
GENERAL LINEAR AND FUNCTOR

COHOMOLOGY OVER FINITE FIELDS

Vincent Franjou†, Eric M. Friedlander∗,
Alexander Scorichenko, and Andrei Suslin∗∗,

Introduction

In recent years, there has been considerable success in computing Ext-groups
of modular representations associated to the general linear group by relating this
problem to one of computing Ext-groups in functor categories [F-L-S], [F-S]. In this
paper, we extend our ability to make such Ext-group calculations by establishing
several fundamental results. Throughout this paper, we work over fields of positive
characteristic p.

We consider two different categories of functors, the category F(Fq) of all func-
tors from finite dimensional Fq-vector spaces to Fq-vector spaces, where Fq is the
finite field of cardinality q, and the category P(Fq) of strict polynomial functors of
finite degree as defined in [F-S]. The category P(Fq) presents several advantages
over the category F(Fq) from the point of view of computing Ext-groups. These
are the accessibility of injectives and projectives, the existence of a base change,
and an even easier access to Ext-groups of tensor products. This explains the use-
fulness of our comparison in Theorem 3.9 of Ext-groups in the category P(Fq) with
Ext-groups in the category F(Fq). Weaker forms of this theorem have been known
to us since 1995 and to T. Pirashvili (unpublished) independently. This early work
apparently inspired the paper of N. Kuhn [K2] as well as the present paper.

The calculation (for an arbitrary field k of positive characteristic) of the
ExtP(k)-groups from a Frobenius-twisted divided power functor to a Frobenius-
twisted symmetric power functor is presented in Theorem 4.5. This calculation
is extended in section 5 to various other calculations of ExtP(k)-groups between
divided powers, exterior powers, and symmetric powers. This leads to similar
ExtF(Fq)-group calculations in Theorem 6.3. The results are given with their struc-
ture as tri-graded Hopf algebras. A result, stated in this form, has been obtained by
N. Kuhn for natural transformations (HomF(Fq)-case) from a divided power functor

†Partially supported by the CNRS, UMR 6629
∗Partially supported by the N.S.F., N.S.A., and the Humboldt Foundation
∗∗Partially supported by the N.S.F. grant DMS - 9510242

Typeset by AMS-TEX

1



2 V. FRANJOU, E. M. FRIEDLANDER, A. SKORICHENKO AND A. SUSLIN

to a symmetric power functor [K3, §5]. Computing Ext-groups between symmet-
ric and exterior powers is the topic in [F], which contains partial results for the
category F(Fp).

The final result, proved by the last-named author in the appendix, is the proof
of equality of the ExtF(Fq)-groups and ExtGL∞(Fq)-groups associated to strict poly-
nomial functors of finite degree. This has an history of its own that will be briefly
recalled at the beginning of the appendix.

These results complement the important work of E. Cline, B. Parshall, L. Scott,
and W. van der Kallen in [CPSvdK]. The results in that paper apply to general
reductive groups defined and split over the prime field and to general (finite dimen-
sional) rational modules, but lack the computational applicability of the present
paper. As observed in [CPSvdK], Ext-groups of rational G-modules are isomorphic
to Ext-groups of associated Chevalley groups, provided that Frobenius twist is ap-
plied sufficiently many times to the rational modules, and provided that the finite
field is sufficiently large. One consequence of our work is a strong stability result
for the effect of iterating Frobenius twists (Corollary 4.10); it applies to the Ext-
groups of rational modules arising from strict polynomial functors of finite degree.
A second consequence is an equally precise lower bound for the order of the finite
field Fq required to compare these “stably twisted” rational Ext-groups with the
Ext-groups computed for the infinite general linear group GL∞(Fq). For explicit
calculations of Ext-groups for GLn(Fq) for various fundamental GLn(Fq)-modules,
one then can combine results of this paper with explicit stability results of W. van
der Kallen [vdK].

What follows is a brief sketch of the contents of this paper. Section 1 recalls the
category P(k) of strict polynomial functors of finite degree on finite dimensional
k-vector spaces and further recalls the relationship of P to the category of rational
representations of the general linear group. The investigation of the forgetful func-
tor P(k) → F(k) is begun by observing that HomP(k)(P,Q) = HomF(k)(P,Q) for
strict polynomial functors of degree d provided that cardinality of the field k is at
least d. Theorem 1.7 presents the key property for Ext-groups involving functors
of exponential type; this property enables our Ext-group calculations and appears
to have no evident analogue for GLn (with n finite).

In section 2, we employ earlier work of N. Kuhn and the first named author to
provide a first comparison of ExtnP(Fq)(P,Q) and ExtnF(Fq)(P,Q). The weakness of
this comparison is that the lower bound on q depends upon the Ext-degree n as
well as the degrees of P and Q. Section 3 remedies this weakness, providing in
Theorem 3.10 a comparison of Ext-groups for which the lower bound for q depends
only upon the degrees of P and Q. Our proof relies heavily upon an analysis of base
change, i.e. the effect of an extension E/F of finite fields on ExtF (P,Q)-groups
when P and Q are strict polynomial functors.

For every integer d, we compute in Theorem 4.5, ExtP(k)(Γ
d(r), Sdp

r−j(j)) and

ExtP(k)(Γ
d(r),Λdp

r−j(j)), where Γd, Sd, Λd denote the d-fold divided power, sym-
metric power, and exterior power functor respectively. These computations are
fundamental, for Γd (respectively its dual Sd) is projective (resp. injective) in P(k)
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and tensor products of Γi (resp. Si) of total degree d constitute a family of projec-
tive generators (resp. injective cogenerators) for Pd(k), the full subcategory of P(k)
consisting of functors homogeneous of degree d. For example, Theorem 4.5 leads to
the strong stability result (with respect to Frobenius twist) of Corollary 4.10 which
is applicable to arbitrary strict polynomial functors of finite degree. The proof of
Theorem 4.5 is an intricate nested triple induction argument. Readers of [F-L-S]
or [F-S] will recognize here a new ingredient: the computation of the differentials
in hypercohomology spectral sequences as Koszul differentials.

In section 5, we extend the computation of Theorem 4.5 to other fundamental
pairs of strict polynomial functors. Finally, in section 6, we combine these compu-
tations of ExtP(k)-groups with the strong comparison theorem of section 3 and our
understanding of base change for ExtF(Fq)-groups. The result is various complete
calculations of Ext∗F(Fq)(−,−), as tri-graded Hopf algebras.

The appendix, written by the last-named author, demonstrates a natural iso-
morphism Ext∗F (A,B)

∼−→ Ext∗GL(Fq)(A(F∞q ), B(F∞q )) for finite functors A, B in
F .

E. Friedlander gratefully acknowledges the hospitality of the University of Hei-
delberg.

§1. Recollections of Functor Categories

The purpose of this expository section is to recall the definitions and basic prop-
erties of the category P of strict polynomial functors of finite degree (on k-vector
spaces) introduced in [F-S] and to be used in subsequent sections. We also contrast
the category P with the category F of all functors from finite dimensional k-vector
spaces to k-vector spaces. Strict polynomial functors were introduced in order to
study rational cohomology of the general linear groups GLn over k (i.e., cohomology
of comodules for the Hopf algebra k[GLn], the coordinate algebra of the algebraic
group GLn). Although one can consider strict polynomial functors over arbitrary
commutative rings (as was necessarily done in [S-F-B]), we shall restrict attention
throughout this paper to such functors defined on vector spaces over a field k of
characteristic p > 0. Indeed, in subsequent sections we specialize further to the
case in which k is a finite field.

We let V = Vk denote the category of k-vector spaces and k-linear homo-
morphisms and we denote by Vf the full subcategory of finite dimensional k-
vector spaces. A polynomial map T : V → W between finite dimensional vector
spaces is defined to be a morphism of the corresponding affine schemes over k:
Spec(S∗(V #))→ Spec(S∗(W#)) (where Spec(S∗(V #)) is the affine scheme associ-
ated to the symmetric algebra over k of the k-linear dual of V ). Equivalently, such
a polynomial map is an element of S∗(V #)⊗W . The polynomial map T : V →W
is said to be homogeneous of degree d if T ∈ Sd(V #) ⊗W . A polynomial map
between finite dimensional vector spaces is uniquely determined by its associated
set-theoretic function from V to W provided that k is infinite; this is more readily
understood as the observation that a polynomial (in any number of variables) is
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uniquely determined by its values at k-rational points provided that the base field
is infinite.

Strict polynomial functors

We recall [F-S, 2.1] that a strict polynomial functor P : Vf → Vf is the
following collection of data: for any V ∈ Vf a vector space P (V ) ∈ Vf ; for any
V,W in Vf , a polynomial map PV,W : Homk(V,W )→ Homk(P (V ), P (W )). These
polynomial maps should satisfy appropriate compatibility conditions similar to the
ones used in the usual definition of a functor. A strict polynomial functor is said
to be homogeneous of degree d if PV,W : Homk(V,W ) → Homk(P (V ), P (W )) is
homogeneous of degree d for each pair V,W in Vf . A strict polynomial functor is
said to be of finite degree provided that the degrees of the polynomial maps PV,W
are bounded independent of V,W ∈ Vf .

Replacing the polynomial maps PV,W : Homk(V,W ) → Homk(P (V ), P (W )) by
the associated set-theoretic functions, we associate to each strict polynomial functor
P a functor in the usual sense Vf → Vf (which we usually denote by the same letter
P ). The above remarks about polynomial maps imply that over infinite fields strict
polynomial functors may be viewed as functors (in the usual sense) which satisfy an
appropriate additional property. However, over finite fields (and a fortiori over more
general base rings), this is no longer the case: the concept of a strict polynomial
functor incorporates more data than that of a functor in the usual sense.

We denote by P (or by P(k) if there is need to specify the base field k) the
abelian category of strict polynomial functors of finite degree. One easily verifies
that P splits as a direct sum ⊕dPd, where Pd denotes the full subcategory of strict
polynomial functors homogeneous of degree d.

Typical examples of strict polynomial functors homogeneous of degree d are the
d-fold tensor power functor ⊗d, the d-fold exterior power functor Λd, the d-fold
symmetric power functor Sd (defined as the Σd-coinvariants of ⊗d), and the d-fold
divided power functor Γd (defined as the Σd-invariants of ⊗d). The functor Sd is
injective, and Γd is projective in Pd.

Let φ : k → k denote the pth-power map. The Frobenius twist functor I(1)

sends a vector space V to the base change of V via the map φ (which we denote
by V (1)). So defined, I(1) is a strict polynomial functor homogeneous of degree p;

I
(1)
V,W is the p-th power map

Homk(V (1),W (1))# = (Homk(V,W )#)(1) → Sp(Homk(V,W )#)

viewed as an element of Sp(Homk(V,W )#)⊗Homk(V (1),W (1)). For any functor
G : Vf → V, we define G(1) as G ◦ I(1).

As observed in [S-F-B, §2], there is a natural construction of base change of
a strict polynomial functor. Namely, if k → K is a field extension and V is a
k-vector space, let VK denote K ⊗k V with the evident K vector space struc-
ture. If P is a strict polynomial functor over k, then the base change PK is de-
fined by setting PK(VK) = P (V )K and setting the polynomial map (PK)VK ,WK

:
HomK(VK ,WK) → HomK(P (VK), P (WK)) to be the base change of PV,W as a
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morphism of affine schemes. As observed in [S-F-B, 2.6], this base change is both
exact and preserves projectives. Consequently, we have the following elementary
base change property.

Proposition 1.1. [S-F-B, 2.7] Let P , Q be strict polynomial functors of finite
degree over a field k. For any field extension k → K, there is a natural isomorphism
of K-vector spaces

Ext∗P(K)(PK , QK) ∼= Ext∗P(k)(P,Q)⊗k K .

If P is a strict polynomial functor, then for any n > 0 the vector space P (kn)
inherits a natural structure of a rational GLn-module. (In fact, functoriality of
P implies that P (kn) inherits a natural structure of a comodule for the coalgebra
k[Mn] whose restriction to k[GLn] ⊂ k[Mn] provides the rational GLn-structure).
We recall the following relationship between Ext-groups in the category P and in
the category of rational GLn-modules.

Theorem 1.2. [F-S, 3.13] Let P,Q be strict polynomial functors homogeneous of
degree d and let n ≥ d. Then there is a natural isomorphism

Ext∗P(P,Q)
'−→ Ext∗GLn(P (kn), Q(kn))

induced by the exact functor sending a strict polynomial functor to its value on kn.

By a theorem of H. Andersen (cf. [J, II, 10.14]), the Frobenius twist induces
an injection on rational Ext-groups: for any two finite dimensional rational GLn-
modules M and N , the natural map induced by the Frobenius twist (which we view
as an exact functor on the category of rational GLn-modules)

Ext∗GLn(M,N)→ Ext∗GLn(M (1), N (1))

is injective. Thus, Theorem 1.2 gives us the following useful corollary.

Corollary 1.3. Let P,Q be strict polynomial functors homogeneous of degree d.
The Frobenius twist is an exact functor on P which induces an injective map on
Ext-groups:

Ext∗P(P,Q)→ Ext∗P(P (1), Q(1)).

Consider now the abelian category F of functors Vf → V. If we need to explicitly
indicate the base field k, we shall denote this category by F(k). The forgetful
functor P → F is clearly exact, thereby inducing a natural map on Ext-groups

Ext∗P(P,Q)→ Ext∗F (P,Q)

where we have abused notation by using P , Q to denote strict polynomial functors
and their images in F .

The following elementary proposition provides a key to understanding the for-
getful functor P → F .
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Proposition 1.4. Assume that k has at least d elements. Then for any P , Q in
Pd, the natural inclusion HomP(P,Q) ↪→ HomF (P,Q) is an isomorphism.

Proof. Let f ∈ HomF (P,Q) be a homomorphism of functors. To check that f is a
homomorphism of strict polynomial functors, we have to verify that for any V,W
in Vf the following diagram of polynomial maps commutes

Homk(V,W )
QV,W−−−−→ Homk(Q(V ), Q(W ))

PV,W

y y◦fV
Homk(P (V ), P (W ))

fW ◦−−−−→ Homk(P (V ), Q(W ))

To do so, we observe that both compositions are homogeneous polynomial maps
of degree d from Homk(V,W ) to Homk(P (V ), Q(W )) whose values at all rational
points coincide. Finally we observe that if a field F contains at least d elements
then a homogeneous polynomial of degree d (in any number of variables) which
takes zero values at all rational points is necessarily zero (as a polynomial).

Polynomial functors

We recall polynomial functors in the category F . For a functor F in F , define
its difference functor ∆(F ) by

∆(F )(V ) = Ker{F (V ⊕ k)→ F (V )}.

The functor F is said to be polynomial if the r-th difference functor ∆r(F ) vanishes
for r sufficiently large. The Eilenberg-MacLane degree of a polynomial functor F
is the least integer d such that ∆d+1(F ) = 0. The same functors (or rather their
images under the forgetful functor P → F) used as examples of strict polyno-
mial functors homogeneous of degree d provide examples of polynomial functors
of Eilenberg-MacLane degree d: the d-fold tensor power functor ⊗d, the d-fold di-
vided power functor Γd, etc. More generally one checks immediately that for any
strict polynomial functor P in Pd its image under the forgetful functor P → F is
polynomial of Eilenberg-MacLane degree less than or equal to d.

Following N. Kuhn [K1] we say that a functor F in F is finite if it is of finite
Eilenberg-MacLane degree and takes values in Vf . The previous remarks imply
that the image in F of any strict polynomial functor P ∈ P is finite.

For any vector space V ∈ Vf define a functor PV ∈ F by the formula PV (W ) =
k[Homk(V,W )]. The Yoneda Lemma shows that for any Q in F we have a natural
isomorphism HomF (PV , Q) = Q(V ). This implies immediately that the functor
PV is projective in F . A functor P ∈ F is said to be of finite type if it admits
an epimorphism from a finite direct sum of functors of the form PV . To say that
a functor Q ∈ F admits a projective resolution of finite type is clearly equivalent
to saying that Q admits a resolution each term of which is isomorphic to a finite
direct sum of functors of the form PV . On several occasions we’ll need the following
useful fact.
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Proposition 1.5. [Sc],[F-L-S, 10.1] Assume that the field k is finite. Then every
finite functor Q in F admits a projective resolution of finite type.

A clear difference between the two categories of functors F and P appears when
considering the Frobenius twist. If k is perfect, then the Frobenius map φ : k → k is
an isomorphism so that the Frobenius twist (−)(1) becomes invertible when viewed
in F . Indeed, if k is the prime field Fp, then I(1) = I in F ; note that even for

k = Fp, (−)(1) is not invertible in P.

Observe that if k is perfect, then for any P , Q in F we have a natural isomorphism
Ext∗F (P,Q)

∼−→ Ext∗F (P (1), Q(1)). Hence for any strict polynomial functors P , Q in
P we get a natural map

lim−→
r

Ext∗P(P (r), Q(r))→ lim−→
r

Ext∗F (P (r), Q(r)) ∼= Ext∗F (P,Q) .

Theorem 3.10 gives conditions for this map to be an isomorphism.

Exponential functors

An exponential functor is a graded functor A∗ = (A0, A1, ..., An, ...) from Vf
to Vf together with natural isomorphisms

A0(V ) ∼= k , An(V ⊕W ) ∼=
n⊕

m=0

Am(V )⊗An−m(W ) , n > 0 .

Lemma 1.6. Let A∗ be an exponential functor.

(1) The functors A1, A2, ... are without constant term, i.e. Ai(0) = 0 for
i > 0.

(2) The natural maps

An(V ) = An(V )⊗A0(W ) ↪→
n⊕

m=0

Am(V )⊗An−m(W ) = An(V ⊕W )

An(V ⊕W ) =

n⊕
m=0

Am(V )⊗An−m(W ) � An(V )⊗A0(W ) = An(V )

coincide (up to an automorphism of the functor An) with the map induced by
the inclusion of the first factor An(i1) and the map induced by the projection
onto the first factor An(p1) respectively.

(3) The Eilenberg-MacLane degree of the functor An is at most n and is equal
to n provided that A1 6= 0. In particular the functors An are finite.

Proof. (1) The exponential condition shows that for n > 0 we have an isomorphism
An(0) = An(0 ⊕ 0) ∼= A0(0) ⊗ An(0) ⊕ ... ⊕ An(0) ⊗ A0(0) = An(0) ⊕ ... ⊕ An(0).
Thus dim An(0) ≥ 2dim An(0) and hence dim An(0) = 0.
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(2) Denote the homomorphisms in question by inV,W and pnV,W respectively. The
functoriality of all the maps involved implies the commutativity of the following
diagram

An(V )
inV,0−−−−→ An(V ⊕ 0) = An(V )

=

y yAn(i1)

An(V )
inV,W−−−−→ An(V ⊕W )

Now it suffices to note that (according to (1) ) in−,0 is an automorphism of the
functor An. The same reasoning applies to pnV,W .

(3) The exponential condition and (2) show that the functor ∆(An) is isomorphic
to the direct sum A1(k) ⊗ An−1 ⊕ ... ⊕ An(k). Immediate induction on n now
concludes the proof.

Typical examples of exponential functors are given by the symmetric algebra
S∗ = (S0, S1, ...Sn, ...), the exterior algebra Λ∗ = (Λ0,Λ1, ...,Λn, ...) and the di-
vided power algebra Γ∗ = (Γ0,Γ1, ...,Γn, ...). Another exponential functor L∗ =
(L0, L1, ..., Ln, ...) is obtained as the quotient of the symmetric power algebra by
the ideal of p-th powers; it coincides with the exterior algebra when p = 2.

Note also that if we define the tensor product of graded functors via the usual
formula

(A∗ ⊗B∗)n =

n⊕
m=0

Am ⊗Bn−m,

then the tensor product of two exponential functors is again exponential. Clearly,
the Frobenius twist of an exponential functor is again exponential.

The previous definition generalizes immediately to the case of strict polynomial
functors. We skip the obvious details.

The following theorem, in the case of the category F , was used in [F]. It gener-
alizes a result due to Pirashvili [P] (much used in [F-S] and [F-L-S]) which asserts
that if A is an additive functor and B, C are functors without constant term, then
all Ext-groups from A to B ⊗ C are 0. The isomorphism of Theorem 1.7, which
fails in the context of Ext-groups over GLn, provides an important tool enabling
computations of functor cohomology. From now on we assume (if not specified
otherwise) that the base field k is finite.

Theorem 1.7. Let A∗ be an exponential functor. For any B, C in F , we have
natural isomorphisms

Ext∗F (An, B ⊗ C) =
n⊕

m=0

Ext∗F (Am, B)⊗ Ext∗F (An−m, C).

Furthermore, if B and C take values in the category Vf then we also have natural
isomorphisms

Ext∗F (B ⊗ C,An) =

n⊕
m=0

Ext∗F (B,Am)⊗ Ext∗F (C,An−m).
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Similarly, if A∗ is an exponential strict polynomial functor (of finite degree), then
for any B, C in P we have natural isomorphisms

Ext∗P(An, B ⊗ C) =

n⊕
m=0

Ext∗P(Am, B)⊗ Ext∗P(An−m, C)

Ext∗P(B ⊗ C,An) =
n⊕

m=0

Ext∗P(B,Am)⊗ Ext∗P(C,An−m).

Proof. In case of the category F the first part is proved in [F, 1.4.2] (we recall
the proof below). The same argument gives the second part. Alternatively, the
second part follows from the first by the duality isomorphism 1.12. The proof for
the category P is identical, using the theory of strict polynomial bifunctors of finite
degree as developed in [S-F-B]. It should be noted also that in case of the category
P the above theorem holds over arbitrary (not necessarily finite) fields.

Let bi–F denote the abelian category of bifunctors Vf × Vf → V. Consider a
pair of adjoint (on both sides) functors

Vf
D−→
Π←−
Vf × Vf .

Here Π is the direct sum functor Π(V,W ) = V ⊕W and D is the diagonal functor
D(V ) = (V, V ). Taking compositions on the right with these functors we get a pair
of adjoint on both sides functors between F and bi–F .

F
P 7→P◦Π−−−−−→
Q◦D←Q←−−−−−

bi–F .

Since both functors are exact they also preserve projectives and injectives and we
get the usual adjunction isomorphisms
(1.7.1) For any P in F and any Q in bi–F we have natural isomorphisms

Ext∗F (P,Q ◦D) =Ext∗bi–F (P ◦Π, Q)

Ext∗F (Q ◦D,P ) =Ext∗bi–F (Q,P ◦Π).

For any functors B, C in F we define their external tensor product B � C ∈ bi–F
via the formula B�C(V,W ) = B(V )⊗C(W ). Exactness of tensor products and an
obvious formula for the external tensor product of projective generators: PV �PW =
P(V,W ), give us the following Künneth-type formula:
(1.7.2) Assume that A1, A2 are functors in F which admit projective resolutions
of finite type, then for any B, C in F we have natural isomorphisms

Ext∗bi–F (A1 �A2, B � C) = Ext∗F (A1, B)⊗ Ext∗F (A2, C).
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Using (1.7.1) and the exponential property of A∗ we get isomorphisms:

Ext∗F (An, B ⊗ C) = Ext∗F (An, (B � C) ◦D) = Ext∗bi–F (An ◦Π, B � C) =

= Ext∗bi–F (

n⊕
m=0

Am �An−m, B � C) =

n⊕
m=0

Ext∗bi–F (Am �An−m, B � C).

Finally we observe that all functors Ai are finite according to Lemma 1.6 and hence
admit projective resolutions of finite type (see Proposition 1.5), so that we may use
(1.7.2) to conclude the proof.

Observe that for homogeneous strict polynomial functors An, B and C, the sum
in Theorem 1.7 cannot have more than one non-zero term. Thus, in the case of the
category P, Theorem 1.7 generalizes [F-S, Proposition 5.2]. This, and the injectivity
of the symmetric powers in P, makes computing Ext-groups in the category P easier
than in the category F .

Applying Theorem 1.7 to the exponential functors A∗ ⊗ ...⊗A∗︸ ︷︷ ︸
n

and

B∗ ⊗ ...⊗B∗︸ ︷︷ ︸
m

we obtain the following corollary.

Corollary 1.8. Let A∗, B∗ be exponential functors. For any non negative integers
k1, ..., kn; l1, ..., lm we have natural isomorphisms

Ext∗F (Ak1 ⊗ ...⊗Akn , Bl1 ⊗ ...⊗Blm) =

=
⊕

k1,1+...+k1,m=k1 ... kn,1+...+kn,m=kn
l1,1+...+l1,n=l1 ... lm,1+...+lm,n=lm

n m⊗
s=1, t=1

Ext∗F (Aks,t , Blt,s) .

Similarly, if A∗ and B∗ are exponential strict polynomial functors of finite degree,
then we have corresponding natural isomorphisms obtained by replacing Ext∗F by
Ext∗P .

All our examples of exponential functors are bi-algebras. Indeed, for any expo-
nential functor A∗, the natural maps

Ai(V )⊗Aj(V ) ↪→ Ai+j(V ⊕ V )
Ai+j(Σ)−−−−−→ Ai+j(V )

Ai+j(V )
Ai+j(∆)−−−−−→ Ai+j(V ⊕ V ) � Ai(V )⊗Aj(V )

define natural product and coproduct operations Ai⊗Aj → Ai+j , Ai+j → Ai⊗Aj .
Here, Σ is the sum map (x, y) 7→ x+ y and ∆ is the diagonal map x 7→ (x, x).

Definition 1.9. We say that A∗ is an Hopf exponential functor provided that for
any V in Vf the above product operation makes A∗(V ) into a (graded) associative
k-algebra with unit 1 ∈ A0(V ) = k.

The name Hopf functor is justified by the following Lemma.
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Lemma 1.10. Assume that A∗ is an Hopf exponential functor. Then for any V
in Vf the above operations make A∗(V ) into a (graded) Hopf algebra with counit
ε : A∗(V )→ A0(V ) = k.

Proof. Note first that the (right) multiplication by 1 ∈ A0(V ) coincides with the
natural isomorphism

inV,0 : An(V ) = An(V )⊗A0(0)
∼−→ An(V ⊕ 0) = An(V )

(cf. the proof of Lemma 1.6 (2)). In the same way the right comultiplication by ε
coincides with the natural isomorphism

pnV,0 : An(V ) = An(V ⊕ 0)
∼−→ An(V )⊗A0(0) = An(V ).

Since pnV,0 = (inV,0)−1 we conclude that 1 ∈ A0(V ) is a unit iff ε is a counit of A∗(V ).

Observe next that the natural homomorphism Am(V )⊗An−m(W )→ An(V ⊕W )
in the definition of the exponential functor may be expressed in terms of the product
operation as the composition

Am(V )⊗An−m(W )
Am(i1)⊗An−m(i2)−−−−−−−−−−−−→ Am(V⊕W )⊗An−m(V⊕W )

mult−−−→ An(V⊕W ).

This remark implies immediately that the associativity of A∗(V ) (for all V ) is
equivalent to the fact that the two possible identifications of graded tri-functors
A∗(U) ⊗ A∗(V ) ⊗ A∗(W ) and A∗(U ⊕ V ⊕W ) coincide. Now the verification of
the fact that A∗ is a Hopf algebra becomes a straightforward computation. For
example to check the coassociativity we have to verify the commutativity of the
following diagram

A∗(V )
comult−−−−→ A∗(V )⊗A∗(V )

comult

y comult⊗1

y
A∗(V )⊗A∗(V )

1⊗comult−−−−−−→ A∗(V )⊗A∗(V )⊗A∗(V ).

However one checks easily that both compositions coincide with the homomorphism

A∗(V )
A∗(∆)−−−−→ A∗(V ⊕V ⊕V ) = A∗(V )⊗A∗(V )⊗A∗(V ), where ∆ : V → V ⊕V ⊕V

is the diagonal map.

We say that the exponential functor A∗ is commutative (respectively, skew-
commutative) if for all non-negative integers i, j and every V in Vf the map τ :
V ⊕ V → V ⊕ V , (x, y) 7→ (y, x) gives rise to a commutative diagram (resp. a
diagram commutative up to a sign (−1)ij):

Ai(V )⊗Aj(V ) −−−−→ Ai+j(V ⊕ V )

T

y A(τ)

y
Aj(V )⊗Ai(V ) −−−−→ Ai+j(V ⊕ V )
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where T is the twist map. For a commutative exponential functor A∗ we set
ε(A∗) = 1 and for a skew commutative one we set ε(A∗) = −1. We say in these
cases that A∗ is ε(A∗)-commutative. When an exponential functor is commutative
(resp. skew-commutative), the product in the algebra A∗(V ) is (skew-) commu-
tative and the coproduct is (skew-) cocommutative. We readily verify that the
functors Γ∗, Λ∗, S∗, L∗ and their Frobenius twists are Hopf exponential functors
and that ε(Γ∗) = ε(S∗) = ε(L∗) = +1, ε(Λ∗) = −1.

Assume that A∗ and B∗ are exponential functors (respectively exponential strict
polynomial functors of finite degree). In this case the tri-graded vector space
Ext∗(A∗, B∗) (a notation to denote Ext∗F (A∗, B∗) as well as Ext∗P(A∗, B∗)) acquires
a natural structure of (tri-graded) bi-algebra. The product operation is defined as
the composition

Ext∗(A∗, B∗)⊗ Ext∗(A∗, B∗)
∼−→ Ext∗(A∗ �A∗, B∗ �B∗) = Ext∗(A∗ ◦Π, B∗ ◦Π)

→ Ext∗(A∗ ◦Π ◦D,B∗ ◦Π ◦D)→ Ext∗(A∗, B∗).

Here the second arrow is induced by the exact functor bi–F Q7→Q◦D−−−−−→ F and the last
arrow is defined by the adjunction homomorphisms ∆ : I → Π◦D and Σ : Π◦D → I.

Equivalently the product of the classes e ∈ Exti(An, Bm), e′ ∈ Exti
′
(An

′
, Bm

′
) may

be described as the image of the tensor product e ⊗ e′ ∈ Exti+i
′
(An ⊗ An′ , Bm ⊗

Bm
′
) under the homomorphism Ext∗(An⊗An′ , Bm⊗Bm′)→ Ext∗(An+n′ , Bm+m′)

induced by the product operation Bm⊗Bm′ → Bm+m′ and the coproduct operation
An+n′ → An ⊗ An′ . Finally the product operation may be also described (using
the isomorphisms of Theorem 1.7) as any of the following two compositions

Ext∗(A∗, B∗)⊗ Ext∗(A∗, B∗)
∼−→ Ext∗(A∗ ⊗A∗, B∗) −→ Ext∗(A∗, B∗)

Ext∗(A∗, B∗)⊗ Ext∗(A∗, B∗)
∼−→ Ext∗(A∗, B∗ ⊗B∗) −→ Ext∗(A∗, B∗).

In a similar fashion the coproduct is defined as the composition

Ext∗(A∗, B∗)→ Ext∗(A∗ ◦Π, B∗ ◦Π) = Ext∗(A∗ �A∗, B∗ �B∗) =

= Ext∗(A∗, B∗)⊗ Ext∗(A∗, B∗).

The coproduct operation may be also described (using the isomorphisms of Theorem
1.7) as any one of the following compositions

Ext∗(A∗, B∗) −→ Ext∗(A∗ ⊗A∗, B∗) ∼−→ Ext∗(A∗, B∗)⊗ Ext∗(A∗, B∗)

Ext∗(A∗, B∗) −→ Ext∗(A∗, B∗ ⊗B∗) ∼−→ Ext∗(A∗, B∗)⊗ Ext∗(A∗, B∗)

The proof of the following lemma is straightforward (but tiresome).

Lemma 1.11. Let A∗ and B∗ be Hopf exponential functors (resp. Hopf expo-
nential strict polynomial functors of finite degree). Then the tri-graded vector space
Ext∗(A∗, B∗) has a natural structure of a (tri-graded) Hopf algebra. Moreover if A∗
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is ε(A∗)-commutative and B∗ is ε(B∗)-commutative, then the following diagrams

commute up to a sign (−1)st+
ε(A)−1

2 ·ik+
ε(B)−1

2 ·jl

Exts(Ai, Bj)⊗ Extt(Ak, Bl)
mult−−−−→ Exts+t(Ai+k, Bj+l)

∼
=

y =

y
Extt(Ak, Bl)⊗ Exts(Ai, Bj)

mult−−−−→ Exts+t(Ai+k, Bj+l)

Exts+t(Ai+k, Bj+l)
comult−−−−→ Exts(Ai, Bj)⊗ Extt(Ak, Bl)

=

y ∼
=

y
Exts+t(Ai+k, Bj+l)

comult−−−−→ Extt(Ak, Bl)⊗ Exts(Ai, Bj) .

Dual Functors

For a functor P : Vf → V, we define its dual P# : Vf → V by P#(V ) = P (V #)#.
Two examples of this duality which will be important in what follows are

(Sd)# = Γd , (Λd)# = Λd.

The contravariant functor # : F → F is clearly exact and hence for any P , Q in
F we get a natural duality homomorphism # : Ext∗F (P,Q)→ Ext∗F (P#, Q#). The
same construction obviously applies to the category P as well.

Lemma 1.12. Assume that P, Q ∈ F take values in the category Vf . Then the
duality homomorphism

# : Ext∗F (P,Q)→ Ext∗F (Q#, P#)

is an isomorphism. Similarly for any P, Q ∈ P the duality homomorphism

# : Ext∗P(P,Q)→ Ext∗P(Q#, P#)

is an isomorphism.

Proof. For any F in F we have a natural homomorphism F → F##, which is
an isomorphism provided that F takes values in Vf . In particular P## = P ,
Q## = Q. Now it suffices to show that the composition

Ext∗F (P,Q)
#

−→ Ext∗F (Q#, P#)
#

−→ Ext∗F (P##, Q##) = Ext∗F (P,Q)

is the identity map. Let e ∈ ExtnF (P,Q) be represented by an extension

0→ Q→ Pn → ...→ P1 → P → 0.
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Then e## is represented by the extension

0→ Q## → P##
n → ...→ P##

1 → P## → 0

and our statement follows from the commutativity of the diagram

0 −−−−→ Q −−−−→ Pn −−−−→ ... −−−−→ Pn −−−−→ P −−−−→ 0

∼=
y y y ∼=

y
0 −−−−→ Q## −−−−→ P##

n −−−−→ ... −−−−→ P##
n −−−−→ P## −−−−→ 0

The case of the category P is trivial since in this case # : P → P is an anti-
equivalence.

Clearly, the dual of an exponential functor is again exponential. The following
result (to be used in §5) is straightforward from the definitions.

Lemma 1.13. Let A∗, B∗ be Hopf exponential functors (resp. Hopf exponential
strict polynomial functors of finite degree). The natural isomorphism of Lemma
1.12

Ext∗(A∗, B∗)
∼−→ Ext∗(B∗, A∗)

is an anti-isomorphism of graded Hopf algebras (i.e. (xy)# = y#x# etc.).

§2. Weak Comparison Theorem.

In this section, we investigate the map on Ext-groups induced by the forgetful
functor P → F . Throughout this section, and in much of §3, we shall restrict our
attention to the case in which the base field k is a finite field k = Fq of characteristic
p, with q = pN . We show for strict polynomial functors A,B of degree d that the
natural map

ExtiP(A(m), B(m))→ ExtiF (A(m), B(m)) = ExtiF (A,B)

is an isomorphism provided that m and q are sufficiently large compared to d and
i. In the following section, we shall show that the condition on q can be weakened
to the simple condition that q ≥ d.

We begin with the following vanishing theorem which complements the fact that
symmetric power functors Sd are injective in Pd. The proof of this theorem uses
the finiteness of the base field k in an essential way.

Theorem 2.1 [F, §4]. Let A : Vf → Vf be a finite functor of Eilenberg-MacLane
degree ≤ d. For any i > 0,

ExtiF (A,Sp
h

) = 0

provided that h ≥ logp
i+2
2 + [d−1

p−1 ].

Proof. By [F, 4.1.2], the natural embedding Sp
h(l+1) ↪→ Sp

h+1(l) induces an isomor-
phism

ExtiF (A,Sp
h(l+1))

∼−→ ExtiF (A,Sp
h+1(l))
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provided that h ≥ logp
i+2
2 + [d−1

p−1 ]. Applying this remark N times we see that (for

the same values of h) the natural embedding

Sp
h

= Sp
h(N) ↪→ Sp

h+1(N−1) ↪→ ... ↪→ Sp
h+N

induces an isomorphism

ExtiF (A,Sp
h

)
∼−→ ExtiF (A,Sp

h+N

).

On the other hand, the vanishing theorem of N. Kuhn [K3, Theorem 1.1] shows
that

lim−→
k≥0

ExtiF (A,Sp
h+kN

) = 0

for any functor A admitting a projective resolution of finite type. Since each finite
functor A admits such a resolution (see Proposition 1.5), this completes the proof.

The following classical lemma was already used in [F] and thus implicitly in the
proof of Theorem 2.1. In Proposition 2.3, it enables us to extend the vanishing
statement of Theorem 2.1 to tensor products of symmetric power functors.

Lemma 2.2. Let n be an integer with p-adic expansion

n = n0 + n1p+ ...+ nkp
k (0 ≤ ni < p) .

Then the functor Sn is canonically a direct summand in (S1)⊗n0 ⊗ ...⊗ (Sp
k

)⊗nk .

Proof. For any integer m with 0 ≤ m ≤ n, the multiplication and comultiplication
of the exponential functor S∗ yield natural homomorphisms

Sn
comult−−−−→ Sm ⊗ Sn−m mult−−−→ Sn .

Explicitly, Sn
comult−−−−→ Sm⊗Sn−m sends an n-fold product x1 · · ·xn ∈ Sn(V ) to the

sum indexed by Σn/Σm × Σn−m of tensors of the form xi1 · · ·xim ⊗ xim+1
· · ·xin .

Composition of these homomorphisms is multiplication by
(
n
m

)
, so Sn is a direct

summand in Sm ⊗ Sn−m provided that
(
n
m

)
is prime to p. One easily verifies that(

n
m

)
is prime to p if and only if all p-adic digits of m are less or equal to the

corresponding digits of n. The lemma now follows by an induction on the sum of
p-adic digits of n.

Proposition 2.3. Let A∗ ∈ F be an exponential functor. Assume that

h ≥ logp
s+ 2

2
+ [

d− 1

p− 1
] , and n1 + ...+ nk ≡ 0 mod ph.

Then for all 0 < i ≤ s

ExtiF (Ad, Sn1 ⊗ ...⊗ Snk) = 0 .
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Proof. Using Lemma 2.2, we are easily reduced to the case that ni = pmi is a power
of p for all i. By Theorem 1.7,

Ext∗F (Ad, Sp
m1 ⊗ ...⊗ Sp

mk
) =

⊕
d1+···+dk=d

k⊗
j=1

Ext∗F (Adj , Sp
mj

).

Since the functor A0 is constant, all its Ext-groups to functors without constant
term are trivial; thus the summand corresponding to the k-tuple (d1, ..., dk) is trivial
provided that dj = 0 for some j. Consider now a summand corresponding to a k-
tuple (d1, ..., dk) with all dj > 0. In this case we have inequalities dj ≤ d− (k− 1).
On the other hand, an easy induction on k establishes that if pm1 + ... + pmk ≡ 0
mod ph, then mj ≥ h− [k−1

p−1 ] for all j. Consequently,

mj ≥ h−
[
k − 1

p− 1

]
≥ logp

s+ 2

2
+

[
d− 1

p− 1

]
−
[
k − 1

p− 1

]
≥ logp

s+ 2

2
+

[
dj − 1

p− 1

]
.

Theorem 2.1 shows that ExtiF (Adj , Sp
mj

) = 0 for 0 < i ≤ s, thus concluding the
proof.

Corollary 2.4. Assume that h ≥ logp
s+2

2 + [d−1
p−1 ]. Let d1, ..., dk; n1, ..., nl be

integers such that d1 + ...+ dk = d and n1 + ...+ nl ≡ 0 mod ph. Then

ExtiF ((Γd1 ⊗ ...⊗ Γdk)(m), Sn1 ⊗ ...⊗ Snl) = 0

for all m and all 0 < i ≤ s.

Proof. This follows immediately from Proposition 2.3 since (Γd1 ⊗ ... ⊗ Γdk)(m) is

a direct summand in Ad, where A∗ is the exponential functor (Γ∗ ⊗ ...⊗ Γ∗)︸ ︷︷ ︸
k

(m)
.

Corollary 2.4 easily implies our first, and weakest, comparison of the Ext-groups
Ext∗P and Ext∗F . A first form of this proposition was proved by E. Friedlander
[1995, unpublished] and T. Pirashvili [B-P2] (and discussion with the first author).

Proposition 2.5. Let A and B be strict polynomial functors homogeneous of degree
d, over a field with q elements. Assume that

m ≥ logp
s+ 2

2
+ [

d− 1

p− 1
] , q ≥ dpm.

Then the canonical homomorphisms

ExtiP(A(m), B(m))→ ExtiF (A(m), B(m)) ∼= ExtiF (A,B)

are isomorphisms for all 0 ≤ i ≤ s.
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Proof. Consider first the special case A = Γd1 ⊗ ... ⊗ Γdk , d1 + ... + dk = d. The
functor B(m) admits an injective resolution in Pdpm

0→ B(m) → I•

in which every Ij is a direct sum of functors of the form Sn1 ⊗ ... ⊗ Snl with
n1 + ...+ nl = dpm [F-S, §2]. We employ the hypercohomology spectral sequence

Eij1 = ExtiF (A(m), Ij) =⇒ Exti+jF (A(m), B(m)).

Corollary 2.4 shows that Eij1 = 0 for all 0 < i ≤ s. This shows that for 0 ≤ i ≤ s

the group ExtiF (A(m), B(m)) coincides with the i-th homology group of the complex
HomF (A(m), I•), which equals HomP(A(m), I•) by Proposition 1.4. The homology
of this latter complex equals Ext∗P(A(m), B(m)).

In the general case we consider a projective resolution

0←− A←− P•

in which each Pi is a direct sum of functors of the form Γd1⊗...⊗Γdk , d1+...+dk = d.
This gives us two hypercohomology spectral sequences

PE
ij
1 = ExtiP(P

(m)
j , B(m)) =⇒ Exti+jP (A(m), B(m))

FE
ij
1 = ExtiF (P

(m)
j , B(m)) =⇒ Exti+jF (A(m), B(m))

and a homomorphism of spectral sequences PE → FE. According to the special
case considered above, the homomorphisms PE

ij
1 → FE

ij
1 on Eij1 -terms are isomor-

phisms for all j and all 0 ≤ i ≤ s. The standard comparison theorem for spectral
sequences thus implies that ExtiP(A(m), B(m))→ ExtiF (A(m), B(m)) = ExtiF (A,B)
is an isomorphism for 0 ≤ i ≤ s.

Combining Proposition 2.5 with the injectivity of Frobenius twists established in
Corollary 1.3, we obtain the following theorem asserting that ExtP -groups stabilize
with respect to repeated Frobenius twists. The lower bound of the number of twists
required to stabilize ExtsP(A,B) depends upon both the cohomological degree s
and the degree d of the functors A and B; in Corollary 4.10, we shall eliminate the
dependence of this bound on d.

Theorem 2.6 (Weak Twist Stability). Let A and B be homogeneous strict
polynomial functors of degree d. The Frobenius twist homomorphism

ExtsP(A(m), B(m))→ ExtsP(A(m+1), B(m+1))

is injective for all m and is an isomorphism for m ≥ logp
s+2

2 + [d−1
p−1 ].
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Proof. Injectivity is given by Corollary 1.3. To prove the asserted surjectivity, we
pick a finite extension E/k with more that dpm+1 elements. Consider the following
commutative diagram

ExtsP(E)(A
(m)
E , B

(m)
E ) −−−−→ ExtsP(E)(A

(m+1)
E , B

(m+1)
E )

∼
=

y ∼
=

y
ExtsF(E)(A

(m)
E , B

(m)
E )

∼
=−−−−→ ExtsF(E)(A

(m+1)
E , B

(m+1)
E ).

By Proposition 2.5, the vertical arrows in this diagram are isomorphisms, whereas
the lower horizontal arrow is an isomorphism because Frobenius twist is an in-
vertible functor in F(E). Thus, the top horizontal arrow is also an isomorphism.
The proof is completed by applying Proposition 1.1: the upper horizontal arrow
of this commutative square is the extension of scalars of ExtsP(k)(A

(m), B(m)) →
ExtsP(k)(A

(m+1), B(m+1)).

Using Theorem 2.6, we significantly strengthen Proposition 2.5 by having the
bound on q (the cardinality of our base field) depend only upon the Ext-degree
and the degree of the homogeneous polynomial and not also upon the the number
of Frobenius twists. Theorem 2.7 follows immediately from Proposition 2.5 and
Theorem 2.6.

Theorem 2.7 (Weak Comparison Theorem). Let A and B be strict polynomial
functors homogeneous of degree d, over a field with q elements. Let m0 be the least
integer ≥ logp

s+2
2 + [d−1

p−1 ]. Assume that q ≥ dpm0 . Then for any m ≥ m0 the

canonical homomorphisms

ExtiP(A(m), B(m))→ ExtiF (A(m), B(m)) = ExtiF (A,B)

are isomorphisms for all 0 ≤ i ≤ s.

The following is an immediate corollary of Theorem 2.7.

Corollary 2.8. In conditions and notations of Theorem 2.7, the canonical homo-
morphism

lim−→
m

ExtiP(A(m), B(m))→ ExtiF (A,B)

is an isomorphism for 0 ≤ i ≤ s , provided that q ≥ dpm0 .

§3. Extension of Scalars and Ext-groups.

The aim of this section is to understand the effect on ExtF -groups of base change
from P(k) to P(K), where k → K is an extension of finite fields. In Theorem 3.9,
we see that this effect is simply one of base change provided that the cardinality
of the base field k is greater than or equal to the degree of the strict polynomial
functors involved. This will enable us to provide in Theorem 3.10 a considerably
stronger version of the comparison of Theorem 2.7: the condition on cardinality of
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the (finite) base field is weakened to the condition that the cardinality be greater
or equal to the degree of the strict polynomial functors involved.

For any finite extension k → K of fields, we have pairs of functors

VfK
t←−−→
τ
Vfk VK

t←−−→
τ
Vk

where τ is the forgetful (or restriction) functor and t is the extension of scalars (or
induction) functor. Clearly, both t and τ are exact and t is left adjoint to τ .

The following proposition is less evident and presumably less well known. One
can informally describe this result as saying that induction equals coinduction. We
include a sketch of proof for the sake of completeness.

Proposition 3.1. Let k → K be a finite extension of fields. A choice of a non-zero
k-linear homomorphism T : K → k determines adjunction transformations

θ : τ ◦ t→ IVk , η : IVK → t ◦ τ

which establish that t is right adjoint to τ (as functors on either V or Vf ).

Proof. The choice of T determines a non-degenerate symmetric k-bilinear form

K ×K −→ k

(a, b) 7→ T (ab) .

We define

x =
n∑
i=1

ei ⊗ e#
i ∈ K ⊗k K ,

where e1, . . . , en is a basis for K over k and e#
1 , . . . , e

#
n is the dual basis with

respect to the above bilinear form. For any V in Vk, we define

θV = T ⊗k 1V : τ ◦ t(V ) = K ⊗k V → V ;

for any W in VK , we define

ηW = x · (−) : W → t ◦ τ(W ) = K ⊗k W

(i.e., multiplication by x ∈ K ⊗k K).
One easily check that x is independent of the choice of the basis e1, . . . , en. This,
in turn, easily implies that

x · (a⊗ 1− 1⊗ a) = 0 ∈ K ⊗k K ∀a ∈ K, (3.1.1)

so that ηW is K-linear. Similarly, one checks that

(T ⊗ 1K)(x) = (1K ⊗ T )(x) = 1 ∈ K (3.1.2)
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which easily implies that

HomK(W,K ⊗k V ) −→ Homk(W,V ) Homk(W,V ) −→ HomK(W,K ⊗k V )

φ 7→ θV φ ψ 7→ (1K ⊗k ψ)ηW

are mutually inverse natural isomorphisms.

Remark 3.1.3. If K/k is separable, then we shall without special mention always
choose T : K → k to be the trace map.

The functors τ and t determine adjoint (on both sides) pairs

F(k) = Funct(Vfk ,Vk)
t∗−→←−
τ∗
F(K/k) = Funct(Vfk ,VK)

τ∗−→←−
t∗
F(K) = Funct(VfK ,VK) .

Here t∗ and τ∗ are given by taking the composition with t and τ on the left,
whereas t∗ and τ∗ are given by taking composition with t and τ on the right. Note
that all functors in the above diagram are exact. Since these functors have exact
adjoints, we conclude further that they take injectives to injectives and projectives
to projectives.

These observations immediately imply the following proposition.

Proposition 3.2. Let k → K be a finite extension of fields. For any functors A
in F(K), B in F(K/k), C in F(k), we have natural isomorphisms of graded K
vector-spaces:

Ext∗F(K/k)(B, t
∗A) = Ext∗F(K)(τ

∗B,A) Ext∗F(K/k)(B, t∗C) = Ext∗F(k)(τ∗B,C)

Ext∗F(K/k)(t
∗A,B) = Ext∗F(K)(A, τ

∗B) Ext∗F(K/k)(t∗C,B) = Ext∗F(k)(C, τ∗B) .

Corollary 3.3. Let k → K be a finite extension of fields. Let A ∈ F(K), A0 ∈
F(k) be functors such that t∗A = t∗A0 ∈ F(K/k). For any C in F(k), we have
natural isomorphisms of graded K-vector spaces

K ⊗k Ext∗F(k)(A0, C) = Ext∗F(K)(A, τ
∗t∗C)

K ⊗k Ext∗F(k)(C,A0) = Ext∗F(K)(τ
∗t∗C,A) .

Proof. According to Proposition 3.2 we have natural isomorphisms

Ext∗F(K)(A, τ
∗t∗C) = Ext∗F(K/k)(t

∗A, t∗C) = Ext∗F(K/k)(t∗A0, t∗C) =

= Ext∗F(k)(A0, τ∗t∗C).

It now suffices to observe that the functor τ∗t∗C is given by the formula
V 7→ K ⊗k C(V ). If we forget about the action of K, then this is just a direct
sum of finitely many copies of C, so that the natural homomorphism

K ⊗k Ext∗F(k)(A0, C)→ Ext∗F(k)(A0, τ∗t∗C)

is an isomorphism of graded K-vector spaces.

Using Corollary 3.3, we obtain the following understanding of the effect of base
change on ExtF -groups, an understanding which we later compare to the corre-
sponding property of ExtP -groups, as given by the Proposition 1.1.
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Theorem 3.4. For any strict polynomial functors P,Q in P(k) we have natural
isomorphisms of graded K-vector spaces

K ⊗k Ext∗F(k)(P,Q) = Ext∗F(K)(PK , τ
∗t∗QK) = Ext∗F(K)(τ

∗t∗PK , QK) .

Proof. This follows immediately from Corollary 3.3, taking into account the obvious
formula

t∗PK = t∗P ∈ F(K/k).

Remark 3.4.1 It’s easy to see from the discussion above that the isomorphisms

K ⊗k Ext∗F(k)(P,Q) = Ext∗F(K)(PK , τ
∗t∗QK) = Ext∗F(K)(PK , QK ◦ (t ◦ τ))

K ⊗k Ext∗F(k)(P,Q) = Ext∗F(K)(τ
∗t∗PK , QK) = Ext∗F(K)(PK ◦ (t ◦ τ), QK)

are obtained as K-linear extensions of the canonical k-linear maps

Ext∗F(k)(P,Q)→ Ext∗F(K)(PK , QK ◦ (t ◦ τ))

Ext∗F(k)(P,Q)→ Ext∗F(K)(PK ◦ (t ◦ τ), QK)

which may be described as follows. The exact functor τ∗t∗ : F(k) → F(K) de-
fines a canonical homomorphism τ∗t∗ : Ext∗F(k)(P,Q)→ Ext∗F(K)(τ

∗t∗P, τ
∗t∗Q) =

Ext∗F(K)(τ
∗t∗PK , τ

∗t∗QK) = Ext∗F(K)(PK ◦ (t ◦ τ), QK ◦ (t ◦ τ)). Furthermore left
adjointness of t to τ defines a functorial homomorphism γ : t ◦ τ → I, whereas
right adjointness of t to τ defines a functorial homomorphism η : I → t ◦ τ . The
homomorphisms in question are the compositions of the homomorphism induced
by τ∗t∗ with homomorphisms

Ext∗F(K)(PK ◦ (t ◦ τ), QK ◦ (t ◦ τ))
X 7→X·PK(η)−−−−−−−−→ Ext∗F(K)(PK , QK ◦ (t ◦ τ))

Ext∗F(K)(PK ◦ (t ◦ τ), QK ◦ (t ◦ τ))
X 7→QK(γ)·X−−−−−−−−→ Ext∗F(K)(PK ◦ (t ◦ τ), QK)

defined by the functor homomorphisms PK(η) : PK → PK ◦ (t ◦ τ) and QK(γ) :
QK ◦ (t ◦ τ)→ QK respectively.

The following theorem relates the effects of the base change on Ext-groups in
the categories P and F .

Theorem 3.5. Let k → K be a finite extension of fields and let P , Q be in P(k).
The following diagram commutes

K ⊗k Ext∗P(k)(P,Q)
∼−−−−→ Ext∗P(K)(PK , QK)y y

K ⊗k Ext∗F(k)(P,Q)
∼−−−−→ Ext∗F(K)(PK , QK ◦ (t ◦ τ)) .

(3.5.1)
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Here the top horizontal arrow is the isomorphism of Proposition 1.1, the bottom
horizontal arrow is the isomorphism of Theorem 3.4, the left vertical arrow is the
standard homomorphism, and the right vertical arrow is the composition
of the standard homomorphism Ext∗P(K)(PK , QK) → Ext∗F(K)(PK , QK) and
the homomorphism on Ext-groups induced by the functor homomorphism
QK(η) : QK 7→ QK ◦ (t ◦ τ).

Similarly, we have a commutative diagram

K ⊗k Ext∗P(k)(P,Q)
∼−−−−→ Ext∗P(K)(PK , QK)y y

K ⊗k Ext∗F(k)(P,Q)
∼−−−−→ Ext∗F(K)(PK ◦ (t ◦ τ), QK) .

(3.5.2)

Proof. Let x in ExtmP(k)(P,Q) be represented by an extension of strict polynomial
functors

x : 0→ Q −→ Xm −→ · · · → X1 −→ P −→ 0.

The extension τ∗t∗(x) coincides with τ∗t∗(xK). Note further that we have a canon-
ical homomorphism of extensions

τ∗t∗(xK) : 0 → QK ◦ (t ◦ τ) → . . . → PK ◦ (t ◦ τ) → 0

QK(η)

x PK(η)

x
xK : 0 → QK → . . . → PK → 0 .

The existence of such a homomorphism gives us the desired equality

τ∗t∗(x) · PK(η) = τ∗t∗(xK) · PK(η) = QK(η) · xK .

Essentially the same proof gives (3.5.2); alternatively, (3.5.2) follows by applying
the duality isomorphism of (1.12) to (3.5.1).

The following lemma will enable us to reinterpret in the special case of an ex-
tension of finite fields the Ext-groups Ext∗F(K)(PK , QK ◦ (t ◦ τ)) occurring in the

lower right corner of the commutative square (3.5.1).

Lemma 3.6. Let k be a finite field with q = pN elements and let k → K be a
finite fields extension of degree n. The corresponding functor t ◦ τ : VK → VK
coincides with I ⊕ I(N) ⊕ ... ⊕ I((n−1)N). Under this identification, the adjunction
homomorphism η : I → t◦τ (respectively, γ : t◦τ → I) corresponds to the canonical
embedding of I into the above direct sum (resp. the canonical projection of the above

direct sum onto I). In particular, the composition I
η−→ t ◦ τ γ−→ I is the identity

endomorphism.

Proof. The functor in question is given by the formula W 7→ K ⊗k W =
= (K ⊗k K) ⊗K W . The K − K bimodule K ⊗k K is canonically isomorphic to
the direct sum ⊕σ∈Gal(K/k)

σK, where σK is K with the standard right K-module
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structure and the left K-module structure being defined via σ. In case σ is the
lN -th power of the Frobenius automorphism, the K-vector space σK⊗KW coincides
with W (lN). These remarks allow us to identify t ◦ τ with I⊕ I(N)⊕ ...⊕ I((n−1)N).
The homomorphism γW : K ⊗k W → W is given by the formula a⊗ w 7→ aw and
hence corresponds to the multiplication homomorphism K ⊗k K → K, i.e. to the
projection of K ⊗k K onto the summand corresponding to σ = IdK . Finally the
homomorphism ηW : W → K⊗kW is given by multiplication by x ∈ K⊗kK. The
property (3.1.1) shows that x is killed by the kernel of the projection K⊗kK → K
and hence all σ-components of x with σ 6= IdK are trivial. Finally the property
(3.1.2) implies easily that IdK-component of x is equal to 1.

As we now show, injectivity of Ext∗P → Ext∗F is an easy consequence of Theorems
2.7 and 3.5 provided that we work over a finite base field. (The hypothesis of
finiteness of the base field is required in the proof of Theorem 2.7.)

Corollary 3.7. Let k be a finite field and consider strict polynomial functors P
and Q of finite degree. The canonical homomorphism

ExtsP(k)(P,Q)→ ExtsF(k)(P,Q)

is injective for all s.

Proof. According to Theorem 2.7, we may find an extension K/k and an integer

m ≥ 0 such that the homomorphism ExtsP(K)(P
(m)
K , Q

(m)
K ) → ExtsF(K)(PK , QK)

is an isomorphism. Applying Theorem 3.5 to the functors P (m) and Q(m) and
noting that the right vertical arrow of (3.5.1) is the composition of an isomor-

phism ExtsP(K)(P
(m)
K , Q

(m)
K ) → ExtsF(K)(P

(m)
K , Q

(m)
K ) and a split monomorphism

ExtsF(K)(P
(m)
K , Q

(m)
K )

X 7→X·Q(m)
K (η)

−−−−−−−−−→ ExtsF(K)(P
(m)
K , Q

(m)
K ◦ (t ◦ τ)) , we conclude

that the map ExtsP(k)(P
(m), Q(m)) → ExtsF(k)(P

(m), Q(m)) = ExtsF(k)(P,Q) is in-
jective. Injectivity of the map in question now follows from the injectivity of the
twist map (given in Corollary 1.3).

We construct now an extension of scalars homomorphism on Ext∗F -groups applied
to strict polynomial functors.

Proposition 3.8. Let k → K be a finite extension of fields. For P and Q in P(k),
there is a natural “extensions of scalars” k-homomorphism

Ext∗F(k)(P,Q)→ Ext∗F(K)(PK , QK)

which fits in a commutative square of K-linear maps

K ⊗k Ext∗P(k)(P,Q)
∼−−−−→ Ext∗P(K)(PK , QK)y y

K ⊗k Ext∗F(k)(P,Q) −−−−→ Ext∗F(K)(PK , QK)

(3.8.1)



24 V. FRANJOU, E. M. FRIEDLANDER, A. SKORICHENKO AND A. SUSLIN

whose upper horizontal arrow is the isomorphism of Proposition 1.1 and whose
vertical maps are the standard homomorphisms.

Proof. Let γ : t ◦ τ → I be the adjunction homomorphism establishing the left
adjointness of t to τ . The extension of scalars homomorphism Ext∗F(k)(P,Q) →
Ext∗F(K)(PK , QK) is defined to be the composition of the homomorphism

Ext∗F(k)(P,Q)→ Ext∗F(K)(PK , QK ◦ (t ◦ τ)) of Theorem 3.4 with the map

Ext∗F(K)(PK , QK ◦ (t ◦ τ))
X 7→QK(γ)·X−−−−−−−−→ Ext∗F(K)(PK , QK).

Theorem 3.5 and the fact that QK(γ) ◦ QK(η) = QK(γ ◦ η) = Id implies the
commutativity of (3.8.1).

Using a weight argument together with Lemma 3.6, we now verify that the
extension of scalars homomorphism induces an isomorphism

K ⊗k Ext∗F(k)(P,Q)
∼−→ Ext∗F(K)(PK , QK)

provided that P and Q are homogeneous strict polynomial functors of degree d and
q = |k| ≥ d.

Theorem 3.9. Let k be a finite field with q = pN elements and let k → K be an
extension of finite fields. Consider strict polynomial functors P , Q homogeneous of
degree d. If q ≥ d, then the extension of scalars homomorphism

K ⊗k Ext∗F(k)(P,Q)→ Ext∗F(K)(PK , QK)

is an isomorphism.

Proof. Theorem 3.4 shows that the left hand side coincides with Ext∗F(K)(PK ,

QK ◦ (t ◦ τ)). After this identification our homomorphism coincides with the map

induced by the functor homomorphism QK ◦ (t ◦ τ)
QK(γ)−−−−→ QK . This functor ho-

momorphism is split by QK(η) : QK → QK ◦ (t ◦ τ), which gives us a direct sum
decomposition QK ◦ (t◦ τ) = QK ⊕QK ′. To prove the theorem, we must show that
Ext∗F(K)(PK , QK

′) = 0.
Assume first that there exists an exponential strict polynomial functor Q∗ such

that each Qi is homogeneous of degree i and Q = Qd. By Lemma 3.6 and the
exponential property of Q∗, we have a natural direct sum decomposition

QK ◦(t◦τ) = QK ◦(I⊕· · ·⊕I((n−1)N)) =
⊕

d0+···+dn−1=d

Qd0

K ⊗· · ·⊗(Q
dn−1

K )((n−1)N) .

The summand corresponding to the n-tuple (d, 0, . . . , 0) is QK and hence QK
′

coincides with the direct sum over n-tuples (d0, . . . , dn−1) 6= (d, 0, . . . , 0). The
summand in the above direct sum decomposition indexed by (d0, . . . , dn−1) is ho-
mogeneous of degree d0 +d1q+ · · ·+dn−1q

n−1 = d+d1(q−1)+ · · ·+dn−1(qn−1−1).
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On the other hand PK is homogeneous of degree d. Since all Ext-groups in the
category FK between two homogeneous functors are zero unless their degrees are
congruent modulo qn − 1 (see e. g. [K1, 3.3]), it suffices to note now that for any
n-tuple 6= (d, . . . , 0) we have inequalities

0 < d1(q − 1) + · · ·+ dn−1(qn−1 − 1) ≤ d(qn−1 − 1) ≤ q(qn−1 − 1) < qn − 1 .

In the general case, we have an injective resolution 0 −→ Q −→ Q• in which each
functor Qi is a direct sum of functors of the form Sl1 ⊗ · · · ⊗ Sld , l1 + . . .+ ld = d.
Since the functor P(k)→ F(K), Q 7→ QK

′ is obviously exact, we get a resolution

0→ Q′K → (Q•)K
′
.

The above special case shows that Ext∗F(K)(PK , (Qi)K
′
) = 0, so that considering

the hypercohomology spectral sequence we easily conclude the proof.

We now have all the ingredients in place to easily conclude our strong comparison
theorem.

Theorem 3.10 (Strong Comparison Theorem). Let k be a finite field with q
elements Let further P and Q be homogeneous strict polynomial functors of degree
d. If q ≥ d, then the canonical homomorphism

lim−→
m

Ext∗P(k)(P
(m), Q(m))→ Ext∗F(k)(P,Q)

is an isomorphism (in all degrees).

Proof. For any s ≥ 0 we can find, according to Corollary 2.8, a finite exten-

sion K/k such that the standard homomorphism lim−→m Ext∗P(K)(P
(m)
K , Q

(m)
K ) →

Ext∗F(K)(PK , QK) is an isomorphism for all 0 ≤ ∗ ≤ s. According to Proposi-
tion 3.8 and Theorem 3.9 we have a commutative diagram

K ⊗k lim−→m Ext∗P(k)(P
(m), Q(m))

∼−−−−→ lim−→m Ext∗P(K)(P
(m)
K , Q

(m)
K )y ∼=

y
K ⊗k Ext∗F(k)(P,Q)

∼−−−−→ Ext∗F(K)(PK , QK)

in which all arrows except possibly the left vertical one are isomorphisms (for ∗ ≤ s).
This implies immediately that the left vertical arrow is an isomorphism as well.

Theorem 3.10 is complemented by the following elementary observation.

Lemma 3.11. Let k be a finite field with q elements. Assume that P,Q ∈ P(k)
are homogeneous strict polynomial functors with 0 ≤ deg P 6= deg Q < q. Then

lim−→
m

Ext∗P(k)(P
(m), Q(m)) = Ext∗F(k)(P,Q) = 0

Proof. Vanishing of the left hand side is obvious and vanishing of the right hand
side follows from the fact that deg P 6≡ deg Q mod (q − 1) - cf. [K1, 3.3]
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§4. Computation of Ext∗P(Γd(r), Sdp
r−j(j)) and Ext∗P(Γd(r),Λdp

r−j(j)).

In Theorem 4.5, we compute the Ext-groups of the title (for all d ≥ 0 and all
0 ≤ j ≤ r). Throughout this section, P will denote the category of strict polynomial
functors of finite degree on the category of finite dimensional vector spaces over an
arbitrary (but fixed) field k. The starting point is the determination of the Ext-
groups

Vj = Vr,j = Ext∗P(I(r), Sp
r−j(j)) and Wj = Wr,j = Ext∗P(I(r),Λp

r−j(j)).

This was achieved in [F-S, 4.5, 4.5.1] by using the hypercohomology spectral se-
quences for the Koszul and De Rham complexes, as initiated by [F-L-S, §3, 5].
Again, our computation relies heavily on the same technique, using the complexes:

Ω
•(j−1)
dpr−j+1 : 0→ Sdp

r−j+1(j−1) → Sdp
r−j−1−1(j−1) ⊗ Λ1(j−1) · · · → Λdp

r−j+1(j−1) → 0

Kz
•(j)
dpr−j : 0→ Λdp

r−j(j) → Λdp
r−j−1(j) ⊗ S1(j) · · · → Sdp

r−j(j) → 0 .

Since a theorem of Cartier tells us that the cohomology of the De Rham complex
has a form similar to the De Rham itself but with an additional Frobenius twist,
the De Rham complex provides the structure for an inductive argument on the

number j of Frobenius twists. This requires, however, that we consider Sdp
r−j(j)

and Λdp
r−j(j) simultaneously, and the Koszul complex serves to tightly link Ext-

groups for symmetric powers with those for exterior powers.

Since all but the outer terms of the complexes involve the tensor product of a
symmetric and exterior functor, Theorem 1.7 suggests an inductive argument on
the integer d.

Finally, we compute by an induction on the cohomological degree the hyperco-
homology spectral sequences for the two complexes. When studying the second
hypercohomology spectral sequences for the De Rham complex, a new feature ap-
pears, the use of the generalized Koszul complex associated to a map. Since the
cohomology of such a complex is readily computed, it is useful to view the (only)
non-trivial differential in our hypercohomology spectral sequence as fitting into a
generalized Koszul complex. The map involved is nothing but the non-trivial dif-
ferential for the case d = 1, which relates the graded vector spaces Vj and Wj .
The same feature reappears when computing the first hypercohomology spectral
sequence for the Koszul complex: this has only one non-zero differential, which we
identify as the differential for the generalized Koszul complex associated once again
to the graded map from Wj to Vj arising in the case d = 1.

Hypercohomology spectral sequences

In a familiar manner, there are two spectral sequences associated to apply-
ing RHomP(Γd(r),−) to a complex of functors F • in P. The first has Es,t1 -term

ExttP(Γd(r), F s), whereas the second has Es,t2 -term ExtsP(Γd(r),Ht(F •)). Since the
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Koszul complex is exact, the second spectral sequence associated to Kz
•(j)
dpr−j is triv-

ial (and hence the abutment of the first one is zero). We shall use the notation
∼
E

for the first spectral sequence associated to the Koszul complex Kz
•(j)
dpr−j :

∼
Es,t1 = ExttP(Γd(r), Ss(j) ⊗ Λdp

r−j−s(j)) =⇒ 0

Furthermore, we shall use the notation I (resp. II) for the first (resp. second)

spectral sequence associated to the De Rham complex Ω
•(j−1)
dpr−j+1 :

Is,t1 = ExttP(Γd(r), Sdp
r−j+1−s(j−1) ⊗ Λs(j−1)) =⇒ Exts+tP (Γd(r),Ω

•(j−1)
dpr−j+1)

IIs,t2 = ExtsP(Γd(r), Sdp
r−j−t(j) ⊗ Λt(j)) =⇒ Exts+tP (Γd(r),Ω

•(j−1)
dpr−j+1).

To compute the differentials in the spectral sequences
∼
E, I, II, we shall use the

following proposition.

Proposition 4.1. Let T •1 , T
•
2 be bounded below complexes of homogeneous strict

polynomial functors of degrees d1p
r and d2p

r respectively. Set d = d1 +d2, then the
first (respectively, the second) spectral sequence associated to applying the functor
RHomP(Γd(r),−) to the complex T •1 ⊗ T •2 is naturally isomorphic to the tensor
product of the first (resp., second) spectral sequences associated to applying the
functors RHom(Γdi(r),−) to T •i .

Proof. Let T •1 → I••1 , T •2 → I••2 be the Cartan-Eilenberg resolutions of T •1 and T •2
respectively. An immediate verification shows that Tot(T •1 ⊗T •2 )→ I••1 ⊗ I••2 is the
Cartan-Eilenberg resolution of Tot(T •1 ⊗T •2 ) (here I••1 ⊗I••2 should be considered as

a bicomplex with (I1 ⊗ I2)s,t =
⊕

s1+s2=s,t1+t2=t I
s1,t1
1 ⊗ Is2,t22 ). The two spectral

sequences in question are the two spectral sequences of the bicomplex

HomP(Γd(r), I••1 ⊗ I••2 )

which can be identified using Theorem 1.7 with

HomP(Γd1(r), I••1 )⊗HomP(Γd2(r), I••2 ) .

The result now follows immediately [M, 11, §3, Ex. 6].

The following corollary makes explicit the determination of the differentials in
the tensor product of spectral sequences as considered in Proposition 4.1.

Corollary 4.2. All differentials of the first hypercohomology spectral sequence as-

sociated to applying the functor RHomP(Γd(r),−) to the complex (Ω
•(j−1)
pr−j+1)⊗d are

trivial.
In the second hypercohomology spectral sequence associated to applying the func-

tor RHomP(Γd(r),−) to (Ω
•(j−1)
pr−j+1)⊗d (respectively, the first hypercohomology spec-

tral sequence associated to applying the functor RHomP(Γd(r),−) to (Kz
•(j)
pr−j )

⊗d),
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all differentials except for dpr−j+1 (resp. except for dpr−j ) are trivial. The only
non-trivial differential sends a decomposable, homogeneous element v1⊗ ...⊗ vd to:

d∑
i=1

(−1)σ(i)v1 ⊗ ...⊗ ∂(vi)⊗ ...⊗ vd

where ∂ is the only non-zero differential in the second hypercohomology spectral

sequence associated to applying the functor RHomP(I(r),−) to Ω
•(j−1)
pr−j+1 (resp. the

first hypercohomology spectral sequence associated to applying RHomP(I(r),−) to

Kz
•(j)
pr−j ) and σ(i) denotes the number of terms of odd total degree among v1, ..., vi−1.

Proof. This follows immediately from Proposition 4.1 and the known information
about differentials in the spectral sequences associated to applying the functor

RHomP(I(r),−) to Ω
•(j−1)
pr−j+1 and Kz

•(j)
pr−j -see [F-S, §4].

Generalized Koszul complexes

The graded vector space Vj is concentrated in even degrees. It is one dimensional
in degrees s ≡ 0 mod 2pr−j , 0 ≤ s < 2pr, and zero otherwise [F-S, 4.5]. The graded
vector space Wj is related to Vj by two homomorphisms. The first one, which we
denote by θ, is the (only non-zero) differential

θ := dpr−j : Ext∗P(I(r),Λp
r−j(j))→ Ext

∗−(pr−j−1)
P (I(r), Sp

r−j(j)) (4.2.1)

in the first hypercohomology spectral sequence associated to applying the functor

RHom(I(r),−) to the Koszul complex Kz
•(j)
pr−j .

This homomorphism is an isomorphism, shifting degrees by pr−j − 1, and gives
an inverse to the Yoneda multiplication by the Koszul complex. This implies, in
particular, that Wj is concentrated in even degrees for p 6= 2 and in odd degrees
for p = 2, j < r.

The second homomorphism from Wj to Vj , which we denote by ∂, is the (only
non-trivial) differential

∂ := dpr−j+1 : Ext∗P(I(r),Λp
r−j(j))→ Ext∗+p

r−j+1
P (I(r), Sp

r−j(j)) (4.2.2)

in the second hypercohomology spectral sequence associated to applying the functor

RHom(I(r),−) to the De Rham complex Ω
•(j−1)
pr−j+1 . This homomorphism fits into an

exact sequence

0→Wj−1
α−→Wj

∂−→ Vj → Vj−1 → 0

which can be interpreted in terms of edge homomorphisms of the corresponding
spectral sequence (see [F-S, §4]). Here the homomorphism Vj → Vj−1 is the natural

map of degree zero induced by the embedding Sp
r−j(j) ↪→ Sp

r−j+1(j−1), whereas the
homomorphism α is the Yoneda multiplication by a class in
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Extp
r−j+1−pr−j
P (Λp

r−j+1(j−1),Λp
r−j(j)) obtained by truncating the De Rham com-

plex. In particular, α increases degrees by pr−j+1 − pr−j .

We shall use the notation Kj (resp. Cj) for the kernel (resp. cokernel) of ∂,
so that the previous exact sequence gives natural isomorphisms of graded vector
spaces

Wj−1[pr−j − pr−j+1]
∼−→ Kj = Ker ∂ , Coker ∂ = Cj

∼−→ Vj−1 .

In order to analyze the spectral sequences Ẽ and II, we shall observe that iter-
ations of θ and ∂ form “generalized Koszul complexes” in the following sense. Let
f : W → V be a homomorphism of finite dimensional k-vector spaces. Set

Qid(f) = Sd−i(V )⊗ Λi(W ) , Q∗∗(f) =
⊕

0≤i≤d

Qid(f).

We refer to d as the total degree and to i as the cohomological degree.
Note that Q∗∗(f) has a natural structure of a bigraded, graded commutative

(with respect to the cohomological degree) algebra. We endow the algebra Q(f)
with a Koszul differential κ (of cohomological degree -1), defined in terms of f and
product and coproduct operations as follows:

κ : Qid(f) = Sd−i(V )⊗ Λi(W )
1
Sd−i(V )

⊗comult
−−−−−−−−−−−→ Sd−i(V )⊗W ⊗ Λi−1(W )

1⊗f⊗1−−−−→
1⊗f⊗1−−−−→ Sd−i(V )⊗ V ⊗ Λi−1(W )

mult⊗1Λi−1(W )−−−−−−−−−−→ Sd−i+1(V )⊗ Λi−1(W ) = Qi−1
d (f)

We refer to the resulting complex Q•d(f) as the generalized Koszul complex for f .
One checks easily that κ is a (graded) derivation and hence H∗(Q(f)) has a natu-

ral structure of a bigraded graded commutative (with respect to the cohomological
degree) algebra. Moreover, we have canonical identifications

H1
1(Q(f)) = Ker f H0

1(Q(f)) = Coker f .

The usefulness of this formalism lies in the following elementary lemma.

Lemma 4.3. The induced homomorphism of bigraded algebras

S∗(Coker f)⊗ Λ∗(Ker f)→ H∗(Q(f))

is an isomorphism.

Proof. Choose (non-canonical) splittings

W = Ker f ⊕ U , V = U ⊕ Coker f

in such a way that f identifies the two copies of U . The differential graded algebra
Q(f) is isomorphic to the tensor product of a trivial differential graded algebra
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S∗(Coker f) ⊗ Λ∗(Ker f) and the usual Koszul differential graded algebra corre-
sponding to the vector space U . Our statement follows now from the acyclicity of
the usual Koszul algebra.

Remark 4.3.1. In applications, the vector spaces V and W are usually graded
and the homomorphism f preserves the grading (or shifts it by a certain integer
deg f). In this case Q∗∗(f), and H∗(Q(f)), acquires an additional grading which we
call the internal grading.

The product operation in the tri-graded Hopf algebra Ext∗P(Γ∗(r), S∗(j)) defines
a canonical homomorphism of graded vector spaces

V ⊗dj → Ext∗P(Γd(r), Sdp
r−j(j)).

Lemma 1.11 (and the fact that Vj is concentrated in even degrees) implies that this
homomorphism commutes with the action of the symmetric group Σd, and thus
factors to give a map:

Sd(Vj)→ Ext∗P(Γd(r), Sdp
r−j(j)). (4.3.2)

We shall also consider the analogous map

W⊗dj → Ext∗P(Γd(r),Λdp
r−j(j)).

Lemma 1.11 implies that this map commutes with the action of the symmetric
group Σd up to a sign, and thus factors through Λd(Wj), provided that p 6= 2. In
the case p = 2, the fact that this map factors through Λd(Wj) is established below
in Lemma 4.4. We shall employ the notation v1 · ... · vi (resp. w1 ∧ ... ∧wi) for the

image of v1 ⊗ ... ⊗ vi ∈ V ⊗ij (resp. w1 ⊗ ... ⊗ wi ∈ W⊗ij ) in Ext∗P(Γi(r), Sip
r−j(j))

(resp. in Ext∗P(Γi(r),Λip
r−j(j))).

Lemma 4.4. The natural map

W⊗dj → Ext∗P(Γd(r),Λdp
r−j(j))

factors through Λd(Wj).

Proof. This result can be obtained as a byproduct of our proof of Theorem 4.5
below. Such a presentation however would make the central part of the argument
even harder to follow than it is right now. To avoid this, we give a direct proof
of Lemma 4.4 based on the use of the canonical injective resolution of the functor
S∗(r) constructed in [F-S, §8].

As was explained above it suffices to consider the case p = 2 and in this case
it suffices to show that the square of each homogeneous element w in Wj dies in

Ext∗P(Γ2(r),Λ2r−j+1(j)). We start with the special case j = r. First:

(4.4.1) Extodd
P (Γ2(r), S2(r)) = 0 .
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To prove this we use the injective resolution of S2(r) constructed in [F-S, §8]
0→ S2(r) → C0 → C1 → ... , where

Cn =
⊕

m0+...+m2r−1=2r+1∑
i·mi=n·2r−1

Sm0 ⊗ ...⊗ Sm2r−1

Theorem 1.7 implies immediately that HomP(Γ2(r), Cn) = 0 if n is odd.

The cohomology long exact sequence corresponding to the short exact sequence of
strict polynomial functors: 0→ Λ2(r) → I(r) ⊗ I(r) → S2(r) → 0 now implies:

(4.4.2) The standard embedding Λ2(r) ↪→ I(r) ⊗ I(r) induces injective maps

Exteven
P (Γ2(r),Λ2(r)) ↪→ Exteven

P (Γ2(r), I(r) ⊗ I(r)).

To finish the argument in the case j = r it suffices to note now that the composition

(Wr⊗Wr)
even → Exteven

P (Γ2(r),Λ2(r)) ↪→ Exteven
P (Γ2(r), I(r)⊗I(r)) = (Wr⊗Wr)

even

coincides with 1 + σ (where σ permutes the two factors) and hence is zero on
elements of the form w ⊗ w.

Assume now that j < r. Let kz ∈ Ext2
r−j−1
P (S2r−j ,Λ2r−j ) be the extension

class represented by the Koszul complex and let φr−j : I(r−j) ↪→ S2r−j denote the
standard embedding. The standard arguments (see [F-S, §4]) show that the left
Yoneda multiplication with kz(j) defines an isomorphism (inverse to θ)

Ext∗P(I(r), S2r−j(j))
kz(j)

−−−→ Ext∗+2r−j−1
P (I(r),Λ2r−j(j)).

On the other hand φ
(j)
r−j : I

(r) ↪→ S2r−j(j) induces epimorphisms on Ext∗P(I(r),−)

[F-S, §4]. This shows that each homogeneous element in Wj = Ext∗P(I(r),Λ2r−j(j))

may be written as a Yoneda product w = kz(j) ·φ(j)
r−j ·x , for a certain homogeneous

element x in Ext∗P(I(r), I(r)). In these notations we have the following formula:

w⊗w = ((kz⊗kz) ·(φr−j⊗φr−j))(j) ·(x⊗x) ∈ Ext∗P(I(r)⊗I(r),Λ2r−j(j)⊗Λ2r−j(j)).

The image of w ⊗ w in Ext∗P(Γ2(r),Λ2r−j+1(j)) is the Yoneda product

m
(j)
Λ · (w ⊗ w) · c(r)Γ , where mΛ : Λ2r−j ⊗ Λ2r−j → Λ2r−j+1

is the multiplication
homomorphism and cΓ : Γ2 ↪→ I ⊗ I is the standard embedding. The long exact
sequence of Ext-groups associated to the short exact sequence of strict polyno-

mial functors 0 → Γ2(r) c(r)−−→ I(r) ⊗ I(r) m(r)

−−−→ Λ2(r) → 0 and the vanishing of

m
(r)
Λ · (x⊗ x) · c(r)Γ established above show that (x⊗ x) · c(r)Γ may be written in the

form c
(r)
Γ ·y for some y ∈ Ext∗P(Γ2(r),Γ2(r)). Now it suffices to note that the element

under consideration is a right multiple of (mΛ · (kz ⊗ kz) · (φr−j ⊗ φr−j) · c(r−j)Γ )(j)

and mΛ · (kz ⊗ kz) · (φr−j ⊗ φr−j) · c(r−j)Γ ∈ Ext∗P(Γ2(r−j),Λ2r−j+1

) = 0 - see [F-S,
Proposition 5.4].

Basic computation of Ext-groups

The following theorem, whose proof occupies much of the remainder of this
section, formulates the result of our computation.
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Theorem 4.5. For all d and all 0 ≤ j ≤ r, the natural homomorphisms

V ⊗dj → Ext∗P(Γd(r), Sdp
r−j(j)) and W⊗dj → Ext∗P(Γd(r),Λdp

r−j(j))

factor to induce isomorphisms of graded vector spaces

Sd(Vj)
∼−→ Ext∗P(Γd(r), Sdp

r−j(j)) , Λd(Wj)
∼−→ Ext∗P(Γd(r),Λdp

r−j(j)) .

Proof. We proceed by a triple induction. The main induction is on the number j
of twists, j ≤ r. The case j = 0 follows from the injectivity of Sdp

r

in P and [F-S,
5.4].

In the sequel we shall assume that 0 < j ≤ r and the result holds for j − 1.
The second induction is on d. The cases d = 0, 1 of our theorem are tautological,

so we assume in the sequel that d > 1 and the result holds for all d′ < d. For the
induction step, we use the hypercohomology spectral sequences I, II obtained by

applying the functor RHomP(Γd(r),−) to the De Rham complex Ω
•(j−1)
dpr−j+1 .

Lemma 4.6. All the differentials in the spectral sequence I are trivial and hence
I1 = I∞.

Proof. The induction hypothesis on j together with Theorem 1.7 gives the following
computation of the I1-terms:

In,m1 =

{
0 if n 6≡ 0 mod pr−j+1

[Sd−s(Vj−1)⊗ Λs(Wj−1)]m if n = spr−j+1

Here [−]m denotes the m-th homogeneous component with respect to the internal
grading. This formula shows that the map of spectral sequences defined by the
homomorphism of complexes

(Ω
•(j−1)
pr−j+1)⊗d → Ω

•(j−1)
dpr−j+1

is surjective on the E1-terms, thus the lemma follows from the first part of Corollary
4.2.

Corollary 4.7.

dimk ExtnP(Γd(r),Ω
•(j−1)
pr−j+1) =

d∑
s=0

dimk Isp
r−j+1,n−spr−j+1

1 =

=
d∑
s=0

dimk[Sd−s(Vj−1)⊗ Λs(Wj−1)]n−sp
r−j+1

=

=
d∑
s=0

dimk[Sd−s(Cj)⊗ Λs(Kj)]
n−spr−j
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Here [−]n−sp
r−j+1

stands for the homogeneous component with respect to the in-
ternal grading. The shift in degrees in the last identification comes from natural
isomorphisms of graded vector spaces Wj−1 = Kj [p

r−j+1 − pr−j ], Vj−1 = Cj.

Consider now the spectral sequence II

IIn,m2 = ExtnP(Γd(r), Sdp
r−j−m(j) ⊗ Λm(j)) =⇒ Extn+m

P (Γd(r),Ω
•(j−1)
dpr−j+1) .

The induction hypothesis on d and Theorem 1.7 allow us to identify all IIn,m2 -terms
except for the two edge rows m = 0, dpr−j :

IIn,m2 =

{
0 if m 6≡ 0 mod pr−j

[Sd−s(Vj)⊗ Λs(Wj)]
n if m = spr−j , 0 < s < d .

By dimension considerations all differentials dk with 2 ≤ k ≤ pr−j are trivial. Fur-
thermore, considering the homomorphism of the second hypercohomology spectral

sequences induced by the homomorphism of complexes (Ω
•(j−1)
pr−j+1)⊗d → Ω

•(j−1)
dpr−j+1

and using Corollary 4.2 we identify the action of the differential dpr−j+1 on decom-
posable elements as

dpr−j+1(v1 · ... · vd−s ⊗ w1 ∧ ... ∧ ws) =

=

s∑
i=1

(−1)i−1v1 · ... · vd−s · ∂(wi)⊗ w1 ∧ ... ∧
∧
wi ∧ ... ∧ ws( 4.7.1)

Here v1, ..., vd−s are homogeneous elements in Vj , w1, ..., ws are homogeneous ele-
ments in Wj and ∂ : Wj → Vj is the differential dpr−j+1 in the second hyperco-

homology spectral sequence corresponding to Ω
•(j)
pr−j+1 , discussed previously. The

sign in the formula (4.7.1) is explained by the fact that all v’s are of even total
degree, while all w’s are of odd total degree. Thus, dpr−j+1 may be viewed as the
generalized Koszul differential in Q•d(∂).

Lemma 4.3 together with (4.7.1) implies that we get a canonical homomorphism

Sd(Cj) = Coker(Sd−1(Vj)⊗Wj → Sd(Vj))→

→ II∗,0pr−j+2 = Coker(Sd−1(Vj)⊗Wj → Ext∗P(Γd(r), Sdp
r−j(j)) ).

Lemma 4.8. The resulting homomorphism

Sd(Cj)→ II∗,0pr−j+2 → II∗,0∞ → Ext∗P(Γd(r),Ω
•(j−1)
dpr−j+1)

is injective.

Proof. It’s clear from the construction that the homomorphism in question is in-
duced by the composition

Sd(Vj)→ Ext∗P(Γd(r), Sdp
r−j(j))→ Ext∗P(Γd(r),Ω

•(j−1)
dpr−j+1)
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where the second arrow is defined by the homomorphism of complexes Sdp
r−j(j) →

Ω
•(j−1)
dpr−j+1 (identifying Sdp

r−j(j) with the zero-dimensional homology group of

Ω
•(j−1)
dpr−j+1). Consider also the natural homomorphism Ω

•(j−1)
dpr−j+1 → Sdp

r−j+1(j−1)

(projection onto the zero-dimensional component). The composition of these ho-

momorphisms coincides with the standard embedding Sdp
r−j(j) ↪→ Sdp

r−j+1(j−1).

The induction hypothesis on j shows that Ext∗P(Γd(r), Sdp
r−j+1(j−1)) = Sd(Vj−1).

The composite

Sd(Cj)→ Ext∗P(Γd(r),Ω
•(j−1)
dpr−j+1)→ Ext∗P(Γd(r), Sdp

r−j+1(j−1)) = Sd(Vj−1)

is by construction the isomorphism Cj
∼−→ Vj−1 for d = 1 and thus (by its multi-

plicative nature) is an isomorphism for all d.

Now we can start the final induction – that on the internal index. More precisely
we are going to prove, using induction on t, the following statement. As in Corollary
4.7, [−]m denotes the m-th homogeneous component with respect to the internal
grading.

Proposition 4.9. With the above notation and assumptions, the following asser-
tions hold for any t ≥ −1.

1t. The natural map [Sd(Vj)]
t → ExttP(Γd(r), Sdp

r−j(j)) is an isomorphism.

2t. The natural map [Λd(Wj)]
t → ExttP(Γd(r),Λdp

r−j(j)) is an isomorphism.

3t. IIn,mpr−j+2 = IIn,m∞ for all n ≤ t− pr−j − 1.

Proof. All the statements are trivial for t = −1, which gives us the base for the
inductive argument. Assume now that t ≥ 0 and the statement holds for all t′ < t.

Consider once again the spectral sequence II. Using (4.7.1), we get the following
commutative diagram

[Qs+1
d (∂)]n−p

r−j−1 κ−−−−→ [Qsd(∂)]n
κ−−−−→ [Qs−1

d (∂)]n+pr−j+1y y y
II
n−pr−j−1,(s+1)pr−j

pr−j+1

dpr−j+1−−−−−→ IIn,sp
r−j

pr−j+1

dpr−j+1−−−−−→ II
n+pr−j+1,(s−1)pr−j

pr−j+1

(4.9.1)

Here the top row is a piece of the generalized Koszul complex, corresponding to the
homomorphism (shifting degrees by pr−j + 1) of graded vector spaces ∂ : Wj → Vj .
Our induction hypothesis on d immediately implies that the three vertical maps in
the above diagram are isomorphisms unless s = 0, 1, d − 1, d. Examining each
of these four cases separately and using our induction hypothesis on t, we easily
conclude the following:
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(4.9.2). The induced map [Sd−s(Cj)⊗Λs(Kj)]
n → IIn,sp

r−j

pr−j+2 , given as the map on

cohomology of (4.9.1),
a) is an isomorphism provided that s 6= 0, 1, d− 1, d or n < t− pr−j − 1
b) is a monomorphism provided that n < t.

Consider the terms of total degree t in IIpr−j+2. The differentials that could

possibly hit IIt,0pr−j+2 should come from IIn,m-terms with n < t− pr−j − 1. However

all such differentials are trivial in view of the inductive assumption 3t−1. Thus

IIt,0pr−j+2 = IIt,0∞ . The same reasoning shows that IIt−p
r−j ,pr−j

pr−j+2 = IIt−p
r−j ,pr−j

∞ .

Moreover for s ≥ 2

IIt−sp
r−j ,spr−j

∞ = IIt−sp
r−j ,spr−j

pr−j+2 = [Sd−s(Cj)⊗ Λs(Kj)]
t−spr−j

according to 3t−1 and (4.9.2 a). Thus

dimk ExttP(Γd(r),Ω
•(j−1)
pr−j+1) = dimk IIt,0pr−j+2 + dimk IIt−p

r−j ,pr−j

pr−j+2 +

+
d∑
s=2

dimk[Sd−s(Cj)⊗ Λs(Kj)]
t−spr−j(4.9.3)

Finally we have the following inequalities:

dimk IIt,0pr−j+2 ≥ dimk[Sd(Cj)]
t − according to (4.8)

dimk IIt−p
r−j ,pr−j

pr−j+2 ≥ dimk[Sd−1(Cj)⊗Kj ]
t−pr−j

Comparing (4.9.3) with the result given by Corollary 4.7, we conclude that both
inequalities above are actually equalities. This shows that the natural homomor-

phisms [Sd(Cj)]
t → IIt,0pr−j+2 and [Sd−1(Cj) ⊗ Kj ]

t−pr−j → IIt−p
r−j ,pr−j

pr−j+2 are iso-

morphisms. Inspecting the diagram (4.9.1) for s = 1, n = t − pr−j − 1 (extended
by zeros to the right) and using the Five-Lemma we conclude that [Sd(Vj)]

t →
ExttP(Γd(r), Sdp

r−j(j)) is an isomorphism ; in other words, 1t holds. Using this fact
we extend easily the conclusion made in (4.9.2a) to degrees n ≤ t− pr−j − 1 :

(4.9.4). [Sd−s(Cj) ⊗ Λs(Kj)]
n → IIn,sp

r−j

pr−j+2 is an isomorphism for all s provided

that n ≤ t− pr−j − 1.

We now prove 3t. Let E denote the second hypercohomology spectral sequence

obtained by applying RHom(I(r), − ) to the De Rham complex Ω
•(j−1)
pr−j+1 . The

natural homomorphism of complexes (Ω
•(j−1)
pr−j+1)⊗d → Ω

•(j−1)
dpr−j+1 defines (in view of

Proposition 4.1) a homomorphism of spectral sequences E⊗d → II. We conclude
from (4.9.4) that the homomorphism

(E⊗d)n,mpr−j+2 → IIn,mpr−j+2
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is surjective for n ≤ t − pr−j − 1. Since the differentials dk with k > pr−j + 1 are
trivial in E, they are trivial in E⊗d. We conclude that all the differentials dk in
II with k > pr−j + 1 starting at IIn,m-terms with n ≤ t − pr−j − 1 are trivial. So
IIn,mpr−j+2 = IIn,m∞ for these values of n, i.e. 3t holds.

To prove that 2t holds, we consider the spectral sequence
∼
E (the first spectral

sequence corresponding to Kz
•(j)
dpr−j ). The

∼
E1-term of this spectral sequence is given

(using Theorem 1.7) by the formula

∼
Em,n1 = ExtnP(Γd(r),Sm(j) ⊗ Λdp

r−j−m(j)) =

=

{
0 if m 6≡ 0 mod pr−j

[Ss(Vj)⊗ Λd−s(Wj)]
n if m = spr−j 0 < s < d

The differentials d1, ..., dpr−j−1 are trivial by dimension considerations. Corollary
4.2 allows to determine the action of dpr−j on decomposable elements, so that as
for (4.9.1) we obtain a commutative diagram

[Qd−s+1
d (θ)]n+pr−j−1 κ−−−−→ [Qd−sd (θ)]n

κ−−−−→ [Qd−s−1
d (θ)]n−p

r−j+1y y y
∼
E

(s−1)pr−j ,n+pr−j−1
pr−j

dpr−j−−−−→
∼
Esp

r−j ,n
pr−j

dpr−j−−−−→
∼
E

(s+1)pr−j ,n−pr−j+1
pr−j

(4.9.5)

Here the top row is a piece of the (acyclic) generalized Koszul complex, corre-
sponding to the isomorphism (shifting degrees by pr−j − 1) of graded vector spaces
θ : Wj → Vj (cf. (4.2.1)). To conclude that the bottom row of (4.9.5) is acyclic it
suffices by the acyclicity of the top row to know that the central and the right-hand
side vertical arrows are isomorphism. This remark plus our induction hypotheses
on d and t implies:

(4.9.7)
∼
Esp

r−j ,n
pr−j+1 = 0 provided that s 6= 0, d− 1, d, or n < t.

For k ≥ pr−j + 1, the differential dk :
∼
E0,t
k →

∼
Ek,t−k+1
k is trivial by (4.9.7). Thus

∼
E0,t
pr−j+1 =

∼
E0,t
∞ = 0. Inspecting finally the diagram (4.9.5) for s = 1, n = t−pr−j+1

(extended by zeros to the left) and using the Five-Lemma we conclude that

[Λd(Wj)]
t → ExttP(Γd(r),Λdp

r−j(j)) =
∼
E0,t
pr−j

is an isomorphism. This shows that 2t also holds, thus completing the induction
step, the proof of Proposition 4.9 and thus of Theorem 4.5.

Corollary 4.10 (Strong Twist Stability). Let A and B be homogeneous strict
polynomial functors of degree d. The Frobenius twist map

ExtsP(A(m), B(m))→ ExtsP(A(m+1), B(m+1))
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is an isomorphism provided that m ≥ logp
s+1

2 .

Proof. Consider first the special case A = Γd, B = Sd. Theorem 4.3 shows that

Ext∗P(Γd(m), Sd(m)) = Sd(Ext∗P(I(m), I(m))) .

Since the Frobenius twist map Ext∗P(I(m), I(m)) → Ext∗P(I(m+1), I(m+1)) is an
isomorphism in degrees ≤ 2pm − 1 [F-S;4.9], we conclude that the induced map
Sd(Ext∗P(I(m), I(m))) → Sd(Ext∗P(I(m+1), I(m+1)) is an isomorphism in the same
range.

Consider next the special case A = Γd1 ⊗ · · · ⊗ Γda , B = Sd
′
1 ⊗ · · · ⊗ Sd

′
b ,

d1 + · · ·+ da = d′1 + · · ·+ d′b = d. In this case, Corollary 1.8 gives us the following
formula

Ext∗P(A(m), B(m)) =
⊕

d11+···+d1b=d1 d11+···+da1=d′1
. . . . . .

da1+···+dab=da d1b+···+dab=d′b

a b⊗
i=1,j=1

Ext∗P(Γdij(m), Sdij(m)) .

Thus the result in this case follows from the previous one.
In the general case, we can find resolutions

0←− A←− P• 0→ B → I•

in which each Pi (resp. each Ij) is a direct sum of functors of the form Γd1 ⊗
... ⊗ Γda (resp. of the form Sd

′
1 ⊗ ... ⊗ Sd′b). The result now follows by applying

the standard comparison theorem to the map of the hypercohomology spectral
sequences converging to Ext∗P(A(m), B(m)) and Ext∗P(A(m+1), B(m+1)) respectively.

§5. Ext-groups between the classical functors in the category P.

In this section we continue the computation of Ext-groups in the category P of
strict polynomial functors (over an arbitrary fixed field k) between various classical
functors. As the reader will see the results obtained in this section are (relatively)
easy applications of Theorem 4.5. Again, we begin by fixing a positive integer r.

The general philosophy behind these computations is as follows. There is sort
of a hierarchy between the functors Γ(), Λ() and S(): Γ() has a tendency to be
projective (it really is if there is no twists), S() has a tendency to be injective and
Λ() is in between. We can provide a complete computation for the Ext-groups from
a more projective functor to a less projective one but not the other way round.
More specifically, we compute all Ext-groups from Γ() (with any number of twists)
to Γ(), Λ() and S(), we compute all Ext-groups from Λ() to Λ() and S() and finally
from S() to itself; we suspect that there is no comparable computation of the Ext-
groups from S() to Λ() or Γ() or Ext-groups from Λ() to Γ() (actually it seems that
there is just no easy answer for these Ext-groups).



38 V. FRANJOU, E. M. FRIEDLANDER, A. SKORICHENKO AND A. SUSLIN

For non-negative integers 0 ≤ j ≤ r, set Uj = Ur,j = ExtP(Γp
r−j(j), I(r)).

Observe that Ur = Vr = Wr = Ext∗P(I(r), I(r)); moreover, the duality isomorphism
(1.12) defines canonical isomorphisms of graded vector spaces

Uj = Ext∗P(Γp
r−j(j), I(r))

∼−→ Ext∗P(I(r), Sp
r−j(j)) = Vj

for any j ≤ r.
For any non-negative integer d the product operations define canonical homo-

morphisms

U⊗dj = Ext∗P(Γdp
r−j(j), I(r) ⊗ ...⊗ I(r))→ Ext∗P(Γdp

r−j(j), Sd(r))

U⊗dj = Ext∗P(Γdp
r−j(j), I(r) ⊗ ...⊗ I(r))→ Ext∗P(Γdp

r−j(j),Λd(r))

Using these homomorphisms, we formulate our first result, thereby completing the
computation of Theorem 4.5 by considering the situation in which the number of
twists on the source functor is less (or equal) to the number of twists on the target
functor.

Theorem 5.1. For any non-negative integer d the above maps define natural iso-
morphisms

Sd(Uj)
∼−→ Ext∗P(Γdp

r−j(j), Sd(r))

Λd(Uj)
∼−→ Ext∗P(Γdp

r−j(j),Λd(r)).

Proof. The first isomorphism follows immediately from the Theorem 4.5, in view
of the following commutative diagram

Sd(Uj) −−−−→ Ext∗P(Γdp
r−j(j), Sd(r))

∼
=

y ∼
=

y
Sd(Vj)

∼−−−−→ Ext∗P(Γd(r), Sdp
r−j(j))

Here the vertical arrows are the duality isomorphisms of (1.12), the bottom hori-
zontal arrow is the isomorphism of the Theorem 4.5 and the top horizontal arrow
is the map under consideration.

To prove the second isomorphism, we proceed by induction on d. Consider the
first hypercohomology spectral sequence corresponding to the Koszul complex

Kz
•(r)
d : 0→ Λd(r) → Λd−1(r) ⊗ S1(r) → ...→ Λ1(r) ⊗ Sd−1(r) → Sd(r) → 0

Em,n1 = ExtnP(Γdp
r−j(j),Λd−m(r) ⊗ Sm(r)) =⇒ 0
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The inductive assumption on d and the already proved part of the theorem give
the computation of all the E1-terms except those in the first column. Moreover, we
have the following commutative diagram of complexes

0 −−−−→ Λd(Uj)
κ−−−−→ Λd−1(Uj)⊗ Uj

κ−−−−→ . . .
κ−−−−→ Sd(Uj) −−−−→ 0

∼
=

y ∼
=

y
0 −−−−→ E0,∗

1
d1−−−−→ E1,∗

1
d1−−−−→ . . .

d1−−−−→ Ed,∗1 −−−−→ 0 .

Here the top row is the Koszul complex corresponding to the vector space Uj , and
the bottom row is the E1-term of our spectral sequence. The acyclicity of the
Koszul complex implies immediately that Em,∗2 = 0 for m > 1. This implies further
vanishing of all higher differentials and hence the identification E2 = E∞ = 0. Thus
the bottom complex in the above diagram is also acyclic, which gives a natural

identification Ext∗P(Γdp
r−j(j),Λd(r)) = E0,∗

1 = Λd(Uj).

The duality isomorphism (1.12) together with Theorems 4.5 and 5.1 immediately
leads to the following computations.

Corollary 5.2. For all 0 ≤ j ≤ r and all d ≥ 0 we have natural isomorphisms

Λd(Ext∗P(Λp
r−j(j), I(r)))

∼−→ Ext∗P(Λdp
r−j(j), Sd(r))

Λd(Ext∗P(I(r), Sp
r−j(j)))

∼−→ Ext∗P(Λd(r), Sdp
r−j(j)) .

The computation of Ext∗P(Γ(),Γ()) in Theorem 5.4 below requires a determina-
tion of the coproduct (rather than product) operation in Ext∗P(Γ(),Λ()). Recall
that comultiplication in the exterior algebra defines natural homomorphisms (for
any 0 ≤ j ≤ r and any d ≥ 0)

Λdp
r−j(j) ↪→ Λp

r−j(j) ⊗ ...⊗ Λp
r−j(j)

Λd(r) ↪→ I(r) ⊗ ...⊗ I(r)

which induce homomorphisms on Ext-groups

Ext∗P(Γd(r),Λdp
r−j(j))→ Ext∗P(Γd(r),Λp

r−j(j) ⊗ ...⊗ Λp
r−j(j)) = W⊗dj

Ext∗P(Γdp
r−j(j),Λd(r))→ Ext∗P(Γdp

r−j(j), I(r) ⊗ ...⊗ I(r)) = U⊗dj

Corollary 5.3. For all 0 ≤ j ≤ r and all d ≥ 0 the above coproduct operations
induce natural isomorphisms of graded vector spaces

Ext∗P(Γd(r),Λdp
r−j(j))

∼−→ Λd(Wj)

Ext∗P(Γdp
r−j(j),Λd(r))

∼−→ Λd(Uj) .
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Proof. A straightforward computation shows that the composite maps

Λd(Wj)
∼−→Ext∗P(Γd(r),Λdp

r−j(j)) −→W⊗dj

Λd(Uj)
∼−→Ext∗P(Γdp

r−j(j),Λd(r)) −→ U⊗dj

coincide with the corresponding natural embeddings.

Now we turn to the computation of Ext∗P(Γ(),Γ()). We introduce one more

basic Ext-space (defined for all 0 ≤ j ≤ r)
∼
V j =

∼
V r,j = Ext∗P(I(r),Γp

r−j(j)). The
differential dpr−j in the first hypercohomology spectral sequence, corresponding to
the dual Koszul complex

Kz
#(j)
pr−j : 0 −→ Γp

r−j(j) −→ Γp
r−j−1(j) ⊗ Λ1(j) −→ · · · −→ Λp

r−j(j) → 0

defines an isomorphism

η :
∼
V j

∼−→Wj

of graded vector spaces (shifting degrees by pr−j − 1).
In the same way as above, comultiplication in the divided power algebra defines

natural homomorphisms

Ext∗P(Γd(r),Γdp
r−j(j))→ Ext∗P(Γd(r),Γp

r−j(j) ⊗ ...⊗ Γp
r−j(j)) =

= Ext∗P(I(r),Γp
r−j(j))⊗d =

∼
V ⊗dj

Ext∗P(Γdp
r−j(j),Γd(r))→ Ext∗P(Γdp

r−j(j), I(r) ⊗ ...⊗ I(r)) =

= Ext∗P(Γp
r−j(j), I(r))⊗d = U⊗dj

Lemma 1.11 shows that these homomorphisms are Σd-invariant and hence their

images are contained in the subspaces of Σd-invariant tensors, i.e. in Γd(
∼
V j) and

Γd(Uj) respectively.

Theorem 5.4. For all 0 ≤ j ≤ r and all d ≥ 0 the above constructed homomor-
phisms

Ext∗P(Γd(r),Γdp
r−j(j)) −→ Γd(

∼
V j)

Ext∗P(Γdp
r−j(j),Γd(r)) −→ Γd(Uj)

are isomorphisms.

Proof. The proof is essentially the same in both cases. We consider only the first one
(which is slightly more complicated). We proceed by induction on d. Consider the
first hypercohomology spectral sequence corresponding to the dual Koszul complex

Kz
#(j)
dpr−j : 0 −→ Γdp

r−j(j) −→ Γdp
r−j−1(j) ⊗ Λ1(j) −→ ... −→ Λdp

r−j(j) −→ 0
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Em,n1 = ExtnP(Γd(r),Γdp
r−j−m(j) ⊗ Λm(j)) =⇒ 0

The columns Em,∗1 of this spectral sequence with m 6≡ 0 mod pr−j are trivial.
Furthermore

Esp
r−j ,∗

1 = Ext∗P(Γd(r),Γ(d−s)pr−j(j) ⊗ Λsp
r−j(j)) =

= Ext∗P(Γd−s(r),Γ(d−s)pr−j(j))⊗ Ext∗P(Γs(r),Λsp
r−j(j))

Our induction hypothesis on d and Corollary 5.3 show further that comultiplication

defines (for s > 0) natural isomorphisms Esp
r−j ,∗

1
∼−→ Γd−s(

∼
V j)⊗Λs(Wj). The first

(and the only) non-trivial differential in this spectral sequence is

dpr−j : Esp
r−j ,∗

pr−j → E
(s+1)pr−j ,∗
pr−j . Considering the natural homomorphism of com-

plexes Kz
#(j)
dpr−j → (Kz

#(j)
pr−j )

⊗d (defined by comultiplication in the divided power and

exterior algebras) and using Proposition 4.1, we finally get a commutative diagram
of complexes

0 −−−−→ E0,∗
pr−j

dpr−j−−−−→ Ep
r−j ,∗
pr−j

dpr−j−−−−→ · · ·
dpr−j−−−−→ Edp

r−j ,∗
pr−j −−−−→ 0y ∼

=

y ∼
=

y
0 −−−−→ Γd(

∼
V j) −−−−→ Γd−1(

∼
V j)⊗Wj −−−−→ · · · −−−−→ Λd(Wj) −−−−→ 0.

Here the bottom row is the dual of the generalized Koszul complex for the iso-

morphism of graded vector spaces η :
∼
V j → Wj . The bottom row being acyclic,

we conclude that Esp
r−j ,∗

pr−j+1 = 0 for s > 1. This implies the vanishing of all higher

differentials and hence gives the following relations : 0 = E0,∗
∞ = E0,∗

pr−j+1. Thus the

top row in the above diagram is also acyclic and hence the left hand side vertical
arrow is also an isomorphism.

The following corollary follows immediately from Theorem 5.4 and the duality
isomorphism (1.12).

Corollary 5.5. For any 0 ≤ j ≤ r and any d ≥ 0, we have natural isomorphisms

Ext∗P(Sdp
r−j(j), Sd(r))

∼−→ Γd(Ext∗P(Sp
r−j(j), I(r)))

Ext∗P(Sd(r), Sdp
r−j(j))

∼−→ Γd(Ext∗P(I(r), Sp
r−j(j)))

To compute Ext∗(Λ(),Λ()) we proceed in the same way as above. For any 0 ≤
j ≤ r and any d ≥ 0, the comultiplication in the exterior algebra defines natural
homomorphisms

Ext∗P(Λd(r),Λdp
r−j(j)) −→ Ext∗P(Λd(r),Λp

r−j(j) ⊗ ...⊗ Λp
r−j(j)) =

= Ext∗P(I(r),Λp
r−j(j))⊗d

Ext∗P(Λdp
r−j(j),Λd(r)) −→ Ext∗P(Λdp

r−j(j), I(r) ⊗ ...⊗ I(r)) =

= Ext∗P(Λp
r−j(j), I(r))⊗d
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By Lemma 1.11, these homomorphisms are Σd-invariant and hence their images are

contained in Γd(Ext∗P(I(r),Λp
r−j(j))) and Γd(Ext∗P(Λp

r−j(j), I(r)) respectively.
We may now conclude the following theorem in a manner strictly parallel to that

for Theorem 5.4. We leave details to the reader.

Theorem 5.6. For all 0 ≤ j ≤ r and all d ≥ 0 the natural homomorphisms

Ext∗P(Λd(r),Λdp
r−j(j)) −→ Γd(Ext∗P(I(r),Λp

r−j(j)))

Ext∗P(Λdp
r−j(j),Λd(r)) −→ Γd(Ext∗P(Λp

r−j(j), I(r)))

are isomorphisms.

We phrase our next result in terms of chosen vector-space-basis in our Ext-
groups.

For an integer j, let φj denote the natural embedding φj : I(j) → Sp
j

and let φ#
j

denote the dual homomorphism φ#
j : Γp

j → I(j). We recall from [F-S, 4.5.6] that

composition with φ
(j)
r−j , j ≤ r, induces an isomorphism

ExtsP(I(r), I(r))→ ExtsP(I(r), Sp
r−j(j))

for s ≡ 0 mod 2pr−j . Let kzj denote the extension class in Extp
j−1
P (Sp

j

,Λp
j

) repre-

sented by the Koszul complex and let kz#
j denote the

extension class in Extp
j−1
P (Λp

j

,Γp
j

) represented by the dual Koszul complex.

Define er to be the class in Ext2pr−1

P (I(r), I(r)) defined by the following equation in

Ext2pr−1

P (I(r), Sp
r−1(1)) (cf. [F-S, §4]):

φ
(1)
r−1 · er = dpr−1+1(kz

(1)
r−1 · φ

(1)
r−1) ,

where dpr−1+1 is the differential (applied to the Ep
r−1−1,pr−1

pr−1 -term) of the second

hypercohomology spectral sequence associated to applying RHom(I(r),−) to the
De Rham complex Ω•pr .

Recall that the graded vector space Ext∗P(I(r), I(r)) is one dimensional in even
degrees < 2pr and is zero otherwise. We use the basis of Ext2m

P (I(r), I(r)) given by
the Yoneda products

er(m) = e
m0(r−1)
1 · · · emr−1

r m = m0 +m1p+ · · ·+mr−1p
r−1 (0 ≤ mi < p).

Thus, er(m)(1) = er+1(m) for all r and 0 ≤ m < pr. It is shown in [F-S, §4]

that the elements φ
(j)
r−jer(mp

r−j), 0 ≤ m < pj form a basis of the vector space

Vj = Ext∗P(I(r), Sp
r−j(j)). By duality, dual elements er(mp

r−j)φ
#(j)
r−j form a basis

of Uj = Ext∗P(Γp
r−j(j), I(r)).

In the following theorem, we summarize the computations of Theorem 4.5 and
the preceding results of this section, augmenting these computations by explicitly
describing the Hopf algebra structure (cf. Lemma 1.11).
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Theorem 5.8. Let j and r be integers, 0 ≤ j ≤ r.
(1) The tri-graded Hopf algebra

Ext∗P(Γ∗(j), S∗(r))

is a primitively generated polynomial algebra on generators er(mp
r−j)φ

#(j)
r−j

in Ext2pr−jm
P (Γp

r−j(j), I(r)), 0 ≤ m < pj, of tri-degree (2pr−jm, pr−j , 1).
Similarly, the tri-graded Hopf algebra

Ext∗P(Γ∗(r), S∗(j))

is a primitively generated polynomial algebra on generators φ
(j)
r−jer(mp

r−j)

in Ext2pr−jm
P (I(r), Sp

r−j(j)), 0 ≤ m < pj, of tri-degree (2pr−jm, 1, pr−j).
(2) The tri-graded Hopf algebra

Ext∗P(Γ∗(j),Λ∗(r))

is a primitively generated exterior algebra on generators er(mp
r−j)φ

#(j)
r−j in

Ext2pr−jm
P (Γp

r−j(j), I(r)), 0 ≤ m < pj, of tri-degree (2pr−jm, pr−j , 1).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P(Λ∗(r), S∗(j)).

(3) The tri-graded Hopf algebra

Ext∗P(Γ∗(r),Λ∗(j))

is a primitively generated exterior algebra on generators

kz
(j)
r−jφ

(j)
r−jer(mp

r−j) in Ext2mpr−j+pr−j−1
P (I(r),Λp

r−j(j)), 0 ≤ m < pj, of

tri-degree (2mpr−j + pr−j − 1, 1, pr−j).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P(Λ∗(j), S∗(r)).

(4) The tri-graded Hopf algebra

Ext∗P(Γ∗(r),Γ∗(j))

is a primitively generated divided power algebra on generators

(kz#
r−jkzr−j)

(j)φ
(j)
r−jer(mp

r−j) in Ext2mpr−j+2pr−j−2(I(r),Γp
r−j(j)),

0 ≤ m < pj, of tri-degree (2mpr−j + 2pr−j − 2, 1, pr−j).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P(S∗(j), S∗(r)).
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(5) The tri-graded Hopf algebra

Ext∗P(Γ∗(j),Γ∗(r))

is a primitively generated divided power algebra on generators

er(mp
r−j)φ

#(j)
r−j in Ext2mpr−j

P (Γp
r−j(j), I(r)), 0 ≤ m < pj, of tri-degree

(2mpr−j , pr−j , 1).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P(S∗(r), S∗(j)).

(6) The tri-graded Hopf algebra

Ext∗P(Λ∗(r),Λ∗(j))

is a primitively generated divided power algebra on generators

kz
(j)
r−jφ

(j)
r−jer(mp

r−j) in Ext2mpr−j+pr−j−1
P (I(r),Λp

r−j(j)), 0 ≤ m < pj, of

tri-degree (2mpr−j + pr−j − 1, 1, pr−j).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P(Λ∗(j),Λ∗(r)).

Proof. The construction of the map in Theorem 4.5 implies that the isomorphism

S∗(Vj)
∼−→ ExtP(Γ∗(r), S∗p

r−j(j)) (5.8.1)

is multiplicative. This identifies Ext∗P(Γ∗(r), S∗(j)) as a tri-graded algebra. Finally
the elements of Vj are primitive by dimension considerations. This proves (1).

The proofs of the remaining assertions follow in a similar, straightforward manner
from the computations given earlier in this section.

We derive from Theorem 5.8 the following Corollary which gives a partial answer
to a question raised in [F-S, 5.8 ].

Corollary 5.9. The image of er ∈ Ext2pr−1

P (I(r), I(r)) in Ext2pr−1

P (Γp
r−1(1),

Sp
r−1(1)) equals ep

r−1

1 (up to a non-zero scalar factor). Moreover if one modifies
the definition of er the way it was done in [S-F-B], then the image of er would be

exactly ep
r−1

1 .

Proof. We start by computing the image of er in Ext2pr−1

P (Γp(r−1), Sp(r−1)). To do

so note that the homomorphism Ext2pr−1

P (I(r), I(r)) → Ext2pr−1

P (Γp(r−1), Sp(r−1))
is a homogeneous component of a homomorphism of tri-graded Hopf algebras

ξ : Ext∗P(
∼
Γ∗(r),

∼
S∗(r))→ Ext∗P(Γ∗(r−1), S∗(r−1))
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induced by natural homomorphisms of exponential functors Γ∗(r−1) →
∼
Γ∗(r),

∼
S∗(r) → S∗(r−1). Here ∼ denotes the p-rarefication of an exponential functor,
i.e.

∼
An =

{
Am if n = pm

0 if n 6≡ 0 mod p

Since the element er ∈ Ext2pr−1

P (I(r), I(r)) is primitive in Ext∗P(
∼
Γ∗(r),

∼
S∗(r)) its

image in Ext∗P(Γ∗(r−1), S∗(r−1)) = S∗(Ext∗P(I(r−1), I(r−1))) also has to be prim-
itive. The subspace of primitive elements in a (primitively generated) symmet-

ric algebra S∗(V ) coincides with a linear span < V, V p, V p
2

, ... >. From this we
derive immediately that the only primitive element of tri-degree (2pr−1, p, p) in
S∗(Ext∗P(I(r−1), I(r−1)) is epr−1. Thus ξ(er) is a scalar multiple of epr−1. Since ξ is
multiplicative we conclude further that ξ(enr ) is a scalar multiple of epnr−1 for each
n. Repeating this construction r− 1 times we finally conclude that the image of er

in Ext2pr−1

P (Γp
r−1(1), Sp

r−1(1)) is a scalar multiple of ep
r−1

1 .
We proceed to show now that with the modification made in [S-F-B, 3.4] the

image of er in Ext2pr−1

P (Γp(r−1), Sp(r−1)) is exactly epr−1 (i.e. the corresponding
scalar factor is identity). Recall that (with the modification made in [S-F-B]) for
any n ≥ 2 the image of er under the natural homomorphism

Ext2pr−1

P (I(r), I(r)) −→ Ext2pr−1

GLn
(kn(r), kn(r))→ Ext2pr−1

GLn(1)
(kn(r), kn(r)) =

= H2pr−1(GLn(1), gl
(r)
n ) = Homk(gl(r)#n , H2pr−1

(GLn(1), k))

is non-trivial [F-S, §6] and coincides with the composition

gl(r)#n −→ Sp
r−1

(gl(1)#
n ) −→ H2pr−1

(GLn(1), k)

where the first arrow is the standard embedding and the second one is the edge
homomorphism in the May spectral sequence. Consider further the natural homo-
morphism

Ext2pr−1

P (Γp(r−1), Sp(r−1))→ H2pr−1

(GLn(1), (Γ
p(r−1)(kn))# ⊗ Sp(r−1)(kn)) =

= Homk(Γp(r−1)(kn)⊗ Γp(r−1)(kn#), H2pr−1

(GLn(1), k))

The image of ξ(er) under this map coincides with the composite

Γp(r−1)(kn)⊗ Γp(r−1)(kn#) � kn(r) ⊗ kn(r)# =gl(r)#n → Sp
r−1

(gl(1)#
n )→

→ H2pr−1

(GLn(1), k)

and, in particular, is non-trivial. Keeping in mind that the tensor product operation

Ext∗GLn(1)
(k, k)⊗ Ext∗GLn(1)

(k, k)→ Ext∗GLn(1)
(k, k)
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coincides with the usual product operation in the cohomology ring Ext∗GLn(1)
(k, k) =

H∗(GLn(1), k), using the description of the product operation in

Ext∗P(Γ∗(r−1), S∗(r−1)) in terms of the tensor product operation and the multiplica-

tive properties of the May homomorphism S∗(gl
(1)
n ) → H2∗(GLn(1), k) we easily

conclude that the image of epr−1 ∈ Ext2pr−1

P (Γp(r−1), Sp(r−1)) in

Homk(Γp(r−1)(kn)⊗ Γp(r−1)(kn#), H2pr−1

(GLn(1), k)

is given by the composition

Γp(r−1)(kn)⊗ Γp(r−1)(kn#) ↪→ (kn(r−1))⊗p ⊗ (kn(r−1)#)⊗p =

= (gl(r−1)
n )⊗p → (Sp

r−2

(gl(1)
n ))⊗p � Sp

r−1

(gl(1)
n )→ H2pr−1

(GLn(1), k)

A straight forward verification shows that the resulting maps Γp(r−1)(kn) ⊗
Γp(r−1)(kn#)→ H2pr−1

(GLn(1), k) coincide. Since this map is moreover non-trivial
we conclude that the constant relating ξ(er) and epr−1 is equal to identity.

To simplify the notations we adopt the following convention: for homogeneous
strict polynomial functors A,B in P we define

Ext∗P→F (A,B) = lim−→
m

Ext∗P(A(m), B(m))

Letting r vary over positive integers and j vary between 0 and r, and setting
h = r − j, we have the following consequence of Theorem 5.8.

Corollary 5.10. Let h be a non-negative integer.

(1) The tri-graded Hopf algebra

Ext∗P→F (Γ∗, S∗(h))

is a primitively generated polynomial algebra on generators e(mph)φ#
h in

Ext2phm
P→F (Γp

h

, I(h)), 0 ≤ m, of tri-degree (2phm, ph, 1).
Similarly, the tri-graded Hopf algebra

Ext∗P→F (Γ∗(h), S∗)

is a primitively generated polynomial algebra on generators φhe(mp
h) in

Ext2phm
P→F (I(h), Sp

h

), 0 ≤ m, of tri-degree (2phm, 1, ph).
(2) The tri-graded Hopf algebra

Ext∗P→F (Γ∗,Λ∗(h))

is a primitively generated exterior algebra on generators e(mph)φ#
h in

Ext2phm
P→F (Γp

h

, I(h)), 0 ≤ m, of tri-degree (2phm, ph, 1).
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A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P→F (Λ∗(h), S∗).

(3) The tri-graded Hopf algebra

Ext∗P→F (Γ∗(h),Λ∗)

is a primitively generated exterior algebra on generators kzhφhe(mp
h) in

Ext2mph+ph−1
P→F (I(h),Λp

h

), 0 ≤ m, of tri-degree (2mph + ph − 1, 1, ph).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P→F (Λ∗, S∗(h)).

(4) The tri-graded Hopf algebra

Ext∗P→F (Γ∗(h),Γ∗)

is a primitively generated divided power algebra on generators

kz#
h kzhφher(mp

h) in Ext2mph+2ph−2
P→F (I(h),Γp

h

), 0 ≤ m, of tri-degree

(2mph + 2ph − 2, 1, ph).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P→F (S∗, S∗(h)).

(5) The tri-graded Hopf algebra

Ext∗P→F (Γ∗,Γ∗(h))

is a primitively generated divided power algebra on generators e(mph)φ#
h in

Ext2mph

P→F (Γp
h

, I(h)), 0 ≤ m, of tri-degree (2mph, ph, 1).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P→F (S∗(h), S∗).

(6) The tri-graded Hopf algebra

Ext∗P→F (Λ∗(h),Λ∗)

is a primitively generated divided power algebra on generators kzhφhe(mp
h)

in Ext2mph+ph−1
P→F (I(h),Λp

h

), 0 ≤ m, of tri-degree (2mph + ph − 1, 1, ph). A
similar statement holds by duality for the tri-graded Hopf algebra

Ext∗P→F (Λ∗,Λ∗(h)).
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§6. Ext-groups between the classical functors in the category F .

As we see in this section, the Extension of Scalars formula (Theorem 3.4) and
the Comparison Theorem (Theorem 3.10) allow us in many cases to reduce the
computation of Ext-groups in the category F to the computation of appropriate
Ext-groups in the category P.

Throughout this section k is a finite field with q = pN elements, F = F(k) is the

category of functors Vfk → Vk and P = P(k) is the category of strict polynomial
functors. Finally, A∗ and B∗ are exponential (homogeneous) strict polynomial
functors with deg(Ai) = deg(Bi) = i.

For non negative integers h < N , and j, l, n, let Prhn(j, l) be the set of all
sequences j0, j1, . . . , jn−1, l1, . . . , ln of non negative integers with

j = j0 + · · ·+ jn−1 + l1p
N−h + · · ·+ lnp

nN−h

l = j0p
h + · · ·+ jn−1p

(n−1)N+h + l1 + · · ·+ ln

The obvious embedding Prhn(j, l) ↪→ Prhn+1(j, l) (taking jn = ln+1 = 0) is an

isomorphism, provided that p(n+1)N−h > j and pnN+h > l. We denote by Prh(j, l)
the limit set lim−→n Pr

h
n(j, l).

For any sequence j0, ..., jn−1, l1, ..., ln in Prhn(j, l) consider the following homo-
morphism

n−1⊗
s=0

Ext∗P→F (Ajs(sN+h), Bjsp
sN+h

)⊗
n⊗
t=1

Ext∗P→F (Altp
tN−h(h), Blt(tN))→

→
n−1⊗
s=0

Ext∗F (Ajs(sN+h), Bjsp
sN+h

)⊗
n⊗
t=1

Ext∗F (Altp
tN−h(h), Blt(tN)) =

=
n−1⊗
s=0

Ext∗F (Ajs(h), Bjsp
sN+h

)⊗
n⊗
t=1

Ext∗F (Altp
tN−h(h), Blt)→ Ext∗F (Aj(h), Bl)

Our first result determines Ext∗F (A∗, B∗) in terms of Ext∗P→F (A∗, B∗).

Theorem 6.1. Fix a non-negative integer h less than N . The resulting homomor-
phism⊕
Prh(j,l)

⊗
s≥0

Ext∗P→F (Ajs(sN+h), Bjsp
sN+h

)⊗
⊗
t≥1

Ext∗P→F (Altp
tN−h(h), Blt(tN))→

→ Ext∗F (Aj(h), Bl)

is an isomorphism.

Proof. Choose an integer n so that pnN−h > j, pnN > l and consider a tower of
finite field extensions L ⊃ K ⊃ k in which each stage is of degree n. Theorem 3.4
gives us a natural isomorphism

K ⊗k Ext∗F(k)(A
j(h), Bl) = Ext∗F(K)(A

j(h)
K ◦ (t ◦ τ), BlK) .
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Moreover, according to Lemma 3.6, the functor t◦τ may be identified with I⊕I(N)⊕
...⊕ I((n−1)N). The exponential property of A∗ gives now a natural isomorphism

A
j(h)
K ◦ (t ◦ τ) =

⊕
j0+...+jn−1=j

A
j0(h)
K ⊗ · · · ⊗Ajn−1((n−1)N+h)

K .

Extending scalars further from K to L and applying now the previous procedure
to the second variable, we get the following formula:

L⊗k Ext∗F(k)(A
j(h), Bl) =

⊕
j0+...+jn−1=j

l0+...+ln−1=l

Ext∗F(L)(
n−1⊗
s=0

A
js(sN+h)
L ,

n−1⊗
t=0

B
lt(tnN)
L ) .

In view of the exponential properties of A∗ and B∗, each summand in the above
formula may be further identified (cf. Corollary 1.8) with

⊕
j0,0+...+j0,n−1=j0 l0,0+...+l0,n−1=l0

. . . . . .

jn−1,0+...+jn−1,n−1=jn−1 ln−1,0+...+ln−1,n−1=ln−1

n−1⊗
s,t=0

Ext∗F(L)(A
js,t(sN+h)
L , B

lt,s(tnN)
L )

Note further that deg(A
js,t(sN+h)
L ) = js,t · psN+h ≤ j · p(n−1)N+h = j·card(L)

p(n2−n+1)N−h <

card(L) and also deg(B
lt,s(tnN)
L ) = lt,sp

tnN ≤ l · p(n−1)nN = l·card(L)
pnN

< card(L).

Theorem 3.10 and Lemma 3.11 now show that we may replace Ext∗F by Ext∗P→F
everywhere in the above formula. This implies, in particular, that the summand
corresponding to {jt,s, lt,s}t,s is trivial unless the corresponding degrees coincide,
i.e. unless we have the following relations: js,tp

sN+h = lt,sp
tnN for all s, t. It’s

easy to see from the choice of n that the above relation implies that js,t = lt,s = 0
unless t = 0 or t = 1. The remaining jt,s and ls,t are related by equations

l0,s = js,0p
sN+h , js,1 = l1,sp

(n−s)N−h

Since
∑
s,t js,t = j,

∑
s,t ls,t = l, we conclude that (j0, ..., jn−1, l1, ..., ln) =

(j0,0, ..., jn−1,0, l1,n−1, ..., l1,0) is an element of Prhn(j, l), i.e. we are left with the
direct sum over Prhn(j, l):

L⊗k Ext∗F(k)(A
j(h), Bl) =

⊕
Prhn(j,l)

L⊗k
n−1⊗
s=0

Ext∗P→F (Aj
s(sN+h), Bk

spsN+h

)⊗

⊗
n⊗
t=1

Ext∗P→F (Al
tptN−h(h), Bl

t(tN)).

Finally one checks without difficulty that the composite of the above isomorphism
with the extension of scalars in the homomorphism we started with is the identity
map.
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It is pleasing to reformulate the result of Theorem 6.1 in terms of the corre-
sponding Hopf algebras. Observe that for any s ≥ 0, t ≥ 1 we have natural
homomorphisms of tri-graded vector spaces

Ext∗P→F (A∗(sN+h), B∗)→ Ext∗F (A∗(sN+h), B∗) = Ext∗F (A∗(h), B∗)

Ext∗P→F (A∗, B∗(tN−h)) = Ext∗P→F (A∗(h), B∗(tN))→ Ext∗F (A∗(h), B∗(tN)) =

= Ext∗F (A∗(h), B∗)

Furthermore, it is easy to see that the tri-graded space Ext∗P→F (A∗(sN+h), B∗) is
psN+h-connected with respect to the total degree, whereas Ext∗P→F (A∗, B∗(tN−h))
is ptN−h-connected with respect to the total degree, which allows us to consider
the infinite tensor product⊗

s≥0

Ext∗P→F (A∗(sN+h), B∗)⊗
⊗
t≥1

Ext∗P→F (A∗, B∗(tN−h)) .

Suppose now that A∗ and B∗ are Hopf functors. The product operations in
Ext∗F (A∗(h), B∗) define a natural homomorphism from the above infinite tensor
product to Ext∗F (A∗(h), B∗). Moreover, assuming that A∗ (resp. B∗) is ε(A)-
commutative (resp. ε(B)-commutative), the above map is even a homomorphism
of Hopf algebras, provided that one endows the tensor product algebra with mul-
tiplication and comultiplication taking into account the sign convention given by
Lemma 1.11.

Corollary 6.2. Let A∗ and B∗ be commutative Hopf functors. The natural homo-
morphism⊗

s≥0

Ext∗P→F (A∗(sN+h), B∗)⊗
⊗
t≥1

Ext∗P→F (A∗, B∗(tN−h))→ Ext∗F (A∗(h), B∗)

is an isomorphism of tri-graded Hopf algebras.

Combining Corollary 6.2 with Corollary 5.9 we get the computation of various
important Ext-algebras in the category F .

Theorem 6.3. Let h be a non-negative integer.

(1) The tri-graded Hopf algebra

Ext∗F (Γ∗(h), S∗)

is a primitively generated polynomial algebra on generators

φh+sNe(mp
h+sN ) in Ext2ph+sNm

F (I(h), Sp
h+sN

), 0 ≤ m, 0 ≤ s, of tri-degree

(2ph+sNm, 1, ph+sN ) and generators e(mptN−h)φ#
tN−h in

Ext2ptN−hm
F (Γp

tN−h(h), I), 0 ≤ m, 1 ≤ t, of tri-degree (2ptN−hm, ptN−h, 1).
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(2) The tri-graded Hopf algebra

Ext∗F (Γ∗(h),Λ∗)

is a primitively generated exterior algebra on generators

kzh+sNφh+sNe(mp
h+sN ) in Ext2mph+sN+ph+sN−1

F (I(h),Λp
h+sr

), 0 ≤ m,
0 ≤ s, of tri-degree (2mph+sN + ph+sN − 1, 1, ph+sN ) and generators

e(mptN−h)φ
#(h)
tN−h in Ext2ptN−hm

F (Γp
tN−h(h), I), 0 ≤ m, 0 ≤ s, of tri-degree

(2ptN−hm, ptN−h, 1).
(3) The tri-graded Hopf algebra

Ext∗F (Γ∗(h),Γ∗)

is a primitively generated divided power algebra on generators

kz#
h+sNkzh+sNφh+sNe(mp

h+sN ) in Ext2mpsN+h+2psN+h−2
F (I(h),Γp

sN+h

),

0 ≤ m, 0 ≤ s, of tri-degree (2mph+sN+2ph+sN−2, 1, ph+sN ) and generators

e(mptN−h)φ
#(h)
tN−h in Ext2mptN−h

F (Γp
tN−h(h), I), 0 ≤ m, 1 ≤ t, of tri-degree

(2mptN−h, ptN−h, 1).
A similar statement holds by duality for the tri-graded Hopf algebra

Ext∗F (S∗(N−h), S∗).

(4) The tri-graded Hopf algebra

Ext∗F (Λ∗(h),Λ∗)

is a primitively generated divided power algebra on generators

kzh+sNφh+sNe(mp
sN+h) in Ext2mpsN+h+psN+h−1

F (I(h),Λp
sN+h

), 0 ≤ m,
0 ≤ s, of tri-degree (2mpsN+h + psN+h − 1, 1, psN+h) and generators

e(mptN−h)φ
#(h)
tN−hkz

#(h)
tN−h in Ext2mptN−h+ptN−h−1

F (Λp
tN−h(h), I), 0 ≤ m,

1 ≤ t, of tri-degree (2mptN−h + ptN−h − 1, ptN−h, 1)

Appendix: GL-cohomology and ExtF -groups.
A. Suslin

The main subject discussed in this appendix is the map on Ext-groups

Ext∗F (P,Q) −→ Ext∗k[GLn(k)](P (kn), Q(kn)) = H∗(GLn(k), P (kn)# ⊗Q(kn))

induced by the exact functor F(k) → {k[GLn(k)] − modules} : P 7→ P (kn)
(here k[GLn(k)] stands for the group ring of the discrete group GLn(k) over the
field k). All GLn(k)-modules considered below are always assumed to be k-vector
spaces on which the group GLn(k) acts by k-linear transformations (i.e. k[GLn(k)]-
modules), we abbreviate the notation Ext∗k[GLn(k)] to Ext∗GLn(k). Note that the

Ext∗GLn(k)(P (kn), Q(kn))-groups above stabilize with the growth of n, according to

a well-known Theorem of W. Dwyer [D], provided that the functors P and Q are
finite. We use the notation Ext∗GL(k)(P,Q) for the stable values of the corresponding
Ext-groups. The main result proved below is the following Theorem
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Theorem A.1. Let k be a finite field. Then the natural map

Ext∗F (P,Q) −→ Ext∗GL(k)(P,Q)

is an isomorphism for any finite functors P,Q ∈ F = F(k).

Over more general fields one has to compare Ext∗F -groups with the so called sta-
ble K-theory (see [B-P 1]). The above theorem shows that the conjecture stated in
[B-P 1] (saying that for finite functors stable K-theory equals topological Hochschild
homology) holds at least over finite fields. Apparently an appropriate modification
of the argument given below should work over any field of positive characteristic. I
did not try to work out this more general case, the more so that ExtF -groups don’t
seem to be computable unless we are dealing with finite fields.

Theorem A.1 was known to be true (in a more general situation) in case P = Q =
I by a work of Dundy and McCarthy [D-M]. For finite fields a purely algebraic proof
of this result was given in [F-S]. In a recent preprint [B-P 2] Betley and Pirashvili
sketch a different proof of theorem A.1, following the approach developed in [F-S].
The treatment of transfer maps in [B-P 2] does not seem to be correct and before
it’s fixed it’s difficult to say whether this approach works or not. Throughout this
appendix k = Fq is a finite field of characteristic p (with q elements).

Lemma A.2. For any finite functors A,B ∈ F there is a natural duality isomor-
phism Ext∗GL(k)(A,B) = Ext∗GL(k)(B

#, A#). which makes the following diagram
commute

Ext∗F (A,B)
∼−−−−→ Ext∗F (B#, A#))y y

Ext∗GL(k)(A,B)
∼−−−−→ Ext∗GL(k)(B

#, A#)

Proof. For any s ≥ 0 we can find an integer N(s) such that for all n ≥ N(s) we
have canonical identifications

ExtsGL(k)(A,B) = ExtsGLn(k)(A(kn),B(kn))

ExtsGL(k)(B
#, A#) = ExtsGLn(k)(B

#(kn), A#(kn)) =

= ExtsGLn(k)(B(kn#)#, A(kn#)#).

Furthermore for any finite dimensional GLn(k)-modules M,N the exact contravari-
ant functor M 7→M# defines natural duality isomorphisms (cf. Lemma 1.12)

Ext∗GLn(k)(M,N)
∼−→ Ext∗GLn(k)(N

#,M#).

Taking here M = A(kn), N = B(kn) we identify ExtsGLn(k)(A(kn), B(kn)) with

ExtsGLn(k)(B(kn)#, A(kn)#) = ExtsGLn(k)(B
#(kn#), A#(kn#)). Finally for any

GLn(k)-module M consider a new GLn(k)-module
∼
M , which coincides with M
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as a k-vector space and the action of GLn(k) on which is obtained from the original
one by means of the automorphism

GLn(k)
∼−→ GLn(k) : α 7→ (αT)−1.

The functor M 7→
∼
M is obviously an equivalence of the category of GLn(k)-modules

with itself and hence defines natural isomorphisms

Ext∗GLn(k)(M,N)
∼−→ Ext∗GLn(k)(

∼
M,

∼
N).

To finish the proof it suffices to note now that (for any functor A ∈ F and any n)

the GLn(k)-modules
∼

A(kn) and A(kn#) are canonically isomorphic.

Lemma A.3. Let V ∈ Vf be a finite dimensional vector space over k. Assume
that n ≥ dim V . Then for any GLn(k)-module M we have isomorphisms:

Ext∗GLn(k)(PV (kn),M) =
⊕
W⊂V

H∗(

(
1n−dimW ∗

0 GLdimW (k)

)
,M).

Here PV is the projective generator of F , discussed in §1 and W ⊂ V on the right
runs through all subspaces of the vector space V .

Proof. PV (kn) = k[Hom(V, kn)] is a permutational GLn(k)-module. Two homo-
morphisms f, g : V → kn are in the same GLn(k)-orbit if and only if Ker f =
Ker g. Thus orbits of the action of GLn(k) on Hom(V, kn) are in one to one cor-
respondance with subspaces W ⊂ V . For any W ⊂ V choose a representative fW
of the corresponding orbit so that Im fW = kn−dim W - the standard coordinate
subspace in kn. It’s clear that the stabilizer of fW coincides with the affine group(

1n−dimW ∗
0 GLdimW (k)

)
Thus our statement follows from Shapiro’s Lemma.

Proposition A.4. Let B ∈ F be a finite functor. For any s ≥ 0 there exists N(s)
such that for n ≥ N(s)

Hi(GLn(k), B(kn)) =

{
B(0) for i = 0

0 for 0 < i ≤ s

Proof. This follows immediately from the theorem of Betley [B], stating that over
any field k cohomology of GLn(k) with coefficients in B(kn) coincide (for n big
enough with respect to the cohomology index) with cohomology of GLn(k) with
coefficients in the trivial submodule B(0), and the theorem of Quillen [Q], giving
the vanishing of higher dimensional cohomology in case of finite fields.
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Let A ∈ F be any functor and let j be a non-negative integer. For any V ∈ V
set

Hi
A,j(V ) = Hi(Hom(V, kj), A(kj ⊕ V )),

where the action of Hom(V, kj) on A(kj ⊕ V ) is defined via the natural embedding

Hom(V, kj) =

(
1j Hom(V, kj)
0 1V

)
↪→ GL(kj ⊕ V ).

Each k-space homomorphism V → V ′ defines a homomorphism of (abelian) groups
Hom(V ′, kj) → Hom(V, kj) and a homomorphism of Hom(V ′, kj)-modules
A(kj⊕V )→ A(kj⊕V ′), thus defining a homomorphism in cohomology Hi

A,j(V )→
Hi
A,j(V

′). One checks immediately that in this way Hi
A,j becomes a functor from

Vf to V, i.e an element of F .

Lemma A.5. Assume that the functor A is finite. Then all functors Hi
A,j are

finite as well. Moreover, Hi
A,j(0) = 0 for i > 0 and H0

A,j(0) = A(kj).

Proof. The second part of the statement is obvious. To prove the first one we
consider first a special case A = Sm1 ⊗ ...⊗ Sml . To simplify notations we use the
following multi-index notation: for every multi-index i• = (i1, ..., il) set

Si• = Si1 ⊗ ...⊗ Sil .

We consider the usual partial ordering on the set of multi-indices, and for each
multi-index i• we set |i•| = i1 + ...+ il. Note that the functor Sm• is ”exponential”,
more precisely we have the following obvious formula:

Sm•(kj ⊕ V ) =
⊕

0≤i•≤m•

Sm•−i•(kj)⊗ Si•(V ).

Consider an increasing filtration on Sm•(kj ⊕ V ) defined by the formula

Φt =
⊕

0≤i•≤m•
|i•|≤t

Sm•−i•(kj)⊗ Si•(V ).

One checks easily that the action of Hom(V, kj) respects this filtration and more-
over the action of Hom(V, kj) on subsequent factors of this filtration Φt/Φt−1 =⊕
|i•|=t S

m•−i•(kj) ⊗ Si•(V ) is trivial. Consider the spectral sequence defined by

the above filtration:

Es,t1 = Hs(Hom(V, kj), k)⊗
⊕

0≤i•≤m•
|i•|=t

Sm•−i•(kj)⊗ Si•(V )⇒ Hs+t
Sm• ,k(V ).

Observe finally that the above filtration and hence also the above spectral sequence
depend functorially on V . In particular Es,tr ∈ F for all s, t, r. A.well known
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computation of cohomology of a finite dimensional vector k-space with trivial co-
efficients implies that the functors Es,t1 are finite. Immediate induction on r shows
further that all functors Es,tr 1 ≤ r ≤ ∞ are finite. Finally, the functor Hi

Sm• ,j

has a finite filtration all subsequent factors of which are finite and hence is finite as
well.

For a general finite A, one can find a resolution

0→ A→ A0 → A1 → ...

in which every functor Ai is a finite direct sum of functors of the form Sm• . To
conclude the proof consider the spectral sequence defined by this resolution

Es,t1 = Hs
At,k(V )⇒ Hs+t

A,k (V )

(which depends functorially on V ) and apply the same argument as above.

Corollary A.6. Let B ∈ F be a finite functor. Then for every s, j ≥ 0 there exists
N(s, j) such that for n ≥ N(s, j)

Hi(

(
1j ∗
0 GLn−j(k)

)
, B(kn)) =

{
B(kj) if i = 0

0 if 0 < i ≤ s

Proof. Consider the Hochschild-Serre spectral sequence corresponding to the group
extension

1→ Hom(kn−j , kj)→
(

1j ∗
0 GLn−j(k)

)
→ GLn−j(k)→ 1

Ea,b2 = Ha(GLn−j(k), Hb
B,j(k

n−j))⇒ Ha+b(

(
1j ∗
0 GLn−j(k)

)
, B(kn))

and apply Lemma A.5 and Proposition A.4.

Combining Lemma A.3 with Corollary A.5, we immediately conclude the follow-
ing

Corollary A.7. Let B be a finite functor. Then for any V ∈ V and any s ≥ 0,
there exists N(V, s) such that for n ≥ N(V, s)

ExtiGLn(k)(PV (kn), B(kn)) =

{ ⊕
W⊂V B(V/W ) if i = 0

0 if 0 < i ≤ s

Note that unlike the situation of Lemma A.3 the isomorphism

HomGLn(k)(PV (kn), B(kn)) =
⊕
W⊂V

B(V/W )
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is now canonical: it associates to a family {bW ∈ B(V/W )}W⊂V a GLn(k)-
equivariant homomorphism

PV (kn) = k[Hom(V, kn)]→ B(kn)

which sends f : V → kn to B(f)(bKer f ), where f : V/Ker f → kn is the induced
homomorphism.

If A,B ∈ F are functors for which the sequence ExtsGLn(k)(A(kn), B(kn)) stabi-

lizes with the growth of n, then we use the notation ExtsGL(k)(A,B) for the stable
value of this Ext-group. Thus Corollary A.7 tells us, in particular, that

HomGL(k)(PV , B) =
⊕
W⊂V

B(V/W )

for a finite B. Note that every k-linear homomorphism V → V ′ defines a homo-
morphism of functors PV ′ → PV and hence induces also a homomorphism

HomGL(k)(PV , B)→ HomGL(k)(PV ′ , B).

This makes HomGL(k)(PV , B) =
⊕

W⊂V B(V/W ) into a functor from Vf to it-
self. One checks easily, that the map

⊕
W⊂V B(V/W ) →

⊕
W ′⊂V ′ B(V ′/W ′),

corresponding to a k-linear homomorphism f : V → V ′ looks as follows: it takes
the W -summand on the left to the f(W ) summand on the right and the corre-
sponding homomorphism B(V/W ) → B(V ′/f(W )) coincides with B(f), where
f : V/W → V ′/f(W ) is the homomorphism induced by f .

More generally, for any (not necessarily finite) functor B ∈ F we can define a
new functor aB ∈ F , by setting

(aB)(V ) =
⊕
W⊂V

B(V/W )

and defining homomorphisms (aB)(f) (for f : V → V ′) in the same way as above.
Obviously we get in this way an exact functor a : F → F . By the universal property
of PV ∈ F we conclude that for any finite functor B we have a natural isomorphism
HomGL(PV , B) = HomF (PV , aB).

Moreover, for any B ∈ F there is a natural monomorphism B ↪→ aB, identifying
B(V ) with the direct summand in (aB)(V ) =

⊕
W⊂V B(V/W ) corresponding to

the zero subspace. Define
∼
aB = aB/B. This gives us another exact functor from

F to itself. Except for the trivial case B = 0 the functor
∼
aB is never finite.

Theorem A.8. For any finite functors A,B ∈ F we have a natural identification

Ext∗GL(k)(A,B) = Ext∗F (A, aB).

After this identification, the natural homomorphism Ext∗F (A,B)→ Ext∗GL(k)(A,B)

corresponds to the homomorphism Ext∗F (A,B)→ Ext∗F (A, aB) defined by the nat-
ural embedding B ↪→ aB.
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Proof. Choose a resolution of A:

0←− A←− P0 ←− P1 ←− ...

in which each Pi is a finite direct sum of functors of the form PV and consider the
spectral sequence

Ei,j1 = ExtiGLn(k)(Pj(k
n), B(kn))⇒ Exti+jGLn(k)(A(kn), B(kn)).

Corollary A.7 shows that for n big, enough with respect to s, all Ei,j1 -terms with
0 < i ≤ s, 0 ≤ j ≤ s are zero. Thus for n big enough, ExtsGLn(k)(A(kn), B(kn))
coincides with the s-th homology group of the complex

0→ HomGLn(k)(P0(kn), B(kn)) = HomF (P0, aB)→
→ HomGLk(F )(P1(kn), B(kn)) = HomF (P1, aB)→ ...

i.e. coincides with ExtsF (A, aB).

Corollary A.9. For finite functors A,B ∈ F the following conditions are equiva-
lent

(1) The natutal homomorphism Ext∗F (A,B) → Ext∗GL(k)(A,B) is an isomor-
phism.

(2) The natural homomorphism Ext∗F (A,B) → Ext∗F (A, aB) is an isomor-
phism.

(3) Ext∗F (A,
∼
aB) = 0.

We need a natural generalization of the functor a : F → F to the case of bi-
functors (and more generally poly-functors). Denote by Fn the category whose
objects are covariant functors of n variables Vf × ... × Vf → V (and morphisms
are natural transformations). For every functor B ∈ Fn define a new functor
an(B) ∈ Fn using the formula

(anB)(V1, ..., Vn) =
⊕

W1⊂V1...Wn⊂Vn

B(V1/W1, ..., Vn/Wn)

and defining anB on morphisms in the same way as above. Denote further by

Vf
D−→←−
Π
Vf × ...× Vf

the diagonal and the direct sum functors.

Proposition A.10. For any functors A ∈ F , B ∈ Fn we have a natural split
monomorphism

Ext∗F (A, a(B ◦D)) ↪→ Ext∗Fn(A ◦Π, anB).
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Proof. The standard adjunction formula (1.7.1) shows that

Ext∗Fn(A ◦Π, anB) = Ext∗F (A, (anB) ◦D)

Now it suffices to note that there are homomorphisms (natural in V )

(a(B ◦D))(V ) =
⊕
W⊂V

B(V/W, ..., V/W )
i−→←−
p

((anB) ◦D)(V ) =

=
⊕

W1⊂V,...,Wn⊂V
B(V/W1, ..., V/Wn)

Here i takes W -summand on the left to the (W, ...,W )-summand on the right and p
takes (W1, ...,Wn)-summand on the right to the W1 + ...+Wn-summand on the left
(and the corresponding maps from one summand to the other are the natural ones).
Obviously pi = 1 so that a(B ◦D) is canonically a direct summand in (anB) ◦D.

The following lemma is obvious from the construction

Lemma A.11. For any B1, ..., Bn ∈ F we have natural isomorphism of functors

an(B1 � ...�Bn) = aB1 � ...� aBn

Corollary A.12. Let A• ∈ F be a (graded) exponential functor. Then for any
functors B1, ..., Bn ∈ F and any s ≥ 0 we have a natural split monomorphism

Ext∗F (As, a(B1 ⊗ ...⊗Bn)) ↪→
⊕

s1+...+sn=s

n⊗
i=1

Ext∗(Asi , a(Bi))

Proof. This follows immediately from Proposition A.10, Lemma A.11 and the Kun-
neth formula (1.7.2).

Corollary A.13. In conditions and notations of Corollary A.12 assume in addi-
tion that the functors Bi are without constant term (i.e. Bi(0) = 0). Assume fur-

ther that n > 1 and the natural homomorphisms Ext∗F (As
′
, Bi) → Ext∗F (As

′
, aBi)

are isomorphisms for all i and all s′ < s. Then the homomorphism

Ext∗F (As, B1 ⊗ ...⊗Bn)→ Ext∗F (As, a(B1 ⊗ ...⊗Bn))

is an isomorphism

Proof. This follows immediately from the commutative diagram

Ext∗F (As, B1 ⊗ ...⊗Bn)
∼
=−−−−→

⊕
s1+...+sn=s

⊗n
i=1 Ext∗F (Asi , Bi)y y∼=

Ext∗F (As, a(B1 ⊗ ...⊗Bn))
↪→−−−−→

⊕
s1+...+sn=s

⊗n
i=1 Ext∗(Asi , aBi)

The right hand side vertical arrow in this diagram is an isomorphism since sum-
mands, corresponding to n-tuples (s1, ..., sn) with si = 0 for some i are trivial (the
functors Bi and aBi being without constant term).

Now we are prepared to start the proof of the Theorem A.1. We begin with a
special case when both functors A and B are additive.
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Proposition A.14. The natural homomorphism

Ext∗F (I(s), I)→ Ext∗GL(k)(I
(s), I) = Ext∗F (I(s), aI)

is an isomorphisms for all s ≥ 0.

Proof. This follows immediately from a Theorem of Dundy and McCarthy [D-M].
Alternatively one can proceede as follows. We may clearly assume that 0 ≤ s < r
( where q = pr). Both sides are zero (by weight considerations) unless s = 0. So
assume that s = 0 and consider the following commutative diagram

lim−→m≥0 Ext∗P(I(m), I(m))
∼−−−−→ Ext∗GL(k)(I, I)

∼
=

y =

y
Ext∗F (I, I) −−−−→ Ext∗GL(k)(I, I)

The top horizontal arrow is an isomorphism - this is just a reformulation of theorem
7.6 [F-S]. The left vertical arrow is an isomorphism - this follows from our strong
comparison theorem (Theorem 3.10) or directly from computation of both groups
presented in [F-L-S] and [F-S] respectively. Thus the bottom horizontal arrow is
an isomorphism as well.

Proposition A.15. The natural homomorphisms

Ext∗F (I(s), Sn)→ Ext∗F (I(s), aSn)

Ext∗F (I(s),Λn)→ Ext∗F (I(s), aΛn)

are isomorphisms for all n and s.

Proof. We proceede by induction on n, using Proposition A.14 as the induction

base. Applying the exact functor
∼
a to the Koszul and De Rham complexes we get

the following two complexes:

0→ ∼
aΛn → ∼

a(Λn−1 ⊗ S1)→ ...→ ∼
a(Λ1 ⊗ Sn−1)→ ∼

aSn → 0

0→ ∼
aSn → ∼

a(Sn−1 ⊗ Λ1)→ ...→ ∼
a(S1 ⊗ Λn−1)→ ∼

aΛn → 0

The first of these two complexes is always acyclic, the second one is acyclic if n 6≡ 0

mod (p) and has homology isomorphic to
∼
a((Sm−i⊗Λi)(1)) = (

∼
a(Sm−i⊗Λi))(1) if

n = pm. Induction hypothesis and Corollary A.13 show that Ext∗F (I(s), (
∼
a(Sm−i⊗

Λi))(1)) = 0. Thus the second hypercohomology spectral sequences in both cases
consist of zeroes only and hence the limit of the first spectral sequences is zero.
On the other hand, Corollary A.13 implies that the E1-term of both first hyperco-
homology spectral sequences could have only two nonzero columns and hence the
differentials

dn : Ext∗F (I(s),
∼
a(Λn))→ Ext

∗−(n−1)
F (I(s),

∼
a(Sn))

d′n : Ext∗F (I(s),
∼
a(Sn))→ Ext

∗−(n−1)
F (I(s),

∼
a(Λn))

are isomorphisms. Using an additional induction on the cohomology index we easily
conclude the proof.

Applying the duality isomorphisms of Lemma A.2 we derive from Proposition
A.15 the following
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Corollary A.16. The natural homomorphisms

Ext∗F (Γn, I(s))→ Ext∗F (Γn, aI(s))

Ext∗F (Λn, I(s))→ Ext∗F (Λn, aI(s))

are isomorphisms for all n, s.

Proposition A.17. The natural homomorphisms

Ext∗F (Γm(s), Sn)→ Ext∗F (Γm(s), aSn)

Ext∗F (Γm(s),Λn)→ Ext∗F (Γm(s), aΛn)

are isomorphisms for all m,n, s.

Proof. We use induction on n and repeat word by word the argument used in the
proof of the Proposition A.15, using now Corollary A.16 as the induction base.

Corollary A.18. The natural homomorphism

Ext∗F (Γm1 ⊗ ...⊗ Γms , Sn1 ⊗ ...⊗ Snt) −→ Ext∗F (Γm1 ⊗ ...⊗ Γms , a(Sn1 ⊗ ...⊗ Snt))

is an isomorphism for all m1, ...,ms, n1, ..., nt.

Proof. Assume first that s = 1. In this case our statement follows from Corollary
A.13 and Proposition A.17. Lemma A.2 shows further that the statement holds
also (for any s) in case t = 1. The general case may be now obtained in the same
way as above, applying Corollary A.13 to the exponential functor Γ• ⊗ ...⊗ Γ•︸ ︷︷ ︸

s

.

End of the Proof of the Theorem A.1.
We can construct resolutions

0→ B → B0 → B1 → ...

0←− A←− A0 ←− A1 ←− ...

in which all Bi are finite direct sums of functors of the form Sn1 ⊗ ... ⊗ Snt and
all Ai are finite direct sums of functors of the form Γm1 ⊗ ... ⊗ Γms . Comparing
the corresponding hypercohomology spectral sequences and using Corollary A.18
we get the desired result.
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