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This paper constitutes a preliminary discussion of joint work in progress as
presented by the first author at Stony Brook in June 1991 at the symposium
in honor of John Milnor. Our results include a construction of an intersection
pairing on spaces of algebraic cycles on a given smooth complex quasi-projective
variety, thereby providing a ring structure in “Lawson homology.” We verify that
the Lawson homology for quasi-projective varieties satisfies sufficiently many of
the “standard properties” of a good homology theory that it admits a theory of
Chern classes from algebraic K-theory. The reader familiar with higher Chow
groups of S. Bloch might find it useful to view Lawson homology as a topological
analogue of that theory. In fact, we exhibit a tantalizing map from Bloch’s higher
Chow groups to Lawson homology.

Our subject is algebraic geometry. Until we discuss “algebraic bivariant cycle
theory” in section 4, our ground field will always be the complex numbers C. We
shall consider projective varieties, reduced schemes over C which admit a closed
embedding in some (complex) projective space PN ; as such, a projective variety
is the zero locus of a family of homogeneous polynomials {Fα(X0, ..., XN )}. The
fact that we consider polynomial equations characterizes our study as algebraic
geometry. More generally, we shall consider quasi-projective varieties which are
complements of (algebraic) embeddings of one projective variety in another.

Our program is to study invariants of a given quasi-projective variety X using
the group of all algebraic cycles on X of some fixed dimension r. The Lawson
homology groups, LrH∗(X), are defined to be the homotopy groups of the “space
of algebraic r-cycles on X.” Recall that an algebraic r−cycle on X is a formal sum

Z = ΣmiYi , mi ∈ Z

where each Yi is an irreducible closed subvariety of X of dimension r. If each
mi is positive, we say that Z is an effective r − cycle. Typically, one considers
equivalence classes of algebraic cycles. For example, the usual intersection theory
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for smooth varieties involves the intersection of rational equivalence classes of
cycles (elements of the “Chow ring”) whose “modern” formulation by W. Fulton
and R. MacPherson [Fu] has much influenced the present work.

Rather than study equivalence classes of algebraic r − cycles, we study the
topological group of all algebraic r− cycles on X. This point of view was initiated
by Blaine Lawson in his path-breaking paper [L]. As motivation for this point of
view, we recall the following fundamental theorem of A. Dold and R. Thom [D-
T]: the homology groups of a finite simplicial complex T can be computed as the
homotopy groups of the topological group A(T) defined as the free abelian group
on the points of T. In [A], F.J. Almgren generalized this theorem by considering
the topological group Ir(T ) of integral r-cycles (in the sense of currents) on T ; in
the special case r = 0, we have I0(T ) = A(T ). Almgren proved that the homotopy
groups of Ir(T ) equal the homology of T (shifted in degree by r). Lawson had the
daring and insight to ”algebraicize” Almgren’s investigations, replacing integral
r-cycles by algebraic r-cycles. In the special case in which T equals the complex
projective space PN , Lawson proved that the space of effective r− cycles suitably
“stabilized” also has homotopy groups which are the homology groups of PN .

From the point of view of an algebraic geometer looking for new invariants,
the story so far is not promising. However, Lawson achieved much more than
his computations of the homotopy groups of cycle spaces for projective spaces.
Namely, his “Lawson suspension theorem” [L] for the homotopy groups of the
suitably stabilized space of effective r − cycles of a projective variety X provides
the key property which leads to the development of “Lawson homology theory.”
In particular, this theorem provides the key step permitting the author and Barry
Mazur [F-M] to obtain qualitative results showing how these invariants interpolate
between “algebraic cycles modulo algebraic equivalence” and (singular) homology
of X. As discussed in [F-M], a naturally constructed filtration on singular homology
(with Q − coefficients) associated to Lawson homology is closely related to the
Hodge filtration and Grothendieck’s geometric filtration.

Although we consider Lawson homology in this paper, the reader might be
interested in the “morphic cohomology theory” developed by the author and H.B.
Lawson ([F-L]). This cohomology theory is constructed using the same formalism
as Lawson homology but with a definition of an algebraic cocycle (i.e., an equi-
dimensional family of algebraic cycles) which is not formally dual to that of an
algebraic cycle. In many geometric contexts, “morphic cohomology” may well be
a more natural invariant than Lawson homology and it is this theory that we
algebraicize in section 4.

The algebro-geometric input for Lawson homology arises from consideration
of Chow varieties of effective r-cycles on a projective variety X provided with a
given (closed) embedding into some projective space PN . Namely, a construction
due in its final form to Chow and van der Waerden [C-W] associates in a 1-1
manner to an effective r-cycle Z on PN of degree d a polynomial FZ homogeneous

2



of degree d in each of (r + 1) sets of (N + 1) − variables. As Z ranges over all
effective r-cycles Z of degree d supported on X, the coefficients of these “Chow
forms” constitute the points of a projective variety, denoted Cr,d(X). Formal sum
of cycles determines the Chow monoid

Cr(X) ≡
∐
d≥0

Cr,d(X)

of effective r-cycles on X. The space of algebraic r-cycles, Zr(X), is defined as a
“group completion” of this monoid provided with its analytic topology.

In brief, this paper is organized as follows. Section 1 discusses P. Lima-Filho’s
definition of the Lawson homology of quasi-projective varieties in terms of naive
group completions and sketches alternate proofs we have found. In section 2, we
sketch a proof of the “homotopy property” for Lawson homology (generalizing
Lawson’s suspension theorem) and use this to define the intersection operator
associated to a (Cartier) divisor. Consequences include the “projective bundle
theorem” and the independence of projective embedding of the s-operation of [F-
M]. The extension of this intersection operator for an irreducible projective variety
X to a pairing of cycle spaces

Zr(X) ∧ Div(X)+ → Zr−1(X)

is discussed in section 3, where Div(X)+ is the homotopy-theoretic group com-
pletion of the topological monoid of effective Cartier divisors on X. For a variety
smooth but not necessarily projective, we also present in section 3 our intersection
pairing in the derived category

Z̃r(X) ⊗ Z̃s(X) → Z̃r+s−d(X)

We then verify that this structure is sufficient to define Chern classes from algebraic
K-theory to Lawson homology. The map from Bloch’s higher Chow groups to
Lawson homology is described in section 4 together with a tentatively defined
refined version of Lawson homology which captures rational equivalence rather
than simply algebraic equivalence of algebraic cycles and which is “bivariant” in
the sense of [F-L].

We are indebted to P. Lima-Filho for sharing preprints of his recent work. C.
Soulé made the valuable suggestion that our results should be formulated in terms
of the derived category. The first author gratefully thanks I.H.E.S. for its warm
hospitality during the formative stages of this work.
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1. Lawson homology

In this section, we recall the foundational constructions of Lawson homology.
We shall find it convenient to work in the category D(Z), the additive category
of chain complexes localized with respect to quasi-isomorphisms, maps of chain
complexes inducing isomorphisms in homology (cf. [V] for a discussion of the
derived category of cochain complexes). By a theorem of A. Dold and D.M. Kan
[D], sending a simplicial abelian group C to its normalized chain complex N(C)
determines an equivalence of categories such that π∗(C) = H∗(N(C)). Since the
singular complex functor Sing.(-) sends an abelian topological group to a simplicial
abelian group, we conclude that the functor

A 7→ Ã ≡ NSing.(A)

induces an equivalence of categories between the category of abelian topological
groups (in the sense of Kelley spaces) localized with respect to continuous ho-
momorphisms which are weak equivalences and the full subcategory of D(Z) of
non-negatively graded objects. Under this correspondence, a product A × B of
abelian topological groups is sent to the sum Ã⊕ B̃ of corresponding chain com-
plexes; similarly, a bilinear map A × B → C is sent to a pairing Ã ⊗ B̃ → C̃ of
corresponding chain complexes.

Let us begin with a re-formulation of Lawson homology. Recall that if X
is a projective variety, then Zr(X) denotes the topological group of algebraic r-
cycles, whose topology is the quotient topology associated to the surjective map
Cr(X)×2 → Zr(X) where Cr(X) is the Chow monoid of effective algebraic r-cycles
on X. The homeomorphism type of Zr(X) is independent of the choice of closed
embedding of X in some projective space. For r > dimX, Zr(X) consists of a
single point (associated to the empty r-cycle on X).

Definition 1.1. Let X be a projective variety and let r be a non-negative integer.
For any integer n ≥ 2r, we define the Lawson homology group LrHn(X) as

LrHn(X) ≡ πn−2r(Zr(X)) ∼= Hn−2r(Z̃r(X)).

The above definition implicitly employs an important theorem of P. Lima-
Filho [Li-1]: the natural map of H-spaces Cr(X)→ Zr(X) is homotopy equivalent
to Cr(X) → ΩBCr(X), the homotopy-theoretic group completion. We offer an
alternative, and somewhat more general, formulation of Lima’s theorem which may
shed some light on the group completion process. We first introduce a definition
of a “tractable” action.

Definition 1.2. Let M be a topological monoid and let T be a topological space
on which M acts on the right. Then T is said to be a tractable M-space if it
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satisfies the following property: T admits an increasing filtration {Tn; n ≥ −1)}
such that T−1 is empty, T is the topological union of the Tn, and for each n > 0
the inclusion Tn−1 ⊂ Tn fits in a pushout square (with R0 also empty)

Rn ×M → Sn ×M
↓ ↓

Tn−1 → Tn

whose upper horizontal arrow is induced by some cofibration Rn ⊂ Sn of Hausdorff
spaces. The topological monoid M is said to be tractable if it is abelian and if the
diagonal action of M on T = M×2 is tractable. The naive group completion M+

of an abelian topological monoid M is defined to be the quotient of M×2 under
this diagonal action with the quotient topology.

The following proposition verifies that our definition of a tractable M-space is
sufficiently general to include the examples one encounters in the study of Chow
monoids.

Proposition 1.3. Let X be a projective variety, Y ⊂ X a closed subvariety, and
r ∈ N.

i.) Cr(Y ) is a tractable monoid.
ii.) The inclusion Cr(Y ) ⊂ Cr(X) provides Cr(X) with the structure of a
tractable Cr(Y )− space.
iii.) The quotient Cr(X)/Cr(Y ) is a tractable monoid.

sketch of proof. To prove i.), let M(d) denote Cr,d(Y ) (with the analytic topol-
ogy), let M denote Cr(Y ), T the space M×2 with the diagonal M − action. We
denote by Tn the M-subspace of T generated by M(a) ×M(b) with ν(a, b) ≤ n
(for a suitable bijection ν : N×2 → N):

Tn ≡ [∪ν(a,b)≤nM(a)×M(b)] ·M
Set

Sn ≡ M(an)×M(bn) , ν(an, bn) = n

and denote by Rn the following subspace of Sn :

Rn ≡ image{∪c>0M(an − c)×M(bn − c)×M(c)→M(an)×M(bn)}
Then we readily check that we have a pushout diagram of topological spaces

Rn ×M → Sn ×M
↓ ↓

Tn−1 → Tn
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Recall from [H] that any projective variety Z admits a triangulation by semi-
algebraic simplices which can be chosen so that any specified finite collection of
semi-algebraic closed subsets consists of subcomplexes. Since the image of a semi-
algebraic set under a continuous algebraic map such as the multiplication maps

M(a− c)×M(b− c)×M(c) → M(a)×M(b)

is again semi-algebraic, we can inductively provide Sn ≡ M(an) ×M(bn) with
a semi-algebraic triangulation so that Rn ⊂ Sn is a subcomplex. This completes
the proof of i.)

For ii.), we continue to let M denote Cr(Y ) but now let T denote Cr(X).
Define Tn , Sn, and Rn by

Tn ≡ [∪d≤nCr,d(X)] ·M
Sn ≡ Cr,n(X)

Rn ≡ image{∪c>0Cr,n−c(X)×M(c)→ Cr,n(X)}.
For iii.), we let M denote Cr(X)/Cr(Y ), Cd denote Cr,d(X), C ′

d denote Cr,d(Y ),
and T denote M ×M. Define Tn , Sn, and Rn by

Tn ≡ image{∪ν(a,b)≤nCa × Cb →M ×M} ·M
Sn ≡ Can × Cbn

Rn ≡ image{∪c>0Can−c × Cbn−c × Cc → Can × Cbn}
∪ image{∪c>0C

′
c × Can−c × Cbn → Can × Cbn}

∪ image{∪c>0Can × Cbn−c × C ′
c → Can × Cbn}.

The tractability of the abelian topological monoid Cr(X) enables us to deduce
Lima’s theorem (asserting that Cr(X) → Zr(X) is a homotopy equivalent to
Cr(X) → ΩBCr(X)) as a consequence of the following theorem and of the well-
known results of D. Quillen (to appear as an appendix of [F-M]) giving that if A is
an abelian simplicial monoid and if A→ A+ is the homomomorphism of simplicial
monoids which is level-by-level group completion which we can view as A×2/A,
then the induced map H∗(A)→ H∗(A+) is localization of the action of π0(A).

Theorem 1.4. A tractable monoid has the “cancellation property” (i.e., mn =
mp implies n=p). If M is any abelian topological monoid with the “cancellation
property” and if T a tractable M-space, then the natural map

Sing.T/Sing.M → Sing.(T/M)

is a weak equivalence of simplicial sets.
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sketch of proof. If M is a tractable monoid, then M ×M as an M -set (with
the diagonal action) is equivalent to a disjoint union of copies of M with M -
action given by addition. This easily implies that a tractable monoid M has the
cancellation property.

If M is an abelian topological monoid with the cancellation property and if
T is a tractable M -space, then the action of Sing.M on Sing.T is torsion free. To
prove the asserted homotopy equivalence, one first verifies that B(S, P )→ S/P is
a weak equivalence, where B(S,P) is the diagonal of the simplicial bar construction
associated to a torsion free action of an abelian simplicial monoid P on a simplicial
set S (so that B(S, P )n = Sn ×P×n

n ). Viewing this map as the diagonal of a map
of bisimplicial sets, one is reduced to proving that p : B(T, A) → T/A is a weak
equivalence where T is a set on which the discrete abelian monoid A acts torsion
freely. Indeed, using the hypothesis of a torsion free action, each fiber p−1(t̄)
“is” the simplicial compex associated to a partially ordered set; this complex is
contractible since any finite subcomplex is contained in a subcomplex associated
to a partially ordered subset with a largest element.

It then suffices to prove that the natural projection

B(Sing.T, Sing.M)→ Sing.(T/M)

is a weak equivalence. (This does not require the monoid M to be abelian.) We
inductively assume that

B(Sing.Tn−1, Sing.M)→ Sing.(Tn−1/M)

is a weak equivalence. Let Πn denote the pushout square of Definition 1.2. We
readily verify that B(Sing.Πn, Sing.M) is a homotopy-theoretic pushout square
of simplicial sets by comparing this commutative square with the intermediate
square B(Γn, Sing.M), where Γn is the simplicial pushout square associated to
Sing.(Rn × M) → Sing.Tn and Sing.(Rn × M) → Sing.(Sn × M). Moreover,
B(Sing.Πn, Sing.M) maps to the commutative square

Sing.Rn → Sing.Sn

↓ ↓
Sing.(Tn−1/M) → Sing.(Tn/M)

which is also a homotopy-theoretic pushout square, since it is obtained by applying
Sing.(-) to a pushout square. The theorem now follows by comparing homotopy
pushout squares.

We recall from [F-M] a heuristic interpretation of the Lawson homology
groups. We begin with the observation that LrH2r(X) is the group of algebraic
r-cycles modulo algebraic equivalence [F], whereas the Dold-Thom theorem can be
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interpreted as asserting that L0Hn(X) = Hn(X), the singular homology of X. In
[F-M], an operation

s : LrHn(X) → Lr−1Hn(X)

is introduced with the property that s◦r : LrH2r(X)→ H2r(X) is the “cycle map”
sending an algebraic r-cycle Z to its fundamental homology class [Z] ∈ H2r(X).
The constructions of [F-M] justify the interpretation of the image in Hn(X) of
LrHn(X) under s◦r as consisting of homology classes “with at least r algebraic
parameters.” Namely, a homotopy class of maps α : Sn−2r → Zr(X) corresponds
to a family of algebraic r-cycles on X parametrized by the sphere Sn−2r. The
“fundamental homology class” of the total space of this family is the image of α
in Hn(X).

The definition of the Lawson homology of quasi-projective varieties is due
to P. Lima-Filho [Li-2]. Although this is a natural extension of Definition 1.1,
the reader should take note of the fact that in the special case of 0-cycles this
extension yields the homology of locally finite chains on X and not the usual
singular homology of X.

Definition 1.5. (cf. Lima-Filho [Li-2]) Let X be a quasi-projective variety with
projective closure X̄. We define Zr(X) by

Zr(X) ≡ Zr(X̄)/Zr(X̄ −X)

and we define the Lawson homology groups of X to be

LrHn(X) ≡ πn−2r(Zr(X)) ' Hn−2r(Z̃r(X))

which by Theorem 1.6 below is independent of the choice X ⊂ X̄ of projective
closure.

Covariant functorality

f∗ : Z̃r(X)→ Z̃r(Y )

for a proper map f : X → Y follows as in [F]. Contravariant functorality

g∗ : Z̃r(X) → Z̃r+e(X ′)

for a flat morphism g : X ′ → X of pure relative dimension e is also valid. For
X ′ and X projective, this is verified in [F]; similar techniques apply in the some-
what more complicated context of algebraic varieties which are only locally closed
in projective space. Namely, one verifies that for projective closures X̄, X̄ ′ , the
pull-back by g determines a closed correspondence from Cr(X̄) to Cr+e(X̄ ′) which
induces a well defined set-theoretic map g∗ : Zr(X) → Zr+e(X ′) which is neces-
sarily continuous.
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When considering certain functoriality properties, we shall occasionally admit
non-reduced quasi-projective schemes, but the invariants that we consider invari-
ably depend only upon the associated reduced schemes.

The following theorem, originally due to P. Lima-Filho, justifies the preceding
definition.

Theorem 1.6. ([Li-1]) Retain the notation of Definition 1.5. Then Z̃r(X) is
independent (in the derived category) of the choice of projective embedding X ⊂
X̄. Moreover, if Y ⊂ X is a (Zariski) closed subset with complement U ⊂ X, then

Z̃r(Y ) → Z̃r(X) → Z̃r(U)

gives a distinguished triangle of chain complexes, thereby yielding a natural “lo-
calization” long exact sequence in Lawson homology

...→ LrHn(Y )→ LrHn(X)→ LrHn(U)→ LrHn−1(X)→ ...

sketch of proof. To prove that Z̃r(X) is independent of projective embedding
X ⊂ X̄, we identify Zr(X) with the naive group completion of the quotient monoid
Cr(X̄, X̄ − X) ≡ Cr(X̄)/Cr(X̄ − X). In comparing the result for two different
compactifications, one easily reduces to the case in which one compactification
X ⊂ X̄ is dominated by another X ⊂ X̂ so that one has a continuous bijective
map Ψ : Cr(X̂, X̂ − X) → Cr(X̄, X̄ − X); one proves that Ψ is also closed by
showing for any d ≥ 0 that cycles of Cr(X̄, X̄ −X) which are images of cycles of
Cr(X̄) of degree bounded by d lie in the image under Ψ of cycles of some bounded
degree in Cr(X̂). This is verified by a straight-forward argument using noetherian
induction and generic flatness: namely, any algebraic family of subschemes on X̄
parametrized by some variety C is generically flat over C, and the closure in X̂×C
of the intersection of the family with X × C is generically flat over C.

To prove the second assertion, one easily reduces to the case in which X is
projective. Thanks to Proposition 1.3, it then suffices to prove the following: Let
M ⊂ N be a closed immersion of tractable monoids such that N is tractable as
an M − space and such that the quotient monoid N/M is also tractable. Then the
sequence of topological groups

M+ → N+ → (N/M)+

yields a distinguished triangle of chain complexes. This is proved by applying
Theorem 1.4 to show that the vertical maps of the following commutative diagram
of simplicial abelian groups

0 → (Sing.(M))+ → (Sing.(N))+ → (Sing.(N)/Sing.(M))+ → 0y y y
Sing.(M+) → Sing.(N+) → Sing.((N/M)+)
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are weak equivalences.

As a first consequence of Theorem 1.6, we construct the “Lawson analogue”
of Quillen’s local-to-global spectral sequence in algebraic K-theory [Q]. Denote by
Sp(X) (or, Sp) the set of all closed subsets Y ⊂ X with dim(Y ) ≤ p and by
Sp/Sp−1 the partially ordered set of pairs

Sp/Sp−1 = {(Y, Y ′) : Y ′ ⊂ Y ⊂ X closed; dim(Y ′) < p; dim(Y ) ≤ p}.
We define

LrHn(X; p) ≡ colimSpLrHn(Y )

LrHn(X; p, p− 1) ≡ colimSp/Sp−1LrHn(Y − Y ′).

Finally, if x ∈ X is a point of dimension p, we abuse notation by denoting the
closure of {x} by {x̄} and we define

LrHn(x) ≡ colimU⊂{x̄}LrHn(U)

where the (direct) limit is taken over non-empty Zariski open subsets of {x̄} ∈ Sp.

Proposition 1.7. For any quasi-projective variety X and any r ≥ 0, there is a
spectral sequence of homological type of the following form:

E1
p,q = ⊕{x̄}∈Sp/Sp−1LrHp+q(x) ⇒ LrHp+q(X)

sketch of proof . Theorem 1.6 implies that

LrHn(X; p, p− 1) ∼= ⊕{x̄}∈Sp/Sp−1LrHn(x)

as well as the long exact sequence

...→ LrHn(X; p− 1)→ LrHn(X; p)→ LrHn(X; p, p− 1)

→ LrHn−1(X; p− 1)→ ...

The construction of an exact couple and resulting spectral sequence follow in the
familiar way.

2. Intersection with divisors

We begin by recalling the “Lawson suspension theorem”, a result fundamental
to all that follows. If X is a projective variety provided with a specified embedding
X ⊂ PN in some projective space, we consider the “algebraic suspension” ΣX ⊂
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PN+1 given as the cone of X with vertex some point x∞ ∈ PN+1−PN . Algebraic
suspension induces a continuous homomorphism

Σ : Zr(X) → Zr+1(ΣX).

Theorem 2.1. (Lawson [L]) Let X ⊂ PN be a projective variety provided with
an embedding into projective space. Then

Σ : Zr(X) → Zr+1(ΣX)

is a weak equivalence. Equivalently,

Σ : Z̃r(X) → Z̃r+1(ΣX)

is an isomorphism in the derived category D(Z).

The beginnings of intersection theory on cycle spaces were apparent in [F-
M]. The first author and B. Mazur considered the following question: can one
provide a definition of intersection of all algebraic r-cycles on X ⊂ PN with a given
hyperplane section H? An affirmative answer is given by the following construction,
which reveals in simple form several aspects of our intersection theory.

Construction 2.2. ([F-M]). Let X ⊂ PN be a projective variety provided with
an embedding into projective space. Then for any r ≥ 0 the composition

Σ−1 ◦ i : Z̃r+1(X) → Z̃r+1(ΣX) → Z̃r(X)

represents intersection with a hyperplane section H, where i : X → ΣX is the
natural inclusion and Σ : Z̃r(X) → Z̃r+1(ΣX) is the quasi-isomorphism of
Theorem 2.1.

Observe that this gives a “value” to intersection of H with an r-cycle contained
in H. Rather than move such a cycle off H and then intersect, we use the flexibility
given by the derived category to invert the algebraic suspension map. The key
ingredient in this construction is, of course, Theorem 2.1. In fact, we view Theorem
2.1 as a new form of more classical “Moving Lemmas.” The assertion that Σ−1 ◦ i
represents intersection with H is justified by several criteria: it is compatible with
intersection with the homology class of H when one uses the s− operation to pass
to homology; on cycles which intersect H properly, it is given by the intersection-
theoretic construction of intersecting with H.

We proceed to generalize Construction 2.2 to provide an intersection theory
for (Cartier) divisors more general than a hyperplane section. At the same time, we
shall eliminate the condition that X be projective. The key to this generalization
is Proposition 2.3, the “Homotopy Property” for Lawson homology generalizing
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Theorem 2.1 (which is essentially the special case in which X is projective and
E = OX(1)).

Let X be a quasi-projective variety and E a locally free, coherent OX−module
of rank e. Denote by π : V (E)→ X the associated vector bundle over X (V (E) is
the relative spectrum of the symmetric algebra over OX of the OX -dual E∗ of E).

Proposition 2.3. Let X be a quasi-projective variety and E a locally free,
coherent OX − module of rank e. Then sending a cycle Z on X to its pull-back
via π on V (E) determines a quasi-isomorphism

π∗ : Z̃r(X) → Z̃r+e(V (E)).

sketch of proof. Since π : V (E) → X is flat, π∗ is well defined. One uses
the localization sequence to reduce the proof of the theorem to the case in which
V (E) is a trivial rank e bundle. Arguing by induction on e, one easily reduces to
the case in which V (E) is a trivial, rank 1 bundle. Using localization once again,
one reduces to the case that X admits a projective closure X̄ such that E is the
restriction of OX̄(1). Finally, localization reduces us to the special case in which
X is a projective variety and E = OX(1).

A first generalization of Construction 2.2 is to define for r ≥ 0

c1(L) ≡ (π∗)−1 ◦ o∗ : Z̃r+1(X) → Z̃r+1(V (L)) → Z̃r(X)

for any quasi-projective variety X and any locally free, rank 1 OX − module L,
where o∗ is the map induced by the inclusion of the 0-section X ⊂ V (L).

We proceed to sharpen this definition of c1(L) so that intersection with the
(effective) divisor D takes values in Z̃r(|D|), where iD : |D| ⊂ X denotes the
(closed) embedding of the support of D in X with complement U ⊂ X. Consider
the composition

res ◦ sD∗ : Zr+1(X) → Zr+1(V (L)) → Zr+1(V (L)|U )

where sD : X → V (L) is the map associated to the canonical section of L = O(D).
Then res◦sD∗ admits a natural homotopy to the 0-map; namely, for varying t with
0 ≤ t <∞, composition of res◦sD∗ with fibre-wise multiplication by 1+t together
with the 0-map for t = ∞ provides such a homotopy. This homotopy determines
a map to the homotopy fibre of Zr+1(V (L))→ Zr+1(V (L)|U )

Zr+1(X) → htyfib(Zr+1(V (L))→ Zr+1(V (L)|U ))

which by the localization theorem provides a map

Zr+1(X) → Zr+1(V (i∗DL))
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in the derived category of topological abelian groups. Said a bit differently, since
the homotopy consists of a family of continuous group homomorphisms, it provides
a chain homotopy between res ◦ sD∗ : Z̃r+1(X) → Z̃r+1(V (L)|U ) and the 0-map
and thus a map in the derived category

σD : Z̃r+1(X) → Z̃r+1(V (i∗DL)).

Observe that σD is determined (as a map in D(Z)) by our choice of homotopy
relating res ◦ sD∗ to the 0-map.

Theorem 2.4. Let X be a quasi-projective variety and let D, D′ be effective
Cartier divisors on X. For any r ≥ 0, define

i!D ≡ (π∗)−1 ◦ σD : Z̃r+1(X) → Z̃r+1(V (i∗DL)) → Z̃r(|D|)
where σD : Z̃r+1(X) → Z̃r+1(V (i∗DL)) is the map in D(Z) constructed above
using the canonical section of V(L) for L = O(D) and the natural homotopy of
res ◦ sD∗ to the 0-map.
a.) If Zr+1(X, D) (mapping to Zr+1(X)) denotes the naive group completion of
the submonoid of Cr+1(X) ≡ Cr+1(X̄)/Cr+1(X̄ − X) of effective cycles which
meet D properly with the k-topology, then i!D restricted to Z̃r+1(X, D) is induced
by the usual intersection with D.
b.) The composition

c1(L) ≡ iD∗ ◦ i!D : Z̃r+1(X)→ Z̃r(|D|)→ Z̃r(X)

depends only on the isomorphism class of L = O(D).
c.) Additivity:

i!D + i!D′ = i!D+D′ : Z̃r+1(X)→ Z̃r(|D| ∪ |D′|).
d.) Commutativity for any r ≥ 1 :

i!D ◦ i!D′ = i!D′ ◦ i!D : Z̃r+1(X)→ Z̃r−1(|D| ∩ |D′|)
(where the composition is defined using the evident generalization of the construc-
tion of i!D to pseudo-divisors as in Proposition 3.2 if |D| and |D′| do not meet
properly).

sketch of proof: Let Dω denote the Weil divisor associated to D. Then the usual
definition (in the case of proper intersection) of the intersection of a subscheme
f : V ⊂ X with D is (f∗D)ω. The pull-back of this cycle to V (L) is the cycle
of the scheme-theoretic normal cone CW (V ) (cf. [Fu]) of the scheme-theoretic
intersection W = V ∩ D in V . On the other hand (see the discussion prior to
Proposition 3.3), the deformation space QD(X) of the deformation to the normal
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cone which maps to V (L) gives an explicit (continuous) lifting of the homotopy
for σD to a homotopy

Zr+1(X, D)× [1,∞]→ Zr+1(V (L)),

thereby specifying σD on Zr+1(X, D) as sending a variety V which meets D prop-
erly to CW (V ).

Composing sD with scalar multiplication by 1-t for 0 ≤ t ≤ 1 gives a homotopy
through continuous group homomorphisms relating sD∗ : Zr+1(X)→ Zr+1(V (L))
to the map oL∗ : Zr+1(X) → Zr+1(V (L)) induced by inclusion of the 0-section
X ⊂ V (L). Thus, one may in the definition of i!D replace sD∗ by the map o∗
provided that one uses as homotopy (−) + tsD for 0 ≤ t ≤ ∞. In particular,

c1(L) = (π∗)−1 ◦ sD∗ = (π∗)−1 ◦ o∗

is independent (as a map in D(Z)) of the choice of D as asserted in b.).
To relate i!D + i!D′ to i!D+D′ , we employ the natural flat map

τ : V (L⊕ L′) → V (L⊗ L′)

given by sending the local section (s, s′) ∈ (L⊕L′)(U) to ss′ ∈ (L⊗L′)(U) . Then,

τ∗ ◦ oL⊗L′∗ = pr∗
1 ◦ oL∗ + pr∗

2 ◦ oL′∗.

We demonstrate the existence of a homotopy between the 0-homotopies

τ∗ ◦ (oL⊗L′∗ + tsDsD′) , pr∗
1 ◦ (oL∗ + tsD) + pr∗

2 ◦ (oL′∗ + tsD′)

(over the complement of |D| ∪ |D′|). This reduces to exhibiting a homotopy in P 2

(the completion of a single fibre) between the closures of two families of degree 2
1-cycles in A2

{xy = t} , {(x− t)(y − t) = 0}
whose existence follows from the fact that C1,2(P 2) is simply connected.

Finally, to prove commutativity, we employ the following commutative “3× 3
diagram” whose rows and columns give distinguished triangles

Z̃r+1(V (L′′)|D|∩|D′|) → Z̃r+1(V (L′′)|D′|) → Z̃r+1(V (L′′)V ′)
↓ ↓ ↓

Z̃r+1(V (L′′)|D|) → Z̃r+1(V (L′′)) → Z̃r+1(V (L′′)U )
↓ ↓ ↓

Z̃r+1(V (L′′)V ) → Z̃r+1(V (L′′)U ′) → Z̃r+1(V (L′′)U∩U ′)

where L′′ = L ⊕ L′, U = X − |D|, U ′ = X − |D′|, V = |D| − |D| ∩ |D′|, V ′ =
|D′| − |D| ∩ |D′|, . The composition i!D′ ◦ i!D is defined by first lifting sD∗ :
Z̃r+1(X) → Z̃r+1(V (L)) to Z̃r+1(V (L)|D|), then lifting sD′∗ : Z̃r+1(V (L)|D|) →
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Z̃r+1(V (L′′)|D|) to Z̃r+1(V (L′′)|D|∩|D′|) with the liftings given by the homotopies
given by fibrewise multiplication by scalars, then applying the inverse of π∗ :
Z̃r−1(|D| ∩ |D′|) → Z̃r+1(V (L′′)|D|∩|D′|). Similar homotopies not only determine
the composition i!D ◦ i!D′ , but also determine a lifting of (sD, sD′)∗ : Z̃r+1(X) →
Z̃r+1(V (L′′)) to Z̃r+1(V (L′′)|D|∩|D′|) as the double “homotopy fibre” of the lower
right hand square of the above diagram, which realizes both compositions of the
assertion. In particular, we conclude commutativity as asserted in d.).

Observe that the alternate construction of c1(L) given in the proof of part
b.) of Theorem 2.4 yields the map Σ−1 ◦ i of Proposition 2.2 in the special case
in which X is provided with a closed embedding X ⊂ PN and L = OX(1). Thus,
part c.) of Theorem 2.4 provides an extension of the h-operation of [F-M] to an
action of Pic(X).

Once one has a good definition of intersection with a divisor, one obtains a
“projective bundle theorem” for Lawson homology.

Proposition 2.5. Let E be a rank k + 1 vector bundle over a quasi-projective
variety X, let p : P (E) → X denote Proj(SymOX

E∗) over X, and let OP (E)(1)
denote the canonical line bundle on P(E) defined as a quotient of p∗E∗. Then

Φ ≡
∑

0≤j≤k

c1(OP (E)(1))j ◦ p∗ :
⊕

0≤j≤k

Z̃r+j(X)→ Z̃r+k(P (E))

is a quasi-isomorphism for any r ≥ 0.

sketch of proof: Using the localization sequence and the naturality of Φ, we
reduce ourselves to the case in which E is trivial. For t ≤ k, let pt : X × P t → X
denote the projection and let it : X × P t → X × P k denote the map induced by
a standard linear embedding P t ⊂ P k. The equality (in D(Z))

c1(L)◦k−j ◦ p∗
k = ij∗ ◦ p∗

j : Z̃r+k−j(X)→ Z̃r+k(X × P k)

implies that Φ (for P (E) = X × P k and E = pr∗
2OP k(1)) is equivalent to

Φk ≡
∑

0≤j≤k

ij∗ ◦ p∗
j .

On the other hand, Φk fits in a commutative square of simplicial abelian groups⊕
1≤j≤k Z̃r+j(X) → ⊕

0≤j≤k Z̃r+j(X)

Φk−1

y yΦk

Z̃r+k(X × P k−1) → Z̃r+k(X × P k)
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We therefore obtain a map of distinguished triangles⊕
1≤j≤k Z̃r+j(X) → ⊕

0≤j≤k Z̃r+j(X) → Z̃r(X)

Φk−1

y yΦk

yπ∗

Z̃r+k(X × P k−1) → Z̃r+k(X × P k) → Z̃r+k(X ×Ak)

The proof is completed using induction, the 5-Lemma, and the “homotopy prop-
erty” for the trivial bundle projection X ×Ak → X.

Using Proposition 2.5, we define as in [Fu] the Segre class operators associated
to a locally free, coherent OX −module E of rank k + 1 :

si(E) ≡ p∗ ◦ c1(OP (E)(1))k+i ◦ p∗ : Z̃r+i(X)→

Z̃r+k+i(P (E))→ Z̃r(P (E))→ Z̃r(X)

for any r ≥ 0. The commutativity of c1(pr∗
1(OP (E)(1))) and c1(pr∗

2(OP (E′)(1))) on
Z̃∗(P (E)×X P (E′)) enables one to verify that

si(E) ◦ sj(E′) = sj(E′) ◦ si(E)

for all locally free, coherent OX −modules E, E′ and all i, j ≥ 0. As in [Fu], this
suffices to define the Chern class operators

ci(E) : Z̃r+i(X) → Z̃r(X)

using the formalism ∑
i≥0

ci(E)ti = (
∑
j≥0

sj(E)tj)−1.

When E is a direct sum of line bundles L1⊕...⊕Lr, then P (E) is equipped with
r hyperplanes with empty intersection. Interpreting the fact that the composition
of the corresponding intersection operators is 0, one concludes that ci(E) is the
i-th elementary symmetric polynomial in the c1(Lj)’s. From this and “splitting
principle” arguments, one verifies the expected formulas for the Chern classes of
vector bundles obtained as extensions, as tensor products, and in terms of other
standard operations.

Another consequence of Proposition 2.5 is an alternate interpretation of the
s-operation of [F-M] , an interpretation independent of a choice of projective em-
bedding. Recall that this operation is defined as the map on homotopy groups
given by pairing with the canonical class in π2(Z0(P 1)) associated to the compo-
sition

Σ−2 ◦ γ : Zr+1(X) × Z0(P 1) → Zr+2(Σ2X) → Zr(X)
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where γ(Z, p) ≡ Z#p, the join of Z ⊂ PN and p ∈ P 1 inside

Σ2X ∼= X#P 1 ⊂ PN#P 1 = PN+2

defined as the union of all lines from points of Z to p.

Corollary 2.6. For any quasi-projective variety X and any r ≥ 0, consider the
composition

i!X ◦ ω̃ : Z̃r+1(X) ⊗ Z̃0(P 1) → Z̃r+1(X × P 1) → Z̃r(X)

where ω(Z, p) ≡ Z×{p} and where iX embeds X as the divisor X×∞ on X×P 1.
We define

s′ : Lr+1Hn(X) → LrHn(X)

as the associated map in homology given by pairing with the canonical class in
H2(Z̃0(P 1)). In the special case in which X is a projective variety, provided with
a closed embedding into some PN , s′ equals the s-operation of [F-M].

sketch of proof. Consider the closed subset W of X × P 1 × PN+2 consisting of
triples (x, y, z) with z lying on the line from x to y. One readily checks that W is
obtained by blowing up X#P 1 and that the projection map π : W → X ×P 1 can
be identified with

P (L⊕ 1) → X × P 1 , L = pr∗
1OX(1)⊗ pr∗

2OP 1(−1).

Moreover, the map

ω : Zr+1(X) × Z0(P 1)→ Zr+2(Σ2X)

factors naturally through Zr+2(W ). Thus, we obtain the following commutative
diagram

Z̃r+1(X)⊗ Z̃0(P 1) → Z̃r+2(Σ2(X)) → Z̃r(X)y p∗

x
Z̃r+1(X × P 1) π∗

→ Z̃r+2(W )

with the s-operation determined by the upper row.
We verify that the quasi-isomorphism

(pr∗
1 , iX∗) : Z̃r(X)⊕ Z̃r+1(X)→ Z̃r+1(X × P 1)

of the projective bundle theorem is inverse to (i!X , pr1∗). On the other hand, the
composition

pr1∗ ◦ ω : Zr+1(X)× Z0(P 1)→ Zr+1(X × P 1)→ Zr+1(X)
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restricts to the 0-map on Zr+1(X)×(Z0(P 1))o, where (Z0(P 1))o ⊂ Z0(P 1) denotes
the connected component of 0. This implies that

H∗(Z̃r+1(X))⊗H2(Z̃0(P 1)) → H∗+2(Z̃r+1(X × P 1)) → H∗+2(Z̃r+1(X))

is the 0-map, so that the s-map factors through projection on the summand
pr∗

1Z̃r(X) of Z̃r+1(X × P 1). We complete the proof by observing that the fol-
lowing composition

Σ−2 ◦ p∗ ◦ π∗ ◦ pr∗
1 : Z̃r(X)→

Z̃r+1(X × P 1)→ Z̃r+2(W )→ Z̃r+2(Σ2(X))→ Z̃r(X)

is the identity.

We conclude this section with the “Lawson analogue of Gersten’s Conjecture”
which provides a resolution of sheaves associated to Lawson homology and a con-
sequent determination of the E2 − term of the spectral sequence of Proposition
1.7. Our proof follows that of D. Quillen’s original proof of “Gersten’s Conjecture”
for algebraic K-theory [Q] and the subsequent analysis of S. Bloch and A. Ogus
[B-O].

Proposition 2.7. Let X be a smooth quasi-projective variety of pure dimension
m and let LHr,n denote the sheaf on X associated to the presheaf sending U to
LrHn(U). Then for any r, n ≥ 0 the sheafification of the E1 − term plus differen-
tial d1 of the spectral sequence of Proposition 1.7 determines the following exact
sequence of sheaves on X

0 → LHr,n → ⊕{x̄}∈Sm
ix(LrHn(x))→

⊕{x̄}∈Sm−1 ix(LrHn−1(x))→ ...→
⊕{x̄}∈S0 ix(LrHn−m(x)) → 0

where ix(LrHj(x)) denotes the constant sheaf LrHj(x) on {x̄} extended by 0 to
all of X. Consequently, the spectral sequence of Proposition 1.7 is of the following
form

E2
p,q = Hm−p(X, LHr,m+q) ⇒ LrHp+q(X).

sketch of proof. The long exact seqeunces occurring in the proof of Proposition
1.7

...→ LrHn(U ; p−1)→ LrHn(U ; p)→ LrHn(U ; p, p−1)→ LrHn−1(U ; p−1)→ ...

determine long exact sequences of associated sheaves on X

...→ LHr,n(p− 1)→ LHr,n(p)→ LHr,n(p, p− 1)→ LHr,n−1(p− 1)→ ...
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As argued in the proof of Proposition 1.7,

LHr,n(p, p− 1) = ⊕{x̄}∈Sp/Sp−1 ix(LrHn(x)).

Since the sheaves ix(LrHn(x)) are flasque, the theorem follows easily once one
proves that

LHr,n(p− 1)→ LHr,n(p) , p ≤ m

is the 0-map.
This vanishing is equivalent to the following local effaceability: given any

closed point x ∈ X and given some class α ∈ LrHn(W ) for some locally closed
W ⊂ X of dimension ≤ p − 1 containing x, then there exists some locally closed
Y ⊂ X of dimension ≤ p containing W as a closed subset and an open U ⊂ X

containing x such that the restriction of α is sent to 0 via

LrHn(W ∩ U) → LrHn(Y ∩ U).

Following Quillen, after possibly shrinking X to some affine neighborhood of
x ∈ X we find a divisor W ′ in X containing W which fits in the following diagram
whose squares are cartesian

V ⊂ V ′ → Xyg

y yg′

W ⊂ W ′ → Am−1

where g′ is smooth of relative dimension 1 at x ∈ X, W is closed in W ′, and the
map W ′ → Am−1 defined as the restriction of g′ to W ′ ⊂ X is a finite map (cf.
[B-O]).

An easy diagram chase reduces the proof of local effaceability to that of the
effaceability of the natural section i : W ⊂ V restricted to some open neighborhood
in V of the (finite) inverse image of x ∈ X. Since g restricted to this inverse image
is smooth, upon shrinking V we may assume that g is smooth and thus that
i : W ⊂ V is a Cartier divisor; further shrinking of V permits us to assume that
i : W ⊂ V is principal. The effaceability of i∗ : LrHn(W )→ LrHn(V ) now follows
from the equalities

i!W ◦ g∗ = 1 : LrHn(W )→ Lr+1Hn+2(V )→ LrHn(W )

i∗ ◦ i!W = 0 : Lr+1Hn+2(V )→ LrHn(W )→ LrHn(V )

the first of which holds because i(W ) meets g∗Z transversally for any algebraic
r-cycle Z on W, the second follows from the fact that W ⊂ V is a principal divisor.
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3. Intersection of cycle spaces and Chern classes

In this section, we discuss two intersection pairings. The first, which requires
that X be an irreducible projective variety, is of the form

Zr+1(X) ∧ Div(X)+ → Zr(X)

where Div(X)+ is the homotopy-theoretic group completion of the topological
monoid of effective Cartier divisors on X. Using this pairing, we offer further
insight into the operations of [F-M]. Our second pairing is much influenced by the
constructions of MacPherson and Fulton in [F] for the Chow ring of algebraic cycles
modulo rational equivalence. For a quasi-projective variety X, we first define a
Gysin homomorphism

i!W : Z̃r+c(X)→ Z̃r(W )

for i : W ⊂ X a regular closed embedding of codimension c; this generalizes the
construction of i!D for a Cartier divisor D. In a now-familiar manner, this leads to
our intersection pairing

Z̃r(X) ⊗ Z̃s(X) → Z̃r+s−n(X)

for X smooth of dimension n and r + s ≤ n. As a consequence of the resulting
ring structure on Lawson homology , we verify for smooth varieties the existence
of Chern classes from algebraic K-theory to Lawson homology.

Recall from [G] that if X is a (complex) projective variety, then the group of
isomorphism classes of invertible sheaves on X is representable by a commutative
group scheme

Pic(X) ≡
∐

α∈NS(X)

Picα(X)

each component of which is a quasi-projective variety. By construction, Picα(X)×
X has a universal invertible sheaf Lα. Then Div(X) the disjoint union of schemes
over Pic(X)

Div(X) ≡
∐

α∈NS(X)

Divα(X),

where Divα(X) equals Proj(-) of the symmetric algebra of some coherent sheaf Fα

with dual pr1∗Lα = Eα. If Fα is locally free, then Divα(X) = P (Eα).
The following theorem provides yet another construction of the s-map of [F-

M] as well as verifies that the operators c1(L) for L ∈ Pic(X) depend only upon
the class of L in NS(X).

Theorem 3.1. Let X be an irreducible projective variety and let D0 be a Cartier
divisor on X such that O(D0) is very ample. Denote by Div(X)+ the (infinite)
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mapping telescope of successive additions by D0,

Div(X)+ ≡ Tel{Div(X), (−+ D0)}.

Then Div(X) → Div(X)+ is a homotopy-theoretic group completion. Moreover,
for any r ≥ 0 there is a pairing

ρ : Zr+1(X) ∧ Div(X)+ → Zr(X)

which induces a natural pairing on homotopy groups

Lr+1Hn(X) ⊗ πi(Div(X)+) → LrHn−2+i(X)

This pairing restricted to π0(Div(X)+) gives the operators

c1(L) : Lr+1Hn(X)→ LrHn−2(X)

and restricted to the distinguished generator of π2(Div(X)+) ∼= Z is the s-map of
[F-M].

sketch of proof . For notational convenience, let Dα denote Divα(X), let α0 ∈
NS(X) denote the class of D0, and let Dα+n denote Dα+nα0 . For any α ∈ NS(X),
there exists some n(α) ≥ 0 such that whenever n ≥ n(α) then Eα+n ≡ pr1∗Lα+n

is a locally free rank sheaf on Dα+n of rank ≥ 2 and (Eα+n)p = H0(X, (Lα+n)p)
for all p ∈ Picα+n(X). In particular, whenever n ≥ n(α), Dα+n = P (Eα+n); let
Mα+n denote the invertible sheaf on Dα+n×X obtained by tensoring pr∗

1ODα+n(1)
with the pull-back of Lα+n; this is canonically the invertible sheaf associated to
the “universal divisor.”

For each n ≥ n(α), we consider the composition maps

ρα+n = pr1∗ ◦ c1(Mα+n) ◦ ω : Zr+1(X)×Dα+n → Zr+1(X ×Dα+n)

→ Zr(X ×Dα+n)→ Zr(X)

where ω(Z, D) = Z × {D}. Observe that the pull-back of Mα+n via

Dα+n,α0 ≡ Dα+n ×Dα0 → Dα+n+1

is pr∗
1Mα+n⊗ pr∗

2Mα0 . This implies the homotopy commutativity of the following
diagram relating ρα+n + ρα0 to ρα+n+1

Zr+1(X)×Dα+n,α0 → Zr+1(X ×Dα+n,α0) → Zr(X ×Dα+n,α0)y y y
Zr+1(X)×Dα+n+1 → Zr+1(X ×Dα+n+1) → Zr(X ×Dα+n+1)
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where the top row is ω followed by

c1(pr∗
1Mα+n) + c1(pr∗

2Mα0) = c1(pr∗
1Mα+n ⊗ pr∗

2Mα0)

the bottom row is ω followed by c1(Mα+n+1), and the vertical maps are induced
by the monoid pairing Dα+n,α0 → Dα+n+1.

We conclude that

ρα+n + c1(O(D0)) ◦ pr1, ρα+n+1 ◦ (id× (−+ D0)) : Zr+1(X)×Dα+n → Zr(X)

are homotopic. This enables us to define ρ as follows: on the copy (which we
denote by Dα,k) of Dα in the telescope indexed by k (i.e., after k additions of D0),
ρ is defined to be

ρ|Dα,k
= ρα+n(α) ◦ (−+ n(α)D0)− (n(α) + k)c1(D0).

So defined, ρ determines a map (well defined up to homotopy when restricted to
finite subcomplexes of a C.W. realization) on Zr+1(X)∧Div(X)+. Additivity (up
to homotopy on finite complexes of a C.W. realization) in the first factor follows
from additivity of each ρα; additivity (up to homotopy on finite complexes of
a C.W. realization) in the second factor follows from a homotopy commutative
diagram of the above form (with α0 replaced by a general α′).

As argued in [F] (which is made explicit only in the smooth case), Div(X)+

fits in a fibration sequence

P∞ → Div(X)+ → Pic(X)

thereby determining the homotopy groups of Div(X)+. One readily verifies that
π1(Pic(X)) acts trivially on π2(P∞), so that Div(X)+ is a simple space. Since
Div(X)→ Div(X)+ has the effect on homology of localizing the action of
π0(Div(X)) = NS(X) and since Div(X)+ maps to the homotopy theoretic group
completion in view of its definition as a mapping telescope, we conclude that
Div(X)→ Div(X)+ is a homotopy theoretic group completion.

By construction, the restriction of ρ to Zr+1(X)× {D} is

c1(L⊗ L
n(α)
0 )− n(α)c1(L0) , L0 ≡ O(D0), L ≡ O(D), D ∈ Dα.

Arguing as in the proof of Corollary 2.6, we verify that the s-map is obtained from

ρα+n(α) − c1(L⊗ L
n(α)
0 ) : Zr+1(X)∧Dα+n(α) → Zr(X)

by pairing with the image of the distinguished generator of π2(PNα) ∼= Z, where
PNα is the fibre of

τα : Dα+n(α) → Picα+n(α)(X)

and L ≡ O(D) with D ∈ Dα.
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With additional effort, one can realize Div(X)+ as the group completion of
the monoid Div(X) with a suitable topology. For X smooth, this is a special case
of Lima-Filho’s result used in Definition 1.1. More generally, one can construct a
model for Div(X)+ using a desingularization of X.

The following construction presents useful maps closely related to the Gysin
map i!D of Theorem 2.4.

Proposition 3.2. Let L be an invertible sheaf on the quasi-projective variety
X, and let i : Y ⊂ X be a closed subvariety. Then the data of a trivialization
L|U ' OU , where U = X − Y, determines a natural map

Z̃r(U)→ Z̃r(V (i∗L)− o(Y )).

Moreover, the additional data of a trivialization of i∗L determines a lifting of this
map to a natural map

Z̃r(U)→ Z̃r(V (i∗L))

which fits in the following square

Z̃r(X) o∗→ Z̃r(V (L))
↓ ↑

Z̃r(U) → Z̃r(V (i∗L))

commutative in the derived category D(Z). The diagonal map of this square,
Z̃r(X) → Z̃r(V (i∗L)), coincides with the map σD defined as in section 2 for D
equal to the pseudo-divisor given by the trivialization on U.

sketch. The inclusion o : U → V (L) − o(Y ) (or alternatively, that given by the
trivializing section) induces Z̃r(U)→ Z̃r(V (L)− o(Y )) whereas the trivialization
L|U ' OU determines a null homotopy for the composition

Z̃r(U)→ Z̃r(V (L)− o(Y ))→ Z̃r(V (L)|U ).

Hence, the first map is obtained using the localization distinguished triangle

Z̃r(V (i∗L)− o(Y ))→ Z̃r(V (L)− o(Y ))→ Z̃r(V (L)|U ).

To obtain the second map, observe that the trivialization of i∗L determines a
null-homotopy for the inclusion Z̃r(Y )→ Z̃r(V (i∗L)) which determines a splitting
of the distinguished triangle

Z̃r(V (i∗L))→ Z̃r(V (i∗L)− o(Y ))→ Z̃r(Y )[1]

given by localization. We then define the asserted second map as the composition
of the first map and the map splitting the preceding distinguished triangle.
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We shall employ the deformation to the normal cone construction for a regular
embedding iW : W → X, the construction represented by the following diagram
with pull-back squares

NW X → QW X ← X ×A1y yf

y
{∞} → P 1 ← A1

In the above diagram, NW X is the normal bundle of iW and the deformation space
QW X is defined by

QW X = Bl(X × P 1/W × {∞})−Bl(X/W ),

where Bl(X × P 1/W × {∞}) is the blow-up of X × P 1 along W × {∞} and
Bl(X/W) is the blow-up of X along W. We denote by j: X × A1 ⊂ QW X the
inclusion of the complement of NW X ⊂ QW X and by ε : X → QW X the inclusion
X × {1} ⊂ X × A1 ⊂ QW X. Observe that the line bundle OP 1(∞) admits a
natural trivialization when restricted to A1 as well as when restricted to the point
{∞}. Consequently, OQ(∞) ≡ f∗OP 1(∞) is provided with trivializations when
restricted to X × A1 and to QW X − (X × A1) = NW X, so that Proposition 3.2
provides a specialization map

sX/W : Z̃r+1(X ×A1) → Z̃r(NW X).

As we see below, this specialization map has an alternate description which
will prove convenient for the proof of Theorem 3.4.

Proposition 3.3. Let iW : W → X be a regular embedding of codimension c
and r ≥ 0. Then the composition

sX/W ◦ pr∗
1 : Z̃r(X)→ Z̃r+1(X ×A1)→ Z̃r(NW X)

is equivalent (in D(Z)) to the map

ε̃∗ : Z̃r(X)→ Z̃r(NW X)

defined as the lifting of ε∗ : Z̃r(X) → Z̃r(QW X) determined by the natural null-
homotopy of the composition of j∗ ◦ i∗ : Z̃r(X)→ Z̃r(QW X)→ Z̃r(X ×A1).

Furthermore, if W has codimension 1 so that W may be viewed as a Cartier
divisor and if r ≥ 1, then the composition of this map and the inverse of π∗ :
Z̃r−1(W )→ Z̃r(NW X) is equivalent (in D(Z)) to the Gysin map

i!W : Z̃r(X) → Z̃r−1(W )
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of Theorem 2.4.

sketch of proof. For notational simplicity, let Q denote QW X , N denote
NW X ≡ Q − (X × A1), Q′ denote Q − (X × {0}), and X × Gm be identified
with Q′ − N. We provide Q with a Gm action as follows: on Q − N = X × A1,
the action is via multiplication on the second factor and on N the action is by
fibre-wise multiplication with respect to the structure of N as a vector bundle over
W . We provide V (OQ′(∞)) − o(N) with the structure of a Gm torsor over Q by
defining

p : V (OQ′(∞))− o(N)→ Q

as the map which sends a “point” (x,s) with xεQ′ and sεOQ(∞)x to the point
(s/s0).x, where s0 is the global section of OQ(∞) defined by the coordinate func-
tion on P 1 (and which restricts to give the trivialization of OQ(∞)|N used in the
construction of the specialization map).

Consider the following diagram constructed as in Proposition 3.2:

Z̃r(X) ε̃∗→ Z̃r(N)

=
y y

Z̃r(X) ε∗→ Z̃r(Q) → Z̃r(X ×A1)

pr∗
1

y p∗
y yp∗

|

Z̃r+1(X ×Gm) s∞∗→ Z̃r+1(V (OQ′(∞))− o(N)) → Z̃r+1(V (OQ′(∞))|X×Gm
)

=
x x

Z̃r+1(X ×Gm) s̃∞∗→ Z̃r+1(V (ON (∞))− o(N))
ρ→ Z̃r+1(V (ON (∞)))

where s∞ is the global section of OQ(∞) obtained by pulling-back the global
section of OP 1(∞) associated to the function 1 on P 1, s̃∞∗ is the lifting determined
by the trivialization of OQ′(∞)|X×Gm

determined by s∞, and ρ is the “splitting”
determined by the trivializing section s0|N . The definition of p implies the (strict)
equality p∗ ◦ ε∗ = s∞∗ ◦ pr∗

1 . We conclude that s̃∞∗ is related to ε̃∗ by pull-back
via the “twisted projection” p|N : V (ON (∞))−o(N)→ N, since one sees that the
homotopies defining them are related.

By construction, sX/W = π∗−1 ◦ ρ ◦ s̃∞∗. Consequently, to prove that sX/W ◦
pr∗

1 = ε̃∗ , it suffices to prove that

π∗−1 ◦ ρ ◦ p∗
|N : Zr(N)→ Zr+1(V (ON (∞))− o(N))→ Zr+1(V (ON (∞))→ Zr(N)

is the identity in the derived category. This would be clear if the twisted projection
were replaced by the bundle projection π (on the complement of o(N)). But
p∗ = π∗ on Gm-invariant cycles, and in particular on cycles on N which come from
Zr−c(W ). Thus, if r ≥ c, our re-interpretation of sX/W ◦ pr∗

1 follows by applying
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the “homotopy property” (i.e., Proposition 2.3). To deal with lower dimensional
cycles, one may “stabilize” by crossing with an affine space.

Assume now that W is a Cartier divisor with associated line bundle L and let
U = X−W . We recall that Bl(X×P 1/W ×{∞}) can be described as the closure
of the image of the embedding X×A1 ⊂ P (L⊕O)×P 1 sending (x, t) to (ts(x), t)
where s is a global section “1” of L = O(W ) with 0-locus W . The projection

f : Bl(X × P 1/W × {∞}) ⊂ P (L⊕O)× P 1 → P (L⊕O)

restricts to a proper map f : Q → V (L). Moreover, this map further restricts to
N→̃V (L)|W , f−1(V (L)|U ) ⊂ Q − N , f ◦ ε : X → V (L) is the canonical section,
and the map f transforms the homotopy used in the construction of ε̃∗ to the
homotopy used in the construction of σW (as discussed prior to Theorem 2.4).

Therefore, we obtain the following diagram of complexes

Z̃r(X) ε̃∗→ htyfib{Z̃r(Q)→ Z̃r(Q−N)} ← Z̃r(N)y y yy htyfib{Z̃r(Q)→ Z̃r(f−1(V (L)|U ))}
yy f∗

y y
Z̃r(X) → htyfib{Z̃r(V (L))→ Z̃r(V (L)|U )} ← Z̃r(N)

In the above diagram, the lower left horizontal map is that employed in the con-
struction of the Gysin map of Theorem 2.4, the upper central vertical arrow is the
natural restriction map, the left and right vertical maps are the identity, and the
right horizontal maps are the equivalences given by the localization theorem. The
commutativity of this diagram implies that π∗−1 ◦ sX/W ◦ pr∗

1 equals i!W in D(Z)
as asserted.

Theorem 3.4 below introduces our generalization to regular embeddings of the
Gysin map for Cartier divisors of Theorem 2.4.

Theorem 3.4. Let X be a quasi-projective scheme and iW : W → X be a regular
(closed) embedding of codimension c. Then for any r ≥ 0 there is a naturally
defined Gysin map in D(Z)

i!W : Z̃r+c(X) → Z̃r(W )

such that
a.) If Zr+c(X, W ) (mapping to Zr+c(X)) denotes the naive group completion of
the monoid of effective r+c cycles on X which meet W properly, then i!W restricted
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to Z̃r+c(X, W ) is induced by the map Zr+c(X, W )→ Zr(W ) sending a cycle Z to
the usual intersection-theoretic intersection Z ·W ∈ Zr(W ).
b.) If c = 1, then i!W agrees with the construction of Theorem 2.4.
c.) If iV : V → W is a regular (closed) embedding of codimension d and if r ≥ d,
then

(iW ◦ iV )! = i!V ◦ i!W : Z̃r+c(X) → Z̃r−d(V ).

d.) If g : X ′ → X is flat of relative dimension e and if g′ : W ′ ≡ X ′ ×X W → W
denotes the pull-back of g via iW , then

i!W ′ ◦ g∗ = g′∗ ◦ i!W : Zr+c(X)→ Zr+e(W ′).

Similarly, if g : X ′ → X is proper, then

i!W ◦ g∗ = g′
∗ ◦ i!W ′ : Zr+c(X ′)→ Zr(W ).

sketch of proof. We define i!W as the composition

Z̃r+c(X) → Z̃r+c+1(X ×A1)→ Z̃r+c(NW X) ∼= Z̃r(X)

defined as composition of pr∗
1 , specialization associated to deformation to the nor-

mal cone, and the inverse of π∗ given by the “homotopy property”.
As argued for (2.4.a), scheme-theoretic deformation to the normal cone when

restricted to Zr+c(X, W ) provides a lifting Zr+c(X, W )× I → Zr+c(QW X) of the
null-homotopy Zr+c(X) × I → Zr+c(X × A1) and thus explicitly determines the
lifting to Zr+c(NW X). This construction sends an effective cycle Z ∈ Zr+c(X, W )
given as a subscheme to the cycle associated to its scheme theoretic normal cone
CZ∩W (Z) which is shown in [Fu] to equal π∗(Z ·W ).

Part b.) is a re-statement of the second assertion of Proposition 3.3.
To prove c.), we consider the following diagram

Z̃r+c(X) ε∗→ Z̃r+c(QV X) → Z̃r+c(X ×A1)

i!W

y yq!
W

y(iW × 1)!

Z̃r(W ) ε∗→ Z̃r(QV W ) → Z̃r(W ×A1)

where the vertical maps are Gysin maps for the regular embeddings iW : W →
X, qW : QV W → QV X, iW × 1 : W × A1 → X × A1 . Using the alternate
description of the Gysin map provided in Proposition 3.3, we readily verify the
commutativity in D(Z) of this diagram. Let πX : NV X → V and πW : NV W → V
denote the bundle projections. By Proposition 3.3, π∗

X ◦ (iW ◦ iV )! (respectively,
π∗

W ◦ i!V ) is realized by lifting the natural homotopy for the upper (resp., lower)
horizontal composition. We identify the Gysin map i!W as the composition of
the map Z̃r+c(X) → htyfib(Z̃r+c(QW X) → Z̃r+c(X × A1)) determined by the
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natural null-homotopy for Z̃r+c(X) → Z̃r+c(X × A1) and the derived category
inverse of the natural map π∗ : Z̃r(W )→ htyfib(Z̃r+c(QW X)→ Z̃r+c(X × A1)),
with parallel descriptions for the other vertical maps. The commutativity in DZ
of the above diagram does not suffice to prove c.); we must rigidify this diagram
by working with maps of chain complexes.

Using the preceding formulation of the Gysin map, we expand the above
diagram to be a commutative diagram of chain complexes, inserting a middle
row (for notational convenience, denoted A → B → C) between the upper row
A′ → B′ → C ′ and the lower row A′′ → B′′ → C ′′ of the above diagram. We may
construct a null-homotopy for the middle row which is strictly compatible with
that of the upper and lower rows, thereby obtaining a commutative diagram of
chain complexes

A′ → htyfib(B′ → C ′) ←̃ ker(B′ → C ′)y y y
A → htyfib(B → C) ←̃ ker(B → C)x̃ x̃ x̃
A′′ → htyfib(B′′ → C ′′) ←̃ ker(B′′ → C ′′)

where →̃ denotes a quasi-isomorphism. The perimeter of this diagram becomes
the following commutative square in DZ

Z̃r+c(X) → Z̃r+c(NV X)

i!W

y yn!
W

Z̃r(W ) → Z̃r(NV W )

where n!
W is the Gysin map for the bundle inclusion nW : NV W → NV X. The

verification of c.) is completed by observing that

π∗
W = n!

W ◦ π∗
X : Z̃r−d(V ) → Z̃r+c(NV X) → Z̃r(NV W ).

The proof of d.) follows easily from the alternate description of the special-
izatin map given in Proposition 3.3 together with the identification

QW ′X ′ = X ′ ×X QW X.

The following intersection pairing for a smooth variety X follows easily from
the existence of a Gysin map for the diagonal embedding

∆ : X → X ×X.
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Theorem 3.5. If f : X → Y is a map of quasi-projective varieties with Y smooth
of pure dimension c, then f determines a natural pairing

Z̃r(X) ⊗ Z̃s(Y ) → Z̃r+s−c(X)

whenever r + s ≥ c.

In particular, if X is a smooth variety of dimension n and if r + s ≥ n, then
the resulting intersection pairing

Z̃r(X) ⊗ Z̃s(X) → Z̃r+s−n(X)

has the following properties:
a.) If Zr(X, W ) (mapping to Zr(X)) (respectively, Zs(X, V ) to Zs(X)) is the
naive group completion of those effective cycles which meet W ∈ Zs(X) (resp,
V ∈ Zr(X)) properly, then the restriction of this pairing to Z̃r(X, W ) (resp.,
Z̃s(X, V )) is induced by the usual intersection pairing.
b.) The pairing is commutative and associative (in D(Z)).
c.) Applying H0(−) to this pairing yields the usual intersection pairing on algebraic
equivalence classes.

sketch of proof. If Y is smooth, then the graph Γf of f is regularly embedded
in X × Y. Moreover, sending (Z, V ) ∈ Zr(X)×Zs(Y ) to Z × V ∈ Zr+s(X × Y ) is
a continuous bilinear map. Thus, the Gysin map for the embedding Γf ⊂ X × Y
determines the pairing

i!Γf
◦ × : Z̃r(X)⊗ Z̃s(Y )→ Z̃r+s(X × Y )→ Z̃r+s−c(Γf ) ∼= Z̃r+s−c(X)

where c = dim(Y ).
If (V,W) intersect properly on X, then V ×W meets ∆(X) ⊂ X×X properly.

Thus, a.) follows from (3.4.a). Associativity follows from (3.4.c) applied to

(∆× 1) ◦∆ = (1×∆) ◦∆ : X → X ×X ×X

whereas commutativity follows immediately by transport of structure.
To prove c.), we recall that the ring structure on the Chow groups (of cycles

modulo rational equivalence) is given by the same construction as we have used:
one uses deformation to the normal cone to define a Gysin map for the diagonal
embedding and then applies this Gysin map to the product of cycles. Thus,
applying π0(−) to our construction yields the image of the Chow ring structure
on cycles modulo algebraic equivalence.

We conclude this section by exhibiting Chern classes from the (higher) alge-
braic K-theory of a smooth variety to Lawson homology.
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Construction 3.6. Let X be a smooth quasi-projective variety of pure dimension
d. Then for any p > 0 and any i with 0 ≤ i ≤ d, we define Chern classes

ci,p : Kp(X) → Ld−iH2d−2i+p(X) .

sketch . If C∗, C ′
∗ are chain complexes, then we denote by Hom(C∗, C ′

∗) the chain
complex of homomorphisms given in degree m by the following (infinite) product

Hom(C∗, C ′
∗)m =

∏
i−j=m

Hom(Cj , C
′
i).

If Y∗ is a simplicial object in the category of disjoint unions of equidimensional
varieties and if the face maps of Y∗ are flat, then we define Hom(Y∗, Z̃r) analogously
to be the chain complex whose term of degree m is given by

Hom(Y∗, Z̃r)m =
∏

i−j=m

Z̃r(Yj)i

where Z̃r(Yj)i is the group in degree i of the complex Z̃r(Yj) defined as

Z̃r(Yj) ≡
∏

α∈π0(Yj)

Z̃r(Yj,α)

where Yj,α is the connected component of Yj indexed by α ∈ π0(Yj) and Zr

denotes cycles of codimension r. (There are different conventions for the signs in
the differential.)

A map between filtered chain complexes which induces a quasi-isomorphism
of associated graded complexes is itself a quasi-isomorphism provided that the
chain complexes are complete for the filtration. The useful property of these
Hom-complexes is that they are complete with respect to the decreasing filtration
given at level p by taking products with j ≥ p.

We recall “Jouanolou’s device” which exhibits an affine variety SpecA and a
morphism SpecA → X which is an affine bundle map of some relative dimension
c. The proof of the “homotopy property” proves that Z̃r(X) → Z̃r+c(SpecA) is
a quasi-isomorphism; algebraic K-theory satisfies a similar property (without a
shift in degree) [Q] which implies that K∗(X) → K∗(SpecA) is an isomorphism.
Thus, to exhibit Chern classes for X, it suffices to assume that X = SpecA. In what
follows, we shall stabilize the cycle spaces by replacing Zs(Y ) by colimnZs(Y ×An).

Fix a positive integer n. Let B∗ denote the simplicial variety BGL(n, A)⊗X

given at level m as the disjoint union of copies of X indexed by GL(n, A)×m and
let

π : P∗ = B(Pn−1
A , GL(n, A)) → BGL(n, A)⊗X = B∗
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denote the “universal bundle projection” with

Pm = Pn−1
A ×X Bm = Pn−1 ×Bm.

Denote by V (OP∗(1)) the simplicial variety over P∗ given at level m by

V (OP∗(1))m = V (OPm(1)).

We consider the following chain in D(Z)

c1(OP∗(1)) : Hom(P∗, Z̃s)→ Hom(V (OP∗(1)), Z̃s+1)← Hom(P ∗, Z̃s+1)

where the second map is a quasi-isomorphism since each

Z̃s+1(Pm) → Z̃s+1(V (OPm(1)))

is a quasi-isomorphism. We easily extend the proof of Proposition 2.5 to prove
that ∑

0≤j<n

c1(OP∗(1))j ◦ p∗ :
⊕

0≤j<n

Hom(B∗, Z̃r−j)→ Hom(P∗, Z̃r)

is a quasi-isomorphism.
The multiplicative pairing of Theorem 3.5 can be extended to apply to the

map π : P∗ → B∗ to give pairings (in the derived category)

Hom(P∗, Z̃r)⊗Hom(B∗, Z̃s) → Hom(P∗, Z̃r+s)

which determines a H∗(Hom(B∗, Z̃∗)) − module structure on H∗(Hom(P∗, Z̃∗)).
The quasi-isomorphism implies that H∗(Hom(P∗, Z̃∗)) is a free H∗(Hom(B∗, Z̃∗))-
module of rank n. Following Grothendieck, we define Chern classes

ci,n ∈ H0(Hom(B∗, Z̃i))

by the equation

c1(OP∗(1))n + c1(OP∗(1))n−1 · π∗(c1,n) + ... + π∗(cn,n) = 0.

(c1(OP∗(1))n is applied to the fundamental cycle.) We interpret H0(Hom(B∗, Z̃i))
as the group of homotopy classes of maps from the chain complex of BGL(n,A) to
Z̃i(X), so that our Chern classes ci,n determine maps

Ci,n : H∗(BGL(n, A)) → H∗(Z̃i(X)).

One verifies that these maps stabilize to determine

Ci : H∗(BGL(A)) → H∗(Z̃i(X))
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We compose these stable maps with the Hurewicz homomorphism

K∗(A) = π∗(BGL(A)+) → H∗(BGL(A))

to obtain the asserted Chern classes.

We anticipate that the above construction can be extended to the Quillen K-
theory of coherent sheaves on a possibly singular variety using the sheaf-theoretic
techniques of [Gi].

4. Relationships to other theories

In this section, we exhibit a natural map from S. Bloch’s higher Chow groups
[B] to Lawson homology for (complex) quasi-projective varieties. We then in-
troduce the algebraic bivariant cycle complex whose homology is an analogue of
bivariant morphic cohomology recently introduced in [F-L] (a bivariant general-
ization of Lawson homology). Our tentative new theory is defined for arbitrary
pairs of quasi-projective varieties over an arbitrary field; when the contravariant
variable is a point, our theory maps to Lawson homology and in some respects
resembles Bloch’s theory.

We recall the definition of S. Bloch’s higher Chow groups [B]. Let X be an
equi-dimensional quasi-projective variety over a field k. For each s ≥ 0, one con-
siders the following simplicial abelian group

zs(X, ∗) : ∆op → (Ab)

defined by sending the m-simplex [m] = {0, ..., m} to the free abelian group
zs(X, m) generated by irreducible subvarieties of X×∆[m] of codimension s which
meet each face 1 × ∂ : X ×∆[k] → X ×∆[m] properly. Here, ∆[m] denotes the
“algebraic m-simplex” over k; namely,

∆[m] ≡ Spec(k[x0, ..., xm]/
∑

xi − 1).

Face and degeneracy maps of zs(X, ∗) are defined by intersection and pull-back of
cycles induced by the (standard linear) face and degeneracy maps of ∆[m]. Bloch
defines the higher Chow groups by

CHs(X, m) ≡ πm(zs(X, ∗)) ∼= Hm(z̃s(X, ∗))
where z̃s(X, ∗) denotes the normalized chain complex associated to the simplicial
abelian group zs(X, ∗).
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Construction 4.1. Let X be a quasi-projective variety of pure dimension n over
C. Then there is a natural map in D(Z)

z̃s(X, ∗) → Z̃r(X) , r = n− s ≥ 0.

Consequently, there are natural maps from Bloch’s higher Chow groups to Lawson
homology groups indexed as follows:

CHs(X, m) → LrH2r+m(X) , r = n− s ≥ 0.

sketch. If A is a simplicial abelian group, we define ⊕∗A to be the naturally
constructed simplicial abelian group with m-simplices

(⊕∗A)m =
⊕

|α|=m

Anα(m)

where the direct sum is indexed by the m-tuples of composable maps of ∆

α = (α1 : [nα(0)]→ [nα(1)], ..., αm : [nα(m−1)]→ [nα(m)]).

Using the natural isomorphism of functors

H0(−) ∼= colim∆op(−)

from simplicial abelian groups to abelian groups (cf. [G-Z]), we obtain a homotopy
class of natural homotopy equivalences of normalized chain complexes

Ã → ⊕̃∗A

for any simplicial abelian group A.

For any composable m-tuple α = (α1, ..., αm) of ∆, we can associate in a
natural way a composable m-tuple α′ = (α′

1, ..., α
′
m) of injective maps of ∆ with

α′(m) = α(m). We consider the naive group completion T s(X, α) of those effective
(r + nα(m)) cycles on X ×∆[nα(m)] which meet each face X ×∆[nα′(i)] properly.
We verify that

pr∗
1 : Zr(X) → T s(X, α) , r = n− s

is a homotopy equivalence for each composable m-tuple α by applying the “homo-
topy property” to

Zr(X)→ Zr+nα′(0)(X ×∆[nα′(0)])

and then verifying that the map

Zr+nα′(0)(X ×∆[nα′(0)])→ T s(X, α)
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(defined using a linear retraction of ∆[nα(m)] to ∆[nα′(0)]) is the inclusion of a
deformation retract. This latter fact follows from the proof of the following state-
ment, proved using a flow to infinity as in [L]: for any Y and any non-negative
n, r, d the pull-back map

pr∗
1 : Cr(Y )→ Cr+n,d(Y ×∆[n], Y )

from cycles on Y to cycles on Y ×∆[n] which meet Y properly is a deformation
retract.

We denote by ⊕∗T s(X) the simplicial abelian topological group whose topo-
logical group of m-simplices is given by

⊕∗T s(X)m ≡
⊕

|α|=m

T s(X, α)

Then the asserted map is given by the following chain of maps

z̃s(X, ∗)→ ⊕̃∗zs(X, ∗)→ N ◦ diag ◦ Sing.⊕∗ T s(X)

←N ◦ diag ◦ Sing.⊕∗ Zr(X)←Z̃r(X)

where the first map is homotopy equivalence described above in a general set-
ting, the second is given by the natural inclusion of the discrete abelian group
zs(X, nα(m)) in the topological group T s(X, α) for each composable m-tuple α, the
third is the quasi-isomorphism induced by the equivalence pr∗

1 : Zr(X)→ T s(X, α)
for each α, and the last quasi-isomorphism arises by viewing Zr(X) as a constant
simplicial topological abelian group and observing that the equivalence in the de-
rived category Ã → ⊕̃∗A implies a similar equivalence for (the singular functor
applied to) simplicial abelian topological groups.

The following observation suggests that this map might be highly non-trivial.

Proposition 4.2. Let X be a smooth, projective complex variety of pure dimen-
sion m > 0 and let n be a positive integer. The homology groups of the chain
complexes

z1(X, ∗)⊗ Z/n , Z̃m−1(X)⊗ Z/n

are abstractly isomorphic.

sketch of proof. This is merely a comparison of Bloch’s computation of his higher
Chow groups in codimension 1 [B] and the computation of Lawson homology for
codimension 1 cycles [F].

In fact, the map of Construction 4.1 induces an isomorphism in Z/n−homology
in degrees 0 and 1. Roughly speaking, this map in homology is associated to the
identity map from Pic(X) viewed as a discrete group (which we denote Pic(X)δ)
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to Pic(X) viewed as a topological group. Viewed in terms of the “Isomorphism
Conjecture” of [M], this isomorphism can be interpreted in terms of the map of
classifying spaces

K(Pic(X)δ, 1) → BPic(X)

Since Pic(X) is an extension of a finitely generated abelian group NS(X) by a
complex torus, this last map induces an isomorphism in Z/n− homotopy.

We now briefly consider an algebraic analogue of “bivariant morphic coho-
mology” (cf. [F-L]). Our construction has been inspired by A. Suslin’s definition
of “algebraic homology” [Su], S. Bloch’s definition of higher Chow groups [B], and
the bivariant point of view introduced by the author and H. B. Lawson [F-L]. Our
analogue, which we denote Ar(W, X), has various appealing features as indicated
in Theorem 4.6 below. In short, it is a bivariant version of Lawson homology de-
fined over an arbitrary field k with the role of algebraic equivalence being replaced
by rational equivalence.

For the remainder of this section, k denotes an arbitrary (but fixed) field and
k ⊂ k̄ is a fixed algebraic closure. Without mention to the contrary, all varieties
discussed below will be varieties over k.

Definition 4.3. Let Y be a projective variety with closed equivalence relation
R ⊂ Y × Y, let W be a quasi-projective variety with proper equivalence relation
S ⊂ W × W . A continuous algebraic map f : W/S → Y/R is a set theoretic
function on geometric points

f : W (k̄)/S(k̄) → Y (k̄)/R(k̄)

which is induced by a closed subset Cf ⊂ W × Y. If f is bijective and if Cf is
proper over Y , then f is said to be an algebraic homeomorphism.

When S = diag(W ), we employ the notation Homalg.cont(W, Y/R). Definition
4.3 may be appropriately extended to k-schemes W possibly not of finite type.
With this extended definition, one has for L a field extension of k with an algebraic
closure L̄

Homalg.cont(Spec(L), Y/R) ∼= (Y (L̄)/R(L̄))Gal(L̄/L)

and for V a valuation ring over k

Homalg.cont(Spec(V ), Y/R) ∼= Homalg.cont(Spec(fract(V )), Y/R).

Composition of continuous algebraic maps is easily seen to be well defined.
In the special case that S = diag(W ) and R = diag(Y ), this definition agrees with
that of [F], for in this case pr1 : Cf →W is a finite, surjective, radicial map.
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As for Bloch’s complex, we use in the definition below the algebraic simplices

∆[m] ≡ Spec(k[x0, ..., xm]/
∑

xi − 1)

together with their (algebraic) face and degeneracy maps.

Definition 4.4. Let W be a quasi-projective variety and Y a projective va-
riety with closed equivalence relation R ⊂ Y × Y. We define the simplicial set
mor(W,Y/R) by setting

mor(W, Y/R)m ≡ Homalg.cont(W ×∆[m], Y/R)

for each m ≥ 0 and by defining face and degeneracy maps as those induced by the
face and degeneracy maps of ∆[m].

If X is a quasi-projective variety with projective closure X̄, then for any
r, n ≥ 0 we write

Zr(X̄, X̄ −X)(n) = Yn/Rn , Yn = ∪i,j≤nCr,i(X̄)× Cr,j(X̄).

where Rn is the equivalence relation on Yn given by identifying pairs of cycles on
X̄ if their differences are equal when restricted to X. We define

mor(W, Zr(X̄, X̄ −X)) ≡ colimn{mor(W, Zr(X̄, X̄ −X)(n))}.

The preceding definition differs from the construction of [F-L] in that we
consider algebraic continuous maps into Zr(X̄, X̄ −X) rather than a homotopy-
theoretic group completion of maps into the Chow monoid Cr(X̄). This difference
permits us to obtain a theory for quasi-projective X. A second difference is that,
following Bloch and Suslin, we consider the simplicial set of algebraic singular
simplices rather than the topological space of maps, a difference which is clearly
reflected in Theorem 4.6.b).

Proposition 4.5. Let W, X be quasi-projective varieties and let X ⊂ X̄, X ⊂ X̂
be projective closures. Then

mor(W, Zr(X̂, X̂ −X)) , mor(W, Zr(X̄, X̄ −X))

are naturally isomorphic simplicial abelian groups. We let mor(W, Zr(X)) denote
mor(W, Zr(X̄, X̄−X)) for some projective closure X ⊂ X̄ and define the algebraic
bivariant cycle complex, Ar(W, X), to be the normalized chain complex associated
to mor(W, Zr(X)).
a.) Any map h : V →W induces a map

h∗ : Ar(W, X) → Ar(V, X).
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b.) Any proper map f : X → Y induces a map

f∗ : Ar(W, X) → Ar(W, Y ).

c.) Any flat map g : X ′ → X of constant relative dimension e induces a map

g∗ : Ar(W, X) → Ar+e(W, X ′).

sketch of proof. As discussed in the first part of the sketch of the proof of
Theorem 1.6, to prove the independence of projective closure we may consider the
situation in which the projective closure X̂ dominates X̄. Then the map of Chow
monoids Cr(X̂)→ Cr(X̄) induces a map

mor(W, Zr(X̂, X̂ −X)) → mor(W, Zr(X̄, X̄ −X)).

This map is seen by inspection to be injective; surjectivity is proved using the
observation made in discussing Theorem 1.6 that effective r-cycles of X whose
closures in X̄ have degree ≤ d have closures in X̂ of some bounded degree.

Contravariant functoriality with respect to maps h : V → W follows easily
from the observation that composition of continuous algebraic maps is well defined.
Since a proper map f : X → Y induces a homomorphism of Chow monoids
Cr(X̄)→ Cr(Ȳ ) of suitably chosen projective closures, covariant functorality with
respect to maps f : X → Y follows similarly. To prove contravariant functorality
for flat maps g : X ′ → X of relative dimension e, we employ projective closures
X̄ ′, X̄. Let Yn denote ∪i,j≤nCr,i(X̄)× Cr,j(X̄) and Y ′

p denote ∪i,j≤pCr+e,i(X̄ ′)×
Cr+e,j(X̄ ′). Recall that g∗ : Zr(X) → Zr+e(X ′) is induced by correspondences
Γn,p ⊂ Yn × Y ′

p for p >> n. Given a continuous algebraic map φ : W ×∆[m] →
Zr(X) represented by some correspondence Cφ ⊂W ×∆[m]×Yn, we consider the
correspondence Cg∗(φ) defined as the composition of Cφ and the correspondence
Γn,p. One easily verifies that Cg∗(φ) ⊂ W ×∆[m]× Y ′

p determines a set-theoretic
function (W ×∆[m])(k̄)→ Zr+e(X ′)(k̄).

We now verify a few properties of our algebraic bivariant cycle complex which
suggest that this complex may prove to worthy of further study.

Theorem 4.6. Let W and X be quasi-projective varieties and r ≥ 0.
a.) For k perfect, H0(Ar(∗, X)) is the Chow group of rational equivalence classes
of r-cycles on X.
b.) If k = C, there is a natural inclusion

Ar(∗, X) ⊂ Z̃r(X)

applying H0(−) to which yields the quotient map from r-cycles modulo rational
equivalence to r-cycles modulo algebraic equivalence.
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c.) If X is projective, provided with a given closed embedding in some projective
space, then the suspension map induces a quasi-isomorphism

Ar(W, X) → Ar+1(W, ΣX).

d.) Assume k = C and N ≥ r. Then Zr(AN ) is an abelian topological group which
has the homotopy type of K(Z, 2N − 2r). There is a natural map of simplicial
abelian groups

ΦN,r : mor(W, Zr(AN )) → hom(W, Zr(AN ))

where hom(W, Zr(AN )) denotes the simplicial abelian group of continuous maps
from W to Zr(AN ). Moreover, these maps ΦN,r for increasing N determine a
natural map

colimjH∗(Ar+j(W, AN+j)) → H2N−2r−∗(W,Z).

sketch of proof. To prove a.), one sees that for k perfect, Ar(∗, X)0 identifies with
the discrete group of r-cycles on X. Also, the elements of mor(*,Zr(X))1 corre-
spond to continuous algebraic maps from the generic point of ∆[1] to Zr(X̄, X̄−X),
which correspond to r-cycles on X defined over the perfect closure of the function
field k(t) of ∆[1], and this perfect closure is (for k perfect with char(k) = p > 0)
the limit over n of rational function fields k(t1/pn

). Furthermore, the simplicial
face maps correspond to specialization of cycles, and the assertion follows by com-
paring the definition of π0(mor(∗, Zr(X))) with one of the definitions of rational
equivalence.

If k = C, then a continuous algebraic map ∆[m] → Zr(X) is continuous
for the analytic topology. Thus, mor(∗, Zr(X)) is a sub-object of the simplicial
abelian group Sing.Zr(X). Since the inclusion map is the identity on 0-simplices,
the induced map on H0(−) is necessarily the quotient map as asserted.

The proof of the Lawson suspension theorem given in [F] for a projective
variety X provides for any n > 0 a continuous algebraic map

θn : ∪d,e≤nCr+1,d(ΣX)× Cr+1,e(ΣX)× J → Zr+1(ΣX)

where J ⊂ A1 × A1 equals Spec(k[x,y]/(x-1)y). This map satisfies the following
properties: at (0, 0) ∈ J, θn is the natural projection; for all (s, t) ∈ J , θn restricted
to ∪d,e≤nCr,d(X) × Cr,e(X) is the natural projection; at (1, 1) ∈ J, θn factors
through the image of Σ : Zr(X) → Zr+1(ΣX). The map θn is constructed from
the corresponding map on effective cycles of degree ≤ n which in turn is defined as
the difference Tj+1−Tj , for some sufficiently large j. The map Tj is the composition
of an algebraic homotopy relating multiplication by j on effective cycles of degree
≤ n to a map with image meeting X ⊂ ΣX properly and an algebraic homotopy
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deforming effective cycles of arbitrary degree on ΣX which meet X properly to
suspensions of cycles on X. One verifies that θn factors through a continuous
algebraic map

θ̄n : Zr+1(ΣX)(n) × J → Zr+1(ΣX).

We obtain a commutative square of simplicial sets

mor(W, Zr(X)(n))× (∆[1]∨∆[1]) → mor(W, Zr(X))

Σ
y yΣ

mor(W, Zr+1(ΣX)(n))× (∆[1]∨∆[1]) → mor(W, Zr+1(ΣX))

whose upper horizontal arrow is the constant homotopy for the inclusion and whose
lower horizontal arrow is a homotopy between the inclusion and a map factoring
through mor(W, Zr(X)). Since

H∗(Ar(W, X)) ≡ π∗(mor(W, Zr(X))) = colimnπ∗(mor(W, Zr(X)(n))),

the suspension isomorphism of part c) follows by applying π∗(−) to the above
commutative square.

The determination of the homotopy type of Zr(AN ) follows from Lawson’s
determination [L] of the Lawson homology of PN together with the localization
sequence. Since a continuous algebraic map

W ×∆[m] → Zr(X)

is continuous (for the analytic topology), there is a natural inclusion

ΦN,r : mor(W, Zr(AN )) ⊂ hom(W, Zr(AN )).

The final assertion of d.) follows from the obvious compatibility of ΦN,r with
suspension and the observation that the “homotopy property” asserts that

Σ : Zr(AN ) → Zr+1(AN+1)

is a homotopy equivalence.

The reader might find it useful to contrast mor(∗, Zr(X)) with Bloch’s com-
plex zs(X, ∗) where s = dimX − r. A major difference is that an m-simplex of
Bloch’s complex is a codimension s cycle on ∆[m]×X which need not dominate
∆[m], whereas an r + m-effective cycle on ∆[m] × X determines m-simplex of
mor(∗, Zr(X)) only if it is equi-dimensional over ∆[m]. A second, more subtle
difference is that not every m-simplex of mor(∗, Zr(X)) arises as an m-simplex
of Bloch’s complex: the condition on an m-simplex of Bloch’s complex of proper
intersection of the cycle with faces of ∆[m] ×X is weakened for an m-simplex of
mor(∗, Zr(X)) to the condition of existence of a well-defined specialization at every
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face (in fact, at every point of ∆[m]) of the generically defined cycle. Namely, for
an m-simplex given as a family of non-effective cycles over ∆[m], the condition of
proper intersection with faces of ∆[m] is a condition on both positive and negative
parts, whereas the condition of well-defined specialization permits cancellation of
improper intersections of positive and negative parts.

What our newly defined “algebraic bivariant cycle theory” currently lacks is
a localization theorem. Should such a theorem be valid for this theory, then many
of our results for Lawson homology would apply to this theory as well.
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