
top(R), we

obtain a natural weak equivalence

Σn−1
i=0 γ

i · (−) : Kalg(∆d
top ×R X)n −→ Kalg(∆d

top ×R P(E)),

for each d ≥ 0. Since these maps fit into a map of simplicial spaces, we conclude
(e.g., by applying [BF]) that the resulting map of geometric realizations of simplicial
spaces

Kalg(∆•top ×R X)n → Kalg(∆•top ×R P(E))

is also a weak homotopy equivalence.
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§3 Nisnevich descent and finite coefficients

In this section, we establish two significant properties of the theoryKalg(∆•top ×R −)
– namely, Nisnevich descent and the equivalence with algebraic K-theory when co-
efficients are taken in Z/n, n > 0. These two seemingly unrelated results follow
from similar technical considerations and thus are included together in this section.

Since we will use the concept multiple times, we introduce the notion of an
excisive sequence of presheaves on the category of CW complexes. Namely, suppose
F = (Fq)q∈Z is sequence presheaves of abelian groups defined on the category of
compact CW-pairs (that is, pairs of spaces (T,A) such that T admits the structure
of a finite CW complex such that A is a subcomplex) equipped with long exact
sequences

· · · −→ F q+1(A)
∂(T,A)−−−−→ F q(T,A) −→ F q(T ) −→ F q(A) −→ · · · ,

which are natural for maps of pairs. Here, we write F q(T ) for F q(T, ∅). Moreover,
assume that excision holds in the sense that if a map of pairs (S,B) → (T,A)
restricts to a homeomorphism S − B ∼= T − A, then the induced map F q(S,B)→
F q(T,A) is an isomorphism for all q. Call such a sequence of functors an excisive
theory. (Essentially, we are describing a cohomology theory except that homotopy
invariance is not assumed to hold.) A map of excisive theories F → G is a collection
of maps of presheaves Fq → Gq, q ∈ Z, which commute with the boundary maps.

The examples of excisive theories which we shall consider arise as in the following
lemma.

Lemma 3.1. Fix a quasi-projective real variety X with closed subvariety Z and
fix an abelian group C. For any CW pair (T,A), define F q(T,A) to be the −qth
homotopy group with coefficients in C of the homotopy fiber of the map of spectra

KBZ (T ×R X)→ KBZ (A×R X),

where KB denotes Bass’ K-theory as defined by Thomason in [TT]. Then the col-
lection F q, q ∈ Z, forms an excisive theory. A morphism f : X → Y together with
a closed subscheme W ⊂ Y such that f−1(W ) ⊂ Z determines a map of excisive
theories in the evident manner.

Proof. If X is affine, say X = SpecR, and Z = X, then the argument in the proof
of [FW2; 5.1] shows that we can identify KB(T ×RX) with KB(CR(T )⊗RR), where
CR(T ) is the ring of real-valued continuous functions on a compact CW complex T .
It follows from the results of [SW] that there is a fibration sequence of spectra

KB(C0(T/A)⊗R R)→ KB(CR(T )⊗R R)→ KB(CR(A)⊗R R),

where C0(T/A) denotes the ideal in CR(T/A) of functions vanishing at the point
given by A. In general, the spectrum KB(I) for a non-unital R-algebra I is defined
as the homotopy fiber of the split surjection of spectra

KB(I+)→ KB(R),

where I+ is the unital R-algebra formed by adjoining a multiplicative identity. In
this case, (C0(T/A) ⊗R R)+ is isomorphic to the R-algebra CR(T/A) ⊗R R. Ex-
cision then follows immediately, since given a relative homeomorphism (S,B) →
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(T,A) of compact CW pairs, we have a natural isomorphism of non-unital rings
C0(S/B) ∼= C0(T/A). Thus, the induced map on the homotopy fibers of the rows of
the commutative square

KBZ (S ×R X) −−−−→ KBZ (A×R X)y y
KBZ (B ×R X) −−−−→ KBZ (A×R X)

(3.1.1)

is a weak equivalence when X is affine and Z = X. Since KBZ (T ×R X) is weakly
equivalent to the homotopy fiber of

KB(T ×R X)→ KB(T ×R (X − Z)),

it follows that the map on homotopy fibers of the rows of (3.1.1) is a weak equiv-
alence when X is affine and Z is any closed subscheme such that X − Z is also
affine. Finally, in general, we may cover X by a finite number of open affine sub-
sets, X = U1 ∪ · · · ∪ Uk, such that Ui − (Ui ∩ Z) is also affine for all i. Using
Mayer-Vietoris – i.e., the fact that the square

KBZ (T ×R X) −−−−→ KBZ∩U (T ×R U)y y
KBZ∩V (T ×R V ) −−−−→ KBZ∩U∩V (T ×R U ∩ V )

is a homotopy Cartesian squares of spectra for any open cover X = U ∪V [TT; 7.4]
– and an easy induction argument, we see that the map on the homotopy fibers of
the rows of (3.1.1) is a weak equivalence in all cases.

The naturality of the constructions used here establishes the final claim.

The following technical result will be used in the proofs of the major results
which follow.

Lemma 3.2. Let F q, q ∈ Z, be an excisive theory. Given a contractible finite
CW-complex D and a closed covering by CW subcomplexes, D = D1 ∪ · · · ∪ Dk,
such that for any subset I of {1, . . . , k} the subcomplex ∩i∈IDi is either contractible
or empty (for example, if the Di’s are the maximal simplices in a triangulation of
D), the map

F q(D)→ F q(D1)⊕ · · · ⊕ F q(Dk)

is split injective. Moreover, given a map F → G of excisive theories, the splittings
can be chosen to cause the evident square to commute.

Proof. We proceed by induction on k with the case k = 1 being obvious. Consider
the square

D1 ∩Dj
β−−−−→ Djy y

Dj
α−−−−→ D,

for any 1 < j ≤ k. The map α admits a retraction since it is a cofibration of
contractible spaces, which in turn induces a compatible retraction of β. Thus, the
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long-exact sequences associated to the rows of this diagram split to give a diagram
with compatibly split exact rows:

0 −−−−→ F q(Dj , D1 ∩Dj) −−−−→ F q(Dj) −−−−→ F q(D1 ∩Dj) −−−−→ 0y y y
0 −−−−→ F q(D,D1) −−−−→ F q(D) −−−−→ F q(D1) −−−−→ 0.

Taking direct sum over all 2 ≤ j ≤ k, we obtain the diagram

0 0y y
F q(D,D1) −−−−→

k⊕
j=2

F q(Dj , D1 ∩Dj)y y
F q(D) −−−−→

k⊕
j=2

F q(Dj)y y
F q(D1) −−−−→

k⊕
j=2

F q(D1 ∩Dj)y y
0 0

(3.2.1)

which has compatibly split exact columns. Now we claim that the quotient CW
complex D/D1 is covered by CW subcomplexes D2/(D1 ∩D2), . . . , Dk/(D1 ∩Dk)
and satisfies the same hypotheses as the original covering of D by the Di’s. (Note
that if D1∩Dj = ∅, then we interpret Dj/(D1∩Dj) as being Dj and (D1∩Dj)/(D1∩
Dj) as being the empty set.) To see this, first observe that each Dj/(D1 ∩Dj) is
indeed a CW subcomplex of the CW complex D/D1 by [LW; 5.7]. Now observe
that for I ⊂ {2, . . . , k}, we have that

∩i∈IDi/(D1 ∩Di) ∼= (∩i∈IDi)/(D1 ∩ (∩i∈IDi)),

where the space on the right is the cofiber of the cofibration of contractible spaces

(D1 ∩ (∩i∈IDi)) −→ (∩i∈IDi),

and is thus contractible. By induction, the map

F q(D/D1)→
k⊕
j=2

F q(Dj/(D1 ∩Dj))
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admits a natural splitting. Using the diagram with exact columns

0 0y y
F q(D,D1) −−−−→

k⊕
j=2

F q(Dj , D1 ∩Dj)y y
F q(D/D1) −−−−→

k⊕
j=2

F q(Dj/(D1 ∩Dj))y y
F q(D1/D1) −−−−→

k⊕
j=2

F q((D1 ∩Dj)/(D1 ∩Dj))y y
0 0

we conclude the top arrow of (3.2.1) admits a natural splitting. A simple diagram
chase completes the proof.

The key ingredient for proving Nisnevich descent is the following result, which
identifies the homotopy fiber of the map on Kalg(∆•top ×R −) associated to the
restriction to an open subscheme of a smooth variety.

Theorem 3.3. For a smooth, quasi-projective real variety X, an open subscheme
U ⊂ X, and a closed subscheme W ⊂ X, the natural map

Kalg
W,0(∆d

top ×X)→ Kalg
U∩W,0(∆d

top × U)

is a surjection for all d ≥ 0. Consequently, if Z = X − U , the sequence of spectra

Kalg
Z∩W (∆d

top ×X)→ Kalg
W (∆d

top ×X)→ Kalg
U∩W (∆d

top × U)

is a homotopy fibration sequence of spectra.

Proof. Let D = ∆d
top for d ≥ 0. Recall from Appendix A that the spaces Kalg

Z (D×
X), etc., admit functorial deloopings which we write here as

Ω−1Kalg
Z (D ×X),Ω−2Kalg

Z (D ×X), . . . .

We claim the first assertion shows that

Ω−jKalg
Z∩W (D ×X)→ Ω−jKalg

W (D ×X)→ Ω−jKalg
U∩W (D × U)

is a fibration sequence for all j, thus proving the second assertion of the theorem.
For note that there is a natural map

Ω−jKalg
Z∩W (D ×X)→ homotopy fiber(Ω−jKalg

W (D ×X)→ Ω−jKalg
W∩U (D × U))
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which is an isomorphism on homotopy groups πn for n ≥ j by [TT; 5.1]. The space

Ω−jKalg
Z∩W (D ×X) is (j − 1)-connected by construction and the homotopy fiber is

(j − 1)-connected provided the first assertion holds.
To establish the first claim, regard the map

Kalg
W,0(−×X)→ Kalg

W∩U,0(−× U)

as a natural transformation of contravariant abelian-group-valued functors on the
category of compact CW complexes. By Lemma 3.1, this map is part of the collec-
tion of maps defining a map of excisive theories(

(T,A) 7→ K̃B
W,q(T/A×X)

)
→
(

(T,A) 7→ K̃B
W∩U,q(T/A× U)

)
.

For T any compact CW complex, an element of Kalg
W∩U,0(T×U) is described by a

pair
(
α : T →M(R), γ ∈ Kalg

M×(W∩U),0(M × U)
)

and elements of Kalg
W,0(T ×X) are

similarly described. Pick an element (f : D → M(R), γ ∈ Kalg
M×(U∩W ),0(M × U))

representing an element of Kalg
W∩U,0(D×U). We need to show it lifts to an element

of Kalg
W,0(D ×X). Observe that if M is smooth, such a lifting exists since

Kalg
M×W,0(M ×X)→ Kalg

M×(U∩W ),0(M × U)

is surjective in this case because we have Kalg
M×W,0(M × X) ∼= K ′0(M ×W ) and

Kalg
M×(U∩W ),0(M × U) ∼= K ′0(M × (U ∩W )). Otherwise, using [H1] we can find a

smooth variety M̃ , a proper map π : M̃ →M , a closed proper subscheme W ⊂M
such that if W̃ = π−1(W ), then the restriction of π maps M̃ − W̃ isomorphi-
cally onto M −W . Moreover, there is a semi-algebraic triangulation of the space
M(R) such that W (R) is a sub-complex of this triangulation [H2]. By replacing
this triangulation with its barycentric subdivision, we have that the (closed) star-
neighborhood of any point is contractible and the intersection of any simplex of
M(R) with the subcomplex W (R) consists of a single face.

For a sufficiently fine barycentric subdivision of D with maximal simplices {Di},
each Di is mapped by f into a star-like neighborhood of M(R). Since the horizontal
maps of

Kalg
W,0(D ×X) −−−−→

⊕
iK

alg
W,0(Di ×X)y y

Kalg
W∩U,0(D × U) −−−−→

⊕
iK

alg
W∩U,0(Di × U)

admit compatible splittings by Lemma 3.2, it suffices to check that each element of
the form

(f |Di : Di →M(R), γ ∈ Kalg
W∩U,0(Di × U))

lifts to an element of Kalg
W,0(Di × X). In other words, we may assume α maps D

itself into a star-like neighborhood S of M(R). But then (f, γ) lifts to an element

of Kalg
W∩U,0(S ×U) and it clearly suffices to show this element lifts to an element of

Kalg
W,0(S ×X). Using Lemma 3.2 again, we see that it suffices to restrict attention
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to a single simplex of S. In other words, we may assume that D is a simplex of
M(R) and f is the inclusion map.

Recall that A = D∩W (R) is a single face ofD. Let D̃ = π−1(D) and Ã = π−1(A)

where π : M̃ →M is the proper map introduced above. Then the Cartesian square
of compact CW complexes

Ã
⊂−−−−→ D̃y π

y
A

⊂−−−−→ D

has the properties that the horizontal maps are cofibrations, the vertical maps
are proper, and π maps D̃ − Ã homeomorphically onto D − A. As argued in the
proof of [FW3; 5.1], we can therefore find sufficiently small compact neighborhoods

A ⊂ B ⊂ D and Ã ⊂ B̃ ⊂ D̃ so that Ã ↪→ B̃ splits, π−1(B) ⊂ B̃, and π−1(B) ↪→ D̃

splits. It follows that the inclusion Ã ↪→ D̃ must split as well.
As in the proof of 3.2, a splitting of Ã ↪→ D̃ defines a compatible splitting of the

horizontal maps of the diagram

Kalg
W,0(D ×X) −−−−→ Kalg

W,0(D̃ ×X)⊕Kalg
W,0(A×X)y y

Kalg
W∩U,0(D × U) −−−−→ Kalg

W∩U,0(D̃ × U)⊕Kalg
W∩U,0(A× U).

Thus, it suffices to show the images of (α, δ) in Kalg
W∩U,0(D̃ × U) and Kalg

W∩U,0(A×
U) can be lifted. For the former image, this follows immediately since the map

D̃ → M(R) factors through the space of real points of the smooth variety M̃ . By

Noetherian induction, the image in Kalg
W∩U,0(D̃ × U) lifts as well.

Corollary 3.4. For X a smooth, quasi-projective real variety and Z, W closed
sub-varieties, the sequence

Kalg
Z∩W (∆•top ×X)→ Kalg

W (∆•top ×X)→ Kalg
W−Z(∆•top × (X − Z))

is a homotopy fibration sequence of spectra.

Proof. There is a compatible family of sequences of spaces

Ω−jKalg
Z∩W (∆•top×X)→ Ω−jKalg

W (∆•top×X)→ Ω−jKalg
W−Z(∆•top×(X−Z)) (3.4.1)

for all j ≥ 1. For each such j, the underlying sequence of simplicial spaces is
a degree-wise homotopy fibration sequence satisfying the hypotheses of [BF; B.4],
and therefore (3.4.1) is a homotopy fibration sequence of spaces. The result follows.

The following result, Nisnevich excision, follows easily from Theorem 3.3.

Theorem 3.5. Let X be a smooth, quasi-projective real variety, p : X ′ → X be an
étale map, i : Z ↪→ X be a closed subvariety. Assume i : Z ↪→ X factors through
p : X ′ → X and write Z also for the induced closed subscheme of X ′. Then the
natural map

p∗ : Kalg
Z (∆•top ×R X)→ Kalg

Z (∆•top ×R X
′)
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is a weak equivalence. In particular, if U = X − Z and U ′ = X ′ − Z, there is a
natural long exact sequence

· · · → Kalg
q (∆•top ×R X)→ Kalg

q (∆•top ×R X
′)⊕Kalg

q (∆•top ×R U)

→ Kalg
q (∆•top ×R U

′)→ Kalg
q−1(∆•top ×R X)→ · · · .

Proof. Let Z ′ = Z×XX ′. Since Z ′ → Z is an étale map which admits a section, Z ′

decomposes as a disjoint union of closed subvarieties of X ′ of the form Z ′ = Z
∐
Z ′′.

For each fixed d, consider the sequence

Kalg
Z (∆d

top ×R X)→ Kalg
Z (∆d

top ×R X
′)→ Kalg

Z (∆d
top ×R (X ′ − Z ′′)).

The maps X ′ − Z ′′ → X ′ and X ′ − Z ′′ → X are isomorphisms “infinitely near Z”
in the sense of [TT; 2.6.2.1], and thus each of the maps

Kalg
Z (∆d

top×RX)→ Kalg
Z (∆d

top×R(X ′−Z ′′)), Kalg
Z (∆d

top×RX
′)→ Kalg

Z (∆d
top×R(X ′−Z ′′))

is a weak equivalence. Thus

Kalg
Z (∆d

top ×R X)→ Kalg
Z (∆d

top ×R X
′)

is a weak equivalence for all d, and the first result follows by taking geometric
realizations.

The long exact sequence follows from Theorem 3.3, since Kalg
Z (∆•top ×R X) and

Kalg
Z (∆•top ×R X

′) are the homotopy fibers of the rows of the diagram

Kalg(∆•top ×R X) −−−−→ Kalg(∆•top ×R U)y y
Kalg(∆•top ×R X

′) −−−−→ Kalg(∆•top ×R U
′).

Remark 3.6. Note that given an open cover X = U ∪ V , if we take X ′ = V and
Z = X − U , then the hypotheses of Theorem 3.5 are satisfied and we obtain the
familiar Mayer-Vietoris property – i.e., Zariski descent – for Kalg(∆•top ×R −) on
the category of smooth, quasi-projective real varieties.

We next observe that Zariski descent allows for a generalization of Proposition
2.7 in the smooth case.

Corollary 3.7. Let X be a smooth, quasi-projective real variety and let J → X be
a vector bundle or a torsor for a vector bundle. Then the natural map

Kalg(∆•top ×R X)→ Kalg(∆•top ×R J)

is a weak equivalence.

Proof. The hypothesis ensures that X admits a covering by open affine subschemes
U1, . . . , Um so that the restriction of J → X to any subscheme of the form V =
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Ui1 ∩ · · · ∩ Uik is isomorphic to the canonical projection Ad × V → V . The result
now follows immediately from Proposition 2.7 and Theorem 3.5 by induction on m.

We now turn to the proof that the natural map

Kalg(X)→ Kalg(∆•top ×R X)

induces an isomorphism on homotopy groups with coefficients in Z/n, n > 0, for
any quasi-projective real variety X. The analogous statement for complex varieties
– namely, that the natural map

Kalg(X)→ Kalg(∆•top ×C X)

induces an isomorphism on homotopy groups with finite coefficients for any quasi-
projective complex variety – holds by [FW3; 3.7].

As with the corresponding complex result, the key ingredient is a “rigidity”
result, as formulated in [SV; 4.4]. Recall from [FW3] that the presheaf Kalg

q (−×R
X;Z/n) is a pseudo-pretheory in the sense of [FS]. As argued in [FW3; 3.2], the
properties of a pseudo-pretheory established in [FS] suffice for the proof of [SV; 4.4]
to work, thereby giving the following result.

Lemma 3.8. (cf. [SV; 4.4]) If F is a homotopy invariant pseudo-pretheory defined
on Sch/R such that nF = 0 for some n > 0, then for any smooth real variety Y
and rational point y ∈ Y (R), the natural map

F (SpecOhY,y)→ F (SpecR)

is an isomorphism, where OhY,y denotes the Henselization of the local ring at y.

Proof. The pairing established for any pseudo-pretheory in [FS; 10.1] is all that is
needed for the proof of [SV; 4.4] to carry through for the presheaf F , which shows
that if Y = AnR and y is the origin, then the statement of this lemma holds. More
generally, given Y smooth (which we may assume to be affine) with rational point
y, there is a map Y → AdR sending y to the origin and which is étale in some
neighborhood of y. Such a map induces an isomorphism OhY,y ∼= OhAd,0 and the

result follows by the naturality of F .

Theorem 3.9. For any quasi-projective real variety Y and integers q ≥ 0, n > 0,
the natural map

Kalg
q (Y ;Z/n)→ Kalg

q (∆•top ×R Y ;Z/n)

is an isomorphism.

Proof. Regard the map

K(Y ;Z/n)→
(
d 7→ Kalg(∆d

top ×R Y ;Z/n)
)

as a map of simplicial spaces, in which the source is constant in the simplicial
direction. By consideration of the map of associated spectral sequences [BF; B.5]
from

πp|d 7→ Kalg
q (Y ;Z/n)| =⇒ Kalg

p+q(Y ;Z/n)
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to

πp|d 7→ Kalg
q (∆d

top ×R Y ;Z/n)| =⇒ Kalg
p+q(∆

•
top ×R Y ;Z/n),

we see that it suffices to prove the natural map

Kalg
q (Y ;Z/n)→ Kalg

q (∆d
top ×R Y ;Z/n) (3.9.1)

is an isomorphism for all q ≥ 0 and all d ≥ 0.
We regard KB

q (Y ;Z/n) → KB
q (∆d

top ×R Y ;Z/n) as the induced map for the

excisive theory F ∗ = KB
−∗(− ×R Y ;Z/n) associated to the map ∆d

top → pt. Thus,

it suffices to show F q(∆d
top, pt) = 0 for all q ∈ Z. In fact, we show that if T is any

contractible simplicial complex containing a point P , we have F q(T, P ) = 0.
Let (T, P ) be any such pair. Observe that the long exact sequence for F splits

to give the short exact sequence

0 −→ F q(T, P ) −→ F q(T ) −→ F q(P ) −→ 0,

for each q. It follows that an element α of F q(T, P ) may be represented by a pair
(g : T → U(R), γ ∈ KB

−q(U ×R Y ;Z/n)) such that the restriction of γ to g(P )

gives the zero element of KB
−q(Y ;Z/n). Observe that since T is connected, we can

assume U is algebraically connected. More generally, let α = (g : T → U(R), γ ∈
Kalg
−q (U×RY ;Z/n)) be any element of F q(T ) such that U is algebraically connected

and γ vanishes upon restriction to at least one R-point u of U . We show α = 0
under just this hypothesis.

As a preliminary step, we prove that any such α has the property that the
associated element γ ∈ KB

−q(U ×R Y ;Z/n) vanishes upon restriction to any point
in U(R) lying in the same topological connected component of U(R) as u. In
particular, this shows that the image of α in F q(Q) vanishes for any point Q of
T . To see this, let v any other point in the same topological connected component
of u. Then as argued in the proof of Proposition 1.6, there exists a chain of maps
from smooth real curves hi : Ci → U joining u to v in a piecewise fashion. Let γi
denote the pullback of γ to KB

−q(Ci ×R Y ;Z/n). By rigidity (cf. Lemma 3.8), for
any real point c on Ci, the map

KB
−q(SpecOhCi,c ×R Y ;Z/n)→ KB

−q(Y ;Z/n)

given by restriction to the closed fiber is an isomorphism. In particular, this shows
that the vanishing of γi is both an open an closed condition on the set of real points
of Ci, since if γi restricts to the constant element δ at a point c, then γi and δ agree
in some Nisnevich neighborhood of c. Thus, if γi restricts to zero at one real point
of C, then it does so for every real point in the same Zariski connected component.
From this, it follows that since γ vanishes at u, it must vanish at v too.

We claim that if U is smooth, then α = 0. Since γ vanishes locally in the
Nisnevich topology on U , by quasi-compactness we can find a finite collection of
étale maps {Vi → U} such that the image of

∐
i Vi(R) → U(R) contains f(T )

and such that the pullback of γ to KB
−q(Vi ×R Y ;Z/n) vanishes for all i. Since∐

i Vi(R) → U(R) is a local homeomorphism, taking a sufficiently fine subdivision
of the triangulation of T with maximal simplices {Tj}, each map g|Tj

: Tj → U(R)
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factors through Vi(R)→ U(R) for some i. It follows that the image of α in F q(Ti)
is zero; but the map

F q(T )→
⊕
i

F q(Ti)

is injective by Lemma 3.2, and our claim is established.
More generally, if U is singular, then we proceed by Noetherian induction on

U . As in the proof of Theorem 3.3, using [H1], [H2], there exists a proper map
π : U ′ → U with U ′ smooth and a closed proper subscheme Z ⊂ U such that setting
Z ′ = Z ×U U ′ the induced map U ′ − Z ′ → U − Z is an isomorphism. Moreover,
there is a semi-algebraic triangulation of U(R) such that Z(R) is a subcomplex, the
intersection of any simplex with Z(R) is a single face, and the star-neighborhood
of any vertex is contractible. Note that if g : T → U(R) lands in Z(R), we are done
by Noetherian induction. In particular, we may assume U ′(R) is not empty.

Replacing T by any of its maximal simplices {Tj} for a sufficiently fine triangu-
lation and using the injectivity of

F q(T )→
⊕
j

F q(Tj)

again, we may assume g maps T into a star neighborhood S of U(R). But then
α lifts to the element of F q(S) represented by (S ↪→ U(R), γ). It suffices to show
this element vanishes. Replacing S by its maximal simplices and using Lemma 3.2
again, we see that it suffices to assume T is a simplex of U(R).

Let A = T ∩ Z(R), which is a face of T , and write T ′ for π−1(T ) and A′ for
π−1(A). Triangulate T ′ such that each simplex T ′j intersects A′ in a single face
written A′j (or not at all). Then we claim that the map

Fq(T )→ Fq(A)⊕
⊕
j

Fq(T
′
j)

is an injection. To see this, note that A′j is mapped into A under T ′ → T . Thus
we obtain the diagram

0 −−−−→ F q(T,A) −−−−→ F q(T ) −−−−→ F q(A) −−−−→ 0y y y
0 −−−−→ F q(T ′j , A

′
j) −−−−→ F q(T ′j) −−−−→ F q(A′j) −−−−→ 0,

for each j, whose rows are exact since A −→ T and A′j −→ T ′j admit retractions.
Taking direct sums, we obtain the diagram with exact rows

0 −−−−→ F q(T,A) −−−−→ F q(T ) −−−−→ F q(A) −−−−→ 0y y y
0 −−−−→

⊕
j F

q(T ′j , A
′
j) −−−−→

⊕
j F

q(T ′j) −−−−→
⊕

j F
q(A′j) −−−−→ 0.

A simple diagram chase shows that it suffices to prove

F q(T,A)→
⊕
j

F q(T ′j , A
′
j)
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is injective. Notice that, using excision, we can also fit this map into the commu-
tative diagram

0 −−−−→ F q(T,A) −−−−→ F q(T/A) −−−−→ F q(A/A) −−−−→ 0y y y
0 −−−−→

⊕
j F

q(T ′j , A
′
j) −−−−→

⊕
j F

q(T ′j/A
′
j) −−−−→

⊕
j F

q(A′j/A
′
j) −−−−→ 0,

with exact rows. (As before, if A′j = ∅, we interpret T ′j/A
′
j as being T ′j and A′j/A

′
j

as empty.) Observe that the collection {T ′j/A′j} cover T ′/A′ ∼= T/A and the subset
formed by removing redundancies satisfy the hypotheses of Lemma 3.2. To see
this, note that using [LW; 5.7] we have that T ′/A′ is a CW complex whose cells
are the images of cells of T ′; in particular, its maximal closed cells are given by
{T ′j/T ′j}. Furthermore, since each A′j is a face of T ′j , it follows that for any subset
J of our indexing set, the spaces ∩j∈JA′j , ∩j∈JT ′j , and consequently ∩j∈JT ′j/A′j ∼=
(∩j∈JT ′j)/(∩j∈JA′j) are contractible. Thus, by Lemma 3.2, the middle arrow and
consequently the left-hand vertical arrow of this diagram is an injection.

Note that α is sent to the element αA ∈ Fq(A) represented by the pair (A →
Z(R), γ|Z), and that γ|Z vanishes at every real point of Z in the image of A→ Z(R).
So by Noetherian induction, αA = 0. The image α′j of α in Fq(T

′
j) is represented

by (T ′j → U ′(R), γ′), where γ′ is the pullback of γ to KB
−q(U

′ ×R Y ;Z/n). Clearly,
γ′ vanishes at every real point of U ′ in the image of T ′j → U ′(R), and since U ′ is
smooth, we know from above that α′j = 0 for all j.

Corollary 3.10. For any projective real variety X, the natural map Kalg(X) →
KRsemi(X) induces an isomorphism

Kalg
q (X;Z/n)→ KRsemi

q (X;Z/n)

for all q ≥ 0, n > 0.

Proof. IfX is weakly normal, this follows immediately from the theorem and Propo-
sition 2.5. More generally, let Xw → X be the weak normalization of X and observe
that we the natural isomorphisms KRsemi

q (X;Z/n) ∼= KRsemi
q (Xw;Z/n), given by

definition, and Kalg
q (X;Z/n) ∼= Kalg

q (Xw;Z/n), given by [W; 1.6,3.2]. The result
follows by naturality.

Remark 3.11. The proof of 3.9 can be extended slightly to show that T 7→ KB(T×R
Y ;Z/n) is not just excisive, but also homotopy invariant, as a functor from finite
CW complexes to spectra. In other words, the collection of abelian group valued
functors T 7→ KB

q (T×R;Z/n) forms a generalized cohomology theory on the category
of compact CW complexes. The value of this theory at a point is clearly given by the
homotopy groups of the spectrum KB(Y ;Z/n). In particular, taking Y = SpecR
and using Example 4.5 (of the next section), we obtain the natural isomorphism

KB
q (CR(T );Z/n) ∼= KO−q(T ;Z/n)

for q ∈ Z and n > 0. Here CR(T ) denotes the ring of continuous real valued
functions on T and KO denotes connective real topological K-theory. Similarly,
taking Y = SpecC and using Proposition 2.4, we obtain the natural isomorphism

KB
q (CC(T );Z/n) ∼= K−qtop(T ;Z/n)
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for q ∈ Z and n > 0. We have thus recovered a result of Fischer [Fi] for compact
CW complexes.

For an original application of 3.9, observe that by taking Y to be SpecR[t, t−1]
and SpecC[t, t−1], we obtain the natural isomorphisms

KB
q (CR(T )[t, t−1];Z/n) ∼= KO−q(T ;Z/n)⊕KO−q+1(T ;Z/n)

and
KB
q (CC(T )[t, t−1];Z/n) ∼= K−qtop(T ;Z/n)⊕K−q+1

top (T ;Z/n),

for q ∈ Z, n > 0.

§4 Comparison with KR−∗top(−)

Recall that for a complex quasi-projective variety Y , Ksemi(Y ) interpolates be-
tween the algebraic K-theory of Y and the topological K-theory of the associated
analytic space Y an (cf. [FW2], [FW3]). In this section, we verify the natural gen-
eralization of this observation to real varieties X: KRsemi(X) interpolates between
the algebraic K-theory of X and the Atiyah Real K-theory of XR(C), the analytic
space X(C) equipped with the involution provided by complex conjugation.

We begin with the following definition of Atiyah’s Real K-theory of a space
equipped with a continuous involution (i.e., a Real space). Note that for compactly
generated spaces X and Y , we write Maps(X,Y ) for the topological space of all
continuous maps from X to Y , endowed with the compactly generated topology
associated to the compact-open topology. Further, if X and Y admit continuous
actions by a group G (typically, G = Z/2), thenMapsG(X,Y ) denotes the subspace
of Maps(X,Y ) consisting of G-equivariant maps.

Definition 4.1. For X a quasi-projective variety over R, observe that

MapsZ/2(XR(C),GrassR(C)),

the space of all Z/2-equivariant continuous maps

XR(C)→ GrassR(C) ≡
∐
n

Grassn(P∞)R(C),

has the structure of an |I(∆•R)|-space. We define (connective) Atiyah’s Real K-
theory of XR(C), KRtop(XR(C)), to be the associated spectrum as defined by [M1;

§14]. The qth homotopy group of KRtop(XR(C)) is written KR−qtop(XR(C)) and is
called the qth Atiyah Real K-group of the Real space XR(C).

We recall that if G is a discrete group acting on a space T , then the homotopy
fixed point space ThG of this action is the space

MapsG(EG, T ).

Alternatively, this space can be identified with the space of sections of the Borel
construction EG×G T → BG. This homotopy fixed point space has the advantage
that its homotopy groups are sometimes computable via a (not always convergent)
spectral sequence of the form

Ep,q2 = Hp(BG, π−q(T ))⇒ π−p−q(T ).

The following result is a special case of a theorem recently proven by M. Karoubi.
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Proposition 4.2. ( [Ka]) For any real quasi-projective variety X, the natural map

KRtop(XR(C)) −→ Ktop(X(C))hZ/2

is a weak homotopy equivalence, where Ktop(X(C))hZ/2 denotes the homotopy fixed
point space of the conjugation action on Ktop(X(C)). Furthermore, there is a
strongly convergent spectral sequence

Ep,q2 = Hp(BZ/2,Kq
top(X(C))⇒ KRp+qtop (XR(C)). (4.2.1)

As indicated at the beginning of this section, we now verify that Atiyah’s Real
K-theory plays the role of a suitable target for the semi-topological K-theory of
real varieties.

Proposition 4.3. Let X be a quasi-projective variety over R. Then there exists a
natural map of |I(∆•R)|-spaces

MorR(X,GrassR) −→MapsZ/2(XR(C),GrassR(C))

which induces a map of spectra

KRsemi(X)→ KRtop(XR(C)).

Moreover, if X is provided with the structure of a complex variety, then this map
is equivalent to the map considered in [FW2], [FW3]

Ksemi(X) −→ Ktop(X(C)).

Proof. The indicated map of |I(∆•R)|-spaces is merely the natural inclusion: a map
over R induces a Z/2-equivariant map of spaces of complex points and the topology
on MorC(X,GrassC) is always at least as fine as the compact open topology.

The second assertion follows from Proposition 1.4 and the observation that for
any complex variety X

MapsZ/2(XR(C),GrassR(C)) =Maps(X(C),Grass(C))

since XR(C) = X(C)×2 (where the involution interchanges the two factors) when-
ever X → SpecR factors through SpecC→ SpecR.

By applying the naturality of Proposition 4.3 to the map X → XC, we immedi-
ately conclude that for any quasi-projective variety X over R, the diagram

Kalg(X) −−−−→ Kalg(∆•top ×R X) −−−−→ KRsemi(X) −−−−→ KRtop(XR(C))y y y y
Kalg(XC) −−−−→ Kalg(∆•top ×C XC) −−−−→ Ksemi(XC) −−−−→ KRtop(XR(C))

(4.4)
is a homotopy commutative diagram of spectra (induced by a commutative diagram
of |I(∆•)|-spaces).
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Example 4.5. In Section 6, we will establish various situations in which the map
KRsemi(X)→ KRtop(XR(C)) is a weak equivalence. For now, observe that there is
the “trivial” example of such an equivalence – namely, the case X = SpecR. Note
that in this case XR(C) is a single point (with the trivial action) and KRtop(XR(C))
is homotopy equivalent to BO × Z. Thus, we conclude that

KRsemi(SpecR) ' KRtop(SpecR(C)) ' BO × Z.

Note that in conjunction with Theorem 3.9, this example recovers Suslin’s compu-
tation of the algebraic K-theory of R with finite coefficients [Su; 4.1]. (Of course,
we have used here the main technique – namely, rigidity – invented by Suslin for
his original calculation.)

For future reference, we record the following elementary observation.

Proposition 4.6. Let X be a quasi-projective variety over R. Then the natural
maps of |I(∆•)|-spaces

Maps(X(C),Grass(C))←−MapsZ/2(X(C),Grass(C)) −→Maps(X(R),Grass(R))

determine natural maps of spectra

Ktop(X(C))←− KRtop(XR(C)) −→ KO(X(R))

where KO(−) denotes real orthogonal connective topological K-theory.

The following observation is suggestive of a way to consider varieties over fields
more general that R and C. This observation is made for the reader familiar with
the construction of étale K-theory by W. Dwyer and E. Friedlander [DF].

Proposition 4.7. Let X be a quasi-projective variety over R. Then for any prime
` the profinite `-completion of KRtop(XR(C)) is weakly equivalent to the étale K-
theory space Két(X) for the prime `.

Proof. We recall that Két(X) can be realized as the homotopy fixed point space
of Két(XC) with respect to the Galois action of Z/2. The proposition follows from
the observation that Két(XC) is the `-adic completion of Ktop(X(C)). Namely,
comparing Karoubi descent spectral sequences (4.2.1) taken mod-`, we conclude
that the natural map

KRtop(XR(C)) ' (Ktop(X(C))hZ/2 −→ Két(XC)hZ/2 ' Két(X)

induces an isomorphism in mod-` homotopy groups and thus induces a weak equiv-
alence

(KRtop(XR(C)))∧
∼−→ Két(X).

§5 Transfer maps

In this section, we define transfer maps associated to a finite, étale map X ′ → X
of quasi-projective real varieties for each of the theories Kalg(∆•×R−), Kalg(∆•top×R
−), KRsemi, and KRtop, and we show these transfer maps are compatible with the
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maps between these theories. The case of primary interest is when X ′ = XC,
regarded as a real variety, which will allow us among other things to compare the
KRsemi-theory of a real variety with the Ksemi-theory of its complexification.

It turns out that in order to define transfer maps as maps of infinite loop spaces,
it is convenient to introduce a different, but homotopy equivalent, model for the
infinite loop spaces Kalg(∆•×X), Kalg(∆•top×RX), KRsemi(X), and KRtop(XR(C)).
These new models use Segal’s notion of a Γ-space in place of operads.

To begin, we define GrassR(PN )(n) ⊂ GrassR(PN )×n to be the quasi-projective
subvariety parameterizing n-tuples of subspaces Vi ⊂ RN+1 in general position – i.e.,
which satisfy Vi∩

∑
j 6=i Vj = 0 for all i. This is shown to be an open subvariety of the

projective variety GrassR(PN )×n in [GW; §2]. Define Grass
(n)
R to be the ind-variety

lim−→N GrassR(PN )(n). Then GrassR(PN )(n) (respectively, Grass
(n)
R ) represents the

functor on quasi-projective real varieties sending X to the collection of n-tuples
(pi : ON+1

X � Ei)i=1,...,n (respectively, n-tuples (pi : O∞X � Ei)i=1,...,n such that
each quotient factors through the canonical projection O∞X � OMX for M � 0)
which are in general position in the sense that the induced map

(p1, . . . , pn)t : ON+1
X →

⊕
i

Ei

is a surjection (respectively, the same map with N+1 replaced by∞ is a surjection).
Recall that Γop is the category of finite, pointed sets of the form n = {∗, 1, . . . , n},

with ∗ the base point, whose morphisms are base point preserving functions. A Γ-

object in a category C is a functor Γop → C. The map n 7→ Grass
(n)
R defines a

Γ-ind-variety as follows. Given f : n → m, let f∗ : Grass
(n)
R → Grass

(m)
R send

(Vi ⊂ R∞)i=1,...n to (Wj ⊂ R∞)j=1,...m, where Wj =
⊕

i∈f−1(j) Vi. Consequently,

for any variety X, the collection of sets HomR(X,Grass
(n)
R ), n = 0, 1, . . . , form a

Γ-set.
For X a quasi-projective real variety, we associate to each n the topological

space MorR(X,Grass
(n)
R ) as defined in Definition 1.1. (More accurately, the space

MorR(X,Grass(PNR )(n)) is defined in 1.1 for each N and then we take the di-
rect limit as N goes to infinity in the category of compactly generated topological
spaces.) When X is weakly normal and projective, this space is the set of n-tuples
of quotient (O∞X � Ei)i=1,...,n with the topology induced by realizing this set as

the real points of an ind-variety. For any X, observe that MorR(X,Grass
(−)
R ) is a

functor from Γop to spaces – i.e., it is a Γ-space.

We also consider the following three variations on the Γ-spaceMorR(X,Grass
(−)
R ):

(1) the Γ-space

|HomR(∆• ×X,Grass
(−)
R )|

obtained by taking geometric realizations of the simplicial sets d 7→ HomR(∆d×
X,Grass

(n)
R ), for n = 0, 1, . . . ;

(2) the Γ-space

|HomR(∆•top ×R X,Grass
(−)
R )|

defined analogously as in the previous construction; and
(3) the Γ-space

MapsZ/2(XR(C),Grass
(−)
R (C)).
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For this last example, we view XR(C) and Grass
(n)
R (C) as Real spaces in the

sense of Atiyah and MapsZ/2 denotes the space of equivariant continuous maps
endowed with the compact-open topology.

Moreover, there are natural maps of Γ-spaces

(5.1) |HomR(∆• ×X,Grass
(−)
R )| → |HomR(∆•top ×R X,Grass

(−)
R )| →

MorR(X,Grass
(−)
R )→MapsZ/2(YR(C),Grass

(−)
R (C)),

and the map

|HomR(∆•top ×R X,Grass
(−)
R )| → MorR(X,Grass

(−)
R )

is a weak-equivalence of Γ-spaces (i.e., the map induces a weak-equivalence of topo-
logical spaces for each fixed n) whenever X is projective and weakly normal.

Recall that a Γ-space G(−) is special if the canonical map G(n) → G(1)×n is a
homotopy equivalence for all n.

Lemma 5.2. For X a quasi-projective real variety, the Γ-spacesMorR(X,Grass
(−)
R ),

HomR(X×∆•,Grass
(−)
R ), HomR(∆•top×RX,Grass

(−)
R ), andMapsZ/2(XR(C),Grass

(−)
R (C))

are all special.

Proof. The proof of [GW; 2.2] suffices to establish each of these claims.

Naturally associated to any Γ-space G(−) is a spectrum S(G), formed in the
following manner. The zeroth space of the spectrum is the space G(1). Observe
that there is a functor ∆op → Γop, where ∆ is the category of finite, non-empty,
totally ordered sets of the form [n] = {0 < 1 < · · · < n}, whose morphisms are non-
decreasing functions. This functor sends [n] to n and a order preserving function
f : [n] → [m] to f∗ : m → n where f∗(i) is the smallest j in the set f−1(i) or ∗ if
j = 0 or no such j exists. The first space in the spectrum S(G) is the geometric
realization of the simplicial space d 7→ G(d) defined by restriction along ∆op → Γop.
Further, there is a functor for each d

(Γop)×d → Γop

sending (n1, . . . , nd) to n1 · · · · · nd, which allows any Γ-space to be viewed as a
d-fold Γ-space and consequently a d-fold multi-simplicial space. The geometric
realization of this associated d-fold multi-simplicial space gives S(G)d, the dth space
of the spectrum.

For any Γ space G, there is in particular a natural map

G(1)→ Ω|d 7→ G(d)| ≡ ΩS(G)1.

When G is a special Γ space, which holds for all cases we are interested in, this map
gives a homotopy-theoretic group completion of the H-space G(1), and moreover
all the maps S(G)d → ΩS(G)d+1 are weak equivalences for d ≥ 1 [Se]. Here,
G(1) is endowed with an H-space structure by choosing a homotopy inverse of the
equivalence G(2) → G×2 and composing with the multiplication map µ : G(2) →
G(1) induced by the morphism 2→ 1 sending both 1 and 2 to 1.
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Proposition 5.3. For X projective and Y quasi-projective real varieties, there are
natural weak equivalences of spectra

S(HomR(∆• ×R Y,Grass
(−)
R )) ∼ Kalg(∆• ×R Y )

S(HomR(∆•top ×R Y,Grass
(−)
R )) ∼ Kalg(∆•top ×R Y )

S(MorR(X,Grass
(−)
R )) ∼ KRsemi(X)

S(MapsZ/2(YR(C),Grass
(−)
R (C))) ∼ KRtop(YR(C)).

Moreover, these equivalences are compatible with the maps of (5.1) and Proposition
5.3.

Proof. The proof of each of these assertions is strictly parallel to the proof of [FW2;
6.8].

In short, everywhere where we have used operads in the study of Kalg(∆• ×R
−), Kalg(∆•top ×R −), KRsemi, and KRtop, we may equivalently use the Γ-space
constructions presented here instead.

As mentioned, the purpose of introducing these Γ-space models is to define
transfer maps. Let π : X ′ → X be a finite, flat map of real quasi-projective
varieties. This hypothesis ensures that the push-forward π∗E of a vector bundle E
on Y is a vector bundle on X, and heuristically the transfer map is merely given
by pushforward of vector bundles. In addition, we assume there is a surjection
φ : OkX � π∗OX′ of OX -modules, which will become part of the construction.
(Note that such a quotient determines a closed immersion X ′ ↪→ X × Ak through
which the map π factors. The surjection φ should therefore be seen as playing a
role analogous to the embedding X ′ ↪→ X × int(Ik) used to define transfer maps
for generalized cohomology theories in algebraic topology. See [Ad; §5.1].)

The pair (π, φ) allows us to associate to any quotient O∞X′ � E the quotient
given by the composition of

OkX ⊗OX
O∞X

φ⊗id−−−→ π∗(OX′)⊗OX
O∞X

∼=−→ π∗(O∞X′) −→ π∗E, (5.4)

where the middle isomorphism is the evident one. Finally, define θ to be the

isomorphism θ : Rk⊗RR∞
∼=−→ R∞ sending ei⊗fj to fk(j−1)+i, where e1, . . . , ek and

f1, f2, . . . are the standard bases of Rk and R∞. (Really, any choice of isomorphism
will work in place of θ – this particular isomorphism allows the proof of Theorem
5.8 below to proceed most smoothly. Since the definition of θ is somewhat arbitrary,
we will include θ are part of the data defining the transfer map below.) The map
θ induces an isomorphism

OkX ⊗OX
O∞X ∼= O∞X

by extension of scalars and we let θ denote this isomorphism too. Precomposing
the quotient object (5.4) with θ, we obtain the quotient object

O∞X � π∗E.

Thus to any quotient O∞X′ � E, we associate a quotient of the form O∞X � π∗E,
and this map will give our transfer map. Note that this construction depends on
the choices of π, φ, and θ.
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We now extend these ideas to the topological setting. Suppose that the map
π : X ′ → X is not merely finite and flat, but is also étale . Then π induces a
finite covering space map of Real spaces π : X ′R(C) → XR(C) (that is, it is an
Z/2-equivariant covering space map). Moreover, the surjection φ : OkX � π∗OX′
induces a surjection of Real topological vector bundles XR(C)×Ck � X ′R(C)×C.
(For any Real space T , by T ×Cm we mean the Real vector bundle with involution

given by (t, v) = (t, v), where v denotes complex conjugation performed on each
component of v.) Consequently, parallel to the preceding construction, the data
(π, φ, θ) determines a map sending a quotient Real bundle X ′R(C) × C∞ � E to
a quotient Real bundle XR(C) × C∞ � π∗E. Here, π∗E is the Real bundle on
X whose stalk at x is

⊕
π(y)=xEy, endowed with the evident topology and Real

structure.
Associated to a finite, étale morphism π : X ′ → X, the constructions we have

described above associate to the triple (π, φ, θ) the maps

HomR(X ′,GrassR)→ HomR(X,GrassR),

MorR(X ′,GrassR)→MorR(X,GrassR),

and
MapsZ/2(X ′R(C),GrassR(C))→MapsZ/2(XR(C),GrassR(C)).

Each of these functions is natural in X in the following sense: a morphism Y → X
determines by pullback a finite, étale map πY : Y ′ → Y and a surjection φY :
OkY � πY ∗OY ′ . The transfer maps associated to (πY , φY , θ) and to (π, φ, θ) fit into
an evident commuting square in each of the three cases.

Using this naturality, one concludes that the transfer maps for Mor is continu-
ous, since it extends to the natural transformations of representable functors

MorR(−×R X
′,GrassR)→MorR(−×R X,GrassR).

Similarly, the transfer map for MapsZ/2 is easily seen to be continuous.
Naturality also gives a natural transformation of set-valued functors

HomR(−×R X
′,GrassR)→ HomR(−×R X,GrassR),

from which we define transfer maps

HomR(∆• ×R X
′,GrassR)→ HomR(∆• ×R X,GrassR)

and
HomR(∆•top ×R X

′,GrassR)→ HomR(∆•top ×R X,GrassR).

Finally, we define transfer maps

HomR(∆• ×R X
′,Grass(−))→ HomR(∆• ×R X,Grass(−))

HomR(∆•top ×R X
′,Grass(−))→ HomR(∆•top ×R X,Grass(−))

MorR(X ′,Grass(−))→MorR(X,Grass(−))

MapsZ/2(X ′R(C),Grass
(−)
R (C))→MapsZ/2(XR(C),Grass

(−)
R (C))

by applying the previously constructed transfer maps component-wise (recalling

that Grass
(n)
R is a subvariety of Grass×nR ). Although these maps depend on the

choices of π, φ, and θ, we will write each of them simply as π∗. The following
proposition summarizes our result concerning the transfer map so far.
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Proposition 5.5. Given a finite, étale map π : X ′ → X and a surjection φ :
OkX � OX′ , there are associated “transfer maps” of Γ-spaces

π∗ : |HomR(∆• ×R X
′,Grass(−))| → |HomR(∆• ×R X,Grass(−))|

π∗ : |HomR(∆•top ×R X
′,Grass(−))| → |HomR(∆•top ×R X,Grass(−))|

π∗ :MorR(X ′,Grass(−))→MorR(X,Grass(−))

π∗ :MapsZ/2(X ′R(C),Grass
(−)
R (C))→MapsZ/2(XR(C),Grass

(−)
R (C)),

which commute with the natural transformations of these theories introduced in
(5.1). Moreover, these transfer maps are natural in the sense that if Y → X is a
morphism of varieties, then π∗ and πY ∗ (where πY ∗ is defined by the induced maps
πY : Y ′ = Y ×X X ′ → Y and φY : OkY � π∗OY ′) fit into the evident commuting
squares of Γ-spaces.

Proof. The only fact remaining to be established is that π∗ is actually a map of
Γ-spaces. This is verified by a routine computation.

Any map of Γ-spaces induces a map of associated spectra, and we will write π∗
for each of the four associated transfer maps of spectra. Thus we have the following
corollary.

Corollary 5.6. Given a finite, étale map of quasi-projective varieties π : X ′ → X
and a surjection φ : OkX � π∗OX′ , the transfer maps of Γ-spaces of Proposition 5.5
determine transfer maps of spectra π∗ such that the following diagram commutes
up to weak homotopy

Kalg(∆• ×R X
′) −−−−→ Kalg(∆•top ×R X

′) −−−−→ KRsemi(X ′) −−−−→ KRtop(X ′R(C))

π∗

y π∗

y π∗

y π∗

y
Kalg(∆• ×R X) −−−−→ Kalg(∆•top ×R X) −−−−→ KRsemi(X) −−−−→ KRtop(XR(C)).

Moreover, this diagram is natural up to weak homotopy in the same sense the maps
of Proposition 5.5 are natural.

Remark 5.7. We have abused notation a bit by using merely π∗ to denote the
transfer maps induced by the triple (π, φ, θ). We presume that, up to weak ho-
motopy, the transfer map only depends on the morphism π, although we have not
attempted to prove this result since we have no need for it in this paper. Addi-
tionally, there are well-known transfer maps for algebraic K-theory and topological
K-theory associated to a finite, flat map and finite covering space map, respectively.
We presume also that the transfer maps we have defined here are equivalent, up to
weak homotopy, to these classical transfer maps. Again, since we will not need this
result in this paper, we have not attempted to prove it.

In the remainder of this section, we consider the special case X ′ = XC ≡
X ×SpecR SpecC and we take π : X ′ → X to be the canonical map and φ :
O2
X � π∗OX′ ≡ OX ⊗R C to be the surjection (in fact, isomorphism) induced by a

chosen isomorphism R2 ∼= C of real vector spaces.
Recall that there are weak homotopy equivalences KRsemi(XC) ∼ Ksemi(XC),

KRtop((XC)R(C)) ∼ Ktop(XC(C)), etc. Thus the transfer maps π∗ actually produce
maps

π∗ : Ksemi(XC)→ KRsemi(X) and π∗ : Ktop(XC(C))→ KRtop(XR(C))
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relating Ksemi with KRsemi and Ktop with KRtop. The following theorem says,
effectively, that we the homotopy groups of KRsemi(X), etc. are easily determined
“away from 2” by the homotopy groups of Ksemi(XC).

Theorem 5.8. For π : XC → X and φ as above, the compositions

Kalg(∆• ×R X)
π∗−−−−→ Kalg(∆• ×C XC)

π∗−−−−→ Kalg(∆• ×R X)

Kalg(∆•top ×R X)
π∗−−−−→ Kalg(∆•top ×C XC)

π∗−−−−→ Kalg(∆•top ×R X)

KRsemi(X)
π∗−−−−→ Ksemi(XC)

π∗−−−−→ KRsemi(X)

KRtop(XR(C))
π∗−−−−→ Ktop(XC(C))

π∗−−−−→ KRtop(XR(C))

are each weakly homotopic to multiplication by 2 with respect to the H-space struc-
tures of each of these infinite loop spaces. That is, the results of precompos-
ing π∗ ◦ π∗ and multiplication by 2 with any pointed map T → Kalg(∆• ×R X),
T → Kalg(∆•top×RX), etc., where T is a compact pointed CW -complex, are homo-
topic.

Proof. The proofs of all four assertions are essentially the same; we give the proof
of the claim involving KRsemi here.

The composition of π∗ with the transfer map π∗ induces an endomorphisms of

the Γ-spaceMorR(X,Grass
(−)
R ), and consequently we have a commutative diagram

MorR(X,GrassR)
π∗◦π∗−−−−→ MorR(X,GrassR)y y

Ω|d 7→ MorR(X,Grass
(d)
R )| π∗◦π∗−−−−→ Ω|d 7→ MorR(X,Grass

(d)
R )|.

(5.8.1)

The vertical map of (5.8.1) is a homotopy-theoretic group completion as defined in
[CCMT, §1]. Here, the H-space structure on MorR(X,GrassR) is determined by
choosing a homotopy inverse to the canonical map

MorR(X,Grass
(2)
R )→MorR(X,GrassR)×2.

The endomorphism π∗ ◦π∗ onMorR(X,GrassR) is readily checked to coincide with
multiplication by 2 with respect to the H-space structure induced by the following
choice of a homotopy inverse: Send (O∞X � E1,O∞X � E2) to the quotient object
associated to the composition

O∞X ∼= O∞X ⊕O∞X � E1 ⊕ E2,

where the isomorphism is the “interleaving map” defined by

ei 7→
{

(e(i+1)/2, 0), if i is odd,

(0, ei/2), if i is even.

Since MorR(X,GrassR) is homotopy commutative, multiplication by 2 is an H-
map, and thus the square (5.8.1) is a homotopy commutative square of H-spaces.
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(The bottom arrow is clearly a map of H-spaces since it is in fact an infinite loop
space map.) Since multiplication by 2 on

Ω|d 7→ MorR(X,Grass
(d)
R )|

would also cause this square to commute up to weak homotopy, by [CCMT; 1.2] it
follows that π∗ ◦ π∗ is weakly homotopic to multiplication by 2.

Recall that if A is a finitely generated abelian group and X is a pointed space,
one defines πq(X;A), the qth homotopy group of X with coefficients in A, as the
homotopy classes of maps from the Moore space of type (A, q) to X. For an
arbitrary abelian group A, πq(X;A) is the direct limit of πq(X;B), where B ranges
over all finitely generated subgroups of A.

Corollary 5.9. For any abelian group A, quasi-projective real variety X, and in-
teger q, the maps

Kalg
q (∆• ×R X;A)

π∗◦π∗−−−−→ Kalg
q (∆• ×R X;A)

Kalg
q (∆•top ×R X;A)

π∗◦π∗−−−−→ Kalg
q (∆•top ×R X;A)

KRsemi
q (X;A)

π∗◦π∗−−−−→ KRsemi
q (X;A)

KR−qtop(XR(C);A)
π∗◦π∗−−−−→ KR−qtop(XR(C);A)

are given by multiplication by 2. In particular, if A is a Z[ 1
2 ]-module, then Kalg

q (∆•×R

X;A), Kalg
q (∆•top ×R X;A), KRsemi

q (X;A), and KR−qtop(XR(C);A) are naturally

summands of the groups Kalg
q (∆• ×C XC;A), Kalg

q (∆•top ×C XC;A), Ksemi
q (XC;A),

and K−qtop(XC(C);A), respectively.

Proof. If A is a finitely generated abelian group, the Moore space M(A, q) is a
finite CW complex, and thus the result follows immediately from Theorem 5.8.
More generally, the result follows by taking direct limits over all finitely generated
subgroups of A.

§6 Examples and Localization

In this section, we establish that the natural maps give isomorphisms

KRsemi
q (X) ∼= KR−qtop(XR(C)), q ≥ 0,

and
Kalg
q (∆•top ×R X) ∼= KR−qtop(XR(C)), q ≥ 0,

for certain classes of real varieties X. For example, we obtain such weak equiv-
alences when X is a projective, smooth curve, or a certain type of generalized
flag variety. As seen in the next section, this computation can be viewed as a
computation of the “stabilized homotopy groups” of spaces of morphisms. Thus,
the examples in this section represent (stable) real analogues of generalizations of
results found in [Ki], [CLS].

To extend our examples of such weak equivalences involving Kalg(∆•top×RX) to

the case where X is affine, it is useful to prove a localization result for Kalg(∆•top×R
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−) analogous to the known localization property of algebraic K-theory (but which
here only applies to smooth varieties). This result is also proven in this section,
although we expect its applications to extend beyond the use to which it is employed
here.

The following proposition can be viewed as a generalization of the standard
projective space formula and is the real analogue of [FW3; 2.1].

Proposition 6.1. Suppose G is one of the linear algebraic groups GLn,R, SLn,R,
Spinn,R, or Sp2n,R and P is a parabolic subgroup containing a split Borel subgroup.
Then the natural map

KRsemi(G/P )→ KRtop((G/P )R(C))

is a weak equivalence.

Proof. Let X = S ×R G/P , for any S. As argued in [FW3; 2.2] using [P; 5.2, 5.4],
for a choice of dominant weights λ1, . . . , λk, the vector bundles EP (λ1), . . . , EP (λk)

determine a basis B of Kalg
0 (G/P ) as a free Kalg

0 (R)-module. More generally, the

pullback of B to X gives a basis of Kalg
0 (X) as a free Kalg

0 (S)-module. Moreover,
multiplication by these basis elements defines a natural weak equivalence

Kalg(S)×k
∼−→ Kalg(S ×R G/P ).

Replacing S by ∆n
top by taking direct limits, we obtain the natural weak equivalence

Kalg(∆n
top ×R SpecR)×k

∼−→ Kalg(∆n
top ×R G/P ),

and consequently a weak equivalence

Kalg(∆•top ×R SpecR)×k
∼−→ Kalg(∆•top ×R G/P ).

The image of B ⊂ Kalg
0 (G/P ) in K0

top((G/P )(C)) defines an analogous weak
equivalence

(BU × Z)×k ≡ Ktop(pt)×k
∼−→ Ktop((G/P )(C)),

by [Pi; 3] and [AH; 3.6]. Using [Sey; 4.3], it follows that the image of B in
KR0

top((G/P )R(C)) defines a weak equivalence

(BO × Z)×k ≡ KRtop(pt)×k
∼−→ KRtop(XR(C)).

Finally, since the map Kalg(∆•top ×R −) → KRtop(−) is compatible with products
by Theorem A.5 of the appendix, the result now follows from Example 4.5.

In [FW2], we established a equivalence between Ksemi and Ktop of a smooth,
projective complex curve. This result, together with a result of M. Karoubi and
C. Weibel [KW] on the algebraic K-theory with finite coefficients of smooth real
curves, leads directly to the following real analogue of [FW2; 7.5].
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Proposition 6.2. Let C be a smooth, projective real curve. Then the natural map

KRsemi
q (C)→ KR−qtop(CR(C))

is an isomorphism for q ≥ 0.

Proof. The composition

Kalg(C)→ KRsemi(C)→ KRtop(CR(C))

is shown to induce an isomorphism upon applying πq(−;Z/2), q ≥ 0, in [KW]. It
follows from Theorem 3.9 that

KRsemi
q (C;Z/2) ∼= KR−qtop(CR(C);Z/2)

for q ≥ 0. Finally, in the diagram

KRsemi
q (C;Z[ 1

2 ])
π∗−−−−→ Ksemi

q (CC;Z[ 1
2 ])

π∗−−−−→ KRsemi
q (C;Z[ 1

2 ])y y y
KR−qtop(CR(C);Z[ 1

2 ])
π∗−−−−→ K−qtop(C(C);Z[ 1

2 ])
π∗−−−−→ KR−qtop(CR(C);Z[ 1

2 ])

the composition of each horizontal row is an isomorphism by Corollary 5.9 and the
middle vertical map is an isomorphism by [FW3; 7.5]. A diagram chase completes
the proof.

Remark 6.3. If X is a smooth real toric variety, then an argument due to the
second author and C. Weibel can be adapted to conclude that the natural map

Kalg(∆•top ×R X)→ KRtop(XR(C))

is a weak equivalence. The essential point of this argument is that a map between
two theories on real varieties which are homotopy invariant, which satisfy Zariski
descent, and which agree on projective spaces, must agree on all smooth toric vari-
eties. In particular, if X is a smooth, projective real toric variety, then the natural
map

KRsemi(X)→ KRtop(XR(C))

is a weak equivalence.

The Quillen-Lichtenbaum conjecture (cf. [F1]) for a smooth real variety X of

dimension d asserts that for n > 0 the natural map Kalg
q (X;Z/n)→ K−qét (X;Z/n)

is an isomorphism for q ≥ d−1. In light of Proposition 4.7 and Corollary 3.10, such
an isomorphism holds, at least in the range q ≥ d, provided the map KRsemi

q (X)→
KRqtop(X) is an isomorphism for q ≥ d − 1. The following result has been proven
in [KW], using different means.

Corollary 6.4. The Quillen-Lichtenbaum conjecture holds for a smooth, complete
real curve C.

Proof. The map KRsemi(C)→ KRtop(CR(C)) is a weak equivalence by Proposition
6.2. The result follows by considering the long exact sequence in homotopy groups
and by using Proposition 4.7 and Corollary 3.10.
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To extend the above examples to affine varieties (and for further applications),
we establish a localization result for Kalg(∆•top ×R −). The statement and proof of
this result were inspired by the recent preprint of I. Panin and A. Smirnov [PS].
The basic technique is the use of the deformation to the normal bundle, an idea
due to R. MacPherson (cf. [BFM]). We follow the treatment of this concept found
in the work of F. Morel [Mo].

Let i : Z ↪→ X be a regular closed immersion and let WZ(X) be the smooth
variety given by the construction of [Mo; 3.2.2] (which is written D(i) there).
The variety WZ(X) is defined as the complement of XZ in (X × A1)Z , where
XZ is the blow-up of X along Z and (X × A1)Z is the blow-up of X × A1 along
Z × {0} ↪→ X × A1. We briefly describe the key properties of WZ(X) (see [Mo;
3.2.6]). There exists a map WZ(X) → X × A1 and a regular closed immersion
Z × A1 ↪→WX(Z) such that the squares appearing in the commutative diagrams

Z −−−−→ X
=−−−−→ X

i1

y α

y i1

y
Z × A1 −−−−→ WZ(X) −−−−→ X × A1

and
Z −−−−→ NZ(X) −−−−→ X

i0

y β

y i0

y
Z × A1 −−−−→ WZ(X) −−−−→ X × A1

are Cartesian. Here, NZ(X) denotes the normal bundle for the immersion Z ↪→ X,
Z → NZ(X) is the zero section embedding, and NZ(X) → X is the composition
NZ(X) → Z ↪→ X. Finally, if X = U ∪ V is an open cover, then WZ∩U (U) and
WZ∩V (V ) form an open cover of WZ(X) with intersection WZ∩U∩V (U ∩ V ) (cf.
proof of [Mo; 3.2.8]).

Theorem 6.5. For any closed immersion of smooth quasi-projective varieties i :
Z ↪→ X, we have that

Kalg
Z (∆•top ×R X)

α∗←− Kalg
Z×A1(∆•top ×R WZ(X))

β∗−→ Kalg
Z (∆•top ×R NZ(X))

are weak equivalences.

Proof. Our proof mimics the proof of [Mo; 3.2.8]. Let FA(B) stand for Kalg
A (∆•top×R

B), for any closed immersion A ↪→ B.
Suppose we can find an open covering of X, X = ∪iWi, such that the statement

of the theorem holds for each closed immersion Z ∩W ↪→W , where W is any open
subscheme of the form Wj1 ∩· · ·∩Wjk . Then by induction, using Mayer-Vietoris of
F−(−) (see Remark 3.6) and the fact that WZ∩U (U) and WZ∩V (V ) form an open
cover of WZ(X) for any open cover X = U ∪V , it follows that the statement of the
theorem holds for Z ↪→ X itself. In other words, it suffices to prove the theorem
locally on X.

As is well known (cf. [EGAIV; 17.12.2 d]), for each x ∈ X, there is an open
neighborhood x ∈ V ⊂ X and an étale map f : V → An+d such that the closed
immersion V ∩Z ↪→ V is the pullback along f of the closed immersion Ad ↪→ An+d
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given by inclusion into the first d coordinates. Thus, by appealing to the previous
paragraph, we may as well assume X itself admits an étale map

f : X → An+d

such that Z ↪→ X is the pullback along f of the closed immersion i : Ad ↪→ An+d.
In this situation, by [Mo; 3.2.9], there exists étale maps U → X and U → Z×Ad

and a closed immersion Z ↪→ U such that the squares

Z −−−−→ U

=

y y
Z −−−−→ X

and
Z −−−−→ U

=

y y
Z

0−−−−→ Z × Ad

are Cartesian. By [Mo; 3.2.7 (3)], these diagrams induce étale maps WZ(U) →
WZ(X) and WZ(U)→WZ(Z × Ad) such that the diagrams

Z × A1 −−−−→ WZ(U)

=

y y
Z × A1 −−−−→ WZ(X)

and
Z × A1 −−−−→ WZ(U)

=

y y
Z × A1 −−−−→ WZ(Z × Ad)

are also Cartesian. Now consider the diagram

FZ(X) ←−−−− FZ×A1(WZ(X)) −−−−→ FZ(NZ(X))y y y
FZ(U) ←−−−− FZ×A1(WZ(U)) −−−−→ FZ(NZ(U))x x x

FZ(Z × Ad)) ←−−−− FZ×A1(WZ(Z × Ad)) −−−−→ FZ(NZ(Z × Ad)).

(6.5.1)

The vertical maps in the left and middle columns of (6.5.1) are weak equivalences
by Nisnevich excision (Theorem 3.5), using the preceding diagrams. The ver-
tical arrows in the right column of (6.5.1) are weak equivalences, since each of
NZ(U) → NZ(X) and NZ(U) → NZ(Z × Ad) is readily verified to be a Nisnevich
neighborhoods of Z (i.e., they also satisfy the hypothesis of Theorem 3.5). As shown
in the proof of [Mo; 3.2.11], the immersion Z × A1 ↪→ WZ(Z × Ad) is naturally
isomorphic to the map Z × A1 ↪→ Z × Ad × A1 given by inclusion at 0. It follows
from homotopy invariance that the maps in the bottom row of (6.5.1) are weak
equivalences. A diagram chase completes the proof.
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Theorem 6.6. Given a regular closed immersion of smooth, quasi-projective real
varieties i : Z ↪→ X, there is a weak equivalence in the homotopy category of spectra

Kalg
Z (∆•top ×R X)

∼−→ Kalg(∆•top ×R Z).

This equivalence is natural in the sense that given a Cartesian square of smooth,
quasi-projective real varieties

W
j−−−−→ Y

g

y f

y
Z

i−−−−→ X

whose rows are regular closed immersions, the diagram in the homotopy category

Kalg
Z (∆•top ×R X)

∼−−−−→ Kalg(∆•top ×R Z)

f∗
y g∗

y
Kalg
W (∆•top ×R Y )

∼−−−−→ Kalg(∆•top ×R W )

commutes.

Proof. By Theorem 6.5, the maps

Kalg
Z (∆•top ×R X)

α∗←− Kalg
Z×A1(∆•top ×R WZ(X))

β∗−→ Kalg
Z (∆•top ×R NZ(X))

are weak equivalences. Thus there is a weak equivalence in the homotopy category

Kalg
Z (∆•top ×R NZ(X))

∼−→ Kalg
Z (∆•top ×R X),

and this map is readily verified to be natural in the same sense as in the statement
of this theorem.

We now claim that there is a natural weak equivalence

Kalg(∆•top ×R Z)
∼−→ Kalg

Z (∆•top ×R NZ(X)).

Indeed, let p : E → Z be any vector bundle of rank n with zero section s0, and
form the projectivized bundle q : P(E ⊕ 1) → Z, which comes with the evident
open immersion j : E ↪→ P(E⊕ 1) and complementary closed immersion at infinity
P(E) ↪→ P(E ⊕ 1). Following the proof given by [PS], let

th(E) ∈ Kalg
Z,0(P(E ⊕ 1))

be the class associated to the chain complex

· · · → 0→ OP(E⊕1)(−n)⊗ Λn(E)→ · · · → OP(E⊕1)(−1)⊗ Λ1(E)→ OP(E⊕1) → 0.

(Here Z is regarded as a closed subscheme of P(E ⊕ 1) via the composition j ◦ s0.)

Write t(E), the Thom class, for the restriction of th(E) to Kalg
Z,0(E) via j. We also
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write th(E) and t(E) for the images of these classes in Kalg
Z,0(∆•top×R P(E⊕ 1)) and

Kalg
Z,0(∆•top ×R E), respectively. Then in the commutative diagram

Kalg(∆•top ×R Z)
th(E)∪q∗−−−−−−→ Kalg

P(1)(∆
•
top ×R P(E ⊕ 1))

=

y j∗
y

Kalg(∆•top ×R Z)
t(E)∪p∗−−−−−→ Kalg

Z (∆•top ×R E),

the right-hand vertical arrow is a weak equivalence by Nisnevich excision (Theorem
3.5). The bottom arrow will therefore be the desired weak equivalence provided the
top arrow is a weak equivalence. To show this, observe that there is a commutative
diagram

0 0y y
Kalg(∆•top ×R X)

th(E)∪q∗−−−−−−→ Kalg
Z (∆•top ×R P(E ⊕ 1))y y

Kalg(∆•top ×R X)⊕n+1
(th(E)∪q∗,1,ζE⊕1,...,ζ

n−1
E⊕1)

−−−−−−−−−−−−−−−−−→ Kalg(∆•top ×R P(E ⊕ 1))y y
Kalg(∆•top ×R X)⊕n

θ−−−−→ Kalg(∆•top ×R P(E ⊕ 1)−X)y y
0 0,

(6.6.1)

where in general we write ζP(F ) for the class 1−[OP(F )(−1)] ∈ Kalg
0 (P(F )) associated

to a vector bundle F over X. Here, the map θ is the composition of the weak
equivalence (cf. Proposition 2.7)

Kalg(∆•top ×R X)⊕n
(1,ζE ,...,ζ

n−1
E )

−−−−−−−−−→ Kalg(∆•top ×R P(E))

with the pullback along the projection map P(E ⊕ 1) − X → P(E). Since this
projection map is a vector bundle, it follows θ is a weak equivalence, and thus
it suffices to show the middle arrow of (6.6.1) is a weak equivalence. By Zariski
descent (Theorem 3.5), it suffices to check this locally on X, so that we may assume
E = OnX , the trivial bundle of rank n. In this case, th(E) coincides with ζnP(E⊕1) in

Kalg
0 (∆•top×R P(E⊕ 1)), and thus the middle arrow of (6.6.1) is a weak equivalence

by Proposition 2.7.
The naturality of the map t(E) ∪ q∗ follows from the naturality of the Thom

class t(E).

Combining Theorems 3.3 and 6.6, we obtain the following statement of localiza-
tion for Kalg(∆•top ×R −).
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Corollary 6.7. Given a regular closed immersion i : Z ↪→ X of smooth, quasi-
projective real varieties, there is a “Gysin map”

i∗ : Kalg(∆•top ×R Z)→ Kalg(∆•top ×R X)

which fits into a fibration sequence in the homotopy category of spectra

Kalg(∆•top ×R Z)
i∗−→ Kalg(∆•top ×R X) −→ Kalg(∆•top ×R X − Z).

This sequence is natural in the sense that there is a homotopy commutative diagram

Kalg(∆•top ×R Z) −−−−→ Kalg(∆•top ×R X) −−−−→ Kalg(∆•top ×R X − Z)

g∗
y f∗

y (f |Y−W )∗
y

Kalg(∆•top ×R W ) −−−−→ Kalg(∆•top ×R Y ) −−−−→ Kalg(∆•top ×R X − Z)

associated to a map of pairs as in Theorem 6.6.

Proposition 6.8. Let Z ↪→ X be a closed immersion of smooth, projective real
varieties and let U = X − Z. If the natural maps

KRsemi(Z)→ KRtop(ZR(C)), KRsemi(U)→ KRtop(UR(C))

are weak equivalences, then so is

KRsemi(X)→ KRtop(XR(C)).

Proof. As shown in Appendix A, there is a natural model KRZR(C)
top (XR(C)) for the

homotopy fiber of
KRtop(XR(C))→ KRtop(UR(C)).

Moreover, by Theorem A.5 of Appendix A, there is a natural map

Kalg
Z (∆•top ×R X)→ KRZR(C)

top (XR(C))

fitting into a homotopy commutative diagram

Kalg
Z (∆•top ×R X) −−−−→ Kalg(∆•top ×R X) −−−−→ Kalg(∆•top ×R U)y y y
KRZR(C)

top (XR(C)) −−−−→ KRtop(XR(C)) −−−−→ KRtop(UR(C)),

(6.8.1)

all of whose arrows are compatible with cup product pairings.
From standard topological results, the theory with supports

(X,Z) 7→ KRZR(C)
top (XR(C))

satisfies the needed properties (i.e., excision, homotopy invariance, and existence of
a bundle formula) for the proofs of 6.6 and 6.7 to carry over. In particular, there
is a natural weak equivalence

KRZR(C)
top (XR(C))

∼−→ KRtop(ZR(C)), (6.8.2)
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and consequently a natural fibration sequence

KRtop(ZR(C)) −→ KRtop(XR(C)) −→ KRtop(UR(C)).

Moreover, since the equivalence (6.8.2) and that of Theorem 6.6 are constructed us-
ing the same deformation argument, they are compatible with the maps in diagram
(6.8.1) and we obtain a homotopy commutative diagram

Kalg(∆•top ×R Z) −−−−→ Kalg(∆•top ×R X) −−−−→ Kalg(∆•top ×R U)y y y
KRtop(ZR(C)) −−−−→ KRtop(XR(C)) −−−−→ KRtop(UR(C)).

The result follows immediately.

Corollary 6.9. If X is a smooth (possibly affine) real curve, then the natural map

KRsemi(X)→ KRtop(XR(C))

is a weak equivalence.

Proof. By considering a smooth projective closure of X, this result follows imme-
diately from Proposition 6.8, Proposition 6.2, and Example 4.5.

Combining Corollary 6.9 with Proposition 4.7 and Corollary 3.10 gives the fol-
lowing result, which has also been established in [KW].

Corollary 6.10. The Quillen-Lichtenbaum conjecture holds for an arbitrary smooth
real curve.

§7 Stabilization of mapping spaces of morphisms

The process of forming the homotopy-theoretic group completion of an I-space
(or a Γ-space) is slightly mysterious, rendering the infinite loop space KRsemi(X)
rather less explicit than one would hope. In this section, we show how to form
the homotopy-theoretic group completions of MorR(X,GrassR) and HomR(X ×
∆•top,GrassR) in terms of explicit mapping telescopes. In particular, this description

exhibits a connection between KRsemi(X) and the spaces of holomorphic maps stud-
ied in [Ki] and [CLS]. Additionally, such a construction has the advantage that it
allows for a nice description of the homotopy groupsKRsemi

∗ (X) in terms of ordinary
group completions of the monoids of homotopy classes of maps toMorR(X,GrassR)
(see Corollary 7.4).

As a preliminary step, recall that KRsemi
0 (X) is the group completion of the

abelian monoid π0MorR(X,GrassR), and a similar statement holds forKalg
0 (∆•top×R

X). In fact, this group completion is attained by inverting a single element of
π0MorR(X,GrassR), as shown in the following lemma.

Lemma 7.1. Let X be a quasi-projective real variety and p : O∞X � L any quotient
(factoring through ONX for N � 0) such that L is an ample line bundle on X. If
X is projective, the induced map

π0MorR(X,GrassR) [−[p]]→ KRsemi
0 (X)
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is an isomorphism. If X is an arbitrary quasi-projective variety, then the induced
map

π0|HomR(∆•top ×R X,GrassR)| [−[p]]→ Kalg
0 (∆•top ×R X)

is an isomorphism. (Here, [−[p]] refers to formally inverting the class of p in the
indicated abelian monoid).

Proof. The proof of the first isomorphism is identical to [FW2; 3.1], using the fact
that π0MorR(X,GrassR) is the set of isomorphism classes of bundles on Xw (where
Xw → X is the weak normalization of X) generated by global section modulo
real semi-topological equivalence of such bundles, which is shown in the proof of
Proposition 1.6. The second isomorphism follows in the same manner once one
knows that π0|HomR(∆•top ×R X,GrassR)| is also the set of isomorphism classes of
bundles generated by their global section modulo real semi-topological equivalence.
This is proven just as is the last statement of Proposition 2.5, using the latter half
of the proof of Proposition 1.6.

For a quasi-projective real variety X, fix a very ample line bundle L together
with a surjection

O∞X
(l1,l2,... )−−−−−−→ L

(with li = 0 for i� 0). Define

αL :MorR(X,GrassR)→MorR(X,GrassR)

to be the map sending

O∞X
(e1,e2,... )−−−−−−→ E

to the quotient

O∞X
(l1,e1,l2,e2,... )−−−−−−−−−→ L⊕ E.

(The definition of αL actually depends on the choice of surjection O∞X � L.) Now
form the mapping telescope of the infinite sequence of maps

MorR(X,GrassR)
αL−−→MorR(X,GrassR)

αL−−→ · · · ,

and write this as Tel(MorR(X,GrassR), αL). Here, we regard the nth space in this
telescope, Gn for short, as being pointed by the image of the base point under the
nth iterate of αL. We remind the reader that, in general, the mapping telescope of
a sequence of maps of pointed spaces

(G0, g0)
f0−→ (G1, g1)

f1−→ · · · ,

written Tel(Gi, fi), is defined as∐
n≥0

Gn ∧[n, n+ 1]+

(x, n+ 1) ∼ (fn(x), n+ 1)
,

where x ∈ Gn, n ≥ 0 and [n, n + 1] ⊂ R is the evident interval. Observe that
Tel(Gn, fn) is weakly equivalent to the ordinary direct limit lim−→nGn but is better
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behaved in that it has the homotopy type of a CW complex provided each Gn does.
Theorem 7.3 below shows that the evident map

MorR(X,GrassR)→ Tel(MorR(X,GrassR), αL)

is a homotopy-theoretic group completion, when X projective.
The construction of the group completion ofMorR(X,GrassR) presented here is

similar to that found in [FW2], except that there the space of complex morphisms
MorC(Y,GrassC), for Y a complex variety, is considered. (Additionally, the def-
inition of αL in [FW2] differs slightly from that used here.) It turns out to be a
delicate matter to adapt the proof found in [FW2], which shows that the mapping
telescope of (MorC(Y,GrassC), αL) gives a homotopy-theoretic group completion,
to the situation here. The difficulty lies in the fact that we must use the real op-
erad I here, whereas its complex version is used in [FW2], and this complex version
provides more freedom to construct the needed homotopies. Thus, in lieu of adapt-
ing the proof in [FW2] directly, we instead provide an easier proof in Theorem 7.3
below, one which unfortunately does not apply to the study of G-theory considered
in [FW2]. The following lemma provides the key to the proof of Theorem 7.3.

Lemma 7.2. Let (G,µ) be a strictly associative H-space with strict identity e.
Fix g ∈ G and let Gn denote the space G pointed by the base point gn (where
gn = µ(g, gn−1), g0 = e). Assume that the maps

µ(g,−), µ(−, g) : Gn → Gn+1

are homotopic via a base point preserving homotopy. Then the mapping telescope
Tel(Gn, µ(g,−)) of the sequence

G = G0
µ(g,−)−−−−→ G1

µ(g,−)−−−−→ G2
µ(g,−)−−−−→ · · ·

has the structure of a homotopy associative H-space such that the map

G→ Tel(Gn, µ(g,−))

is a map of H-spaces. Furthermore, the induced map on π0 is the map given by in-
verting the class of g in the abelian monoid π0(G) and the induced map on homology
groups with coefficients in any commutative ring A,

H∗(G;A)→ H∗(Tel(Gi, µ(g,−));A),

is localization with respect to the action of [g] ∈ π0(G). Finally, if H is homotopy
commutative in such a fashion that for all n ≥ 0 the two maps

µ, µ ◦ τ : Gn ×Gn → G2n,

are homotopic via a pointed homotopy (where τ interchanges the two factors), then
Tel(Gn, µ(g,−)) is homotopy commutative.

Proof. We use the following general fact about mapping telescopes: Given an infi-
nite “ladder” of pointed spaces

X0
α0−−−−→ X1

α1−−−−→ · · ·

f0

y f1

y
Y0

β0−−−−→ Y1
β1−−−−→ · · ·
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such that each square is homotopy commutative via a homotopy

hn : Xn ∧ I+ → Yn+1, n ≥ 0,

such that hn(−, 0) = βn ◦ fn and hn(−, 1) = fn+1 ◦ αn, then there is a map on
telescopes

Tel(Xi, αi)→ Tel(Yi, βi)

defined by sending (x, t) ∈ Xn × [n, n+ 1] to{
(fn(x), 2t− n)) ∈ Yn × [n, n+ 1], if t ∈ [n, n+ 1

2 ]

(hn(x, 2t− 2n− 1), n+ 1) ∈ Yn+1 × {n+ 1}, if t ∈ [n+ 1
2 , n+ 1].

Moreover, the map
Tel(Xi, αi)→ Tel(Yi, βi)

is independent up to homotopy of the choice of the hn’s.
Write χ : Gn → Gn+1 for the pointed map µ(g,−), and consider the infinite

ladder
G0 ×G0

χ×χ−−−−→ G1 ×G1
χ×χ−−−−→ · · ·

µ

y µ

y
G0

χ2

−−−−→ G2
χ2

−−−−→ · · · .

(7.2.1)

A choice of homotopy joining

µ(g,−), µ(−, g) : Gn → Gn+1

determines a homotopy Gn × Gn ∧ I+ → G2n+2 exhibiting that the nth square of
(7.2.1) commutes up to homotopy, and thus determines a map

Tel(Gi ×Gi, χ× χ)→ Tel(G2i, χ
2).

There is a natural homotopy equivalence

Tel(Gi ×Gi, χ× χ)
∼−→ Tel(Gi, χ)×2,

induced by the pair of maps of sequences of spaces

(Gi ×Gi, χ× χ)→ (Gi, χ)

given by the two projection maps. Similarly, there is a natural homotopy equiva-
lence

Tel(Gn, χ)
∼−→ Tel(G2n, χ

2)

induced by the map of sequences determined by µ(gn,−) : Gn → G2n, n ≥ 0. By
choosing homotopy inverses, this gives the pairing

µ∞ : Tel(Gn, χ)× Tel(Gn, χ)→ Tel(Gn, χ)

which we claim makes Tel(Gn, χ) into a homotopy associative H-space.
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We must show, first of all, that the base point is a two-sided identity up to
homotopy. Consider the two diagrams of the form

Tel(Gn, χ)
=−−−−→ Tel(Gn, χ)

=−−−−→ Tel(Gn, χ)y y ∼
y

Tel(Gn, χ)× Tel(Gn, χ)
∼←−−−− Tel(Gi ×Gi, χ× χ)

∼−−−−→ Tel(G2n, χ
2),
(7.2.2)

where the bottom horizontal maps and the right-hand vertical map are given as
above and the left-hand and middle vertical maps are induced by either {gn}× id :
Gn → Gn×Gn or id×{gn} : Gn → Gn×Gn. One may readily verify that, in either
case, the left-hand square commutes strictly. If the maps {gn}×id : Gn → Gn×Gn,
n ≥ 0, are used to define the two vertical maps, then the right-hand square of (7.2.2)
is also strictly commutative. If the maps id × {gn} : Gn → Gn × Gn are used to
define these vertical maps, then it suffices to show the two maps

µ(−, gn), µ(gn,−) : Gn → G2n

induce homotopic maps on telescopes in order to establish the homotopy commu-
tativity of the right-hand square. To do this, choose pointed homotopies

hn : Gn ∧ I+ → G2n, n ≥ 0,

joining µ(gn,−) to µ(−, gn), which exist by hypothesis. Consider the sequence
(Gn ∧ I+, χ∧ id) and the infinite ladder formed by hn : Gn ∧ I+ → G2n, n ≥ 0.

Observe that the squares in this ladder are homotopy commutative, since Gn
0−→

Gn ∧ I+ is a homotopy equivalence and the ladder formed by the composition Gn
0−→

Gn ∧ I+
hn−→ G2n commutes strictly. Thus we obtain an induced map on telescopes

Tel(Gn ∧ I+, χ∧ id)→ Tel(G2n, χ
2).

Moreover, the two maps

Tel(Gn, χ)
i−→ Tel(Gn ∧ I+, χ∧ id)

given by inclusion at i = 0 or i = 1 are homotopy inverses to the map induced

by projection, and are thus homotopic. Further, the compositions of Tel(Gn, χ)
i−→

Tel(Gn ∧ I+, χ∧ id) with Tel(Gn ∧ I+, χ∧ id) → Tel(G2n), for i = 0, 1, give the
maps induced by µ(gn,−) and µ(−, gn).

Thus, (7.2.2) is homotopy commutative in both cases, and now a simple dia-
gram chase shows that multiplication on the left or the right by the base point of
Tel(Gn, χ) is homotopic to the identity map.
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To show homotopy associativity, consider the diagram

Tel(G×3
n , χ×3)

∼−−−−→ Tel(G×2
n , χ×2)× Tel(Gn, χ)

∼−−−−→ Tel(Gn, χ)×3

µ

y µ×id
y

Tel(G3n, χ
3)

∼←−−−−
µ

Tel(G2n, χ
2)× Tel(Gn, χ)

µ(g2n,−)

x∼ µ(gn,−)×id
x∼

Tel(Gn, χ)
{gn}×id−−−−−→ Tel(Gn, χ)×2

=

y µ

y
Tel(Gn, χ)

∼−−−−−→
µ(gn,−)

Tel(G2n, χ
2).

(7.2.3)
The diagram is easily seen to be homotopy commutative since µ is strictly asso-
ciative. The map Tel(Gn, χ)×3 → Tel(Gn, χ) given by µ∞(µ∞(−,−),−) is, up to
homotopy, the map given by choosing homotopy inverses for the homotopy equiv-
alences in (7.2.3) and then forming the composite map which starts in the upper
right corner, proceeds down the middle column, and ends at Tel(Gn, χ) via the
inverse of µ(gn,−). This map is homotopic to the map formed by going across the
entire top of (7.2.3), from right to left, and then down the left-hand side. A similar
diagram shows that µ∞(−, µ∞(−,−)) is, up to homotopy, the composition of the
map going across the entire top of (7.2.3), the upper left vertical map of (7.2.3),
and the homotopy inverse of µ(−, g2n) : Tel(Gn, χ)→ Tel(G3n, χ

3). Consequently,
to show homotopy associativity, it suffices to show µ(g2n,−) and µ(−, g2n) induce
homotopic maps from Tel(Gn, χ) to Tel(G3n, χ

3), which is proven just as above for
the maps µ(gn,−) and µ(−, gn). Thus Tel(Gn, χ) is homotopy associative.

It is evident that the natural map G → Tel(Gn, χ) is a map of H-spaces. The
claims concerning the induced maps on π0 and homology follow from the observa-
tions that π0(−) and H∗(−;A) commute with direct limits and Tel(Gn, χ) is weakly
equivalent to the direct limit lim−→nGn.

Finally, if there exist a pointed homotopy

Cn : Gn ×Gn ∧ I+ → G2n

from µ to µ ◦ τ , for each n ≥ 0, then the collection of Cn’s form a ladder of spaces
in the evident matter. Each of the squares in this ladder is homotopy commutative,

since Gn ×Gn
0−→ Gn ×Gn ∧ I+ is a homotopy equivalence and the induced square

Gn ×Gn
χ×χ−−−−→ Gn+1 ×Gn+1

µ

y µ

y
G2n

χ2

−−−−→ G2n+2

commutes up to homotopy. Consequently, there is an induced map

Tel(Gn ×Gn ∧ I+, χ× χ∧ id)→ Tel(G2n, χ
2)

which establishes the homotopy commutativity of Tel(Gn, χ).
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Theorem 7.3. Let X be a quasi-projective real variety and fix a surjection p :
O∞X � L, with L a very ample line bundle. With αL defined as above, if X is
projective, the natural map

MorR(X,GrassR)→ Tel(MorR(X,GrassR), αL)

is a homotopy-theoretic group completion and thus there is a weak equivalence of
spaces

Tel(MorR(X,GrassR), αL)
∼−→ KRsemi(X)

which fits into the evident commutative triangle. For any quasi-projective X, there
is a similarly defined endomorphism

αL : |HomR(X ×R ∆•top,GrassR)| → |HomR(X ×R ∆•top,GrassR)|

and the associated mapping telescope is weakly equivalent to Kalg(∆•top ×R X).

Proof. We prove the assertion involving MorR(X,GrassR); the proof of the asser-
tion involving Kalg(∆•top×RX,GrassR) differs only superficially. If X is not weakly
normal, replacing it by its weak normalization does not affect any of the relevant
spaces, and thus we may assume X is weakly normal.

Recall that the H-space structure on MorR(X,GrassR) arises by choosing any
element of I(2) and using the pairing

I(2)×MorR(X,GrassR)×2 →MorR(X,GrassR),

and furthermore any two such choices yield equivalent homotopy commutative,
homotopy associative H-spaces. In fact, we use for this proof an H-space structure
for MorR(X,GrassR), which does not actually arise in this manner, but which
is nevertheless equivalent to those that do. Note that it suffices to assume X is
connected (as an algebraic variety), for otherwise the map

MorR(X,GrassR)→ Tel(MorR(X,GrassR), αL)

decomposes into a Cartesian product indexed by the components of X, and it
suffices to check the result for each component. Define

µ :MorR(X,GrassR)×MorR(X,GrassR)→MorR(X,GrassR)

by sending a pair (O∞X � E,O∞X � F ) to the quotients determined by the compo-
sition

O∞X ∼= O∞X ⊕O∞X � E ⊕ F,

where the isomorphism is the inverse of the map sending ((e1, e2, . . . ), (f1, f2, . . . ))
to

(e1, . . . , er, f1, . . . , fs, er+1, . . . , e2r, fs+1, . . . ),

where r = rank(E) and s = rank(F ). One readily verifies that µ is strictly
associative and has as a strict identity O∞X � 0.

We claim µ endows MorR(X,GrassR) with an H-space structure which is H-
equivalent to the H-space determined by a point in I(2). To see this, observe
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thatMorR(X,GrassR) decomposes into a disjoint union indexed by the rank of the
quotients

MorR(X,GrassR) =
∐
r≥0

MorR(X,GrassR)rk=r,

and thus the pairing

I(2)×MorR(X,GrassR)×MorR(X,GrassR)→MorR(X,GrassR) (7.3.1)

can be written as a disjoint union of the pairings

I(2)×MorR(X,GrassR)rk=r ×MorR(X,GrassR)rk=s →MorR(X,GrassR)rk=r+s.

For any fixed r, s, the pairing µ on MorR(X,GrassR)rk=r ×MorR(X,GrassR)rk=s

is determined from the pairing (7.3.1) by a point µr,s ∈ I(2) – namely, the point
given by the isomorphism

R∞ ⊕ R∞ ∼= R∞

sending ((e1, e2, . . . ), (f1, f2, . . . )) to (e1, . . . , er, f1, . . . , fs, er+1, . . . ). Fix any point
η ∈ I(2) and choose a path in the connected space I(2) from µr,s to η for each
r, s ≥ 0. This determines a pointed homotopy

I ×MorR(X,GrassR)×MorR(X,GrassR)→MorR(X,GrassR)

from the pairing given by η to the pairing µ, and proves that these pairings deter-
mine equivalent H-spaces.

Note that the map

αL :MorR(X,GrassR)→MorR(X,GrassR)

coincides with µ(p,−). Thus, to prove the theorem, it suffices to show

MorR(X,GrassR)→ Tel(MorR(X,GrassR)n, µ(p,−))

is a homotopy-theoretic group completion, where MorR(X,GrassR)n is the space
MorR(X,GrassR) pointed by pn. Clearly, the telescope Tel(MorR(X,GrassR)n, µ(p,−))
is homotopy equivalent to the telescope Tel(MorR(X,GrassR)2n, µ(p2,−)). Thus,
setting g = p2 and Gn =MorR(X,GrassR)2n, it suffices to show

MorR(X,GrassR)→ Tel(Gn, µ(g,−))

is a homotopy-theoretic group completion, which will be accomplished using Lemma
7.2.

We claim µ(g,−), µ(−, g) : Gn → Gn+1 are homotopic via a base point pre-
serving homotopy. Note that Gn decomposes into a disjoint union index by rank,
Gn =

∐
r≥0Gn,rk=r, and it suffices to establish homotopies joining the two maps

µ(g,−), µ(−, g) : Gn,rk=r → Gn+1,rk=r+1,

for each r ≥ 0. For any x ∈ Gn,rk=r, the quotient µ(g, x) can be obtained from
the quotient µ(x, g) by precomposition with the automorphism of O∞X given by
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an infinite direct sum of copies of the (r + 2)-by-(r + 2) permutation matrix P
associated to the permutation

1 7→ r + 1, 2 7→ r + 2, 3 7→ 1, 4 7→ 2, . . . , r + 2 7→ r.

This is an even permutation and thus there is a path from P to the identity matrix
in the space GLr+2(R), which determines a pointed homotopy of the desired type.

Now we show µ, µ◦τ : Gn×Gn → G2n are homotopic via a base point preserving
homotopy. As before, it suffices to construct an appropriate homotopy

Gn,rk=r ×Gn,rk=s × I → G2n,rk=r+s

for each r, s ≥ 0. For all x, y, the quotient µ(x, y) is obtained from the quotient
µ(y, x) by precomposition with an automorphism of O∞X defined by the direct sum
of infinitely many copies of an (r + s)-by-(r + s) permutation matrix Pr,s. If r
and s are both even numbers, then, as one can readily verify, the matrix Pr,s is
even, and there is thus a path in GLr+s(R) from Pr,s to the identity matrix. This
path determines a homotopy joining µ and µ ◦ τ , when r and s are both even. If r
and s are not both even, notice that µ(x, y) is obviously obtained from µ(y, x) via
precomposition with the direct sum of infinitely many copies of P⊕2

r,s and P⊕2
r,s is

even. Thus by choosing a path from P⊕2
r,s to the identity, we construct a homotopy in

this case as well. Finally, since the base point of Gn×Gn lies in Gn,rk=2n×Gn,rk=2n

(i.e., the base points all have even rank), the homotopy is readily seen to be base
point preserving.

Thus, using Lemma 7.2, the map

MorR(X,GrassR)→ Tel(Gn, µ(g,−)) (7.3.2)

is a map of homotopy associative, homotopy commutative H-spaces, the induced
map on π0 is given by inverting [g], and the induced map on homology with coeffi-
cients in a commutative ring A is given by localizing with respect to the action of
[g]. By Lemma 7.1, this means that the target of (7.3.2) is in particular a group-like
H-space, and thus by definition (see [CCMT; §1]) the map (7.3.2) is a homotopy-
theoretic group completion. The fact that this characterizes KRsemi(X) up to weak
equivalence, i.e., that there is a weak equivalence

Tel(MorR(X,GrassR), αL) ∼ KRsemi(X),

follows from [CCMT; 1.2].

Corollary 7.4. Let X be a real projective variety and T a finite CW complex. Let
[−,−] denote the set of homotopy classes of (unpointed) maps. Then the natural
map

[T,MorR(X,GrassR)]→ [T,KRsemi(X)]

identifies the target with the group completion of the abelian monoid of the source.
Consequently, the group KRsemi

q (X) may be identified as the kernel of the split
surjection

[Sq,MorR(X,GrassR)]+ � KRsemi
0 (X).
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Proof. From Theorem 7.3 we know that KRsemi(X) is weakly equivalent to the
mapping telescope of

MorR(X,GrassR)
αL−→MorR(X,GrassR)

αL−→ . . . .

Thus, the natural map [T,MorR(X,GrassR)]→ [T,KRsemi(X)] identifies the target
with the direct limit

[T,MorR(X,GrassR)]→ [T,MorR(X,GrassR)]→ · · · , (7.4.1)

in which each map is multiplication by the constant map c : T → {p} in the
abelian monoid [T,MorR(X,GrassR)]. It follows that the direct limit of (7.4.1) is
isomorphic to the abelian monoid obtain by inverting the class of the constant map
c in the abelian monoid [T,MorR(X,GrassR)]. As this direct limit is known to be
an abelian group (since KRsemi(X) is a group-like H-space), it follows that

[T,MorR(X,GrassR)]+ ∼= [T,KRsemi(X)].

Since KRsemi(X) is a group-like H-space, it is H-equivalent to the product of H-
spaces KRsemi

0 (X) × KRsemi(X)0, where KRsemi(X)0 is the connected component
of the identity [CCMT; 1.1]. Using this decomposition and [Wh; III.1.11], it follows
that the cofibration sequence

S0 ↪→ Sq+ � Sq

induces a short exact sequence of abelian groups

0→ πqKRsemi(X)→ [Sq,KRsemi(X)]→ KRsemi
0 (X)→ 0,

from which the second claim follows.

The following corollary describes the space KRsemi(X) as an explicit direct limit
of spaces of maps of real varieties.

Corollary 7.5. Let X be a quasi-projective real variety and assume p : OmX � L is
a surjection with L a very ample line bundle. Then the space KRsemi(X) is weakly
equivalent to the space

MorR(X,Z)× Tel(MorR(X,Grassj(Pj(m+1)
R )), θj)

where the transition maps

θj :MorR(X,Grassj(Pj(m+1)
R ))→MorR(X,Grassj+1(P(j+1)(m+1)

R ))

in the telescope are induced by the map sending a quotient q : Oj(m+1)+1
X � E to

the quotient determined by the composition of

O(j+1)(m+1)+1
X ≡ OmX ⊕O

j(m+1)+1
X ⊕OX

(
p 0 0
0 q 0

)
−−−−−−−−−→ L⊕ E.
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Proof. The proof is identical to the proof of [FW2; 3.5].

The significance of Corollary 7.5 is that it relates our theory KRsemi(X) to the
space of algebraic maps of X to various (finite-dimensional) Grassmann varieties.
For example, when X is projective and weakly normal, KRsemi(X) is explicitly a
direct limit of the spaces of algebraic maps from X to the Grassmann varieties
Grassj(Pjn+j

R ), where these spaces are topologized as subspaces of the collection of
all continuous, equivariant maps from XR(C) to Grassj(P2j+j)R(C). The complex
version of these spaces appears in the work of Kirwan [Ki] and Cohen-Lupercio-
Segal [CLS], among others, especially when X is taken to be a complete complex
curve (i.e., a Riemann surface). Thus, just as Ksemi(X) for a complex projective
variety X is a “stabilization” of the spaces of holomorphic maps appearing in [Ki]
and [CLS], the space KRsemi(X) for a real projective variety X is related to the
study of spaces of “equivariant holomorphic” maps between the spaces of complex
points of real varieties. We suggest that these latter “unstable” spaces are worthy
of study in their own right.

§8 Real morphic cohomology and characteristic classes

We introduce real morphic cohomology, the analogue in the real context of mor-
phic cohomology considered in [FL1]. This is a cohomology theory presumably
dual (for smooth varieties) to real Lawson homology as constructed by P. dos San-

tos in [Sa]. We show that there are natural Chern classes from Kalg
∗ (∆•top ×R X)

to this real morphic cohomology for any real quasi-projective variety X. These
Chern classes should be viewed as a simultaneous generalization of the total Chern
class map of [FW2] and [BLLMM]. Indeed, we generalize to the real context the
“double square” of infinite loop spaces presented in [FW2] relating K-theories to
cohomology theories of complex varieties. As we shall see, the double indexing in
Z/2-equivariant singular cohomology receiving Atiyah’s Real K-theory is compati-
ble with the double indexing in motivic cohomology receiving algebraic K-theory as

well as the double indexing in real morphic cohomology receiving Kalg
∗ (∆•top×RX).

Let Chowr(PNR ) be the infinite disjoint union of quasi-projective varieties

Chowr(PNR ) ≡
∐
d≥0

Cr,d(PN ),

where Cr,d parameterizes all effective cycles of dimension r and degree d on PNR .
We write Chowr,R for the ind-variety lim−→N Chowr(PNR ), where the transition maps

are induced by the closed immersions PNR ↪→ PN+1
R given by inclusion into the first

N + 1 homogeneous coordinates. Notice that Chowr(PNR ) and Chowr,R are each
abelian monoids under addition of cycles in the category of ind-varieties.

In general, if M is a topological abelian monoid, its “naive group completion” is
the quotient space M+ = M ×M/(x, y) ∼ (x+m, y +m), which has the induced
structure of a topological abelian group.

Definition 8.1. Let X be a real quasi-projective variety. For each r ≥ 0, define

MorR(X,Chowr(PNR )) −→ Zr(X,PNR )

to be the naive group completion of the topological abelian monoidMorR(X,Chowr(PNR )).
Define

MorR(X,Chowr,R) −→ Zr(X,P∞R )
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to be the direct limit of the maps

MorR(X,Chowr(PNR )) −→ Zr(X,PNR )

as N goes to infinity. For any d ≥ 0, we let Zr(X,PNR )d denote the pre-image under
the degree map Zr(X,PNR ) → Z of d ∈ Z, and Zr(X,P∞R )d is defined similarly.
Furthermore, we write Zq(X)R for the naive group completion of the topological
abelian quotient monoid

MorR(X,Chowr(PqR))/MorR(X,Chowr(Pq−1
R )).

Finally, the Real morphic cohomology groups of X are defined by the formula

LqHRp(X) ≡ π2q−pZq(X)R.eqno(8.1.1)

Proposition 8.2. With hypotheses and notation as in Definition 8.1, for any r ≥ 0
the natural monoid homomorphisms

MorR(X,Chowr(PNR ))→ Zr(X,PNR )

and
MorR(X,Chowr,R)→ Zr(X,P∞R )

are homotopy-theoretic group completions. Moreover, for any q ≥ 0, the sequence
of maps

Z0(X,Pq−1
R ) −→ Z0(X,PqR) −→ Zq(X)R

is a fibration sequence up to homotopy.

Proof. The proof is parallel to the proof of [F4; 1.7]. Indeed, the key technical
arguments of [FL2; App. C] concerning the topology of constructible subsets of PmC
are equally valid for constructible subsets of PmR , and in particular the topological
monoidMorR(X,Chowr(PN )) is “tractable”. This is enough to conclude that there
is a natural weak homotopy equivalence

Zr(X,PNR )
∼−→ ΩBMorR(X,Chowr(PNR ))

by using the argument given in the proof of [FL2; C.4]. (Recall that given a topo-
logical abelian monoid M , its homotopy-theoretic groups completion can be given
as ΩBM .) Since the conditions defining a homotopy-theoretic group completion
(cf. [CCMT; §1]) commute with direct limits, we conclude

MorR(X,Chowr,R)→ Zr(X,P∞R )

is also a homotopy-theoretic group completion.
The proof of the final assertion follows from the fact that that

MorR(X,Chowr(Pq−1
R ))

⊂−→MorR(X,Chowr(PqR))

is a cofibration of tractable monoids and MorR(X,Chowr(PqR)) is tractable as an

MorR(X,Chowr(Pq−1
R ))-space, using the argument found in the proof of [FG; 1.6].

Since it turns out to be convenient, we introduce the notion of the empty cycle in
PNR , which by definition has degree 1 and dimension −1. Thus, C−1,d(PNR ) is a one
element set consisting of the formal sum of d copies of the empty cycle. Further,
Z−1(X,PNR ) is isomorphic to the abelian group Z containing all integer multiples
of the empty cycle. Note that Z−1(X,PNR )1 corresponds to the singleton {1} ⊂ Z.
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Proposition 8.3. Let X be a quasi-projective real variety. Then, in analogy with
the complex context, the following hold:

(a.) (Lawson suspension) Algebraic suspension of cycles induces weak equivalences

Σ : Zr(X,PNR )
∼−→ Zr+1(X,PN+1

R ), Σ : Zr(X,P∞R )
∼−→ Zr+1(X,P∞R ).

(b.) (Splitting) There is a natural weak equivalence

Z0(X,P∞R )
∼−→ lim−→

N

N∏
q=0

Zq(X)R.

Proof. The suspension map

Σ : Zr(X,PNR ) −→ Zr+1(X,PN+1
R )

is given by embedding PNR in PN+1
R by using the last N+1 homogeneous coordinates

and then taking linear join of cycles with the one-point cycle corresponding to the
point [1 : 0 : · · · : 0] ∈ PN+1

R . In particular, the suspension map is readily verified
to be compatible with the maps

Zr(X,PMR )→ Zr(X,PM+1
R ), Zr+1(X,PMR )→ Zr+1(X,PM+1

R ),

in the direct limits which define Zr(X,P∞R ) and Zr+1(X,P∞R ). The suspension map

Σ : Zr(X,P∞R ) −→ Zr+1(X,P∞R )

is defined by taking the direct limits of these “finite” suspension maps, and so in
particular it suffices to establish the first suspension equivalence.

To show this, we merely observe that the homotopies constructed in the proof of
[FL1; 3.3] are in fact “algebraic” – i.e., are induced by continuous algebraic maps
of the form T × A1 → S. Thus, the argument of [op. cit.] carries over to our
context, word for word, replacing the topological realization functor U 7→ U(C)
with U 7→ U(R) everywhere.

Similarly, part (b) follows directly from the proof of [FL1; 2.10], since the split-
tings constructed are algebraic.

As in [FW2], we find it convenient to introduce the total Segre class rather than
the total Chern class. Recall that the total Segre class s(E) of a vector bundle
E equals the total Chern class of the virtual bundle −E. In particular, the total
Chern class of E coincides with 1/s(E).

For any N > n > 0, we let

sN,n : Grassn(PNR ) −→ Cn−1,1(PNR )

denote the map of [FW2; 6.1] which sends the universal locally free rank n quotient

O⊕N+1
Grassn(PN

R )
� Un,N to the effective, relative dimension n− 1 cocycle P((Un,N )#)

on Grassn(PNR ). Here, (Un,N )# is the OGrassn(PN
R )-linear dual of Un,N . Taking

limits as N goes to infinity, we obtain the map

s =
∐
r

sr : GrassR −→ ChowR,1 ≡
∐
r≥0

lim−→
N→∞

Cr−1,1(PNR ),
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which induces the map (also written as s)

s :MorR(X,GrassR)→
∐
r≥0

Zr−1(X,P∞R )1,

obtained by composition.
The action of the operad I onMorR(X,GrassR) suggests the following definition

of an action of I on
∐
r≥0Zr−1(X,P∞R ): Given effective cycles γi ∈ Cri,di(P∞R ), for

i = 1, . . . , n and a linear injection α : (R∞)×n ↪→ R∞, associate to α the evident
closed immersion

α : P∞R q · · · q P∞R ↪→ P∞R
and to the each cycle γi, the pushforward α∗(γi). Now form a new cycle by taking
the linear join of α∗(γ1), . . . , α∗(γn) – that is, take the union of all n-dimensional
linear subvarieties of P∞R containing one point from each of α∗(γ1), . . . , α∗(γn).
Extending by linearity, we define natural pairings

I(n)×

∐
r≥0

Zr−1(P∞R )

×n −→∐
r≥0

Zr−1(P∞R ),

where by convention the linear join of the empty cycle with any other cycle δ is δ
itself. These in turn extend by functoriality to give natural pairings

I(n)×

∐
r≥0

Zr−1(X,P∞R )

×n −→∐
r≥0

Zr−1(X,P∞R ),

which are readily checked to satisfy the axioms of an operad action. Moreover,
these pairings clearly behave in a multiplicative fashion on degree, and thus restrict
to endow ∐

r≥0

Zr−1(X,P∞R )1

with the structure of an I-space such that total Segre class map

s :MorR(X,GrassR)→
∐
r≥0

Zr−1(X,P∞R )1

is a morphism of I-spaces.

Proposition 8.4. Let X be a smooth, connected, quasi-projective real variety.
Then the homotopy-theoretic group completion of the I-space∐

r≥0

Zr−1(X,P∞R )1

is equivalent to the map∐
r≥0

Zr−1(X,P∞R )1 → Z×Z0(X,P∞R )1
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which is given on the rth component, r > 0, by choosing a homotopy inverse of the
map

{r} × Z0(X,P∞R )1
Σ◦r−1

−−−−→ Zr−1(X,P∞R )1,

and which is given by the evident constant map for r = 0. Thus the Segre map s
introduced above induces a map of infinite loop spaces of associated group comple-
tions,

s : KRsemi(X) −→ Z×Z0(X,P∞R )1,

which we call the total Segre class.

Proof. This is proven exactly as is [FW2; 6.5].

Note that in Proposition 8.4, the H-space structure on the factor Z is the usual
one given by addition. The composition of s with projection to Z is, of course, the
rank map. Thus, we have implicitly defined the 0th Segre class of an element of
KRsemi

0 (X) to be its rank.
We now focus on the space

MapsZ/2(XR(C),Zr(P∞R (C)))

where Zr(P∞R (C)) denotes the naive group completion of the topological abelian
monoid with Z/2-action obtained by taking the space of complex points of the
ind-variety

∐
d Cr,d(P∞R ). (We adhere to the conventions introduced above for the

case r = −1.) Further, we writeMapsZ/2(XR(C),Zr(P∞R (C)))1 for the subspace of
degree one cocycles – i.e., the fiber over 1 of the degree map

deg :MapsZ/2(XR(C),Zr(P∞R (C)))→ Z.

We have the following analogue of Proposition 8.4.

Proposition 8.5. The operad I acts naturally on the space∐
r≥0

MapsZ/2(XR(C),Zr−1(P∞R (C)))1

and the homotopy-theoretic group completion with respect to this action is weakly
equivalent to∐
r≥0

MapsZ/2(XR(C),Zr−1(P∞R (C)))1 →MapsZ/2(XR(C),Z)×MapsZ/2(XR(C),Z0(P∞R (C)))1.

Proof. The proof of [FW2; 6.5] applies.

We next recall a fundamental result due to P. dos Santos [Sa; 3.2], which identifies
the Z/2-equivariant homotopy type of Z0(P∞R (C)) with the Z/2-spectrum

lim−→
N→∞

N∏
q=0

K(Z,Rq,q).

Here, K(Z,Rp,q) denotes the Z/2-equivariant Eilenberg-MacLane spectrum arising
from the constant Mackey functor Z associated to Z and the Z/2-space Rp,q, defined
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as Rp+q equipped with the Z/2 action given as multiplication by −1 on the last q

coordinates. Thus we may identify MapsZ/2(XR(C),Z0(P∞R (C))) with

lim−→
N→∞

N∏
q=0

MapsZ/2(XR(C),K(Z,Rq,q)).

The homotopy groups of MapsZ/2(XR(C),K(Z,Rq,q)) give the equivariant coho-
mology groups of the Z/2-space XR(C) with twisted coefficients. We write these
groups more simply as

Hq−p,q
Z/2 (XR(C),Z) ≡ πpMapsZ/2(XR(C),K(Z,Rq,q)). (8.6)

As in [FW2; §6], we also define the purely algebraic cycle theory

Zr−1(∆• ×R X,P∞R )1

as the geometric realization of the fiber over 1 of the map of simplicial abelian
groups (

d 7→ MorR(∆d ×R X,Zr−1P∞R )+
)
→ Z,

where the superscript + denotes taking group completion of the indicated abelian
monoid. By [FW2; 6.9], the space∐

r≥0

Zr−1(∆• ×R X,P∞R )1

has a natural structure as an |I(∆•)|-space, there is a map

s : |HomR(∆• ×R X,GrassR)| → Zr−1(∆• ×R X,P∞R )1,

of |I(∆•)|-spaces defined analogously to the maps s above, and the homotopy-
theoretic group completion of∐

r≥0

Zr−1(∆• ×R X,P∞R )1

decomposes up to weak homotopy as

∞⊕
q=0

Z0(∆• ×R X,PqR)+/Z0(∆• ×R X,Pq−1
R )+.

Moreover, the collection of quotient chain complexes of abelian groups Z0(∆• ×R
X,PqR)+/Z0(∆• ×R X,Pq−1

R )+, q ≥ 0, gives the motivic cohomology groups of X,
when X is smooth (as defined, for example, in [FV]), by the formula

H2q−i
M (X,Z(q)) = πiZ0(∆• ×R X,PqR)+/Z0(∆• ×R X,Pq−1

R )+. (8.7)
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Theorem 8.8. Let X be a quasi-projective real variety. Then there is a natural
commutative double square of |I(∆•)|-spaces

HomR(∆• ×R X,GrassR)
s−−−−→

∐
r≥0

Zr−1(∆• ×R X,P∞R )1y y
MorR(X,GrassR)

s−−−−→
∐
r≥0

Zr−1(X,P∞R )1y y
MapsZ/2(XR(C),GrassR(C))

s−−−−→
∐
r≥0

MapsZ/2(XR(C),Zr−1(P∞R (C)))1.

If X is smooth, by taking homotopy groups of the induced diagram of homotopy-
theoretic group completions, we obtain for each i ≥ 0 a commutative double square

Kalg
i (X) −−−−→ Kalg

i (∆•top ×R X) −−−−→ KR−itop(XR(C))

si

y si

y si

y⊕
q≥0

H2q−i
M (X,Z(q)) −−−−→

⊕
q≥0

LqHR2q−i(X) −−−−→
⊕
q≥0

Hq−i,q
Z/2 (XR(C),Z),

(8.8.1)
where the group laws for the bottom row are induced by join of cycles. Here, the
groups in the lower left corner of (8.8.1) are the motivic cohomology groups as
defined in (8.7), those in the lower middle are defined in (8.1.1), and those the the
lower right corner are defined in (8.5.1).

Proof. The commutativity of the top diagram is essentially given by construction.
The second diagram is obtained from the first by applying πj to the associated
diagram of infinite loop spaces obtained from homotopy-theoretic group completion.
The fact that the homotopy-theoretic group completion of Hom(∆• ×R X,GrassR)
is Kalg(X) for X smooth is given by Proposition 1.4. The groups appearing in
the bottom-left corner of (8.8.1) are correct by [FW2; 6.9]. Those appearing in
the bottom middle of (8.8.1) are shown to be correct by using Proposition 8.3(b),
which shows that there is a weak equivalence

Z0(X,P∞R )1 ∼ {1} × lim−→
N

N∏
j=1

Zj(X)R,

together with Proposition 8.4. The bottom-right conner is correct by Proposition
8.5 and the calculation of dos Santos [Sa; 3.2] mentioned above.

Recall that for a smooth variety X, the group law of
⊕
q≥0

LqHR2q−i(X) is given

in terms of the group-like H-space

Z×Z0(X,P∞R )1.

The H-space structure on Z is the obvious one given by addition and the H-space
structure for Z0(X,P∞R )1 is described as follows: Given two cycles γ1, γ2 in X×P∞R
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which have degree 1 and are equidimensional over X, their product is given by first
moving them into disjoint linear subspaces in a predetermined manner and then
taking their linear join.

As seen in the proof of Theorem 8.7, there is an equivalence

Z0(X,P∞R )1 ∼

lim−→
N

N∏
j=0

Zj(X)R


1

=

{1} × lim−→
N

N∏
j=1

Zj(X)R

 . (8.8)

From this decomposition we see that an arguably more logical pairing for⊕
q≥0

LqHR2q−i(X)

could be given by the join pairing

# : Zp(X)×Zq(X)→ Zp+q(X), (8.9)

defined for all p, q ≥ 1. Here, (8.9) is defined by choosing a homotopy inverse for
the suspension map in the diagram

MorR(X,Z0(PpR))×MorR(X,Z0(PqR))
#−−−−→ MorR(X,Z1(Pp+q+1

R ))

suspension

x∼
MorR(X,Z0(Pp+qR )),

where # is defined by embedding PpR and PqR in Pp+q+1
R via the first p+ 1 and last

q + 1 homogeneous coordinates, respectively, and then taking linear join of cycles.
The following proposition asserts that these two potentially different product

rules for
⊕
q≥0

LqHR2q−i(X) are indeed equivalent, and that an analogous result

holds for both
⊕
q≥0

H2q−i
M (X,Z(q)) and

⊕
q≥0

Hq−i,q
Z/2 (XR(C),Z). One way to view this

result is that it asserts that the join pairing that gives Z×Z0(X,P∞R )1 the structure
of an H-space is a graded pairing with respect to the decomposition (8.8), at least up
to homotopy. Alternatively, one can view this result as asserting that the Whitney
sum formula holds for the pairing (8.9).

Proposition 8.10. The middle vertical maps in (8.8.1) are homomorphisms of
groups where the group law for the target is given by the pairings

LpHR2p−i(X)× LqHR2q−i(X)→ Lp+qHR2p+2q−i(X)

induced by the pairings (8.9). Thus, writing sq,i for the composition of si with

projection to LqHR2q−i(X), given x, y ∈ Kalg
i (∆•top ×R X), the familiar Whitney

sum formula holds:

sq,i(x+ y) =
∑
k+l=q

sk,i(x)#sl,i(y),

for all i, q. The other two vertical maps also satisfy the Whitney sum formulas with
respect to the analogous pairings.

Proof. This is proven just as is [FW2; 6.6] by using the real analogue of [FW1; 5.3].
The Whitney sum formula holds since the proof of [FW1; 5.3] carries over, word
for word, to the real context, replacingMorC(−,−) withMorR(−,−) everywhere.
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Remark 8.11. Recall the pairing on higher homotopy groups (i.e., on πi for i > 0)
induced by an H-space structure necessarily coincides with the usual product rule
for homotopy groups. It follows immediately that in the case i > 0, the formula of
Proposition 8.10 has to be simply

sq,i(x+ y) = sq,i(x) + sq,i(y).

This seeming contradiction is explain by the fact that for any p, q ≥ 1 the join
pairing (8.9) factors through Zp(X)∧Zq(X) and thus induces the trivial pairing
upon applying πi(−), i ≥ 1. However, the pairing induced by (8.9)

# : Zp(X)∧Zq(X)→ Zp+q(X), p, q ≥ 0,

is of interest even when considering higher homotopy groups, in that by taking smash
product of maps in the usual fashion, one defines multiplicative pairings

LqHRp(X)⊗ LsHRr(X)→ Lq+sHRp+r(X).

These pairings give the “cup product” for real morphic cohomology.

§9 The Panin-Smirnov Axioms

In a recent preprint [PS], I. Panin and A. Smirnov discuss “oriented multiplicative
cohomology theories” on smooth algebraic varieties over a field. Their general
discussion shows how such a structure naturally associates to a projective map of
smooth varieties a push-forward map on the theory. Furthermore, they analyze
how such push-forward maps compare with respect to a natural transformation of
such theories. The latter is exactly the Riemann-Roch problem, as formulated by
A. Grothendieck.

In this section, we verify that the theory Kalg
∗ (∆•top ×R −) satisfies the axioms

of Panin and Smirnov. We then observe that the push-forward maps associated for
this theory arise naturally from the discussion of localization in Section 6. Finally,
we point out that one would have a Riemann-Roch theorem relating this theory to
real morphic cohomology provided that one could verify that the Chern character
is multiplicative. (The multiplicativity of a Chern character map in the complex
setting is asserted in [CL1; 4.11].)

Recall that we introduced in Definition 2.3 the spectrum KZ(∆•top×RX), repre-

senting the theory Kalg(∆•top ×R −) with “supports” in a closed subvariety Z ⊂ X.

We write Sm2
R for the category of pairs (X,U) whereX is a smooth, quasi-projective

real variety and U ⊂ X is a Zariski open subset.

Theorem 9.1. Consider the graded-abelian-group-valued functor

(X,X − Z) 7→ Kalg
Z,∗(∆

•
top ×X),

defined on Sm2
R and equipped with the external cup product operation introduced

in Theorem A.1. Then this theory satisfies the Panin-Smirnov axioms of a strictly
commutative multiplicative cohomology theory. Specifically, letting (X,U) and (Y, V )
denote any two smooth pairs with Z = X − U,W = Y − V , the following hold:
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(a) There is a natural long-exact sequence

· · · → Kalg
∗ (∆•top ×X)→ Kalg

∗ (∆•top × U)
∂−→ Kalg

Z,∗−1(∆•top ×X)

→ Kalg
∗−1(∆•top ×X)→ · · · .

(b) Nisnevich excision holds – i.e., if there is an étale map π : X ′ → X such that
the inclusion Z ↪→ X factors through π, then the natural map

Kalg
Z,∗(∆

•
top ×X)→ Kalg

Z,∗(∆
•
top ×X ′)

is an isomorphism for all ∗.
(c) Homotopy invariance holds – i.e., the natural map

Kalg
∗ (∆•top ×X)→ Kalg

∗ (∆•top ×X × A1)

is an isomorphism for all ∗.
(d) The cup product operation of Theorem A.1 is associative – i.e., we have a∪ (b∪

c) = (a ∪ b) ∪ c for all appropriate a, b, and c.

(e) The element 1 in Kalg
0 (∆•top×SpecR) ∼= Z is a two-sided identity for cup product.

(f) For all a ∈ Kalg
p (∆•top × U), b ∈ Kalg

W,q(∆
•
top × Y ), c ∈ Kalg

Z,p(∆
•
top × X) and

d ∈ Kalg
q (∆•top × V ), the formulas

∂(a ∪ b) = ∂(a) ∪ b
∂(c ∪ d) = (−1)pc ∪ ∂d

hold in Kalg
Z×W,p+q−1(∆•top ×X × Y ).

(g) The formula a ∪ b = (−1)pqb ∪ a holds for all a ∈ Kalg
Z,p(∆

•
top × X) and b ∈

Kalg
W,q(∆

•
top × Y ).

Proof. Property (a) follows from Corollary 6.7; property (b) is given by Proposition
3.5; and property (c) is given by Proposition 2.6.

To prove property (d), we use the explicit functorial model AZ(X) for the spec-

trum KalgZ (X) given in Appendix A. Then, given three pairs (X,U), (Y, V ), (D,E)
with closed complements Z,W,C, the two possible pairings

AZ(X)i ∧AW (Y )j ∧AC(D)k → AZ×RW×RC(X ×R Y ×R D)i+j+k

are naturally homotopic. Naturality of the homotopy ensures that we obtain a
similar associativity claim by inserting the simplicial direction ∆•top. The desired
result now follows by using suitable choices for the space-level pairings as given in
the proof of Theorem A.1.

The identity element of Kalg
0 (∆•top × SpecR) is induced by pull-back from an

element ι of Kalg
0 (SpecR) = π1A(SpecR)1 represented by a map S1 → A(SpecR)1.

This element induces a map

S1 ∧AZ(X)i → AZ(X)i+1
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naturally homotopic to the structure map of the prespectrum Kalg
Z (X) for all i.

Thus, property (e) follows immediately.
Property (g) is a standard property of the multiplication for prespectra. Property

(f) follows from a standard argument using the fact that there is a commutative
diagram (in the homotopy category of CW complexes)

AZ(∆•top ×R X)i ∧AW (∆•top ×R Y )j −−−−→ AZ×RW (∆•top ×R X ×R Y )i+jy y
A(∆•top ×R X)i ∧AW (∆•top ×R Y )j −−−−→ AX×RW (∆•top ×R X ×R Y )i+jy y
A(∆•top ×R U)i ∧AW (∆•top ×R Y )j −−−−→ AU×RW (∆•top ×R U ×R Y )i+j

whose rows are homotopy fibration sequences (and such that the null-homotopies
of the compositions of the rows are compatible).

From the point of view taken by Panin and Smirnov, the key aspect of an ori-
entation of a cohomology theory is a suitable structure of Thom classes. Adopting
this point of view, we give the following definition.

Definition 9.2. Let (X,U) 7→ H∗X−U (X) be a graded abelian group valued functor

on Sm2
R equipped with an external product satisfying conditions (9.1.a) - (9.1.g).

Then such a multiplicative cohomology theory is said to be oriented if it is provided
with the data of a Thom class

t(E) ∈ H∗X(E)

associated to any algebraic vector bundle E over a smooth variety X, such that the
following properties hold:

(i.) For any morphism f : Y → X of smooth real varieties, and any algebraic vector
bundle E on X, we have

f∗(t(E)) = t(f∗(E)).

(ii.) If φ : E → E is an automorphism, then

φ(t(E)) = t(E).

(iii.) For any pair of algebraic vector bundles E1, E2 on X,

p∗1(t(E1)) · p∗2(t(E2)) = t(E1 ⊕ E2) ∈ H∗X(E1 ⊕ E2).

(iv.) Multiplication by the Thom class

− · t(E) : H∗(X) −→ H∗(E)

is an isomorphism of H∗(X)-modules.

In [PS; 5.2], Panin and Smirnov assert that to give an orientation on a multi-
plicative cohomology theory it suffices to endow the theory with less data: namely,
a first Chern class c1(L) for each smooth quasi-projective real variety X and each
line bundle L over X. These Chern classes are required to satisfy the following four
conditions: condition (9.2.i), condition (9.2.ii), the condition that c1(1) (i.e., the
first Chern class of the trivial line bundle) vanishes, and the condition that

(1, c1(O(−1)) : H∗(X)2 −→ H∗(X ×R P1
R)

is an isomorphism.
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Proposition 9.3. The multiplicative cohomology theory Kalg
∗ (∆•top ×R −) is an

oriented cohomology theory in the sense of Panin-Smirnov provided that one de-
fines for a line bundle L over a smooth variety X the first Chern class c1(L) ∈
Kalg

0 (∆•top×RX) to be the image under the natural map Kalg
0 (X)→ Kalg

0 (∆•top×RX)
of the class [1]− [L∨], where L∨ denotes the dual of L.

Proof. The first three conditions required of the first Chern class follow immediately

from the fact that these conditions are satisfied in Kalg
∗ (−) with c1(L) = [1]− [L∨].

The fourth condition follows from the projective bundle theorem (Proposition 2.7).

The Thom class t(E) ∈ Kalg
0,X(∆•top×RE) resulting from this choice of first Chern

class is that constructed as discussed in the proof of Theorem 6.6.
As observed in the discussion of localization in Section 6 (which is inspired by

[PS]), Thom classes determine a Gysin map

Kalg(∆•top ×R Z) −→ Kalg(∆•top ×R X)

for any closed immersion i : Z ↪→ X of smooth varieties. Recall that any projective
map f : X → Y can be factored as a composition of a closed immersion i : X ↪→
Y × PNR and the projection p : Y × PNR � Y for some positive integer N . To define
a push-forward map

f∗ = p∗ ◦ i∗ : Kalg
∗ (∆•top ×R X)→ Kalg

∗ (∆•top ×R Y ),

it suffices to make a choice of projection for

p∗ : Kalg
∗ (∆•top ×R Y × PN )→ Kalg

∗ (∆•top ×R Y )

and choose i∗ to be the Gysin map. In general for an oriented multiplicative
cohomology theory H∗−(−), Panin-Smirnov define p∗ using the formal group law

associated to H∗. In the case of Kalg
∗ (∆•top ×R −), this choice is given by the

projection

p∗ : Kalg
∗ (∆•top ×R Y × PN ) ∼= Kalg

∗ (∆•top ×R Y )N+1 → Kalg
∗ (∆•top ×R Y )

having the property that the composition of

Kalg
∗ (∆•top ×R Y )

∪γi

−−→ Kalg
∗ (∆•top ×R Y × PN )

with p∗ is equal to 0 for 0 ≤ i < N and the identity for i = N (cf. Proposition 2.7).

Remark 9.4. It seems reasonable to expect in the special case where the projective
map f : X → Y is finite and étale that f∗ equals the transfer map introduced in
Section 5. We have not attempted to verify this compatibility.

A key result of Panin and Smirnov is that a natural transformation of multiplica-
tive cohomology theories Ψ : H∗(−) → G∗(−) each of which is oriented satisfies
the Riemann-Roch relation. Namely, given any morphism of smooth projective
varieties f : X → Y , then

fG,∗(Ψ(α) · TdΨ(TX)) = Ψ(fH,∗(α) · TdΨ(TY )),
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where fH,∗, fG,∗ are the push-forward maps for H∗ and G∗, TX and TY are the
tangent bundles of X and Y , and TdΨ denotes the Todd genus. (Panin-Smirnov
require that either f is a closed immersion or that the inverse Todd genus Td−1

Ψ

satisfies a certain invertibility relation enabling TdΨ to be defined.)
One elementary application of the Panin-Smirnov Riemann-Roch Theorem, easy

to verify directly without recourse to their work, is that the natural transformations

Kalg
∗ (−) −→ Kalg

∗ (∆•top ×R −) −→ KR−∗top((−)R(C))

commute with push-forward maps.

Remark 9.5. It is more interesting to apply the Panin-Smirnov Riemann-Roch
Theorem to the natural transformation

ch∗ : Kalg
∗ (∆•top ×R −) −→

⊕
q≥0

LqHR2q−∗(−,Q),

where the Chern character ch∗ is defined in the usual way in terms of the individual

Chern classes (constructed in Section 8) cq,i : Kalg
i (∆•top ×R −) −→ LqHR2q−i(−)

using universal polynomials (with rational coefficients). We expect to investigate
such a Riemann-Roch theorem in the future.

Appendix A: Models for algebraic
K-theory and multiplicative properties

In this appendix, we use the the strictly functorial model of the algebraic K-
theory spectrum of a variety with supports in a subvariety introduced in [FS; App.

B] to rigorously define the infinite loop space Kalg
Z (∆•top×X) as well as the external

cup product operation of such spaces. We then establish the compatibility of this
cup product operation with the analogous operations in algebraic and topological
K-theory.

As in [FS; App. B], for any quasi-projective real variety X and closed subscheme

Z, there exits a prespectrum Kalg
Z (X), by which we mean a sequence of pointed CW

complexes
AZ(X)0, AZ(X)1, . . .

together with maps
Σ1AZ(X)i → AZ(X)i+1.

In the notation of [op. cit.], we define AZ(X)i to be the geometric realization of
the multisimplicial set ω(S•)

iCZP(X), where CZP(X) is (a suitably strict model
for) the Waldhausen category of bounded chain complexes of vector bundles on X
which are acyclic on U , S• denotes Waldhausen’s S-construction, and ω denotes

the class of quasi-isomorphisms of chain complexes. The prespectrum Kalg
Z (X) has

the property that the adjoint map

AZ(X)i → ΩAZ(X)i+1

is a homotopy equivalence of CW complexes for all i ≥ 1, and gives the homotopy-

theoretic group completion of AZ(X)0 in the case i = 0. The space Kalg
Z (X) used

throughout the body of this paper is formally defined as Ω1AZ(X)1.
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By a pair of varieties, we mean a pair (X,U) with X a quasi-projective real
variety and U an open subvariety. The (reduced) complement of U in X is typically

written as Z. The assignment (X,U) 7→ Kalg
Z (X) is a natural contravariant functor

from such pairs to prespectra. (A map of pairs (X,U) → (X ′, U ′) is a morphism
f : X → X ′ such that f(U) ⊂ U ′ and a map of prespectra is a sequence of maps
on the constituent spaces compatible with the structure maps.) In particular, this
functor respects compositions exactly, not just up to natural homeomorphisms.

For each i, j ≥ 0 and pair of pairs (X,U), (Y, V ) with Z = X − U,W = Y − V ,
there exists a continuous pairing of spaces

AZ(X)i ∧AW (Y )j → AZ×RW (X ×R Y )ij

for all i, j ≥ 0, defined by tensor product of chain complexes. These pairings
commute with the structure maps of the prespectra in the evident manner. Thus,
there is a pairing of prespectra

Kalg
Z (X)×Kalg

W (Y )→ Kalg
Z×RW

(X ×R Y ).

(For our purposes, a pairing of prespectra E × F → G, is a family of pairings
Ei ∧Fj → Gi+j such that the appropriate diagrams commute strictly – see [FS;
B.3]) To define a multiplication pairing on total spaces and thus an external cup
product operation on homotopy groups, one chooses an inverse to the displayed
homotopy equivalence in the diagram

Ω1AZ(X)1 ∧Ω1AW (Y )1 −−−−→ Ω2(AZ(X)1 ∧AW (Y )1)y
Ω2AZ×RW (X ×R Y )2

∼
x

Ω1AZ×RW (X ×R Y )1.

Since the original pairings were compatible with the prespectrum structures, we
can equivalently define this pairing by choosing a homotopy inverse in the diagram

ΩpAZ(X)p ∧ΩqAW (Y )q −−−−→ Ωp+q(AZ(X)p ∧AW (Y )q)y
Ωp+qAZ×RW (X ×R Y )p+q

∼
x

Ω1AZ×RW (X ×R Y )1,

for all p, q ≥ 1. Thus, any choice of p, q ≥ 1, determines a unique homotopy class
of maps

Kalg
Z (X)∧Kalg

W (Y )→ Kalg
Z×RW

(X ×R Y ).

Given a pair (X,U) and a compact CW complex T , define AT×RZ(T ×R X)i as
the direct limit

lim−→
T→M(R)

AM×RZ(M ×R X)i,
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for all i and letKalg
T×RZ

(T×RX) denote the associated prespectrum. One may readily

verify that T 7→ Kalg
T×RZ

(T ×R X) defines a functor from compact CW complexes

to prespectra. We write this functor more briefly as T 7→ Kalg
Z (T ×R X). Now

associate to a pair (X,U) the sequence of spaces

|AZ(∆•top ×R X)i|, i ≥ 0.

One may check this gives a functor as before and that the induced structure maps
determine a prespectrum. Thus, we obtain a functor from pairs to prespectra,
written

(X,U) 7→ Kalg
Z (∆•top ×R X),

which satisfies properties analogous to Kalg
Z (X).

It follows from [TT], that for any pair (X,U), with U an open subscheme of
X, and for all i ≥ 0, the sequence (induced by the evident maps of pairs (U, ∅) →
(X, ∅)→ (X,U))

ΩiAZ(X)i → ΩiA(X)i → ΩiA(U)i

is a homotopy fibration sequence for all i ≥ 1. This means that there is a cho-
sen null-homotopy for the composition of the above maps and the induced map
from ΩiAZ(X)i to the homotopy fiber of ΩiA(X)i → ΩiA(X − U)i is a homotopy
equivalence. As establish in Corollary 3.4, when X is smooth, the sequence

AZ(∆•top ×R X)i → A(∆•top ×R X)i → A(∆•top ×R U)i

is a homotopy fibration sequence for all i ≥ 1. Thus, the prespectrum Kalg
Z (∆•top×R

X) really can be said to represent the theory Kalg(∆•top ×R −) with supports in a
closed subscheme (at least for smooth pairs).

To extend the multiplication pairing for Kalg
Z (X) to Kalg

Z (∆•top ×R X), we define
a pairing

AZ(∆•top ×R X)i ∧AW (∆•top ×R Y )j → AZ×RW (∆•top ×R X ×R Y )i+j ,

for each i, j ≥ 0, by first defining for each d, e ≥ 0 a pairing of the form

AZ(∆d
top ×R X)i ∧AW (∆e

top ×R Y )j → AZ×RW (∆d
top ×∆e

top ×R X ×R Y )i+j .

This latter pairing is defined by associating to a pair of indices involved the direct
limits, ∆d

top → U(R) and ∆e
top → V (R), the index ∆d

top × ∆e
top → (U ×R V )(R).

Letting d and e vary, these pairings are readily verified to give pairings of bisimplicial
spaces. The geometric realization of the bisimplicial set

d, e 7→ AZ×RW (∆d
top ×∆e

top ×R X ×R Y )i+j ,

is naturally homeomorphic to the geometric realization of

d 7→ AZ×RW (∆d
top ×∆d

top ×R X ×R Y )i+j ,

which in turn is naturally homotopy equivalent to to the geometric realization of

d 7→ AZ×RW (∆d
top ×R X ×R Y )i+j
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under the map induced by the diagonal ∆d
top ↪→ ∆d

top × ∆d
top. The desired multi-

plication pairing is thus defined by choosing an inverse of the displayed homotopy
equivalence in the diagram

AZ(∆•top ×R X)i ∧AW (∆•top ×R Y )j −−−−→ AZ×RW (∆•top ×∆•top ×R X ×R Y )i+j

∼
x

AZ×RW (∆•top ×R X ×R Y )i+j .

Compatibility of these pairings up to homotopy with the structure maps of the
prespectra is readily verified. Finally, the external cup product operation for
Kalg(∆•top ×R −) is defined by choosing a homotopy inverse to the map

Ω1AZ×RW (∆•top ×R X ×R Y )1
∼−→ Ω2AZ×RW (∆•top ×R X ×R Y )2

just as before. We can equivalently define this pairing using the spaces ΩpAZ(∆•top×R
X)p, ΩqAW (∆•top ×R Y )q, and Ωp+qAZ×RW (∆•top ×R X ×R Y )p+q, for any p, q ≥ 1,
instead.

We summarize our results with the following theorem. Note that since we choose
a homotopy inverse to the map induced by the diagonal map ∆•top → ∆•top ×∆•top,
we cannot obtain a pairing of prespectra as defined above. However, we do obtain a
pairing on the level of spaces, unique up to homotopy. This suffices for our purposes,
although with more work, one could presumably obtain a pairing of prespectra.

Theorem A.1. For any p, q ≥ 1, by choosing inverses of homotopy equivalences
as needed in the diagram

Ω1AZ(∆•top ×R X)1 ∧Ω1AW (∆•top ×R Y )1

∼
y

ΩpAZ(∆•top ×R X)p ∧ΩqAW (∆•top ×R Y )qy
Ωp+q(AZ(∆•top ×R X)p ∧AW (∆•top ×R Y )q)y
Ωp+qAZ×RW (∆•top ×∆•top ×R X ×R Y )p+q

∼
x

Ωp+qAZ×RW (∆•top ×R X ×R Y )p+q

∼
x

Ω1AZ×RW (∆•top ×R X ×R Y )1,

we obtain a pairing of spaces

∪ : Kalg
Z (∆•top ×R X)∧Kalg

W (∆•top ×R Y )→ Kalg
Z×RW

(∆•top ×R X ×R Y ),
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which is independent up to homotopy with the choices made. In particular, we
obtain well-defined maps on homotopy groups

∪ : Kalg
Z,p(∆

•
top ×R X)⊗Kalg

W,q(∆
•
top ×R Y )→ Kalg

Z×RW,p+q
(∆•top ×R X ×R Y )

in the usual manner.

By replacing ∆•top with ∆• in the preceding discussion, we obtain in a parallel
manner a pairing arising from the diagram

Ω1AZ(∆• ×R X)1 ∧Ω1AW (∆• ×R Y )1
∼−−−−→ ΩpAZ(∆• ×R X)p ∧ΩqAW (∆• ×R Y )qy

Ωp+q(AZ(∆• ×R X)p ∧AW (∆• ×R Y )q)y
Ωp+qAZ×RW (∆• ×R ∆• ×R X ×R Y )p+q

∼
x

Ω1AZ×RW (∆• ×R X ×R Y )1
∼−−−−→ Ωp+qAZ×RW (∆•top ×R X ×R Y )p+q

(A.2)
for each p, q ≥ 1, which determines a unique homotopy class of maps

∪ : Kalg
Z (∆• ×R X)∧Kalg

W (∆• ×R Y )→ Kalg
Z×RW

(∆• ×R X ×R Y ).

As we have already seen, there is a unique homotopy class of maps

∪ : Kalg
Z (X)∧Kalg

W (Y )→ Kalg
Z×RW

(X ×R Y ),

giving the standard cup product pairing for algebraic K-theory with supports. It
is clear that these pairings fit into a homotopy commutative diagram

Kalg
Z (X)∧Kalg

W (Y )
∪−−−−→ Kalg

Z×RW
(X ×R Y )y y

Kalg
Z (∆• ×R X)∧Kalg

W (∆• ×R Y )
∪−−−−→ Kalg

Z×RW
(∆• ×R X ×R Y )y y

Kalg
Z (∆•top ×R X)∧Kalg

W (∆•top ×R Y )
∪−−−−→ Kalg

Z×RW
(∆•top ×R X ×R Y ).

Thus, the cup product operation for Kalg(∆•top ×R −) is compatible with the usual
cup product operation in algebraic K-theory.

We proceed to give a sketch of a construction of Real topological K-theory
with supports which is analogous to the above constructions. To avoid point-
set topology complications, we restrict attention to pairs of Real spaces of the
form (XR(C), UR(C)), where X, Z are quasi-projective real varieties as before and
U = X−Z. Note that by [H2], in this case there exists an equivariant triangulation
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of XR(C) and a closed subcomplex U ′ ⊂ XR(C) which is a strong deformation
retract of UR(C).

We may replace CZP(X) used in the definition of Kalg
Z (X) with the topological

category CZR(C)Ptop(XR(C)) consisting of bounded complexes of Real vector bundles
on XR(C) which are acyclic upon restriction to UR(C) (equivalently, upon restric-
tion to U ′). Here, the topology on the objects and morphisms of CZR(C)Ptop(XR(C))
is given by using the compact-open topology on the collection of Real vector bun-
dle maps (cf. [Se; end of §2]). Moreover, this topology is such that if we apply
Maps(∆•top,−) to the objects and morphisms of CXPtop(X), we obtain a simplicial
category C∆•top×ZR(C)P(∆•top×XR(C)), which in degree n is the discrete category of

bounded complexes of Real vector bundles on ∆n
top×XR(C) acyclic on ∆n

top×UR(C).
As in [Pal; 1.12 and 2.2], one may show that the prespectra defined by

ω(S•)
iCZR(C)Ptop(XR(C)), i ≥ 0,

and
ω(S•)

iC∆•top×ZR(C)P(∆•top ×XR(C)), i ≥ 0, (A.3)

are homotopy equivalent, and each gives a natural model for the homotopy fiber of

KRtop(XR(C))→ KRtop(UR(C)) ∼ KRtop(U ′).

(For the first of these two prespectra, the S•-construction is applied to a topolog-
ical additive category in the obvious manner, resulting in a simplicial topological

category.) We write the total space of the prespectrum (A.3) as KRZR(C)
top (XR(C)).

There is an evident natural map of simplicial categories

C∆•top×RZP(∆•top ×R X)→ C∆•top×ZR(C)P(∆•top ×XR(C))

defined by taking the Real topological bundle on ∆n
top × XR(C) associated to an

algebraic vector bundle on M ×R X and a continuous map ∆n
top → M(R). This

defines an map of prespectra

Kalg
Z (∆•top ×R X)→ KRZR(C)

top (XR(C)).

Moreover, using an argument similar to that found in [GW], one can show that this
map is equivalent to the map of Proposition 4.3 in the case Z = X.

Finally, we can repeat the construction of the cup product pairing forKalg
− (∆•top×R

−) to obtain a pairing

∪ : KRZR(C)
top (XR(C))∧KRWR(C)

top (YR(C))→ KRZR(C)×WR(C)
top (XR(C)× YR(C))

which is compatible up to homotopy with the cup product pairing on Kalg
− (∆•top×R

−). In the case Z = X and W = Y , the diagram

|i•Ptop(XR(C))| × |i•Ptop(YR(C))| −−−−→ |i•Ptop(XR(C)× YR(C))|y y
KRtop(XR(C))×KRtop(YR(C))

∪−−−−→ KRtop(XR(C)× YR(C)),

(A.4)
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commutes up to homotopy, where i•Ptop(−) denotes the topological symmetric
monoidal category consisting of Real vector bundles and isomorphisms of such.
(The objects of this category form a discrete space and the morphisms are topolo-
gized using the compact-open topology as usual.) Here, the top horizontal map in
(A.4) is given by tensor product of bundles and the vertical maps are induced by the
evident inclusion of topological categories. Using [CCMT; 1.4], the homotopy com-
mutativity of (A.4) and the fact that its vertical maps represent homotopy-theoretic
group completions imply that the lower horizontal map of (A.4) is well-defined up
to weak homotopy. Thus, the cup product pairing we have defined coincides (es-
sentially by definition) with the usual cup product pairing for KRtop up to weak
homotopy.

Theorem A.5. For any quasi-projective real variety X, the natural map

Kalg(∆•top ×R X)→ KRtop(XR(C))

of Proposition 4.3 is compatible up to weak homotopy with the cup product pair-
ing for Kalg(∆•top ×R −) defined above and the standard cup product pairing for
KRtop(−). In particular, the natural map⊕

q≥0

Kalg
q (∆•top ×R X)→

⊕
q≥0

KR−qtop(XR(C))

is a ring homomorphism.
If in addition X is smooth and Z is any closed subvariety, there is a natural

homotopy commutative diagram

Kalg
Z (∆•top ×R X) −−−−→ Kalg(∆•top ×R X) −−−−→ Kalg(∆•top ×R U)y y y
KRZR(C)

top (XR(C)) −−−−→ KRtop(XR(C)) −−−−→ KRtop(UR(C)),

all of whose arrows are compatible with cup product up to weak homotopy.

Appendix B: Z/2-equivariant spectra and
Z/2-equivariant cohomology theories

In this appendix, we briefly recall some basic definitions and results concerning
Z/2-equivariant stable homotopy theory. The application of this machinery we
have in mind is the construction, for a quasi-projective real variety X, of a “Z/2-
spectrum” KZ/2−semi(X) (essentially, a spectrum equipped with a suitably defined
notion of a group action by Z/2) whose fixed point subspectrum gives KRsemi(X)
and whose total spectrum gives Ksemi(XC). However, as we explain below, there is a
gap in the literature concerning the “recognition principle” for Z/2-spectra. Modulo
this gap, we indicate briefly how the results of this paper could be more naturally
reworked and generalized into the Z/2-equivariant setting. Basic references for
the material in this appendix are [LMS], [M2], [CW]. This appendix benefitted
significantly from correspondence with Pedro dos Santos.

In general, given a finite group G, a complete G-universe is an infinite dimen-
sional real inner product space U upon which G acts through isometries, satisfying



74 ERIC M. FRIEDLANDER AND MARK E. WALKER ∗

the properties that U is a direct sum of finite dimensional G-invariant sub inner
product spaces and that every finite dimensional irreducible real representation of
G is contained in U as a G-invariant sub inner product space infinitely often (up to
isomorphism). Starting with this definition, one can define the notion of G-spectra,
i.e., spectra equipped with G-actions in a suitable sense. In the remainder of this
appendix, only the group G = Z/2 is considered and the only example of a complete
Z/2-universe is given by the infinite dimensional complex space U = C∞ regarded
as a real inner product space using the identification R⊕R ∼= C, (x, y) 7→ x+iy and
using the canonical real inner product. We let Z/2 act on C∞ via componentwise
complex conjugation – i.e., by sending (x1, y1, x2, y2, . . . ) to (x1,−y1, x2,−y2, . . . ).
Observe that this action is isometric. Moreover, the only finite dimensional irre-
ducible real representations of Z/2 are given by multiplication by ±1 on R, and
thus C∞ is clearly a complete Z/2-universe in the sense defined above. Although
this appendix focuses exclusively on G = Z/2 and U = C∞, note that the results
and constructions cited here are really special cases of a broader theory.

We call a real inner product space V equipped with an isometric Z/2 action (i.e.,
equipped with an isometric involution) a Z/2 inner product space. For any finite di-
mensional Z/2 inner product space V , write SV for the one-point compactification
of V endowed with the evident Z/2-action which fixes the point at infinity. The
space SV is viewed as a pointed Z/2-space with the point at infinity serving as the
base point. For any pointed Z/2-space X, write ΣVX for SV ∧X equipped with the
evident Z/2-action. Additionally, we write ΩVX for the Z/2-space Maps∗(S

V , X)
of pointed maps, where the action is given by conjugation. Finally, given an inclu-
sion V ⊂W of finite dimensional Z/2 inner product spaces, we write W −V for the
orthogonal complement of V in W . Note that W − V is also a Z/2 inner product
space.

Definition B.1. A Z/2-spectrum E consists of a collection of pointed Z/2-spaces
E(V ) for each finite dimensional Z/2-invariant inner product subspace V of C∞
together with pointed Z/2-maps

σV,W : ΣW−V E(V )→ E(W ).

The adjoint maps are written

σ̃V,W : E(V )→ ΩW−V E(W ).

These maps are required to satisfy the conditions (1) σV,V = id for all V , (2)
σW,Z ◦ ΣZ−WσV,W = σV,Z for all V ⊂ W ⊂ Z, and (3) the map σ̃V,W : E(V ) →
ΩW−V E(W ) is a equivariant homeomorphism, for all V ⊂ W . A map of Z/2-
spectra E → F consists of a collection of equivariant maps E(V )→ F (V ) compat-
ible with the above structure in the evident fashion.

As shown in [LMS], to define a Z/2-spectrum, one doesn’t need to consider
every Z/2 inner product subspace V of C∞ as above, but rather just suitably large
collection. In particular, if we take Vi to be the (real) 2i-dimensional subspace Ci
of C∞ defined as the C-span of the first i standard complex basis elements, then
this collection of subspaces forms a so-called indexing space. Consequently, we can
equivalently describe a Z/2-spectrum as a sequence of spaces E0, E1, . . . (where Ei
is thought of as being E(Vi) in the above definition) together with pointed Z/2
maps

P1(C)∧Ei → Ei+1,
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whose adjoints
E1 →Maps∗(P1(C), Ei+1)

are equivariant homeomorphisms (cf. [LMS; 2.4]). Here, P1(C) is the Riemann
sphere equipped with Z/2-action given by complex conjugation.

Given a Z/2-spectrum E indexed by the Z/2 inner product subspaces of C∞,
we form two spectra in the ordinary sense by taking the fixed points of E with
respect to each of the two subgroups of Z/2. Specifically, let R∞ ⊂ C∞ be the
fixed point subspace of Z/2 (in other words, this is the subspace spanned by the
real coordinates) and for H ⊂ Z/2, define EH to be the spectrum indexed by all
the real subspaces of R∞ given by

V 7→ E(V )H .

As is customary with ordinary spectra (and permitted by [LMS; 2.4]), we restrict
V to range over the subspaces Rn, n = 0, 1, . . . , where Rn ⊂ R∞ is the subspace
spanned by the first n standard basis elements. Thus we have a spectrum in the
classically defined sense:

EH0 = E(0)H , EH(1) = E(R1)H , . . . .

The only possibilities for H are obviously Z/2 and 0, and we call the associated
spectra the fixed point spectrum and total spectrum respectively. Let us write these
as EZ/2 and E0. Thus, E0 is the spectrum given by the collection of spaces E(Rn),
n = 0, 1, . . . , with the action of Z/2 forgotten, whereas EZ/2 is the subspectrum
of E0 given by taking fixed points of each E(Rn). In particular, there is a evident
natural map

EZ/2 → E0.

We now turn to the aforementioned gap in the literature. One would like a ma-
chine to produce Z/2-spectra analogous to the machines used to produce ordinary
spectra (operads, Γ-spaces, etc.). There does exist a notion of a Z/2-operad (re-
called below), and ideally given any Z/2-operad I acting on a Z/2-space X, there
ought to be a functorial construction which produces a Z/2-spectrum related to
X. (In particular, the zeroth spaces of this spectrum ought to be the “equivariant
group completion” of X.) We now develop this (conjectural) framework. All of this
is strictly parallel to the non-equivariant case, and in fact J. P. May assures us that
the construction we describe does have the desired properties, although proofs are
apparently known only to the experts and have not appeared in the literature.

A Z/2-E∞ operad is a collection of Z/2-spaces M(n), n = 0, 1, . . . , each of
which has the Z/2-homotopy type of a CW-complex, together with an action of the
symmetric group Σn on M(n) for each n and pairings

γ :M(n)×M(k1)× · · · ×M(kn)→M(k1 + · · ·+ kn)

for all non-negative integers n, k1, . . . , kn. The data are required to satisfy the
appropriate Z/2-equivariant analogues of the axioms for an ordinary E∞-operad
(cf. [LMS; VII.1]).

Our main example of a Z/2-E∞ operad, Ĩ, is given by letting Ĩ(n) denote
the collection of (non-equivariant) C-linear injective maps from (C∞)n into C∞,
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where Ĩ(n) is topologized just as is I(n) of Section 1. The action of Σn on Ĩ(n)

permutes the copies of C∞ in (C∞)n and the action of Z/2 on Ĩ(n) is given by
complex conjugation in the evident manner. The required pairings are defined by
composition in the evident manner. We can also consider the suboperad L̃(n) ⊂
Ĩ(n), n ≥ 0, defined by taking the space of all isometries (C∞)n ↪→ C∞ with respect

to the standard Hermitian inner product on C∞. The operad L̃ is similar to the
Z/2-operad considered in [LMS; VII.1.4]. Indeed, the proofs of [LMS; VII.1.4] and

[EKMM; XI.1.7] carry over to show L̃ satisfies all of the required axioms. It follows

that Ĩ also satisfies the required axioms (e.g., each Ĩ(n) has the Z/2-homotopy type

of a Z/2-CW complex) since L̃(n) ↪→ Ĩ(n), n ≥ 0, is a Z/2-homotopy equivalence.

Additionally, since the space Ĩ(n) is defined using inductive limits of algebraic

varieties, we may define a sort of algebraic version of the operad Ĩ as follows.
Namely, let ∆•C denote the standard cosimplicial object in the category of complex

varieties and let Ĩ(n)(∆•C) denote the simplicial set which in degree d is given by

Ĩ(n)(∆d
C) ≡ lim←−

N

lim−→
M

HomC(∆d
C, Ĩ(n)N,M )

where Ĩ(n)N,M is the complex affine variety parameterizing injective C-linear maps

from (CN )n to CM . Writing |Ĩ(n)(∆•C)| for the geometric realization of this sim-
plicial set, we clearly have a natural homotopy equivalence

|Ĩ(n)(∆•C))| → Ĩ(n).

Moreover, Ĩ(n)(∆•C) admits an evident action of Z/2 given by complex conjugation
and this map is in fact a Z/2-homotopy equivalence. It is easy to check that the

collection |Ĩ(n)(∆•C)|, n = 0, 1, . . . forms a Z/2-E∞ operad and the above is a map
of such objects.

If M is any Z/2-E∞ operad, a Z/2-space X is said to be an M-space if there
are a collection of Z/2-equivariant maps

M(n)×X×n → X

satisfying the appropriate Z/2-equivariant analogues of the axioms required of an
action of an ordinary operad on a space (cf. [CW; 2.4]).

The primary construction needed in this paper to form Z/2-spectra is described
in the following conjecture. As mentioned, J. P. May assures us that thus result is
true, but no one has yet to produce a proof in the literature.

Conjecture B.2. A Z/2-space X having the Z/2-homotopy type of a CW com-
plex endowed with an action by the Z/2-E∞ operad M determines functorially a
Z/2-spectrum EX. In particular, for such an X, there is a natural “equivariant
homotopy-theoretic group completion”

X → (EX)(0),

by which we mean the map induces ordinary homotopy-theoretic group completions
upon taking Z/2-fixed points and upon forgetting the Z/2 action.

Moreover, let MZ/2 denote the E∞-operad obtained by taking fixed points of
M(n), n ≥ 0. Then the ordinary spectrum (EX)0 (respectively, (EX)Z/2) coincides
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up to a natural weak equivalence of spectra with the spectrum obtained from the space
X (respectively, XZ/2) endowed with the induced structure of an MZ/2-space.

We now discuss the generalized homotopy groups and the equivariant cohomology
theory associated to a Z/2-spectrum. The generalized homotopy groups of a pointed
G-space X are defined as [(G/H)+ ∧Sn, X]G, where H ⊂ G is any subgroup, n
is any integer, and, in general, [−,−]G denotes the collection of pointed G-maps
modulo G-equivariant homotopy. In particular, for G = Z/2, we have two families
of generalized homotopy groups

[T 0
+ ∧Sn, X]Z/2 and [Sn, X]Z/2,

where T 0 denotes the unique two-point space with non-trivial Z/2-action. The
notion of generalized homotopy groups extends to the level of spectra in that one
can define a generalized sphere spectrum SnH ≡ ((Z/2)/H)+ ∧Sn, where H ⊂ Z/2
and Sn is the spectrum ΣnΣ∞S0. The generalized homotopy groups of a Z/2-
spectrum E, πHn (E), are define as homotopy classes of Z/2-equivariant maps (of
spectra) from SnH to E. By [LMS; 4.5], the generalized homotopy groups of E can
be more simply described by the formulas{

πHn (E) ∼= πn(E(0)H), for n ≥ 0 and

πH−n(R) ∼= π0(E(Rn)H), for n < 0.

Thus, as for Z/2-spaces, there are just two families of generalized homotopy groups
of Z/2-spectra:

πn(E0) and πn(EZ/2).

These definitions extend to negative indices in the usual manner. A weak equiva-
lence of Z/2-spectra is a map inducing isomorphisms on πHn for all n, H ⊂ Z/2 – in
other words, a weak equivalence of Z/2-spectra is a map inducing weak equivalences
of ordinary spectra for both the fixed point and total spectra.

We record the following direct consequence of the preceding discussion.

Proposition B.3. Naturally associated to any Z/2-spectrum E we have the total
spectrum E0 and the fixed point spectrum EZ/2, between which there is a natural
map

EZ/2 → E0.

A map of Z/2-equivariant spectra E → F is a weak equivalence if and only if the
maps E0 → F 0 and EZ/2 → FZ/2 are weak equivalences in the ordinary sense.

Given a Z/2-spectrum E indexed by the universe C∞, the associated cohomol-
ogy theory on Z/2-spaces is a theory indexed by the Z/2-invariant inner product
subspaces of C∞. Specifically, to such a V ⊂ C∞ and a pointed Z/2-space X, we
form the group

ẼVZ/2(X) = [X,E(V )]Z/2.

For unbased spaces, define EVZ/2(X) to be ẼVZ/2(X+). More generally, given a pair of

such subspaces V,W ⊂ C∞, the group ẼV	WZ/2 (X) is defined as [X ∧SW , E(V )]Z/2.

This should be thought of as the cohomology group associated to the “formal dif-
ference” of V and W .
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Since every action of Z/2 on real vector space is a direct sum of the trivial action
on R and the action on R given by multiplication by −1, it turns out that the Z/2-
equivariant cohomology associated to a Z/2-spectrum reduces to a bigraded theory:

Ẽp,qZ/2(X) ≡ [X,E(Rp,q)]G,

for p, q ≥ 0, where Rp,q denotes the Z/2 inner product space with Z/2 acting
trivially on the first p components and by multiplication by −1 on the last q com-
ponents. Taking formal differences as above, we extend this definition to p, q ∈ Z
by defining

Ẽp,qZ/2(X) ≡ [X ∧SRm,n

, E(Rp+m,q+n)],

where m,n are any positive integers such that p + m ≥ 0, q + n ≥ 0. The axioms
of a Z/2-spectrum ensure that this definition is independent of the choice of m,n.
From now on, we write Sp,q for the space SRp,q

. (Note that Sp,q here is not the
same as the object referred to by the same notation in [At].)

Notation B.4. If E is a Z/2-spectrum and X is a (unbased) Z/2-space, then we
define

Ep,q(X) ≡ ERp,q

Z/2 (X+) ≡ [X+, E(Rp,q)]G ∼= [X+ ∧SRm,n

, E(Rp+m,q+n)]G,

where m,n ≥ 0 are such that p+m ≥ 0, q + n ≥ 0.

By [LMS; I.4.6], a map of Z/2-spectra E → F is a weak equivalence if and only
if E(V ) → F (V ) is a weak equivalence of Z/2-spaces for all Z/2-invariant inner
product subspaces V ⊂ C∞. It follows that the equivariant cohomology theories
E∗,∗, F ∗,∗ associated to weakly equivalent Z/2-spectra E and F are isomorphic.

In this paper, we are primarily concerned with the generalized homotopy groups
of a Z/2-spectrum E – i.e., the (non-equivariant) homotopy groups of the spectra E0

and EZ/2. Notice that these groups are encoded as specific equivariant cohomology
groups. Namely, we have the natural isomorphisms

πpE
0 ∼= E−p,0(T 0), and πpE

Z/2 ∼= E−p,0(pt).

With this in mind, we now give a completely formal treatment of the transfer map

πnE
0 → πnE

Z/2

of the type established in Section 5 through more explicit means. We begin by
defining a Z/2-equivariant map

τ : S0,1 → T 0
+ ∧S0,1,

which in the stable category gives a map from pt+ to T 0
+. To define this map, view

S0,1 as the unit circle in the complex plane equipped with the action by complex
conjugation. Collapse {1,−1} to a single point, forming the wedge product of two
circles. The Z/2-action on this quotient space interchanges the two circles and in
fact is Z/2-homeomorphic to T 0

+ ∧S0,1. We take τ to be this quotient map.
Now we use the natural Z/2-homotopy equivalences (of spectra)

Maps∗(Y ∧S0,1, E(R0,1)) ∼=Maps∗(Y,Maps∗(S
0,1, E(R0,1))) ∼=Maps∗(Y,E),
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where Y is any Z/2-space. Here, the second equivalence holds since E is a Z/2-
spectrum. In particular, taking Y = pt+ and Y = T 0

+, we see that the map τ
determines a natural map of spectra

tr = τ∗ : E ≡MapsZ/2∗ (T 0
+, E)→MapsZ/2∗ (pt+, E) ≡ EZ/2,

which serves as our transfer map.
The unique map T 0 → pt induces a Z/2-map T 0

+ ∧S0,1 → S0,1. Note that the
composition of

S0,1 τ−→ T 0
+ ∧S0,1 −→ S0,1

gives the standard 2-fold Z/2-covering space map η : S0,1 → S0,1. Moreover, under
the equivariant homeomorphisms

Maps∗(S
0,1, E(R0,1))

∼=−→Maps∗(S
1,1, E(R1,1))

∼=←−Maps∗(S
1,0, E(R1,0)),

the involution η∗ onMaps∗(S
0,1, E(R0,1)) coincides with an involution onMaps∗(S

1,0, E(R1,0))
induced by a degree two map η′ : S1,0 → S1,0. Taking Z/2 fixed points, we see that
the involution on

MapsZ/2∗ (S1,0, E(R1,0)) ∼=Maps∗(S
1, E(R1,0)Z/2) ∼= EZ/2

induced by η′ is homotopic to multiplication by two with respect to the H-space
structure on EZ/2.

We summarize the preceding observations with the following result.

Proposition B.5. Given a Z/2-spectrum E, the transfer map

tr : E0 → EZ/2

defined as above is a map of spectra. Moreover, the composition of induced maps
of H-spaces

E(0)Z/2 ↪→ E(0)
tr−→ E(0)Z/2

is equivalent to multiplication by 2.

In the remainder of this appendix, we indicate how to apply the above con-
structions and results (including the conjectural B.2) to rewrite much of the body
of this paper in an equivariant setting. Recall that for a quasi-projective real va-
riety X, the space MorR(X,GrassR) is homeomorphic to the fixed point space
MorC(XC,GrassC) under the Z/2-action given by complex conjugation. Moreover,
the action of I onMorR(X,GrassR) extends in the evident manner to an equivari-

ant action of Ĩ on the Z/2-space MorC(XC,GrassC). Thus, using B.2, associated
to this action there is (conjecturally) a Z/2-spectrum

KZ/2−semi(X).

Moreover (and still conjecturally), the fixed point spectrum of KZ/2−semi(X) is
weakly equivalent to the spectrum KRsemi(X) defined in the body of this paper
and the total spectrum of KZ/2−semi(X) is weakly equivalent to Ksemi(XC) defined
in [FW2].
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Similarly, we can define (conjecturally) a Z/2-spectrum encoding both Kalg(X)

and Kalg(XC) as follows. The Z/2-E∞ operad |Ĩ(∆•)| acts on the Z/2-space
HomC(∆•C ×C XC,GrassC) and by B.2 this gives the Z/2-spectrum which we write

as KZ/2−alg(∆• ×R X).
Finally, as by now should be apparent by the pattern, we can generalize the

construction of KRtop(XR(C)) to give a Z/2-spectrum

KZ/2-top(XR(C)).

(Note that in [M2; XIV] a very similar Z/2-spectrum is defined. The conjectural
recognition principle B.2 should imply that KZ/2-top(XR(C)) is equivalent to a con-
nective version of that found in [op. cit.].) Also, the obvious variation on the
construction in Section 1 gives the Z/2-spectrum

KZ/2−semi(∆•top ×R X).

We close this appendix by listing equivariant versions of results from the body of
this paper, [FW2], and [FW3] which follow easily from the verification of Conjecture
B.2. We list these all as conjectures so as to avoid misinterpretation by the casual
reader, but we claim they all follow easily from Conjecture B.2 and previously
established results.

Conjecture B.6. For a quasi-projective real variety X, there are natural maps of
Z/2-spectra

KZ/2−alg(∆• ×R X)→ KZ/2−alg(∆•top ×R X)→ KZ/2−semi(X)→ KZ/2-top(XR(C))

such that the induced maps on fixed point spectrum coincides with the maps of
Sections 2 and 4 and the induced maps on total spectra coincides with the maps of
[FW2].

Notice that, in particular, the establishment of Conjecture B.6 would eliminate
the need for Section 5 of this paper, since then Theorem 5.8 and Corollary 5.9
would become immediate consequences of this conjecture and Proposition B.5.

Conjecture B.7. In reference to the maps of Conjecture B.6, (i) the first induces
an isomorphism on generalized homotopy groups with finite coefficients for any
quasi-projective real variety X (i.e., induces isomorphisms on homotopy groups
with finite coefficients for both the fixed point and total spectra), (ii) the second is
a weak equivalence of Z/2-spectra for any projective real variety X, and (iii) the
third is a weak equivalence of Z/2-spectra if X is as in Propositions 6.1 or 6.2.

Conjecture B.8. For any quasi-projective real variety X, there is a commutative
diagram of |Ĩ(∆•)|-spaces

HomC(∆•C ×C XC,GrassC) −−−−→
∐
r≥0

Zr−1(∆•C ×C XC,P∞C )1y y
MorC(∆•top ×C XC,GrassC) −−−−→

∐
r≥0

Zr−1(XC,P∞C )1y y
Maps(XR(C),GrassR(C)) −−−−→

∐
r≥0

Maps(XR(C),Zr−1(P∞R (C)))1,
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which induces a corresponding diagram of Z/2-spectrum. This diagram specializes
to give the statement of Theorem 8.8 by taking fixed point spectra and the statement
of [FW2; 6.11] for XC by taking total spectra.
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