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The Chow Moving Lemma is a theorem which asserts that a given algebraic s-cycle
on a smooth algebraic variety X can be moved within its rational equivalence class to
intersect properly a given r-cycle on X provided that r + s ≥ dim(X) (cf. [Chow], [S2]).
In the past few years, there has been considerable interest in studying spaces of algebraic
cycles rather than simply cycles modulo an equivalence relation. With this in mind, it is
natural to ask whether one can move a given “bounded family” of s-cycles on the smooth
variety X to intersect properly a given “bounded family” of r-cycles. The main point of
this paper is to formulate and prove just such a result. In Theorem 3.1, we demonstrate
that for any integer e and any smooth projective variety X, one can simultaniously and
algebraically “move” all effective s-cycles of degree ≤ e on X so that each such cycle meets
every effective r-cycle of degree ≤ e on X in proper dimension.

The primary motivation for this Moving Lemma for Cycles of Bounded Degree was
the possibility of a duality theorem between cohomology and homology theories defined
in terms of homotopy groups of cycle spaces. Using Theorem 3.1, we have proved such
a duality theorem for complex quasi-projective varieties in [F-L2]. We prove our Moving
Lemma for varieties over an arbitary infinite field, permitting a proof in [F-V] of a duality
theorem for “motivic cohomology and homology”.

The reader will find that our Moving Lemma has numerous good properties. First of
all, the move is given as an algebraic move (parametrized by a punctured projective line)
on Chow varietes. Although this move is “good” only for s-cycles of bounded degree, it
is defined on all effective s-cycles. Moreover, the move starts at “time 0” by expressing
an effective s-cycle Z as a difference of effective s-cycles both of which have intersection
properties no worse than Z. Finally, our Moving Lemma is applicable to smooth quasi-
projective varieties, for it is stated for a possibly singular projective variety X resulting in
a conclusion of proper intersection off the singular locus of X.

The classical motivation for the moving lemma was to define an intersection product
on algebraic cycles modulo rational equivalence, thereby establishing the Chow ring A∗(X).
Some of the classical literature overlooked the question of whether or not intersection of
cycles defined via a moving lemma is independent of the move (e.g., [Chow], [R], [S2];
on the other hand, cf. [Chev], [S3])). One direct consequence of our Moving Lemma is
a proof for smooth quasi-projective varieties that the intersection product is indeed well
defined independent of the choice of move (Theorem 3.4). Of course, the intersection
product now has an intrinsic formulation for all smooth algebraic varieties due to Fulton
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and MacPherson [Fu]. We should emphasize that our arguments are projective in nature,
and thus apply directly only to quasi-projective varieties.

We gratefully acknowledge helpful comments from William Fulton, Andrei Suslin, and
Vladimir Voevodsky. We are especially indebted to Ofer Gabber who foresaw the validity
of such a moving lemma for families and directed us to local estimates arising in the proof
of the key Theorem 1.1.

0. Definitions, Conventions, and a Brief Outline

We adopt the following conventions thoughout. We fix a ground field k, choose an
algebraic closure k ⊃ k, and consider projective spaces Pn over k of various dimensions
n. A projective variety over k is a reduced and absolutely irreducible algebraic k-
scheme which admits a (Zariski) closed embedding in some projective space Pn. A quasi-
projective variety over k is a Zariski open subset of some projective algebraic variety
over k whose complement has defining ideal also defined over k. The set of geometric
points X(k) of such a quasi- projective variety X is the set of morphisms Spec(k) → X
of schemes over k. For a point x on a quasi-projective variety X, we denote by OX,x the
stalk at x ∈ X of the structure sheaf of X and by mx the maximal ideal of this local
ring. An algebraic cycle Z of dimension r on a quasi-projective variety X is an integral
combination of closed, r-dimensional subvarieties of X, which are (reduced, irreducible but
not necessarily absolutely irreducible and) defined over k. We say Z is effective if the
integer coefficients are all positive. Given a cycle Z on X, we define its support to be
the algebraic subset |Z| ⊂ X consisting of the union of the irreducible components of Z.
If Y and Z are cycles on X of dimension r and s respectively with r + s ≥ m = dim(X),
we say that Y and Z intersect properly if each component of |Y | ∩ |Z| has dimension
≤ r + s −m. If X is smooth and if Y and Z intersect properly, then the intersection
product Y • Z is a well- defined cycle of dimension r + s−m on X (See [Fu]).

Let X ⊂ Pn be a closed embedding over k of an m- dimensional projective variety X.
For integers d ≥ 0 and r with 0 ≤ r ≤ dim(X), we denote by Cr,d(X) the Chow variety
of effective r-cycles of degree d on X (cf. [S1]). The disjoint union

Cr(X) =
∐
d≥0

Cr,d(X)

has the structure of an abelian monoid and is called the Chow monoid. The geometric
points Cr(X)(k) of this Chow monoid constitute the (discrete) monoid of effective r-cycles
on Xk, the base-change of X to Spec(k). (See [F,1.2] for a discussion of the the k′-rational
points of Cr(X) for any k′/k.)

Given an r-cycle Y and an s-cycle Z on a projective variety X ⊂ Pn of dimension
m with r + s ≥ m, the classical Chow Moving Lemma (cf. [R]) asserts the existence of
a rational equivalence between Z and a necessarily ineffective s-cycle Z ′ which intersects
Y properly at all smooth points of X. Roughly speaking the proof proceeds as follows.
One considers a linear projection πL : Pn −→ Pm whose vetex L ∼= Pn−m−1 does not
meet X and constructs the projecting cone CL(Z) = π∗L(πL∗(Z)) of Z. Since πL

∣∣
X

is a
finite morphism, CL(X)•X is a well-defined s-cycle on X which can be moved to intersect
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Y properly by moving the cone CL(Z) in Pn. The idea then is to choose L so that the
residual cycle

RL(Z) = CL(Z) •X − Z

intersects Y properly at least at all points outside the ramification locus of pL
def= πL

∣∣
X

.
Furthermore, any component of excess intersection of |RL(Z)| ∩ |Y | lies in ram(pL)∩ |Z| ∩
|Y |. Thus, if we choose L1, . . . , Lm+1 so that ∩iram(pLi

) is contained in the singular locus
of X, then after m+ 1 iterations the residual cycle RLm+1 ◦RLm ◦ · · · ◦RL1(Z) will meet
Y properly at all regular points of X.

In our paper we shall carry through this argument so that it applies simultaneously to
all effective cycles Y,Z of degree bounded by any specified positive integer e. To do this we
consider the reimbeddings X ↪→ PMd via the Veronese embeddings Pn ↪→ PMd of degree
d. For each d we consider the subset UX(d) ⊂ P(Γ(OPn(d)m+1)) of those (m + 1)-tuples
of degree d hyperplanes whose intersection does not meet X. The main point is to show
that the codimension of “bad L’s” in UX(d), i.e., those for which RL(Z) does not have an
improved intersection with Y , goes to infinity as d goes to infinity. This is achieved in §1.

In §2 we construct the moving of the projecting cones. This is conventionally done by
projective transformations of the ambient Pn. Here we introduce a different method which
is related to the movings introduced in [L] and algebraicized in [F] to prove the “algebraic
suspension theorem” in Lawson homology. This argument essentially verifies that effective
s-cycles of bounded degree in Pn can be moved to intersect properly a hyperplane. Here
we generalize this argument so that it applies to all effective r-cycles of bounded degree,
where s+ r ≥ n, rather than to a single hyperplane.

In §3 we present our main results. In addition to Theorems 3.1 and 3.4 mentioned
above, we prove in Theorem 3.5 that the intersection product on homotopy groups of cycle
spaces on a smooth, projective complex variety (cf. [F-G]) can be represented by the
intersection of families of cycles which have been moved to intersect properly. In Theorem
3.7, we present a basic ingredient of duality theorems for cycle spaces. It is the assertion
that for a flat map X → B from a smooth variety, families of s-cycles on X with s ≥ dimB
can be moved to be equidimensional over B.

1. Residual cycles

Consider an m-dimensional projective variety X provided with a closed embedding
X ⊂ Pn over k. Choose a positive integer d and define

UX ≡ UX(d) ⊂ P(Γ(OPn(d)m+1))

to be the Zariski open set of those F = (f0, . . . , fm) with the property that the zero
locus LF = {t ∈ Pn : F(t) = 0} misses X and thus has codimension m + 1 in Pn.
(More precisely, F is a k-rational point of the indicated Zariski open subset.) Each such
F determines a finite morphism (defined over k)

pF : X −→ Pm (1.0.1)
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which can be viewed as follows. Let v : Pn −→ PM denote the Veronese embedding of
degree d (so M =

(
n+d
d

)
− 1). Then each F ∈ UX determines a surjective linear projection

πF : PM −−− > Pm (1.0.2)

with the property that pF = πF ◦ v
∣∣
X

. The condition F(x) 6= 0 for x ∈ X is equivalent to

the condition that the linear subspace L(F) def= the vertex of the projection πF, does not
meet v(X).

Suppose now that Y, Z ⊂ X are closed algebraic subsets of pure dimension r and s
respectively, where r+s ≥ m. Let Y ×Z−∆ denote (Y ×Z)∩ (X2−diag(X)) and denote
by Y ?F Z the following closed subset of Y × Z −∆:

Y ?F Z ≡ {(y, z) : y 6= z, pF(y) = pF(z)}

for any F ∈ UX . We begin by investigating the condition on F ∈ UX that Y ?F Z should
have pure dimension r + s−m.

An interesting special case of the following theorem is the case in which Y equals Z,
a cycle of dimension r ≥ m/2 on the projective variety X of dimension m. Then, our
theorem asserts for “most” projections of sufficiently high degree that the projection is
injective on components of Z off a subset of dimension no greater than 2r −m.

In the proof of Theorem 1.1, we use repeatedly the theorem of upper semi-continuity
of dimensions of fibres of a map of algebraic varieties (cf. [Mu;I.8]).

Theorem 1.1 Let X ⊂ Pn be a closed embedding over k of an m-dimensional projective
variety X. Consider closed algebraic subsets Y, Z ⊂ X of pure dimension r, s respectively,
and assume that r + s ≥ m. Then for any F ∈ UX(d), each irreducible component of
Y ?F Z has dimension ≥ r + s−m.

Fix any integer N > 0, and suppose for each closed point w = (y, z) ∈ Y ×Z−∆ and
for each ϕ ∈ Γ(OPn(d)) with ϕ(y) 6= 0 6= ϕ(z) that the map

Γ(OPn(d)) −→ OY,y/mN+1
y ×OZ,z/mN+1

z ,

sending f to the restrictions of f/ϕ, is surjective . Then

B(d){Y,Z} ⊂ UX(d)

has Zariski closure in UX(d) of codimension at least N − r − s, where B(d){Y,Z} consists
of those F for which some component of Y ?F Z has dimension > r + s−m .

Proof. For notational convenience, we write B{Y,Z} ⊂ UX for B(d){Y,Z} ⊂ UX(d).
Consider the subvariety (closed by upper semi-continuity)

B ≡ {(y, z,F) : some component of Y ∗F Z has dim > r + s−m; (y, z) ∈ (Y ?F Z)}

⊂ (Y × Z −∆)× UX ,
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and let Bw denote the fibre of pr1,2 : B → (X × Y )−∆ above w ∈ (X × Y )−∆. We shall
prove that

the codimension of Bw in {w} × UX is ≥ N (1.1.1)

for all w ∈ (X × Y ) − ∆. Since the image of B under pr3 : B → UX equals BY,Z and
since dim(Y × Z) = r + s, we conclude by applying the upper semi-continuity theorem to
pr1,2 : B → (X × Y ) − ∆ that the codimension of (the closure of) BY,Z ⊂ UX must be
≥ N − r − s.

Fix w = (y, z) ∈ (Y ×Z)−∆ and observe that Bw ⊂ UX is the closed subset of those
F = (f0, . . . , fm) for which some component of Y ?F Z has dimension > r + s −m at w
(and such that for each point x ∈ X there is some fi with fi(x) 6= 0). Observe that locally
at w the variety Y ?F Z is defined by the equations:

f`(y′)fj(z′) = fj(y′)f`(z′) for 0 ≤ `, j ≤ m (1.1.2)

in a neighborhood of w = (y, z) in Y × Z.
Let Γ denote Γ(OPn(d)) and let Γ′ ⊂ Γ denote the open subset of those f with

f(y) 6= 0 6= f(z). Observe that for any F = (f0, . . . , fm) ∈ UX there is some pair `, j with
0 ≤ ` < j ≤ m and (f` + fj)(y) 6= 0 6= (f` + fj)(z). Thus, UX ⊂ P(Γm+1) is contained
in the union of images of finitely many translates by elements of GL(Γm+1) of Γ′ × Γm.
Let Bw,m ⊂ Γ′ × Γm denote the closed subvariety of those F for which the subvariety
determined by (1.1.2) has some component of dimension > r + s − m at w. Then the
union of the images of these finitely many translates of Bw,m intersected with UX equals
Bw. Consequently, (1.1.2) is implied by the assertion

Bw,m ⊂ Γ′ × Γm has codimension ≥ N. (1.1.3)

(The codimension does not drop under the projection Γm+1−{0} → P(Γm+1) since Bw,m
is a cone.) By the upper semi-continuity theorem once again, (1.1.3) will follow if we show
for each ϕ ∈ Γ′ that

Bw,m,ϕ ⊂ {ϕ} × Γm has codimension ≥ N, (1.1.4)

where Bw,m,ϕ ≡ Bw,m ∩ ({ϕ} × Γm).
We proceed to prove (1.1.4) by induction. Consider for each i with 1 ≤ i ≤ m the set

of equations
f`(y′)fj(z′) = fj(y′)f`(z′) for 0 ≤ `, j ≤ i. (1.1.5)i

For F = (ϕ, f1, . . . , fm) ∈ Bw,i,ϕ, the set of equations (1.1.5)i are equivalent at w to the
set of equations:

gjF(y′, z′) =
fj(y′)
ϕ(y′)

− fj(z′)
ϕ(z′)

= 0 for 1 ≤ j ≤ i . (1.1.6)i

In particular, we conclude that Y ?F Z has dimension ≥ r + s −m in a neighborhood of
w, since this is given by the m equations of (1.1.6)m.. We define Bw,i,ϕ ⊂ Bw,m,ϕ to be
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the subvariety of those F = (ϕ, f1, . . . , fm) such that some component of the subvariety
of X × Y defined by (1.1.6)i has dimension > r + s− i at w. Further, we define B′w,i,ϕ =
Bw,i,ϕ − Bw,i−1,ϕ. Using induction, we conclude that it suffices to prove

B′w,i,ϕ ⊂ {ϕ} × Γm has codimension ≥ N. (1.1.7)i

To bound the codimension of B′w,i,ϕ, we rephrase the problem in terms of local rings.
For any F ∈ Bw,i,ϕ, set R(w,F)0 = OY×Z,w, and let R(w,F)i denote the local ring
OY×Z,w/〈g1

F, . . . , g
i
F〉 for 1 ≤ i ≤ m. If R(w,F)i has pure dimension r + s − i for some

i < m, then the condition on gi+1
F that R(w,F)i+1 have dimension ≤ r + s − i − 1 is the

condition that gi+1
F be non-zero in R(w,F)i,α ≡ R(w,F)i/Pi,α for each of the finitely many

minimal primes Pi,α of R(w,F)i. This is guaranteed if the class of gi+1
F is non-zero in the

quotient R(w,F)i,α/mN+1 for all α, where m denotes the maximal ideal of R(w,F)i,α.
If F = (ϕ, f1, . . . , fm) ∈ B′w,i+1,ϕ, then F lies in the kernel of the linear map

Gi+1
α : {ϕ} × Γm → R(w,F)i,α/mN+1

sending F to the image of gi+1
F . To prove (1.1.7)i+1 assuming (1.1.7)i, it suffices to prove

that rank(Gi+1
α ) ≥ N.

Extend R(w,F)i,α to a discrete valuation ring R(w,F)i,α ⊂ A of its function field and
let vA denote the associated valuation. Let v denote min{vA(x) : x ∈ m}. Consider the
composition

OY,y/mN+1
y ×OZ,z/mN+1

z → OX×Y,w/mN+1
w → R(w,F)i,α/mN+1 → A/m

v(N+1)
A (1.1.8)

where the first map is difference map sending (f, g) to f − g. Since the images of the
maximal ideals my,mz of OY,y,OZ,z generate the maximal ideal mw of OX×Y,w and thus
also m of R(w,F)i,α, we conclude that this composition has rank at leastN . Our hypothesis
on Γ −→ OY,y/mN+1

y ×OZ,z/mN+1
z (sending a form f ∈ Γ to the restrictions of f/ϕ) thus

implies that Gi+1
α , defined as the composition of Γ −→ OY,y/mN+1

y × OZ,z/mN+1
z with

(1.1.8), also has rank at least N .

In order to apply Theorem 1.1, we show in the following lemma that the surjectivity
hypothesis of the proposition is satisfied for all sufficiently large degrees d.

Lemma 1.2. Retain the notation of Theorem 1.1. For each N > 0, there exists some dN
such that for all d ≥ dN the map

Γ(OPn(d)) −→ OY,y/mN+1
y ×OZ,z/mN+1

z (1.2.1)

sending f to the restrictions of f/ϕ is surjective for all closed points (y, z) ∈ Y × Z −∆,
all ϕ ∈ Γ(OPn(d)) with ϕ(y) 6= 0 6= ϕ(z).

Proof. Since OPn,y → OY,y, OPn,z → OZ,z are surjective local homomorphisms, it suffices
to consider the special case Y = Pn = Z. Moreover, base-changing by a field extension
Spec(k′) → Spec(k) merely tensors the map (1.2.1) with k′ over k. Consequently, it suffices
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to assume that both y, z are rational points of Pn. By the two-point homogeneity of Pn

under PGLn+1, it thus suffices to verify the existence of dN for a single pair of (rational)
points (y, z) ∈ Pn ×Pn.

The map sending f to the restrictions of f/ϕ in OY,y/mN+1
y and OZ,z/mN+1

z has
image whose dimension is independent of the choice of ϕ with ϕ(y) 6= 0 6= ϕ(z) since the
quotient of any two such choices of ϕ is invertible in both OY,y and OZ,z. Hence, it will
suffice to consider the case where ϕ = Xd

0 for some X0 ∈ Γ(OPn(1)).
Let R = k[X1/X0, . . . , Xn/X0] denote the coordinate algebra of the affine variety

An = Pn − {X0 = 0}, where we assume that X0(y) 6= 0 6= X0(z). Since mN+1
y ,mN+1

z are
coprime in R, the Chinese Remainder Theorem implies that

R −→ R/mN+1
y ×R/mN+1

z

is surjective. Let dN be the minimal degree d for which polynomials of degree ≤ dN in R
map via this surjective map onto R/mN+1

y × R/mN+1
z . Then for any d ≥ dN , (1.2.1) is

surjective.

Let X be a projective variety provided with a closed embedding X ⊂ Pn over k and
consider non-negative integers r, d. For any non-negative integer e, set

Cr,≤e(X) =
∐
d≤e

Cr,d(X).

In the next proposition we consider the Veronese embeddings of X of degree d. We
consider all cycles of fixed degree ≤ e (in the original embedding) and examine those
projections which are “bad” for pairs of such cycles. The main assertion is that the
codimension of these bad projections goes to infinity with d.

Proposition 1.3. Let X ⊂ Pn be a closed subvariety of dimension m, let r, s be non-
negative integers with r + s ≥ m, and let e be a positive integer. There exist (Zariski)
closed subsets B(d)e of the quasi-projective variety UX(d),

B(d)e ⊂ UX(d) ⊂ P(Γ(OPn(d)))m+1,

for d > 0 with

lim
d→∞

codimB(d)e = ∞

which satisfy the following property: for any effective r-cycle Y on X of degree ≤ e and
any effective s-cycle Z on X also of degree ≤ e, |Y | ?F |Z| has pure dimension r + s −m
whenever F is a k-rational point of UX(d)− B(d)e.

Proof. For notational brevity, let Cr,e denote Cr,≤e(X). We define

We ⊂ X2 × Cr,e × Cs,e × UX(d)
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to be the closed subariety of those quintuples (y, z, Y, Z,F) for which y × z lies in the
closure of some component of Y ?F Z. The principle of upper semi-continuity applied to
We over Cr,e × Cs,e × UX(d) implies that

Ve ⊂ Cr,e × Cs,e × UX(d)

is a closed subvariety, where Ve consists of those triples (Y,Z, F ) such that Y ?F Z has
some irreducible component of dimension > r + s−m. Thus,

B(d)e = pr3(Ve) ⊂ UX(d)

is a closed subvariety of UX(d).
Observe that the fibre of Ve above (Y, Z) ∈ Cr × Cs is B{Y,Z} (in the notation of

Theorem 1.1). Let Er = dim{Cr,e}, Es = dim{Cs,e}. By Theorem 1.1 and Lemma 1.2, for
any N we may find dN so that B(d){Y,Z} ⊂ UX(d) has codimension at least N −Er−Es−
r − s for d ≥ dN . Hence, Be(d) has codimension ≥ N − r − s for d ≥ dN .

Finally, if Y,Z are effective r, s cycles of degrees ≤ e and if Y ?FZ has some component
of dimension > r + s−m, then (Y,Z,F) determines a point of Ve so that F ∈ B(d)e.

Chow’s classical technique of moving Z to intersect Y properly entails consideration
of a Veronese embedding Pn → PM and a linear plane L ⊂ PM of codimension m + 1
missing X. We let πL : PM − −− > Pm denote the linear projection with center L and
pL : X → Pm denote the finite morphism given as the restriction of πL to X. Departing
from the classical construction (cf [R]), we define the projecting cone of a cycle Z on X
to be the cycle

CL(Z) def= π∗L(pL∗(Z)) ⊂ PM ,

where pL∗ denotes proper push-forward and π∗L denotes the algebraic join operation (−)#L
sending a cycle W on Pm to W#L on Pm#L = PM (cf. [L,2.10]). This differs from
the classical definition which is given by the discontinuous construction of sending an
irreducible cycle Z to π∗L(pL(Z)), where pL(Z) is the irreducible, reduced image of Z.

Since pL is a finite map, the intersection product CL(Z) •X is defined for all cycles
Z on X. We recall that pL : X → Pm is flat at any smooth point x ∈ X (cf. [Mat,20.D]).
Thus, if no component of Z is contained in the singular locus of X, then CL(Z) •X can
alternatively be described as the closure in X of pns∗L (pL∗(Z)), where pnsL : Xns → Pm is
the restriction to pL to the complement of the singular locus of X.

One considers the residual cycle

RL(Z) def= CL(Z) •X − Z.

This is a linear (i.e., additive) construction on cycles, sending effective cycles to effective
cycles (cf. Lemma 1.6).

Given Y and Z, one wants to choose L so that RL(Z) has an improved intersection
with Y . A key to this is the following lemma proved in [R] for the classical definition of
residual cycle involving the classical projecting cone π∗L(pL(Z)) •X. Denote by ram(pL)
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the ramification locus of the finite map pL : X −→ Pm. (In particular ram(pL) contains
all the singular points of X.)

Proposition 1.4 (cf. [R; Lemma 6]) Let Z, X and L be as above and consider a geometric
point y : Spec(k) → |RL(Z)| above a closed point y ∈ |RL(Z)|. Then either:

(i) There exists a geometric point z : Spec(k) → |Z| over a closed point z ∈ |Z|
with z 6= y and pL(z) = pL(y), or:

(ii) y ∈ ram(pL).

Proof. Since the construction of the residual cycle is additive, we may assume that Z is
irreducible. By definition of RL(Z), if y /∈ Z, then there exists a point z ∈ Z with z 6= y
and pL(z) = pL(y). Thus, we may assume y ∈ Z.

If [Z : pL(Z)] > 1 (i.e., if the function field of Z is a non-trivial extension of that of
pL(Z)), then either (i) is satisfied for some z : Spec(k) → Z or in a formal neighborhood
of y at least two sheets of Z (above a formal neighborhood of pL(y) ∈ Pm) intersect at y.
This latter situation implies that in a formal neighborhood of y ∈ X at least two sheets of
X intersect at y so that y ∈ ram(pL).

If [Z : pL(Z)] = 1 and if Z is a component of RL(Z), then as shown in [R; Lemma 6]
pL must ramify along all of Z. Namely, a “general” point of Z is necessarily smooth on Z
and would also be smooth on X if pL does not ramify along Z. At such a point, pL is etale
and so the multiplicity of Z in pns∗L (pL∗(Z)) is 1; this contradicts the assumption that Z
is a component of RL(Z).

Finally, assume that [Z : pL(Z)] = 1 and that Z is not a component of RL(Z).
Since y ∈ |RL(Z)|, y lies in some component R of RL(Z) not equal to Z. Then, in a
formal neighborhood of y ∈ |RL(Z)| at least two sheets (one determined by Z and another
determined by R) intersect at y so that y ∈ ram(pL).

As in (1.0.1) and (1.0.2), for each (m + 1)-tuple F = (f0, . . . , fm) of homogeneous
forms of degree d on Pn, we consider the associated linear projection πF : PM −−− > Pm

with center L(F). If X ⊂ Pn is a subvariety of dimension m and if F ∈ UX(d), we denote
by pF : X → Pm the finite map given by restricting πF to X ⊂ PM (embedded via the
Veronese embedding). For any cycle Z on X we set

CF(Z) = π∗F(pF∗((Z))) = CL(F)(Z) and RF(Z) = CF(Z) •X − Z.

Corollary 1.5. Consider a projective variety X of dimension m provided with a closed
embedding X ⊂ Pn. Let Y be an r-cycle and Z an s-cycle on X with r + s − m ≥ 0.
Assume F ∈ UX(d) satisfies the condition that |Y | ?F |Z| has no component of excess
dimension (i.e., > r + s−m). Then any component of |Y | ∩ |RF(Z)| of excess dimension
must be contained in |Y | ∩ |Z| ∩ ram(pF).

Proof. By definition of |Y | ?F |Z|, any y ∈ (|Y | ∩ |RF(Z)|) − |Z| necessarily lies in
pr|Y |(|Y |?F |Z|). By Proposition 1.5, any y ∈ (|Y |∩|RF(Z)|)−ram(pF) admits a geometric
point (y, z) : Spec(k) → |Y | ?F |Z| which projects to y over y, so that y also lies in
pr|Y |(|Y | ?F |Z|). Thus, the complement of |Y | ∩ |Z| ∩ ram(pF) in |Y | ∩ |RF(Z)| lies in
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pr|Y |(|Y | ?F |Z|) whose components have dimensions less than or equal to that of the
maximal dimension of the components of |Y | ?F |Z|.

We shall use the following property of the construction of residual cycles. We recall
that a continuous algebraic map f : X → Y with Y projective is a set-theoretic map
on geometric points which is induced by a correspondence ΓF ⊂ X × Y (cf. [F]).

Lemma 1.6. Let F be a k-rational point of UX(d) ⊂ P(Γ(OPn(d)m+1)). Then RF(Z) is
an effective s-cycle on X whenever Z is itself an effective s-cycle on X. Moreover, sending
Z to RF(Z) determines a continuous algebraic map

RF(−) : Cs,≤e(X) → Cs,≤e′(X),

where e′ is a positive integer depending upon d, e and the degree of X.

Proof. The fact that RF(−) sends effective cycles on X to effective cycles on X follows
immediately from the observation that each of the operations in the definition of RF(−)
is a well defined operation on effective cycles.

We employ various functoriality properties proved in [F]. The Veronese embedding
ν : Pn → PM of degree d determines a morphism

ν∗ : Cs,≤e(X) → Cs,≤dse(ν(X)).

The linear projection pF : ν(X) → Pm determines a morphism

pF∗ : Cs,≤dse(ν(X)) → Cs,≤dse(Pm).

The join construction determines a continuous algebraic map

π∗F : Cs,≤dse(Pm) → Cs+M−m,≤dse(PM ).

Furthermore, intersection product in PM determines a continuous algebraic map

(−) •X : Cs+M−m,≤dse(PM ) → Cs,≤dsef (PM )

where f equals the degree of ν(X). Finally, the additive structure of the Chow monoid is
also given by continuous algebraic maps. Thus, sending Z to RF(Z) ≡ π∗F(pPm∗(Z))•X−Z
is a continuous algebraic map.

In the following theorem, we verify that an iteration of the residual cycle construction
enables one to arrange (by choosing the degrees of projections sufficiently large) that the
iterated residual cycle for Z meets Y properly for all effectives cycles Y, Z of degree ≤ e.

Theorem 1.7 Let X ⊂ Pn be a closed subvariety of dimension m, and let U ⊂ X be the
Zariski open subset consisting of the smooth points of X. For any (m+1)-tuple of positive
integers d = (d0, . . . , dm), there is a (Zariski) open dense subset

RX(d) ⊂
m∏
i=0

UX(di) ⊂
m∏
i=0

P(Γ(OPn(di))m+1)
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consisting of (m+ 1)-tuples F∗ ≡ (F0, . . . ,Fm) with the property that

U ∩ ram(pF0) ∩ . . . ∩ ram(pFm) = ∅.

For any non-negative integers r, s with r + s ≥ m and any positive integer e, there
exists a (Zariski) closed subset

B(d)e ⊂ RX(d)

such that

(a) The codimension of B(d)e can be made arbitrarily large for all appropriately chosen
d which are sufficiently large (cf. (1.8) below).

(b) For all effective r-cycles Y and s-cycles Z of degree ≤ e on X and for all k-rational
points F∗ ∈ RX(d)−B(d)e, each component of

|Y | ∩ |RF∗(Z)| , RF∗(Z) ≡ RFm ◦ · · · ◦RF0(Z)

of “excess” dimension (i.e., > r + s−m) is contained in the singular locus X − U .

Proof. We consider the (closed) incidence correspondence J ⊂ UX(d0)×X . . .×UX(dm)×
X of those (F0, x0, . . . ,Fm, xm) with xj ∈ ram(pFj ) for all j. Then the complement of
RX(d) in UX(d) ≡

∏m
j=0 UX(dj) is given by

UX(d)−RX(d) = pr{J ∩ (UX(d)×∆(X))},

where pr is the proper projection pr : UX(d0) × X . . . × UX(dm) × X → UX(d) and
∆ : X → Xm+1 is the diagonal embedding. Hence, RX(d) is open.

For any smooth point of x ∈ X, those F ∈ UX(d) such that pF ramifies at x is
a proper closed subset (defined by the condtion that LF meet the tangent plane of X
at x). Thus, the subset of those F for which pF ramifies everywhere is a proper closed
subset of UX(d) (empty, if k has characteristic 0). We readily see that RX(d) is non-
empty by observing that F∗ ∈ RX(d) provided that pF0 does not ramify everywhere and
such that pFj does not ramify everywhere along any non-empty irreducible component of
ram(pFj−1) ∩ · · · ∩ ram(pF0) ∩ U , for each j with 0 < j ≤ m.

The asserted B(d)e is the intersection with RX(d) of the Zariski closed subset

B′(d)e ⊂ UX(d)

constructed as the union over j, 0 ≤ j ≤ m, of closed subsets

UX(d0)× . . .UX(dj−1)× B(d0, . . . , dj)e × . . .UX(dm)

for suitably defined closed subsets B(d0, . . . , dj)e ⊂ UX(dj). Namely, B(d0)e ⊂ UX(d0)
is the closed subset given by Proposition 1.3 for d0, e. By Lemma 1.6, the residual cy-
cles RF(Z) constructed for F0 ∈ UX(d0) and effective cycles Z on X of degree bounded
by e are of degrees bounded by some e1 (depending upon both e and d0). We define
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B(d0, d1)e ⊂ UX(d1) to be the closed subset given by Proposition 1.3 for d1, e1. Con-
tinuing inductively, we conclude by Lemma 1.6 that the residual cycles RFj−1 ◦ RF0(Z)
constructed for F0 ∈ UX(d0), . . . ,Fj−1 ∈ UX(dj−1) and effective cycles Z on X of degree
bounded by e are of degrees bounded by some ej (depending upon e and d0, . . . , dj−1). We
define B(d0, . . . , dj)e ⊂ UX(dj) to be the closed subset given by Proposition 1.3 for dj , ej .

By Corollary 1.5, any component of excess dimension of |Y | ∩ |RF∗(Z)| must be
contained in |Y | ∩ |Z| ∩ ram(pFm) ∩ . . . ∩ ram(pF0) provided that F∗ /∈ B′(d)e. Thus, for
F∗ ∈ RX(d),F∗ /∈ B′(d)e, any component of excess dimension of |Y | ∩ |RF∗(Z)| must be
contained in ram(pFm) ∩ . . . ∩ ram(pF0) ⊂ X − U .

By Proposition 1.3, for any integer c we may choose each dj (depending as above on
e and the di’s for i < j) so that B(d0, . . . , dj)e ⊂ UX(dj) has codimension at least c. This
insures that

B(d)e ≡ B′(d)e ∩R(d) ⊂ R(d)

also has codimension at least c.

Note 1.8. Note from the paragraph above that each dj may be chosen arbitrarily, so long
as it is sufficiently large. This lower bound depends only on c, e and the choice of the
previous integers d1, . . . , dj−1.

In §3 we will use Theorem 1.7 in conjunction with the following proposition which
expresses a cycle Z in terms of projecting cones and the cycle RF∗(Z). This proposition
follows immediately from Corollary 1.5 and Lemma 1.6.

Proposition 1.9. Let X ⊂ Pn be a closed subvariety of dimension m, let r, s be non-
negative integers with r+ s ≥ m, and let e be a positive integer. Assume that d is chosen
so that the codimension of B(d)e ⊂ RX(d) is at least 1 and that the field k is sufficiently
large that there exists a k-rational point F∗ ∈ RX(d) − B(d)e. Choose some such F∗.
Consider the equality

Z = π∗F0{pF0∗(Z)} •X +
m∑
i=1

(−1)iπ∗Fi{pFi∗{RFi−1 ◦ · · · ◦RF0(Z)}} •X + (−1)m+1RF∗(Z)

(1.9.1)
and let ψ+

F∗(Z) , ψ−F∗(Z) denote the positive and negative parts of the right hand side of
(1.9.1). Then:

(a) For each effective s-cycle Z on X, (ψ+
F∗(Z) , ψ−F∗(Z)) is a pair of effective

s-cycles on X with the property that

Z = ψ+
F∗(Z)− ψ−F∗(Z).

(b) For all effective cycles Y, Z on X of dimension r, s which are of degrees ≤ e,
any component of excess dimension of either |Y | ∩ |ψ+

F∗(Z)| or |Y | ∩ |ψ−F∗(Z)|
lies in |Y | ∩ |Z|.

(c) This construction determines a continuous algebraic map

ψF∗ = (ψ+
F∗ , ψ

−
F∗) : Cs(X) → Cs(X)2.
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Moreover, there is an integer e′ such that

ψF∗

(
Cs,≤e(X)

)
⊂ Cs,≤e′(X)2.

2. Moves in Projective Space

In this section, we consider effective r-cycles Y and effective s-cycles Z on Pm of degree
bounded by a fixed positive integer e, where r + s ≥ m. We present a construction on all
s-cycles on Pm which moves each such Z so that the resulting cycle intersects properly each
such Y . The method we employ generalizes a technique introduced in [L] to move s-cycles
Z of bounded degree to intersect properly a given hyperplane L ≡ Pm−1 ⊂ Pm. One can
interpret this method as taking the “algebraic suspension” z1#Z ⊂ Pm+1 = z0#Pm and
observing that z1#Z intersects z0#L properly provided that z1 6= z0. One then observes
that for most divisors D ⊂ Pm+1 of sufficiently high degree the projection of (z1#Z) •D
off z0 meets L properly.

Throughout this section, we consider non-negative integers r, s ≤ m with r + s ≥ m.
We set t ≡ m− r. We shall fix a linear embedding

Pm ⊂ Pm+t , (m+ t = 2m− r)

and some fixed linear subspace L0 ⊂ Pm+t of dimension t− 1 missing Pm. Thus,

Pm+t = L0#Pm,

where −#− denotes the “algebraic join”.
We next introduce our “parameter space of moves” for s-cycles in Pm.

Definition 2.1. For any t-tuple of positive integers N = (N1, . . . , Nt), let

L(N) ⊂ Grasst−1(Pm+t)×
t∏
i=1

P(Γ(OPm+t(Ni)))

denote the open set consisting of those (L,D), where D = (D1, . . . , Dt) which satisfy

(a) L ∩Pm = ∅ = L ∩ L0,
(b) |D1| ∩ . . . ∩ |Dt| ∩ L = ∅ = |D1| ∩ . . . ∩ |Dt| ∩ L0.

For any L ∈ Grasst−1(Pm+t), we denote by LL(N) the Zariski dense open subset of∏t
i=1 P(Γ(OPm+t(Ni))) given as the fibre of the projection L(N) → Grasst−1(Pm+t) above

L.

Observe that for any k-rational point (L,D) ∈ L(N), the intersection product D1 •
· · · •Dt is a well defined n-cycle on Pm+t with support |D1| ∩ · · · ∩ |Dt| which meets L#Z
properly and which misses L0, the center of the projection π0.
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In the following proposition, we establish a constructible set of arbitrarily high codi-
mension of “good moves” for effective s-cycles Z of degree ≤ e which satisfy a single
intersection condition depending upon a chosen (t − 1)- dimensional linear subspace L.
We recall that a subset of a quasi-projective variety is said to be constructible if it can
be written as a finite disjoint union of (Zariski) locally-closed subsets. The key property
of constructible subsets is that any map f : X → Y of quasi-projective varieties sends a
constructible subset C ⊂ X to a constructible subset f(C) ⊂ Y .

Proposition 2.2. Let L be a (t − 1)-dimensional linear subspace of Pm+t satisfying
L ∩ Pm = ∅ = L ∩ L0. For a given positive integer e and a t-tuple of positive integers
N = (N1, . . . , Nt), there exists a constructible subset

BL(N)e ⊂ LL(N)

such that

(a) For a constant K depending only upon X and e,

codimBL(N)e ≥ min(Ni)−K,

(b) For every k-rational point D = (D1, . . . , Dt) /∈ BL(N)e, the cycles

|L0#Y | ∩ |L#Z| ∩ |D1| ∩ · · · ∩ |Di−1| and |Di|

meet properly for all i ≥ 0 whenever Y is an effective r-cycle and Z is an effective
s-cycle both of degree ≤ e on Pm with the property that L0#Y intersects L#Z
properly.

Proof. Let
J ⊂ Cr,≤e(Pm)× Cs,≤e(Pm)×Pm+t

denote the incidence correspondence of triples (Y,Z, x) satisfying x ∈ |L0#Y | ∩ |L#Z|.
We define

GL,e ⊂ Cr,≤e(Pm)× Cs,≤e(Pm)

to be the open subset above which the fibre of the projection

J → Cr,≤e(Pm)× Cs,≤e(Pm)

has proper dimension (i.e., r + s −m + t = s). Note that GL,e consists of pairs of cycles
(Y, Z) such that L0#Y and L#Z intersect properly. We consider the closed subset

B̃L(N)e ⊂ GL,e × LL(N)

consisting of those tuples (Y,Z,D) satisfying the condition that L0#Y and L#Z intersect
properly but

|L0#Y | ∩ |L#Z| ∩ |D1| ∩ · · · ∩ |Di−1| , |Di|
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intersect improperly for some i ≤ t. Finally, we set

BL(N)e = pr3∗[(B̃L)(N)e].

We proceed to verify that the fibre B̃Y,Z ⊂ LL(N) of B̃L(N)e above any (Y, Z ∈ GL,e
has codimension at least N if each Ni ≥ N . This will immediately imply the codimension
of BL(N)e ⊂ LL(N) is greater than some prescribed positive integer c provided that

N ≥ c+ dim(Cr,≤e(Pm)) + dim(Cs,≤e(Pm)).

The condition that Wj ≡ |L0#Y | ∩ |L#Z| ∩ |D1| ∩ . . . ∩ |Dj−1| meet |Dj | improperly is
equivalent to the condition that the restriction map

OPm+t(Nj) −→ OWj
(Nj) −→ OWj,ω

(Nj)

sends Dj ∈ Γ(OPm+t(Nj)) to 0 for some irreducible component Wj,ω ⊂ Wj . Since Wj,ω

has positive dimension, this composition has rank at least N . To see this note that if we
restrict to some affine open Am ⊂ Pm containing a dense open subset of Wj,ω, then the
dimension of the subspace of regular functions on Am ∩Wj,ω of degree ≤ N is at least
N . We conclude that the closed subvariety B̃Y,Z,j ⊂ LL(N) consisting of those D with Dj

meeting Wj improperly and Dj′ meeting Wj′ properly for j′ < j has codimension at least
N . Thus,

B̃Y,Z =
∐
j

B̃Y,Z,j ⊂ LL(N)

also has codimension at least N .

Proposition 2.2 suggests the following construction of moving cycles in Pm, sending
the s-cycle Z to ϕL,D(Z).

Proposition 2.3 Let π0 : Pm+t −−− > Pm denote the linear projection with center L0.
For any e > 0 and any t-tuple N = (N1, . . . , Nt), the assignment

ϕL,D(Z) def= π0∗((L#Z) •D1 • . . . •Dt)

determines a continuous algebraic map

Φ : Cs(Pm)× L(N) −→ Cs(Pm)

with Φ
(
Cs,≤e(Pm) × L(N)

)
⊂ Cs,≤e|N|(Pm), where |N| def=

∏
iNi. This construction has

the following properties:

(a) For any k-rational point (L,D) ∈ L(N) and any effective s-cycle Z on Pm,
ϕL,D(Z) is also an effective s-cycle on Pm.

(b) For any k-rational point (L,D) ∈ L(N) with the property that D1 • . . . •Dt =
|N| ·Pm,

ϕL,D(Z) = |N| · Z
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for all effective s-cycles Z.
(c) If (L,D) is a k-rational point of L(N) such that D /∈ BL(N)e (cf. (2.2)), if Y,Z

are effective cyles on Pm of dimension r, s and degree ≤ e, and if L0#Y meets
L#Z properly, then

Y , ϕL,D(Z)

intersect properly.

Proof. If Z on Pm is an s-effective cycle of degree d, then L#Z is an effective (s+ t)-cycle
Pm+t also of degree d. Consequently, (L#Z) •D1 • . . . •Dt and thus also ϕL,D(Z) have
degree d · |N|. Moreover, sending 〈Z, (L,D)〉 to ϕL,D(Z) determines a continuous algebraic
map, for Φ is a composition of operations each of which is given by a continuous algebraic
map (cf. [F]).

As observed following Definition 2.1, the intersection product D1 • · · · • Dt is a well
defined n-cycle on Pm+t with support |D1| ∩ · · · ∩ |Dt| which meets L#Z properly and
which misses L0 for any k-rational point (L,D) ∈ L(N). Thus, ϕL,D(Z) is a well defined
s-cycle on Pm.

To prove that ϕL,D(Z) = |N| · Z whenever D1 • . . . • Dt = |N| · Pm, observe that
Pm ⊂ Pm+t meets L#Z properly (since L∩Pm = ∅) and transversely at all regular points
of Z.

If (L,D) ∈ L(N), then L0#Y , L#Z have pure dimensionm, s+t respectively. The hy-
pothesis that L0#Y meets L#Z properly thus implies that |L0#Y |∩|L#Z| has dimension
s. We thus may apply Proposition 2.2 to conclude that if D /∈ B(N)e, if Y, Z are effective
cycles of degrees ≤ e, and if L0#Y meets L#Z properly, then (L0#Y )•(L#Z)•D1•. . .•Dt

has pure dimension r + s−m. Because L0 ∩ |D1| ∩ . . . ∩ |Dt| = ∅, π0∗ restricts to a (well
defined) finite map on |(L#Z) •D1 • . . . •Dt| We apply the projection formula to π0∗ to
conclude that

Y • π0∗[(L#Z) •D1 • . . . •Dt] = π0∗[(L0#Y ) • (L#Z) •D1 • . . . •Dt].

Hence, Y, ϕL,D(Z) meet properly.

The following lemma will enable us to apply Proposition 2.3 to all effective cycles of
bounded degree.

Lemma 2.4. Let L be a k-rational point of Grasst−1(Pm+t) satisfying L ∩ Pm = ∅ =
L ∩ L0. Then

(L0#Y ), (L#Z) intersect properly

in Pm+t for every r-cycle Y , s-cycle Z on Pm such that either |L0#Y | ∩ L = ∅ or Y
intersects Z properly.

Proof. We first check that if Y,Z intersect properly, so do (L0#Y ), (L#Z) for any choice
of L. Observe that

|L0#Y | ∩ Pm = |Y |, |L#Z| ∩ Pm = |Z|.

Thus, if some component of |L0#Y | ∩ |L#Z| has dimension > s, then some component of
|L0#Y | ∩ |L#Z| ∩ Pm = |Y | ∩ |Z| would have dimension > s− t.
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On the other hand, if |L0#Y | ∩ L = ∅, then L#z intersects L0#Y in only finitely
many points for any z ∈ Pm. Thus, |L0#Y | ∩ |L#Z| has dimension at most s.

Combining Proposition 2.3 and Lemma 2.4, we now verify for any given e that we can
“move” all effective s-cycles Z of degree ≤ e so that the resulting cycles intersect properly
every effective r-cycle Y of degree ≤ e.

As in Proposition 1.9, we require the existence of k-rational points avoiding certain
“bad” closed subsets of positive codimension. The existence of such k-rational points is
automatic for an infinite field, but for a finite field all rational points of a given variety
might lie on a subvariety of positive codimension. On the other hand, if k is a finite field
and if there are only finitely many “bad” subvarieties of positive codimension, there will
exist some finite extension k′ of k such that there exist k′-rational points avoiding these
“bad sets”. Moreover, any extension k′′ of k′ will evidently have this same property.

Since our definitions of “good” and “bad” sets are independent of k, we conclude that
all “sufficiently large” finite fields k of a given residue characteristic admit the existence of
k-rational points missing the “bad” sets. We shall use the expression “k is a sufficiently
large finite field” to mean that there exist k-rational points avoiding the bad sets (of
positive codimension) occuring in our constructions.

Proposition 2.5. Fix positive integers e and c. Assume that either k is an infinite field or
a sufficiently large finite field. Consider a sequence N1,N2,N3, . . . of t-tuples of positive
integers, and set e1 = e and ej+1 = |Nj |ej for j > 1. Assume that the Nj ’s are chosen
so that min1≤i≤tNj+1,i > K(ej) + c where K(ej) is the constant in Proposition 2.2a.
Then there exist an integer E ≤ dimCs,≤e(Pm) and (t − 1)-dimensional linear subspaces
L1, . . . , LE of Pm+t, each missing L0 and Pm, with the following properties:

(a) For each j,

codim
{
LLj

(Nj)− BLj
(Nj)ej

}
≥ c,

(b) For any k-rational point

(D1, . . . ,DE) ∈
E∏
j=1

LLj (Nj)− BLj (Nj)ej

and any effective cycles Y, Z on Pm of dimensions r, s and degrees ≤ e,

Y , ϕLE ,DE
◦ · · · ◦ ϕL1,D1(Z)

intersect properly.

Proof. Note to begin that assertion (a) follows immediately from Proposition 2.2a, so it
remains to prove assertion (b).

For each (of the finitely many) irreducible components Aγ of A = Cr,≤e(Pm) of
maximal dimension de, choose some k-rational point a(γ) ∈ Aγ (possible since k is assumed
either infinite or sufficiently large). Using once again the fact that k is infinite or sufficiently
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large, we may choose some (t − 1)-dimensional linear plane L1 in Pm+t missing Pm, L0,
and each L0#Ya(γ). Let A1 ⊂ A denote the closed subvariety of those Y ’s such that
L1 ∩ |L0#Y | 6= ∅, and observe that each component of A1 has dimension strictly less
than de. By Proposition 2.3 and Lemma 2.4, Y and ϕL1,D1(Z) intersect properly for any
effective r-cycle Y of degree ≤ e and any effective s-cycle Z of degree ≤ e which does not
lie in A1 whenever D1 is k-rational point of LL1(N1)− BL1(N1)e1 .

Proceeding inductively, assume for some j ≥ 1 that we have defined the closed subva-
riety Aj ⊂ A of codimension at least j which satisfies the condition that

Y , ϕLj ,Dj
◦ · · · ◦ ϕL1,D1(Z)

intersect properly for any effective r-cycle Y of degree ≤ e and any effective s-cycle Z of
degree ≤ e which does not lie in Aj . For each (of the finitely many) irreducible components
Aj,γ of maximal dimension choose as above some point a(γ) ∈ Aj,γ and choose Lj+1 missing
Pm, L0, and each L0#Ya(γ). We set Aj+1 ⊂ Aj equal to the closed subvariety of that Y ’s
such that Lj+1 ∩ |L0#Y | = ∅. Applying Proposition 2.3 and Lemma 2.4 once again, we
conclude that

Y , ϕLj ,Dj
◦ · · · ◦ ϕL1,D1(Z)

intersect properly for any effective r-cycle Y of degree ≤ e and any effective s-cycle Z
of degree ≤ e which does not lie in Aj , whenever Dj is k-rational point of LLj

(Nj) −
BLj

(Nj)ej
.

Finally, we see that this process stops after E steps, where E ≤ de + 1.

The following theorem is our “Moving Lemma for Cycles of Bounded Degree” in the
special case in which the variety X is projective space Pm itself.

Theorem 2.6. Fix positive integers e and c. Assume that either k is an infinite field or a
sufficiently large finite field. Choose N1, . . . ,NE and L1, . . . , LE as in Proposition 2.5 and
let

0 def= (D1, . . . ,DE) ∈
E∏
j=1

LLj (Nj)

be a k-rational point such that Dj,1 • · · · • Dj,t = |Nj | · Pm for each j, 1 ≤ j ≤ E. (For
example, suppose that Dj,i = Nj,iHj,i where Hj,1, . . . ,Hj,t are k-rational hyperplanes in
general position.) Let

` ⊂
E∏
j=1

t∏
i=1

P(Γ(OPm+t(Nj,i)))

be any k-rational line through 0 chosen so that

`◦ ≡ ` ∩
E∏
j=1

LLj (Nj)− BLj (Nj)ej ⊂ `
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is dense. Then there exists a continuous algebraic map

Θ : Cs(Pm)× `◦ → Cs(Pm)

with the following properties. Set θp = Θ
∣∣
Cs(Pm)×{p}.

(a) θ0(Z) =
∏E
j=1 |Nj | · Z for any effective s-cycle Z.

(b) For any k-rational point p ∈ `◦, θp determines a linear map on effective s-cycles
on Pm.

(c) For any effective s-cycle Z, the restriction of Θ to {Z}×`◦ determines a rational
equivalence Zθ ⊂ Pm × ` whose fibre above a point p ∈ `◦ is the cycle with
Chow point θp(Z).

(d) For all effective cycles Y, Z on Pm of dimensions r, s and degrees ≤ e and all
k-rational points p ∈ `◦ − 0,

Y , θp(Z)

intersect properly.

Proof. Iterating the continuous algebraic map Φ of Proposition 2.3, we obtain the con-
tinuous algebraic map

Θ̃ : Cs(Pm)× L(N1)× · · · × L(N1) → Cs(Pm).

We define Θ to be the restriction of Θ̃ to Cs(Pm)× `◦.
Property (a) is given by Proposition 2.3.b, whereas property (b) follows from Propo-

sition 2.3.a. To verify property (c), we let λ denote the generic point of ` and k(λ) denote
the function field of `. Then Θ(Z, λ) determines a cycle on Pm rational over some radiciel
extension of k(λ) (cf. [F]). On the other hand, since the operations used to define Θ send
cycles to cycles, we see that the cycle Zλ with Chow point Θ(Z, λ) is in fact a cycle on
Pm
k(λ). The closure of this cycle, Zθ on Pm × `, is the asserted rational equivalence. (Ob-

serve that Zθ is necessarily flat over ` so that the fibre p ∈ ` is given by specialization of
Zλ.) Finally, property (d) follows from Proposition 2.5.

3. Main Theorem and Consequences

Using Theorem 1.7, Proposition 1.9, and Theorem 2.6, we now prove our “Moving
Lemma for Cycles of Bounded Degree”.

Theorem 3.1. Let X ⊂ Pn be a projective variety of dimension m. Assume that either
k is an infinite field or a sufficiently large finite field. Let r, s, e be non-negative integers
with r + s ≥ m. Then there exists a Zariski open neighborhood O ⊂ P1 of a k-rational
point 0 ∈ P1 and a continuous algebraic map

Ψ = (Ψ+,Ψ−) : Cs(X)×O → Cs(X)2
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satisfying the following properties (where ψ±p = Ψ±
∣∣
CS(X)×{p}):

(a) For some positive integer M and some k-rational point F∗ ∈ RX(d) −B(d)e,
chosen as in 1.9, one has

ψ+
0 = (M + 1) · ψ+

F∗ +M · ψ−F∗ , ψ−0 = (M + 1) · ψ−F∗ +M · ψ+
F∗

where ψ+
F∗ , ψ

−
F∗ : Cs(X) → Cs(X) are the continuous algebraic maps of Propo-

sition 1.9.a. In particular, for every effective s-cycle Z,

Z = ψ+
0 (Z)− ψ−0 (Z).

(b) For any k-rational point p ∈ O, ψ±p determines a pair of linear maps on effective
s-cycles

(c) For any effective s-cycle Z on X, the restriction of Ψ to {Z} × O determines
a rational equivalence Zψ ⊂ Pn × P1 whose fibre above a point p ∈ O is
ψ+
p (Z)− ψ−p (Z).

(d) For all effective cycles Y, Z on X of dimensions r, s and degrees ≤ e and all k-
rational points p ∈ O−{0}, any component of excess dimension (i.e., > r+s−m)
of either |Y | ∩ |ψ+

p (Z)| or |Y | ∩ |ψ−p (Z)| lies in the singular locus of X.

Proof. Choose F∗ as in Proposition 1.9 and recall the equality (1.9.1)

Z = π∗F0{pF0∗(Z)} •X +
m∑
i=1

(−1)iπ∗Fi{pFi∗{RFi−1 ◦ · · · ◦RF0(Z)}} •X + (−1)m+1RF∗(Z)

and the fact that ψ±F∗ are given as the positive and negative parts of the right hand
side of (1.9.1). Let e′ ≥ e be a positive integer bounding the degrees of pFi

∗
(Y ) and

of pFi
∗
(RFi−1 ◦ · · · ◦ RF0(Z)) as Y and Z vary over effective r-cycles and s-cycles on X

(respectively) of degrees ≤ e, and i varies from 1 to m.
We now apply Theorem 2.6 with e replaced by e′ and with some fixed c > 1. In

fact we apply the theorem twice. We choose two sequences N = (N1, . . . ,NE) and N′ =
(N′

1, . . . ,N
′
E′) with Nj,i and N ′

j,i sufficiently large as required in Proposition 2.5, so that

E∏
j=1

|Nj | = M + 1 ,
E′∏
j=1

|N′
j | = M

for some positive integer M . To see that this is possible recall that the integers Nj,i can be
chosen arbitrarily subject to the inequalities of 2.5. Consequently we may choose the Nj,i’s
and the N ′

j,i so that
∏
j |Nj | and

∏
j |N′

j | are relatively prime. Then there exist positive
integers a and a′ so that a

∏
j |Nj | − a′

∏
j |N′

j | = ±1. We may assume, by reordering the
choice if necessary, that the difference is +1, and we then replace NE,t with aNE,t and
N ′
E′,t with a′N ′

E′,t.
By Proposition 2.5 we obtain sequences (L1, L2, . . . , LE) and (L′1, L

′
2, . . . , L

′
E′) of (t−

1)-dimensional linear subspaces, for which the conclusions of 2.5 hold.
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We now apply Theorem 2.6 (twice) for the {Nj}, {Lj} (and the {N′
j}, {L′j}) chosen

above. We fix k-rational points 0 and 0′ and k-rational lines ` and `′ as in Theorem 2.6,
and we let

ΘN : Cs(Pm)× `◦ → Cs(Pm) and Θ′
N′ : Cs(Pm)× (`′)◦ → Cs(Pm)

be the continuous algebraic maps constructed in 2.6 for this data.
We now choose a dense open subset O ⊂ P1 and point 0 ∈ O together with open

immersions f : O ↪→ `◦ and f ′ : O ↪→ (`′)◦ sending 0 to 0 and 0′ respectively. We let ΘN,p

denote the restriction of ΘN to Cs(Pm)×{f(p)} for any k-rational point p ∈ O. We define
ΨN by

ΨN(Z, p) = (−1)m+1(M+1)·RF∗(Z)+
m∑
i=1

(−1)iπ∗Fi

{
ΘN,p

{
pFi∗(RFi−1◦· · ·◦RF0(Z))

}}
•X,

and define ΨN′ similarly. Finally, we define Ψ± to be the positive and negative parts of
ΨN −ΨN′ , so that

Ψ+(Z, p)−Ψ−(Z, p) = ΨN(Z, p)−ΨN′(Z, p).

The fact that Ψ+,Ψ− are continuous algebraic maps follows immediately from Propo-
sition 1.9 and Theorem 2.6. Property (a) is part of our definition of Ψ±. Property (b)
follows immediately from Proposition 1.9 and Theorem 2.6.b. The proof of property (c) is
merely a repetition of the proof of Theorem 2.6.c.

To verify property (d), observe that Theorem 1.7.b implies that any component of
excess dimension of |Y |∩ |RF∗(Z)| lies in the singular locus of X. On the other hand, since
pFi is a finite map,

Y , π∗Fi

{
ΘN,p

{
pFi∗(RFi−1 ◦ · · · ◦RF0(Z))

}}
•X

intersect properly for any i, 1 ≤ i ≤ m, if and only if

pFi∗(Y ) , ΘN,p

{
pFi∗(RFi−1 ◦ · · · ◦RF0(Z))

}
intersect properly. These do intersect properly whenever Y, Z are effective cycles of degrees
≤ e and p ∈ O−{0} by Theorem 2.6.d. The analogous remarks apply with N replaced by
N′ . This completes the proof.

Remark 3.2. The proof of Theorem 3.1 in fact proves the more general result that one
can “move” effective s-cycles Z of degrees ≤ e to meet properly (off the singular locus of
X) all effective cycles Y of dimension ≥ m− s and degree ≤ e. Namely, we verify that the
arguments of section 1 apply when Cr,≤e(X) is replaced by

C≥n−s,≤e(X) ≡
∐

r≥m−s,d≤e

Cr,d(X).
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Similarly, the arguments of section 2 apply when we replace Cr,≤e(Pn) by C≥s,≤e(Pn) and
t = n− r by s.

When k = C our Main Theorem can be phrased differently and in a way that may
appeal to complex geometers. In this case the p-cycles form a topological abelian group
where the topology is compactly generated by the images of Cp,≤e(X) × Cp,≤e(X) under
the natural projection

π : Cp(X)× Cp(X) −→ Zp(X)

We set Zp,≤e(X) def= π
{
Cp,≤e(X)× Cp,≤e(X)

}
Corollary 3.3. Let X ⊂ PnC be a complex projective variety of dimension m. Let r, s, e
be non-negative integers with r+ s ≥ m. Then there exist a Zariski open neighborhood O
of {0} in C and a continuous algebraic map

Ψ̃ : Cs(X)×O −→ Cs(X)2

such that π ◦Ψ induces by linearity a continuous map

Ψ : Zs(X)×O −→ Zs(X)

satisfying the following properties. Set ψp = Ψ
∣∣
Zs(X)×{p} for p ∈ O.

(a) ψ0 = Id.
(b) For any Z ∈ Zs(X) and any p 6= 0 in O, the restriction

Ψ
∣∣
{Z}×O : {Z} × O −→ Zs(X),

determines a rational equivalence between Z and ψp(Z).
(c) For any p ∈ O, ψp is a continuous group homomorphism.
(d) For any Z ∈ Zs,≤e(X), Y ∈ and any p 6= 0 in O, each component of excess

dimension (i.e., > r + s−m) of the intersection

|Y | ∩ |ψp(Z)|

is contained in the singular locus of X.

Remark. We may paraphrase Corollary 3.3 in terms of families of cycles. Let us say that
a collection {Yα;α ∈ A} of r-cycles on X is a collection of cycles of bounded degree
if there exists some positive integer e and some function g : A → Zr,≤e(X) such that
Yα = g(α) for all α ∈ A. Then Corollary 3.3 asserts that for a given collection {Yα;α ∈ A}
of r-cycles of bounded degree and a given collection {Zβ ;β ∈ B} of s-cycles of bounded
degree, Ψ provides a continuous move of all s-cycles on X with the following property: for
any α ∈ A, β ∈ B, p ∈ O − {0} each component of |Yα| ∩ |ψp(Zβ)| of excess intersection
lies in the singular locus of X.
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Moreover, Corollary 3.3 further asserts how such a move is algebraic, thereby moving
one “algebraic collection” to another.

As demonstrated in [R], [S], any s-cycle Z can be moved to intersect properly any r-
cycle Y on a smooth, m-dimensional variety X with r+s ≥ m. This does not immediately
imply that the intersection product is well defined, for one must verify that if Z ′, Z ′′ are
both obtained from Z by moving Z and both intersect Y properly, then Y •Z ′, Y •Z ′′ are
rationally equivalent. As we see in the proof of the following theorem, the fact that such
an intersection product is well defined is a straight-forward consequence of Theorem 3.1

Theorem 3.4 Let X be a smooth, quasi-projective variety of dimension m and let Y, Z be
cycles on X of dimension r, s with r+ s ≥ m. If both Z ′ and Z ′′ are rationally equivalent
to Z and intersect Y properly, then Y • Z ′, Y • Z ′′ are also rationally equivalent.

Proof. It suffices to assume that there exists some cycle ZT on T ×X equidimsional over
a rational curve T with fibres Z0 = Z ′ and Z1 = Z ′′. We first consider the case in which k
is either an infinite field or a “sufficiently large” finite field as in the statement of Theorem
3.1. Choose some projective closure X of X.

Write ZT = Z+
T − Z−T , where Z+

T , Z
−
T are flat families of effective cycles over T . (In

other words, each of Z+
T , Z

−
T are sums of irreducible subvarieties of X×T flat over T .) We

may not assume that the fibres above 0, 1 of these flat families intersect Y properly, but
we do know that those components of these fibres which do not intersect properly occur
with the same multiplicity in positive and negative parts. The closures Z

+

T , Z
−
T of Z+

T , Z
−
T

are also flat families of effective cycles over T , thereby determining continuous algebraic
maps (indeed, morphisms)

ϕ = (ϕ+, ϕ−) : T → Cs(X)× Cs(X).

We now apply Theorem 3.1 with e greater than the degrees of the closures of the
positive and negative parts of Y as well as the degrees of Z

+

t , Z
−
t for all t ∈ T to obtain Θ

defined as the following composition

σ ◦ (Ψ̃× Ψ̃) ◦ (ϕ× diag) : T ×O → Cs(X)× Cs(X)×O2 → Cs(X)2 × Cs(X)2 → Cs(X)2

for some Zariski open neighborhood O of a k-rational point 0 ∈ P1, where σ(Z1, Z2, Z3, Z4)
= (Z1 + Z4, Z2 + Z3).

We obtain a rational equivalence relating Z ′ and Z ′′ through cycles each of which
meet Y properly as follows. The equivalence is parametrized by

R ≡ ({(1, 0)} × O) ∪ (T × {p}) ∪ ({(0, 1)} × O).

On {(1, 0)} × O (respectively, {(0, 1)} × O), we consider the restriction of Θ and then
throw away those irreducible components whose fibres above X×{(1, 0)}×{0} (resp.,X×
{(0, 1)} × {0} do not meet Y properly. The result gives well defined rational equivalences
starting from Z ′ and Z ′′ in view of the additivity of Θ. On T × {p} we simply take the
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restriction of Θ. Thus, intersecting this rational equivalence with Y determines a rational
equivalence between Y • Z ′, Y • Z ′′ parametrized by R.

Suppose now that k is an arbitary finite field and k → k′ is a finite field extension with
k′ sufficiently large. Let π : Xk′ → X denote the finite, flat map given by base extension,
where Xk′ ≡ X ×Spec(k) Spec(k′); this is a map of algebraic k schemes, but not a map
of quasi-projective algebraic varieties over k. By the preceding argument, the rational
equivalence class of π∗(Y •Z ′−Y •Z ′′) is 0 in the Chow group of r+ s−m-cycles on Xk′ .
Since π∗◦π∗ equals multiplication by d′ = [k′ : k] on cycles, π∗◦π∗ also equals multiplication
by d′ on rational equivalence classes of cycles. By considering π∗(Y •Z ′ − Y •Z ′′) for two
such sufficiently large field extensions k → k′, k → k′′ of relatively prime degrees d′, d′′

over k, we conclude that Y • Z ′, Y • Z ′′ are rationally equivalent on X.

In [F-G], an intersection product was defined on the Lawson homology groups of a
smooth, complex, quasi-projective variety X of dimension m:

LrH2r+i(X)⊗ LsH2r+j(X) −→ Lr+s−mH2(r+s−m)+i+j(X), r + s ≥ m.

This product was defined using an argument involving the Fulton-MacPherson “Defor-
mation to the normal cone” technique together with a homotopy lifing argument. The
following consequence of Theorem 3.1 gives a more concrete construction of this intersec-
tion product for X projective as well as smooth. Even in this case, the constructon of
[F-G] remains useful in establishing the numerous good properties of this product.

Theorem 3.5 Let X be a smooth, complex projective variety of dimension m and let r, s
be non-negative integers with r+ s ≥ m. Let Zr(X) denote the topological abelian group
of r-cycles on X obtained as the “naive” group completion of the abelian monoid Cr(X)
provided with the analytic topology. Then the pairing on homotopy groups induced by
the intersection product of [F-G]

πi(Zr(X))⊗ πj(Zs(X)) •−→ πi+j(Zr+s−m(X))

can be represented as follows: given homotopy classes α ∈ πi(Zr(X)), β ∈ πj(Zs(X)),
there exist representative (base point preserving) maps a : Si → Zr(X), b : Sj → Zs(X)
such that a(t), b(u) intersect properly for all t ∈ Si, u ∈ Sj and such that the map sending
t ∧ u to the intersection of a(t) and b(u) is a continuous map a · b : Si+j → Zr+s−m(X)
which represents α • β.

Proof. Since the topology on Zk(X) is compactly generated by the images of Ck,≤e(X)2

for e > 0, we may choose e sufficiently large that representatives a, b′ of α, β lift to (not
necessarily continuous) maps ã : S̃i → Cr,≤e(X)2, b̃′ : S̃j → Cs,≤e(X)2.

The continuous algebraic map Ψ of Theorem 3.1 chosen for this e determines a con-
tinuous map (for the analytic topology)

Ψ : Zs(X)×O → Zs(X)

with the property that ψ0 (i.e., the restriction of Ψ to Zs(X)×{0}) is the identity. Define

b = Ψ ◦ (b′ × ip) : Sj → Zs(X)×O → Zs(X)
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for some p ∈ O − {0}, where ip : Sj → O is the constant map with value p. By Theorem
3.1.d and our choice of e, the r-cycles a(t), b(u) intersect properly for all t ∈ Si, u ∈ Sj .

The intersection of cycles meeting properly is continuous, so that a, b determine a
continuous map a · b : Si+j → Zr+s−m(X). The fact that this map represents α •β follows
from [F-G;3.5.a].

Remark 3.6. Our techniques fail to provide a representation of the intersection product
on Lawson homology group of complex, smooth varieties X which are quasi-projective
but not projective. This is because the “moves” we construct for s-cycles on a smooth
completion X of X do not restrict to moves on s- cycles on X −X.

The following special case of Theorem 3.1 captures the fundamental assertion of the
duality theory in [F-L2].

Theorem 3.7 Let X be a smooth projective variety, f : X → B a flat morphism of
varieties over k, and s an integer ≥ dim(X)− dim(B). Assume that k is an infinite field.
Then for any positive integer e, there exist a Zariski open neighbrohood O ⊂ P1 of a
k-rational point 0 ∈ P1 and continuous algebraic maps

Ψ = (Ψ+,Ψ−) : Cs(X)×O → Cs(X)2

satisfying the following properties (where ψ±p denotes the restriction of Ψ± to Cs(X)×{p}):

(a) Z = ψ+
0 (Z)− ψ−0 (Z) for every effective s-cycle Z on X.

(b) For any effective s-cycle Z, the restriction of Ψ to {Z}×O determines a rational
equivalence ZO ⊂ X ×P1 whose fibre above p ∈ O equals ψ+

p (Z)− ψ−p (Z).
(c) For every effective s-cycle Z of degree ≤ e, the cycles ψ+

p (Z), ψ−p (Z) intersect
properly each fibre f−1(b), b ∈ B of f , every p ∈ O − {0}.

Proof. Apply Theorem 3.1 with e replaced by the larger of the integer e of the statement
of this theorem and the maximum of the degrees of the fibres f−1(b), b ∈ B of f .

As remarked by Andrei Suslin, one can replace O in Theorem 3.1 by A1 with only a
bit more effort. We conclude by sketching the argument for the following “improvement”
of Theorem 3.1.

Theorem 3.8 Retain the hypotheses and notation of Theorem 3.1. Then there exists a
continuous algebraic map

Ψ̃ = (Ψ̃+, Ψ̃−) : Cs(X)×A1 → Cs(X)2

satisfying the following properties (where ψ̃±p = Ψ±
∣∣
CS(X)×{p}):

(ã) For every effective s-cycle Z,

Z = ψ̃+
0 (Z)− ψ̃−0 (Z).

25



(b̃) For any k-rational point p ∈ A1, ψ̃±p determines a pair of linear maps on
effective s-cycles.

(c̃) For any effective s-cycle Z on X, the restriction of Ψ̃ to {Z} ×A1 determines
a rational equivalence Zψ ⊂ Pn × P1 whose fibre above a point p ∈ A1 is
ψ+
p (Z)− ψ−p (Z).

(d̃) For all effective cycles Y,Z on X of dimensions r, s and degrees ≤ e and all
k-rational points p ∈ A1 − {0}, any component of excess dimension (i.e., >
r + s−m) of either |Y | ∩ |ψ̃+

p (Z)| or |Y | ∩ |ψ̃−p (Z)| lies in the singular locus of
X.

Proof. We begin with Ψ = (Ψ+,Ψ−) obtained in Theorem 3.1. Let g : P1 → P1 be
any morphism such that g−1(∞) = P1 −O and such that 0 occurs with multiplicity 1 in
g−1(0); in particular, g restricts to a finite map g : O → A1. For any Z ∈ Cs(X) and
p ∈ A1, define

Ψ̃+
p (Z) =

∑
t∈g−1(p)

ψ+
t (Z) +

∑
0 6=t′∈g−1(0)

ψ−t′ (Z)

Ψ̃−
p (Z) =

∑
t∈g−1(p)

ψ−t (Z) +
∑

0 6=t′∈g−1(0)

ψ+
t′ (Z).

Using techniques as in [F], one readily checks that this is a continuous algebraic map.
Namely, one first defines a rationally defined map by this formula applied to generic Z’s
(i.e., associated to generic points of irreducible components of Cs(X)). The closure of the
graph of this rational map gives a continuous algebraic map since the value at any non-
generic Z is given by the above formula and is thus independent of “path of specialization”.
The definition of Ψ̃ and properties (a)−(d) for Ψ proved in Theorem 3.1 immediately imply
properties (ã)− (d̃) for Ψ̃.
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