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Abstract. We find explicit models for the etale topological type of cer-
tain arithmetic rings A, and in some cases use these models to compute
the `–adic topological K-theory of A. Through a comparison map, this
gives information about the algebraic K-theory of A. For example, we
are able to compute the mod ` cohomology of certain “unstable” topo-
logical K-theory spaces and verify that it injects into the cohomology
of the corresponding unstable algebraic K-theory spaces. This gives an
explicit lower bound for H∗(GL(n, A),Z/`). In some cases we also find
explicit geometric or cohomological reformulations of the Lichtenbaum-
Quillen conjectures.

§0. Introduction

The etale topological type Aet of a commutative ring A is an inter-
esting topological object (technically a pro-space) associated to A. In
[4] we introduced the “etale K-groups” of A as local coefficient `-adic
topological K-theory groups of Aet, where ` is a prime invertible in A.
Building upon work of C. Soulé [19], we described a natural map from
the algebraic K-groups of A (completed at `) to the etale K-groups, and
showed that in general this map is surjective for arithmetic rings. The
well-known Lichtenbaum-Quillen Conjectures essentially assert that this
map is an isomorphism.

The basic results of class field theory and arithmetic duality can be
interpreted as statements about the etale cohomology of arithmetic rings
A [10] or equivalently as statements about the ordinary cohomology of
Aet. In [5] we exploited this fact to find, for some specific arithmetic
rings A, an elementary topological space XA mapping to Aet by a co-
homology isomorphism. Finding XA allowed us not only to compute
the etale K-groups of A explicitly, but also to identify the underlying
local coefficient topological K-theory space and compute its cohomology
(which, by the Lichtenbaum-Quillen conjecture, should be isomorphic to
the cohomology of GL(A)).

We do two things in the present paper. First of all, we extend the
above program of finding “models” for Aet to some other rings. In
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each case, for a specific prime ` invertible in A, we find a “good mod `
model” XA for A; this is an explicit space or pro-space XA which in an
appropriate sense captures the mod ` cohomology of Aet. Here are the
main examples:

(1) If A = Z[1/`] for an odd regular prime `, thenXA is the one-point
union RP∞ ∨ S1 (2.1), where S1 is the circle.

(2) If A is the coordinate ring of a suitable affine curve over Fq then
XA is a fibration over S1 with fibre the p-completion of a finite
wedge of circles (3.3).

(3) If A is a generalized local field of transcendence degree r over Fq

then XA is a fibration over S1 with fibre the p-completion of a
product of r circles (3.5, see also 3.6 for the case r = 1).

(4) If A is a suitable finite extension of Q` then XA = K(G, 1), where
G is a one-relator group very similar to a surface group (3.7).

Secondly, in case (1) above we identify the etale K-theory space of the
model XA (2.3) and show that its cohomology injects into the cohomol-
ogy of the algebraic K-theory space of A (6.4, 6.3 is a related unstable
statement). This proves in particular that if the Lichtenbaum-Quillen
conjecture is true for Z at an odd regular prime `, then BGL(Z)+ is
equivalent at ` to F Ψp × SU/O (2.4), where p is as in §2. We also
show that if the Lichtenbaum-Quillen conjecture is true in this case then
H∗(BGL(Z[1/`]),Z/`) is detected on certain abelian subgroups (6.6).

The organization of our paper is as follows. Section 1 motivates and
presents the definition of a good mod ` model of an arithmetic ring A.
Such a model captures the etale cohomology of A with coefficients in
“Tate twists” of Z/`. In §2, we provide a particularly simple model for
A = Z[1/`] whenever ` is an odd regular prime. Verifying this model
is more delicate than verifying the models for affine curves and local
fields described in §3. The remainder of the paper is concerned with an-
alyzing the cohomology of (unstable) K-theory spaces associated with
our good mod ` models and studying the relationship between this co-
homology and that of the general linear groups of A. In §4, we discuss
the Eilenberg-Moore spectral sequence and apply it to our topological
K-theory spaces. Our comparison of cohomology of algebraic and topo-
logical K-theory spaces is achieved by restricting to maximal tori: the
actual comparison is carried out in §6, following a check in §5 that corre-
sponding algebraic and topological tori have the same cohomology. We
conclude the paper by mentioning a few open problems in §7.

0.1 Notation: We fix a prime number ` and let R denote the ring
Z[1/`], F the finite field Z/`, ζ`n the `n’th root of unity e2πi/`n

and µ`n

the multiplicative group of `n’th roots of unity. The symbol ζ without
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a subscript denotes ζ`.
Our fundamental reference for homotopy theoretic completions is [2].

If X is a space or pro-space the `–adic completion tower of X is a pro-
space denoted Fω(X); if X is a space then Fω(X) is a tower in the
usual sense whose inverse limit is the `–adic completion F∞(X) of X.
If E → B is a fibration the fibrewise `–adic completion tower of E over
B [4, p. 250] is denoted F•

ω(E); if E and B are spaces, the inverse limit
of this tower is the fibrewise `–adic completion F•

∞(E) of E over B.

§1. Good mod ` models

We recall that Xet is a “space” which reflects the etale cohomology
of a noetherian simplicial scheme X. The reader can consult [11] for a
coherent discussion of the etale cohomology H∗

et(X,F ) of X with coef-
ficients in a sheaf F on the “etale site”; endurance now assured, he or
she can then peruse [1] and [7] for the construction and properties of
the pro-space (i.e., inverse system of simplicial sets) Xet.

For any finitely generated R-algebra A, let Aet denote the etale topo-
logical type (SpecA)et. For any connected, noetherian simplicial scheme
X (e.g., SpecA for a noetherian domain A), Xet is an inverse system of
connected simplicial sets [7, 4.4]. If X is normal in each simplicial de-
gree, as is always the case in our arithmetic examples, Xet is homotopy
equivalent to an inverse system in the homotopy category of simplicial
sets each of which has finite homotopy groups [7, 7.3].

Two key properties of Aet are given in the following

1.1 Proposition. Let ā : Spec k → SpecA be a geometric point of the
finitely generated normal R-algebra A, corresponding to a homomor-
phism from A to a separably closed field k and determining a base point
of Aet. Then

(1) π1(Aet, ā) = πet
1 (A, ā) , the (profinite) Grothendieck fundamental

group of A pointed by ā (this group classifies finite etale covering
spaces of SpecA).

(2) H∗(Aet, C) = H∗
et(SpecA,C), the etale cohomology of SpecA

with coefficients in the local coefficient system C (such a local co-
efficient system is an abelian group C provided with a continuous
action of πet

1 (A, ā)).

The etale K-theory space associated to Aet is constructed using func-
tion complexes. Namely, for each integer n, we consider the group
scheme GLn,R whose coordinate algebra is the Hopf algebra

R[xi,j , t]/det(xi,j)t = 1 .
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The usual bar construction [7, 1.2, §2] (over R) determines a simplicial
scheme BGLn,R with etale topological type (BGLn,R)et.
1.2 Definition: The space BGLn(Aet) is defined to be (see [4, 2.4,
4.5])

BGLn(Aet) ≡ Hom0
`(Aet, (BGLn,R)et)Ret

the connected component of the function complex of maps over Ret from
Aet to the pro-space fibrewise mod ` completion over Ret of (BGLn,R)et.

More generally, if GR is a group scheme over R, we define BG(Aet) to
be

BG(Aet) ≡ Hom0
`(Aet, (BGR)et)Ret .

Remark: The curious reader might wonder how in general terms to
obtain a single space as a function complex of pro-spaces. The answer
is relatively simple: take the homotopy colimit indexed by the indexing
category of the domain and then the homotopy limit indexed by the
indexing category of the range.
1.3 Definition: Let A be a finitely generated R-algebra of finite mod `
etale cohomological dimension. The (connected) etale K-theory space
BGL(Aet) is defined to be

BGL(Aet) ≡ colimn{(BGLn(Aet)}

and the i-th mod `ν etale K-group of A is defined to be

Ket
i (A,Z/`ν) ≡ πi(BGL(Aet),Z/`ν) i > 1.

Remark: The homotopy fibre of the map (BGLn,R)et → Ret (see 1.2)
is `-equivalent to the completion Fω(BUn) [7, §8]; this leads to an inter-
pretation of π∗ BGL(Aet) as the “local coefficient topological K-theory”
of the pro-space Aet. There is an Atiyah-Hirzebruch spectral sequence
to support this interpretation [4, 5.1]. Using the fact that both alge-
braic K-theory and etale K-theory are the homotopy groups of infinite
loop spaces and that the map between these spaces is an infinite loop
map [4, 4.4], one can extend the above definition to include K0 and K1.
Moreover, one can extend this definition to certain rings of virtually
finite etale cohomological dimension (e.g., Z[1/2] at the prime 2) by a
“descent procedure” that involves taking homotopy fixed point spaces
[5, p. 140].
1.4 Remark: For any group scheme GR over R there is a natural map

BG(A) → BG(Aet)
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constructed as follows. One views a t-simplex of BG(A) as a morphism
of simplicial schemes SpecA⊗∆[t]→ BGR over SpecR; by functorality
this determines a map of pro-spaces (SpecA)et ×∆[t] → (BGR)et over
Ret, and thus a t-simplex of BG(Aet). In particular, there are maps
BGLn(A)→ BGLn(Aet); these pass to a map

BGL(A)+ → BGL(Aet)

which induces homomorphisms Ki(A,Z/`ν)→ Ket
i (A,Z/`ν).

Before proceeding to new results concerning the maps of 1.4, we briefly
summarize some earlier results from [4].

1.5 Theorem. Denote the mapKi(A,Z/`ν)→ Ket
i (A,Z/`ν) by κν

i (A).

(1) If A is a finite field of order q where ` does not divide q, then
κν

i (A) is an isomorphism for all ν > 0.
(2) If A is the ring of S-integers in a global field and contains a

primitive 4’th root of unity if ` = 2, then for i > 0 and ν > 0 the
map κν

i (A) is surjective.
(3) The well-known “Lichtenbaum-Quillen Conjecture” is equivalent

to the conjecture that the maps in (2) are isomorphisms.
(4) More generally, if the mod ` etale cohomological dimension of A

is ≤ 2 (e.g., if A is a local field or the coordinate algebra of a
smooth affine curve over a finite field), then for i > 0 and ν > 0
the map κν

i (A) is surjective.

The preceding discussion should provide motivation for our efforts to
obtain computable models for BGLn(Aet). Such models will be function
spaces with domain XA, a “good mod ` model for A”, which cover a
structure map reflecting the action of πet

1 (A) on the `-primary roots of
unity.

Let R∞ denote the ring obtained from R by adjoining all `–primary
roots of unity,

R∞ ≡ R[µ`∞ ] ≡ Z[1/`, µ`∞ ] ,

let Λ denote the pro-group

Λ ≡ Gal(R∞, R) ≡ {Aut(µ`ν ), ν > 0} ∼= {(Z/`ν)∗, ν ≥ 1} ,

and let λ denote the quotient Aut(µ`) ∼= (Z/`)∗ of Λ. Observe that Ret
is provided with the natural structure map

Ret → K(Λ, 1)
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which “classifies” the finite etale extensions R→ R[µ`ν ]. More generally,
if A is any R-algebra, then Aet is provided with a natural structure map
to Aet → Ret → K(Λ, 1).

We denote by Z/`n(i) the local system on K(Λ, 1) given by the i-fold
tensor power of the natural action of Λ on µ`n . For any pro-space X
provided with a structure map X → K(Λ, 1), we also use Z/`n(i) to
denote the induced local system on X.

The next definition formalizes a modelling technique implicit in [5].
1.6 Definition: Let A be a finitely generated R-algebra. Then a map
of pro-spaces

fA : XA → K(Λ, 1)

is said to be a good mod ` model for A (or for Aet) if there exist pro-
spaces Xi over K(Λ, 1), each of finite mod ` cohomological dimension,
and a chain of maps

XA = Xm ← Xn−1 → · · · → X0 = Aet

over K(Λ, 1) satisfying the condition that Xj → Xj±1 induces isomor-
phisms

H∗(Xj±1,Z/`(i)) ∼= H∗(Xj ,Z/`(i)), i = 1, . . . , `− 1 .

Remark: For the purposes of this paper it would be enough to work
over K(λ, 1) instead of over K(Λ, 1) in defining a good mod ` model
(cf. proof of 1.8). There are other situations in which this would not be
sufficient.
1.7 Remark: The condition of 1.6 is equivalent to the condition that
the maps Xj → Xj±1 induce mod ` homology equivalences

X̃j → X̃j±1

on covering spaces determined by Xj±1 → K(Λ, 1) → K(λ, 1); this, in
turn, is equivalent to the condition that X̃j → X̃j±1 induces isomor-
phisms

H∗(X̃j±1,Z/`n(i)) ∼= H∗(X̃j ,Z/`n(i)), all n, i > 0,

or, in fact, to the condition that Xj → Xj±1 induces isomorphisms

H∗(Xj±1,Z/`n(i)) ∼= H∗(Xj ,Z/`n(i)), all n, i > 0.

The significance for us of a good mod ` model is given by the following
proposition.
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1.8 Proposition. Let fA : XA → K(Λ, 1) be a good mod ` model for
Aet. Then the chain of maps XA = Xm ← · · · → X0 = Aet extends to
a chain of pairs (of pro-spaces)

BGLn,XA ←−−−− BGLn,Xm−1 −−−−→ · · · −−−−→ F•
ω(BGLn,A)ety y y

XA ←−−−− Xm−1 −−−−→ · · · −−−−→ Aet

with each map between pairs inducing a homotopy equivalence on homo-
topy fibres (i.e., with each map between pairs determining a homotopy
cartesian square). As a consequence, the space BGLn(Aet) is homotopy
equivalent to the space of sections Γ(XA,BGLn,XA) of BGLn,XA → XA.

Proof: Given Xi → Xi−1 and BGLn,Xi−1 → Xi−1, we define

BGLn,Xi
→ Xi

as the evident pullback.
Given Xi → Xi+1 and BGLn,Xi → Xi, we proceed as follows to define

BGLn,Xi+1 → Xi+1. Suppose first that the map π1(Xi) → Λ → λ is
trivial. The homotopy fibre F of the map BGLn,Xi

→ Xi is `-equivalent
to Fω(BUn) and π1Xi acts trivially on the mod ` (co)-homology of this
pro-space (cf. [4, p. 260]). It follows from the fibre lemma [2] that F is
equivalent to the homotopy fibre of the completed map Fω(BGLn,Xi)→
Fω(Xi), or to the homotopy fibre of the composite map Fω(BGLn,Xi

)→
Fω(Xi) → Fω(Xi+1). (Observe that Xi → Xi+1 gives an isomorphism
on homology and so induces an equivalence Fω(Xi)→ Fω(Xi+1)). The
pro-space BGLn,Xi+1 is then the homotopy pullback of Fω(BGLn,Xi

)→
Fω(Xi+1) over the completion map Xi+1 → Fω(Xi+1).

In the general case, let X̃j , j = i, i + 1 be the connected covering
space determined by the composition

Xj → K(Λ, 1)→ K(λ, 1)

and let τj ⊂ λ denote the corresponding group of covering transforma-
tions. The conditions of 1.7 imply that τi = τi+1; let τ denote this
common group. Let BGLn,X̃i

denote the corresponding covering space
of BGLn,Xi

. Construct a pro-space “BGLn,X̃i+1
” as above. By natural-

ity this pro-space has an action of the group τ , and we define BGLn,Xi+1

as Eτ ×τ BGLn,X̃i+1
; the desired map BGLn,Xi → BGLn,Xi+1 can be

obtained by combining the τ -equivariant map BGLn,X̃i
→ BGLn,X̃i+1
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with some chosen τ -equivariant map BGLn,X̃i
→ Eτ and then passing

to τ orbits.
Finally, the homotopy equivalence of spaces of sections is proved by

comparing homotopy spectral sequences [5, 3.2]. The space BGLn(Aet)
is homotopy equivalent to Γ(A,F•

ω(BGLn,A)et) because

F•
ω(BGLn,A)et −−−−→ F•

ω(BGLn,R)ety y
Aet −−−−→ Ret

is homotopy cartesian.
We conclude this section with the following example from [5, §4]. Its

verification entails interpreting certain cohomological calculations aris-
ing from class field theory.
1.9 Example: Let A denote the ring R[ζ], and assume that ` is odd
and regular in the sense of number theory; this last means that ` does
not divide the order of the ideal class group of A or equivalently that
` does not divide the order of the ideal class group of Z[ζ]. Choose a
prime p which is congruent to 1 mod ` but is not congruent to 1 mod `2.
Let ∨S1 denote a bouquet of (`+ 1)/2 circles, and construct a map

fA : (∨S1)→ K(Λ, 1)

by sending a generator of the fundamental group of the first circle to
p ∈ (Z/`ν)∗ and mapping the other circles trivially. Then there exists a
map

∨S1 → Aet

over K(Λ, 1) which satisfies the conditions of 1.7. Consequently, fA is a
good mod ` model for A.

§2. Z[1/`] with ` an odd regular prime

In this section we will assume that ` is an odd regular prime (see 1.9);
recall that R denotes the ring Z[1/`]. Fix a prime p which generates the
multiplicative group of units in Z/`2, let XR denote the space RP∞∨S1

(the wedge of real infinite projective space and a circle), and let

fR : XR → K(Λ, 1)

be a map with sends the generator of π1(RP∞) ∼= Z/2 to (−1) ∈ (Z/`ν)∗

and the generator of π1(S1) ∼= Z to p ∈ (Z/`ν)∗.
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2.1 Theorem. The above map fR : XR → K(Λ, 1) is a good mod `
model for R.

Remark: In [5] there is a description of a parallel good mod 2 model
for the ring Z[1/2].

Let eR : RP∞ → Ret be a homotopy equivalence and eZp : S1 →
(Zp)et a mod ` equivalence which sends the generator of π1(S1) to the
Frobenius element in πet

1 Zp (3.2, 3.4). Given an embedding γ : Zp → C,
we construct a commutative diagram of rings

R −−−−→ Ry y
Zp

γ−−−−→ C

,

choose a basepoint (in an essentially unique way) in the contractible
pro-space Cet, and use this basepoint together with the commutative
diagram to obtain a map εR(γ) : Ret ∨ (Zp)et → Ret. Let eR(γ) denote
the composite map

eR(γ) : RP∞ ∨ S1 eR ∨ eZp

−−−−−→ Ret ∨ (Zp)et
εR(γ)
−−−→ Ret .

Theorem 2.1 is an immediate consequence of the following result.

2.2 Proposition. There exists an embedding γ : Zp → C such that
the above maps εR(γ) and eR(γ) each satisfy the conditions of 1.6.

Remark: The reader might be surprised to learn that one can always
choose an embedding γ′ : Zp → C such that the conditions of 1.6 are not
satisfied by either εR(γ′) or eR(γ′). Namely, the proof of Proposition
2.2 shows that choices of elements σ, τ ∈ G as in Remark 2.10 will
determine such a “bad” embedding.

Before proving 2.2, we point out the following corollary. In the state-
ment, F Ψp refers to the space studied by Quillen [14].

2.3 Corollary. The etale K-theory space BGL(Ret) of R is homotopy
equivalent to

F∞(F Ψp ×U/O) .

Proof of 2.3: By Proposition 1.8, we conclude that BGL(Ret) is ho-
motopy equivalent to

colimn{Γ((Zp)et ∨Ret,BGLn,(Zp)et∨Ret)} .
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We interpret each space in the colimit as a fibre product of

Γ((Zp)et,F•
ω BGLn,(Zp)et) and Γ(Ret,F•

ω BGLn,Ret)

over
Γ(pt,F•

ω BGLn,pt) .

In any given dimension the homotopy groups of the spaces involved in
these fibre products stabilize as n gets large [4, 4.5], and we identify the
colimit of these cartesian squares as

BGL(Ret) −−−−→ F∞ BOy y
F∞(F Ψp) −−−−→ F∞ BU

(see [5, 4.1 ff.]) so that BGL(Ret) fits into a fibration sequence

F∞(U/O) −→ BGL(Ret) −→ F∞(F Ψp) .

The fibration BGL(Ret) → F∞(F Ψp) has a section given by the map
F∞(F Ψp) = F∞(im Jp) → F∞(BΣ+

∞) → BGL(Ret) (see for instance
[12, §4]) and, since this is a fibration of infinite loop spaces, the section
gives the desired product decomposition forBGL(Ret). (A more delicate
argument would show that the product decomposition holds even in the
category of infinite loop spaces).
2.4 Remark: Let C be the infinite cyclic subgroup of R∗ generated by
`. Consider the maps

BGL(Z)× S1 f−→ BGL(R)
g−→ F∞(F Ψp × U/O)

obtained on the one hand by passing to the limit with the evident direct
sum maps GLn(Z) × C → GLn+1(R) and on the other by combining
1.4 with 2.3. It follows from the localization theorem and the triviality
of K∗(Z/`) at ` that the map f is an isomorphism on mod ` homology.
The Lichtenbaum-Quillen conjecture for the ring Z at the prime ` is
thus [5, 3.1] equivalent to the conjecture that the composite g · f is an
isomorphism on mod ` homology.

The rest of this section is concerned with proving 2.2. For simplicity
we will denote the space XR = RP∞ ∨ S1 by X, and we will let Xλ

be the covering space of X corresponding to the kernel of the composite
homomorphism

π1(XR)
π1(fR)
−−−−→ Λ −→ λ .
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We will denote the ring R[ζ] by Rλ.
Let µ denote the one dimensional representation of F[λ] given by the

action of λ on µ` ⊂ R[ζ]∗. The ring F[λ] is semisimple (by Maschke’s
theorem) and

µ, µ⊗2, . . . , µ⊗(`−2), µ⊗(`−1) = Z/`

is a complete list of the (isomorphism classes) of irreducible F[λ] mod-
ules. If M is an F[λ] module, we denote by M [odd] (resp., M [even]) the
submodule of M generated by irreducible summands isomorphic to odd
(resp., even) powers of µ. We shall have frequent occasion to consider
the F[λ] module L given by

L = (F[λ])[odd] = µ⊕ µ⊗3 ⊕ · · · ⊕ µ⊗(`−4) ⊕ µ⊗(`−2) .

The module L is isomorphic as an F[λ] module to its F dual.

2.5 Lemma. There are isomorphisms of F[λ] modules

H1(Xλ,Z/`) ∼= Z/`⊕ L
H1(Xλ,Z/`) ∼= Z/`⊕ L .

The groups Hi(Xλ,Z/`) vanish for i ≥ 2.

Proof: We construct Xλ geometrically as follows. Above the circle of
X = RP∞ ∨ S1, we place a circle (constituting part of Xλ) mapping to
X as an (`− 1) fold covering. We mark on this upper circle the (`− 1)
points given by the inverse image of the base point of X. The space
Xλ is then defined to be the union of this circle with (`− 1)/2 copies of
the infinite sphere S∞, where each S∞ maps via a 2-fold covering map
to RP∞ and where the two points of a given S∞ mapping to the base
point of RP∞ are identifed with antipodal marked points on the circle
of Xλ in such a way that each antipodal marked pair belongs to exactly
one S∞. The resulting space Xλ is a cyclic covering space of X of degree
` − 1 and has the homotopy type of a wedge of (` + 1)/2 circles. The
action of the generator

σ ∈ π1S
1 ⊂ π1X

on Xλ rotates the circle of Xλ through an angle 2π/(`−1) and operates
as continuity requires on the copies of S∞. The action of the generator

τ ∈ π1(RP∞) ⊂ π1X

onXλ rotates the circle through an angle π and operates as the antipodal
map on each S∞. Thus, the action of τ is that of the σ(`−1)/2. Since λ
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is a cyclic group of order ` − 1 generated by p there is a unique action
of λ on Xλ under which p acts as σ and p(`−1)/2 = −1 as τ .

The group λ acts trivially on the homology class of the circle in Xλ,
and so this circle determines a copy of the trivial F[λ] module Z/` in
H1(Xλ,Z/`). Collapsing this circle to a point and replacing each S∞

by an arc yields a bouquet of (`− 1)/2 circles and it is is clear that the
action of λ on the dimension one Z/` homology of this bouquet gives
the representation L. The desired identification of H1(Xλ,Z/`) follows
from the long exact homology sequence of a pair and the fact that exact
sequences of F[λ] modules split; the identification of H1(Xλ,Z/`) is by
duality. The fact that the higher cohomology groups of Xλ vanish is
clear.

Recall that Rλ denotes R[ζ].

2.6 Lemma. There are isomorphisms of F[λ] modules

H1
et(Rλ,Z/`) ∼= Z/`⊕ L

Het
1 (Rλ,Z/`) ∼= Z/`⊕ L .

The groups Hi
et(Rλ,Z/`) vanish for i ≥ 2.

Proof: Since Rλ contains the `’th roots of unity µ`, there is an iso-
morphism of F[λ] modules

H1
et(Rλ,Z/`) ∼= H1

et(Rλ, µ`)⊗ µ⊗(−1)

where µ⊗(−1) ∼= µ⊗(`−2). Let E be the group of units in Rλ and E`

the quotient group E/E`. There is for general reasons a short exact
sequence of F[λ] modules (cf. proof of 5.2)

0 −→ E` −→ H1
et(Rλ, µ`) −→ ` Pic(Rλ) −→ 0

and in this case the group ` Pic(Rλ) (i.e., the group of elements of expo-
nent ` in the ideal class group of Rλ) is trivial because ` is regular. Let
E′ be the group of units in Z[ζ] and E′

` the quotient E′/(E′)`. According
to [20, §8.3] there is an isomorphism of F[λ] modules

E′
`
∼= µ⊕

(`−3)/2⊕
i=1

µ⊗2i

and so, since E` is the direct product of E′
` and a cyclic group generated

by the image of ` ∈ R∗, there is an isomorphism

E`
∼= µ⊕

(`−3)/2⊕
i=0

µ⊗2i ∼= (Z/`⊕ L)⊗ µ .
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The desired isomorphisms follow directly. The fact that the higher
(co)homology groups vanish is proved in [5, 4.4] (cf. 1.9).

We shall now let G denote the semidirect product of λ and the F[λ]
module L above. Up to isomorphism the group G is the only extension
of λ by L. Let XG → Xλ denote the covering space corresponding to
the kernel of the composition

π1(Xλ)→ H1(Xλ,Z/`)→ H1(Xλ,Z/`)[odd] ∼= L .
Similarly, let Rλ → RG denote the finite etale map corresponding to the
kernel of the composition

π1(Rλ)→ Het
1 (Rλ,Z/`)→ Het

1 (Rλ,Z/`)[odd] ∼= L .
In what follows we will assume that we have chosen an embedding RG ⊂
C which extends the inclusion Rλ ⊂ C. In view of 2.5 and 2.6, the
following lemma is elementary.

2.7 Lemma. The composition XG → Xλ → X is a normal covering map
with group G. The composition R → Rλ → RG is a Galois extension
with Galois group G.

Let pλ be the unique prime of Rλ which lies above the rational prime p.

2.8 Lemma. The prime pλ splits completely in RG.

Proof: By Kummer theory, RG can be obtained from Rλ by adjoining
an element u1/` for each u ∈ R∗

λ such that ūu−1 is an `’th power. (Here
ū is the complex conjugate of u). For such a u, adjoining u1/` is the
same as adjoining (uū)1/`, so we can obtain RG from Rλ by adjoining
`’th roots of real units. Let R+

λ = Rλ ∩R, let p+
λ be the prime of R+

λ

below pλ, and choose u ∈ (R+
λ )∗. The residue class field R+

λ /p
+
λ has no

`’th roots of unity, so raising to the `’th power is an automorphism of its
multiplicative group and the image of u in R+

λ /p
+
λ has at least one `’th

root. By Hensel’s lemma u has at least one `’th root in the completion of
R+

λ at p+
λ . Since µ` ⊂ R∗

λ, all of the `’th roots of u lie in the completion
of Rλ at pλ. The lemma follows.

We will have to use some properties of the group G .

2.9 Lemma. The group G can be generated by two elements σ, τ ∈ G
with σ having order ` − 1 and τ having order 2. Moreover, any non-
trivial element of G of order 2 is conjugate to τ and any subgroup of G
of order `− 1 is conjugate to the subgroup generated by σ.

2.10 Remark: There certainly exist elements σ, τ ∈ G of order (`− 1)
and 2 respectively which do not generate G; for example, choose any
σ ∈ G of order (`− 1) and let τ = σ(`−1)/2.
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Proof of 2.9: We employ the description of G as the group of deck
transformations of XG over X. Since the group

π1X = π1(RP∞ ∨ S1) = Z/2 ∗ Z

is generated by two elements σ̃ and τ̃ with σ̃ of infinite order and τ̃ of
order 2, it suffices to prove that the image σ ∈ G of σ̃ has order ` − 1.
This follows from the fact that the element

σ̃`−1 ∈ ker{π1(X)→ λ} = π1(Xλ).

corresponds to the circle of Xλ (see proof of 2.5); this circle represents
a homology class invariant under the action of λ and so by construction
lifts to a closed curve in XG. The assertions involving conjugacy follow
from combining the fact that H1(λ′,L) = 0 for any subgroup λ′ ⊂ λ
with the fact that H1(λ′,L) can be interpreted as the set of L-conjugacy
classes of splittings of the extension

1→ L → G′ → λ′ → 1

obtained by restricting the extension G of λ to λ′.

Proof of 2.2: We will fix two elements σ, τ ∈ G as in 2.9; by the
uniqueness provision of 2.9, we can assume after perhaps changing σ up
to conjugacy that τ is the restriction to RG ⊂ C of complex conjugation.
Denote by Rσ the ring fixed by the action of σ on RG. According to
2.8 the subgroup L ⊂ G acts simply transitively on the set of all primes
of RG which like above p. By 2.9, the isotropy (=inertia) subgroups of
these primes correspond exactly to the subgroups of G of order ` − 1.
Let pG be such a prime which is fixed by σ, and pσ the prime below pG

in Rσ. The completion of Rσ at pσ is isomorphic to Zp, so we can view
the completion map as a map γ′ : Rσ → Zp.

Let γ : Zp → C be an embedding such that the composite γ · γ′ is
the inclusion Rσ ⊂ C. We will show that eR(γ) and εR(γ) satisfy the
conditions of 1.7. All of the rings in question come with embeddings in
C and we will use the chosen basepoint of Cet to give basepoints for all
etale fundamental groups. The pullback of the diagram

(Zp)et
γ′
et−−→ (Rσ)et ←− (RG)et

is (Zp⊗Rσ
RG)et, which is connected because (pσ being inert in RG) the

ring Zp⊗Rσ
RG is the completion of RG at pG and hence a domain. An
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elementary covering space argument now shows that the image of the
composite map

πet
1 Zp −→ πet

1 Rσ −→ πet
1 R −→ G

contains (and is in fact equal to) the subgroup generated by σ; since
the image under eZp of π1(S1) is dense in the profinite group πet

1 Zp, the
image of the map

π1S
1 −→ πet

1 Zp −→ G

also contains σ. In the same way the image of the map π1RP∞ → πet
1 R

is equal to the subgroup generated by the element τ ∈ G representing
complex conjugation. By 2.9 the composite map

π1X = π1(RP∞ ∨ S1)
π1(eR(γ))
−−−−−−→ πet

1 R→ G

is surjective, so that the map π1(Xλ)→ (Rλ)et induced by eR(γ) induces
a surjection H1(Xλ,Z/`)[odd] −→ Het

1 (Rλ,Z/`)[odd]. By 2.5. 2.6 and
a descent spectral sequence argument, the map H1(Xλ,Z/`)[even] −→
Het

1 (Rλ,Z/`)[even] induced by eR(γ) is the same as the induced map

H1(X,Z/`) −→ Het
1 (R,Z/`) ∼= Z/` .

This map is surjective because p is inert in the (unique) unramified
Galois Z/` extension of R; in fact, this extension is the maximal real
subring of the ring obtained from R by adjoining a primitive `2 root
of unity. (Here is the one place in which we use the fact that p is a
multiplicative generator mod `2 and not just mod `.) Consequently, the
map H1(Xλ;Z/`) −→ Het

1 (Rλ,Z/`) induced by eR(γ) is an epimorphism
and hence by counting (2.5, 2.6) an isomorphism. This shows that eR(γ)
satisfies the conditions of 1.7. Since the map eR ∨ eZp also satisfies the
conditions of 1.7, the desired result for εR(γ) follows at once.

§3. Affine curves and local fields

Let p be a prime number different from `. In this section, we construct
good mod ` models for

(1) affine curves over the algebraic closure F̄p of Fp,
(2) affine curves over a finite field Fq where q = pd,
(3) higher p–adic local fields, and
(4) certain `–adic local fields.
Our first example, that of a smooth affine curve over F̄p , is implicit

in [9].
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3.1 Proposition. Let Ȳ denote a smooth complete curve over F̄p of
genus g and let Ā denote the coordinate algebra of the complement
Ū ⊂ Ȳ of s ≥ 1 points. LetXĀ ≡ Fω(∨S1) denote the `–adic completion
of the wedge of 2g+ s− 1 circles. Then there exists a mod ` equivalence

Āet → XĀ .

Furthermore, the structure map Āet → K(Λ, 1) is (homotopically) triv-
ial, so that XĀ (with the trivial structure map to K(Λ, 1)) is a good
mod ` model for Ā.

Proof: Let T ≡ Witt(F̄p) denote the Witt vectors of F̄p. Then the
“liftability of smooth curves to characteristic 0” asserts that there is a
proper, smooth map YT → SpecT with (geometric) fibre Ȳ over the
residue field of T . Moreover, we may find a closed subscheme ZT ⊂ YT

with the properties that ZT is finite, etale over SpecT and that the fibre
over the residue field of UT ≡ YT \ZT is Ū . So constructed, UT → SpecT
is a “geometric fibration”, so that the `–adic completions of its geometric
and homotopy theoretic fibres are equivalent [8], [7, 11.5].

Let γ : SpecC → SpecT correspond to an embedding T ⊂ C. The
geometric fibre Yγ is a Riemann surface of genus g with s punctures,
thereby having the homotopy type of a wedge of 2g + s − 1 circles.
Since Tet is contractible, we conclude that the `–adic completion of the
homotopy theoretic fibre of UT → SpecT is equivalent to XĀ. On
the other hand, Spec Ā is the geometric fibre of UT → SpecT above
the residue field Spec F̄p → SpecT . Thus, Āet has `–adic completion
equivalent to XĀ. The triviality of the structure map Āet −→ K(Λ, 1)
follows from the fact that Ā contains all of the `–primary roots of unity.
3.2 Remark: The fact that the finite field Fq (q = pd) has a unique
extension inside F̄p of degree s for any s > 0 and that each such extension
is Galois and cyclic with a canonical generator (the Frobenius) for its
Galois group implies that

(Fq)et ∼= {K(Z/s, 1)}s>0 .

In fact, there is a natural mod ` equivalence S1 → (Fq)et which sends
the generator of π1S

1 to the Frobenius map. The composite of this
mod ` equivalence with the structure map (Fq)et → K(Λ, 1) is the map
ψq : S1 → K(Λ, 1) which sends the generator of π1S

1 to q ∈ Aut(µ`ν ) ∼=
(Z/`ν)∗.

3.3 Proposition. Let Y denote a smooth, complete curve over Fq of
genus g, let A denote the coordinate algebra of the complement U ⊂ Y
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of s ≥ 1 Fq–rational points, and let Ā denote A⊗Fq F̄p. Let XĀ be as
in 3.1. Then there exists an equivalence

φ : XĀ ≡ Fω(∨S1)→ Fω(∨S1) ≡ XĀ

such that the homotopy quotient XA ≡ XĀ ×Z EZ of the action of
φ on XĀ is a good mod ` model for A; the structure map fA is the
composition

fA = ψq ◦ pr : XA → BZ = S1 → K(Λ, 1).

Moreover, if g = 0 then φ is a map which induces multiplication by q on
H1(XĀ,Z/`ν) for each ν > 0.

Proof: We view SpecA → SpecFq as a geometric fibration with geo-
metric fibre Spec Ā (cf. proof of Proposition 3.1). Thus, the homotopy
theoretic fibre of Aet → (Fq)et is mod ` equivalent to XĀ [8]. Equiva-
lently, the mod ` fibrewise completion F•

ω(Aet) of Aet fits in a fibration
sequence

XĀ → F•
ω(Aet)→ (Fq)et

Let S1 → (Fq)et be given by sending a generator of π1(S1) = Z to the
Frobenius map (as in 3.2). Then the pullback of the above fibration
sequence by S1 → (Fq)et is a fibration sequence of the form

XĀ → E → S1

This implies that E is the homotopy quotient of φ , where φ : XĀ → XĀ

is the ”deck transformation” associated to a generator of π1(S1), the
group of the covering space XĀ → XA. Let XA = E.

By construction we have a commutative diagram of prospaces

Aet −−−−→ F•
ω(Aet) ←−−−− XAy y y

(Fq)et
=−−−−→ (Fq)et ←−−−− S1

in which the horizontal arrows are (fibrewise) mod ` equivalences. Since
the structure map Aet → K(Λ, 1) factors through the structure map
(Fq)et → K(Λ, 1) and since composition of this latter map with S1 →
(Fq)et was checked above to be ψq we conclude that the indicated map
XA → K(Λ, 1) is a good mod ` model for A.
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Finally, if g = 0 and s = 2 (so that A ∼= Fq[t, t−1]), then the fact
that Pic Ā = Z in this case implies that there is a natural isomorphism
H1

et(Ā, µ`ν ) ∼= Ā∗⊗Z/`ν (cf. the exact sequence in the proof of 2.6). Ob-
serve that Ā∗⊗Z/`ν is invariant under Gal(F̄p,Fq) so that Gal(F̄p,Fq)
acts on H1

et(Ā,Z/`
ν) ≡ H1

et(Ā, µ`ν )⊗ µ−1
`ν by multiplication by q−1 and

dually on Het
1 (Ā,Z/`ν) by multiplication by q.

Remark: The “Riemann Hypothesis for Curves” provides further infor-
mation about the self-equivalence φ of XĀ in Proposition 3.3. Namely,
we conclude that the induced map on `–adic homology is the sum of two
maps: the first is multiplication by q on (Z`)s−1 (as in Proposition 3.3)
and the second has eigenvalues of absolute value q1/2 on (Z`)2g.

3.4 Remark: If A is a hensel local ring (e.g., a complete discrete val-
uation ring) with residue field k and quotient field K, then the map
ket → Aet is an equivalence, but the relationship between Ket and Aet
is considerably more subtle. The special case r = 1 of the following
proposition treats this question in a special case, as does 3.6.

As considered for example in [6] a generalized local field K of “tran-
scendental degree” r over a field k is a field for which there exists a finite
chain of homomorphisms

k = K0 ← O1 → K1 ← · · · ← Or → Kr = K

such that each Oj is a hensel discrete valuation ring with residue field
Kj−1 and quotient field Kj .

3.5 Proposition. Let K be a generalized local field of transcenden-
tal degree r over the finite field Fq and let S = S1 denote the circle.
Consider the space

XK ≡ Fω(S×r)×Z EZ

which is the homotopy quotient of the map given by multiplication by q
on the completion of the r–fold cartesian power of S. If XK is provided
with the structure map

fK = ψq ◦ pr : XK → BZ→ K(Λ, 1) ,

then it is a good mod ` model for K.

Proof: The proof of [6, 3.4] establishes a chain of ring homomorphisms,
each inducing an isomorphism in etale cohomology with Z/`(i) coeffi-
cients (i = 1, . . . , ` − 1), relating A ≡ Fq[t1, ..., tr, t−1

1 , ..., t−1
r ] and K.

Thus, a good mod ` model for A will also be a good mod ` model for K



Topological Models 19

(ring homomorphisms are always compatible with the structure maps to
K(Λ, 1)).

We view SpecA as the complement in (P 1
Fq

)×r of a divisor with normal
crossings rational over Fq. Replacing Fq by T ≡ Witt(Fq), the Witt
vectors of Fq, we obtain Ũ = Spec Ã ⊂ (P 1

T )×r (i.e., the r-fold fibre
product of P 1

T with itself over T ) with the property that Ũ → SpecT
is a geometric fibration. Letting γ : SpecC → SpecT be given by a
complex embedding of T , we observe that the geometric fibre of Uγ is
mod ` equivalent to S×r. As in the proof of Proposition 3.3, this implies
the mod ` equivalences over K(Λ, 1)

Aet → F•
ω(Aet)← Fω(S×r)×Z EZ .

Since the action of Gal(F̄p,Fp) on H1
et(A,µ`ν ) ∼= A∗ ⊗ Z/`ν is trivial,

we conclude as in the proof of Proposition 3.3 that the action of Z on
Fω(S×r) is given by multiplication by q.

In the next proposition, we present a good mod ` model for a p–adic
field which looks a bit different from the one provided by the special
case r = 1 in Proposition 3.5.

3.6 Proposition. Let K be a p–adic field with residue field Fq. Con-
sider the 1-relator group πK given by

πK = <x, y : yxy−1 = xq> .

Then the map
f̃K : K(πK , 1)→ K(Λ, 1)

induced by the homomorphism πK → Λ sending x to the identity and y
to q ∈ Aut(µ`ν ) = (Z/`ν)∗ is a good mod ` model for K. Furthermore,
K(πK , 1) is homotopy equivalent to the (homotopy) pushout ΠK of the
diagram

(S1 ∨ S1)← S1 → pt

in which the left map sends a generator of π1(S1) to x−qyx−1y−1, where
x and y are the generators of π1(S1 ∨ S1) associated to the wedge sum-
mands.

Proof: Using the relationship yxy−1 = xq, we readily verify that the
normal closure of the cyclic subgroup generated by x consists of frac-
tional powers of x with denominators a multiple of q. Hence, πK lies
in an extension Z[1/p] → πK → Z and K(πK , 1) fits into a fibration
sequence

(S1)1/p → K(πK , 1)→ S1 .



20 Dwyer and Friedlander

Let XK be the good mod ` model for K resulting from the case r = 1
of 3.5. There is evidently a commutative square

K(πK , 1) −−−−→ XKy y
S1 =−−−−→ S1

in which the induced map on fibres is a mod ` equivalence. We conclude
that f̃K : K(πK , 1)→ K(Λ, 1) is a good mod ` model for K.

The equivalence ΠK ' K(πK , 1) follows from a theorem of Lyndon
(cf. [3, p. 37]) in view of the fact that the relator of πK is not a power.

Our last example is that of an `–adic field containing a primitive
`’th root of unity. The proposition below is based upon a theorem of
Demuskin [17].

3.7 Proposition. Let L be an `–adic local field. i.e., the completion
of a number field F at a prime with residue field of characteristic `.
Assume that µ`s ⊂ L, where `s > 2, that µ`s+1 6⊂ L, and that 2g is the
degree of L over Q`. Let GL denote the 1-relator group generated by
2g + 2 elements x, y, x1, . . . , x2g subject to the defining relation

x`s+1yx−1y−1 = [x1, x2] · · · [x2g−1, x2g] .

Then there is a homomorphism GL → Λ such that the classifying map
fL : K(GL, 1) → K(Λ, 1) is a good mod ` model for L. Moreover,
K(GL, 1) is homotopy equivalent to the (homotopy) pushout ΠL of the
diagram

(S1 ∨ S1)← S1 → (∨2gS
1)

in which the left map sends a generator t of π1(S1) to x`s+1yx−1y and the
right map sends t to the product of commutators [x1, x2]....[x2g−1, x2g]
(here x, y, x1, ..., x2g are generators of corresponding fundamental groups
associated to wedge summands).

Proof: The second assertion follows from [3, p. 50]; it implies that GL

has cohomological dimension 2.
Let ΓL denote the Galois group Gal(L̄, L), where L̄ is the algebraic

closure of L, and let “̂” denote profinite `–completion. The completion
map Let ∼= K(ΓL, 1)→ K(Γ̂L, 1) induces an isomorphism on H∗(–,Z/`)
by [16, Ch. II, Prop. 20] and hence in particular [16, Ch. II, Prop. 15]
both ΓL and Γ̂L have cohomological dimension ≤ 2.
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By [17] (cf. [16, Ch. II, §5.6]) there is an isomorphism ĜL
∼= Γ̂L. The

map GL → ĜL induces a map

Hi(K(GL, 1),Z/`)→ Hi(K(ĜL, 1),Z/`)

which for general reasons is an isomorphism when i ≤ 1 and an epi-
morphism for i = 2. Since H2(K(GL, 1),Z/`) is isomorphic to Z/` by
the above construction of K(GL, 1), H2(K(ĜL, 1),Z/`) is isomorphic to
Z/` by [16, Ch. II, Th. 4], and the higher Z/` homology groups of these
pro-spaces vanish, we conclude that in the diagram

Let ∼= K(ΓL, 1)
α−→ K(Γ̂L, 1) ∼= K(ĜL, 1)

β←− K(GL, 1)

both of the maps α and β induce isomorphisms on Z/` homology. Since
L contains µ` the local systems Z/`(i) are all isomorphic to the trivial
system Z/`. Thus, if we define fL : K(GL, 1) → K(Λ, 1) to be given
by the composite

GL → ĜL
∼= Γ̂L → Λ ,

the map fL is a good mod ` model for L.

§4. The Eilenberg–Moore spectral sequence

In this section, we describe the machinery from algebraic topology
which will be used to prove the cohomological injectivity statements
in §6. Our main tool will be the Eilenberg–Moore spectral sequence,
denoted EMSS; we will use it to study the cohomology of function com-
plexes and in §6 to investigate the maps in cohomology induced by con-
tinuous maps between function complexes. This resembles Quillen’s use
of the EMSS in [14, §1–5].

Throughout this section we will consider graded algebras over the
field F, in particular, we shall use H∗X to denote the mod ` cohomology
H∗(X,Z/`) of a space X. We begin with a brief discussion of the EMSS;
further details may be found in [18]. We consider a cartesian square of
spaces with f (and thus f ′) a fibration:

E′ −−−−→ E

f ′
y yf

B′ −−−−→ B

where B is assumed to be simply connected and the cohomology (i.e.,
mod ` cohomology) of each space is assumed finite in each dimension.
Then there is a strongly convergent second quadrant spectral sequnce

E−s,t
2 = Tor−s,t

H∗B(H∗(B′), H∗E)⇒ H∗(E′)
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whose r’th differential takes the form

dr : E−s,t
r → E−s+r,t−r+1

r .

This is a spectral sequence of algebras; each differential is a derivation.
Recall that if S is a (positively) graded commutative algebra and

M , N are graded modules over S, then Tor−s,t
S (M,N), where s is the

homological degree and t is the internal degree, is explained as follows.
If

· · · → Fn → Fn−1 → · · · → F0 →M

is a projective resolution of M (as a graded right S-module) and F ′
n =

Fn ⊗S N , then Tor−s,t
S (M,N) denotes the degree t component of the

graded module

ker{F ′
s → F ′

s−1 }/ im{F ′
s+1 → F ′

s} .

Let S be a graded commutative algebra (e.g., S = H∗B). One of
the most convenient contexts in which to compute TorS(M,N) is that
in which M is a quotient of S by an ideal I generated by a regular
sequence x1, . . . , xn of homogeneous elements. Then one obtains a very
efficient free resolution of M , the Koszul resolution, which takes the
following form:

· · · → S ⊗ ΛnV → S ⊗ Λn−1V → · · · → S ⊗ V → S →M

where V is a vector space spanned by elements y1, . . . , yn and where the
tensor products are taken over F.

The following proposition, an almost immediate consequence of the
existence of the Koszul resolution, is essentially in [18, 2.10].

4.1 Proposition. Let S be the polynomial algebra F[x1, ..., xn] graded
so that each xi is homogeneous of degree di. Let S(r) denote the r–fold
tensor power of S over F, S(r) ≡ S⊗r, and give S the structure of an
S(r) module by means of the multiplication map. Then Tor∗

S(r)(S, S) is
naturally isomorphic as an S algebra to the (r− 1)–fold tensor power of
the DeRham complex of S:

Tor∗
S(r)(S, S) ∼= Ω∗

S/F ⊗S · · · ⊗S Ω∗
S/F .

Remark: The DeRham complex Ω∗
S/F is an exterior algebra over S

generated by elements dxi (i = 1, . . . , n) of homological degree 1 and
internal degree di.
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Proof of 4.1: The kernel of the multiplication map S(r)→ S is gen-
erated by the regular sequence

{xi,j − xi,r; 1 ≤ i ≤ n, 1 ≤ j < r}
in

S(r) ∼= F[x1, ..., xn]⊗r ∼= F[xi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ r].
We obtain the asserted computation by taking the Koszul resolution of S
as an S(r) module using this regular sequence, tensoring this resolution
over S(r) with S, and observing that the resulting complex has trivial
differentials.

With the aid of Proposition 4.1, the EMSS easily provides the follow-
ing computation.

4.2 Proposition. Let X be a simply connected space with H∗X iso-
morphic to the finitely generated polynomial algebra S = F[x1, ..., xn].
Let Y denote the space

Y ≡ Map(∨S1, X)

of unpointed maps from a bouquet of r circles to X. Then H∗Y admits
a filtration associated to the EMSS whose associated graded module is
naturally isomorphic to the r-fold tensor power of the DeRham complex
of S:

gr H∗Y ∼= Ω∗
S/F ⊗S · · · ⊗S Ω∗

S/F.

Proof: Let ∨D1 be the one-point union of r copies of the unit interval
D1 formed by glueing these copies together at 0 ∈ D1. The space
∨S1 can be obtained from ∨D1 by further identifying the r images 1i

(i = 1, . . . , r) of 1 ∈ D1 with the common image of 0. This implies that
the space Y fits into a cartesian square

Y −−−−→ Map(∨D1, X) ' Xy ye

X
∆−−−−→ Xr+1

where ∆ is the diagonal and e is the fibration given by evaluation at
various interval endpoints. Under the basepoint evaluation equivalence
Map(∨D1, X) ' X the map e is homotopic to the diagonal. Using
Proposition 4.1, we identify the E2 term of the EMSS for this square as

E−s,∗
2 =

⊕
s=s1+···+sr

Ωs1
S/F ⊗S · · · ⊗S Ωsr

S/F .



24 Dwyer and Friedlander

The shape of this spectral sequence implies that E0,∗
2 and E−1,∗

2 consist
of permanent cycles; since these cycles generate E∗,∗

2 multiplicatively,
we conclude that E∗,∗

2 consists of permanent cycles, or, in other words,
that E2 = E∞.

The following generalization of Proposition 4.2 will be useful; it is
proved in the same way as 4.2. Let ∨S1 be a bouquet of r circles, and
f : E → ∨S1 a fibration with homotopy fibre X = f−1(∗). Let ∨D1 be
the space in the proof of 4.2 and f ′ : E′ → ∨D1 the (trivial) fibration
obtained by pulling E back over the quotient map ∨D1 → ∨S1. As in
the proof of 4.2, there is a homotopy fibre square for the space of sections
Γ(f) of f

Γ(f) −−−−→ Γ(f ′) ' Xy ye

X
∆−−−−→ Xr+1

where again ∆ is the diagonal and e is given by evaluation at the points
0 and 1i (i = 1, . . . , r) in ∨D1. Under the basepoint evaluation equiv-
alence Γ(f ′) ' X the map e is homotopic to a product (φ0, . . . , φr),
where φ0 is the identity map of X and each φi, i = 1, . . . , r is a self-
equivalence of X. We will call the self-equivalences φi the monodromy
maps of the fibration f . The induced cohomology maps φ∗

i generate the
usual monodromy action of the free group π1(∨S1) on H∗X.

4.3 Proposition. Let f : E → ∨S1 be a fibration with fibre X over
a bouquet ∨S1 of r circles. Assume that X is simply connected. Let
φi, i = 1, . . . , r be the monodromy maps of f . Let e : X → Xr+1

be the product (id, φ1, . . . , φr), and eH
∗X the module over H∗(Xr+1)

obtained using e∗. Then there is a strongly convergent EMSS

Tor−s,t
H∗(Xr+1)(H

∗X, eH
∗X)⇒ H∗(Γ(f)) .

Finally, if H∗X is isomorphic to a finitely generated polynomial algebra
S over F and π1(∨S1) acts trivially on H∗X then this EMSS collapses
to an isomorphism

gr H∗(Γ(f)) ∼= Ω∗
S/F ⊗S · · · ⊗S Ω∗

S/F.

§5. Algebraic and topological tori

In this section, we verify the injectivity of the map on mod ` coho-
mology induced by the natural map

BTn(A)→ BTn(Aet) ,
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where A is an R algebra and Tn,R is the rank n, R–split torus given by

Tn,R = SpecR[t1, t−1
1 , . . . , tn, t−1

n ].

The map in question is the n-fold cartesian power of the map BT1(A)→
BT1(Aet) associated to the special case n = 1, and so it is this special
case that we will concentrate on. This discussion prepares the way for the
consideration in §6 of the more delicate map BGLn(A) → BGLn(Aet) .
We begin with the construction of non-connected versions of BT1(A)
and BT1(Aet).

5.1 Lemma. Let A be a noetherian R algebra. There exists infinite loop
spaces

BT̃1(A) ≡ Homg(A,BT1,R) and BT̃1(Aet) ≡ Hom`(Aet, (BT1,R)et)Ret

with the following properties:
(1) BT1(A) and BT1(Aet) are respectively the identity components

of BT̃1(A) and BT̃1(Aet).
(2) π0(BT̃1(A)) = Pic(A).
(3) The map φ0

A : BT1(A) → BT1(Aet) is the restriction to identity
components of a map of infinite loop spaces φA : BT̃1(A) →
BT̃1(Aet).

Proof: The construction of Homg(A,BT1,R) and the natural map φA

of (3) are provided in [4, §2]. One verifies that this map is the map on
zero spaces of a map of spectra as in [4, §3, 4.4] using the multiplicative
structure on BT1,R given by the commutative group scheme T1,R. Now,
(2) follows from [4, A.6] and (1) is implicit in the constructions just
described.

The following proposition is implicit in [4, p. 274].

5.2 Proposition. Let A be a noetherian R algebra such that Pic(A)
contains no infinitely `–divisible elements. Then the natural map (1.4)
BT1(A) −→ BT1(Aet) induces an isomorphism

H∗(BT1(Aet),Z/`) −→ H∗(BT1(A),Z/`) .

Proof: Let F denote the homotopy fibre of φA (see 5.1); observe that
F has a natural basepoint. It is enough to show that πi(F ) is uniquely
`–divisible for i ≥ 1 and that the cokernel of the map π1(φA) is also
uniquely `–divisible.
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As in [4, p. 294], there is map of fibration sequences

Homg(A,Bµ`)R −−−−→ BT̃1(A)
`−−−−→ BT̃1(A)

∼=
y φA

y φA

y
Hom`(A, (Bµ`)et)Ret −−−−→ BT̃1(Aet)

`−−−−→ BT̃1(Aet)

The statement for πi(F ), i ≥ 1, follows from completing this map of
fibration sequences to a 3× 3 square by taking vertical fibres.

The map π1(φA) can be identified as a natural map in etale cohomol-
ogy

H0(SpecA,Gm)→ H1(SpecA,Z`(1))

where Gm = T1,R denotes the multiplicative group. This map appears
as one of the rungs in a long exact etale cohomology ladder in which the
top rail is the long exact sequence associated to

0→ µ` → Gm
`−→ Gm → 0

and the bottom rail is the long exact sequence assoicated to

0→ Z`(1)
`−→ Z`(1)→ µ` → 0 .

In this ladder, the rung maps involving H∗(SpecA,µ`) are the identity.
Let C denote the cokernel of π1(φA). We first show that C has no

`–torsion with the following straightforward diagram chase. Pick x0 ∈ C
such that `x0 = 0. Choose x1 ∈ H1(SpecA,Z`(1)) projecting to x0. By
assumption, `x1 is the image of an element x2 ∈ H0(SpecA,Gm). The
image of x2 in H1(SpecA,µ`) is the same as the image of x1, namely 0,
so that x2 = `x3 for some x3 ∈ H0(SpecA,Gm). Let x4 be the image of
x3 in H1(SpecA,Z`(1)). Clearly, `(x1 − x4) = 0, so that x1 − x4 is the
image of an element x5 ∈ H0(SpecA,µ`). Let x6 = x3 + x5. Then the
image of x6 in H1(SpecA,Z`(1)) is x1 and hence x0 = 0.

We finally verify that C is `–divisible. Consider x0 ∈ C. Pick
x2 ∈ H1(SpecA,Z`(1)) projecting to x0, and let x3 be the image of
x2 in H1(SpecA,µ`). Consider first the case that x3 is the image of
an element x4 from H0(SpecA,Gm). Let x5 be the image of x4 in
H1(SpecA,Z`(1)). It is clear that x2−x5 has image 0 in H1(SpecA,µ`)
and so x2 − x5 = `x6 for some x6 ∈ H1(SpecA,Z`(1)). Then x0 = `x1,
where x1 is the image of x6 in C. Assume on the contrary that x3 in not
the image of any such x4. Let x7 be the image of x3 in H1(SpecA,Gm);
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it follows that x7 6= 0. Carrying out an inductive argument along similar
lines with the long exact ladders associated to the sequences

0→ Z`(1)→ Z`(1)→ µ`i → 0

and
0→ µ`i → Gm → Gm → 0

shows that there are elements x7(i) ∈ H1(SpecA,Gm) such that x7(1) =
x7 and `x7(i) = x7(i − 1). In view of the hypothesis on Pic(A), this is
impossible.

Proposition 5.2 has the following immediate corollary.

5.3 Corollary. Let A be a noetherian R algebra such that Pic(A)
contains no infinitely `–divisible elements. Then the natural map (1.4)
BTn(A)→ BTn(Aet) induces an isomorphism

H∗(BTn(Aet),Z/`)→ H∗(BTn(A),Z/`) .

§6. Cohomological injectivity

In this section, we show that if A = R[ζ] = Z[1/`, ζ] and ` is a regular
prime (1.9), then the natural cohomology map (1.4)

H∗(BGLn(Aet),Z/`)→ H∗(BGLn(A),Z/`)

is a monomorphism. In this case, then, our good mod ` model for A
gives an explicit lower bound for H∗(BGLn(A),Z/`). For the ring R
itself with ` regular, we obtain an analogous, but stable, result. Our
basic technique is to show that the natural map

BTn(Aet)→ BGLn(Aet)

induces an injection in mod ` cohomology and then apply Corollary 5.3.
We shall let S denote the graded polynomial algebra

S ≡ F[c1, . . . , cn], deg(ci) = 2i .

The reader should recall that S is isomorphic to the mod ` cohomol-
ogy ring of the classifying space BGLn(Ctop) of the complex Lie group
GLn(Ctop) or to the mod ` cohomology ring of BUn. Let S̃ denote the
graded polynomial algebra

S̃ ≡ F[t1, ..., tn], deg(ti) = 2 .
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Then S̃ is isomorphic to the mod ` cohomology ring of the classifying
space BTn(Ctop) of a maximal torus of GLn(Ctop) or to the mod `
cohomology ring of the classifying space BTn of the group Tn ⊂ Un of
diagonal matrices. The restriction map

S ∼= H∗(BUn,Z/`) → H∗(BTn,Z/`) ∼= S̃

includes S ⊂ S̃ as the ring of symmetric polynomials in the variables ti.
6.1 Remark: If XA is a good mod ` model for the R algebra A, then
for each n > 0 there is a fibration BGLn,XA → XA with homotopy fibre
Fω(BUn) (see 1.8) and the technique of 1.8 produces a parallel fibra-
tion BTn,XA → XA with homotopy fibre Fω(BTn). There is a map
BTn,XA → BGLn,XA which on fibres is the completion of the natural
map BTn → BUn. We will denote the spaces of sections of these fi-
brations by, respectively, BGLn(XA) and BTn(XA). If XA is a space
(as opposed to a pro-space), then BGLn(XA) is the space of sections
of the ordinary fibration lim{BGLn,XA

} → XA with homotopy fibre
F∞(BUn); a similar remark holds for BTn(XA). According to the final
statement in 1.8 (as extended to cover Tn,A as well as GLn,A) there is
up to homotopy a commutative diagram

BTn(A) −−−−→ BTn(Aet)
'−−−−→ BTn(XA)y y y

BGLn(A) −−−−→ BGLn(Aet)
'−−−−→ BGLn(XA)

.

6.2 Lemma. Let A be a finitely generated R algebra and let fA : XA →
K(Λ, 1) be a good mod ` model for A. Assume that XA has the mod `
homology of a bouquet of r > 0 circles, and further assume that the
composite XA → K(Λ, 1) → K(λ, 1) is homotopically trivial. Then
there are gradings on H∗(BGLn(XA),Z/`) and on H∗(BTn(XA),Z/`)
compatible with the natural map (6.1) between these two cohomology
rings, and a commutative diagram

gr H∗(BGLn(XA),Z/`) −−−−→ gr H∗(BTn(XA),Z/`)

∼=
y y∼=

Ω∗
S ⊗S · · · ⊗S Ω∗

S −−−−→ Ω∗
S̃
⊗S̃ · · · ⊗S̃ Ω∗

S̃

in which the lower horizontal arrow is the r–fold tensor power of the map
Ω∗

S/F → Ω∗
S̃/F

of DeRham complexes induced by S → S̃. In particular

the map H∗(BGLn(XA),Z/`)→ H∗(BTn(XA),Z/`) is injective.
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Proof: By replacing XA if necessary (see 1.8) we can assume that XA

is a bouquet ∨S1 of r circles and that BGLn(XA) (resp. BTn(XA))
is the space of sections of a fibration over ∨S1 with fibre F∞(BUn)
(resp. F∞(BTn)) (see 6.1). The triviality of ∨S1 → K(Λ, 1)→ K(λ, 1)
implies that π1(∨S1) acts trivially on the mod ` cohomology groups of
the fibres in these fibrations. The existence of the given commutative
diagram is a direct consequence of 4.3; the gradings on the cohomology
rings in question are the gradings associated to appropriate collapsing
Eilenberg-Moore spectral sequences (4.1). Let S(r + 1) and S̃(r + 1)
denote the (r + 1)–fold tensor powers of S and S̃ respectively. The
indicated map on DeRham complexes is the natural map

Tor∗
S(r+1)(S, S)→ Tor∗

S̃(r+1)(S̃, S̃)

induced by S → S̃. One can view this map explicitly by first mapping
the Koszul resolution of S over S(r + 1) to the Koszul resolution of S̃
over S̃(r + 1), then tensoring the corresponding resolutions by S or S̃.
Inspection verifies that this map is injective. For another proof of this
injectivity see [14, Lemma 9].

Lemma 6.2 leads quickly to the result we want.

6.3 Proposition. Assume that ` is an odd regular prime and let A
denote the ring R[ζ] = Z[1/`, ζ]. Let r = (` + 1)/2. Then the natural
map (1.4) BGLn(A)→ BGLn(Aet) induces a monomorphism

H∗(BGLn(Aet),Z/`)→ H∗(BGLn(A),Z/`).

Moreover, H∗(BGLn(Aet),Z/`) admits a filtration for which the associ-
ated graded module is isomorphic to Ω∗

S ⊗S · · · ⊗S Ω∗
S , the r–fold tensor

power of the DeRham complex of S.

Remark: The proof of 6.3 goes through without change if A is the co-
ordinate algebra of a multiply punctured plane over the algebraic closure
of a field of characteristic different from `, i.e., in the genus 0 case of
3.1. The proof fails for affine curves of higher genus, since Pic(A) then
contains divisible subgroups (cf. 5.3).
Proof of 6.3: It follows from 1.9 that A has a good mod ` model XA

which is a bouquet of circles; this is also a consequence of 2.1, since the
fact that RP∞∨S1 is a model for R implies easily that the cover of this
space described in 2.5 is a model for R[ζ]. Since A contains µ`, the com-
posite XA → K(Λ, 1) → K(λ, 1) is trivial. By 6.2 and the discussion
in 6.1, then, the map BTn(Aet) → BGLn(Aet) induces a monomor-
phism on mod ` cohomology. By 5.3, the map BTn(A) → BTn(Aet)
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induces an isomorphism on mod ` cohomology. The commutative di-
agram in 6.1 gives the desired injectivity statement. The formula for
gr{H∗(BGLn(Aet,Z/`)} is from 6.2.

There is a stable version of Proposition 6.3 that holds for R as well
as for R[ζ].

6.4 Proposition. Assume that ` is an odd regular prime and let A
denote either the ring R = Z[1/`] or the ring R[ζ]. Then the natural
map (1.4) BGL(A)→ BGL(Aet) induces a monomorphism

H∗(BGL(Aet),Z/`) −→ H∗(BGL(A),Z/`) .

6.5 Remark: The mod ` cohomology of BGL(Aet) can be determined
easily from 2.3 if A = R and by an analogous calculation or from [5, 4.6]
if A = R[ζ]. With almost no extra effort (cf. [5, p. 143]) results similar
to 6.4 can be obtained for any number ring R′ between R and R[ζ], or
for any normal etale extension R′′ of such an R′ of degree a power of
`. (Observe for instance that by 1.9 or 2.1 there are many normal etale
extensions of R[ζ] of degree a power of `: these correspond to normal
subgroups of finite index in a free pro–` group on (`+ 1)/2 generators.)

Proof of 6.4: For A = R[ζ] the result follows from passing to an
inverse limit over n with 6.3; on both sides the cohomology groups in
any given dimension stablilize with n to a fixed value. Recall from [4,
6.4] that the map BGL(A)+ → BGL(Aet) is a map of infinite loop spaces
commuting with transfer. Consider the following commutative diagram
whose horizontal arrows are induced on the one hand by the transfer
and on the other hand by the ring homomorphism i : R→ R[ζ] (in this
diagram H∗ denotes H∗(–,Z/`)):

H∗ BGL(R)
tr∗

−−−−→ H∗ BGL(R[ζ])
i∗

−−−−→ H∗ BGL(R)x x x
H∗ BGL(Ret)

tr∗

−−−−→ H∗ BGL(R[ζ]et)
i∗

−−−−→ H∗ BGL(Ret)

.

Recall that the composite BGL(R)+
i−→ BGL(R[ζ])+

tr−→ BGL(R)+ is
multiplication by (`− 1), in view of the fact that R[ζ] is a free R mod-
ule of rank (` − 1); for the same reason the composite BGL(Ret) −→
BGL(R[ζ]et) −→ BGL(Ret) is multiplication by (` − 1). Since (` − 1) is
prime to `, this implies that both horizontal composites in the above di-
agram are isomorphisms. The middle vertical arrow is a monomorphism
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by the considerations above. The fact that the left vertical arrow is a
monomorphism follows at once.

We will state our final proposition only for the ring R, although there
is a version for R[ζ] as well as for the other rings mentioned in 6.5. Let
Dn ⊂ GLn(`−1)(R) be the image of the diagonal subgroup (R[ζ]∗)n ⊂
GLn(R[ζ]) under the transfer map GLn(R[ζ]) −→ GLn(`−1)(R) obtained
by choosing a basis for R[ζ] as an R module.

6.6 Proposition. Suppose that ` is an odd regular prime and that
the Lichtenbaum-Quillen conjecture holds at ` for Z; equivalently (2.4),
assume that the map BGL(R)→ BGL(Ret) induces an isomorphism on
mod ` cohomology. Then H∗(BGL(R),Z/`) is detected on the groups
Dn, in the sense that if x ∈ H∗(BGL(R),Z/`) is non-zero, then there
exists n such that x has nonzero image under the composite

H∗(BGL(R),Z/`) −→ H∗(BGLn(`−1)(R),Z/`) −→ H∗(BDn,Z/`) .

Proof: There are commutative diagrams

BTn(R[ζ])
α−−−−→ BGLn(R[ζ]et)

β−−−−→ BGL(R[ζ]et)

∼=
y ytr

BDn −−−−→ BGLn(`−1)(Ret) −−−−→ BGL(Ret)

in which the right hand vertical map is the transfer and induces a
monomorphism on mod ` cohomology (cf. proof of 6.4). The map β
is an equivalence in a stable range [4, 4.5] which tends to infinity as n
gets large. By 6.2 (cf. proof of 6.3) the cohomology map H∗(α,Z/`)
is a monomorphism. It follows that H∗(BGL(Ret),Z/`) is detected on
the groups Dn; if the Lichtenbaum-Quillen conjecture holds the same is
true of H∗(BGL(R),Z/`).
Remark: The groups Dn which appear in 6.6 are closely analogous to
the subgroups used by Quillen [14, Lemmas 12 and 13] to detect the
cohomology of general linear groups over a finite field. Propositions 6.3,
6.4 and 6.6 are also true for ` = 2 (in this case R = R[ζ] = Z[1/2]). This
can be proved along the above lines using [5, 4.2]; it also follows directly
from the recent work of Mitchell [13].

§7. Further questions and problems

It seems reasonable to conclude this paper by mentioning a few of
the many open questions related to what is discussed here. In some
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cases, the authors have obtained partial answers whereas in other cases
the answers remain completely elusive. Probably the most compelling
problem is to settle the Lichtenbaum–Quillen conjecture:
7.1 Problem: Determine whether or not the map

BGL(Z[1/`]) −→ BGL(Z[1/`]et)

induces an isomorphism on mod ` cohomology.
Somewhat less ambitious is

7.2 Question: Are there some general circumstances under which etale
K-theory splits off of algebraic K-theory? More specifically, if A is
a regular noetherian ring of etale cohomological dimension ≤ 2 with
1/` ∈ A, does the map (1.4)

F∞(BGL(A)+) −→ F∞(BGL(Aet)) ' BGL(Aet)

have a right inverse? This would give a strong geometric explanation
for the cohomological injectivity results in §6 and the homotopical sur-
jectivity results in [4].
7.3 Problem: Develop a tractable good mod ` model for R = Z[1/`] if
` is a prime which is not regular. It seems possible to do this if ` is an
irregular prime which is well-behaved [20, p. 201] in a certain number
theoretic sense.
7.4 Question: To what extent can one modify the construction of
BGLn(Aet) to take into consideration the unstable phenomena Quillen
describes in [15, p. 591]? Namely, Quillen for various A produces classes
in H∗(BGLn(A),Z/`) which vanish in H∗(BGL(A),Z/`); his key as-
sumption is that Pic(A) has nontrivial elements of finite order prime
to `. In particular, if ` is regular his method produces such classes for
A = R[ζ] whenever R[ζ] is not a principal ideal domain. These classes
are not accounted for in H∗(BGLn(R[ζ]et),Z/`).
7.5 Question: How can one incorporate transfer more systematically
into the modelling process? For example, transfer plays an important
role in known surjectivity results (see, for example, [4]). Can one incor-
porate transfer into the model itself?
7.6 Question: To what extent can the natural map

BG(A)→ BG(Aet)

of 1.4 be used to study the homology of G(A) for group schemes GR

over R other than GLn,R and Tn,R?
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