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In the monograph [FM-1], the author and Barry Mazur introduce a filtration on
algebraic cycles on a (complex) projective variety which we called the topological
filtration. This filtration, defined using a fundamental operation on the homotopy
groups of cycle spaces, has an interpretation in terms of “Chow correspondences.”
The purpose of this paper is to give examples in which specific levels of this fil-
tration are non-trivial. Thus, we obtain examples of cycles which lie in different
levels of a naturally defined filtration of the Griffiths group (of cycles homologically
equivalent to 0 modulo cycles algebraically equal to 0). Our examples are cycles on
general complete intersections analyzed by Madhav Nori by means of his (rational)
Lefschetz hyperplane theorem [N]. The relevance of Nori’s examples is suggested
by a description given in [F3] of the topological filtration closely resembling the
filtration on cycles that Nori considers.

Nori’s theorem is a result about cohomology and Nori’s application to his filtra-
tion on cycles involves working with cycle classes in cohomology; our topological
filtration lends itself less easily to a cohomological analysis. One difficulty we face
is that the topological filtration of a smooth variety involves cycles on singular vari-
eties. This provides considerable awkwardness for cycles on singular varieties need
not have cycle classes in cohomology. Another difficulty is that Nori’s application
of his Lefschetz theorem to cycles involves the consideration of families of varieties
over a quasi-projective base variety, whereas the machinery for studying the topo-
logical filtration has been formulated in the context of projective varieties. Thus,
we are led to consider “relative Chow correspondences.”

We briefly sketch the organization of the paper. Section 1 summarizes the context
and results of Nori’s paper which we shall use. In section 2, we extend to quasi-
projective varieties the construction of Chow correspondences and graph mappings.
More importantly, we interpret the Chow correspondence homomorphism of [FM-
1] in terms of slant product, a familiar operation in homology theory. Section 3
presents our results, most notably Theorem 3.4 which is our strengthened version
of one aspect of Nori’s theorems about the Griffiths group. A few corollaries are
given enabling us to obtain examples of varieties with non-trivial layers in the
topological filtration on algebraic cycles. In section 4, we develop relative Chow
correspondences in order to work with families of varieties as we encounter in Nori’s
context. Finally, section 5 completes the proof of Theorem 3.4.

As we have observed previously (cf. [FM-1], [F2]), one of the intriguing aspects of
geometric techniques involving cycle spaces is that these techniques rarely require
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hypotheses of smoothness. Indeed, the difference between the topological filtra-
tion and the cohomological filtration introduced by Nori in [N] is that one begins
with cycles homologically equivalent to 0 on possibly singular (rather than smooth)
varieties. These techniques for cycle spaces are elementary in nature, so that we
expect them to lead to further geometric properties of varieties. The results of this
paper enable one to sometimes convert these geometric techniques to more familiar
cohomological ones.

Throughout this paper, all varieties considered will be quasi-projective complex
algebraic varieties.

We are especially grateful to Madhav Nori who encouraged us to reinterpret
our geometric techniques in such a way that his remarkable Lefschetz theorem
(Theorem 1.4 below) could be applied. We also thank Dick Hain for several useful
conversations.

§1. NORI’S FILTRATION

In this inititial section, we briefly summarize those aspects of [N] which we shall
employ or modify. We begin with a filtration on algebraic cycles on a smooth
variety introduced by Nori.

Definition 1.1. Let Y be a smooth variety of dimension n and let CHr(Y ) denote
the Chow group of algebraic r-cycles on Y modulo rational equivalence for some
r ≥ 0. Then AjCHr(Y ) ⊂ CHr(Y ) is the subgroup generated by the rational
equivalence classes of those cycles ξ for which there exists some smooth, projective
variety E of some dimension m, an n+ r− j-cycle γ on E×Y , and a j-cycle δ on
E homologically equivalent to 0 (denoted δ ∼h 0) such that ξ is represented by

pY ∗(γ • p∗E(δ)), δ ∼h 0.

Here, pY ∗ : CHr(E × Y ) → CHr(Y ) is proper push-forward of cycles, • is the
intersection product on CH∗(E × Y ), and p∗E : CHr−j(E)→ CHr+m−j(E × Y ) is
flat pull-back of cycles. The condition δ ∼h 0 is taken to mean that the cycle class
of δ in integral singular homology , [δ] ∈ H2r−2j(E), is 0.

For Y projective, {AjCHr(Y )} is an increasing filtration on CHr(Y ); A0CHr(Y )
consists of those classes algebraically equivalent to 0; ArCHr(Y ) consists of those
classes homologically equivalent to 0 [N;5.2]. In particular,

ArCHr(Y )/A0CHr(Y ) = Griffr(Y ),

the Griffiths group of algebraic r-cycles homologically equivalent to 0 modulo those
cycles algebraically equivalent to 0.

The following spells out the notational conventions which establish the context
for the Nori-Lefschetz theorem.

Conventions 1.2. Assume that X is a projective, smooth variety of dimension

n + h, let S denote
∏h
i=1 P(Γ(X,OX(ai))) with min{a1, . . . , ah} ≥ NX(n), and

consider a smooth morphism E → S. The positive number NX(n), which depends
upon n, X, and an ample line bundle OX(1) on X, is that of [N;Thm4]. We denote
by YS ⊂ X × S ≡ XS the incidence variety, with fibre Ys = {x ∈ X : Fs(x) = 0}
over s ∈ S.
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The following theorem of M. Nori essentially doubles the range of the classical
Lefschetz hyperplane theorem provided that one considers cohomology with ratio-
nal coefficients and replaces a single complete intersection by a general family of
complete intersections with sufficiently high degree.

Theorem 1.3. ( [N;Thm 4]) Adopt the conventions of 1.2 and let E → S be smooth.
Then

Hk(E ×S XS , E ×S YS ; Q) = 0 for k ≤ 2n.

Nori applies Theorem 1.3 to obtain the following interesting result about his
filtration. Our major goal is to prove the analogous result (Theorem 3.4 below) for
the topological filtration. In Theorem 1.4 (and Theorem 3.4), one can simply take
j = r − 1; for j < r − 1, Nori obtains a stronger condtion on ζ than the vanishing
of [ζ].

Theorem 1.4. [N;6.1] Adopt the notation and conventions of (1.2). If ζ ∈ Zr+h(X)
satisfies

i!s(ζ) ∈ AjCHr(Ys), j < r

for almost all s ∈ S where is : Ys → X is the restriction of i : Y → X , then

[ζ] = 0 ∈ H2(r+h)(X,Q).

In particular, if X is itself a complete intersection of dimension 2r + 2 whose
algebraic homology in middle dimension has rank at least 2 and if h = 1, then for
almost all s ∈ S

ArCHr(Ys)/Ar−1CHr(Ys)⊗Q 6= 0.

§2. CHOW VARIETES AND
CORRESPONDENCE HOMOMORPHISMS

After recalling the notation and terminology of Chow varieties, we extend to
quasi-projective varieties the formulation of correspondence homomorphisms intro-
duced by the author and B. Mazur for projective varieties. We then proceed to
interpret these homomorphisms in cohomological terms.

Throughout this section, U, V will denote quasi-projective varieties of pure di-
mension m, n. We shall let X, Y denote projective varieties, typically projective
closures of U, V . We recall that once a projective embedding of Y is chosen, then
one has Chow Varieties Cj,d(Y ) of effective j-cycles on Y of degree d (for integers
j, d ≥ 0) and one considers the Chow monoid

Cj(Y ) =
∞∐
d=0

Cj,d(Y )

whose isomorphism type is independent of the choice of projective embedding of
Y [B]. We provide Cj(Y ) with the analytic topology and form its näive group
completion Zj(Y ) whose homotopy type is that of the homotopy theoretic group
completion of the topological monoid Cj(Y ) (cf. [LiF], [F-G]). The underlying
discrete group Zj(Y )disc of Zj(Y ) is the group of algebraic j-cycles on Y .

Assume now that V ⊂ Y is a projective closure with Zariski closed complement
Y∞ ⊂ Y . We consider the quotient topological monoid Cj(Y )/Cj(Y∞) and its näive



4 ERIC M. FRIEDLANDER∗

group completion Zj(V ). The homotopy type of Zj(V ) depends only upon V and
not the choice of projective closure V ⊂ Y .

We shall frequently use the s-operation first introduced in [FM-1] for projective
varieties, extended to quasi-projective varieties in [F2]. Recall that this operation
takes the form

s : Zj(V )→ Ω2Zj−1(V )

and can be viewed heuristically as taking a j-cycle ζ to a P1 ' S2 paramterized
family of j−1-cycles obtained by intersecting ζ with a Lefschetz pencil of hyperplane
sections.

Proposition 2.1. Let V be a quasi-projective variety, let V ⊂ Y be a projective
closure, and let Y∞ = Y − V .

(a.) π0Zr(V ) is the group of algebraic equivalence classes of algebraic r-cycles on V .
(b.) πiZ0(V ) is naturally isomorphic to HBM

i (V ) ' Hi(Y, Y∞), the Borel-Moore ho-
mology of V (provided with its classical topology as an analytic space).

(c.) sr ◦ π : Zr(V )
π−→ π0Zr(V )

s−→ π2Zr−1(V )
s−→ · · · s−→ π2rZ0(V ) ' HBM

2r (V ) is the
cycle map.

(d.) The Griffiths group of algebraic r-cycles on V homologically equivalent to 0 mod-
ulo algebraic equivalence equals the quotient

ker{Zr(V )
sr◦π−−−→ π2rZ0(V )}/ker{Zr(V )

π−→ π0Zr(V )}.

Proof. A cycle ζ =
∑
miWi on V is algebraically equivalent to 0 if and only its

closure ζ =
∑
miW i on Y is algebraically equivalent to a cycle supported on Y∞.

Thus, (a.) follows from the special case in which V = Y is projective [F1;1.8] and
the following commutative square of surjective maps:

Zr(Y ) −−−−→ Zr(V )y y
π0Zr(Y ) −−−−→ π0Zr(V )

We view the Dold-Thom theorem as providing a natural quasi-isomorphism be-
tween the chain complex associated to the simplicial abelian group of singular sim-
plices on Z0(Y ) and the chain complex of singular chains on Y (cf. [FM-1;appB]).
Thus, the 5-Lemma enables us to extend the Dold-Thom theorem to prove (b.).

In the special case in which V = Y is projective, (c.) is proved in [FM-1;6.4]. The
general case follows from the surjectivity of Zr(Y )→ Zr(V ) and the commutativity
of the following diagram:

π0Zr(Y )
sr−−−−→ π2rZ0(Y )

'−−−−→ H2r(Y )y y y
π0Zr(V )

sr−−−−→ π2rZ0(V )
'−−−−→ HBM

2r (V )

Finally, (d.) follows from parts (a.), (b.), (c.) and the definition of the Griffiths
group of r-cycles as the group of algebraic equivalence classes of r-cycles homolog-
ically equivalent to 0.

We now begin the process of extending the constructions of [FM-1] and [F2] to
quasi-projective varieties.
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Definition 2.2. A Chow correspondence

f = (f, f∞) : U → Cj(V )

is represented by the following data: choices of projective closures U ⊂ X,V ⊂ Y
with Zariski closed complements Y∞ ⊂ Y,X∞ ⊂ X and a pair of morphisms f :
X → Cj(Y ), f∞ : X∞ → Cj(Y∞). The data U ⊂ X ′, V ⊂ Y ′, g : X ′ → Cj(Y ′), g∞ :

X ′∞ → Cj(Y ′∞) will be viewed as the same Chow correspondence as (f, f∞) if the
maps U → Cj(Y )/Cj(Y∞), U → Cj(Y ′)/Cj(Y ′∞) become equal after making the
evident identification Cj(Y )/Cj(Y∞) ' Cj(Y ′)/Cj(Y ′∞).

Proposition 2.3. (cf.[FM-1], [F2]) A Chow correspondence f : U → Cj(V ) deter-
mines graph mappings

Γf : Zr−j(U)→ Zr(V ), r ≥ j

induced by the construction which sends an irreducible closed subvariety W ⊂ X of
dimension r− j to the “trace” of the cycle on X × Y associated to the composition

W ⊂ X f→ Cj(Y ).
Moreover, f determines a Chow Correspondence homomorphism

Φf : HBM
∗ (U)→ HBM

∗+2j(V ).

Finally, if [δ] ∈ HBM
2r (U) denotes the cycle class of δ ∈ Zr(U), then

Φf ([δ]) = [Γf (δ)].

Proof. The construction mentioned in the statement of the proposition is the con-
struction presented in [F2] for the graph mapping in the case in which X = U and
Y = V are projective. The naturality of this construction provides the following
commutativity diagram:

Zr−j(X∞) −−−−→ Zr−j(X) −−−−→ Zr−j(U)

Γf∞

y Γ
f

y yΓf

Zr(Y∞) −−−−→ Zr(Y ) −−−−→ Zr(V )

(2.3.1)

where U ⊂ X,V ⊂ Y are projective closures with Zariski closed complements
X∞ ⊂ X,Y∞ ⊂ Y . The map f induces sj ◦ f∗ : Z0(U) → Zj(V ) → Ω2jZ0(V ).
The asserted map Φf is the map on homotopy groups induced by sj ◦ f∗ (using the
isomorphism of (2.1.b)):

Φf = (sj ◦ f∗)# : HBM
∗ (U) ' π∗Z0(U)→ π∗+2jZ0(V ) ' HBM

∗+2j(V ). (2.3.2)

The equality Φf ([δ]) = [Γf (δ)] follows from the commutativity of (2.3.1) and the
corresponding result for projective varieties [FM-1;6.4].

Let D denote the derived category of bounded below chain complexes of abelian
groups. If V is a smooth variety of (complex) dimension n with projective closure
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Y , then Poincaré duality implies that cap product with the fundamental class [Y ]
determines a quasi-isomorphism of chain complexes

∩[Y ] : C∗(V )[2n]
∼−→ C∗(Y, Y∞), (2.4.0)

where
(C∗(V ))−i = Hom(Ci(V ),Z)

is the group of simplicial cochains on V (with respect to some triangulation of V )
of codegree i so that (C∗(V )[2n])k = Hom(C2n−k(V ),Z).

For any quasi-projective variety U , we define the hypercohomology of V (with
respect to the classical topology on V ) with coefficients in a bounded below chain
complex C∗ as

Hi(U ;C∗) ≡ HomD(C∗(U), C∗[i]).

In the special case that C∗ is the degenerate chain complex whose only non-zero
term is the abelian group A in degree 0, then Hi(U,A) equals the singular coho-
mology group Hi(U,A). More generally, the Künneth Theorem and (2.4.0) imply
that

Hi(U ;C∗(Y, Y∞)[−2n]) = Hi(U × V,Z). (2.4.1)

The following proposition generalizes to quasi-projective varieties and refines
to integral cohomology the formulation of the total characteristic class in rational
cohomology given in [FM-2;1.5] for Chow correspondences of projective varieties.

Proposition 2.4. If V is smooth of dimension n, then a Chow correspondence
f : U → Cj(V ) determines the characteristic class

〈f〉 ∈ HomD(C∗(X,X∞), C∗(Y, Y∞)[−2j]) ' H2(n−j)((X,X∞)× V ; Z)

where U ⊂ X is a projective closure with complement X∞.

Proof. The Chow correspondence f : U → Cj(V ) induces the homomorphism of
topological abelian groups sj ◦ f : Z0(U) → Zj(V ) → Ω2jZ0(V ). Applying the
singular complex functor, we obtain a map of chain complexes Sing.(Z0(U)) →
Sing.(Ω2j(Z0(V )) which is quasi-isomorphic to C∗(X,X∞)→ C∗(Y, Y∞)[−2j]. Us-
ing (2.4.1), we reinterpret this as a class in H∗((X,X∞)× V,Z).

We conclude this section by reformulating the Chow correspondence homomor-
phism in cohomological terms. We refer the reader to [Sp;6.1], [D;VII.13] for a
discussion of the slant product pairing

−/− : Hom((C ⊗ C ′)n, R)⊗ (Cp ⊗R)→ Hom(C ′n−p, R) (2.4.1)

for chain complexes C,C ′ of modules over a commutative ring k and a k-algebra
R.

Proposition 2.5. Adopt the hypotheses and notation of Proposition 2.4.
(a.) For any δ ∈ HBM

i (U,Z) ' Hi(X,X∞; Z),

Φf (δ) = (〈f〉/δ)∨ ∈ HBM
i+2j(V,Z),

the Poincaré dual of the class 〈f〉/δ ∈ H2(n−j)−i(V,Z) (so that (〈f〉/δ)∨ is given
by cap product of 〈f〉/δ with the fundamental class [V ] of V ).
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(b.) If α ∈ H2m−i(U,Z) is the restriction of some α ∈ H2m−i(X,Z), then

〈f〉/(α ∩ [X]) = prV !(〈f〉 · pr∗X(α)),

where pr∗X : H∗(X,Z)→ H∗(X×V,Z) and prV!
: H∗(X×V,Z)→ H∗−2m(V,Z)

is the Gysin map.

Proof. Essentially by definition of the slant product,

〈f〉 ∈ (C∗(X,X∞)# ⊗ C∗(V )[2n− 2j])2j−2n

sends c ∈ Ci(X,X∞) to its image under the map C∗(X,X∞)→ C∗(Y, Y∞) defining
〈f〉. Granted how this map was constructed using Poincaré duality, we immediately
conclude that this map sends the homology class δ ∈ Hi(X,X∞; Z) to Φf (δ)∨.

To prove (b.), we use the equalities

〈f〉/(α ∩ [X]) = 〈f〉/(α ∩ [X]) = (〈f〉 · p∗X(α))/[X],

the first evident by inspection and the second a special case of [D;6.1.4]. Thus, (b.)
follows from the evident equality

(〈f〉 · p∗X(α))/[X] = prV !(〈f〉 · pr∗X(α)).

§3. TOPOLOGICAL FILTRATION

Our objective is to exhibit classes in specific stages of the following topological
filtration. Note that there is no hypothesis of smoothness in the definition.

Definition 3.1. (cf. [FM-1]) Let V be a quasi-projective variety. The j-th stage
of the topological filtration on Zr(V ) is defined to be

SjZr(V ) ≡ ker{Zr(V )
π−→ π0Zr(V )

sj−→ π2jZr−j(V )}.

Clearly, {SjZr(V )} is an increasing filtration on Zr(V ). In the notation of (3.1),
the Griffiths group of r-cycles equals Sr(V )/S0(V ).

As defined in Definition 3.1, the topological filtration on algebraic cycles has
no evident homological interpretation. However, such an interpretation is indeed
available, as we recall in the following theorem.

Theorem 3.2. (cf. [F2;3.2]]) Let Y be a projective variety. Then SjZr(Y ) ⊂
Zr(Y ) is the subgroup generated by r-cycles of the form Γf (δ), where f : W →
Cr−j(Y ) is a Chow correspondence from a projective variety W of dimension 2j+1
and δ is an j-cycle on W homologically equivalent to 0.

As observed in [F2;3.3], Theorem 3.2 implies the following
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Corollary 3.3. For any smooth projective variety Y ,

AjCHr(Y ) ⊂ SjZr(Y )/(∼rat).

We now state our main theorem, our analogue of Nori’s result Theorem 1.4. To
apply this to exhibit non-trivial filtrations, we use its contrapositive: we begin with
some algebraic cycle ζ on X which is not homologically trivial and conclude the
non-triviality in the penultimate level of the topological filtration of its restriction
to Yt ⊂ X.

The proof of Theorem 3.4 will be given in §5, after a discussion of relative
characteristic classes in §4. We abuse notation by letting iT : Y → X = X × T
denote the pull-back (more properly denoted YT → XT ) of YS ⊂ XS via T → S.

Theorem 3.4. Adopt the notation and conventions of (1.2), and let T → S be an
etale map. If ζ ∈ Zr+h(X) satisfies

i!t(ζ) ∈ SjZr(Yt), j < r almost all t ∈ T.

where it : Yt → X is the restriction of iT : Y → X = X × T , then

[ζ] = 0 ∈ H2(r+h)(X,Q).

In particular, if X is itself a complete intersection of dimension 2r + 2 whose
algebraic homology in middle dimension has rank at least 2 and if h = 1, then there
exists t ∈ T with

SrZr(Yt)/Sr−1Zr(Yt) ⊗Q 6= 0.

In view of Corollary 3.3, Theorem 3.4 is stronger than Theorem 1.4. As in that
theorem, we could simply take j = r − 1 in its statement.

The next proposition shows one easy way that Theorem 3.4 provides examples of
cycles lying in levels of the topological filtration lower than the penultimate level.

Proposition 3.5. Let Y be a smooth projective variety and consider an algebraic
cycle γ ∈ Zk(Y ) satisfying γ 6= 0 ∈ SjZk(Y )/Sj−1Zk(Y ) ⊗Q for some j, 0 < j ≤ k.
Let P be a projective smooth variety of dimension m and consider γ×P ∈ Zk+m(Y ×
P ). Then for any p ∈ P

γ × {p} 6= 0 ∈ SjZk(Y × P )/Sj−1Zk(Y × P )⊗ Q

and
γ × P 6= 0 ∈ SjZk+m(Y × P )/Sj−1Zk+m(Y × P )⊗ Q.

Proof. We give a proof of the second assertion concerning γ × P . The proof of the
first assertion is similar (and even easier): to prove the first assertion we would
replace in the proof below intersection with Y × {p} by the projection of cycles
Ck−j+1(Y × P )→ Ck−j+1(Y ).

Since γ ∈ SjZk(Y ), there exists some Chow correspondence f : W → Ck−j(Y )
with dim(W ) = 2j + 1 and some δ ∈ Cj(W ) such that γ = Γf (δ) and [δ] = 0 in
H2j(W ). Define g : W → Ck+m−j(Y × P ) by sending w ∈ W to f(w) × P . Then
Γg(δ) = γ × P , so that γ × P ∈ Sj(Y × P ).
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Suppose that there exists some h : W ′ → Ck+m−j+1(Y × P ) with dim(W ′) =
2j − 1 and some ξ ∈ Cj−1(W ′) such that some multiple of γ × P equals Γh(ξ) and
[ξ] = 0 in H2j−2(W ′). As argued in [FL-2], for N sufficiently large and for some
Zariski neighborhood O of 0 ∈ A1, we may find an algebraic homotopy

ΘN : Ck+m−j+1(Y × P )×O → Ck+m−j+1(Y × P )

such that ΘN restricted to Ck+m−j+1(Y ×P )×{0} is multiplication byN and for any
0 6= t ∈ O the restriction θt of ΘN to Ck+m−j+1(Y ×P )×{t} has image consisting of
(k+m−j+1)-cycles on Y ×P meeting Y ×{p} properly for all p ∈ P . Thus, sending
w′ ∈ W ′ to θt(h(w′)) • (Y × {p}) determines a Chow correspondence g : W ′ →
Ck−j+1(Y ) with Γ(ξ) rationally equivalent to some multiple of γ. This contradicts
the assumption that γ 6= 0 ∈ SjZk(Y )/Sj−1Zk(Y )⊗ Q (since Sj−1Zk(Y ) is closed
under rational equivalence).

As an immediate corollary of Theorem 3.4 and Proposition 3.5, we obtain ex-
amples in which the topological filtration has several non-trivial associated graded
pieces of specified level. (In view of Proposition 3.5, one may find examples of Y
satisfying the hypothesis of Corollary 3.6 by taking products of examples given in
Theorem 3.4)

Corollary 3.6. Assume that Y is a projective smooth variety with the property
that there exist algebraic cycles γ 6= 0 ∈ SkZk(Y )/Sk−1Zk(Y ) ⊗Q, and γ′ 6= 0 ∈
Sk′Zk′(Y )/Sk′−1Zk′(Y ) ⊗Q with k < k′. Let P, P ′ be projective smooth varieties
of dimensions m,m′ satisfying k +m′ = k′ +m. Then

SkZk+m′(Y × P × P ′)/Sk−1Zk+m′(Y × P × P ′) ⊗Q 6= 0,

0 6= Sk′Zk+m′(Y × P × P ′)/Sk′−1Zk+m′(Y × P × P ′) ⊗Q.

§4. RELATIVE CHARACTERISTIC CLASSES

We fix a connected projective variety T of pure (complex) dimension τ and a non-
empty Zariski open subset T ⊂ T with closed complement T∞ ⊂ T . We consider
projective maps pE : E → T , pY : Y → T and denote by pE : E → T, pY : Y → T

the restrictions of these maps to T ⊂ T . We let E∞ denote E − E and Y∞ denote
Y − Y.

The aim of this section is to develop some aspects of Chow correspondences
and correspondence homomorphisms relative to our fixed base T . In particular,
Proposition 4.5 refines the characteristics class 〈f〉 of Proposition 2.4 by formulating
a relative characteristic class 〈f/T 〉 in the cohomology the fibre product of E and Y
over T . This refinement is required in order to be able to apply the Nori-Lefschetz
Theorem.

We begin our relativiation of aspects of §2 with the following simple but useful
definition.

Definition 4.1. For each j, d ≥ 0, we define the relative Chow variety (of
effective j-cycles of degree d in some fibre of Y/T ) to be the fibre product

Cj,d(Y/T ) ≡ Cj(Y)×Cj(PN×T ) [Cj,d(P
N )× T ],
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where Y ⊂ PN × T is a closed embedding whose composition with the projection is
the structure map Y → T . We further define

Cj(Y/T ) ≡
∞∐
d=0

Cj,d(Y/T ), Zj(Y/T ) ≡ [Cj(Y/T )]+T

where [−]+T denotes the naïve fibre-wise group completion over T .
We define

Cj(Y/T ) ≡ Cj(Y /T )×T T, Zj(Y/T ) ≡ Zj(Y /T )×T T

The näive fibrewise group completion [Cj(Y/T )]+T is defined as a quotient space

of Cj(Y/T )×T Cj(Y/T ). This can be realized as the colimit of a sequence of pushout

squares exactly as näive group completions constructed in [F-G]. As argued in [F3],
this construction yields C.W. complexes.

As established in the next proposition, our relative Chow varieties provide a näive
version of the relative cycles functor restricted to normal varieties. The interested
reader should consult [S-V] for a more sophisticated and complete investigation of
relative cycles.

Proposition 4.2. If U is a quasi-projective variety over T , then a morphism f :
U → Cj(Y/T ) over T naturally determines an effective cycle Zf/T on U ×T Y
equidimensional over U of relative dimension j. If U is normal, then sending such
a morphism f to Zf/T is a 1-1 correspondence.

Proof. As seen in [F1;1.4], the composition f : U → Cj(Y/T ) → Cj(Y) determines

the cycle Zf ⊂ U ×Y. To verify that this cycle lies in U ×T Y ⊂ U ×Y, it suffices
to prove this for the pre-composition of f with an arbitrary point ν : SpecC→ U .
In this case, the support of Zf◦ν equals that of the cycle parametrized by the Chow

point f ◦ ν ∈ Cj(Y) (cf. [F1;1.3]) which is clearly contained in Yν ⊂ U ×T Y.
If U is normal, then the 1-1 correspondence proved in [FL-1;1.5] in the absolute

case (i.e., T = SpecC) restricts to the asserted 1-1 correspondence by the argument
given immediately above.

In order to relativize our discussion of §2, we shall consider presheaves of chain
complexes on T . If T ′ ⊂ T is an analytic open subset, then we shall consider the
topological abelian monoid HomLif (T ′, C0(Y/T ))T of Lifschitz maps from T ′ to

C0(Y/T ) over T provided with the compact-open topology. We associate to this
monoid the chain complex

Norm{[Sing.(HomLif (T ′, C0(Y/T ))T )]+}, (4.3.0)

the normalized chain complex of the simplicial abelian group obtained by group
completing the simplicial monoid obtained by applying the singular complex functor
to HomLif (T ′, C0(Y/T ))T .

In order to formalize our discussion, we shall consider the abelian category SB
of presheaves of bounded below chain complexes of abelian groups on a topological
space B. SB has the structure of a triangulated category whose distinguished
triangles are triple P → Q→ R with the property that

0→ P (U)→ Q(U)→ R(U)→ 0
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is a short exact sequence for every open subset U ⊂ B. We say that P → Q is
a quasi-isomorphism if the induced map on fibres at each point of B is an iso-
morphism; alternatively, if the kernel and cokernel of this map have acyclic fibres.
Finally, we denote by DB the localization of SB with respect to the thick sub-
category of those P ∈ SB with the property that each fibre of P is acyclic (cf.
[F4]).

Theorem 4.3. If pY : Y → T is smooth as well as projective of relative dimension
n, then Z0(Y/T )→ T is locally (on T for the analytic topology) a product projection
with fibres Z0(Yt), where Yt is the fibre of Y → T above t ∈ T .

Moreover, let Z0
∼

(Y/T ) denote the sheaf of chain complexes on T sending an

analytic open subset T ′ ⊂ T to the chain complex of (4.3.0). Then the restriction of
Z0
∼

(Y/T ) to T ⊂ T , Z0
∼

(Y/T ), is quasi-isomorphic to RpY∗Z[2n] (where the cochain

complex RpY∗Z is indexed as a chain complex vanishing in positive degrees).

Proof. A sufficiently small tubular neighborhood of Yt ⊂ Y has projection in T
containing an ε-neighborhood Nt of t ∈ T whose preimage in Y admits the structure
of a product with the property that the restriction of Y → T to Nt is a product
projection. Then the restriction of Z0(Y/T ) → T above Nt is also a product
projection.

As discussed in [FL-3], the graph of a Lifschitz map T → C0(Y) is a well defined
integral cycle of (real) dimension 2τ on T ×Y which we project to Y. This graphing
construction determines a continuous map

HomLif (T , C0(Y/T ))T → Z2τ (Y)

where Z2τ (Y) denotes the topological abelian group of integral cycles on Y of (real)
dimension 2τ and where HomLif (−,−)T is given the compact open topology.

We consider a basis of open sets O of T with the property that O ⊂ T (the
closure of O in T ) is contained in T , and both O and Oc ≡ T − O are compact
Lifschitz neighborhood retracts. We define

HomLif (O, C0(Y/T ))T ≡ im{HomLif (O, C0(Y/T ))T → Homcont(O, C0(Y/T ))T },

so that as above we have a well defined continuous graph mapping

HomLif (O, C0(Y/T ))T → Z2τ (Y)/Z2τ (Y ×T O
c)

sending f : O → C0(Y/T )) to the projection of the closure of its graph in O × Y.
This map in turn induces a map of simplicial abelian groups

[Sing.(HomLif (O, C0(Y/T ))T ]+ → Sing.(Z2τ (Y)/Z2τ (Y ×T O
c)). (4.3.1)

We interpret F. Almgren’s theorem [A] as the assertion of a quasi-isomorphism

Norm{Sing.(Z2τ (Y)/Z2τ (Y ×T O
c)} ' Norm{Sing.(Z0(Y)/Z0(Y ×T O

c)}[−2τ ].

For small polydisks T ′ ⊂ T , we recall [FL-3] that the natural inclusion

HomLif (T ′, C0(Y/T ))T → Homcont(T
′, C0(Y/T ))T
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of function spaces with the compact open topology is a deformation retract. Thus,
the first assertion of this theorem implies that the homology groups of the left hand
side of (4.3.1) are the cohomology groups of Yt whenever pY is proper and smooth
and O = T ′ is a small polydisk around t ∈ T ′, whereas the Dold-Thom theorem
implies that the homology of the right hand side is Borel-Moore homology of the
pre-image in Y of the polydisk. As argued in [FL-3], the graph mapping of (4.3.1)
induces an isomorphism on these homotopy groups since Y → T is smooth.

We observe that there is a natural quasi-isomorphism

C∗(A,B) ' Norm{Sing.(Z0(A)/Z0(B))}

for any polyhedral pair B ⊂ A, where C∗(A,B) denotes the singular chain complex
of the pair. Thus,

Norm{Sing.(Z0(Y)/Z0(Y×TT
′c)}[−2τ ] ' C∗(Y,Y×TT

′c)[−2τ ] ' C∗(p−1
Y (T ′))[2n],

where the second quasi-isomorphism is given by Poincaré duality (cf. (2.4.0)). The
observation that sending an open subset V ⊂ Y to C∗(V ) is a flasque presheaf of
chain complexes on Y implies the quasi-isomorphism

C∗(p−1
Y (T ′)) ' RpY∗Z,

thereby completing the proof.

Sending an irreducible subvariety of Pn ×Pm defined by bi-homogeneous equa-
tions {F1(x, t), . . . , Fk(x, t)} to the irreducible subvariety of Pn+1 × Pm given by
the same equations determines a natural morphism, the relative algebraic sus-
pension,

ΣPm : Cr(Pn ×Pm)→ Cr+1(Pn+1 ×Pm).

We denote by ΣTY ⊂ PN+1 × T the image of Y ⊂ PN × T under such a relative

algebraic suspension map. This construction determines a morphism over T

ΣT : Cr(Y/T )→ Cr+1(ΣTY/T ).

If X ⊂ PM , Y ⊂ PN are projective varieties, then the algebraic join X#Y ⊂
PM#PN = PM+N+1 is the subvariety defined by the union of the homogeneous
equations defining X and Y . This can be viewed as the subvariety of PM+N+1

consisting of points lying on some line from a point of X to a point of Y . If
X/T ,Y/T are projective families over a projective variety T , then the relative
algebraic join X#TY is the subvariety of X#Y consisting of points lying on some

line from a point of X to a point of Y all of which project to the same point of T .
Applying the relative algebraic join determines a continuous algebraic map over

T

#T : Cr(Y/T )× C0(P1 × T/T )→ Cr+1(Σ2
T
Y/T ).

We may interpret the relative algebraic suspension ΣT as the special case of the

following relative algebraic join construction in which Y → T is taken to be the
identity map.
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Proposition 4.4. Relative algebraic suspension admits a homotopy inverse

Σ−1
T : Zr+1(ΣTY/T )→ Zr(Y/T ).

Consequently, we may define a relative s-map over T

sT = Σ−2
T ◦#T : Zr(Y/T ) ∧ S2 → Zr+1(Σ2

TY/T )→ Zr−1(Y/T )

with adjoint denoted also by sT :

sT : Zr(Y/T )→ Ω2
TZr−1(Y/T ),

where ΩTW ⊂ ΩW denotes the subspace of the free loop space of a topological space
W over T equipped with a section ω : T → W consisting of loops each lying above
some t ∈ T and based at ω(t).

Proof. For each d > 0 and all e sufficiently large with respect to d, there exists an
algebraic homotopy

Cr+1,≤d(P
N+1)×O → Cr+1,≤de(P

N+1)

relating multiplication by e and a map with image contained in the image of Σ :
Cr,≤de(P

N ) → Cr+1,≤de(P
N+1), where O is a Zariski open subset of 0 ∈ A1 (cf.

[F1]). This homotopy extends to

Cr+1,≤d(P
N+1 × T/T )×O → Cr+1,≤de(P

N+1 × T/T )

by taking the constructions of the original homotopy and formally extending them
so as to be independent of t ∈ T , where degree now refers to the first component of
multi-degree in PN+1×T . Embedding Y in PN×T and thereby ΣTY in PN+1×T ,
we easily see this extended homotopy restricts to

Cr+1,≤d(ΣTY/T )×O → Cr+1,≤de(ΣTY/T )

relating fibre-wise multiplication by e to a map with image contained in the image
of

ΣT : Cr,de(Y/T )→ Cr+1,≤de(ΣTY/T ).

This homotopy clearly restricts to

Cr+1,≤d(ΣTY/T )×O → Cr+1,≤de(ΣTY/T ).

The arguments of [L], [F1] now apply to establish the fact that ΣT : Zr(Y/T )→
Zr+1(ΣTY/T ) is a weak homotopy equivalence (over T ). The fact that this is a
homotopy equivalence follows from [F3;1.3].

Using the relative s-map sT of Proposition 4.4, we now exhibit relative charac-
teristic classes for relative Chow correspondences.
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Proposition 4.5. A relative Chow correspondence

f/T : E → Cj(Y/T )

is a morphism over T . Let f/T denote the restriction of this morphism above T .
If pY : Y → T is smooth (as well as proper) of relative dimension n, then such
a relative Chow correspondence naturally determines a relative characteristic
class

〈f/T 〉 ∈ H2n−2j(E ×T Y,Z).

Proof. The relative s-map of Proposition 4.4 determines a map in DT :

sT∗ : Z
∼j

(Y/T )→ Z
∼0(Y/T )[−2j],

whereas f/T induces by naturality of (4.3.0) the map

(f/T )∗ : Z
∼0(E/T )→ Z

∼0(Y/T ).

Thus, assuming pY is smooth, f/T determines

〈f〉 ∈ HomDT
(Z
∼0(E/T ), Z

∼0(Y/T )[−2j]) ' HomDT
(Z
∼0(E/T ),RpY∗Z[2n− 2j]).

Observe that the canonical map E → C0(E/T ) over T determines a canonical
map in SE :

κE : Z→ p∗E(Z∼0(E/T )). (4.5.1)

(For any open subset W ⊂ E , the evident map W → C0(E/T ) determines an
element in degree 0 of the chain complex p∗E(Z∼0(E/T ))(W).) Together with the

natural isomorphism

p∗ERpY∗Z ' RpE×TY∗Z,

where pE×TY : E ×T Y → E is the pull-back via pE of pY , this gives us a natural
map

HomDT
(Z
∼0(E/T ),RpY∗Z[2n− 2j])→ HomDE (Z,RpE×TY∗Z[2n− 2j]) (4.5.2).

Finally, the right hand side of (4.5.2) is identified using the following isomorphisms

HomDE (Z,RpE×TY∗Z[2n− 2j])) = H2n−2j(E ,RpE×TY∗Z) = H2n−2j(E ×T Y,Z),
(4.5.3)

where the first isomorphism can be taken to be the definition of the hypercoho-
mology of E with coefficients in the complex of sheaves RpE×TY∗Z and the second
equality is a form of the Serre spectral sequence for pE×TY .

We continue our study of relative Chow correspondences by relating the rela-
tive characteristic class 〈f/T 〉 of Proposition 4.5 to the characteristic class of f as
formulated in Proposition 2.4.
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Proposition 4.6. Assume that T is a smooth variety and that pY : Y → T is
smooth as well as proper of relative dimension n. Then the embedding ηY : E×T Y ⊂
E × Y determines a map (in the derived category DT ) of chain complexes on E

ηY! : RpE×TY∗Z ' p∗YRpY∗Z→ π∗ERπY∗Z[2τ ] ' RπE×Y∗Z[2τ ]

where pE×TY : E ×T Y → E , πE×Y : E × Y → E are the projections.

Moreover, consider a relative Chow correspondence f/T : E → Cj(Y/T ) and let

f : E → Cj(Y) denote the Chow correspondence obtained by restricting f above

T ⊂ T and composing with Cj(Y/T ) ⊂ Cj(Y). Then, assuming that pY is smooth,
the map

ηY! : H2n−2j(E ×T Y,Z)→ H2n+2τ−2j(E × Y,Z)

sends 〈f/T 〉 to the restriction of 〈f〉 ∈ H2n−2j((E , E∞)× Y; Z).

Proof. By Theorem 4.3 and the smoothness of pE and Y, the embedding Z0(Y/T ) ⊂
Z0(Y × T/T ) = Z0(Y)× T induces a map of complexes of presheaves on T

RpY∗Z[2n] ' Z
∼0(Y/T )→ Z

∼0(Y × T/T ) ' RπY∗Z[2n+ 2τ ]

where πY : Y × T → T . Applying the exact functor p∗E , where πE : E → T , we
obtain

η! : RpE×TY∗Z→ RπE×Y∗Z[2τ ] (4.6.1).

By (4.5.3), η! induces a map on cohomology

ηY! : H2n−2j(E ×T Y,Z)→ H2n+2τ−2j(E × Y,Z).

We consider the commutative square in SE (i.e., of complexes of presheaves on
E):

p∗E(Z∼0(E/T )) −−−−→ p∗E(Z∼0(Y/T )[−2j]) ' RpE×TY∗Z[2n− 2j]y y
p∗E(Z∼0(E × T/T )) −−−−→ p∗E(Z∼0(Y × T/T )[−2j]) ' RπE×Y∗Z[2n+ 2τ − 2j].

(4.6.2)
By definition, 〈f/T 〉 is obtained from the top row of (4.6.2) by composing with
the canonical map κE of (4.5.1). Observe that 〈f〉 when represented as a class in
HomD(Z

∼0(E), Z
∼0(Y)[−2j]), where Z

∼0(E) denotes Norm{[Sing.(C0(E)/C0(E∞))]+},
determines a map of constant sheaves on E quasi-isomorphic to the lower horizontal
map of (4.6.2). Moreover, p∗E(Z∼0(Y×T/T )) is a chain complex of flasque sheaves on

E , so that we may identify the homology in degree 2j of Γ(E , p∗E(Z∼0(Y×T/T )) with

H2n+2τ−2j(E×Y,Z). On the other hand, the composition of κE : Z→ p∗E(Z∼0(E/T ))

with the left vertical and lower horizontal maps of (4.6.2) is identified in this way
with the global section in degree 2j of p∗E(Z∼0(Y × T/T )) corresponding to the

restriction of 〈f〉.

We conclude this section with the following refinement of Proposition 2.5.
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Proposition 4.7. Let f/T : E → Cj(Y/T ) be a relative Chow correspondence and

assume that py : Y → T is smooth (as well as proper). Then for any α ∈ Hk(E ,Z),

Φf (α ∩ [E ])∧ = 〈f〉/(α ∩ [E ]) = prY∗(〈f/T 〉 · p∗E(α)),

where α ∈ Hk(E ,Z) denotes the restriction of α.

Proof. The proof consists in the straight-forward verification of the commutativity
of the following diagram:

HBM
2m+2τ−k(E ,Z)⊗H2n+2τ−2j((E , E∞)× Y,Z)

/−−−−→ H2n+k−2m−2j(Y,Z)x x x=

H2m+2τ−k(E ,Z) ⊗H2n+2τ−2j(E × Y,Z)
/−−−−→ H2n+k−2m−2j(Y,Z)

∩[E]

x x=

xπY!

Hk(E ,Z) ⊗H2n+2τ−2j(E × Y,Z)
•−−−−→ H2n+2τ+k−2j(E × Y,Z)y y y

Hk(E ,Z) ⊗H2n+2τ−2j(E × Y,Z)
•−−−−→ H2n+2τ+k−2j(E × Y,Z)

=

x ηY!

x ηY !

x
Hk(E ,Z) ⊗H2n−2j(E ×T Y,Z)

•−−−−→ H2n+k−2m−2j(E ×T Y,Z)

and the observation that for any β ∈ Ht+2τ (E ×Y,Z) and β′ ∈ Ht(E ×T Y,Z) with
equal images in Ht+2τ (E × Y,Z), πY!(β) = pY!(β

′) ∈ Ht−2m(Y,Z).

§5 PROOF OF THEOREM 3.4

The following proposition enables us to interpret in terms of relative Chow cor-
respondences the condition that each member of a family of cycles belongs to a
given level of the topological filtration.

Proposition 5.1. Let X be a projective variety and consider ζ ∈ Zr+h(X). Let
T be a smooth quasi-projective variety of dimension τ with projective closure T ,
pY : Y → T a projective map with smooth restriction pY : Y → T above T , and
iT : Y → X = X × T a closed immersion with the property that the restriction
ζt = ε!t(ζ) ∈ Zr(Yt) of ζ lies in SjZr(Yt) for all εt : {t} → T .

After possibly replacing T by some etale open, there exists some projective, flat
map E → T of relative dimension 2j+ 1, some relative Chow correspondence f/T :
E → Cr−j(Y/T ), and relative Chow correspondences

σ+/T : T
+ → Cj(E/T ), σ−/T : T

− → Cj(E/T )

such that

Γf (δT ) = i!T (ζ × T ) ∈ Zr+τ (Y), [δt] = 0 ∈ H2j(Et,Z), ∀t ∈ T.
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where

δT ≡ Γσ+(T )− Γσ−(T ) ∈ Zj+τ (E), δt ≡ δ+(t)− δ−(t) = ε!t(δT )

and T
+
, T
−

map projectively onto T via morphisms which are isomorphisms above
T ⊂ T .

Proof. The condition that an r-cycle ξ on Yt lies in SjZr(Yt) is equivalent to the
condition that there exists a j-cycle δt on Cr−j(Yt) homologically equivalent to 0
with the property that ξt = tr(δt), where tr is the trace map Zj(Cr−j(Yt))→ Zr(Yt)
of [FL-1]. Let

[Cj(Cr−j(Y/T )/T )×2

T
]hom

denote the kernel of the map

Cj(Cr−j(Y/T )/T )×T Cj(Cr−j(Y/T )/T )→
⊕
t∈T

H2r(Yt)

sending (δ, δ′) to [tr(δ)− tr(δ′)].
Let ζ = ζ+ − ζ− be a minimal representation of ζ ∈ Zr+h(X) as a difference of

effective cycles. Consider the projection

[Cj(Cr−j(Y/T )/T )×2

T
]hom ×Cr(Y /T )×

T
Cr(Y/T ) T → T (5.1.1),

where the two maps determining the fibre product are the trace map (two times) and
the map T → Cr(Y /T )×T Cr(Y /T ) sending t ∈ T to (ζ+

t , ζ
−
t ) (where ζ±t = ε!t(ζ

±)).
Our hypothesis on ζ implies that (5.1.1) has image containing the open set of all
those t ∈ T for which ζt = ζ+

t − ζ−t is a minimal decomposition.
Replacing T by an etale open if necessary, we may assume that this map admits

a section

σ̃ : T → [Cj(Cr−j(Y/T )/T )×2

T
]hom

sending t ∈ T to a pair of j-cycles δ±t on Cr−j(Yt) whose difference is homologically
trivial.

As argued in [FM2;4.3], the Lefschetz theorem for singular varieties of [A-F]
implies the existence for a given t ∈ T of a (2j + 1)-dimensional closed subvariety
Et ⊂ Cr−j(Yt) such that δt = δ+

t −δ−t is supported on Et and [δt] = 0 ∈ H2j(Et,Z).
(We construct Et by successively taking a hyperplane section of Cr−j(Yt) which
contains the singular locus of the previous hyperplane section as well as the support
of δt.) We extend this to our relative context as follows. We apply the theorem
on generic flatness to appropriate components of Cr−j(Y/T ) over T in order to
successively choose a hyperplane section flat over T containing the singularities of
the fibres over T of the previously defined hyperplane section as well as the support
of σ̃(T ). We thus obtain (after replacing T by a possibly smaller Zariski open
subset) a closed subvariety E ⊂ Cr−j(Y/T ) which is flat of relative dimension 2j+1
over T , whose fibres Et support δt, and on which δt is homologically trivial.

We define the relative Chow correspondence

f/T : E → Cr−j(Y/T )
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to be the closure of the embedding E ⊂ Cr−j(Y/T ) ⊂ Cr−j(Y/T ). Moreover, we
define

σ = (σ+, σ−, 1T ) : T → Cj(E/T )×T Cj(E/T )×Cr(Y/T )×T Cr(Y/T ) T

to be the section induced by σ̃, so that δt = σ+(t) − σ−(t) is a homologically
trivial j-cycle on for all t ∈ T . (We thus obtain the relative Chow correspondences

σ± : T
± → Cj(E/T ) by setting T

±
to be the closures of the graphs of σ± in

T × Cj(E/T ).)

By construction, Γf (δT ) is an equidimensional r+τ -cycle on Y with the property
that its specialization to any t ∈ T equals ζt. Thus, Γf (δT ) = (ζ ×T )|Y . Moreover,
in our construction we arranged that [δt] = 0 ∈ H2j(Et,Z).

Proof of Theorem 3.4

We consider ζ ∈ Zr+h(X) such that i!t(ζ) ∈ Sr−jZr(Yt) for almost all s ∈ S

(where j < r). Apply Proposition 5.1 to obtain δT = Γσ+(T ) − Γσ−(T ) in Zj(E).
By replacing δT by a multiple if necessary, we may assume that δT = p∗(δ

′
T

) for

some δ′
T
∈ Zj(E

′
), where p : E ′ → E is a proper birational map with E ′ smooth (i.e.,

a resolution of singularities of E). Let E ′′ → E ′×E E
′

be a resolution of singularities

and let p1, p2 : E ′′ → E ′ be the two projections. Denote by f
′
/T : E ′ → Cr−j(Y/T )

the Chow correspondence given by the composition f/T ◦ p′.
Let E ′′, E ′ denote the restrictions of E ′′, E ′ above T . Since pE′′ : E ′′ → T, pE′ :

E ′ → T are dominant morphisms of smooth varieties, we may replace T by a
possibly smaller non-empty Zariski open with the additional property that pE′′ , pE′

are smooth (as well as (Γf (δT ) = iT !(ζ × T ), and [δt] = 0 for t ∈ T ).

Observe that

Φf ′([δ
′
T ]) = i!T ([ζ × T ]).

Let

α′ = [δ′T ]∧ ∈ H2m−2j(E ′,Q)

denote the Poincaré dual of [δ′
T

] ∈ H2j+2τ (E ′,Q). By Proposition 2.5,

Φf ′([δ
′
T ])∧ = prY!(〈f〉 · pr∗E′(α

′)) ∈ H2n−2r(Y,Q).

Thus, by Proposition 4.7,

i!T ([ζ × T ])∧ = pY!(〈f/T 〉 · p∗E′(α′)) ∈ H2n−2r(Y,Q)

where we have abused notation with α′ also denoting the image in H2j+2(E ′,Q) of

α′ ∈ H2j+2(E ′,Q) and where pE : E ×T Y → E .
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We consider the following diagram

Hs(E ′,Q) ⊗Hu(E ′ ×T Y,Q)
•−−−−→ Hs+u(E ′ ×T Y,Q)

pY!−−−−→ Hs+u−2m(Y,Q)

=

x i∗T

x xi∗T xi∗T
Hs(E ′,Q)⊗Hu(E ′ ×T X ,Q)

•−−−−→ Hs+u(E ′ ×T X ,Q)
pX !−−−−→ Hs+u−2m(X ,Q)

ε∗t

y (εt×εt)∗
y y(εt×εt)∗

yε∗t
Hs(E′t,Q) ⊗Hu(E′t ×X,Q)

•−−−−→ Hs+u(E′t ×X,Q)
pX!−−−−→ Hs+u−2m(X,Q)

pi!

x (pi×1)∗
y xpi×1!

x=

Hs(E′′t ,Q)⊗Hu(E′′t ×X,Q)
•−−−−→ Hs+u(E′′t ×X,Q)

pX!−−−−→ Hs+u−2m(X,Q)
(5.2.1)

where εt : {t} → T, iT : E ′ ×T Y → E ′ ×T X , m equal to the relative dimension of
E → Y. The commutativity of the upper and middle squares of (5.2.1) are evident,
whereas the “commutativity” of the lower squares for i = 1, 2 is a consequence of
the formula f!(f

∗α · β) = α · f!(β) for the cohomology of smooth manifolds M,N
related by a continuous map f : M → N (dual to the more familiar equality in
homology f∗(f

∗(α) ∩ β∧) = α ∩ f∗(β∧)).
We shall trace through this diagram with

α′ ∈ im{H2m−2j(E ′,Q)→ H2m−2j(E ′,Q)}, 〈f ′/T 〉 ∈ H2n−r+2j(E ′ ×T Y,Q),

so that s = 2m−2j, u = 2n−2r+2j. By Proposition 5.1, we may take m = 2j+1.
Then we have the following values:

s = 2j + 2, u = 2n− 2r + 2j, s+ u = 2n− 2r + 4j + 2, s+ u− 2m = 2n− 2r.

By Theorem 1.3, the second and right-most upper vertical arrow of (5.2.1) are
isomorphisms (assuming j < r). Thus, there exists (a unique) γ ∈ Hu(E ′×T X ,Q)
restricting to 〈f ′/T 〉 ∈ Hu(E ′ ×T Y,Q). Moreover,

pX !(γ · p∗E(α′)) = pr∗([ζ]∧) ∈ Hs+u−2m(X ,Q), (5.2.2)

since i∗T (the right-most upper vertical arrow of (5.3.1) ) is an isomorphism. Since
〈f ′〉 is the restriction of 〈f〉 ∈ Hu(E×Y,Q) and since Hu(E ′′×T Y,Q) ' Hu(E ′′×T
X ,Q) by another application of Theorem 1.3, we conclude that

(p1 × 1)∗(γ) = (p2 × 1)∗(γ) ∈ Hu(E ′′ ×T Y,Q). (5.2.3)

Let α′t = ε∗t (α
′) ∈ H2j+2(E′t,Q), γt = (εt × εt)∗(γ) ∈ Hu(E′t ×X,Q). By (5.2.2)

and the commutativity of the middle squares of (5.2.1), we have the equality

prX!(γt · pr∗E′t(α
′
t)) = [ζ]∧ ∈ Hs+u−2m(X,Q). (5.2.4)

Recall that a theorem of P. Deligne [De] asserts the exactness of

H∗(Et,Q)
p∗←− H∗(E ′t,Q)

p1∗−p2∗←−−−−− H∗(E′′t ,Q).
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Since p∗([δ
′
t]) = [δt] = 0, we may find βt ∈ H2j(E

′′
t ,Q) with the property that

p1∗(βt)− p2∗(βt) = [δ′t] ∈ H2j(E
′′
t ,Q).

Stated in terms of cohomology, we may find α′′t ∈ H2j+2(E′′t ,Q) such that

p1!(α
′′
t )− p2!(α

′′
t ) = α′t ∈ H2j+2(E′t,Q).

The “commutativity” of the the bottom squares of (5.2.1) together with (5.2.3) and
(5.2.4) now implies the required vanishing:

[ζ]∧ = pX!(γt•p∗E′t(p1!α
′′
t−p2!α

′′
t )) = pX!((p1×1)∗γ′t•p∗E′′t α

′′
t−(p2×1)∗γ′t•p∗E′′t α

′′
t ) = 0.
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