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1 Introduction.

The precursor of our bivariant cycle cohomology theory is the graded Chow
group A∗(X) of rational equivalence classes of algebraic cycles on a schemeX
over a field k. In [1], S. Bloch introduced the higher Chow groups CH∗(X, ∗)
in order to extend to higher algebraic K-theory the relation established by A.
Grothendieck between K0(X) and A∗(X). More recently, Lawson homology
theory for complex algebraic varieties has been developed (cf. [13], [4]), in
which the role of rational equivalence is replaced by algebraic equivalence,
and a bivariant extension L∗H∗(Y,X) [8] has been introduced. This more
topological approach suggested a duality relating covariant and contravariant
theories as established in [7].

Our bivariant cycle cohomology groups Ar,i(Y,X), defined for schemes
Y,X of finite type over a field k, satisfy Ar,i(Spec(k), X)) = CHn−r(X, i)
whenever X is an affine scheme over k of pure dimension n. This bivariant
theory is a somewhat more sophisticated version of a theory briefly intro-
duced by the first author and O. Gabber in [6]. The added sophistication
enables us to prove numerous good properties of this theory, most notably
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localization (Theorem 5.11) and duality (Theorem 8.2), which suggest that
A∗,∗(Y,X) should be useful in various contexts. For example, we envision
that the bivariance and duality of A∗,∗(Y,X) will be reflected in a close re-
lationship to the algebraic K-theories of coherent sheaves and of locally free
sheaves on schemes of finite type over a field k. Moreover, we establish pair-
ings for our theory whose analogues in Lawson homology have proved useful
in studying algebraic cycles (cf. [10],[3]).

The final section presents a formulation of motivic cohomology and ho-
mology in terms of A∗,∗(Y,X).

The development of our theory requires machinery developed recently by
the second author, partially in joint work with A. Suslin. As we incorporate
the functoriality of cycles [22], pretheories [25], sheaves for the cdh-topology
[22], and homology vanishing theorems [25], we endeavor to prodvide an
introduction to these ideas by summarizing relevant results from these papers
and by providing complete proofs of modified results which we require.

A quick overview of this paper can be obtained from a glance at the
table of contents. To conclude this introduction, we give a somewhat more
detailed summary of the contents of the various sections of our paper. Section
2 recalls from [22] the functoriality of the presheaf zequi(X, r) which sends
a smooth scheme U of finite type over k to the group of cycles on X ×
U equidimensional of relative dimension r over k. For X projective, this
is closely related to the functor represented by the Chow monoid Cr(X)
of effective r-cycles on X. Despite the proliferation of notation, we find
it very convenient to consider the related presheaf zequi(Y,X, r) defined by
zequi(Y,X, r)(U) = zequi(X, r)(Y × U).

Following [21], we consider for a presheaf F the complex of presheaves
C∗(F ), sending a scheme U of finite type over k to F (U × ∆•), and the
associated homology presheaves hi(F ). In particular, the “naive” bivariant
theory hi(zequi(X, r)(Y ) (closely related to a construction of [6]) is modified
to satisfy “cdh-descent”, resulting in the definition (Definition 3.9)

Ar,i(Y,X) = H−i(Y, C∗(zequi(X, r)cdh).

The role of the cdh-topology, more flexible than the Zariski topology, is to
permit as coverings surjective maps which arise in resolving the singularities
of Y .

As developed by the second author in [25], a pretheory is a presheaf F
privided with well-behaved transfer maps. Such a structure has the following
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remarkable property (cf. Theorem 5.5): if the associated cdh-sheaf Fcdh

vanishes, then C∗(F )Zar = 0. This result requires that “k admit resolution
of singularities” ( a precise definition of what it means is given in Definition
3.4). The importance of this property is seen by the ease with which the
difficult property of localization for A∗,∗(Y,X) with respect to the second
argument follows: one applies this vanishing result to the pretheory coker(i∗ :
zequi(X, r) → zequi(X − W, r)) associated to a closed subscheme W ⊂ X of
X over such a field k.

In Section 6, we recast in functorial language the recent “moving lemma
for families” established by the first author and H.B. Lawson in [9], leading
to the duality theorems of Section 7. For projective, smooth schemes Y,X
over an arbitrary field k, Theorem 7.1 provides isomorphisms of presheaves
hi(zequi(Y,X, r)) ' hi(zequi(X × Y, r + n)). Theorem 8.2 asserts that if k
admits resolution of singularities, then there are canonical isomorphisms

Ar,i(Y × U,X) → Ar+n,i(X × U))

for any smooth scheme U of pure dimension n over k. Other desired prop-
erties established in Section 8 include homotopy invariance, suspension and
cosuspension isomorphisms, and a Gysin exact triangle. We also provide
three pairings for our theory: the first is the direct analogue of the pairing
that gives operations in Lawson homology [11], the second is a multiplicative
pairing inspired by the multiplicative structure in morphic cohomology [8],
and the final one is a composition product viewed in the context of Lawson
homology as composition of correspondences.

Because of its good properties and its relationship to higher algebraic K-
theory, one frequently views the higher Chow groups CHn−r(X, i) as at least
one version of “motivic cohomology”. Indeed, these higher Chow groups are
a theory of “homology with locally compact supports.” In the final section,
we formulate four theories – cohomology/homology with/without compact
supports – in terms of our bivariant cycle cohomology.

2 Presheaves of relative cycles.

Let k be a field. For a scheme of finite type Y over k we denote by Cycl(Y )
the group of cycles on Y (i.e. the free abelian group generated by closed
integral subschemes of Y ). For a closed subscheme Z of Y we define a cycle
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cyclY (Z) of Z in Y as the formal linear combination
∑
miZi where Zi are

(reduced) irreducible components of Z and mi is the length of the local ring
OZ,Zi

(note that in our case it is just the dimension of the finite algebra
O(Z) ⊗O(Zi) F (Zi) over the field F (Zi) of functions on Zi).

For a smooth scheme U over k , a scheme of finite type X over k and
an integer r ≥ 0 we denote by zequi(X, r)(U) the subgroup in the group of
cycles Cycl(X × U) generated by closed integral subschemes Z of X × U
which are equidimensional of relative dimension r over U (note that it means
in particular that Z dominates a connected component of U). We denote
further by zeff

equi(X, r)(U) the submonoid of effective cycles in zequi(X, r)(U).
The groups zequi(X, r)(U), zeff

equi(X, r)(U) were considered in more general
context of schemes of finite type over a Noetherian scheme in [22]. We will
recall now some of the results obtained there.

For any morphism f : U ′ → U there is a homomorphism cycl(f) :
zequi(X, r)(U) → zequi(X, r)(U ′) such that the following conditions hold:

1. For a composable pair of morphisms U ′′ g→ U ′ f→ U one has cycl(fg) =
cycl(g)cycl(f).

2. For a dominant morphism f : U ′ → U one has

cycl(f)(
∑

niZi) =
∑

nicyclX×U ′(Zi ×U U
′)

where cyclX×U ′(Zi ×U U
′) is the cycle associated with the closed sub-

scheme Zi ×U U
′ in X × U ′.

3. For any morphism f : U ′ → U and a closed susbscheme Z of X × U
which is flat and equidimensional of relative dimension r over U one
has

cycl(f)(cyclX×U(Z)) = cyclX×U ′(Z ×U U
′).

One can verify easily that homomorphisms cycl(f) are uniquely deter-
mined by the conditions (1)-(3) above. Note that the condition (1) implies
that we may consider zequi(X, r) as a presheaf of abelian groups on the cat-
egory Sm/k of smooth schemes over k.

Since for an effective cycle Z the cycle cycl(f)(Z) is effective the sub-
monoids zeff

equi(X, r)(U) of effective cycles in zequi(X, r)(U) form a subpresheaf
zeff

equi(X, r) of zequi(X, r)(U).
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Proposition 2.1 For a cycle Z in zequi(X, r)(U), let p∗(Z) denote the push-
forward of Z to a cycle on Y ×U for a proper morphism p : X → Y ; let q∗(Z)
denote the flat pull-back of Z to a cycle on W ×U for a flat equidimensional
morphism q : W → X of relative dimension n of schemes of finite type over
k. Then

p∗(Z) ∈ zequi(Y, r)(U) , q∗(Z) ∈ zequi(W, r + n)(U).

Moreover, for any morphism of smooth schemes f : U ′ → U one has

cycl(f)(p∗(Z)) = p∗(cycl(f)(Z)) , cycl(f)(q∗(Z)) = q∗(cycl(f)(Z)).

Proof: The assertions for proper push-forward are a special case of [22, Prop.
3.6.2(2)], whereas that for flat pull-back follow from [22, Lemma 3.6.4].

Proposition 2.1 implies that for any proper morphism p : X → Y of
schemes of finite type over k there is a homomorphism of presheaves p :
zequi(X, r) → zequi(Y, r). Clearly for a composable pair of morphisms X p1→
Y

p2→ Z one has (p2p1)∗ = p2∗p1∗. Similarly, for a flat equidimensional mor-
phism q : W → X, q∗ is a morphism of presheaves zequi(Y, r) → zequi(X, r+n)
and for a composable pair of morphisms X q1→ Y

q2→ Z we have (q2q1)∗ = q∗
1q

∗
2.

Let X be a scheme of finite type over k, U be a smooth equidimensional
scheme of finite type over k and V be a smooth scheme over k. Let Z be an
element of zequi(X, r)(U ×V ). Considered as a cycle on X ×U ×V it clearly
belongs to zequi(X × U, r + dim(U))(V ). By [22, Th. 3.7.3], we have for any
morphism f : V ′ → V of smooth schemes over k the following equality of
cycles on X × U × V ′:

cycl(f)(Z) = cycl(IdU × f)(Z).

For any X,U, V , denote by zequi(U,X, r)(V ) the group zequi(X, r)(U×V ).
Then zequi(U,X, r) is a presheaf on Sm/k which is contravariantly functorial
with respect to U . The above equality asserts that we have a canonical
embedding of presheaves

D : zequi(U,X, r) → zequi(X × U, r + dim(U)).

One can verify easily that homomorphisms D are consistent with covari-
ant (resp. contravariant) functoriality of both presheaves with respect to
proper (resp. flat equidimensional) morphisms X → X ′.
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Consider now the case of a projective scheme X ⊂ Pm over k. For an
effective cycle Z =

∑
niZi ∈ zeff

equi(X, r)(Spec(k)) on X we define its degree
deg(Z) = degiX (Z) as the sum

∑
nidegiX (Zi) where degiX (Zi) is the degree

of the reduced closed subscheme iX(Zi) in Pm
k . The lemma below follows

easily from the invariance of degree in flat families.

Lemma 2.2 Let U be a smooth connected scheme over k and iX : X → Pm

be a projective scheme over k. Let further Z be an element of zequi(X, r)(U)
and

u1 : Spec(k1) → U

u2 : Spec(k2) → U

be two points of U . Then one has

deg(cycl(u1)(Z)) = deg(cycl(u2)(Z)).

where the degree on the right hand side (resp. left hand side) is considered
with respect to the closed embedding iX ×Spec(k) Spec(k2) (resp. iX ×Spec(k)

Spec(k1)).

In the situation of Lemma 2.2 we will use the notation deg(Z) for the
degree of the fibers of Z. Denote by zeff

equi(X, r, d) (resp. zeff
equi(X, r,≤ d)(U))

the subset in zeff
equi(X, r)(U) which consists of cycles of degree d (resp. ≤

d). By Lemma 2.2 zeff
equi(X, r,≤ d) and zeff

equi(X, r, d) are subpresheaves in
zeff

equi(X, d).
We may now relate our presheaves zeff

equi(X, r) to the presheaves repre-
sented by Chow varieties. Let us recall briefly the construction of the Chow
variety of effective cycles of dimension r and degree d on a projective scheme
X ⊂ Pm over a field k.

Let (Pm)r+1 be the be the product of projective spaces which we consider
as the space which parametrizes families (L0, . . . , Lr) of r+ 1 hyperplanes in
Pm. Consider the incidence correspondence

Γ ⊂ Pm × (Pm)r+1

which consists of pairs of the form (x, (L0, . . . , Lr)) such that x ∈ L0∩. . .∩Lr.
One can easily see that the projection pr1 : Γ → Pm is smooth. Therefore
for any cycle Z of dimension r on Pm there is defined a cycle Chow(Z) =

6



(pr2)∗(pr1)∗(Z) on (Pm)r+1. One can verify easily that Chow(Z) is a cycle
of codimension 1 and if deg(Z) = d then Chow(Z) is a cycle of degree
(d, . . . , d). Since effective cycles of codimension 1 and given degree on a
product of projective spaces are parametrized by a projective space, this
gives us a map

zeff
equi(P

m, r, d)(Spec(k̄)) → PN(m,r,d)(k̄).

It is well known in the classical theory of algebraic cycles (see [19] for a very
classical approach or [22] for a very modern one) that this map is injective and
its image coincides with the set of k̄-points of a closed (reduced) subscheme
Cr,d(Pm) in PN(m,r,d). Moreover for any closed subscheme X in Pm the set of
k̄-points of Cr,d(Pm) which correspond to cycles with support on X coincides
with the set of k̄-points of a closed (reduced) subscheme Cr,d(X) in Cr,d(Pm)
which is called the Chow variety of cycles of degree d and dimesnion r on X.

Since the construction of the Chow map above only uses the operations
of flat pull-back and proper push-forward on cycles, Proposition 2.1 implies
that the obvious relative version of this map is well defined and gives a
homomorphism of presheaves

zeff
equi(P

m, r, d) → zeff
equi((P

m)r+1,mr +m− 1, (d, . . . , d)).

The right hand side presheaf is representable on the category Sm/k by
the projective space PN(m,r,d) and we conclude that for any smooth scheme
U over k there is a map

zeff
equi(X, r, d)(U) → Hom(U,Cr,d(X))

and that these maps give us a monomorphism from the presheaf zeff
equi(X, r, d)

to the presheaf represented by Cr,d(X) (this construction was explored in [4]
and considered in the more general context of normal schemes in [8]).

We let Cr(X) denote the Chow monoid

Cr(X) ≡ ∐
d≥0

Cr,d(X)

of effective r-cycles on X. Up to weak normalization, Cr(X) does not depend
upon the projective embedding X ⊂ Pm.
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Proposition 2.3 Let X be a projective scheme and U a quasi-projective
scheme over k. Then every Z ∈ zequi(X, r)eff (U) determines a morphism
fZ : U → Cr(X). If f : U → Cr(X) is a morphism and if u ∈ U , then the
effective cycle Zf(u) with Chow point f(u) is defined over a field k(Zf(u))
which is a finite radiciel extension of the residue field k(f(u)). Such a
morphism f : U → Cr(X) determines Zf ∈ zequi(X, r)eff (U) if and only
if k(Zf(η)) = k(f(η)) for every generic point η ∈ U . Finally, for any
Z ∈ zequi(X, r)eff (U),

Z = ZfZ , f = fZf
.

Proof: This is proved in [4, 1.4]

In particular, if k is a field of characteristic zero, then Proposition 2.3
implies that effective cycles on U×X equidimensional over the smooth scheme
U of relative diemsion r correspond exactly to maps from U to Cr(X). The
following example shows that in arbitrary charcteristic this is no longer true.

Example 2.4 (cf. [19]) Let k = F (t1, t2) where F is an algebraically closed
field of characteristic p > 0. Consider the 0-cycle Z on P2

F which corresponds
to the closed reduced subscheme given by the equations

xp = t1z
p

yp = t2z
p

where x, y, z are homogeneous coordinates on P2. One can verify easily that
Chow(Z) is the cycle in P2

F (with homogeneous coordinates a, b, c) of the
form pD where D is the cycle of the closed subscheme given by the equation
t1a

p + t2b
p + cp = 0. It follows immediately from definition of Chow varieties

that D belongs to C0,p(P2
F ). On the other hand there is no cycle W on P2

F

such that pW = Z.

Remark 2.5 Another construction of a presheaf of r-cycles onX for a quasi-
projective scheme X was given in [6]. We will discuss its relations to our
definition at the end of the next section.

3 cdh-topology.

In this section we remind the definition of cdh-topology given in [22]. In
order to work with possibly singular schemes, we use maps of the following
form which arise in resoultion of singularities
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Definition 3.1 Let X be a scheme of finite type over k and Z ⊂ X be a
closed subscheme in X which does not contain generic points of irreducible
components of X. An abstract blow-up of X with center in Z is a proper
surjective morphism p : X ′ → X such that p−1(X − Z)red → (X − Z)red is
an isomorphism.

Denote by Sch/k the category of schemes of finite type over k. We recall
the Nisnevich topology introduced by Y. Nisnevich in [16] and its modification
the cdh-topology (the completely decomposed h-topology) introduced in [22].

Definition 3.2 The Nisnevich topology is the minimal Grothendieck topol-
ogy on Sch/k such that the following type of covering is a Nisnevich cov-
ering: etale coverings {Ui

pi→ X} such that for any point x of X there
is a point xi on one of the Ui such that pi(xi) = x and the morphism
Spec(k(xi)) → Spec(k(x)) is an isomorphism.

The cdh-topology on Sch/k is the minimal Grothendieck topology on this
category such that Nisnevich coverings and the following type of covering are
cdh-covering: coverings of the form

Y
∐
X1

pY

∐
iX1→ X

such that pY is a proper morphism, iX1 is a closed embedding and the mor-
phism p−1

Y (X −X1) → X −X1 is an isomorphism.

Thus, the cdh-topology permits abstract blow-ups as coverings as well as
the disjoint union of the embeddings of irreducible components of a reducible
scheme.

Note in particular, that for any schemeX the closed embeddingXred → X
where Xred is a maximal reduced subscheme of X is a cdh-covering. Thus,
working with the cdh-topology, we do not see any difference between X and
Xred. We will often use this fact below without additional references.

The following elementary result about the cdh-topology will be used in
the proof of Theorem 5.5 (which uses Theorem 5.1 and an investigation of
the relationship of the cohomological behaviour of sheaves on the Nisnevich
topology and sheaves on the cdh-topology).

Lemma 3.3 Let F be a sheaf in Nisnevich topology on Sch/k such that
Fcdh = 0, X be a scheme of finite type over k and U → X be a Nisnevich
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covering of X. Then for any element a ∈ F (U), there is an abstract blow-
up X ′ → X with center in Z ⊂ X such that dim(Z) < dim(X) and the
restriction of a to U ×X X ′ equals zero.

Proof: Using the definition of the cdh-topology and the fact that F is as-
sumed to be a Nisnevich sheaf, we conclude for any a ∈ F (U) that there is
some abstract blow-up p : U ′ → U with p∗(a) = 0. We apply the platification
theorem [17] to obtain an abstract blow-up X ′ → X with center in a closed
subscheme Z ⊂ X which does not contain generic points of X such that the
proper transform Ũ ′ → X ′ of U ′ → X with respect to this blow-up is flat
over X ′. One can easily see that we have Ũ ′ = U ×X X ′, so that U ×X X ′

factors through U ′.

To prove more about cdh-topology we will often have to assume that the
base field k “admits resolution of singularities”. More precisely one has.

Definition 3.4 Let k be a field. We say that k admits resolution of singu-
larities if the following two conditions hold:

1. For any scheme of finite type X over k there is a proper surjective
morphism Y → X such that U is a smooth scheme over k.

2. For any smooth scheme X over k and an abstract blow-up q : X ′ → X
there exists a sequence of blow-up p : Xn → . . . → X1 = X with smooth
centers such that p factors through q

The following proposition follows immediately from standard results on
resolution of singularities in characteristic zero ([12]).

Proposition 3.5 Any field of characteristic zero admits resolution of singu-
larities in the sense of Definition 3.4.

Note that any field which admits resolution of singularities in the sense
of Definition 3.4 is a perfect field.

Let π : (Sch/k)cdh → (Sm/k)Zar be the natural morphism of sites. Let
further

π∗ : Shv((Sm/k)Zar) → Shv((Sch/k)cdh)

be the corresponding functor of inverse image on the categories of sheaves.
We will use the following simple lemma.
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Lemma 3.6 Let k be a field which admits resolution of singularities. Then
the functor of inverse image

π∗ : Shv((Sm/k)Zar) → Shv((Sch/k)cdh)

is exact.

Proof: Consider the minimal Grothendieck topology t on the category Sm/k
such that all cdh-coverings of the form U ′ → U with both U ′ and U being
smooth are t-coverings. Clearly we have a morphism of sites

π0 : (Sch/k)cdh → (Sm/k)t

and a decomposition of π∗ of the form:

Shv((Sm/k)Zar) → Shv((Sm/k)t)
π∗
0→ Shv((Sch/k)cdh)

where the first arrow is the functor of associated t-sheaf. Note that this
functor is exact. Resolution of singularities implies easily that the functor
π∗

0 is an equivalence. Thus π∗ is exact.

Remark 3.7 The statement of Lemma 3.6 would be false if one considers the
Zariski topology on Sch/k instead of cdh-topology. The problem basically is
that a fiber product of smooth schemes is not in general smooth and if we
do not allow blow-ups to be coverings in our topology a non-smooth scheme
can not be covered by smooth ones.

Note that Lemma 3.6 implies in particular that the functor π∗ takes
sheaves of abelian groups to sheaves of abelian groups. In an abuse of no-
tation, for any presheaf F on Sm/k, we denote by Fcdh the sheaf π∗(FZar)
where FZar is the sheaf in Zariski topology on Sm/k associated to F .

The results of the rest of this section are not used anywhere in this paper
but in the definition of motivic cohomology with compact supports in Section
9. We are going to show that for any sheaf of abelian groups (and more
generally any complex of abelian groups) F on (Sch/k)cdh one can define
cdh-cohomology with compact supports with coefficients in F which satisfy
all the standard properties.

Let us recall that for any scheme X of finite type over k we denote by
Z(X) the presheaf of abelian groups freely generated by the sheaf of sets
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represented by X on Sch/k. The universal property of freely generated
sheaves implies immediately that for any cdh-sheaf of abelian groups F on
Sch/k there are canonical isomorphisms:

H i
cdh(X,F ) = Exti(Zcdh(X), F )

where the groups on the right hand side are Ext-groups in the abelian cate-
gory of cdh-sheaves on Sch/k. More generally for any complex of sheaves K
one has:

Hi
cdh(X,K) = Hom(Zcdh(X), K[i])

where groups on the left hand side are hypercohomology groups of X with
coefficients in K and groups on the right hand side are morphisms in the
derived category of cdh-sheaves on Sch/k.

Note that for any connected scheme U the group Z(X)(U) can be de-
scribed as the free abelian group generated by closed subschemes Z in X×U
such that the projection Z → U is an isomorphism. We denote for any U
by Zc(X)(U) the free abelian group generated by closed subschemes Z in
X × U such that the projection Z → U is an open embedding. One can
easily see that Zc(X)(−) is a presheaf of abelian groups on Sch/k. We call it
the presheaf of abelian groups freely generated by X with compact supports.
If X is a proper scheme then for any topology t such that disjoint unions are
t-coverings we have Zt(X) = Zc

t(X). The following proposition summarizes
elementary properties of sheaves Zc

cdh(X) in cdh-topology.

Proposition 3.8 Let k be a field. One has:

1. The sheaves Zc
cdh(X) are covariantly functorial with respect to proper

morphisms X1 → X2.

2. The sheaves Zc
cdh(X) are contravariantly functorial with respect to open

embeddings X1 → X2.

3. Let j : U → X be an open embedding and i : X − U → X be the
corresponding closed embedding. Then the following sequence of cdh-
sheaves is exact:

0 → Zc
cdh(X − U) i∗→ Zc

cdh(X) j∗→ Zc
cdh(U) → 0.
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Proof: The first two statements are obvious. To prove the last one note first
that the sequence of presheaves

0 → Zc(X − U) i∗→ Zc(X) j∗→ Zc(U)

is exact. Since the functor of associated sheaf is exact it implies that we
have only to show that j∗ is a surjection of cdh-sheaves. Let Y be a scheme
of finite type over k and Z be an element of Zc(U)(Y ). It is sufficient to
show that there is a cdh-covering p : Y ′ → Y such that Z ×Y Y ′ as an ele-
ment of Zc(U)(Y ′) belongs to the image of the homomorphism Zc(X)(Y ′) →
Zc(U)(Y ′). It follows trivially from the platification theorem [22, Th. 2.2.2],
[17] and definition of cdh-topology.

Corollary 3.9 Let i : X → X̄ be an open embedding of a scheme X over k
to a proper scheme X̄ over k. Then one has a short exact sequence of the
form:

0 → Zcdh(X̄ −X) → Zcdh(X̄) → Zc
cdh(X) → 0.

For any complex of cdh-sheaves K we define the hypercohomology groups
Hi

c(X,K) of X with compact supports with coefficients in K as the groups
of morphisms Hom(Zc

cdh(X), K[i]) in the derived category of cdh-sheaves
on Sch/k. Proposition 3.8 and Corollary 3.9 imply immediately that these
groups satisfy standard properties of (hyper-)cohomology with compact sup-
ports.

4 Bivariant cycle cohomology.

Denote by ∆n the affine scheme

∆n = Spec(k[x0, . . . , xn]/
∑

xi = 1)

over k. We consider it as an algebro-geometrical analog of n-dimesnional sim-
plex. Proceeding exactly as in topological situation one can define boundary
and degeneracy morphisms

∂n
i : ∆n−1 → ∆n

σn
i : ∆n+1 → ∆n
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such that ∆• = (∆n, ∂n
i , σ

n
i ) is a cosimplicial object in the category Sm/k.

For any presheaf F on Sch/k, the category of schemes of finite type
over k, and any such k-scheme U , consider the simplicial set F (∆• × U).
If F is a presheaf of abelian groups it is a simplicial abelian group and
we denote by C∗(F )(U) the corresponding complex of abelian groups (i.e.
Cn(F )(U) = F (∆n × U) and the differencial is given by alternated sums of
homomorphisms F (∂n

i × IdU)). Clearly, C∗(F ) is a complex of presheaves on
Sch/k, which we call the singular simplicial complex of F . We denote by

hi(F ) = H−i(C∗(F ))

the cohomology presheaves of C∗(F ).
If F is a presheaf defined on the full subcategory Sm/k of schemes smooth

over k and if U is a smooth scheme, then we shall employ the same notation
and terminology for the same constructions applied to F .

The following lemma shows that the presheaves of the form hi(−) are
homotopy invariant.

Lemma 4.1 Let F be a presheaf on Sch/k (respectively, Sm/k). Then for
any scheme U of finite type over k (resp., smooth of finite type over k), and
any i ∈ Z the morphism hi(F )(U) → hi(F )(U×A1) induced by the projection
U × A1 → U is an isomorphism.

Proof: Denote by i0, i1 : U → U ×A1 the closed embeddings IdU × {0} and
IdU × {1} respectively. Let us show first that the morphisms

i∗0 : hi(F )(U × A1) → hi(F )(U)

i∗1 : hi(F )(U × A1) → hi(F )(U)

coincide. It is sufficient to prove that the corresponding morphisms of com-
plexes of abelian groups C∗(F )(U × A1) → C∗(F )(U) are homotopic.

Define a homomorphism

sn : F (U × A1 × ∆n) → F (U × ∆n+1)

by the formula

sn =
n∑

i=0
(−1)i(IdU × ψi)∗

14



where ψi : ∆n+1 → ∆n × A1 is the linear isomorphism taking vj to vj × 0
if j ≤ i or to vj−1 × 1 if j > i (here vj = (0, . . . , 1, . . . , 0) is the j-th vertex
of ∆n+1 (resp. ∆n)). A staraightforward computation shows that sd+ ds =
i∗1 − i∗0.

Consider now the morphism

IdU × µ : U × A1 × A1 → U × A1

where µ : A1 × A1 → A1 is given by multiplication of functions. Applying
the previous result to the embeddings

i0, i1 : U × A1 → (U × A1) × A1

we conclude that the homomorphism

hi(F )(U × A1) → hi(F )(U × A1)

induced by the composition

U × A1 pr1→ U
i0→ U × A1

is the identity homomorphism which implies immediately the assertion of the
lemma.

We will use frequently (without explicit mention) the following elementary
fact. Let

0 → F → G → H → 0

be a short exact sequence of presheaves of abelian groups on either Sch/k or
Sm/k. Then the corresponding sequence of complexes of presheaves

0 → C∗(F ) → C∗(G) → C∗(H) → 0

is exact. In particular there is a long exact sequence of presheaves of the
form

. . . → hi(F ) → hi(G) → hi(H) → hi−1(F ) → . . . .

For any smooth scheme U over k and a scheme of finite type X over k con-
sider the abelian groups hi(zequi(X, r))(U). These groups are contravariantly
functorial with respect to U and covariantly (resp. contravariantly) functorial
with respect to proper morphisms (resp. flat equidimensional morphisms) in
X. The following theorem summarizes most of the known results which relate
the groups hi(zequi(X, r))(U) to other theories.
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Theorem 4.2 Let k be a field.

1. For any scheme X over k the group h0(zequi(X, r)(Spec(k)) is canon-
ically isomorphic to the group Ar(X) of cycles of dimension r on X
modulo rational equivalence.

2. For any equidimensional affine scheme X over k and any r ≥ 0 there
are canonical isomorphisms

hi(zequi(X, r))(Spec(k)) → CHdim(X)−r(X, i)

where the groups on the right hand side are higher Chow groups of X
defined in [1].

3. Assume k is of characteristic 0 and X is a normal equidimensional
scheme of pure dimension n or that k is a perfect field and that X
is a normal affine scheme of pure dimension n. Then the groups
hi(zequi(X,n− 1))(Spec(k)) are of the form:

hi(zequi(X,n− 1))(Spec(k)) =


An−1(X) for i = 0
O∗(X) for i = 1
0 for i 6= 0, 1

4. The groups h0(zequi(An, 0))(Spec(k)) are isomorphic to the Milnor K-
groups KM

n (k).

5. If k is an algebraically closed field which admits resolution of singu-
larities, X is a smooth scheme over k of dimension m, and n 6= 0
is an integer prime to char(k), the groups hi(zequi(X, 0) ⊗ Z/nZ) are
isomorphic to the etale cohomology groups H2m−i(X,Z/nZ).

6. If k = C, then for any quasi-projective variety X (i.e., reduced, irre-
ducible C-scheme) the groups hi(zequi(X, r)⊗Z/nZ) are isomorphic to
the corresponding Lawson homology with finite coefficients.

Proof:

1. Elementary (see for instance [5]).

16



2. Note that for any equidimensional scheme X over k and any r the
complex C∗(zequi(X, r))(Spec(k)) which computes the groups
hi(zequi(X, r)(Spec(k)) can be considered as a subcomplex in the Bloch
complex Zdim(X)−r(X, ∗) which computes the higher Chow groups of
X (see [1],[6]). The fact that this morphism is a quasi-isomorphism for
affine schemes X was proven by A. Suslin (see [20])2.

3. In [15], CH1(X, i) was computed for X a normal scheme of pure dimen-
sion n over a perfect field thus, the assertion for X affine and normal
follows from [15]. In [5], zequi(X,n− 1)h was computed for X arbitrary
and the computation agrees with that of assertion (3) for X normal;
by Remarks 4.6, 5.10, this implies assertion (3) provided k has charac-
teristic 0.

4. This follows from part (2), the homotopy invariance property for higher
Chow groups, and [1]3.

5. This was proven in [21].

6. This was proven in [21] for X projective and the extended to quasi-
projective X in [5].

One would like to consider hi(Z(X, r))(U) as a natural bivariant gener-
alization of groups Ar(X) (and more generaly of the higher Chow groups of
X). In fact, we shall consider a somewhat more sophisticated construction
(cf. Definition 2.11) in order to enable the Mayer-Vietoris property with
respect to the first argument of our bivariant theory.

Note that functoriality of the groups hi(Z(X, r))(U) shows that they be-
have as a cohomology theory with respect to the first argument (U) and as
a Borel-Moore homology theory with respect to the second (X). Thus, one
would expect that other properties of these classes of theories should hold
for the groups hi(zequi(X, r))(U). In particular, there should exist a localiza-
tion long exact sequence with respect to X and a Mayer-Vietoris long exact

2The proof is based on an elementary moving technique and does not use any of the
advanced properties of either higher Chow groups or groups hi(zequi(X, r))(−).

3Another way to prove it (in the case of a perfect field k) is to use Mayer-Vietoris
sequence in Suslin homology proven in [25] together with direct computation of Suslin
homology of (A1 − {0})n.
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sequence with respect to U . We will show below that this is indeed true for
quasi-projective schemes U if k admits resolution of singularities. It turns
out though that it is inconvenient to work with the groups hi(zequi(X, r))(U)
directly. Instead we define for all schemes of finite type Y,X over k the bi-
variant cycle cohomology groups Ar,i(Y,X) of Y with coefficients in r-cycles
on X as certain hypercohomology groups of Y which automatically gives us
most of the good properties with respect to Y . We will show then that for
a field k which admits resolution of singularities and for a smooth quasi-
projective k-scheme U the groups Ar,i(U,X) are canonically isomorphic to
the groups hi(zequi(X, r)(U)).

Definition 4.3 Let X, Y be schemes of finite type over a field k and r ≥ 0
be an integer. The bivariant cycle cohomology groups of Y with coefficients
in cycles on X are the groups

Ar,i(Y,X) = H−i
cdh(Y, (C∗(zequi(X, r))cdh).

We will also use the notation Ar,i(X) for the groups Ar,i(Spec(k), X).

It follows immediately from this definition that the groups Ar,i(Y,X) are con-
travariantly functorial with respect to Y and covariantly (resp. contravari-
antly) functorial with respect to proper morphisms (resp. flat equidimen-
sional morphisms) in X. It is also clear that the groups Ar,i(X) coincide
with the groups hi(zequi(X, r))(Spec(k)). In particular, Theorem 4.2(2) im-
plies that for affine equidimensional schemes X the groups Ar,i(X) are iso-
morphic to the corresponding higher Chow groups.

Since open coverings are cdh-coverings the following proposition is a triv-
ial corollary of our definition.

Proposition 4.4 Let X, Y be schemes of finite type over a field k. Let
further Y = U1 ∪ U2 be a Zariski open covering of Y . Then for any r ≥ 0
there is a canonical long exact sequence of the form:

. . . → Ar,i(Y,X) → Ar,i(U1, X) ⊕ Ar,i(U2, X) → Ar,i(U1 ∩ U2, X) →
→ Ar,i−1(Y,X) → . . . .

Since abstract blow-ups are cdh-coverings (definition 3.2) we immediately
obtain the following blow-up exact sequence with respect to the first argu-
ment.
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Proposition 4.5 Let p : Y ′ → Y be a proper morphism of schemes of finite
type over k and Z ⊂ Y be a closed subscheme of Y such that the morphism
p−1(Y −Z) → Y −Z is an isomorphism. Then for any scheme of finite type
X over k and any r ≥ 0 there is a canonical long exact sequence of the form

. . . → Ar,i(Y,X) → Ar,i(Y ′, X) ⊕ Ar,i(Z,X) → Ar,i(p−1(Z), X) →
→ Ar,i−1(Y,X) → . . . .

Remark 4.6 The first definition of sheaves of relative cycles similar to
zequi(X, r)cdh was given in [6] together with a definition of the correspond-
ing “naive” bivariant cycle cohomology groups. As was shown in [5] the
presheaves defined in [6] are isomorphic to the sheaves zequi(X, r)h in the
h-topology (see [23] or [21]) on Sch/k associated with zequi(X, r)cdh.

The cdh-sheaves zequi(X, r)cdh were considered in [22] where they are de-
noted by z(X, r) (see [22, Th. 4.2.9(2)]). As was shown in [22], the canonical
morphism

zequi(X, r)cdh → zequi(X, r)h

is a monomorphism and it becomes an isomorphism after tensoring with
Z[1/p] where p is the exponential characteristic of k. In particular for a
quasi-projective scheme X over a field of characteristic zero, the sheaves
zequi(X, r)cdh are isomorphic to the presheaves constructed in [6].

One can show easily (we will not use this fact in the paper) that for any
scheme of finite type X over k the restriction of the cdh-sheaf zeff

equi(X, r)cdh to
Sm/k coincides with zeff

equi(X, r). On the other hand, the corresponding state-
ment for zequi(X, r) is false: the natural homomorphism zequi(X, r)(V ) →
zequi(X, r)cdh(V ) is a monomorphism but not in general an epimorphism.
Nevertheless, it turns out that this difference is insignificant from the point
of view of bivariant cycle cohomology. More precisely, it will be shown in the
next section (see remark 5.10) that for any scheme of finite type X over k the
groups hi(zequi(X, r))(Spec(k)) and the groups hi(zequi(X, r)cdh)(Spec(k)) are
isomorphic.

5 Pretheories.

One of our main technical tools is the “theory of pretheories” developed
in [25]. Informally speaking, a pretheory is a presheaf of abelian groups

19



on Sm/k which has transfers with respect to finite coverings (the precise
definition is given below). We will show below how to define a natural struc-
ture of pretheory on presheaves zequi(X, r). The main reason why this class
of presheaves is important for us is that the singular simplicial complexes
C∗(F ) of pretheories F behave “nicely”; in particular we obtain the localiza-
tion theorem (5.11) in our theory.

Let U be a smooth scheme over k and C → U be a smooth curve
over U . Denote by cequi(C/U, 0) the free abelian group generated by in-
tegral closed subschemes in C which are finite over U and dominant over
an irreducible component of U . Any such subscheme is flat over U . In
particular for a morphism f : U ′ → U there is defined a homomorphism
cycl(f) : cequi(C/U, 0) → cequi(C ×U U ′/U ′, 0). For any section s : U → C
of the projection C → U its image is an element in cequi(C/U, 0) which we
denote by [s]. A pretheory (with values in the category of abelian groups)
on the category Sm/k is a presheaf F of abelian groups together with a
family of homomorphisms φC/U : cequi(C/U, 0) → Hom(F (C), F (U)) given
for all smooth curves C → U over smooth schemes over k and satisfying the
following conditions:

1. For any smooth schemes U1, U2 over k the canonical homomorphism
F (U1

∐
U2) → F (U1) ⊕ F (U2) is an isomorphism.

2. For a section s : U → C one has φC/U([s]) = F (s).

3. For a morphism f : U ′ → U , an element a ∈ F (C) and an element Z
in cequi(C/U, 0) one has

F (f)(φC/U(Z)(a)) = φC×UU ′/U ′(cycl(f))(Z)(F (f ×U C)(a)).

A morphism of pretheories is a morphism of presheaves which is consistent
with the structures of pretheories in the obvious way.

Note that the category of pretheories is abelian and the forgetful functor
from this category to the category of presheaves of abelian groups is exact.
In particular for any pretheory F on Sm/k the cohomology presheaves h∗(F )
are pretheories.

A pretheory F is called homotopy invariant if for any smooth scheme U
over k the homomorphism F (U) → F (U × A1) induced by the projection
U × A1 → U is an isomorphism. Note that by lemma 4.1 for any pretheory
F the pretheories hi(F ) are homotopy invariant.
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Theorem 5.1 Let k be a perfect field and F be a homotopy invariant prethe-
ory on Sm/k. Then one has:

1. For any i ≥ 0 the presheaf H i
Zar(−, FZar) has a canonical structure of a

homotopy invariant pretheory. In particular FZar is a homotopy invari-
ant pretheory and for any smooth scheme U over k the homomorphisms

H i
Zar(U, FZar) → H i

Zar(U × A1, FZar)

are isomorphisms.

2. For any smooth scheme U over k and any i ≥ 0 the canonical homo-
morphism

H i
Zar(U, FZar) → H i

Nis(U, FNis)

is an isomorphism. In particular FZar = FNis.

Proof: See [25, Th. 4.27] for the first part and [25, Th. 5.7] for the second.

This theorem implies easily the following important criterion of vanishing
for sheaves hi(F )Zar if F is a pretheory.

Proposition 5.2 Let k be a perfect field and F be a pretheory on Sm/k.
Then the following conditions are equivalent.

1. The sheaves hi(F )Zar are zero for all i ≤ n.

2. For any homotopy invariant pretheory G and any i < n, one has

Exti(FNis, GNis) = 0

(here Exti(−,−) is the Ext-group in the category of Nisnevich sheaves
on Sm/k).

Proof: See [25, Th. 5.9].

The key to our localization theorem for bivariant cycle homology is the
following statement (cf Theorem 5.5): if F is a pretheory such that Fcdh = 0
and if k admits resolution of singularities, then hi(F )Zar = 0. We observe
that if we the weaken the condition Fcdh = 0 to FNis = 0, then this follows
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immediately from Proposition 5.2. To obtain the stronger result we need, we
first require the following two lemmas.

Let us recall that for a smooth scheme U over k we denote by Z(U) the
presheaf of abelian groups on Sm/k freely generated by the presheaf of sets
represented by U . We will use the following lemma.

Lemma 5.3 Let k be a perfect field, U be a smooth scheme over k and Z ⊂ U
be a smooth closed subscheme of U . Denote by p : UZ → U the blow-up of U
with center in Z. Then for any homotopy invariant pretheory G on Sm/k
and any i ≥ 0 one has:

Exti(coker(Z(UZ) → Z(U))Nis, GNis) = 0.

Proof: See [25, Prop. 5.21].

The main technical ingredient for the proof of Theorem 5.5 is isolated in the
following lemma.

Lemma 5.4 Let k be a field which admits resolution of singularities and let
F be a Nisnevich sheaf of abelian groups on Sm/k such that Fcdh = 0. Then
for any homotopy invariant pretheory G and any i ≥ 0 one has

Exti(F,GNis) = 0.

Proof: In view of Theorem 5.1 we may assume that GNis = G, i.e. that G is
a sheaf in Nisnevich topology. We use induction by i. Since our statement is
trivial for i < 0 we may assume that for any sheaf F satisfying the condition
of the proposition and any j < i one has Extj(F,G) = 0.

Let U be a smooth scheme over k and p : U ′ → U be a morphism
which is a composition of n blow-ups with smooth centers. Let us show
that Exti(coker(Z(p))Nis, G) = 0. Let p = p0 ◦ p1 where p0 is a blow-
up with a smooth center and p1 is a composition of n − 1 blow-ups with
smooth centers. By induction on n and Lemma 5.3 we may assume that
Exti(coker(Z(pε))Nis, G) = 0 for ε = 0, 1. We have an exact sequence of
presheaves

0 → Ψ → coker(Z(p1)) → coker(Z(p)) → coker(Z(p0)) → 0.

We rewrite this exact sequence as two short exact sequences

0 → Ψ → coker(Z(p1)) → Ψ′ → 0
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0 → Ψ′ → coker(Z(p)) → coker(Z(p0)) → 0

Since (Ψ)cdh = 0 the long exact sequences of Ext-groups associated with two
short exact sequences above together with the induction assumption and
Lemma 5.3 imply now that Exti(coker(Z(p))Nis, G) = 0.

Let now F be any Nisnevich sheaf such that Fcdh = 0. Consider the
epimorphism

⊕φα : ⊕Z(Uα) → F

where the sum is taken over all pairs of the form (Uα, φα) where Uα is a smooth
scheme over k and φα ∈ F (Uα). It follows from resolution of singularities
and Lemma 3.3 that for any smooth scheme Uα over k and any section φα ∈
F (Uα) there is a sequenece of blow-ups with smooth centers pα : U ′

α → Uα

such that p∗
α(φα) = 0. Thus our epimorphism can be factorized through an

epimorphism Ψ → F where Ψ = ⊕αcoker(Z(pα)). Let Ψ0 be the kernel of
this epimorphism. Then (Ψ0)cdh = 0. Since we have already proven that
Exti(ΨNis, G) = 0 we conclude that Exti(FNis, G) = 0 from the induction
assumption and the long exact sequence of Ext-groups associated with the
short exact sequence of presheaves

0 → Ψ0 → Ψ → F → 0.

Theorem 5.5 Let k be a field which admits resolution of singularities and
F be a pretheory over k.

1. For any smooth scheme U over k, one has canonical isomorphisms

Hi
cdh(U,C∗(F )cdh) = Hi

Zar(U,C∗(F )Zar).

2. If Fcdh = 0, then C∗(F )Zar is acyclic.

3. For any scheme of finite type X over k, the projection X × A1 → X
induces isomorphisms

Hi
cdh(X,C∗(F )cdh) → Hi

cdh(X × A1, C∗(F )cdh).

Proof: To prove part (1) of the theorem it is sufficient in view of hypercoho-
mology spectral sequence and Theorem 5.1(2) to show that for any homotopy
invariant pretheory G one has:

H i
cdh(U,Gcdh) = H i

Nis(U,GNis)
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(we then apply it to G = hn(F )).
Let U be a cdh-hypercovering of U . We say that it is smooth if all

schemes Ui are smooth. Resolution of singularities guarantees that any cdh-
hypercovering of U has a smooth refiniment. For any smooth hypercovering
U denote by Z(U) the complex of presheaves on Sm/k with terms Z(Ui) and
differentials given by alternated sums of morphisms induced by boundary
morphisms of the simplicial scheme U . The standard description of coho-
mology in terms of hypercoverings gives us for any presheaf G a canonical
isomorphism

H i
cdh(U,Gcdh) = lim

U
(Hom(Z(U)Nis, GNis[i]))

where the limit on the right hand side is taken over all smooth
cdh-hypercoverings of U and Hom(−,−) refers to morphisms in the derived
category of the category of sheaves of abelian groups on (Sm/k)Nis (note that
we could replace in this isomorphism Nis by any topology which is weaker
then the cdh-toplogy). There is a canonical morphism of complexes Z(U) →
Z(U). Denote its cone by KU . By definition of a hypecovering the complex
of cdh-sheaves (KU)cdh is quasi-isomorphic to zero, i.e. for any j ∈ Z one has
Hj(KU)cdh = 0 where Hj(KU) are cohomology presheaves of KU . Thus by
Lemma 5.4 for a homotopy invariant pretheory G the homomorphisms

Hom(Z(U)Nis, GNis[i]) → Hom(Z(U)Nis, GNis[i])

are isomorphisms for all i ∈ Z. Since the left hand side groups are canonically
isomorphic to H i

Nis(U,GNis) it proves part (1) of the theorem.
Let now F be a pretheory such that Fcdh = 0. We want to show that

C∗(F )Zar is quasi-isomorphic to zero. By Theorem 5.1(2) it is sufficient to
show that C∗(F )Nis is quasi-isomiorphic to zero. Suppose that hn(F )Nis 6= 0
for some n. We may assume that hi(F )Nis = 0 for all i < n. Then there
is a non trivial morphism in the derived category D(Sm/k)Nis) of sheaves
on (Sm/k)Nis of the form C∗(F )Nis → hn(F )Nis[n]. The second part of our
theorem follows now from 5.4 and lemma below.

Lemma 5.6 Let F be a presheaf on Sm/k and G be a homotopy invariant
pretheory on Sm/k. Then for any n ∈ Z one has a canonical isomorphism

HomD(Sm/k)N is)(C∗(F )Nis, GNis[n]) = Extn(FNis, GNis).
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Proof: See proof of [25, Th. 5.9].

To prove the third part of our theorem, we use smooth hypercoverings of
X as in the proof of part (1) and apply part (1) and Theorem 5.1(1).

LetX be a scheme of finite type over k. We define a structure of pretheory
on the presheaf zequi(X, r) as follows. Let C → U be a smooth curve over
a smooth scheme over k, Z be an integral closed subscheme of C which
belongs to cequi(C/U, 0) and W be an element of zequi(X, r)(C). Denote by
z the generic point of Z and consider the specialization Wz. Namely, let
OC,z denote the discrete valuation ring obtained by localizing C at z and let
k(z) denote its residue field, equal to the field of fractions of Z. Then the
restriction W ×C Spec(OC,z) of any irreducible component W ⊂ X×C of W
is flat over Spec(OC,z) and Wz is defined to be the sum over the irreducible
components W of the cycles associated to W ×C Spec(k(z)).

We set φC/U(Z)(W) to be the push-forward of the closure of Wz in Z×X
to U ×X.

Proposition 5.7 Let X be a scheme of finite type over k, U be a smooth
scheme over k and C/U be a smooth curve over U . Then one has:

1. For any element W in zequi(X, r)(C) the cycle φC/U(Z)(W) defined
above belongs to zequi(X, r)(U).

2. The presheaf zequi(X, r) together with homomorphisms φC/U is a prethe-
ory.

Proof: Our homomorphism

φC/U : zequi(X, r)(C) ⊗ cequi(C/U, 0) → Cycl(U ×X)

is a particular case of correspondence homomorphisms considered in [22,
Section 3.7]. The first statement of the proposition is a particular case of the
first statement of [22, Th. 3.7.3].

First two conditions of the definition of pretheory are hold for trivial
reasons. The third one is a particular case of the second statement of [22,
Th. 3.7.3].
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Proposition 5.8 1. For any proper morphism p : X ′ → X the push-
forward homomorphism of presheaves

p∗ : zequi(X ′, r) → zequi(X, r)

is a morphism of pretheories.

2. For any flat equidimensional morphism f : X ′ → X the pull-back ho-
momorphism

f ∗ : zequi(X, r) → zequi(X ′, r + dim(X ′/X))

is a homomorphism of pretheories.

3. For any smooth equidimensional scheme U and any scheme of finite
type X over k the duality homomorphisms

D : zequi(U,X, r) → zequi(U ×X, r + dim(U))

are morphisms of pretheories.

Proof: The second and the third assertions are trivial. The first one is a
particular case of [22, Prop. 3.7.6].

Proposition 5.9 Let k be a field which admits resolution of singularities
and let X be a scheme of finite type over k. Then for any scheme Y over k
the homomorphisms

Ar,i(Y,X) → Ar,i(Y × A1, X)

induced by the projection are isomorphisms.

Proof: This is a particular case of Theorem 5.5(3) with F = zequi(X, r).

Remark 5.10 It is easy to show that for any scheme of finite type X over
k the restriction of the sheaf zequi(X, r)cdh to Sm/k has a unique structure
of pretheory such that the morphism of presheaves on Sm/k

zequi(X, r) → zequi(X, r)cdh

is a morphism of pretheories. Applying Theorem 5.5(2) to kernel and cokernel
of this morphism we conclude that

hi(zequi(X, r))(Spec(k)) = hi(zequi(X, r)cdh)(Spec(k)).
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Observe that Theorem 5.5(2) implies that any sequence of pretheories

0 → F → G → H → 0

such that the corresponding sequence of cdh-sheaves

0 → Fcdh → Gcdh → Hcdh → 0

is exact gives us an exact triangle of complexes of sheaves in Zariski topology
of the form

C∗(F )Zar → C∗(G)Zar → C∗(H)Zar → C∗(F )Zar[1]

and in particular a long exact sequence of the corresponding groups
hi(−)(Spec(k)).

By Lemma 3.6 we also have in this case an exact triangle

C∗(F )cdh → C∗(G)cdh → C∗(H)cdh → C∗(F )cdh[1]

and hence a long exact sequence of the corresponding hypercohomology
groups.

We now prove localization and Mayer-Vietoris in our theory.

Theorem 5.11 Let k be a field which admits resolution of singularities, let
X be a scheme of finite type over k, let Y ⊂ X be a closed subscheme of X,
and let U1, U2 ⊂ X be Zariski open subsets with X = U1 ∪ U2. Then there
are canonical exact triangles (in the derived category of complexes of sheaves
on (Sm/k)Zar) of the form

C∗(zequi(Y, r))Zar → C∗(zequi(X, r))Zar → C∗(zequi(X − Y, r))Zar →

→ C∗(zequi(Y, r))Zar[1] (4.10.1)

and

C∗(zequi(X, r))Zar → C∗(zequi(U1, r))Zar ⊕ C∗(zequi(U2, r))Zar →

→ C∗(zequi(U1 ∩ U2, r))Zar → C∗(zequi(X, r))Zar[1]. (4.10.2)
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Proof: The sequences of presheaves

0 → zequi(Y, r) → zequi(X, r) → zequi(X − Y, r)

0 → zequi(X, r) → zequi(U1, r) ⊕ zequi(U2, r) → zequi(U1 ∩ U2, r)

on Sm/k are exact for obvious reasons. Hence, by Lemma 2.7 and Theorem
5.5(2), it suffices to show that

coker(i∗ : zequi(X, r) → zequi(X − Y, r))cdh = 0

coker(j∗
1 − j∗

2 : zequi(U1, r) ⊕ zequi(U2, r) → zequi(U1 ∩ U2, r))cdh.

In view of definition of cdh-topology, to verify the first asserted vanishing
it suffices to show for any smooth scheme U over k and any element Z
in zequi(X − Y, r)(U) that there is a blow-up p : U ′ → U such that U ′ is
smooth and cycl(p)(Z) belongs to zequi(X, r)(U ′). We may clearly assume
that Z = Z for a closed integral subscheme Z of (X − Y ) ×U . Let Z̄ be the
closure of Z in X × U . By the platification theorem [17], there is a blow-up
p : U ′ → U such that the proper transform Z̃ of Z̄ with respect to p is flat
over U ′. Since k admits resolution of singularities we may choose U ′ to be
smooth. Then Z̃ ∈ zequi(X, r)(U ′) and clearly its image in zequi(X−Y, r)(U ′)
coincides with cycl(p)(Z).

The proof of the second asserted vanishing differs only in notation.

The following long exact sequence of bivariant cycle cohomology groups is
an immediate corollary of Theorem 5.11 together with Lemma 3.6.

Corollary 5.12 Let k be a field which admits resolution of singularities, let
X be a scheme of finite type over k, let Y ⊂ X be a closed subscheme of X,
and let U1, U2 ⊂ X be Zariski open subsets with X = U1 ∪ U2. Then for any
scheme U over k, there are canonical long exact sequences

. . . → Ar,i(U, Y ) → Ar,i(U,X) → Ar,i(U,X − Y ) → Ar,i−1(U, Y ) → . . .

. . . → Ar,i(Y,X) → Ar,i(Y, U1) ⊕ Ar,i(Y, U2) → Ar,i(Y, U1 ∩ U2) →
→ Ar,i−1(Y,X) → . . . .

The following theorem provides us with another class of long exact se-
quences in our theory.
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Theorem 5.13 Let p : X ′ → X be a proper morphism of schemes of finite
type over field k which admits resolution of singularities and let and Z ⊂ X
be a closed subscheme of X such that the morphism p−1(X − Z) → X − Z
is an isomorphism. Then there is a canonical exact triangle (in the derived
category of complexes of sheaves on (Sm/k)Zar):

C∗(zequi(p−1(Z), r))Zar → C∗(zequi(Z, r))Zar ⊕ C∗(zequi(X ′, r))Zar →
→ C∗(zequi(X, r))Zar → C∗(zequi(p−1(Z), r))Zar[1].

Proof: The proof is exactly the same as for Theorem 5.11, except that we
need the vanishing assertion

coker(zequi(Z, r) ⊕ zequi(X ′, r) → zequi(X, r))cdh = 0.

This is proved exactly as in the proof of the vanishing assertions of the proof
of Theorem 5.11.

Corollary 5.14 Let p : X ′ → X be a proper morphism of schemes of finite
type over a field k which admits resolution of singularities and let Z ⊂ X be
a closed subscheme of X such that the morphism p−1(X−Z) → X−Z is an
isomorphism. Then for any scheme U over k there is a canonical long exact
sequence of the form:

. . . → Ar,i(U, p−1(Z)) → Ar,i(U,Z) ⊕ Ar,i(U,X ′) → Ar,i(U,X) →
→ Ar,i−1(U, p−1(Z)) → . . .

6 Moving Lemma.

In this section we return to the “naive” groups hi(zequi(X, r))(U). We study
them in the case of smooth varieties X,U using the “moving lemma” tech-
nqiues developed in [9]. These techniques are summarized in Theorems 6.1
and 6.3 below. It is worthy of note that the results in this section apply to
varieties over an arbitrary field k.

Let X be an equidimensional smooth scheme of finite type over k. Let
further Z =

∑
niZi, W =

∑
mjWj be two effective cycles on X of dimensions

r and s respectively. We say that Z and W intersect properly if the schemes
Zi ∩Wj are equidimensional of dimension r + s− dim(X).

We begin with a “presheafication” of the “Moving Lemma for Bounded
Families” of cycles on projective space proved in [9].
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Theorem 6.1 Let k be a field and m, r, s, d, e ≥ 0 be integers such that
r + s ≥ m. Then there are homomorphisms of abelian monoids

H+
U : zeff

equi(P
m, r)(U) → zeff

equi(P
m, r)(U × A1)

H−
U : zeff

equi(P
m, r)(U) → zeff

equi(P
m, r)(U × A1)

defined for all smooth schemes U over k and satisfying the following condi-
tions:

1. For any morphism f : U ′ → U of smooth schemes over k, one has

θ+
U ′cycl(f) = cycl(f × IdA1)H+

U

θ−
U ′cycl(f) = cycl(f × IdA1)H−

U

2. One has
cycliU θ

+
U = (n+ 1)Idzeff

equi(Pm,r)(U)

cycliU θ
−
U = nIdzeff

equi(Pm,r)(U)

where iU is the closed embedding IdU × {0} : U → U × A1 and n ≥ 0
is an integer.

3. For any geometric point

x̄ : Spec(k̄) → U × (A1 − {0})

any effective cycle W of degree ≤ e and dimension s on Pm
k̄ and any

cycle Z ∈ zeff
equi(Pm, r,≤ d)(U) the cycle W intersects properly in Pm

k̄

both cycl(x̄)(θ+
U (Z)) and cycl(x̄)(θ−

U (Z)).

Proof: As shown in [9, 3.1], there is a continuous algebraic map satisfying
the analogues of the above properties (1), (2), (3) of the following form

Θ̃ : Cr(Pm) × V → Cr(Pm)2,

where Cr(Pm) is the Chow monoid of effective r-cycles on Pm and V ⊂ A1

is a Zariski open neighborhood of 0 ∈ A1. This map induces maps natural
in U :

H+
U,V : Hom(U, Cr(Pm)) → Hom(U × V, Cr(Pm))
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H−
U,V : Hom(U, Cr(Pm)) → Hom(U × V, Cr(Pm)).

By Proposition 2.3, zeff
equi(Pm, r)(U) ⊂ Hom(U, Cr(Pm)) consists of those

“graphs” of maps f : U → Cr(Pm) defined over k, so that the above maps
restrict to maps

H+
U,V : zeff

equi(P
m, r)(U) → zeff

equi(P
m, r)(U × V )

H−
U,V : zeff

equi(P
m, r)(U) → zeff

equi(P
m, r)(U × V )

satisfying (1), (2), (3) with A1 replaced by V .
To extend these maps to U × A1, we let u0 be a regular function on A1

whose divisor equals W ≡ A1 − V (as a reduced closed subscheme) and we
let w0 be another regular function on A1 whose divisor misses W ∪ {0} and
whose degree is prime to 1 + deg(u0). We set

u =
tdeg(u0)+1

u0
, w =

tdeg(u0)+deg(w0)+1

u0w0
,

where t is the tautological regular function on A1. Let Γu denote the graph of
u : V → A1, and let Γw denote the graph of the rational map w : W−− > A1.
These graphs are finite over A1, in view of the fact that they equal the
restrictions to P1 × A1 of graphs of morphisms from P1 to itself.

Letm,n be chosen so thatmdeg(u)+ndeg(w) = 1 and set Γ = mΓu+nΓw.
Then, Γ ∈ Cequi(V ×A1/A1, 0), a smooth relative curve over A1. We consider
the composition

Ψ = φ(Γ) ◦ π∗ : zeff
equi(Y, r)(P

m, r)(U × V ) → zeff
equi(Y, r)(P

m, r)(U × V × A1)

→ zeff
equi(Y, r)(P

m, r)(U × A1),

the composition of flat pull-back followed by the “transfer” with respect to Γ
for the pre-theoretical structure of zequi(Pm, r). The latter map is described
more explicitly as follows. For each

Z ∈ zeff
equi(Y, r)(P

m, r)(U × V × A1)

and each generic point γ of an irreducible component Gγ of U × Γ in U ×
V ×A1, we consider the push-forward to Pm ×A1 of the closure in Pm ×Gγ

of the specializaton Zγ on Pm × Spec(k(γ)). Then,

φ(Γ)(Z) =
∑
γ

(1 × pγ)∗(Zγ),
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where pγ : Gγ → U × A1.
To verify that

H+
U ≡ Ψ ◦ H+

U,V , H−
U ≡ Ψ ◦ H−

U,V

satisfy (1), (2), and (3), we consider for each x ∈ U the following diagram

Γx ⊂ {x} × V × A1 ⊂ U × V × A1 ⊃ Γy y
{x} × A1 ⊂ U × A1

By property (3) of the pretheoretical structure for zequi(Pm, r), we obtain the
commutative square

zeff
equi(Pm, r)(U × V × A1) → zeff

equi(Pm, r)({x} × V × A1)

φ(Γ)
y yφ(Γx)

zeff
equi(Pm, r)(U × A1) → zeff

equi(Pm, r)({x} × A1)

(∗)

Property (1) is immediate. Since the restriction Γ0 of Γ to {o} × A1 is
the graph of the embedding {0} ⊂ A1, we conclude that φ(Γx) ◦ π∗ = id,
property (2) follows. Finally, property (3) follows easily from commutative
square (*) and the identification of Γx for x 6= 0 as the sum of graphs of
embeddings of {x} into A1 − {0}.

This theorem provides us with a method to move families of cycles on
projective space. To move families of cycles on more general projective vari-
eties, one uses a version of classical projective cones technique (see [18]) as
developed in [9].

Let X ⊂ Pn be a smooth equidimensional projective variety of dimen-
sion m over k. For a positive integer D, we consider the projective space
P(H0(O(D))m+1) which parametrize projections Pn → Pm given by families
F = (F0, . . . , Fm) of homogeneous polynomials of degree D. Let further UX,D

be the open subscheme in this projective space which consists of families F
such that the corresponding rational map πF : Pn → Pm restricts to a fi-
nite flat morphism pF : X → Pm. Note that this open subscheme is always
nonempty.
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For an effective cycle Z on X and a point F of UX,D denote by RF (Z)
the effective cycle p∗

F (pF )∗(Z) − Z. Since this construction only uses flat
pull-backs and proper push-forwards of cycles it has a relative analog. More
precisely, Proposition 2.1 imply that any point F of UX,D defines an endo-
morphism of presheaves

RF : zeff
equi(X, r) → zeff

equi(X, r).

For a point F in UX,D denote by RamF the closed subset in X which
consists of ramification points of the projection pF : X → Pm. The key
result of the projective cones technique is the following proposition.

Proposition 6.2 Let k be an field, X ⊂ Pn be a smooth equidimensional
projective scheme of dimension m and d, e, r, s ≥ 0 be integers such that
r + s ≥ m. Then there exists D > 0 and a nonempty open subscheme V =
Vd,e,r,s in UX,D such that for any point F in V and any pair of effective cycles
Z, W on X of degrees d, e and dimensions r, s respectively all components
of dimension > r+ s−m in Supp(W) ∩Supp(RF (Z)) belong to Supp(W) ∩
Supp(Z) ∩RamF .

Proof: See [9, 1.7].

We apply Proposition 6.2 several times to obtain a sequence F 0, . . . , Fm

of points in UX,Di
for some D0, . . . , Dm > 0 such that for any effective cycle

Z of dimension r and degree d the (effective) cycle RF m
. . . RF 0

(Z) intersects
properly all effective cycles of dimesnion s and degree e (provided r + s ≥
m). Since the cycle RF m

. . . RF 0
(Z) differs from the cycle Z by a linear

combination of pull-backs of cycles on Pm we may further apply Theorem
6.1 to obtain a “move” of any relative cycle which will intersect given relative
cycles properly. The precise formulation of the corresponding “moving lemma
for families of cycles” is given by the following theorem.

Theorem 6.3 Let k be a field, X ⊂ Pn be a smooth projective equidimen-
sional scheme of dimension m over k and d, e, r, s ≥ 0 be integers such that
r + s ≥ m. Then there are homomorphisms of abelian monoids

H+
U : zeff

equi(X, r)(U) → zeff
equi(X, r)(U × A1)

H−
U : zeff

equi(X, r)(U) → zeff
equi(X, r)(U × A1)
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defined for all smooth schemes U over k and satisfying the following condi-
tions:

1. For any morphism f : U ′ → U of smooth schemes over k one has

H+
U ′cycl(f) = cycl(f × IdA1)H+

U

H−
U ′cycl(f) = cycl(f × IdA1)H−

U

2. Let W be an effective cycle of degree ≤ e and dimension s on Xk̄ and
Z be an element of zeff

equi(X, r,≤ d)(U). Then for any geometric point
x̄ : k̄ → U × {0} ⊂ U × A1 of U one has:

(a) The components of the closed subschemes

Supp(cycl(x̄)(H+
U (Z))) ∩ Supp(W)

Supp(cycl(x̄)(H−
U (Z))) ∩ Supp(W)

of dimension > r+ s−m belong to Supp(cycl(x̄)(Z))∩Supp(W).

(b)
cycl(x̄)(H+

U (Z)) = cycl(x̄)(H−
U (Z)) + Z.

3. For any geometric point x̄ : Spec(k̄) → U × (A1 − {0}), any effective
cycle W of degree ≤ e and dimension s on Xk̄ and any cycle
Z ∈ zeff

equi(X, r,≤ d)(U) the cycles W and cycl(x̄)(H+
U (Z))

(resp. cycl(x̄)(H−
U (Z))) on Xk̄ intersect properly.

Proof: See [9, 3.2].

Let T = X × Y be a product of projective, smooth schemes over k
and let e ≥ 0 be such that {x} × Y ⊂ T has degree ≤ e for all points
x ∈ X. Then Theorem 6.3 asserts that Z ∈ zeff

equi(T, r)(U) can be moved to
Z ′ on T × U with the property that cycl(ū)(Z ′) meets {x} × Y × Spec(k̄)
properly for all geometric points ū : Spec(k̄) → U , all points x ∈ X. The
following proposition enables us to conclude that such a Z ′ lies in the image
of zeff

equi(X, r)(U × Y ).
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Proposition 6.4 Let X be a smooth scheme of pure dimension n over a
field k, let Y be a projective scheme over k, and let U be a smooth scheme
over k. Then Z ∈ zeff

equi(X × Y, r + n)(U) lies in the image of

Deff : zequi(Y, r)eff (X × U) → zequi(X × Y, r + n)eff (U)

if and only if for every geometric point ū : Spec(k̄) → U the cycle cycl(ū)(Z)
belongs to the image of the homomorphism

Deff : zequi(Y, r)eff (X × Spec(k̄)) → zequi(X × Y, r + n)eff (Spec(k̄)).

Proof: We may assume that Z is a closed integral subscheme of X × Y ×U
satisfying the condition that for every geometric point ū : Spec(k̄) → U the
subscheme Zū ⊂ X × Y × Spec(k̄) is equidimensional over X × Spec(k̄).
The generic fibre of the projection Z → X × U defines a rational map
φZ : X × U − −− > Cr(Y ). It suffices to prove that the graph Γ(φZ) ⊂
X×U×Cr(Y ) projects bijectively onto X×U , since the resulting continuous
algebraic map is a morphism by the normality of X × U .

To prove the required bijectivity, it suffices to show for any specialization
η ↘ x̄× ū in X × U and any point Zη ∈ Γ(φZ) that the only specialization
of Zη extending η ↘ x̄ × ū is Zη ↘ fū(x̄), where fū : X × Spec(k̄) →
Cr(Y ) is associated to cycl(ū)(Z) ∈ zequi(Y, r)eff (X × Spec(k̄)). This is a
consequence of the observation that if ZC ⊂ C × Y is a cycle assoicated to a
map f : C → Cr(Y ) for some smooth curve C, then for any geometric point
c̄ : Spec(k̄) → C the Chow point of the cycle Zx̄ ⊂ Y × Spec(k̄) equals f(c̄).

The main reason we have worked explicitly with differences of effective
cycles instead of all cycles is the fact that Proposition 6.4 becomes false
without effectivity assumption on Z as shown in the following example.

Example 6.5 Let V = A1, U = X = P1. Consider the cycle W = W+−W−
on V × U × X where W+ (resp. W−) is the graph of the rational map
U × V → X of the form x/y (resp. 2x/y). Then both W+ and W− are
relative cycles over V . Moreover the specialization of W (but not of W+ or
W−!) to any point v of V is a relative cycle on (U ×X)v over Uv, but W is
not relative over U × V .

In order to apply Theorem 6.3 in the next section to prove that the
“duality map” is a quasi-isomorphism, we shall require the following simple
result.
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Lemma 6.6 Let k be a field, F be a presheaf of abelian groups on the cate-
gory Sm/k and G ⊂ F be a subpresheaf (of abelian groups) of F . Let further

F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . .

be an increasing sequence of subpresheaves of sets in F such that F = ∪d≥0Fd.
Assume that for any d ≥ 0 there exist a family of homomorphisms

HU : F (U) → F (U × A1)

given for all smooth schemes U over k and satisfying the following conditions:

1. For any morphism f : U ′ → U one has HU ′F (f) = F (f × IdA1)HU .

2. For any smooth scheme U one has

F (i1)HU(Fd(U)) ⊂ G(U)

F (i0)HU = IdF (U)

where i0, i1 are the closed embeddings IdU ×{0} and IdU ×{1} respec-
tively.

3. For any smooth scheme U one has

HU(G ∩ Fd) ⊂ G.

Then the morphism of complexes of presheaves C∗(G) → C∗(F ) is a
quasi-isomorphism.

Proof: As in the proof of Lemma 4.1, the natural (with respect to U) ho-
momorphism HU determines a natural chain homotopy

s∗ : C∗(F )(U) → C∗+1(F )(U)

whose restriction to C(G)∗(U) lies in C∗+1(G)(U) and which relates the iden-
tity to a map hU = F (i1) ◦HU satisfying hU(C(Fd)∗(U)) ⊂ C(G)∗(U). Since
F = ∪d≥0Fd, this easily implies that C∗(G)(U) → C∗(F )(U) is a quasi-
isomorphism.
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7 Duality.

In this section, we prove duality theorems relating zequi(U,X, r) to zequi(X ×
U, r + dim(U)) for a smooth scheme U . The proofs of these theorems use
techniques which were originally developed for the duality theorems of [7].
In the next section, we shall apply duality to conclude the basic properties
of bivariant cycle cohomology groups Ar,i(Y,X) for all schemes of finite type
Y,X over a field k which admit resolution of singularities.

We begin with the following duality theorem for projective, smooth vari-
eties over an arbitrary field k.

Theorem 7.1 Let X, Y be smooth projective equidimensional schemes over
a field k. Then the embedding of presheaves

D : zequi(Y,X, r) → zequi(X × Y, r + dim(Y ))

induces isomorphisms

hi(zequi(Y,X, r)) → hi(zequi(X × Y, r + dim(Y )))

for all i ∈ Z.

Proof: We apply Theorem 6.3 with X replaced by X × Y ⊂ PN and e
the maximum of the degrees of x × Y ⊂ X × Y . Lemma 6.6 enables us to
obtain from Theorem 6.3 a quasi-isomorphism of complexes of presheaves.
We interpret this as the required quasi-isomorphism

C∗(zequi(X, Y, r) → C∗(x(X × Y, r)

by applying Proposition 6.4

We now proceed to remove the hypotheses that X, Y be projective and
smooth but add the hypothesis that k admit resolution of singularities. In
so doing, we shall obtain a quasi-isomorphism of chain complexes obtained
by evaluating the appropriate complexes of presheaves at Spec(k̄). The key
reason why we do not conclude a quasi-isomorphism of presheaves is that the
conclusion of Theorem 5.5(2) concerns the associated sheaf of a presheaf.

For the remainder of this section, let k a field which admits resolution
of singularities, let U be a smooth scheme over k of pure dimension n, let
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iU : U ⊂ Ū be a smooth compactification, let X be a scheme of finite type
over k, and let iX : X ⊂ x̄ be an embedding of X in a proper scheme of finite
type over k (see [14]).

For any proper scheme q : Ȳ → X̄ of finite type over X̄, consider the
morphism of presheaves of abelian monoids

αeff
Ȳ

: zeff
equi(Ū × Ȳ , n+ r) → zeff

equi(U ×X,n+ r)

which is the composition of proper push-forward morphism

(IdŪ × q)∗ : zeff
equi(Ū × Ȳ , n+ r) → zeff

equi(Ū × X̄, n+ r)

with the flat pull-back

(iU × iX)∗ : zeff
equi(Ū × X̄, n+ r) → zeff

equi(U ×X,n+ r).

Let αȲ be the corresponding morphism of presheaves of abelian groups.
We denote by ΦȲ the subpresheaf of abelian groups in zequi(Ū × Ȳ , n+ r)

generated by subpresheaf of abelian monoids (αeff
Ȳ

)−1(zeff
equi(U,X, r)) (where

we identify zeff
equi(U,X, r) with its image in zeff

equi(U ×X, r+n)). Thus, ΦȲ fits
in the following commutative square

ΦȲ = [(αeff
Ȳ

)−1(zeff
equi(U,X, r))]+ → zequi(U,X, r)y y

zequi(Ū × Ȳ , n+ r)
αȲ→ zequi(U ×X, r + n)

where [−]+ denotes the abelian group associated with the abelian monoid −.
We should be wary that for general q : Ȳ → X̄,

ΦȲ 6= (αȲ )−1(zequi(U,X, r));

for example, distinct effective cycles on Ū × Ȳ might map to the same, non-
equidimensional cycle on Ū × X̄). Of course, ΦX̄ 6= (αX̄)−1(zequi(U,X, r).

We require the following lemma, analgous to but considerably more ele-
mentary than Proposition 6.4.

Lemma 7.2 Let V be a smooth scheme over k, q : Ȳ → X̄ be a smooth
projective scheme over X̄ and Z =

∑
niZi (ni 6= 0) be an element of zequi(Ū×
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Ȳ , n + r)(V ). It belongs to ΦȲ if and only if for any geometric point x̄ :
Spec(k̄) → V × U of V × U and any i we have

dim(qk̄(Zi ×V ×U Spec(k̄)) ∩Xk̄) ≤ r

where
qk̄ = q ×Spec(k) Spec(k̄)

Xk̄ = X ×Spec(k) Spec(k̄).

Proof: Note first that due to our definition of ΦȲ we may assume that Z = Z
for a closed integral subscheme Z in V × Ū × Ȳ which is equidimensional of
relative dimension r + n over V . Obviously Z ∈ ΦȲ (V ) if and only if

(IdV × IdŪ × q)(Z) ∩ V × U ×X

is equidimensional of relative dimension r over V × U or is of dimension
everywhere less then r over U ×V (the last case corresponds to αȲ (Z) = 0).
Equivalently, this means that for any geometric point x̄ of V × U we have

dim((IdV × IdŪ × q)(Z) ×V ×U Spec(k̄) ∩Xk̄) ≤ r.

Our statement follows now from the obvious equality:

(IdV × IdŪ × q)(Z) ×V ×U Spec(k̄) = qk̄(Z ×V ×U Spec(k̄)).

The following somewhat technical proposition generalizes Theorem 7.1 in
the following sense: if X is projective but not necessarily smooth and if U
is both projective and smooth, then Proposition 7.3 immediately implies the
quasi-isomorphism of chain complexes

C∗(zequi(U,X, r))(Spec(k)) → C∗(zequi(X × U, r + n))(Spec(k)).

Proposition 7.3 Let q : Ȳ → X̄ be a proper scheme over X̄. Then for any
smooth scheme U of pure dimension n and any i ∈ Z, the morphisms

hi(ΦȲ )(Spec(k)) → hi(zequi(Ū × Ȳ , r + n))(Spec(k))

are isomorphisms.
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Proof: We first assume that Ȳ is smooth; then we may clearly also assume
that Ȳ is connected (and thus equidimensional). Choose a projective embed-
ding Ū × Ȳ ⊂ PN . Let e be the degree of closed subschemes (Ȳ )ū, ū ∈ U(k̄)
of PN

k̄ and let d ≥ 0 be an integer. Applying Theorem 6.3 to the scheme
Ū × Ȳ (with numbers being d, e, r + n, dim(Ȳ )) we get a family of natural
homomorphisms

HV = H+
V −H−

V : zequi(Ū × Ȳ , n+ r)(V ) → zequi(Ū × Ȳ , n+ r)(V × A1)

given for all smooth schemes V over k. It is sufficient to show now that
they satisfy conditions of Proposition 6.6 (for F = zequi(Ū × Ȳ , n+ r), Fd =
z≤d(Ū × Ȳ , n+ r) and G = ΦȲ ). Property (1) follows from Theorem 6.3(1).
Property (2) follows from our choice of e, Lemma 7.2 and Theorem6.3(2b,
3). Finally the property (3) follows from Lemma 7.2 and Theorem 6.3(2a,3).

We now consider the general case in which q : Ȳ → X̄ is a proper scheme
over X̄ of dimension ≤ dim(X). By the above proof for smooth Ȳ , we
may assume that our quasi-isomorphism is proven for all smooth projective
schemes as well as for all schemes of dimension < dim(Ȳ ).

Since k admits resolution of singularities there is a proper surjective mor-
phism p : Ȳ ′ → Ȳ such that Ȳ ′ is smooth and projective. and there exits
a closed subscheme j : Z̄ → Ȳ in Ȳ such that p−1(Ȳ − Z̄) → Ȳ − Z̄ is
an isomorphism and dim(Z̄) < dim(Ȳ ). Consider the following diagram of
presheaves (we write zequi(−) instead of zequi(−, r + n)):

0 → Φp−1(Z̄) → ΦȲ ′ ⊕ ΦZ̄ → ΦȲ → coker1 → 0
↓ ↓ ↓ ↓

0 → z(Ū×p−1(Z̄)) → z(Ū×Ȳ ′)⊕z(Ū×Z̄) → z(Ū×Ȳ ) → coker1 → 0.

Since dim(p−1(Z̄)) < dim(Ȳ ), the induction assumption together with
the isomorphism for the smooth, projective Ȳ imply that the first two vertical
arrows induce isomorphisms on the corresponding groups hi(−)(Spec(k)).
One can verify easily that both horizontal sequences are exact and the last
vertical arrow is a monomorphism. Proposition 5.8 implies that all horizontal
and vertical arrows are morphisms of pretheories. Applying Lemma 3.6 and
Theorem 5.5(2) to cokerj we see that it is sufficient to show that (coker2)cdh =
0. This follows exactly as in the proof of Theorem 5.11 (cf. Theorem 5.13.

We now can easily prove our main duality theorem.
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Theorem 7.4 Let k be a field which admits resolution of singularities, U be
a smooth quasi-projective equidimensional scheme of dimension n over k and
X be a scheme of finite type over k. Then for any r ≥ 0 the embedding

D : zequi(U,X, r) → zequi(X × U, r + n)

induce quasi-isomorphisms of complexes of abelian groups

C∗(zequi(U,X, r))(Spec(k)) → C∗(zequi(X × U, r + n))(Spec(k)).

Proof: We have the following diagram of morphisms of presheaves

0 → ker′ → ΦX̄ → zequi(U,X) → coker1 → 0
a ↓ b ↓ D ↓ c ↓

0 → ker(αX̄) → zequi(Ū × X̄) → zequi(U ×X) → coker2 → 0.

(where
zequi(U,X) = zequi(U,X, r)

zequi(Ū × X̄) = zequi(Ū × X̄, r + n)

zequi(U ×X) = zequi(U ×X, r + n))

Since ΦX̄ = (αX̄)−1(zequi(U,X, r)), the morphism a is an isomorphism and
all other vertical morphisms are monomorphisms. Moreover, Proposition 7.3
asserts that b(Spec(k̄)) is a quasi-isomorphism. Thus, it suffices to show that

hi(cokerj)(Spec(k)) = 0

for j = 1, 2 and all i ∈ Z. By Proposition 5.8(2) (resp. 5.8(3)) the morphism
α (resp. D) is a morphism of pretheories. In particular cokerj are pretheories.
In view of Theorem 5.5(2) it is sufficient to show that (cokerj)cdh = 0. Since
coker1 ⊂ coker2 Lemma 3.6 implies we have only to consider the case of
coker2 whose vanishing is given in the proof of Theorem 5.11.

8 Properties and pairings.

We can prove now the comparison theorem for “naive” (hi(zequi(X, r)(U))
and “fancy” (Ar,i(U,X)) definitions of bivariant cycle cohomology discussed
in Section 4.
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Theorem 8.1 Let k be a field which admits a resolution of singularities,
let X be a scheme of finite type over k, and U be a smooth quasi-projective
scheme over k. Then the natural homomorphisms of abelian groups

hi(zequi(X, r))(U) → Ar,i(U,X)

are isomorphisms for all i ∈ Z.

Proof: For any smooth scheme V of pure dimension n and Zariski open
subsets V1, V2 ⊂ V with V = V1 ∪ V2, we have the following exact sequences
of complexes

0 → C∗(zequi(X, r))(V ) → C∗(zequi(X, r))(V1) ⊕ C∗(zequi(X, r))(V2) →
→ C∗(zequi(X, r))(V3)

where V3 = V1 ∩ V2. By Theorem 7.4, this sequence is quasi-isomorphic in
the derived category to the distinguished triangle obtained by evaluating the
following distinguished triangle provided by Theorem 5.11

C∗(zequi(X×V, r+n) → C∗(zequi(X×V1, r+n))⊕C∗(zequi(X×V2, r+n)) →
C∗(zequi(X × V3, r + n)) → C∗(zequi(X × V, r + n))[1]

at Spec(k). Hence, in the sense of [2], the presheaf C∗(zequi(X, r)) is “pseudo-
flasque”. Thus, we may apply [2, Th. 4] to conclude that

H−i(U,C∗(zequi(X, r))Zar) = hi(C∗(zequi(X, r))(U)).

On the other hand, Theorem 5.5 asserts that the left hand side of the above
equality equals Ar,i(U,X) whereas the right hand side equals
hi(zequi(X, r))(U) by definition.

The following theorem provides our strongest duality theorem, in which
both Y and X are permited to be arbitrary schemes of finite type over k.

Theorem 8.2 Let k be a field which admits resolution of singularities, let
X, Y be schemes of finite type over k, and let U be a smooth scheme of pure
dimension n over k. There are canonical isomorphisms

Ar,i(Y × U,X) → Ar+n,i(Y,X × U).
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Proof: Let U = {Ui → U} be a finite open covering of U by quasi-projective
schemes. The complexes C∗(z(Ui, X, r)) form a bicomplex and we denote by
C∗(z(U , X, r)) its total complex. It follows immediately from definition of
bivariant cycle cohomology groups that there are canonical homomorphisms

H−i
cdh(Y, C∗(z(U , X, r))cdh) → Ar,i(Y × U,X).

On the other hand the duality embeddings z(Ui, X, r) → z(X × Ui, r +
dim(U)) give us together with Theorem 7.4 a canonical quasi-isomorphism
of complexes

C∗(z(U , X, r))cdh → C∗(z(X × U, r + dim(U))).

It is sufficient therefore to show that the homomorphisms

H−i
cdh(Y, C∗(z(U , X, r))cdh) → Ar,i(Y × U,X)

are isomorphisms. Since these homomorphisms are canonical and both sides
are cohomology groups in cdh-topology the problem is cdh-local. In particu-
lar since k admits resolution of singularities we may assume that Y is smooth
and quasi-projective. In this case our statement follows easily from Theorem
8.1 and Theorem 7.4.

We provide additional good properties of the bivariant theory A∗,∗(−,−)
in the next theorem.

Theorem 8.3 Let k be a field which admits resolution of singularities and
let X, Y be schemes of finite type over k.

1. (Homotopy invariance) The pull-back homomorphism zequi(X, r) →
zequi(X × A1, r + 1) induces for any i ∈ Z an isomorphism

Ar,i(Y,X) → Ar+1,i(Y,X × A1).

2. (Suspension) Let
p : X × P1 → X

i : X → X × P1

be the natural projection and closed embedding. Then the morphism

i∗ ⊕ p∗ : zequi(X, r + 1) ⊕ zequi(X, r) → zequi(X × P1, r + 1)
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induces an isomorphism

Ar+1,i(Y,X) ⊕ Ar,i(Y,X) → Ar+1,i(Y,X × P1)

3. (Cosuspension) There are canonical isomorphisms:

Ar,i(Y × P1, X) → Ar+1,i(Y,X) ⊕ Ar,i(Y,X).

4. (Gysin) Let Z ⊂ U be a closed immersion of smooth schemes every-
where of codimension c in U . Then there is a canonical long exact
sequence of abelian groups of the form

. . . → Ar+c,i(Z,X) → Ar,i(U,X) → Ar,i(U − Z,X)

→ Ar+c,i−1(Z,X) → . . . .

Proof:

1. Since we have natural homomorphisms

Ar,i(Y,X) → Ar+1,i(Y,X × A1),

Propositions 4.4, 4.5 and resolution of singularities imply that we may
assume Y to be smooth and quasi-projective. Then (1) follows from
Theorems 8.1, 7.4 and Lemma 4.1.

2. This follows from localization exact sequence (5.12) and (1).

3. This follows immediately from Theorem 8.2 and (2).

4. This follows immediately from Theorem 8.2 and Corollary 5.12.

Remark 8.4 The “cosuspension” and “suspension” properties of the bivari-
ant theory A∗,∗(−,−) are particular cases of projective bundle theorems for
the first and second variables respectively. For the corresponding general re-
sults see [24].
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Let X,X ′ be schemes of finite type over k and let U be a smooth scheme
over k. For any pair of integral closed subschemes Z ⊂ X × U,Z ′ ⊂ X ′ × U
equidimensional over U , the fibre product Z×UZ

′ is also equidimensional over
U . Thus, sending Z,Z ′ to the cycle associated to the subscheme Z ×U Z

′ ⊂
X ×X ′ × U determines a pairing

× : Z(X, r) ⊗ zequi(X ′, r′) → Z(X ×X ′, r + r′)

of presheaves.
Using this product pairing, we define the algebraic analogue of the op-

erations introduced in [11] for Lawson homology, formulated in terms of the
product pairing in [6], and extended to a bivariant context in [8]. We employ

the standard notation
L⊗ to denote the derived tensor product.

Proposition 8.5 Let k be a field which admits resolution of singularities
and let X, Y be schemes of finite type over k. Then there is a natural pairing
for any i ≥ 0

Ar+1,i(Y,X)
L⊗ A0,j(Spec(k),P1) → Ar,i+j(Y,X).

Proof: Our pairing factors through the natural map

Ar+1,i(Y,X)
L⊗ A0,j(Spec(k),P1) 1⊗p∗→ Ar+1,i(Y,X)

L⊗ A0,j(Y,P1)

and the projection

Ar+1,i+j(Y,X × P1) → Ar,i+j(Y,X)

associated to the suspension isomorphism of Theorem8.3(2). Thus, it suffices
to exhibit a natural pairing

Ar+1,i(Y,X)
L⊗ A0,j(Y,P1) → Ar+1,i+j(Y,X × P1).

This pairing is induced by the product pairing

× : zequi(X, r + 1) × zequi(P1, 0) → zequi(X × P1, r + 1).

We next use duality to provide

Ar,i(X) = Ar,i(Spec(k), X) = hi(zequi(x, r))(Spec(k))
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with a natural multiplicative pairing for smooth schemes X. This multi-
plicative structure is inspired by the multiplicative structure on “morphic
cohomology” studied in [8].

Proposition 8.6 Let k be a field which admits resolution of singularities
and let X be a smooth scheme of pure dimension n over k. Then there is a
natural multiplication

Ar,i(X)
L⊗ As,j(X) → Ar+s−n,i+j(X) , for any r + s ≥ n.

Proof: By Theorems 8.3(1), 7.4, we have natural isomorphisms

Ar,i(Spec(k), X) ' Ar+n,i(Spec(k), X × An) ' Ar,i(X,An).

On the other hand, the product pairing

× : zequi(An, r) ⊗ zequi(An, s) → zequi(A2n, r + s)

determines a pairing

Ar,i(X,An)
L⊗ As,j(X,An) → Ar+s,i+j(X,A2n).

Using Theorems 8.3(1), 7.4 once again, we have

Ar+s,i+j(X,A2n) ' Ar+s+n,i+j(X × A2n) ' Ar+s−n,i+j(X).

Our multiplicative pairing now follows.

We introduce one final pairing on our bivariant cycle cohomology groups.
The following “composition pairing” is based on a pairing introduced in [8]
and further examined in [3].

Proposition 8.7 Let k be a field which admits resolution of singularities,
let T be a scheme of finite type over k, and let U be a smooth scheme, and
let X be a projective, smooth scheme. Then there is a natural composition
pairing of chain complexes

C∗(zequi(X, r))(U) ⊗ C∗(zequi(T, s))(X) → C∗(zequi(T, r + s))(U)

which induces the pairing

Ar,i(U,X)
L⊗ As,j(X, T ) → Ar+s,i+j(U, T ).
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Proof: Given by sending a pair of closed integral subschemes

Z ⊂ X × U × ∆n , W ⊂ T ×X × ∆n,

we consider the subscheme

W ×X×∆n Z ⊂ T ×X × U × ∆n.

We easily verify that if Z is equidimensional over U ×∆n and if W is equidi-
mensional over X × ∆n, then W ×X×∆n Z is equidimensional over U × ∆n.
We define the asserted pairing of chain complexes by sending (Z,W ) to the
proper push-forward via the projection T ×X × U × ∆n → T × U × ∆n of
the cycle associated to W ×X×∆n Z.

9 Motivic cohomology and homology.

In this final section, we introduce four theories defined for schemes of finite
type over a field k. They are called correspondingly - motivic homology,
motivic cohomology, Borel-Moore motivic homology and motivic cohomology
with compact supports. All of them but motivic homology (with compact
supports) are closely related to bivariant cycle cohomology.

Since some of the definitions below are rather involved, we want to explain
first what motivates them. Let X be a scheme of finite type over k. As shown
in [24] one can construct a certain triangulated category DMgm(k) of “geo-
metrical mixed motives over k” and asociated to any such X two objects in
this category: M(X) - the “motive” ofX and Mc(X) - the “motive with com-
pact supports” of X. The correspondence X 7→ M(X) is covariantly functo-
rial with respect to all morphisms while the correspondence X 7→ Mc(X) is
covariantly functorial with respect to proper morphisms and contravariantly
functorial with respect to equidimensional morphisms of relative dimension
zero. For a proper X one has Mc(X) = M(X).

The category DMgm(k) has a tensor structure and a distinguished invert-
ible object Z(1) called the Tate object. For any object M in DMgm(k) we
denote by M(n) the object M ⊗ Z(1)⊗n. In particular Z(n) = Z(1)⊗n.

Using this formalism, one could define various motivic theories as follows:

Motivic cohomology:

Hj(X,Z(i)) = HomDM(M(X),Z(i)[j])
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Motivic cohomology with compact supports:

Hj
c (X,Z(i)) = HomDM(Mc(X),Z(i)[j])

Motivic homology:

Hj(X,Z(i)) = HomDM(Z(i)[j],M(X))

Borel-Moore motivic homology:

HBM
j (X,Z(i)) = HomDM(Z(i)[j],Mc(X))

The definitions given below are just “explicit” reformulations of these
heuristic ones. There are two main reasons why they are more involved
than one might expect. The first which applies mainly to the case of ho-
mology is that the object Z(i) has no geometrical meaning for i < 0 and
Hom(Z(i)[j],M(X)) is in this case just a formal notation forHom(Z[j],M(X)(−i)).
Thus we have to distinguish the cases i < 0 and i ≥ 0 in the definitions below.
The second is that there are several ways to interpret Z(i) geometrically for
i > 0. In Definitions 9.2, 9.3 below, we use the fact that Z(i) = Mc(Ai)[−2i]
and in Definition 9.4 the fact that M(Ai − {0}) = Z(i)[2i− 1] ⊕ Z.

Definition 9.1 Let X be a scheme of finite type over k. For any n, r ∈ Z
we define the Borel-Moore motivic homology of X as

HBM
n (X,Z(r)) ≡

{
Ar,n−2r(X) for r ≥ 0

A0,n−2r(X × A−r) for r ≤ 0.

Definition 9.2 Let X be a scheme of finite type over k. For all m, s ∈ Z,
we define the motivic cohomology of X as

Hm(X,Z(s)) ≡ A0,2s−m(X,As)

(for s < 0 we set A0,2s−m(X,As) = 0).

To define motivic cohomology with compact supports we use the construc-
tion of cdh-cohomology with compact supports given at the end of Section
3.

48



Definition 9.3 Let X be a scheme of finite type over k. For any m, s ∈ Z
we define the motivic cohomology of X with compact supports of X as

Hm
c (X,Z(s)) ≡ Hm−2s

c (X,C∗(zequi(As, 0))).

To define the last of our four theories, namely motivic homology (with
compact supports) we need to remind first the following definition of algebraic
singular homology (see [21]).

For any scheme of finite type X over k, denote by cequi(X, 0) the sub-
presheaf in zequi(X, 0) whose values on a smooth scheme U over k the sub-
group cequi(X, 0)(U) is generated by integral closed subschemes Z in U ×X
which are proper over U (note that this implies that Z is in fact finite over U).
One can easily see that unlike zequi(X, 0) the presheaf cequi(X, 0) is covari-
antly functorial with respect to all morphisms X1 → X2 and contravariantly
functorial only with respect to flat proper morphisms. For anyX the presheaf
cequi(X, 0) has a structure of a pretheory obtained by restricting of the canon-
ical structure of a pretheory on zequi(X, 0). Note also that if X is proper we
have cequi(X, 0) = zequi(X, 0). We define the algebraic singular complex of
X as the complex of sheaves C∗(cequi(X, 0)). Its homology sheaves (or more
precisely their sections on Spec(k)) are algebraic singular homology of X (cf.
[21]). They form a homology theory which is a part of our motivic homology
of X.

Generalizing algebraic singular homolgy we have:

Definition 9.4 Let X be a scheme of finite type over k. For any n, r ∈ Z
we define motivic homology of X as follows:

Hn(X,Z(r)) ≡
{

H2r−n
{0} (Ar,C∗(cequi(X,0))) r ≥ 0

hn−2r−1(C∗(cequi(X×(Ar−{0}),0)/cequi(X×{1},0))) r ≤ 0

In what follows, we summarize some basic properties of our four theories
in the case when k admits resolution of singularities. All of these properties
follow from results of this paper, [25], and the corresponding properties of
the motivic category considered in [24].

Motivic cohomology - is a family of contravariant functors H i(−,Z(j))
from the category Sch/k to the category of abelian groups. These
fuctors have the following basic properties:
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Homotopy invariance. For any scheme X of finite type over k one has
canonical isomorphisms H i(X × A1,Z(j)) = H i(X,Z(j)).

Algebraic suspension property. For any X as above, one has canonical
isomorphisms

H i(X × P1,Z(j)) = H i(X,Z(j)) ⊕H i−2(X,Z(j − 1)).

Mayer-Vietoris exact sequence. For any X as above and any open cov-
ering X = U ∪ V of X, there is a canonical long exact sequence
of the form:

. . . → H i(X,Z(j)) → H i(U,Z(j))⊕H i(V,Z(j)) → H i(U∩V,Z(j))

→ H i+1(X,Z(j)) → . . .

Blow-up exact sequence. For any schemes X, Y of finite type over k,
proper morphism p : X → Y and closed subscheme Z → Y in Y
such that p−1(Y −Z) → Y −Z is an isomorphism, there is a long
exact sequence of the form:

. . . → H i(Y,Z(j)) → H i(X,Z(j)) ⊕H i(Z,Z(j)) →
H i(p−1(Z),Z(j)) → H i+1(Y,Z(j)) → . . .

Covariant functoriality. For a proper, flat, equidimensional morphism
f : X → Y of relative dimension d, there are homomorphisms

H i(X,Z(j)) → H i−2d(X,Z(j − d)).

Motivic homology - is a family of covariant functors Hi(−,Z(j)) from the
category Sch/k to the category of abelian groups. These fuctors have
the following basic properties:

Homotopy invariance. For any scheme X of finite type over k one has
canonical isomorphisms Hi(X × A1,Z(j)) = Hi(X,Z(j)).

Algebraic suspension property. For any X as above, one has canonical
isomorphisms

Hi(X × P1,Z(j)) = Hi(X,Z(j)) ⊕Hi−2(X,Z(j − 1)).
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Mayer-Vietoris exact sequence. For any X as above and any open cov-
ering X = U ∪ V of X, there is a canonical long exact sequence
of the form:

. . . → Hi(U∩V,Z(j)) → Hi(U,Z(j))⊕Hi(V,Z(j)) → Hi(X,Z(j))

→ H i−1(U ∩ V,Z(j)) → . . .

Blow-up exact sequence. For any schemes X, Y of finite type over k, a
proper morphism p : X → Y and a closed subscheme Z → Y in
Y such that p−1(Y − Z) → Y − Z is an isomorphism there is a
long exact sequence of the form:

. . . → Hi(p−1(Z),Z(j)) → Hi(X,Z(j)) ⊕Hi(Z,Z(j)) →
H i(Y,Z(j)) → H i−1(p−1(Z),Z(j)) → . . .

Contravariant functoriality. For a proper flat equidimensional
morphism f : X → Y of relative dimension d, there are homo-
morphisms

Hi(Y,Z(j)) → Hi+2d(X,Z(j + d)).

Motivic cohomology with compact support - is a family of contravari-
ant functors H i

c(−,Z(j)) from the category Schc/k of schemes and
proper morphisms to the category of abelian groups. These fuctors
have the following basic properties:

Homotopy invariance. For any scheme of finite type over k, one has
canonical isomorphisms H i

c(X × A1,Z(j)) = H i−2
c (X,Z(j − 1)).

Localization. For any X as above and any closed subscheme Z in X,
one has a canonical exact sequence:

. . . → H i
c(X − Z,Z(j)) → H i

c(X,Z(j)) → H i
c(Z,Z(j))

→ H i+1
c (Z,Z(j)) → . . .

Covariant functoriality. For a flat equidimensional morphism f : X →
Y of relative dimension d, there are homomorphisms

H i
c(X,Z(j)) → H i−2d

c (X,Z(j − d)).
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Borel-Moore motivic homology - is a family of covariant functors
HBM

i (−,Z(j)) from the category Schc/k to the category of abelian
groups. These fuctors have the following basic properties:

Homotopy invariance. For any scheme of finite type over k, one has
canonical isomorphisms HBM

i (X × A1,Z(j)) = HBM
i−2 (X,Z(j)).

Localization. For any X as above and any closed subscheme Z in X,
one has a canonical exact sequence:

. . . → HBM
i (Z,Z(j)) → HBM

i (X,Z(j)) → HBM
i (X − Z,Z(j))

→ HBM
i+1 (Z,Z(j)) → . . . .

Contravariant functoriality. For a flat equidimensional morphism
f : X → Y of relative dimension d, there are homomorphisms

HBM
i (Y,Z(j)) → HBM

i+2d(X,Z(j + d)).

The following two main results relate our four theories.

1. If X is a proper scheme of finite type over k, then one has canonical
isomorphisms

H i
c(X,Z(j)) = H i(X,Z(j))

HBM
i (X,Z(j)) = Hi(X,Z(j))

2. If X is a smooth scheme of finite type over k of pure dimension d and
Z is a closed subscheme in X, then there are long exact sequences:

. . . → Hi(X − Z,Z(j)) → Hi(X,Z(j)) → H2d−i
c (Z,Z(d− j))

→ Hi−1(X − Z,Z(j)) → . . .

. . . → HBM
2d−i(Z,Z(d− j)) → H i(X,Z(j)) → H i(X − Z,Z(j))

→ HBM
2d−i−1(Z,Z(d− j)) → . . .

In particular if X is a smooth scheme of finite type over k one has
canonical isomorphisms

Hi(X,Z(j)) = H2d−i
c (Z,Z(d− j))

H i(X,Z(j)) = HBM
2d−i(Z,Z(d− j)).
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Remark 9.5 One can also define motivic (co-)homology theories for coef-
ficients other than Z. More precisely, for any commutative ring R one can
define theories H i(X,R(j)), Hi(X,R(j)) etc. in such a way that the usual
universal coefficients theorems hold.
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