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Introduction

Blaine Lawson and the author introduced algebraic cocycles on complex algebraic va-
rieties in [FL-1] and established a duality theorem relating spaces of algebraic cocycles and
spaces of algebraic cycles in [FL-2]. This theorem has non-trivial (and perhaps surprising)
applications in several contexts. In particular, duality enables computations of “algebraic
mapping spaces” consisting of algebraic morphisms. Moreover, duality appears to be an
important property in motivic cohomology/homology (cf. [F-V]).

In this paper, we extend the theory of [FL-1], [FL-2] to quasi-projective varieties.
(Indeed, our duality theorem is an assertion of a natural homotopy equivalence from cocycle
spaces to cycle spaces and thus is a refinement of the duality theorem of [FL-2] when
specialized to projective varieties.) One can view this work as developing an algebraic
bivariant theory for complex quasi-projective varieties which is closely based on algebraic
cycles. On the other hand, one can also view the resulting spaces of algebraic cocycles as
function complexes equipped with a natural topology. Thus, the theory of cycle spaces,
cocycle spaces, and duality has both a formal role in providing invariants for algebraic
varieties (closely related to classical invariants and problems as seen in [F-2]) and a more
explicit role in the analysis of heretofore inaccessible function complexes.

Our consideration of quasi-projective varieties enables computations as exemplified in
§7. Many local calculations, useful even for projective varieties, should now be accessible.
Other applications of this theory in the quasi-projective context can be found in §6.

Duality for cocycle and cycle spaces should be viewed as a somewhat sophisticated
generalization of the comparison of Cartier and Weil divisors on a (smooth) variety. From
this point of view, one does indeed expect that the theory developed for projective vari-
eties to extend to quasi-projective varieties. The essential difficulty in providing such an
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extension is the formulation of a suitable definition of the topological monoid Cr(Y )(U) of
effective cocycles on a normal, quasi-projective variety U with values in a projective variety
Y . On the one hand, these cocycles should be related by a “duality map” to cycles on the
product U ×Y ; again, one wants the group completion of the space of effective cocycles to
provide “sensible” homotopy groups; further, one requires that this space be contravariant
with respect to U , covariant with respect to Y . Indeed, one would like that the definition
be algebraic in nature. As the reader will see, Cr(Y )(U) and its “näıve group completion”
Zr(Y )(U) do meet our criteria for a useful working definition.

The defining property of the topological monoid Cr(Y )(U) of effective cocycles on a
normal variety U is that this be the quotient of the monoid of effective cycles on X × Y
equidimensional over U modulo cycles on X∞ × Y , where U ⊂ X is a projective closure
with complement X∞. The formalism of tractable monoids (introduced by O. Gabber and
the author in [F-G]) enables us to work with this monoid and its group completion. For
quasi-projective range V , we provide a definition of cocycles with values in a pair (Y, Y∞),
where Y∞ ⊂ Y are projective and V = Y − Y∞. Of primary interest is the case V = An

with evident compactification Pn. As a consequence of our duality theorem (Theorem 5.4),
we conclude that the space of cocycles on U with values in the pair (Y, Y∞) has homotopy
type depending only upon U and V = Y − Y∞ provided that U, Y, Y∞ satisfy certain
smoothness hypotheses. To complete the formalism of cycle spaces, we also introduce the
space of cocycles on U with support in U0 ⊂ U .

Basic properties proved in §3 include the fundamental ones of covariant functoriality
with respect to Y and contravariant functoriality with respect to U . Homotopy invariance
with respect to bundle projections and a projective bundle theorem are also proved. As
recognized in [FL-1], the cocycle analogue of Lawson’s “algebraic suspension theorem” of
[L] is valid. Mayer-Vietoris sequences are established which are useful for calculations.
Moreover, homotopy groups of spaces of algebraic cocycles on U naturally map to coho-
mology groups of U , one of the original motivating aspects of algebraic cocycles in [FL-1].

The duality map D : Zr(Y )(U) → Zr+m(U × Y ) , m = dimU , is the map on näıve
group completions induced by the natural inclusion of effective cocycles into effective cycles.
We show that this duality map enjoys all the good properties established in [FL-2] in the
case of projective varieties. Our proof of duality (i.e., that D is a homotopy equivalence
under appropriate hypotheses of smoothness) in §5 follows along the lines of [FL-2]; in
particular, the essential ingredient of the proof of duality is the “Moving Lemma for Cycles
of Bounded Degree” established by the author and Blaine Lawson in [FL-3].

We anticipate many applications of duality both for projective and quasi-projective
varieties, a few of which were presented in [FL-2]. In this paper, we provide evident exten-
sions of those results to quasi-projective varieties as well as obtain results not heretofore
proven even for projective varieties. For example, we extend the construction of Chern
classes given in [FL-1] to algebraic vector bundles not necessarily generated by their global
sections (cf. Remark 6.4.). The families of examples presented in §7 are a first sampler of
computations of non-trivial homotopy groups of the topological monoids Mor(U, Cr(Y )).

Throughout, X and Y will denote reduced schemes proper over the complex field
C of pure dimension m and n respectively which admit a (Zariski) closed embedding in
some projective space. We shall refer to such schemes X and Y as projective varieties
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of dimension m and n respectively. We shall consider consider arbitrary Zariski closed
subvarieties X∞ ⊂ X and Y∞ ⊂ Y ; thus, X∞ and Y∞ are reduced but not necessarily
irreducible closed subschemes of X and Y respectively. We denote by U ⊂ X and V ⊂ Y
the Zariski open complements of X∞ and Y∞. We shall let r, t denote non-negative integers
with r ≤ n = dimY, t ≤ m = dimX. We shall usually view locally closed algebraic subsets
of projective spaces with their analytic topology and state explicitly when subsets are to
be viewed as open or closed in the Zariski topology.

We recall that an (effective) algebraic r-cycle on a variety Y is a (non-negative) integral
combination of irreducible subvarieties of Y each of dimension r. If Z =

∑
i niVi is such

a cycle, its support |Z| is the Zariski closed subset ∪iVi ⊂ Y . Our study involves the
consideration of Chow varieties (cf. [S]). In particular, we shall consider various topological
submonoids of the Chow monoid

Cr+m(X × Y ) def=
∐
d

Cr+m,d(X × Y )

where Cr+m,d(X × Y ) is a (Zariski) closed algebraic subset of an appropriate complex
projective space whose points correspond naturally to effective r + m-cycles on X × Y of
degree d (with respect to some unspecified embedding of X × Y in a projective space).

The author is especially indebted to H. Blaine Lawson, for this paper is an extension of
earlier collaborative work. On the other hand, the formal and algebraic nature of this work
is such that the author alone should be held responsible for the specific results discussed
below. We also thank the referee who suggested that we prove that the cycle and cocycle
spaces we consider are C.W. complexes, thereby refining our results to be assertions about
homotopy type rather than weak homotopy type.

1. Cocycles on Normal Varieties.

We begin by introducing the monoids which occur in our definition of the cocycle space
Cr(Y )(U). We then summarize the key properties of tractable monoids and observe their
applicability in our context. The new property we verify is that the spaces we consider
admit the structure of C. W. complexes. We conclude this section by defining Cr(Y )(U)
and identifying its topology.

Consider the incidence correspondence

I ⊂ Cr+m(X × Y )× (X × Y )

consisting of triples (Z, x, y) such that (x, y) ∈ X×Y lies in the support |Z| of Z. Consider
the composition of this closed embedding and the projection Cr+m(X × Y )× (X × Y )→
Cr+m(X × Y )×X,

p : I → Cr+m(X × Y )×X,

and let
pU : IU → Cr+m(X × Y )× U
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denote the restriction of pU above U . We denote by IZ,u the fibre of pU above (Z, u). By
upper semi-continuity of dimension of the fibres of pU ,

W def= {(Z, u) : dimIu ≥ r + 1} ⊂ Cr(X × Y )× U

is a Zariski closed subset of Cr(X × Y ) × U . Let π : Cr+m(X × Y ) × U → Cr+m(X × Y )
denote the projection and let (−)c denote the operation of taking complements.

Recall that a subset S of an algebraic variety V is said to be constructible if it is
a finite union of subsets each of which is locally closed in V with respect to the Zariski
topology. If S ⊂ V is a constructible subset of a variety V , then the inclusion S′ ⊂ S of
subset of S is said to be a constructible embedding if S′ is also a constructible subset of
V .

Definition 1.1. With notation as above, we define

Er(Y )(U) def= π(W)c ⊂ Cr+m(X × Y ), (1.1.1)

to be the topological submonoid consisting of those effective r +m-cycles on X ×Y whose
restrictions to U×Y are equidimensional over U of relative dimension r. The embedding of
(1.1.1) is constructible, in the sense that it is a disjoint union of constructible embeddings.

Moreover, the embedding Cr+m(X∞×Y ) ⊂ Cr+m(X×Y ) factors through an embed-
ding

Cr+m(X∞ × Y ) ⊂ Er(Y )(U) (1.1.2)

which is Zariski closed (in the sense that it is a disjoint union of Zariski closed embeddings
of algebraic varieties).

Warning. As used above (and throughout this paper), the terminology of an effective
cycle Z on U × Y equidimensional of relative dimension r over U refers to a cycle whose
fibres above points of U are either empty or of pure dimension r. In particular, if U is
reducible, then such a cycle need not dominate U even if it does not lie in Cr+m(X∞×Y ).

We recall that the näıve group completion M+ of an abelian topological monoid
M with the cancellation property is the quotient (with the quotient topology) of M ×M
by the equivalence relation consisting of pairs (m1, m2), (n1, n2) with the property that
m1 +n2 = m2 +n1. In general, the relationship between the algebraic invariants of M and
M+ is obscure at best. Moreover, even if M is algebro-geometric (e.g., the Chow monoid
Cr+m(X × Y )), M+ appears to have no such geometric structure.

Nonetheless, in our context of Chow monoids this construction of näıve group com-
pletion turns out to be quite reasonable. As formalized by O. Gabber and the author in
[F-G], a tractable monoid M has the property that M+ is obtained by successive push-out
diagrams which enables one to identify the homotopy type of M+ and view it in some
sense as algebro-geometric provided that M itself is algebro-geometric.

With the example of Er(Y )(U) in mind, we now introduce the formalism of tractability.
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Definition 1.2. The action of an abelian topological monoid on a topological space T is
said to be tractable if T is the topological union of inclusions

∅ = T−1 ⊂ T0 ⊂ T1 ⊂ . . .

such that for each n > 0 Tn−1 ⊂ Tn fits into a push-out square of M -equivariant maps
(with R0 empty)

Rn ×M → Sn ×My y
Tn−1 → Tn

(1.2.1)

whose upper horizontal arrow is induced by a cofibration Rn ⊂ Sn of Hausdorff spaces.
The monoid M itself is said to be tractable if the diagonal action of M on M ×M is
tractable.

Lemma 1.3. Let T be a tractable space for the abelian topological monoid M . If T has a
presentiation as in Definition 1.2 with each Rn ⊂ Sn a relative C.W. complex, then T/M
admits the structure of a C.W. complex.

Proof. Since Tn/M fits in the push-out square

Rn ⊂ Sny y
Tn−1/M → Tn/M

(1.3.1)

we conclude that Tn−1/M → Tn/M is a relative C.W. complex and thus an induction ar-
gument immediately implies that Tn/M is a C.W. complex. Consequently, colimn(Tn/M)
is also a C.W. complex.

We conclude that it suffices to verify that the natural continuous bijection

colimn(Tn/M)→ (colimnTn)/M = T/M

is a homeomorphism. This follows from the observation that Y ⊂ T/M is closed iff
π−1Y ⊂ T is closed iff π−1Y ∩ Tn ⊂ Tn is closed for each n iff π−1

n Yn ⊂ Tn is closed
for each n iff Yn ⊂ Tn/M is closed for each n iff Y ⊂ colimn(Tn/M) is closed (where
π : Y → Y/M, πn : Yn → Yn/M are the projections and where Yn equals Y ∩ Tn/M .)

The importance for us of the existence of the structure of a C.W. complex on a cycle
space is the following well known fact (cf. [Sp;7.6.24]).

Recollection 1.4. Let f : A→ B be a weak homotopy equivalence between spaces A, B
having the homotopy type of C.W. complexes. Then f is a homotopy equivalence.

If M is a topological monoid, then we denote by B[M ] its classifying space and by
ΩB[M ] the loop space on this classifying space. We recall that ΩB[M ], which we call
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the homotopy-theoretic group completion, is the usual group completion considered by
topologists (cf. [F-M;appQ]).

The following theorem summarizes the topological consequences of tractability that
we shall require.

Theorem 1.5. Assume that Er ⊂ Cr+m(X × Y ) def= Cr is a topological submonoid of Cr

whose embedding is constructible.
(a.) Er is a tractable monoid which admits the structure of a C.W. complex.
(b.) The natural homotopy class of maps of H-spaces

Ω ◦B[Er] → [Er]+

is a weak homotopy equivalence.
(c.) If Fr ⊂ Er is a Zariski closed submonoid, then Er is tractable as a Fr-space and

the quotient monoid (with the quotient topology) Er/Fr is also a tractable monoid
admitting the structure of a C.W. complex.

(d.) For Fr ⊂ Er as in (c.), the following is a fibration sequence (i.e., induces a long exact
sequence in homotopy groups) of spaces each of which admits the structure of a C.W.
complex

[Fr]+ → [Er]+ → [Er/Fr]+.

Proof. The tractability of Er in (a.) is verified in [FL-2;T.3] (which is itself merely a
modification of [FG;1.3]). The fact that Er admits the structure of a C.W. complex is an
immediate consequence of the triangulation of semi-algebraic sets as proved in [H-2]. The
weak homotopy equivalence of (b.) is established in [FL-2;T.4]. The tractability properties
asserted in part (c.) are also proved in [FL-2;T.3]; the fact that Er/Fr admits the structure
of a C.W. complex follows from Lemma 1.3 and the observation that each Rn ⊂ Sn in the
presentation of Er as a Fr space is a Zariski closed embedding of constructible spaces and
thereby admits the structure of a relative C.W. complex. This latter fact is a consequence of
the following result proved in the appendix of [Fl]: if Rn ⊂ Sn, Sn−Sn ⊂ Sn are simplicial
embeddings of finite polyhedra and if Rn = Rn ∩ Sn, then Rn ⊂ Sn is a polyhedral pair.
The fact that the sequence in part (d.) is a fibration sequence is established in the proof of
[F-G;1.6]. To verify that each of the spaces occurring in this sequence admits the structure
of a C.W. complex, we let M denote any of the tractable monoids Fr, Er, Er/Fr and apply
Lemma 1.3 to the tractable M space M×2 as in the proof of part (c.).

In the following definition of effective cocycles, we assume that the quasi-projective
variety U is normal. Indeed, the same definition could be given for any quasi-projective
variety U and Corollary 1.7 and Proposition 1.8 would remain valid without the hypothesis
of normality on U . On the other hand, normality is needed for Proposition 1.9 and (more
importantly) to establish functoriality in Proposition 3.3.

Definition 1.6. Let U be a normal, quasi-projective variety. We define the monoid of
effective cocycles on U equidimensional of relative dimension r in Y to be the following
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quotient monoid (with the quotient topology)

Cr(Y )(U) def= Er(Y )(U)/Cr+m(X∞ × Y ). (1.6.1)

We define the topological abelian group of cocycles on U equidimensional of relative
dimension r in Y to be the näıve group completion of Cr(Y )(U),

Zr(Y )(U) def= [Cr(Y )(U)]+. (1.6.2)

Theorem 1.5 immediately provides the following corollary which shows that Definition
1.6 agrees with the definitions of [FL-1] and [FL-2] for the special case in which U equals
the projective variety X.

Corollary 1.7. As in (1.4), let U be a normal, quasi-projective variety. The natural map
Cr(Y )(U)→ Ω ◦BCr(Y )(U) determines a weak homotopy equivalence

Ω ◦B[Cr(Y )(U)] → Zr(Y )(U). (1.7.1).

Moreover, the following sequence of topological abelian groups is a fibration sequence:

Zr+m(X∞ × Y ) → [Er(Y )(U)]+ → Zr(Y )(U). (1.7.2)

We recall (cf. [LF-2], [F-G]) that the monoid of effective cocycles on U × Y is defined
as the quotient (with the quotient topology)

Cr+m(U × Y ) def= Cr+m(X × Y )/Cr(X∞ × Y ).

Proposition 1.8. Let U be a normal, quasi-projective variety. The topological embedding
(1.1.1) induces a topological embedding

Cr(Y )(U) ⊂ Cr+m(U × Y ). (1.8.1)

In particular, the homeomorphism type of Cr(Y )(U) is independent of the choice of pro-
jective closure U ⊂ X.

Proof. Since Er(Y )(X) ⊂ Cr+m(X × Y ) is saturated for Cr+m(X∞ × Y ) and since
Cr+m(X∞ × Y ) is closed in Cr+m(X × Y ) and thus also in Er(Y )(X), we conclude easily
that (1.8.1) is a topological embedding.

The second assertion follows from the fact that the homeomorphism type of Cr+m(U×
Y ) is independent of projective closure U ⊂ X as shown in [LF] and [F-G].
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In [FL-1], Lawson and the author considered “continuous algebraic maps” (i.e., mor-
phisms from the weak normalization of the domain) from a quasi-projective variety U to
the Chow monoid Cr(Y ). Since we restrict our attention to normal varieties U , such maps
are always morphisms. We recall from [F-1] that any morphism f : U → Cr(Y ) admits a
“graph” Zf ⊂ U ×Y and that Zf 6= Zg whenever f 6= g. (The graph Zf can be defined as
the Zariski closure in U × Y of the effective cycle on YSpecK associated to the restriction
of f to the generic point SpecK ∈ U .) Moreover, sending a morphism f to its graph is a
bijection whenever U is normal: this is shown in [FL-1;1.5], where proof of bijectivity is
local and thus applies to quasi-projective U .

The following characterization of the topology on Cr(Y )(U) is verified in Appendix C
of [FL-2].

Proposition 1.9. [FL-2;C.3] Let Mor(U, Cr(Y )) denote the abelian monoid of morphisms
from a normal, quasi-projective variety U to Cr(Y ). Thus, the graphing construction

G : Mor(U, Cr(Y ))
∼=→ Cr(Y )(U)

is an isomorphism. Then the topology on Mor(U, Cr(Y )) inherited from that on Cr(Y )(U)
via G is characterized by the following property: a sequence {fn; n ∈ N} ⊂Mor(U, Cr(Y ))
converges for this topology if and only if
(i.) {fn; n ∈ N} converges when viewed in Homcont(U, Cr(Y )) provided with the compact-

open topology.
(ii.) The associated sequence {Zn; n ∈ N} ⊂ Cr(Y )(U) of graphs has the property that for

some locally closed Zariski embedding U ×Y ⊂ PN , there is a positive integer E such
that each Zn has closure Z̄n ⊂ PN of degree ≤ E.

We call this topology on Mor(U, Cr(Y )) inherited from that of Cr(Y )(U) the topology of
convergence with bounded degree.

Remark 1.10. There are several other definitions of the space of cocycles on U with
values in Y which come readily to mind but which appear to us to be less useful.
(a.) If one considered the monoid of effective cocycles to be Mor(U, Cr(Y )) for U not

normal, then it would be difficult to identify this as an accessible submonoid of
Cr+m(U × Y ). Even for U normal, if one were to define the monoid of effective
cocycles to be Mor(U, Cr(Y )) with the compact-open topology (as suggested in [FL-
1]), Proposition 1.9 tells us that we would fail to have a continuous map to Crm(U×Y )
which we require for duality.

(b.) Another possible approach is to define effective cocycles on U with values in Y as a
quotient of effective cocycles on X with values on Y , for the latter is well understood
thanks to [FL-2]. This definition has the strong disadvantage that it depends (even
as a discrete monoid) upon the choice of projective closure U ⊂ X.

(c.) A third alternative is to retain our definition of effective cocycle on U with values
in Y but to define the topological abelian group of all cocycles on U with values in
Y as the subgroup of Zr+m(U × Y ) generated by Cr(Y )(U). One has a continuous
bijection from Zr(Y )(U) to this subgroup, but this bijection is not a homeomorphism.
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This formulation suffers from the fact that its algebraic invariants have no evident
relationship to those of Cr(Y )(U).

2. Relative Cocycles and Cocycles with Support.

In this section, we define the topological abelian group of algebraic cocycles on U with
values in a pair (Y, Y∞). This is to be viewed as our approximation of a suitable definition
of cocycles on U with values in the quasi-projective variety V = Y − Y∞. A special case
of particular interest is the pair (Pt,Pt−1). To complete the formalism, we also define
cocycles with support.

We remind the reader that Y is assumed to be projective (i.e., to admit a Zariski
closed embedding in some projective space) and Y∞ ⊂ Y is a Zariski closed embedding.
Throughout this section, the quasi-projective variety U is assumed to be normal.

Definition 2.1. We define the topological submonoid Fr(Y∞)(U) by

Fr(Y∞)(U) def= Er(Y∞)(U) + Cr+m(X∞ × Y ) ⊂ Er(Y )(U).

We define the topological monoid Cr(Y \Y∞)(U) of effective algebraic cocycles on U
equidimensional of relative dimension r in (Y, Y∞) by

Cr(Y \Y∞)(U) def= Er(Y )(U)/Fr(Y∞)(U). (2.1.1)

We define the topological abelian group Zr(Y \Y∞)(U) to be the näıve group com-
pletion of Cr(Y \Y∞)(U),

Zr(Y \Y∞)(U) def= [Cr(Y \Y∞)(U)]+. (2.1.2)

Theorem 1.5 easily implies the following properties of our definition of relative cocy-
cles.

Proposition 2.2. The topological monoid Cr(Y \Y∞)(U) of (2.1.1) is also given as the
following quotient

Cr(Y \Y∞)(U) = Cr(Y )(U)/Cr(Y∞)(U).

The natural map

Ω ◦B[Cr(Y \Y∞)(U)] → Zr(Y \Y∞)(U)

is a weak homotopy equivalence.
Furthermore, the following localization sequence of topological abelian groups

Zr(Y∞)(U) → Zr(Y )(U) → Zr(Y \Y∞)(U)
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is a fibration sequence.

Proof. The equality

Er(Y )(U)/Fr(Y∞)(U) = Cr(Y )(U)/Cr(Y∞)(U)

is verified by inspection.
Since addition in Er(Y )(U) is a proper map (the restriction of addition in Cr+m(X ×

Y )) and since both Er(Y∞)(U) ⊂ Er(Y )(U) and Cr+m(X∞ × Y ) are Zariski closed, we
conclude that Fr(Y∞)(U) ⊂ Er(Y )(U) is also Zariski closed. Thus, the fact that

Zr(Y \Y∞)(U)→ Ω ◦B[Cr(Y \Y∞)(U)]

is a weak homotopy equivalence follows from Theorem 1.5.
Consider the following diagram

[Cr+m(X∞ × Y )]+ → [Fr(Y∞)(U)]+ → Zr(Y∞)(U)

=
y y y

[Cr+m(X∞ × Y )]+ → [Er(Y )(U)]+ → Zr(Y )(U)y y y
∗ → Zr(Y \Y∞)(U) → Q

where Q is the homotopy fibre of B[Zr(Y∞)(U)] → B[Zr(Y )(U)], the delooping of the
upper right vertical map. Each of the columns and the upper two rows of this diagram
are fibration sequences. We conclude by the “3× 3 Lemma” that Zr(Y \Y∞)(U)→ Q is a
homotopy equivalence, thereby implying the asserted fibration sequence.

Remark 2.3. One could define Cr(V )(U) as the topological submonoid of Cr+m(U × V )
consisting of equidimensional cycles, thereby giving a definition which depends only upon
U, V , but not upon the projective closure Y . However, such a definition would not appear
to have good properties (e.g., functoriality, comparison with the näive group completion
and homotopy-theoretic group completion, fibration sequences), in view of the fact that
the natural map

Cr(Y \Y∞)(U) → Cr+m(U × V ) , V = Y − Y∞

is a continuous monomorphism but not necessarily a topological embedding.
For example, we can take X = P1 = U and Y∞ to be some point ∞ ∈ P1. Consider

the cycles Zn in P1×P1 given by the equations y = x/n in the affine chart A1×A1. Then
the sequence {Wn = Zn+1 − Zn} converges in Z0(A1)(P1) to the graph of the function
which is everywhere 0 on P1. On the other hand, the sequence {Wn} does not converge in

Z0(P1\{0})(P1) = [C0(P1)(P1)/C0(P1)({0})]+
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since each of the sequences {Zn}, {Zn+1} converges to P1 × {0} + {∞} × P1 which does
not lie in C0(P1)(P1).

Proposition 2.2 implies that the following definition of Zt(U) generalizes to quasi-
projective U the definition of algebraic cocycle spaces given in [FL1], [FL-2]. As we shall
see, these spaces for U smooth are homotopy equivalent to corresponding cycle spaces.
This is one justification of our view of Zt(U) as the contravariant aspect of the bivariant
Zr(Y )(U).

Recall that t is a non-negative integer ≤ dimX = dimU .

Definition 2.4. We define the topological abelian group of t-cocycles on X to be

Zt(U) def= Z0(Pt\Pt−1)(U).

For the sake of completeness, we introduce the following definition of the space of
cocycles on U with supports in a closed subvariety U0 ⊂ U . Taking homotopy groups gives
a definition of cohomology groups with support, leading to a theory satisfying most of the
properties of a “Bloch-Ogus” theory (cf. [B-O]). Indeed, the one property that we lack
is a version of Poincaré duality which involves a pairing of cycle spaces (rather than our
formulation of duality given in §5).

Definition 2.5. Let U0 ⊂ U be a closed subvariety of the quasi-projective variety U .
Then we define the topological abelian group of codimension t cocycles on U supported on
U0 by

Zt
U0

(U) ≡ htyfib{Zt(U)→ Zt(U − U0)}.

Remark 2.6. Although we shall rarely explicitly discuss Zt
U0

(U), our duality theorems
provide some understanding of these spaces. For example, Proposition 6.1 in conjunction
with Remark 4.4 implies the existence of a homotopy equivalence

Zt
U0

(U) ∼= Zt(U0)

provided that U0 ⊂ U is a closed immersion of smooth varieties. More generally, if we
know only that U is smooth, then Theorem 5.2 implies that the duality map induces a
homotopy equivalence

Zt
U0

(U)
∼=→ Zm−t(U0).

One can view this homotopy equivalence as a form of Alexander Duality.

3. Basic Properties.

In this section, we prove some basic properties of our topological abelian groups of
algebraic cocycles. The primary one is functoriality. Another is the existence of a natural
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map to singular cohomology. We also show that the algebraic suspension theorem, first
proved for cycle spaces by Lawson in [L] and subsequently for cocycle spaces in the context
of projective varieties in [FL-1], remains valid for cocycles on a quasi-projective variety U .
We conclude this section with a Mayer-Vietoris fibration sequence. Once again, throughout
this section U will denote a normal quasi-projective variety of dimension m embedded as
a Zariski open subset in the projective variety X.

Proposition 3.1. Let f : Y → Y ′ be a morphism of projective varieties. Then proper
push-forward of cycles via 1× f : U ×Y → U ×Y ′ determines continuous homomorphisms

f∗ : Cr(Y )(U)→ Cr(Y ′)(U) , f∗ : Zr(Y )(U)→ Zr(Y ′)(U).

Moreover, if f restricts to Y∞ → Y ′
∞, then push forward of cycles determines continuous

homomorphisms on relative cocycle spaces

f∗ : Cr(Y \Y∞)(U)→ Cr(Y ′\Y ′
∞)(U) , f∗ : Zr(Y \Y∞)(U)→ Zr(Y ′\Y ′

∞)(U).

Proof. We recall that (1× f)∗ : Cr+m(X × Y )→ Cr+m(X × Y ′) is a continuous algebraic
map (cf. [F]). Since this clearly restricts to (1× f)∗ : Cr+m(X∞ × Y )→ Cr+m(X∞ × Y ′),
we obtain

(1× f)∗ : Cr+m(U × Y )→ Cr+m(U × Y ′). (3.1.1)

Moreover, if Z ⊂ U×Y is an irreducible cycle equidimensional over U of relative dimension
r, then (1× f)∗(Z) restricted to some irreducible component of U is either 0 (because the
dimension of (1 × f)(U) is < r + m) or has fibres which are generically of dimension r
over U . By the upper semi-continuity of dimension of the fibres of (1 × f)(Z) → U ,
we conclude that (1 × f)∗(Z) in this latter case is equidimensional of relative dimension
r over U . Thus, (3.1.1) restricts to f∗ : Cr(Y )(U) → Cr(Y ′)(U) which determines f∗ :
Zr(Y )(U)→ Zr(Y ′)(U) via näıve group completion.

The map on spaces of effective relative cocycles is merely the quotient of the map f∗
constructed above; this being well defined by naturality. Finally, the map on topological
abelian groups of relative cocycles is the group completion of this map.

The following lemma shows that even though Chow varieties do not represent families
of cycles (and, in particular, there is no universal family of cycles on Chow varieties), they
do provide a sort of universality for the coarser context of supports of cycles.

Lemma 3.2. Let Ir,d ⊂ Cr,d(Y )× Y denote the incidence correspondence consisting of
pairs (Z, y) with y ∈ |Z|. If f : U → Cr,d(Y ) is any morphism, then the support of the
graph Zf of f is given by

|Zf | = U ×Cr,d(Y ) Ir,d.
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Proof. We recall that Zf is defined as follows: for each generic point η : SpecK → U , let
Zη =

∑
njVη,j denote the cycle on YK with Chow point f(η); let V̄η,j ⊂ U ×Y denote the

closure of Vη,j ; then we define

Zf
def=

∑
η

∑
j

nj V̄η,j .

Since Ir,d ⊂ Cr,d(Y )×Y is Zariski closed, the equality |V̄η,j | = |Vη,j | immediately implies
the inclusion

|Zf | ⊂ U ×Cr,d(Y ) Ir,d.

To prove the reverse inclusion, it suffices to show for any u ∈ U that |Zf(u)| ⊂ |Zf |.
Since u is the specialization of some generic point η, there exists a smooth curve C and a
map g : C → U sending the generic point γ to η and sending some closed point c ∈ C to
u. Then the graph of f ◦ g, Zf◦g, is flat over C and has the property that cycle associated
to the scheme theoretic fibre of Zf◦g above any point of C is the cycle Zf◦g(c) (i.e., the
cycle with Chow point f ◦ g(c)) [F;1.3]. In particular, we conclude that |Zf◦g(c)| lies in the
closure of |Zf◦g(γ)| (which equals all of |Zf◦g|). This implies that |Zf◦g(c)| = |Zf(u)| lies in
the closure of |Zf◦g(η)| = |Zf(η)| as required.

Using Lemma 3.2, we now establish the contravariant functoriality of Cr(Y )(U) with
respect to U . The reader is referred to [S-V] for a proof of functoriality for normal varieties
over general fields (requiring the mastery of technicalities arising from purely inseparable
extensions).

Proposition 3.3. Let g : U ′ → U be a morphism (of normal quasi-projective varieties).
Then composition with g determines continuous homomorphisms

g∗ : Cr(Y )(U)→ Cr(Y )(U ′) , g∗ : Zr(Y )(U)→ Zr(Y )(U ′).

If g is a regular closed immersion of codimension c, then g∗ is the restriction of the
intersection-theoretic pull-back g! : Zr+m(U × Y )→ Zr+m−c(U ′ × Y ) (cf. [Fu]).

Moreover, for Y∞ ⊂ Y a closed subvariety, g∗ induces

g∗ : Cr(Y \Y∞)(U)→ Cr(Y \Y∞)(U ′) , g∗ : Zr(Y \Y∞)(U)→ Zr(Y \Y∞)(U ′).

Proof. Composition with g determines a continuous homomorphism of mapping spaces
with the compact-open topology

Homcont(U, Cr(Y )) → Homcont(U ′, Cr(Y )).

Using Proposition 1.9, we conclude that to prove the continuity of g∗ it suffices to prove
the following:

13



if {fn : U → Cr(Y )} is a sequence of maps whose graphs {Zn} have closures in some
PN of bounded degree, then the graphs {Z ′

n} associated to {fn ◦ g} likewise have
closures of bounded degree.

Choose projective closures U ⊂ X, U ′ ⊂ X ′ together with a map g̃ : X ′ → X extending
g. Let Z̄n denote the closure in X × Y of Zn. By Lemma 3.2, X ′ ×X |Z̄n| is the closure
in X ′ × Y of the support |Z ′

n| of Z ′
n. Granted that the degrees of Z̄n are bounded, we

conclude that the sum of the multiplicities of the components of Zn and thus also of Z ′
n

are bounded. Hence, it suffices to prove that the degrees of irreducible components of
X ′ ×X |Z̄n| ⊂ X ′ × Y are bounded. We conclude that it suffices to prove that whenever
{Vn} is a sequence of irreducible subvarieties of X×Y of bounded degree then {Vn×X X ′}
is also a sequence of bounded degree. We can further reduce the problem to the assertion
that for any d > 0 there exists some nd such that every irreducible cycle V on X × Y of
degree d has the property that the degree of V ×X X ′ has degree bounded by nd.

We consider the family (parametrized by an open subset U of Cm+r,d(X × Y )) of all
irreducible cycles on X × Y of degree d. Pull-back via g̃ × 1 gives us a family {V ′

u; u ∈ U}
of subvarieties of X ′ × Y parametrized by U . This family is flat when restricted to some
open dense subset U1 ⊂ U and hence {V ′

u; u ∈ U1} is a family of constant degree. Similarly,
there is an open dense subset U2 of U−U1 such that this family is flat when restricted to U2
and hence {V ′

u; u ∈ U2} is a family of constant degree. Since U is finite dimensional, this
process (“ noetherian induction”) eventually stops so that we conclude that the degrees of
{V ′

u; u ∈ U} are bounded.
If g : U ′ → U is a regular closed immersion, then we may apply [F-M;3.2] which

asserts that the intersection-theoretic pull-back g! constructed in [Fu] is given on effective
cocycles by composition with g. Thus, g∗ = g!.

It is evident that g∗ so defined as composition with g restricts to g∗ : Cr(Y∞)(U) →
Cr(Y∞)(U ′) and therefore induces a map on quotient monoids g∗ : Cr(Y \Y∞)(U) →
Cr(Y \Y∞)(U ′) and their näıve group completions.

As demonstrated in [FL-1], the homotopy groups of the cocycle spaces naturally map
to singular cohomology. We verify that this map remains well defined with the definition
of cocycle spaces Zr(Y \Y∞)(U) given in §2.

Proposition 3.4 There is a natural map

Φ : Zr(Y \Y∞)(U) → Homcont(U,Zr(V )), V = Y − Y∞.

In the special case (Y, Y∞) = (Pt,Pt−1) and r = 0, this map

Φ : Zt(U) → Homcont(U,Z0(At))

induces on j-th homotopy groups πj a map of the form

Φ∗ : LtH2t−j(U) def= πj(Zt(U)) → H2t−j(U). (3.4.1)
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Proof. Proposition 1.9 implies that the natural inclusion

Cr(Y )(U) → Homcont(U, Cr(Y ))

is continuous, thereby inducing

Cr(Y )(U) → Homcont(U,Zr(Y )).

The naturality of this map when applied to Y∞ → Y implies that this induces

Cr(Y \Y∞)(U) → Homcont(U,Zr(V ))

since Zr(V ) = Zr(Y )/Zr(Y∞). The näıve group completion of this last map provides the
asserted map Φ.

The second assertion follows from the observation that Z0(At) is a model for the
Eilenberg-MacLane space K(Z, 2t).

We next verify the homotopy invariance of Zr(Y )(U) with respect to U . Unfortu-
nately, the proof does not apply to prove the more general assertion that p∗ : Zr(Y )(U)→
Zr(Y )(E) is a homotopy equivalence for any affine torsor p : E → U . Using the duality
theorem, this more general assertion is proved for U smooth in Proposition 6.3.

Proposition 3.5. As usual, asssume that U ′, U are normal and consider an algebraic
homotopy G : U ′ ×A1 → U relating two morphisms g, g′ : U ′ → U . Then G induces a
continuous homotopy

GZ : Zr(Y )(U)×A1 → Zr(Y )(U ′)

relating g∗, g′∗ : Zr(Y )(U)→ Zr(Y )(U ′).
Consequently, if p : E → U is the projection of an algebraic vector bundle, then

p∗ : Zr(Y )(U)→ Zr(Y )(E) is a homotopy equivalence.

Proof. We define GZ as the composition

Zr(Y )(U)×A1 G∗×1→ Zr(Y )(U ′ ×A1)×A1 ev→ Zr(Y )(U ′).

To verify that GZ is continuous, it suffices to prove that the evaluation map ev is con-
tinuous. Since U ′ × {t} ⊂ U ′ ×A1 is a regular immersion, evaluation at t has the effect
on a cycle Z ∈ Zr(Y )(U ′ ×A1) of sending Z to its intersection theoretic fibre above t; in
particular, effective cocycles of some bounded degree on U ′×A1×Y are sent via evaluation
at t to effective cocycles of bounded degree on U ′ × Y . Consequently, Proposition 1.9 and
the well-behaved nature of the compact-open topology with respect to evaluation imply
that ev is continuous.

If p : E → U is the bundle projection of an algebraic vector bundle, then clearly p
admits an algebraic homotopy E ×A1 → E relating the identity to o ◦ p, where o denotes
the 0-section o : U → E.
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Remark 3.6. A suitably general homotopy invariance property would follow from the
verification that whenever U is written as a union of Zariski open subsets U1, U2 the
following triple

Mor(U, Cr(Y ))→Mor(U1, Cr(Y ))⊕Mor(U2, Cr(Y ))→Mor(U1 ∩ U2, Cr(Y ))

determines upon näive group completion a distinguished triangle in the derived category
(and hence a Mayer-Vietoris exact sequence). Our present techniques fail to prove such
a result for several reasons. First, this triple is not a short exact sequence of topological
monoids. Second, it is not clear that the required tractability condition for this triple is
valid.

We recall that one of fundamental properties of cycles spaces is the algebraic suspen-
sion theorem proved by Lawson in [L]. This theorem asserts that sending a cycle Z on a
projective variety Y to its “algebraic suspension” 6 Σ(Z) on the algebraic suspension 6 Σ(Y )
of Y induces a weak homotopy equivalence

6 Σ : Zr(Y )→ Zr+1( 6 Σ(Y )). (3.6.1)

This theorem was extended to cocycle spaces in [FL-1;3.3] (see also [FL-2;1.7]: relative
algebraic suspension 6 ΣX induces a weak homotopy equivalence

6 ΣX : Zr(Y )(X)→ Zr+1( 6 ΣY )(X). (3.6.2)

By Recollection 1.4 and Theorem 1.5, (3.6.1) and (3.6.2) are in fact homotopy equivalences.
We now verify that this algebraic suspension theorem extends to the quasi-projective

context.

Proposition 3.7. Relative algebraic suspension 6 ΣU : Cr(Y )(U)→ Cr+1( 6 ΣY )(U) induces
a homotopy equivalence

6 ΣU : Zr(Y )(U) → Zr+1( 6 ΣY )(U). (3.7.1)

Moreover, if Y∞ ⊂ Y is a closed subvariety, then 6 ΣU induces a homotopy equivalence

6 ΣU : Zr(Y \Y∞)(U) → Zr+1( 6 ΣY \ 6 ΣY∞)(U). (3.7.2)

Proof. The proof of [FL-1;3.3] applies to prove that

6 ΣU : Er(Y )(U) → Er+1( 6 ΣY )(U)

induces a weak homotopy equivalence on homotopy-theoretic group completions

6 ΣU : Ω ◦B[Er(Y )(U)] → Ω ◦B[Er+1( 6 ΣY )(U)],
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for the argument only involves algebraic suspension in the second factor of cycles on U×Y
and explicitly permits the first factor to be quasi-projective. Moreover, this weak homotopy
equivalence restricts to the weak homotopy equivalence

6 ΣX∞ : Ω ◦B[Cr+m(X∞ × Y )] → Ω ◦B[Cr+m(X∞× 6 ΣY )].

Thus, Corollary 1.7 enables us to conclude that

6 ΣU : Zr(Y )(U) → Zr+1( 6 ΣY )(U)

is also a weak homotopy equivalence; Recollection 1.4 and Theorem 1.4 now imply that
this map is a homotopy equivalence.

Using the first assertion in conjunction with the fibration sequence of Corollary 1.7,
the second assertion follows by the 5-Lemma.

The following Mayer-Vietoris fibration sequence with respect to the covariant argu-
ment Y is an elementary consequence of our definitions and Theorem 1.5.

Proposition 3.8. Assume that Y can be written as a union of closed subvarieties, Y =
Y1 ∪ Y2. Let i1 : Y1 → Y, j1 : Y1 ∩ Y2 → Y1 denote the closed immersions and let i2, j2
denote the corresponding closed immersions for Y2. Then the short exact sequences of
abelian topological monoids

0→ Cr(Y1 ∩ Y2)(U)
j1∗⊕j2∗→ Cr(Y1)(U)⊕ Cr(Y2)(U) i1∗−i2∗→ Cr(Y )(U)→ 0

0→ Cr+m(U × (Y1 ∩ Y2))
j1∗⊕j2∗→ Cr+m(U × Y1)⊕ Cr+m(U × Y2)

i1∗−i2∗→ Cr+m(U × Y )→ 0

determine by näıve group completion the following fibration sequences

Zr(Y1 ∩ Y2)(U)→ Zr(Y1)(U)⊕Zr(Y2)(U)→ Zr(Y )(U) (3.8.1)

Zr+m(U × (Y1 ∩ Y2))→ Zr+m(U × Y1)⊕Zr+m(U × Y2)→ Zr+m(U × Y ) (3.8.2).

Proof. The short exact sequences follow from the evident observation that an irreducible
cocycle in Cr(Y )(U) (respectively, an irreducible cycle in Cr+m(U × Y )) lies in the image
of either Cr(Y1)(U) or Cr(Y2)(U) (resp., Cr+m(U ×Y1) or Cr+m(U ×Y2)). We observe that
j1∗ ⊕ j2∗ is a closed immersion, for it is the restriction to Cr(Y1)(U) ⊕ Cr(Y2)(U) (resp.,
Cr+m(U × Y1)⊕ Cr+m(U × Y2)) of the closed immersion

Cr+m(X × (Y1 ∩ Y2))→ Cr+m(X × Y1)⊕ Cr+m(X × Y2).

Thus, the fact that (3.6.1) and (3.6.2) are fibration sequences follows from Theorem 1.5.
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4. Duality Map.

This section defines our duality map from spaces of cocycles to spaces of cycles and
verifies that this map is compatible with various constructions. Many of these verifications
are little different than those of [FL-2], so that we can refer to proofs given there; on the
other hand, the more delicate nature of functoriality in the quasi-projective case requires
alternate proofs of various compatibility properties.

We retain our notational conventions, including the consideration of a Zariski open
subvariety V ⊂ Y with not necessarily irreducible complement Y∞ ⊂ Y . As in previous
sections, U will denote a normal quasi-projective variety with projective closure U ⊂ X.

Definition 4.1. We define the duality map

D : Zr(Y )(U) → Zr+m(U × Y ) (4.1.1)

to be the map on näive group completions induced by (1.8.1).
For any closed subvariety Y∞ ⊂ Y , we define

D : Zr(Y \Y∞)(U) → Zr+m(U × V ) , V = Y − Y∞ (4.1.2)

to be the map on näive group completions induced by the following map defined as a
quotient (cf. Proposition 2.2)

Cr(Y \Y∞)(U) ≡ Cr(Y )(U)/Cr(Y∞)(U)→ Cr(U × V ) ≡ Cr(U × Y )/Cr(U × Y∞)

of maps of the form (1.8.1).
For any t ≤ m, we define the duality map

D : Zt(U) → Zm−t(U) (4.1.3)

as the homotopy class of maps given by the composition of D : Zt(U) ≡ Z0(Pt/Pt−1)(U)→
Zm(U × At) and a homotopy inverse of the natural homotopy equivalence Zm−t(U) →
Zm(U ×At).

In the following proposition, we verify that the duality map D of (4.1.1) is natural
with respect to functorial constructions on cycles and cocycles.

Proposition 4.2. Let f : Y → Y ′ be a morphism of projective algebraic varieties. Then
the continuous homomorphism f∗ : Zr(Y )(U)→ Zr(Y ′)(U) of Proposition 3.1 fits in the
following commutative square

Zr(Y )(U) D→ Zr+m(U × Y )

f∗

y y(1× f)∗

Zr(Y ′)(U) D→ Zr+m(U × Y ′)

. (4.2.1)
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Let g : Ỹ → Y be a flat map of projective varieties of relative dimension k. Then g
induces a continuous homomorphism

g∗ : Zr(Y )(U) → Zr(Ỹ )(U)

which fits in the following commutative square

Zr(Y )(U) D→ Zr+m(U × Y )

g∗
y y(g × 1)∗

Zr+k(Ỹ )(U) D→ Zr+m+k(U × Ỹ )

. (4.2.2)

Let h : Ũ → U be a flat morphism of relative dimension e between (quasi-projective,
normal) varieties. Then

h∗ : Zr(Y )(U) → Zr(Y )(Ũ)

fits in the following commutative square

Zr(Y )(U) D→ Zr+m(U × Y )

h∗
y y(h× 1)∗

Zr(Y )(Ũ) D→ Zr+m+e(Ũ × Y )

. (4.2.3)

Let i : U0 → U be a regular closed immersion of codimension c of normal quasi-
projective varieties. Then

i∗ : Zr(Y )(U) → Zr(Y )(U0)

fits in the following homotopy commutative square

Zr(Y )(U) D→ Zr+m(U × Y )

i∗
y y(i× 1)!

Zr(Y )(U0)
D→ Zr+m−c(U0 × Y )

, (4.2.4)

where (1× i)! is the Gysin map of [F-G] (well defined up to homotopy).

Proof. The commutativity of (4.2.1) follows immediately from the fact that f∗ is induced
by (1× f∗).

To exhibit g∗ fitting in the commutative diagram (4.2.2), it suffices to observe that

(g × 1)∗ : Cr+m(U × Y ) → Cr+m+k(U × Ỹ )

is a continuous algebraic map and restricts to Cr(Y )(U) → Cr(Ỹ )(U). The continuity is
proved in [F-G;1.5ff], whereas the property of restriction is evident.
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To verify the commutativity of (4.2.3), we must show the following: if Z ⊂ U × Y is
an irreducible cycle equidimensional over U and corresponding to a map j : U → Cr(Y ),
then (h× 1)∗(Z) equals the cycle Zj◦h corresponding to the map j ◦ h : Ũ → Cr(Y ′). This
is verified by observing that the restrictions of (h× 1)∗(Z) and Zj◦h to Spec(K ′)× Y ′ are
equal, where Spec(K)→ U is a generic point.

As verified in [F-G;3.4], the Gysin map

(i× 1)! : Cr+m(U × Y ) → Cr+m−c(U0 × Y )

can be represented (in the derived category, thus up to homotopy equivalence between
spaces having the homotopy type of C.W. complexes) by intersection with U0 × Y on the
submonoid Cr+m(U × Y ; U0 × Y ) of those cycles which meet U × Y0 properly. Clearly,
Cr(Y )(U) ⊂ Cr+m(U × Y ; U0 × Y ). On the other hand, by [F-M;3.2] the homomorphism
i∗ : Cr(Y )(U)→ Cr(Y )(U0) given by intersection with U0 × Y equals that given sending a
cycle represented by j : U → Cr(Y ) to the cycle represented by j ◦ i : U0 → Cr(Y ).

We state without proof the following relative version of Proposition 4.2 for the duality
map D of (4.1.2) and its special case given in (4.1.3).

Proposition 4.3. The relative versions of the commutative squares (4.2.1), (4.2.2), (4.2.3),
and the homotopy commutative square (4.2.4) remain valid provided that one replaces Y
by Y \Y∞ in the left hand sides of these squares and by V = Y − Y∞ in the right hand
sides. In particular, we have the following special cases of these relative versions of (4.2.3)
and (4.2.4).

If h : Ũ → U is a flat morphism of relative dimension e, then the following square
commutes up to homotopy

Zt(U) D→ Zm−t(U)

h∗
y y(h× 1)∗

Zt(Ũ) D→ Zm+e−t(Ũ)

. (4.3.1)

If i : U0 → U is a regular closed immersion of codimension c, then the following square
commutes up to homotopy

Zt(U) D→ Zm−t(U)

i∗
y y(i× 1)!

Zt(U0)
D→ Zm−t−c(U0)

. (4.3.2)

Remark 4.4. For any t ≤ m and any closed subvariety U0 ⊂ U , one can define a duality
map

D : Zt
U0

(U) → Zm−t(U0) (4.4.1)
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as follows. We consider the following commutative diagram

Zt
U0

(U) → Zt(U)
j∗
→ Zt(U − U0)

D
y yD

Zm−t(U0) → Zm−t(U)
j∗
→ Zm−t(U − U0)

(4.4.2)

where j : U −U0 → U is the Zariski open complement of U0 ⊂ U . In view of the facts that
Zt

U0
(U) = htyfib{Zt(U) → Zt(U − U0)}, that Zm−t(U0) admits a natural equivalence

to the homotopy fibre of Zm−t(U) → Zm−t(U − U0), and that the square of (4.4.2) is
commutative, we conclude that there is a natural homotopy class of maps as in (4.4.1)
induced by (4.4.2). This map extends (4.4.2) to a map of fibration sequences.

We next proceed to exhibit a Gysin morphism on cocycles with respect to a regular
embedding ε : Y0 → Y . Essentially, we show that the Gysin map constructed in [F-G]
on cycle spaces for a regular immersion ε : T0 → T restricts to a map on cocycle spaces.
To carry out this argument, we require the fundamental ingredient of our duality theorem
(namely, Proposition 5.1 of the next section), so that smoothness conditions are required.

Theorem 4.5. (cf. [FL-2;2.4]) Let ε : Y0 → Y be a closed immersion of codimension e
of smooth, projective varieties and assume that U is also smooth. Then there is a natural
homotopy class of maps

ε! : Zr(Y )(U) → Zr−e(Y0)(U)

which fits in the following homotopy commutative diagram

Zr(Y )(U) D→ Zr+m(U × Y )

ε!
y y(1× ε)!

Zr−e(Y0)(U) D→ Zr+m−e(U × Y0)

. (4.5.1)

Moreover, if Y∞ meets Y0 properly and if V0 denotes the Zariski open complement of
Y1 = Y0 ∩ Y∞, then ε! admits a relative version

ε! : Zr(Y \Y∞)(U) → Zr−e(Y0\Y1)(U)

which fits in the following homotopy commutative diagram

Zr(Y \Y∞)(U) D→ Zr+m(U × V )

ε!
y y(1× ε)!

Zr−e(Y0\Y1)(U) D→ Zr+m−e(U × V0)

. (4.5.2)
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Proof. We define
Er(Y ; Y0)(U) ⊂ Er(Y )(U) (4.5.3)

to be the submonoid of those effective r + m-cycles on X × Y which intersect X × Y0
properly and whose restrictions to U × Y, U × Y0 are equidimensional over U . To verify
that (4.5.3) is a constructible embedding, we proceed as follows. We first argue as for
Definition 1.1, using the upper semi-continuity of the fibres of the projection

I ∩ [Er(Y )(U)× (X × Y0)] → Er(Y )(U)

where I ⊂ Cr+m(X × Y ) × (X × Y ) is the incidence correspondence, thereby obtaining
′Er(Y )(U) ⊂ Er(Y )(U) consisting of cocycles on U intersecting X × Y0 properly. We then
apply the same argument to the projection

J ∩ [′Er(Y )(U)× (U × Y0)] → ′Er(Y )(U)× U

where J ⊂ Cr+m(X×Y )×(X×Y0) consists of those (Z, x, y) such that x, y ∈ |Z|∩(X×Y0).
Since Cr+m(X∞×Y ) ⊂ Er(Y )(U) is a Zariski closed immersion, so is Cr+m(X∞×Y ) ⊂

Er(Y ; Y0)(U). Set

Zr(Y ; Y0)(U) def= [Cr(Y ; Y0)(U)]+ , Cr(Y ; Y0)(U) def= Er(Y ; Y0)(U)/Cr+m(X∞ × Y ).

By Proposition 5.1, (4.5.3) induces a equivalence

[Er(Y ; Y0)(U)]+ → [Er(Y )(U)]+. (4.5.4)

Hence we may apply the 5-Lemma (in conjunction with Corollary 1.7) to the map of
fibration sequences

Zr+m(X∞ × Y ) → [Er(Y ; Y0)(U)]+ → Zr(Y ; Y0)(U)

=
y y y

Zr+m(X∞ × Y ) → [Er(Y )(U)]+ → Zr(Y )(U)

to conclude that
Zr(Y ; Y0)(U) → Zr(Y )(U)

is a homotopy equivalence.
We define the Gysin map ε! as the composition

ε! : Zr(Y )(U) ' Zr(Y ; Y0)(U) → Zr−e(Y0)(U)

where the first map is the homotopy inverse of the homotopy equivalence established above
and the second is the näıve group completion of the map Cr(Y ; Y0)(U) → Cr−e(Y0)(U)
given by intersection with U × Y0. So defined ε! fits in the homotopy commutative square
(4.5.1) by [F-G;3.4].
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To exhibit ε! in the relative case and prove that it fits in the homotopy commutative
square (4.5.2), we first observe that the condition on Z ∈ Er(Y )(U) supported on U×Y∞ to
meet X × Y0 properly in U × Y and hence have intersection with U × Y0 equidimensional
over U is the same condition as the condition that Z when viewed in Er(Y∞)(U) meet
X × Y1 properly in U × Y∞ and have intersection with U × Y1 equidimensional over U .
Consequently, intersection with U × Y0 induces a well defined continuous map

Er(Y ; Y0)(U)/′Fr(Y∞)(U) → Er−e(Y0)(U)/Fr−e(Y1)(U), (4.5.5)

where ′Fr(Y∞)(U) ≡ Fr(Y∞)(U)∩Er(Y ; Y0)(U). Since Fr(Y∞)(U) ⊂ Er(Y )(U) (cf. Defini-
tion 2.1) is a Zariski closed submonoid, so is ′Fr(Y∞)(U) ⊂ Er(Y ; Y0)(U). A now familiar
argument comparing fibration sequences and appealing to the 5-Lemma shows that the
homotopy equivalence (4.5.4) implies that

[Er(Y ; Y0)(U)/′Fr(Y∞)(U)]+ → Zr(Y \Y∞)(U)

is a equivalence. Thus, we may define the relative Gysin map ε! fitting in the homotopy
commutative square (4.5.2) (by [F-G;3.4.2]) as the composition

ε! : Zr(Y \Y∞)(U) ' [Er(Y ; Y0)(U)/′Fr(Y∞)(U)]+ → Zr−e(Y0; Y1)(U)

where the first map is the homotopy inverse of the homotopy equivalence established above
and the second is the näıve group completion of (4.5.4).

In [F-M], the operation s : Ω ◦ B[Cr(X)] ∧ S2 → Ω ◦ B[Cr( 6 ΣX)] was introduced
and studied. In [F-G], this operation was extended to an operation s : Zr(U) ∧ S2 →
Zr−1(U) for cycles on a quasi-projective variety and was shown to be independent of the
projective embedding. In [FL-2;2.5,2.6], this operation was refined for cocycles spaces
on a smooth projective variety X with values in a smooth projective variety Y . (The
smoothness hypotheses were required in order to employ the Gysin map of Proposition 4.5
to Y × {0} ⊂ Y ×P1.) Indeed, the proofs given there apply verbatim with X replaced by
a smooth, quasi-projective variety U .

Proposition 4.6. (cf. [FL-2;2.5,2.6]) Let Y be a projective, smooth variety and let U be
a smooth quasi-projective variety. The s-map determines a homotopy class of maps

s : Zr(Y )(U) ∧ S2 → Zr−1(Y )(U)

which fits in the following homotopy commutative square:

Zr(Y )(U) ∧ S2 D∧1→ Zr+m(U × Y ) ∧ S2

s

y ys

Zr−1(Y )(U) D→ Zr+m−1(U × Y )

. (4.6.1)
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Furthermore, the s-map determines a homotopy class of maps

s : Zr(Y \Y∞)(U) → Zr−1(Y \Y∞)(U)

which fits in the following homotopy commutative square:

Zr(Y \Y∞)(U) ∧ S2 D∧1→ Zr+m(U × V ) ∧ S2

s

y ys

Zr−1(Y \Y∞)(U) D→ Zr+m−1(U × V )

. (4.6.2)

We single out the following special case of (4.6.2).

Corollary 4.7. Let U be a smooth quasi-projective variety (of dimension m, as usual).
Then there is a natural homotopy class of maps

s : Zt(U) → Zt+1(U)

which fits in the following homotopy commutative square

Zt(U) ∧ S2 D∧1→ Zm−t(U) ∧ S2

s

y ys

Zt+1(U) D→ Zm−t−1(U)

. (4.7.1)

Proof. By Proposition 3.5, there is a natural algebraic suspension homotopy equivalence

6 ΣU : Zt(U) ≡ Z0(Pt\Pt−1)(U) → Z1(Pt+1\Pt)(U).

We define Zt(U) → Zt+1(U) to be the composition of this map and the relative s-map
of Proposition 4.6:

s : Z1(Pt+1\Pt)(U) ∧ S2 → Z0(Pt+1\Pt)(U) ≡ Zt+1(U).

The homotopy commutativity of (4.7.1) follows consideration of the following diagram

Z0(Pt/Pt−1)(U) ∧ S2 D∧1→ Zm(U ×At) ∧ S2 π∗∧1← Zm−t(U) ∧ S2

6 ΣU

y 1× π∗
y y=

Z1(Pt+1/Pt)(U) ∧ S2 D∧1→ Zm+1(U ×At+1) ∧ S2 π∗∧1← Zm−t(U) ∧ S2

s

y s

y ys

Z0(Pt+1/Pt)(U) D→ Zm(U ×At+1) π∗
← Zm−t−1(U)

.
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The commutativity of the upper squares of this diagram is easily seen by inspection, the
homotopy commutativity of the lower left square follows from (4.6.2), and the homotopy
commutativity of the right lower square follows from the naturality of s.

In [FL-2;2.7], the intersection product defined in [F-G] for cycle spaces of smooth
varieties is shown to correspond to the fibrewise join product introduced in [FL-1]. The
proof given there applies to quasi-projective U , so that we content ourselves with merely
stating this result in our context of cocycles on a quasi-projective variety U .

Proposition 4.8. If U is smooth and if t + u are non-negative integers with t + u ≤ m,
then the fibre-wise join pairing #U fits in a homotopy commutative diagram

Z0(Pt)(U)×Z0(Pu)(U) → Zt(U)×Zu(U) D×D→ Zm−t(U)×Zm−u(U)

#U

y y•
Z0(Pt+u)(U) → Zt+u(U) D→ Zm−t−u(U)

(4.8.1)

where the left horizontal arrows are the defining projections and where (−) • (−) denotes
the intersection product on cycle spaces.

Proof. See [FL-2;2.7].

5. Duality Theorems

In this section, we present various forms of duality relating spaces of algebraic cocycles
and spaces of algebraic cycles. We retain our notational conventions on X, Y, U, X∞, V, Y∞,
r and t of previous sections.

The following fundamental technical result is a consequence of the “Moving Lemma
for Cycles of Bounded Degree” [FL-3].

Proposition 5.1. Let Er(Y )(U) ⊂ Cr+m(X ×Y ) be the embedding of monoids of (1.6.1).
If Y and U are both smooth, then this embedding induces a homotopy equivalence of näıve
group completions

D : [Er(Y )(U)]+ → Zr+m(X × Y ).

Moreover, if Y0 ⊂ Y is a closed subvariety of some dimension ≥ n − r and if
Er(Y ; Y0)(U) ⊂ Er(Y )(U) is the submonoid of (4.5.3) consisting of cocycles which meet
X × Y0 properly and whose intersections with U × Y0 are equidimensional over U , then
the induced map of näıve group completions

[Er(Y ; Y0)(U)]+ → [Er(Y )(U)]+

is a homotopy equivalence.
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Proof. Let
π : Cr+m(X × Y )× Cr+m(X × Y ) → Zr+m(X × Y )

π′ : Er(Y )(U)× Er(Y )(U) → [Er(Y )(U)]+

denote the canonical projection maps, and let

j : Er(Y )(U) → Cr+m(X × Y )

denote the embedding of (1.6.1). Then the filtration {Ke}∞e=0 of Zr+m(X × Y ) given by
setting

Ke ≡ π

 ∐
d+d′≤e

Cr+m,d(X × Y )× Cr+m,d′(X × Y )


is a good filtration in the sense of [FL-2;4.1]; namely, any map from a compact space K
to Zr+m(X × Y ) factors through some Ke. Consider the associated filtration {K ′

e}∞e=0 of
[Er(Y )(U)]+:

K ′
e ≡ π′

 ∐
d+d′≤e

Er,d(Y )(U)× Er,d′(Y )(U)


where Er,d(Y )(U) = Cr+m,d(X×Y )∩Er(Y )(U). If K is compact and f : K → [Er(Y )(U)]+

is continuous, then (j ◦ f)(K) lies in some Ke, so that f(K) lies in some K ′
e. We conclude

that {K ′
e}∞e=0 is also a good filtration.

Let e be any positive integer ≥ the degrees of {u}× Y ⊂ X × Y for all u ∈ U . Then
[FL-2;3.1], the “Moving Lemma for Cycles of Bounded Degree”, implies the existence of

φe : Ke × I → Zr+m(X × Y ) , φ′
e : K ′

e × I → Zr(Y )(U)

satisfying the conditions of a very weak deformation retract in the sense of [FL-2;4.1].
Namely, φ′

e covers φe with respect to j; (φe)∣∣Ke×{0}, (φ
′
e)∣∣K′

e×{0} are the natural inclusions;

and (φe)∣∣Ke×{t} lifts to [Er(Y )(U)]+ for any t 6= 0. Thus, D : [Er(Y )(U)]+ → Zr+m(X×
Y ) is easily seen to be a weak homotopy equivalence using the easy technical lemma [FL-
2;4.2]. Since these spaces have the homotopy type of C.W. complexes, D is in fact a
homotopy equivalence.

To prove the second assertion, recall that the Moving Lemma enables one to move
s-cycles of degree ≤ e on Cr+m(X × Y ) so that the resulting cycles intersect properly (off
the singular locus of X × Y ) all effective cycles of degree ≤ e and of dimension ≥ m − s
[FL-3;3.2]. We apply this result to move effective cycles in Cr+m(X × Y ) with respect to
the cycles u×Y, u×Y0; u ∈ U and the cycle X×Y0. Thus, the preceding argument applies
to prove that

Er(Y ; Y0)(U) → Zr+m(X × Y )

is also a homotopy equivalence. The second assertion now follows.

The following duality theorem follows easily from Proposition 5.1.
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Theorem 5.2. As usual, let U be a quasi-projective variety of dimension m and let Y be
a projective variety of dimension n. If both U and Y are smooth, then the duality map of
(4.1.1)

D : Zr(Y )(U) → Zr+m(U × Y )

is a homotopy equivalence for any r ≤ m.
Furthermore, if Y∞ ⊂ Y is a smooth, closed subvariety with Zariski open complement

V ⊂ Y , then the relative duality map of (4.1.2)

D : Zr(Y \Y∞)(U) → Zr+m(U × V )

is also a homotopy equivalence for any r ≤ m.
Specializing to Y = Pt, Y∞ = Pt−1, we conclude that the duality map of (4.1.3)

D : Zt(U) → Zm−t(U)

is also a homotopy equivalence for any t ≥ 0 (where

Zm−t ≡ Z0( 6 Σt−mU) , m < t

as in [F-M]).

Proof. We consider the following diagram

Zr+m(X∞ × Y ) → [Er(Y )(U)]+ → Zr(Y )(U)

=
y D

y yD
Zr+m(X∞ × Y ) → Zr(X × Y ) → Zr(U × Y )

. (5.2.1)

Both the rows of (5.2.1) are fibration sequences: the top by Corollary 1.5, the bottom
by [F-G;1.6]. Consequently, the fact that the duality map D is a homotopy equivalence
follows from Proposition 5.1 and an application of the 5-Lemma.

In the relative case, we consider the following diagram

Zr(Y∞)(U) → Zr(Y )(U) → Zr(Y \Y∞)(U)

D
y D

y yD
Zr+m(U × Y∞) → Zr+m(U × Y ) → Zr+m(U × V )

. (5.2.2)

The upper row of (5.2.2) is a fibration sequence by Proposition 2.2, whereas the lower
row is a fibration sequence by [F-G;1.6] once again. Since the left and middle maps are
homotopy equivalences by the first part of our theorem, the 5-Lemma implies that the
relative duality map D is also a homotopy equivalence.

We recall that the homotopy groups of Zt(U) and Zr(U) are called “morphic co-
homology groups” and “Lawson homology groups” respectively. These are indexed as
follows:

LtHk(U) def= π2t−k(Zt(U)) , LrHk(U) def= πk−2r(Zr(U)).
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Using this notation, we re-state the relative case of Theorem 5.2 (with Y = Pt, Y∞ =
Pt−1).

Corollary 5.3. Let U be a smooth variety of dimension m and let 0 ≤ k ≤ 2t, 2m. Then
the duality map D : Zt(U)→ Zm−t(U) of (4.1.3) induces isomorphisms

LtHk(U) ' Lm−tH2m−k(U).

Applying the Mayer-Vietoris sequence of Proposition 3.8, we obtain the following mild
generalization of Theorem 5.2.

Corollary 5.4. Let Y1, . . . , Yk be smooth projective varieties and assume that each mul-
tiple intersection Yi1 ∩ · · · ∩ Yij is also smooth. Let Y denote the union of the Yi’s,
Y = Y1 ∪ · · · ∪ Yk. If U is a smooth quasi-projective variety, then

D : Zr(Y )(U) → Zr+m(U × Y )

is a homotopy equivalence.

Proof. We proceed by induction on k, the case k = 1 provided by Theorem 5.2. Let
Y ′ = Y1 ∪ · · · ∪ Yk−1 and let Y ′′ = Y ′ ∩ Yk. We consider the commutative diagram

Zr(Y ′′)(U) → Zr(Y ′)(U)⊕Zr(Yk)(U) → Zr(Y )(U)

D
y D ⊕D

y yD
Zr+m(U × Y ′′) → Zr+m(U × Y ′)(U)⊕Zr+m(U × Yk) → Zr+m(U × Y )

.

By Proposition 3.8, both rows are fibration sequences. Thus, induction and the 5-Lemma
imply that D : Zr(Y )(U)→ Zr+m(U × Y ) is a homotopy equivalence.

We recall that Hironaka’s resolution of singularities asserts that any smooth quasi-
projective variety V admits a smooth projective closure Y with the property that Y −V =
Y∞ is a divisor with normal crossings [H-1]. In particular, such a “complement at infinity”
satisfies the conditions on Y of Theorem 5.4.

Corollary 5.5. Let Y∞ ⊂ Y be a closed immersion of projective varieties both of which
can be written as a union of smooth closed subvarieties whose multiple intersections are
also smooth (e.g., Y∞ might be a divisor with normal crossings in a smooth projective
variety Y ). Then the relative duality map (4.1.2)

D : Zr(Y \Y∞)(U) → Zr+m(U × V )

is a homotopy equivalence.
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In particular, the homotopy type of Zr(Y \Y∞)(U) depends only upon U and V and
not their projective closures U ⊂ X and V ⊂ Y .

Proof. We consider the following commutative diagram

Zr(Y∞)(U) → Zr(Y )(U) → Zr(Y \Y∞)(U)

D
y D

y yD
Zr+m(U × Y∞) → Zr+m(U × Y ) → Zr+m(U × V )

.

By Proposition 2.2, the upper row is a fibration sequence; by [LF-2] or [F-G], the lower
row is also a fibration sequence. Thus, the corollary follows from Corollary 5.4 and the
5-Lemma.

6. First Consequences.

Using Theorem 5.4, we define a Gysin map for cocycle spaces compatible with the
duality map. We can view this next proposition as a supplement to Propositions 4.2 and
4.3.

Proposition 6.1. As in Theorem 5.4, let Y be a union of smooth projective varieties
whose multiple intersections are also smooth. Consider a closed embedding i : U0 ⊂ U of
smooth quasi-projective varieties of codimension c with Zariski open complement U ′ ⊂ U .
Then there exists a homotopy class of maps (i.e., a Gysin map)

i! : Zr+c(Y )(U0) → Zr(Y )(U) (6.1.1)

which fits in the following map of fibration sequences

Zr+c(Y )(U0)
i!→ Zr(Y )(U)

j∗
→ Zr(Y )(U ′)

D
y D

y yD
Zr+m(U0 × Y ) i∗→ Zr+m(U × Y )

j∗
→ Zr+m(U ′ × Y )

. (6.1.2)

Moreover, if Y∞ ⊂ Y is also a union of smooth projective varieties whose multiple
intersections are also smooth, then there exists a homotopy class of maps

i! : Zr+c(Y \Y∞)(U0) → Zr(Y \Y∞)(U) (6.1.3)

which fits in the following map of fibration sequences

Zr+c(Y \Y∞)(U0)
i!→ Zr(Y \Y∞)(U)

j∗
→ Zr(Y \Y∞)(U ′)

D
y D

y yD
Zr+m(U0 × V ) i∗→ Zr+m(U × V )

j∗
→ Zr+m(U ′ × V )

. (6.1.4)
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Proof. Using Theorem 5.2, we define i! for (6.1.1) and (6.1.3) by

i!
def= D−1 ◦ i∗ ◦ D. (6.1.5)

So defined, i! fits in homotopy commutative diagrams (6.1.2) and (6.1.4). Since the ver-
tical maps are homotopy equivalences, the fact that the bottom rows of these diagrams
constitute fibration sequences implies that the top rows are as well.

We restate Proposition 6.1 in terms of the notation used in Corollary 5.3.

Corollary 6.2. Let i : U0 ⊂ U be a Zariski closed immersion of smooth subvarieties of
pure codimension c and let j : U ′ ⊂ U denote the Zariski open complement. Then the
duality map determines an isomorphism of long exact sequences

· · · → Ls−cHk−2c(U0)
i!→ LsHk(U)

j∗
→ LsHk(U ′) → · · ·

D
y D

y yD
· · · → Lm−sH2m−k(U0)

i∗→ Lm−sH2m−k(U)
j∗
→ Lm−sH2m−k(U ′) → · · ·

.

Observe that Theorem 5.2 implies that

πj(Zm(U)) D→ πj(Z0(U)) ' HBM
j (U)

is an isomorphism, where HBM
∗ denotes Borel-Moore homology. This suggests, but does

not imply, that the map Φ∗ : πj(Zm(U)) → H2m−j(U) of (3.4.1) is an isomorphism. For
U = X projective, the map Φ∗ is an isomorphism thanks to the compatibility of the duality
map with the Poincaré duality map demonstrated in [FL-2;4.4].

The duality isomorphism permits us to extend the homotopy invariance property
proved in Proposition 3.5 to arbitrary affine torsors over a smooth base U .

Proposition 6.3. Let π : E → U be an affine torsor for some smooth quasi-projective
variety U . Then

π∗ : Zt(U) → Zt(E)

is a homotopy equivalence.

Proof. Since π : E → U is locally for the Zariski topology on U a product projection
U × Ae → U , we conclude as in [F-G;2.3] that π∗ : Zr(U) → Zr+e(E) is a homotopy
equivalence, where e denotes the fibre dimension of π. The assertion now follows from
Theorem 5.2 and the commutative diagram (4.3.1).

Remark 6.4. As realized by Blaine Lawson and the author, Proposition 6.3 permits one
to extend the Chern classes defined in [FL-1] for vector bundles generated by their global
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sections to all vector bundles on a smooth, quasi-projective variety. Namely, given any
such U , “Jouanolou’s device” (cf. [Q])provides an affine torsor

pJ : JU → U

with UJ an affine variety. Then, given any algebraic vector bundle E → U , we consider
p∗

J(E) → JU which is a vector bundle generated by its global sections. Thus, p∗
J(E)

is associated to some morphism fE : JU → Grasse(PN ). Embedding Grasse(PN ) in
CN−e(PN ), we conclude that fE determines a element in CN−e(PN )(JU ). The algebraic
suspension theorem enables us to associate to this map an element

〈fE〉 ∈ π0(Z0(Pe)(JU )) = π0(Z0(Pe)(U)).

Finally, the splitting construction of [FL-1] enables one to obtain from 〈fE〉 elements

〈fE〉t ∈ LtH2t(U) , 0 ≤ t ≤ e.

In [F-G;2.5], a projective bundle theorem was proved in the following form. Let
E be a rank e + 1 algebraic vector bundle over a smooth quasi-projective variety U and
let p : P(E) → U denote Proj(SymOX

E∗) over U . Let c1(OP(E)(1)) denote the “first
Chern class operator for the canonical line bundle” OP(E)(1) on P(E) defined in terms of
intersection with a global section. Then the following is a homotopy equivalence:

P def=
∑

0≤j≤e

c1(OP(E)(1))j ◦ p :
∏

0≤j≤e

Zt+j(U) → Zt+e(P(E)) (6.5.0).

This result is the key to the construction of further Chern classes in Lawson homology
introduced by O. Gabber and the author in [F-G].

Theorem 5.2 immediately gives us the following cocycle version of (6.5.0).

Proposition 6.5. Assume that U is smooth. With notation as above,

D−1 ◦ P ◦ D :
∏

0≤j≤e

Zm−t−j(U) → Zm−t(P(E))

is a homotopy equivalence, where D−1 is a homotopy inverse of D.

Remark 6.6. As presented in [F-G], the construction of Chern classes requires the smooth-
ness of U . If one could find a direct proof of Proposition 6.5 which did not use duality
and therefore did not require the smoothness of U , then one should be able to extend that
construction to algebraic vector bundles on normal varieties which are not smooth.
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7. Examples

In this final section, we show how known computations of Lawson homology (i.e.,
homotopy groups of cycle spaces) permit computations of homotopy groups of cocycle
spaces. Such computations appear highly non-trivial if one views (using Proposition 1.9)
these cocycle spaces as the näive group completions of Mor(U, Cr(Y )), the topological
monoid of morphisms from U to the Chow monoid Cr(Y ).

We introduce the following alternate notation for cocycle spaces

Mor(U,Zr(Y )) ≡ [Mor(U, Cr(Y )]+ = Zr(Y )(U)

in order to emphasize this mapping complex point of view and to compare more easily
with the computations of [FL-2].

We begin by recalling that the homotopy groups of Mor(U,Zr(Y )) are merely the
stabilized homotopy groups of Mor(U, Cr(Y )).

Proposition 7.1. Assume that U is normal and let Mor(U, Cr(Y )) denote the topological
abelian monoid of morphisms from U to Cr(Y ) with the topology that of convergence of
bounded degree (as in Proposition 1.9). Then

π0Mor(U,Zr(Y )) = [Π]+ , Π def= π0Mor(U, Cr(Y )).

For each connected component α ∈ Π, let Cr,α(Y )(U) denote the corresponding con-
nected component of Cr(Y )(U) and choose some Zα ∈ Cr,α(Y )(U). Let {αn} denote a
sequence in which each element of a generating set of Π occurs infinitely often among the
αn’s and set α0 equal to the 0-component. Then for any i > 0, πiMor(U,Zr(Y )) equals
the direct limit of the sequence given by translation by Zαn :

→ πiMor(U, Cr,
∑

j<n
αj

(Y ))
(Zαn+)∗→ πiMor(U, Cr,

∑
j≤n

αj
(Y ))

(Zαn+1+)∗→ . . .

Proof. By Proposition 1.2, it suffices to identify the homotopy groups of the homotopy-
theoretic group completion ΩB[Cr(Y )(U)]. The computation of π∗(ΩB[Cr(Y )(U)]) as the
indicated direct limit is given in [F;2.6].

Example 7.2. As a first, relatively trivial example, we consider Mor(Am,Zr(Y )). Then
the homotopy invariance of Proposition 3.4 enables us to conclude that evaluation at
0 ∈ Am determines a homotopy equivalence

Mor(Am,Zr(Y ))→ Zr(Y ).

In particular, setting r = 0, we conclude the homotopy equivalence

Mor(Am,Z0(Y )) '
∏

K(Hi(Y ), i)
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by the Dold-Thom theorem.

Example 7.3. We next consider the example of Mor(Am − {0},Zr(Y )). By Proposition
6.1, we have the following map of fibration sequences:

Mor({0},Zr+m(Y )) → Mor(Am,Zr(Y )) → Mor(Am − {0},Zr(Y ))

=
y D

y yD
Zr+m(Y ) → Zr+m(Y ×Am)

j∗
→ Zr+m(Y × (Am − {0}))

.

We observe that the map on homotopy groups induced by j∗ admits a section, for the
inverse of algebraic suspension 6 Σm : Zr(Y )→ Zr+m(Y ×Am) is given by the Gysin map
associated to the regular immersion {1} ⊂ Am which factors through Am−{0}. Thus, we
conclude that

πiMor(Am − {0},Zr(Y )) ' πiZr(Y )⊕ πi−1Zr+m(Y ).

In particular, we conclude using Proposition 7.1 the existence of interesting elements
in the homotopy of Cr(Y )(Am−{0}) = Mor(Am−{0}, Cr(Y )) which reflect the structure
of Zr+m(Y ).

Example 7.4. By work of Lima-Filho [LF-1], any generalized flag manifold Y (or more
generally, any projective variety Y with a “cell decomposition”) has the property that
πZr(Y ) is naturally isomorphic to Hi+2r(Y ). Since the product of varieties with a cell
decomposition again has such a decomposition, we can make explicit computations of
homotopy groups of cocycle spaces as follows. Let X∞ ⊂ X be a closed immersion of
projective varieties with a cell decomposition (e.g., a projective embedding of a generalized
flag manifold X∞ in a projective space X = Pm) and let Y also be a projective variety
with a cell decomposition. Set U = X −X∞. Then we conclude that Mor(U,Zr(Y )) has
the homotopy type of Zr+m(U × Y ). Thus,

π∗Mor(U,Zr(Y )) = H2r+2m+i(X × Y, X∞ × Y ).

Once again, by applying Proposition 7.1, we conclude the existence of interesting elements
in the homotopy of Mor(U, Cr(Y )).
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